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Abstract: In this paper, we introduce and study a new class of neutrosophic closed set called neutrosophic a"*-closed
set. In this respect, we introduce the concepts of neutrosophic a"*-continuous, strongly neutrosophic o™ continuous,
neutrosophic o -irresolute and present their basic properties.

Keywords:Neutrosophic a-closed set, neutrosophic a*-continuous, strongly neutrosophic a™-continuous, neu-
trosophic o™ -irresolute.

1 Introduction

In 1965, Zadeh [2 1] studied the idea of fuzzy sets and its logic. Later, Chang [¢] introduced the concept of fuzzy
topological spaces. Atanassov [!] discussed the concepts of intuitionistic fuzzy set[[2],[3],[#4]]. The concepts
of strongly fuzzy continuous and fuzzy gc-irresolute are introduced by G. Balasubramanian and P. Sundaram
[6]. The idea of a™-closed in topological spaces was introduced by M. Mathew and R. Parimelazhagan[16]. He
also introduced and investigated, o' -continuous maps in topological spaces together with S. Jafari[17]. The
concept of fuzzy o -continuous function was introduced by R. Dhavaseelan[ ! 3]. After the introduction of the
concept of neutrosophy and neutrosophic set by F. Smarandache [[ 1 9], [20]], the concepts of neutrosophic crisp
set and neutrosophic crisp topological space were introduced by A. A. Salama and S. A. Alblowi[|&]. In this
paper, a new class of neutrosophic closed set called neutrosophic o™ closed set is studied. Furthermore, the
concepts of neutrosophic a"-continuous, strongly neutrosophic a'™-continuous, neutrosophic a-irresolute
are introduced and obtain some interesting properties. Throughout this paper neutrosophic topological spaces
(briefly NT'S) (51,&1),(S2, &) and (S3, &3) will be replaced by 57,52 and Ss, respectively.

R. Dhavaseelan', R. Narmada Devi?, S. Jafari® and Qays Hatem Imran* and Neutrosophic o™-continuity



172 Neutrosophic Sets and Systems, Vol.27, 2019

2 Preliminiaries

Definition 2.1. [19] Let T,LF be real standard or non standard subsets of |07, 1*[, with supr = tsup, infr =
Linf

sSupr = Z‘supa an] = Zznf

SUpr = foup, 1 fr = finy

n — sup = toup + tsup + fsup

n —inf = tins + ting + fing . T, I, F are neutrosophic components.

Definition 2.2. [19] Let S; be a non-empty fixed set. A neutrosophic set (briefly N-set) A is an object such
that A = {(z,p,(z),0,(x),7,(x)) : « € Si} where p,(x),0,(z) and 7, (x) which represents the degree

A
of membership function (namely i, ()), the degree of indeterminacy (namely o, (x)) and the degree of non-
membership (namely v, (x)) respectively of each element € S; to the set A.
Remark 2.3. [19]

(1) An N-set A = {(z, p, (z),0,(z), [, (2)) : © € S1} can be identified to an ordered triple (x,,o,,[',) in
07,1 on S;.

(2) In this paper, we use the symbol A = (u,,0,,I",) for the N-set A = {(z,u, (z),0,(x),[',(x)) : z €
S1}.

Definition 2.4. [18] Let S; # () and the N-sets A and I be defined as
A={(zx,pu,(x),0,(x), T, (2)) :x €51}, ={{z, u.(z),0.(x),[(z)) : € Si }. Then

(@ ACTiffu, (x) < pp(x),0,(z) <o.(r)and ', (z) > ['.(x) forall z € Sy;

b)) A=Tiff ACTandI' C A;

() A= {(x,T,(2),0,(z),p,(2)) : © € S;}; [Complement of A]

@ ANT = {{z,p, (1) A (), 0, (@) A o (2), T, (2) VT () @ € S

(@ AU = {(z,py () V pp (), 0, (2) Vo (x), Uy (&) Ai(@)) 2 € Sips

0 1A = {{z, 1, (2),0,(2), 1 = p, (2)) : x € Si}s

(® OA={(e,1-T,(),0,(x).T,(x)): z € Si}.
Definition 2.5. [10] Let {A; : i € J} be an arbitrary family of N-sets in S;. Then

@ N = (e, Ay (1), Ad (@), VT, (2)) < @ € i)

®) UA; = {{z, Vi, (2), Vo, (), AT, (2)) 2 € S1}.

In order to develop N'T'S we need to introduce the N-sets 0, and 1, in S; as follows:

Definition 2.6. [10]10, = {(2,0,0,1) : z € S;}and 1, = {(z,1,1,0) : z € S} }.

Definition 2.7. [10] A neutrosophic topology (briefly N-topology) on S; # () is a family & of N-sets in S
satisfying the following axioms:
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(1) 0N7 1N € Sla
(i1) G NGy €T for any Gl, Gy € 51,
(iii) UG; € & for arbitrary family {G; | i € A} C &;.

In this case the ordered pair (S1, &) or simply .Sy is called an N'T'S and each N-set in §; is called a neutrosophic
open set (briefly N-open set) . The complement A of an N-open set A in S| is called a neutrosophic closed set
(briefly NV-closed set) in .S;.

Definition 2.8. [10] Let A be an N-setin an NT'S S;. Then

Nint(A) = |U{G | G is an N-open set in S; and G C A} is called the neutrosophic interior (briefly
N-interior ) of A;

Necl(A) = ({G | G is an N-closed set in S; and G DO A} is called the neutrosophic closure (briefly V-cl)
of A.

Definition 2.9. Let S; # (). If r, ¢, s be real standard or non standard subsets of |0~, 17| then the N-set z,; ; is
called a neutrosophic point(briefly NV P )in S; given by

(2,) (ryt,s), ifx=ux,
Lrt,s =
e (0,0,1), ifx+#ux,

for z, € S is called the support of z,; s, where r denotes the degree of membership value, ¢ denotes the degree
of indeterminacy and s is the degree of non-membership value of x,; ..

Now we shall define the image and preimage of N-sets. Let S; # @ and S, # @ and Q : S; — S, be a
map.

Definition 2.10. [10]
(@ T ={(y,u.(y),0.(y), I'.(y)) : y € Sa} is an N-set in S, then the pre-image of I" under €2, denoted
by Q~1(T), is the N-set in S; defined by
Q7T = {{z, @ () (@), Q7 (o) (), Q7N (T ) (@) = = € S}
(b) If A = {(z,p,(x),0,(x),,(x)) : x € Si} is an N-set in S, then the image of A under €2, denoted by

Q(A), is the N-set in S, defined by
Q) = {(y, Qp) (W), Ao ) (), (1 = Q1 =T,))(y)) - y € S} where

) SUDeqoigy (), QTN (y) # 0,
0 —
(1)) { 0, otherwise,

_ supueqoigy o (x), ifQ7(y) #0,
Q —
(0)(y) {O, otherwise,

infxeg—l(y) FA (QT), if Q’l(y) 7& @,
1 otherwise,

(1= -T))y) = {

?

In what follows, we use the symbol 2_(I", ) for 1 — Q(1 —T',).
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Corollary 2.11. [10] Let A, A;(i € J) be N-setsin S;, I', I';( € K) be N-sets in S; and 2 : S; — Sy a
function. Then

(@) Ay C Ay = QA1) C Q(A),

(b) T1 CTy= Q 1(Th) C Q7 H(Iy),

() A CQYQ(A)) { If Qis injective,then A = Q71 (Q(A)) },
(d) Q(QYI)) C T { If Qis surjective, then Q(Q~1(T")) =T},
(@ Q7 (UTy) =Ua (1),

O QYO =N (),

(@ QUN) =UQ(n),

(h) QN A) SN QA { If Qs injective,then Q(A;) = N Q(A:)},
(i Q7'(1 ):

G) Q7H(0,) =

(k) Q(1,)=1,,if Qis surjective

D Q(0,) =

(m) Q(A) C ( A), if Q is surjective,

(m) Q71(T) = Q71 (D).

Definition 2.12. [11] An N-set A inan NT'S (S1,&;) is called
1) aneutrosophic semiopen set (briefly N-semiopen) if A C Ncl(Nint(A)).

2) aneutrosophic « open set (briefly Na-open set) if A C Nint(Ncl(Nint(A))).

3) a neutrosophic preopen set ( briefly N-preopen set) if A C Nint(Ncl(A)).

4) a neutrosophic regular open set (briefly N-regular open set) if A = Nint(Ncl(A)).

5) a neutrosophic semipre open or /3 open set (briefly N 3-open set) if A C Ncl(Nint(Ncl(A))).

An N-set A is called a neutrosophic semiclosed set, neutrosophic « closed set, neutrosophic preclosed set,
neutrosophic regular closed set and neutrosophic 3 closed set, respectively, if the complement of A is an
N-semiopen set, Na-open set, N-preopen set, N-regular open set, and N 3-open set, respectively.

Definition 2.13. [10] Let (S1,&;) be an NT'S. An N-set A in (Sy, ;) is said to be a generalized neutrosophic
closed set (briefly g-N-closed set) if Ncl (A) C G whenever A C GG and G is an N-open set. The complement
of a generalized neutrosophic closed set is called a generalized neutrosophic open set (briefly g-/N-open set).

Definition 2.14. [10] Let (S1,&;) be an NT'S and A be an N-set in S;. Then the neutrosophic generalized
closure (briefly NV-g-cl) and neutrosophic generalized interior (briefly N-g-Int) of A are defined by,
AHNGcl(A) = ({G:Gisag-N-closed
setin S; and A C G}.
({)NGint(A) = |U{G: Gisag-N-open
setin Sp and A D G}.
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3 Neutrosophic o’ continuous functions

Definition 3.1. An N-subset A of an NT'S (51, &) is called neutrosophic a™-closed set (briefly Na™-closed
set) if Nint(Ncl(A)) C U whenever A C U and U is N a-open.

Definition 3.2. An N-subset A of an NT'S (Sy, ;) is called a neutrosophic ag-closed set (briefly Nag-closed
set) if aNcl(A) C U whenever A C U and U is an Na-open set in 5.

Definition 3.3. An N-subset A of an NT'S (51, &;) is called a neutrosophic ga-closed set (briefly N ga-closed
set) if aNcl(A) C U whenever A C U and U is an N-open set in ..

Remark 3.4. Inan NT'S (51, &), the following statements are true:
(i) Every N-closed set is an /N g-closed set.
(i1) Every N-closed set is an /N a-closed set.
Remark 3.5. In an NT'S (51, &), the following statements are true:
(i) Every Ng-closed set is an Nga-closed set.
(i1) Every Na-closed set is an Nag-closed set.
(ii1)) Every Nag-closed set is an /N ga-closed set.
Remark 3.6. In an NT'S (51, &), the following statements are true:
(i) Every N-closed set is an Na™-closed set.
(i) Every Na™-closed set is an N a-closed set.
(ii1)) Every Na'"-closed set is an /N ag-closed set.
(iv) Every Na™-closed set is an N ga-closed set.

Proof. (i) This follows directly from the definitions.

(i1) Let A be an Na™-closed set in .S; and U a N-open set such that A\ C U. Since every N-open set is an Na-
open set and A is a Na™-closed set, Nint(Ncl(A)) C (Nint(Ncl(A))) U (Ncl(Nint(A))) € U. Therefore,
A is an Na-closed set in S;.

(i11) It is a consequence of (ii) and remark 3.5 (ii).

(iv) It is a consequence of (ii1) and remark 3.5 (iii). ]

Proposition 3.7. The intersection of an Na™-closed set and an N-closed set is an Na™-closed set.

Proof. Let A be an Na-closed set and W an N-closed set. Since A is an Na™-closed set, Nint(Ncl(A)) C U
whenever A C U, where U is an Na-open set. To show that A N W is an Na™-closed set, it is enough to show
that Nint(Ncl(A N V) C U whenever ANV C U, where U is an Na-open set. Let M = S; — V.
Then A C U U M. Since M is an N-open set, U U M is an Na-open set and A is an Na-closed set,
Nint(Ncl(A)) C U U M. Now, Nint(Ncl(ANW)) C Nint(Ncl(A)) N Nint(Ncl(V)) C Nint(Nel(A)) N
VCUUMNYCUNY)UMNY)C(UNW)uoy CU. This implies that A N ¥ is an Na™-closed
set. []
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Figure 1: Implications of a neutrosophic o -closed set

Proposition 3.8. If A and I" are two Na™-closed sets in an NT'S (S, &), then ANT is an Na™-closed set in
Sy.

Proof. Let A and I' be two Na™-closed sets in an NT'S (S51,&1). Let U be a Na-open set in S; such that
ANT C U. Now, Nint(Ncl(ANT)) C Nint(Ncl(A))NNint(Nel(I')) C U. Hence ANT is an Na™-closed
set. O

Proposition 3.9. Every Na'"-closed set is N a-closed set.

The converse of the above Proposition 3.9 need not be true.

Example 3.10. Let S; = {a, b, c}. Define the N-subsets A and I as follows

A= {z, (07’06 55) (7 0_7_) (650105 I = {=, (oas’obsﬂoc:s) (55 030 93): (7% 57> 57)}- Then
& = {051, ls,,A,T'} is an N-to pology on Sy. Clearly (51,&;) is an NT'S. Observe that the N-subset > =
{z, (5, & %), (&, o5, 6%, (&%, 2, 52)} is Na-closed but it is not Na™-closed set.

Definition 3.11. Let (S51,&;) be an NT'S and A an N-subset of S;. Then the neutrosophic o*-interior (briefly
Na™-T) and the neutrosophic Na™-closure (briefly Na™-cl) of A are defined by,

a™Nint(A) = U{U|Uis Na™™-open setin S; and A D U}

a™Ncl(A) = N{U|Uis Na™-closed set in S; and A C U}.

Proposition 3.12. If A is an Na™-c-setand A C I' C Nint(Ncl(A)), then I"is Na™™-c-set.
)-

Proof. Let A be an Na™-c-set such that A C I' C Nint(Ncl(A)). Let U be an Na-open set of S; such
that ' C U. Since A is Na™-c-set, we have Nint(Ncl(A)) C U, whenever A C U. Since A C T and
[' € Nint(Ncl(A)), then Nint(Ncl(I')) € Nint(Ncl(Nint(Ncl(A)))) € Nint(Ncl(X)) € U. Therefore
Nint(Nel(I')) C U. Hence I' is an Na™-c-set in 5. O

Remark 3.13. The union of two Na™-c-sets need not be an N a™-c-set.

Remark 3.14. The following are the implications of an Na™-c-set and the reverses are not true.
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Definition 3.15. Let (51, &;) and (.5, &,) be any two NT'S.

1) Amap 2 : (S1,&) — (52,&) is called neutrosophic a-continuous (briefly Na™™-cont) if the inverse
image of every N-closed set in (S5, &) is Na™-c-set in (57, &1).
Equivalently if the inverse image of every N-open set in (55, &) is Na™-open set in (S, ;).

2) Amap Q2 : (S1,&) — (S92, &) is called neutrosophic o™ -irresolute (briefly Na™-1) if the inverse image
of every Na™-c-set in (Sg, &) is Na-c-set in (57, &;).
Equivalently if the inverse image of every Na™-open set in (Ss, &2) is Na'™-open set in (S, ;).

3) Amap € : (51,&) — (59,&) is called strongly neutrosophic a-continuous (briefly SNa™-cont) if
the inverse image of every Na'™-c-set in (S5, &) is N-closed set in (57, &7).
Equivalently if the inverse image of every Na-open set in (.S, &2) is N-open set in (S, ;).

Proposition 3.16. Let (S1,£;) and (52, &) be any two NT'S. If Q : (51,&) — (52,&) is NC, then it is
Na™-cont.

Proof. Let A be any N-closed set in (S, &). Since fis NC, Q71(A) is N-closed in (S,&;). Since every
N-closed setis Na™-c-set, Q~1(A) is Na™-c-setin (S, &;). Therefore Q is Na™-cont. O

The converse of Proposition 3.16 need not be true as it is shown in the following example.

Example 3.17. Let S; = {a,b,c} and Sy = {a, b, c}. Define N- subsets E,F,G and D as follows

E = (o, (i ) (5 e ), (o )1 F = {2 (3 ?)7(0%7%’4)7(%%&)}’ G =
o is), (2, o o), (%, 2%, 52) b and D = {x, (03,0 b L o, <)} Then the

family & = {0g,,1s,, £, F'} isan NT on Sy and & = {0g,, 1g,, S Ss. Thus (5, &) and

(S2,&) are NT'S. Define Q : (51,&) — (S2,&) as Q(a) = q, Q(b) ,Q(c) = b. Clearly Q is Na™-cont

but  is not NC since Q7(D

) € & for D € &,.

Proposition 3.18. Let (S1,&;) and (S9,&:) be any two neutrosophic NT'S. If Q : (S51,&) — (S2,&) is
Na™-1, then it is Na™-cont.

n oo

Proof. Let A be an N-closed set in (S5, &5). Since every N-closed set is Na-c-set, A is Na™-c-set in S.
Since Qis Na™-I, Q71(A) is Na™-c-set in (S, &;). Therefore Q is Na™-cont. O

The converse of Proposition 3.18 need not be true.

Example 3.19. Let S; = {a, b, c}. Define the N-subsets E,F and G as follows
E={z, (L o5 02) (50 050 03) (650 050 08 - F = {=, (06’0176’065) (LG’T%’T%>’<&’O% 55) )} and G =
{I (0570470 ) (()Lv()b4707) (oi i@ ()L } Then 51 - {05171517 )

topologies on S;. Define € : &) — (51,&) as follows Q(a) =
Q is Na™-continuous. But§21s not Na™-I. Since D = {z, (&, 35, é) (Oi 2
c-setin (51, &), Q71(D) is not Na-c-set in (S1, ).

Q(C) . Observe that
750, b 55)}is Na™-

Proposition 3.20. Let (51, &) and (S5, &) be any two NT'S. If Q : (S1,&1) — (59,&) is SNa™-1, then it is
NC.

Proof. Let A be an N-closed set in (55, &). Since every N-closed set is Na™-c-set. Since €2 is SNa™-cont,
Q71(A) is N-closed set in (Sy, &;). Therefore Q2 is NC. O
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The converse of Proposition 3.20 need not be true.

Example 3.21. Let S; = {a, b, c}. Define the N-subsets E,F and G as follows

b ¢ a b c a b ¢ a b ¢ a
E = {$ ( 1°0.1° m%(ofaﬁaf) (09709709)} F = {ZE ( 170170) (0170170) (0970971)} and G =

{z, (%, 2, oc1 , )}. Then & = {0g,, 151,E F}and & = {0g,, 15,, G} are N-topologies

( 1 . . 09
on S;. Define Q(S1, &) — (Sl, as follows (a) = Q(b) = a,Q(c) = c. Qis NC but Q is not SNa™-cont.
Since D = {z, (5%, 2,55), (5% 2,55), (5% 2, 55)} is Na™-c-set in (S1,&), 7' (D) is not N-closed set
in (51, &)

Proposition 3.22. Let (S1,&1), (S2, &) and (S3,&3) be any three NT'S. Suppose Q : (51,&1) — (Sq, &),
= (99,&) — (53, &3) are maps. Assume €2 is Na™-I and = is Na™-cont, then = o {2 is Na™-cont.

Proof. Let A be an N-closed set in (S3,&3). Since = is Na™-cont, =~ (A) is Na™-c-set in (Ss, &2). Since €
is Na™-I,Q 1 (ZE71(A)) is Na™-closed in (S, &;1). Thus = o 2 is Na™-cont. O

Proposition 3.23. Let (51,&1), (52,&2) and (S5,&3) be any three NT'S. Let Q : (S1,&) — (S2,&) and
E: (Sg,&) — (53, &) be maps such that Q is SNa™-cont and = is Na™-cont, then = o Q is NC.

Proof. Let A be an N-c-set in (S3,&3). Since = is Na™-cont, Z71(A) is Na™-c-set in (Ss, &»). Moreover,
since 2 is SNa™-cont, Q71 (Q71(A)) is N-closed in (S}, &;). Thus Zo Qis NC. O

Proposition 3.24. Let (51,&1), (S2,&2) and (S3,&3) be any three NT'S. Let Q : (S1,&) — (S2,&) and
= (Sg,&) — (Ss,&3) be two maps. Assume 2 and = are Na'"-1, then = o Q is Na-1.

Proof. Let A be an Na™-c-set in (S3,&3). Since = is Na™-I, Z71(A) is Na™-c-set in (Ss,&). Since (2 is
Na™-I, w ™ (Z71(A)) is an Na™-c-setin (S, &;). Thus 20 Qis Na™-1. O

4 Conclusions

In this paper, a new class of neutrosophic closed set called neutrosophic a™ closed set is introduced and
studied. Furthermore, the basic properties of neutrosophic o -continuity are presented with some examples.
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