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ABSTRACT 

Paleoecological analyses of six shallow marine bivalves were conducted to test the 

Abundant Center Hypothesis using data from the fossil record of the Pleistocene through 

modern day. This hypothesis predicts the highest abundance of a species is at the center of 

the geographic or environmental range, decreasing toward the edges. In geographic space, 

distances to a centerline within a geographic range were variably correlated with population 

abundances, and some species displayed a sharp drop-off in abundance as distance increased. 

In environmental space, bivalve species showed moderate correlations between abundance 

and centrality when measured using cumulative data across the last 2.8 Ma. Shorter time bins 

across that duration show no consistent patterns, potentially indicative of an abundance-

centrality pattern apparent only in the species’ fundamental niche, which is best measured 

cumulatively over geologic time. These results suggest caution should be taken when 

interpreting modeled environmental preferences, particularly over short durations.  
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INTRODUCTION 

One of the core motivations of ecology has always been characterizing the 

distribution of organisms across the environment and the mechanisms involved in these 

patterns. From the pioneering studies of the effects of climatic change on invasive species 

(Johnston, 1924), and the regionality of agricultural crop success (Visher, 1915), a rich study 

of species distribution modeling has grown. All species distribution models (SDMs) attempt 

to characterize the relationships between the presence of a species and the geographic context 

of the environment it inhabits, generally with the goal of determining how the confluence of 

geographic and environmental factors predict occurrence or elicit distributional change 

(Guisan and Zimmermann, 2000). One such model is the Abundant Center Hypothesis 

(ACH), which was formalized by Brown (1984) as a potential model for the abundance 

distribution within a species’ geographic range based on the assumption that geographic 

range could be used as a proxy for environmental suitability. According to the ACH, the 

abundance of a species is greatest at the geographic center of that species’ distributional 

range, where the environment is presumed to be most suitable for that species (Brown, 1984). 

If the ACH holds true, the center of the distributional range would then likely be associated 

with net population increase, while the peripheries of the range, containing less 

environmentally favorable conditions, would lead to an insuperable decline in fitness 

resulting in net population loss at the periphery (Brown, 1995). This pattern has not been 

found in a majority of studies performed in geographic space, likely due to the heterogeneous 

distribution of environments mapped onto geography (i.e., environments do not smoothly 

change across geographic barriers such as rivers, mountain ranges or steep marine 

bathymetric gradients) (Myers and Saupe, 2013; Sagarin and Gaines, 2002).  However, there 
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is mixed evidence of an abundance-centrality pattern when species’ niche characteristics are 

modeled in environmental space - dubbed a Niche Center Hypothesis (NCH) (Dallas et al., 

2017; Dallas and Hastings, 2018; Martínez-Meyer et al., 2013; Osorio-Olvera et al., 2020).  

This environmentally delimited distribution modeling relies on Ecological Niche Modeling 

(ENM), which predicts species’ distributions based on abiotic habitat suitability (e.g., 

Peterson and Soberón, 2012). While generally ENM is used to map habitat suitability onto 

geographic maps, it can also plot distributions of a species entirely within n-dimensional 

niche-space. NCH studies of present-day species are mixed and consequently any 

generalizable pattern that holds across many species has yet to be identified. However, this 

may be a result of the short timescale over which species’ environmental niches are often 

characterized. Modern ecological studies may incorporate years, or even decades, of species-

environment data. However, species are known to survive in the fossil record for over a 

million years, and average 11 million years within marine invertebrates (Lawton and May, 

1995). Studying ACH/NCH patterns in deep time expands the breadth of geographic space 

and environmental conditions that individuals from a species experienced – including 

environmental conditions that no longer exist in a snapshot of the modern Earth – and allows 

for the full dispersal potential of a species to be realized geographically. A time-transgressive 

collection of species-environment data also provides a closer approximation of the 

fundamental environmental niche of the species than can be measured using modern data 

alone, which improves the potential to observe any generalized NCH patterns characterizing 

the relationship between species and their environment over species’ lifetimes. 

Understanding species-environment interactions and the ways they drive survivorship 

is critical to predicting the indicators of extinction risk imposed by modern climate change. 
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Even in the fossil record, the concept of a range-based center-periphery abundance change 

has been most often studied in the context of speciation and extinction. The edges of 

geographic ranges are areas of particular importance in the origination of biodiversity and 

determination of extinction (Mayr, 1963). This concept is supported by some modern studies 

of center-periphery dynamics within the geographic range, which show the highest rates of 

gene flow and greatest genetic diversity in the centers of many species geographic ranges 

(e.g., Jin et al., 2020). Although in geographic space the correlation between distance from a 

range centroid and genetic diversity is not ubiquitous across species, there is strong support 

for an abundant center of genetic diversity in environmental space (e.g Lira-Noriega and 

Manthey, 2014). The underlying mechanism of extinction (excluding mass extinctions) is 

generally considered to be habitat loss (Wiens and Slaton, 2012) and this loss is frequently 

driven by changes in environmental conditions within that space (e.g., marine anoxia or 

increased temperature). Thus, size and distribution of suitable environmental space is a 

crucial factor in assessing extinction risk, particularly as modern climate change drives 

rapidly changing availability in environmental space, while geographic landscapes are not 

altered on the same temporal scale. Range shifts in response to climate change have been 

well documented among a wide variety of both extant and extinct species, where species with 

the most restricted ranges and/or experiencing severe range contraction are more susceptible 

to elimination of suitable habitat, leading to extinctions (Parmesan, 2006). 
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Taxonomic Selection 

 

Figure 1: Images of the bivalve species used in this study. (Image sources, top to bottom, left 

to right: 1. NeogeneAtlas UF 217954; 2.J. Trausel & F. Slieker; 3. NeogeneAtlas UF 

214314, 4. NeogeneAtlas UF 224948, 5. J. Trausel & F. Slieker, 6. NeogeneAtlas UF 61957) 

The use of modern bivalve species (see Figure 1 for visual reference) with roots in or 

before the Pleistocene in this study permits analysis using known biotic characteristics 

observed in both modern populations and in the fossil record. Bivalve larval dispersal rates in 

particular have a strong control on observed distribution and abundance patterns because 

dispersal of these taxa occurs primarily during the free-swimming larval stage, during which 

larvae use ocean currents to transport themselves to suitable habitats and thereby ensure 

population mixing and range expansion (Blackwelder, 1981). Some studies suggest most 

bivalve species are extremely sensitive to climatic shifts, particularly thermal change 

(Thomas and Bacher, 2018). Through larval dispersal, the distribution of bivalve species 



5 
 
 

likely rapidly reaches environmental equilibrium during periods of climatic change, which 

occurred geologically frequently throughout the Pleistocene. 

 

Ecological Niches and Niche Modeling 

The fundamental ecological niche, an n-dimensional hypervolume in environmental 

space (e-space) in which a species can experience net population growth based on its abiotic 

tolerance, defines the axes along which the NCH patterns are expected to occur (Brown, 

1984; Hutchinson, 1957; Martínez-Meyer et al., 2013). In contrast, the realized ecological 

niche, which is the e-space in which the species actually occurs, is the intersection of the 

fundamental niche with other factors influencing species survival across geography, 

including biotic factors and movement (dispersal) capacity (Soberón and Peterson, 2005). 

Biotic factors include all interactions with other species in an ecosystem that affect a species 

distribution, growth, or abundance, which is notoriously difficult to capture in the fossil 

record. Even if biotic interactions could be identified precisely, changes in the intensity and 

direction of biotic interactions can also be driven by climatic changes, further complicating 

system of factors influencing species distribution (Blois et al., 2013). Examples of biotic 

factors that drive environmental patterns might include symbiotic relationships, such as in the 

case of chemosymbiotic bivalves which necessarily must be geographically limited by the 

environmental tolerances and requirements of their symbiotes, or competition for resources, 

such as the competition for light among trees in densely populated forests (Grams and 

Andersen, 2007; Taylor and Glover, 2010). The movement aspect of the realized niche is 

determined by the ability of the taxon to disperse in search of suitable abiotic and biotic 

habitat within an individual lifetime. In highly motile taxa, dispersal potential is high, so 
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movement is not a limiting factor distinguishing the realized and fundamental niche, but in 

predominantly sessile organisms that may disperse only in the seed or larval stage (e.g., 

bivalves, corals, plants, etc.), movement may play a dominant role in delimiting the realized 

niche, and thereby geographic range location and size. Direct measurement of the 

fundamental niche of a taxon is not possible, because at any given time individuals can only 

occupy the current realized niche of the species and may not reach the full potential of the 

fundamental niche due to dispersal limitations, prohibitive biotic interactions, or a simple 

lack of the full range of potentially favorable environmental conditions in the current climatic 

regime. Thus, the difference between the realized niche and the fundamental niche of a 

species involves a difference in the quantity of time available, the environmental conditions 

accessible, and the complexity of the biotic interactions inherent in ecosystems. Although 

biotic factors are difficult to interpret, using modern species with a robust record through the 

Pleistocene allows a deep-time approach to observe species at their maximum dispersal 

capability, and encompasses a wide range of climatic regimes, which results in a closer 

approximation of the fundamental niche than is possible to achieve in modern studies. 

All predictive ENM models (e.g., Maxent models, shown Figure 2) require an 

assumption of niche stability over time – that is the expectation that a species will retain its 

ecological niche across that species’ lifetime (Peterson et al., 1999; Stigall, 2014). Niche 

stability within higher taxonomic groups or throughout speciation is not a requirement on the 

scale of this study, but any niche change of a single species across the lifetime of the species 

would render ENM analyses uninterpretable and any test of NCH intractable. Studies at the 

genus or family level have demonstrated broad niche stability across evolutionary turnover 

events, but the nature of the fossil record is such that determination of species-level niche 
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stability is difficult to quantify (e.g., Brame and Stigall, 2013; Di Marco et al., 2021). 

Predictions of future occurrence distributions hinge on the assumption that future individuals 

of the species exhibit identical environmental tolerances to modern specimens, so a species 

with changing niche parameters cannot be modeled using ENM.  

 

 

Figure 2: Map showing Maxent model derived logistic probability of occurrence of Arcinella 

cornuta in the Holocene, across its geographic range determined using an alpha hull. White 

triangles show occurence points from the Holocene, adjusted geographically to the nearest 

available environmental data value. Darker tiles indicate less environmental suitability, and 

lighter tiles indicate greater environmental suitability. Suitability is interpreted from the 

environmental variable (see Appendix A) values present at the occurrence points and show a 

pattern concordant with the hypothesis that ocean depth is a driving factor in determining 

environmental suitability of A. cornuta. 
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Geologic and Environmental Background 

Significant variation in sea level, global ice volume, and temperature have been recorded 

across the Pleistocene epoch, in conjunction with Milankovitch cyclicity and concurrent 

glacial-interglacial cycles (Pillans et al., 1998; Pisias and Moore, 1981). Despite up to ~130 

meter swings in global sea level, there is no evidence that tectonic uplifting or subsidence 

contributed significantly to sea level changes, particularly in the Gulf Coastal Plain (GCP) 

and Caribbean Sea (Fairbanks, 1989; Ludt and Rocha, 2015). The northern section of the 

Gulf Coast margin is built on the transform margin created during the opening of the Gulf of 

Mexico in the Jurassic, and along with the Atlantic Coastal Plain (ACP) has experienced 

little tectonic change during the Pleistocene (Bird et al., 2005; Blackwelder, 1981; Davis and 

Mitrovica, 1996). Ocean circulation in the Gulf of Mexico is driven by the Loop Current 

System (LCS), and exhibits a significant salinity gradient and seasonal variability mediated 

by freshwater inputs from North American rivers and saline concentration due to the semi-

enclosed nature of the Gulf (Brokaw et al., 2019). The LCS was established in the late 

Pliocene, with the closure of the Isthmus of Panama, and varied in strength across the 

Pleistocene, driven by climatic temperature changes (Hübscher and Nürnberg, 2023). The 

varying salinity, temperatures, and circulation-driven mixing in the GCP and lower ACP 

across the duration of this study widens the range of climatic extremes experienced by fauna 

living in those areas, while relative tectonic stability avoids conflation with uplift or 

subsidence-driven habitat changes.  

For the purposes of this study, the Pleistocene was divided into three substages - early, 

middle, and late Pleistocene, with durations 2.588 - 0.781 Ma, 0.781 - 0.126 Ma, and 0.126 - 

0.012 Ma, respectively, as designated by International Union of Geological Sciences 
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(Gibbard et al., 2010). The Holocene was treated as a time bin including data dated from 

0.012 Ma to present. Analyses were conducted using each time bin individually as well as a 

cumulative set of all data. The early and middle Pleistocene, as defined here, were 

characterized by ~ 41 kyr oscillations in global ice volume, while the late Pleistocene was 

dominated by more extreme but lower frequency variability, with sea surface temperatures 

fluctuating by as much as ~2 °C and surface temperatures varying by as much as 10 °C 

between the Last Glacial Maximum and the pre-industrial Holocene (Malakhova and Eliseev, 

2020). The glacial-interglacial cyclicity during the Pleistocene also drove rapid and extreme 

variability in sea-level, which would have significant effects on the distribution of shallow 

marine bivalves (Shelley et al., 2020). Rapid sea level change would have forced range shifts 

and encouraged dispersal to the maximum extent of the environmental suitability of each 

species, further reinforcing the filling and re-filling of each new addition to the realized 

niche.  
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METHODS 

 

Figure 3: Map showing the geographic range of Mercenaria campechiensis (pink enclosing 

polygons) as determined by each method used in this study; supporting taxon occurrences 

are represented by purple triangles. In species whose range is strongly constrained by 

environmental features, such as water depth, the geographic center of a convex hull 

surrounding the occurrence points (left) can be erroneously measured in an environmentally 

unsuitable location for the species, such as the middle of the Gulf of Mexico. A polygon 

buffer surrounding each occurrence, but following the known coastline (right), has a 

centerline that better describes a geographic center habitable by the species and reflecting 

its geographic range. 

Taxa and Model Setup 

Occurrence data, with latitude, longitude, and geologic time designation to the early, 

middle or late Pleistocene, or Holocene were downloaded from the Paleobiology Database, 

and recent data for the same six species was downloaded from the Global Biodiversity 

Information Facility. The two datasets were filtered for duplicate records, and within each 

species occurrence records with duplicate coordinates were removed. Species occurrences 

were also limited to specimens from published literature or established museum specimens 

and filtered to include only occurrences found in the Americas. This rigorous vetting resulted 
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in six well-sampled bivalve species from the Gulf of Mexico and Atlantic Coastal Plains 

(GCP and ACP, respectively) as the test subjects for this case study (see Table 1). All species 

have well-sampled modern distributions and a robust fossil record stretching back to at least 

the early Pleistocene.  

Table 1: Bivalve species used for ACH testing with Life Mode used to interpret dispersal 

capacity, used in determination of geographic range buffer distances. 

Species Common Name Age Range Life Mode 

(Dispersal Capacity) 

Abra aequalis Atlantic abra Late Pliocene-

Present 

Facultatively mobile 

(25 km) 

Arcinella cornuta N/A Late Miocene-

Present 

Sessile (10 km) 

Lunarca ovalis Blood ark Pliocene-Present Facultatively mobile 

(25 km) 

Mercenaria 

campechiensis 

Südliche Quahog-

Muschel 

Middle Miocene-

Present 

Facultatively mobile 

(25 km) 

Pleuromeris tridentata Threetooth carditid Pliocene-Present Facultatively mobile 

(25 km) 

Stewartia floridana N/A Early Pleistocene-

Present 

Facultatively mobile 

(25 km) 

 

In both geographic and environmental-space (e-space) tests, the Abundant Center Hypothesis 

(ACH) and Niche Center Hypothesis (NCH) were tested as linear phenomena, where 

abundance and distance (from central feature) data were fit to linear models. The ACH/NCH 

has commonly been tested as a linear phenomenon in modern studies (e.g., Adhikari et al., 

2018; Sagarin and Gaines, 2002), so this first test is directly comparable to those studies. The 

tests were also performed using log-transformed abundance data, to test whether species’ 

response to environmental differences can be modeled as a threshold phenomenon. If species 

tolerance appears as a threshold rather than a gradient, a log transformation will decrease the 

skew in the abundance values, making the abrupt transition from presence to absence 

graphically visible.  
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Geographic Range Reconstruction 

Using ArcGIS, geographic ranges were determined for each species by first creating a 

buffer surrounding each occurrence point, the size of which depended on its dispersal ability 

as interpreted from its recorded life mode (Table 1). Geographic range size was measured by 

calculating convex hulls surrounding all buffered occurrence points, and then editing the 

resultant polygons to avoid the deeper water offshore, and thereby better represent the 

realized geographic range given the strong bathymetric control over shallow marine bivalve 

ranges. The traditional method of calculating geographic ranges based on simple convex 

hulls was also tested (see Supplementary Information for model results), but this method 

presented an issue wherein shallow bivalve occurrences tended to follow coastlines around 

the Gulf of Mexico, resulting in range centroids occurring in waters too deep for the species 

to survive (example in Figure 3). For ACH testing, the center of the edited polygon was taken 

as the centerline of the polygon, generated by calculating multiple ring buffers using ArcGIS 

at 10 km intervals and joining central meeting points of each buffer with a line. Geographic 

distances from each occurrence point to the centerline were measured using the Near tool in 

ArcGIS. Separate polygons and centerlines were measured for each species’ cumulative 

occurrences across the Pleistocene and Holocene, and then within each time bin individually 

for each species. 

 

Environmental Distance Reconstruction 

Modern environmental layers used for Holocene samples were downloaded from 

MARSPEC (Ocean Climate Layers for Marine Spatial Ecology) and interpolated using the 

‘Resample’ tool in ArcGIS to match the resolution of paleoclimatic layers (Sbrocco and 
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Barber, 2013). Environmental layers for the Pleistocene time bins were sourced from 

simulations run by the Bristol Research Initiative for the Dynamic Global Environment 

(BRIDGE) group (Huntley et al., 2023). For the early Pleistocene, the teIXG run was used, 

from 800 Ka; for the middle Pleistocene, the teiXN run was used, at 332 Ka, and for the late 

Pleistocene the teixH run was used, at 60 Ka (Huntley et al., 2023). Run ages for each time 

bin were chosen from midpoints within the time encompassed by each time bin. 

To calculate environmental distances, the princomp function of the ‘stats’ package in 

R was used to perform a principal components analysis (PCA) of the environmental data 

present at each occurrence point. The first three components of the analysis (for this data, 

generally describing ~ 90% of the variability in the data) were extracted as coordinates in e-

space as a cumulative PCA of all the data across the Pleistocene and Holocene. Separately, 

the original data was subset by time bin and individual PCAs were performed for each time 

bin, creating the e-space defined for only that time bin. Minimum volume ellipsoids (MVEs) 

define the smallest volume ellipsoid enclosing all occurrence points in 3-dimensional space, 

in this case using coordinates in e-space defined by environmental niche PCA axes. The e-

space MVE centroids were calculated using the cov.rob function of the ‘MASS’ package in 

R, and Mahalanobis distances for each point were calculated using the Mahalanobis function 

from the ‘stats’ package. Mahalanobis distance is a multivariate distance metric that reports 

the distance between each point in e-space and the distribution of points in the time bin, 

effectively scaling the PCA axes such that their variance is 1, and then calculating the 

distance, providing a measure of distance from the ellipsoid centroid. Each resultant dataset 

was displayed as a histogram of distance frequencies, exported as frequency counts, and a 

linear model was fitted to the counts using the lm function of the ‘stats’ package. The 
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frequencies were also transformed logarithmically and fitted to linear models with distance 

data. Spearman rank correlation coefficient tests were performed on these same variables to 

estimate statistical dependence between the two variables and effect size. The Spearman rank 

correlation measures how closely correlated the two variables are, regardless of linearity, so 

highly correlated data (defined as ρ > 0.75 in this study) would suggest multivariate distance 

from a center may have some predictive power of abundance in e-space, and thereby support 

the NCH. 

Ecological niche modelling (ENM) uses multivariate and machine-learning 

algorithms based on known environmental variables and known presence points of a taxon to 

estimate environmental suitability across abiotic variable ranges, and using this, predicted 

distribution across a geographic range (e.g., Barve et al., 2011; Peterson, 2001; Peterson et 

al., 1999). Forecasting distributional and occurrence changes across geographic space is a 

powerful tool in conservation biology, and ENM is generally used in this field as a tool to 

estimate current occupation, measure environmental tolerance, and predict the response of a 

species to potential environmental changes (e.g., Qiao et al., 2015).  

In a final test, ecological niche models were generated using the Maxent (version 

3.4.4) algorithm (Phillips et al., 2006, 2004), under default parameters with logistic output 

(Phillips et al., 2017). Maximum entropy (Maxent) niche modeling requires only presence 

information (no verified absence data) and defines probability densities from the presence 

data and environmental rasters, minimizing the relative entropy between them to produce a 

relative likelihood surface that can be projected across geographic space (Elith et al., 2011a). 

An example of such a projected surface can be seen in Figure 2, which shows the logistic 

prediction for the bivalve Arcinella cornuta in the Holocene, and demonstrates the higher 
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environmental suitability calculated where the most occurrence points cluster. A Maxent 

niche model was run for each species, separated by time bin. Maxent-derived logistic 

predictions of environmental suitability (ranging from unsuitable “0” to perfectly suitable 

“1”) for each training point input into the algorithm were exported. Maxent model 

significance was determined based on the Area Under the Curve (AUC) and maximum 

training sensitivity plus specificity (MSS) values reported by the algorithm. MSS calculation 

includes sensitivity and specificity values, where sensitivity refers to the proportion of 

presence points correctly predicted by the model, and specificity refers to the proportion of 

absence points correctly identified by the model (Allouche et al., 2006). The AUC is a direct 

measure of the model sensitivity and specificity plot, also called the receiver-operating 

characteristic (ROC) plot, where a value of 0.5 indicates the model predicted by random 

chance, so a value greater than 0.5 indicates the maxent model can predict more accurate 

occurrences than random chance (Phillips et al., 2006). 

 

Testing the ACH/NCH 

Each set of distances was exported as histogram frequencies per distance bin using 

the hist function in the ‘raster’ package in R. Linear models were fit to those exported 

distance frequencies to determine whether any range centrality relationships could be 

observed. Logarithmic transformations of data can be used to make evident patterns in data 

that are highly skewed, so linear models were also fit to the log of the frequency to verify if 

this transformation revealed any ACH/NCH patterns driven by threshold phenomena. If a 

strong abundance-centrality pattern were to be predictable in geographic space, the linear 
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model R2 statistic should be high (for this study, R2 > 0.5) with statistical significance (p < 

0.05). 

As a control used to determine the relationship between abundance and geographic 

range centrality as measured in studies of most other taxa (e.g., Attorre et al., 2013), 

geographic minimum volume ellipsoids and centroids were also calculated using the 

ellipsoidhull function in the ‘cluster’ package in R, and a 2-dimensional distance calculating 

function was defined to measure the distance from each point to that centroid (see Appendix 

A). Frequency histograms of the resulting distances were exported as frequency values and 

linear models were fit to the resultant values using the lm function from the ‘stats’ package. 

As before, a strong abundance-centrality pattern would be observable as a high linear model 

R2 statistic (for this study set as R2 > 0.5) with statistical significance (p < 0.05).  

Finally, using Maxent derived niche models, the correlation between Mahalanobis 

distances for each occurrence point measured in e-space defined by PCAs and logistic 

predictions estimated from Maxent for each occurrence point was estimated by linear models 

fit using the lm function of the ‘stats’ package of R. A strong correlation coefficient would be 

indicative of a pattern wherein specimens that occur near the center of the ellipsoid 

representing their ecological niche in e-space are also occurring where their Maxent-defined 

environmental parameters are predicted to be the most suitable. That is, a strong correlation 

between these variables suggests the e-space niche centroid is in fact where the species-

specific optimal environment occurs, which would support the Niche Center Hypothesis. 
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Figure 4: Relationships between distance from the geographic range centerline and 

frequency of occurrence. Colored lines show linear model fit; lightly colored bands show 

95% confidence interval of the linear model. R2 values correspond to each linear model, with 

p values indicated by *p<0.05, **P<0.01 and ***P<0.001. Empty box indicates too few 

datapoints in time bin to fit model.  
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Figure 5: Geographic space log transformations of frequency data, with linear models fitted 

with distance from centerlines. 
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Figure 6: Linear model fits to Mahalanobis distance data calculated in e-space plotted 

against frequency of distance data. Empty boxes indicate linear models could not be fit, 

either because data was collinear, or the time bin contained too few datapoints. 
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Figure 7: Environmental space distance frequencies, with frequencies transformed 

logarithmically. Colored lines show linear model fit; lightly colored bands show 95% 

confidence interval of the linear model. R2 values correspond to each linear model, with p 

values indicated by *p<0.05, **P<0.01 and ***P<0.001. Empty boxes indicate linear 

models could not be fit, either because data was collinear, or the time bin contained too few 

datapoints to fit a linear model. 
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RESULTS 

ACH in Geographic Space 

There is some support for a geographic range-based abundance center pattern in these 

shallow marine bivalves when calculated using cumulative deep-time occurrence data, and 

when the center is calculated as a centerline within a range polygon drawn avoiding deep, 

uninhabitable water. This pattern is not generally observed in species studied in individual 

time slices across the Pleistocene through Holocene, consistent with previous studies 

showing no apparent pattern using the single time slice of modern data alone. There is no 

support for an abundant centroid of the geographic range of these species when calculated as 

a minimum volume ellipse in geographic space in cumulative or time series data, consistent 

with studies of many other taxa (Dallas et al., 2017; Martínez-Meyer et al., 2013).  

In geographic space, using distance from a centerline as a measure of range centrality 

(Figure 4), all six bivalve species displayed statistically significant negative correlations 

between frequency of occurrence and distance from the range centerline when the cumulative 

data from the entire Pleistocene and Holocene is combined. Although statistically significant, 

in four out of six bivalve species a linear model displayed an R2 < 0.5, suggesting a linear 

model does not explain a substantial amount of variance in the data. For all six species, 

relationships within individual time bins, including the Holocene time bin that includes all 

modern data, were less consistent, and generally displayed significant variability between 

time bins. The predictor effect plots shown in Figure 4 demonstrate visually that for many 

individual time bin analyses, the 95% confidence interval of the simple linear model is not 

significantly distinguishable from a slope, m = 0. 
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In the logarithmic transformation of g-space frequency data (Figure 5), when plotted 

against the distance from the centerline, more variable patterns are revealed across the six 

bivalve species, and within individual time bins. Again, all species have highly correlated 

patterns in the time-averaged, cumulative dataset. In particular, a linear model for L. ovalis 

explains 92% of the observed variance in the data. This pattern is also not ubiquitous across 

species however, and several species, such as Abra aequalis, Mercenaria campechiensis, and 

potentially Pleuromeris tridentata, show a visual drop-off in log-frequencies at a specific 

distance from the range centerline. Additionally, both M. campechiensis and P. tridentata fit 

a negative linear model when taken cumulatively, but also fit statistically significant 

positively sloped linear models in some time bins.  

 

NCH in Environmental Space 

In environmental space, there is support for an abundance niche center relationship 

when cumulative data across the Pleistocene through Holocene is used to designate an 

environmental niche encompassing deep time environmental fluctuations (Figures 6-7). All 

six of the species analyzed fit a statistically significant linear model R2 value in the 

correlation between Mahalanobis distance and frequency of occurrence – i.e., the frequency 

at which specimens occur within each set of binned distances from the e-space centroid. In 

this Mahalanobis distance–frequency analysis, the cumulative data for each species presented 

statistically significant correlation and R2 values ranging from 0.30–0.56, depending on the 

species. Spearman rank correlation coefficients for cumulative data were also all statistically 

significant, with |ρ| = 0.82 - 0.95.  
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When e-space frequency data was transformed logarithmically, R2 values were similar 

to models fit using raw data, and again all six species fit linear models with statistical 

significance (p < 0.05) when analyzed using the cumulative dataset. Figure 7 shows linear 

models fit to the log of distance frequency for each species. The relationship between 

cumulative data and time bin analysis is very distinct in this analysis – in cumulative 

datasets, all six species fit a linear model with low R2 (0.33 < R2 < 0.52), but for several 

species all available time bins differ from the cumulative data results. In A. aequalis, 

cumulative R2 = 0.51 with a p-value of 1.09e-05, but the middle and late Pleistocene models 

were non-significant, and the Holocene model shows log-frequency and Mahalanobis 

distance are once again highly linearly correlated. In L. ovalis and M. campechiensis all the 

models were significant, but every time bin model had lower R2 than cumulative data for that 

species. Then, P. tridentata fit a linear model with an R2 of 0.37 when measured 

cumulatively, but no time bin model was significant.  

ENMs, often applying the Maxent algorithm, are widely used in interdisciplinary 

research across the fields of biology, conservation ecology, zoonotic pathology, and macro- 

and paleoecology for its applications in predicting unsampled occurrences and distributional 

changes in an evolving landscape. Maxent models run in this study generally reported AUC 

values > 0.75, with exceptions only in Holocene P. tridentata, Middle Pleistocene M. 

campechiensis, and Early Pleistocene S. floridana models. As an AUC value of 0.5 would 

indicate the model was no better than a randomly generated model, a high AUC value 

indicates these models have significant predictive power (Elith et al., 2011b, 2006; Franklin, 

2010). However, response curves generated for the niche models (see Figures B1-B3, 

Appendix B) do not suggest good model fits. A response curve indicating the dependence of 
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habitat suitability on a variable would be expected to present with an approximately normal 

distribution plot, but response curved generated for these species did not show this 

relationship. Because Maxent models, although potentially significant, were not likely to be 

very informative (given incomplete response curves), these models are not considered 

further. 
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DISCUSSION 

Potential Biases 

The primary taphonomic biases that arise in fossil occurrence data include sampling 

bias, prevalent in less well-studied taxa or taxa that occur primarily in remote locations, and 

preservation bias, which can cause an artifactual pattern of low abundance particularly in 

taxa that lack hard skeletons or occur in environments where preservation potential is low. 

Time averaging in the paleo-record of shallow marine environments is most often caused by 

slow sedimentation rates, erosion and reworking that result in assemblages of bivalves 

accumulated over periods ranging from years to millennia (Behrensmeyer et al., 2000; 

Fürsich and Aberhan, 1990). Whereas community-level structure is often disturbed during 

deposition and diagenesis at the species level averaged over geologic time frames, presence 

data is not likely to be significantly altered (Kidwell and Bosence, 1991). Using presence 

frequency as a proxy for abundance, while not a perfect equivalence, will therefore preserve 

overarching distributional patterns between abundance and distance from a central feature. 

Sampling biases can particularly affect studies done on organismal distributions, so in 

this case study only robustly sampled taxa were selected. The invertebrate fauna of the GCP 

and ACP have been comprehensively described in previous studies (e.g., Allmon et al., 1993; 

Anderson et al., 1991; Kolbe et al., 2011; Stanley, 1986).  Marine bivalves have the highest 

preservation potential of any marine organism, providing an ideal dataset for testing 

ecological hypotheses in the fossil record - up to 85% of bivalve specimens likely get 

preserved in the fossil record (Valentine, 1989).The high preservation potential of bivalve 

taxa and net-sedimentation in the passive margin of this region result in a relatively 
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comprehensive fossil record, lending credibility to potential distributional patterns 

(Behrensmeyer et al., 2005, 2000; Kidwell, 2005, 1988). 

Because it is not feasible to fully eliminate the effect of sampling and preservation 

bias from fossil data, it is possible the occurrence data used in this study show a “pull of the 

recent” effect, where specimens dated closer to the present may be more numerous or better 

preserved. In the case of a pattern originating exclusively from sampling bias, the cumulative 

patterns observed in the data would be expected to be driven primarily by Holocene data. 

Datapoints available within each time bin (see Table S1, Appendix A) are not 

overwhelmingly weighted toward the Holocene, apart from Abra aequalis, which does 

contain twice as many Holocene datapoints as datapoints in any other individual time bin, 

and represents 44% of the data, despite spanning a very small percentage of the total time. If 

bias is driving the patterns in the data, it should be apparent as increased noise that might 

obscure observed patterns.  

It is possible that bias could account for some of the differences between time bins, 

particularly where time bins contained relatively few occurrence points. However, a lack of 

occurrence points due to lost preservation would not likely increase patterns in the distance 

between occurrence points and geographic/niche centrality, so any observed strong patterns 

likely indicate a realized signal within the data. Biases may be responsible for some of the 

non-significant model fits or the lack of clear pattern within individual time bins (Figures 6-

7) but would not likely contribute to a stronger NCH pattern, so where NCH patterns are 

strong, they are most likely to be a signal of a realized distributional pattern. In g-space it is 

more likely that bias could be driving ACH patterns, because any bias toward sampling 

modern coastlines more robustly than further inland or offshore areas might bias the data 
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toward the artificial centerline of the modern coast. An example centerline determined for 

Mercenaria campechiensis in Figure 3 shows that the centerline does not perfectly line up 

with the modern coast, in some locations appearing offshore and in others further inland, as 

might be expected when a species is sampled across the Pleistocene and Holocene and 

experienced a wide range of sea levels. This does not preclude the possibility of sampling 

bias in all species but does add credibility to visible patterns that would need to be 

reevaluated if their centerlines followed the modern coastline well. Given that ACH patterns 

measured this way are more likely to be altered by sampling bias, these results are further 

interpreted with caution. 

 

ACH in Geographic Space 

Although neither raw nor log-transformed abundance data were strongly linearly 

related to geographic distance data (R2 < 0.5), the statistically significant correlations 

between the two suggest there is some presence of an ACH pattern in shallow marine 

bivalves. Most apparent in the cases of Abra aequalis, Mercenaria campechiensis and 

Pleuromeris tridentata, the g-space log-transformed plots (Figure 5) show a sudden drop 

from abundant occurrences to zero. It is possible this could be a signal of a threshold 

relationship to physical environmental change, such as a steep depth increase, where the 

majority of the population lives within a habitable zone along the coast, and a few outliers 

explain the extreme distances represented. However, the presence of some ACH patterns in 

this data could be ascribed to the methods used in geographic range determination. Using a 

narrow range and a centerline is a more accurate depiction of the geographic ranges of 

bivalves than the more typical convex hull and centroids but might bias the data toward an 
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inevitable ACH pattern. This might be particularly observed where data is scarce and the 

width of the range might be represented by very few points, which inevitably decreases the 

distance to the centerline for those points.  

The lack of strong patterns in individual time bins also suggests that smaller time 

slices again may not encompass sufficient time for populations to conform to an established 

geographic mean. In these cases, cumulative analysis of occurrences across the Pleistocene 

and Holocene reveals an emergent geographic pattern in some species that cannot be 

observed in any single time bin. The time bins used in this study vary significantly in 

duration, from 11,000 years of the Holocene to 1.8 million years of the Early Pleistocene, as 

demarcated in the PBDB database. The fact that even the 1.8 Ma represented by the Early 

Pleistocene bin is insufficient time and/or data to contain a strong geographic pattern further 

emphasizes the extent to which distributional patterns in modern data must differ from 

generalized patterns occurring across the lifetime of a species in geologic time. 

As benthic, primarily sessile organisms with a narrow water depth tolerance, bivalves 

may be a species more likely to conform to an ACH distribution, simply by virtue of 

inhabiting a geographic range that can be roughly approximated as a linear feature. Studies 

such as Sagarin and Gaines (2002) have shown that using a 2-dimensionally defined range 

and measuring centrality along a line cannot be used as a general tool for predicting 

abundance in several species of marine invertebrates. As an organism-specific tool for 

determining abundance, geographic distance from a range centerline may hold some 

predictive power in bivalves, and possibly in other benthic sessile invertebrates, but 

alternative models may be needed for taxa with more complex life modes. Because of the 

dearth of evidence for g-space ACH relationships in motile marine and terrestrial species, 
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these results do not support the validity of a g-space ACH as a generalized trend among 

fauna over geological time scales (e.g., Dallas et al., 2017; Jin et al., 2020).  

 

NCH in Environmental Space 

In models relating Mahalanobis distances measured in 3-D e-space with frequency of 

occurrence (i.e., abundance), the lack of consistent relationships within each species’ 

individual time bins suggests that limitations on dispersal or other biotic factors may play a 

significant role in determining distribution structure. Even these shallow marine bivalve 

species, all with the same general life modes and environmental tolerances, might possess 

biotic traits controlling distributions in ways not accounted for by environmental variables. It 

is also possible that the time-specific patterns are a result of a dispersal lag, where the time 

bins chosen do not encompass sufficient time for each species to reach a distributional 

equilibrium, accounting for the heterogeneity in e-space abundance-centrality patterns. 

There were cases within log-transformed e-space models where cumulative linear fits 

had higher R2 values than any of the individual time bins within that species. For example, 

M. campechiensis has much lower R2 values in the late Pleistocene and Holocene than in 

cumulative time, but all are statistically significant. This could be a case of a pattern that is 

weak in any given time slice but is more predictive of general patterns in deep time, 

potentially driven by a logarithmic (threshold) vs. linear (gradient) relationship between 

abundance and the center of the fundamental environmental niche rather than the realized 

niche (supporting NCH). If the relationship is only present within the fundamental niche of 

the species, it might be weaker when a smaller portion of the niche realized in each time slice 

is measured. This is expected, as the portion of the available niche shifts with climatic 
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change, and only ever occupies part of the broader fundamental niche (Soberón and Peterson, 

2011). If any given realized niche does not contain the center of the fundamental niche of a 

species, it would not be surprising if populations extant during that time did not appear to 

conform to any sort of abundance-centrality pattern. 

In another interesting case, the log abundance of the bivalve P. tridentata fits a linear 

model when e-space is measured cumulatively, but all three available time bins showed no 

significant linear relationships with e-space distance. This could be a more extreme case of 

the disparity between realized and fundamental niche, where a cumulative analysis is the 

only way to measure enough of the fundamental niche to observe any relationship between 

abundance and niche centrality.  

In all but one of the species analyzed, cumulative data displays stronger correlation 

between abundance and niche centrality than any single time bin, but the fact that they do so 

with varying degrees of support suggests there may be other factors vital in the differences 

between the species themselves that are influencing patterns in distribution within e-space. 

The one exception to this pattern, A. aequalis, showed better model fit in the Holocene than 

cumulatively, which might be expected if an abundance and intensive sampling of modern 

specimens is driving the patterns in the data. This could be an indication of bias in the data, 

particularly as the same pattern of Holocene data appearing to drive the cumulative data 

slope and pattern is present for A. aequalis in geographic space as well. Alternatively, it 

could be evidence that for this species, the Holocene climatic regime is a good match for the 

species’ fundamental niche. In this case, Holocene abundances of A. aequalis would better 

match the NCH pattern than earlier time bins that do not sufficiently describe the 

environments of the fundamental niche. 
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What Structures Marine Bivalve Distributions? 

Geographic range has been described as one of the emergent properties of a species 

that can be most easily quantified and used to predict species survivorship over time and 

across changing environmental conditions (Hunt et al., 2005; Jablonski, 1986). Brown’s 

original concept of the Abundant Center Hypothesis envisioned a pattern observable across 

the geographic range of a species, but because such a pattern has only been variably 

observed, it is likely not a generalizable biogeographic rule that can be used to predict 

distributions across time and taxa (Brown, 1984; Dallas et al., 2017; Osorio-Olvera et al., 

2020). However, geographic range is a complex variable controlled by several factors 

including abiotic habitat suitability, dispersal ability, and biotic interactions between 

individuals (Soberón and Peterson, 2005). In this study we focused on the characterization of 

abiotic habitat suitability (using two methods: MVEs and ENMs) to test for abundance-niche 

center relationships because many studies have found that the spatial extent of the 

fundamental ecological niche determines population density and growth rates (e.g., Lira-

Noriega and Manthey, 2014; Martínez-Meyer et al., 2013). However, the results showed 

inconsistent NCH model fits across time slices within the Pleistocene through Holocene even 

within the same species, which suggests the dynamics controlling the fundamental niche may 

be more complex than these abiotic, PCA-based niche estimations can predict. The NCH 

predicts the highest abundance of each species, as a cumulative set of occurrences in e-space, 

at the center of the species environmental niche. In these species of shallow marine bivalves, 

the NCH pattern doesn’t appear to be generally present or absent in all species, but rather 

varies by species, as well as over time. Previous studies have suggested that biotic 

interactions may play a large role in constraining dispersal patterns, and biotic factors are 
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purposefully omitted from this ENM-based approach in order to isolate the influence of 

abiotic environments. However, the variability in results of our NCH tests here may reflect 

factors, either biotic or sampling/taphonomic, that influence the structure of species 

distributions in environmental space.  

Indeed, there is considerable debate among modern ecologists regarding the 

generality of NCH patterns. Some studies suggest that life history traits, such as reproductive 

cycles and larval survival, may have a greater impact on distribution than environmental 

factors imposing physiological constraints (Dallas and Santini, 2020; Rivadeneira et al., 

2010). Factors such as reproductive output variability, local-scale topography and landscape 

variability, resource availability and population connectivity also have a significant effect on 

distributional patterns, and prevent clear abundance center patterns from appearing (Dallas 

and Santini, 2020; Lester et al., 2007). The relationship between population density and 

spatial distribution has also been characterized in models such as the ideal free distribution 

model, which predicts a distribution that maximizes individual fitness and prioritizes 

resource availability rather than abiotic factors (Kacelnik et al., 1992). For example, among 

the six species chosen for this study, only Arcinella cornuta is classified as sessile, and is 

morphologically very distinct from the other species (see Figure 1), with a large spiny shell. 

Life mode differences such as these could very well result in different distributional patterns 

in this species, as is possibly the case in the geographic-space models shown in Figure 4, and 

which would also influence how this species occupied abiotic environmental space. 

Geographically, although individual time bins show no strong correlations, the cumulative 

data for A. cornuta contains a very sharp drop in frequency, suggesting almost the entire 

population is contained very close to the center of its geographic range, with a few extreme 
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outliers. In e-space, the same species shows a similar steep drop in abundance, suggesting 

that the narrow distributional range is not controlled by geographic space available, but by a 

narrow environmental tolerance. These patterns are consistent with a population of organisms 

that is fully sessile as adults and occupies a small environmental niche and/or is only rarely 

dispersed to locations that extend the e-space the species might sample. 

Beyond functional ecological differences that influence species’ occupation of 

environmental and geographic spaces, biotic interactions may very well play a complex role 

in altering distribution patterns within species. These interactions could reflect food web 

dynamics of populations from specific communities or resource limitations (e.g., Roopnarine, 

2006). Biotic interactions with humans may also influence distribution dynamics, especially 

in the Holocene time slice. For example, Lunarca ovalis is a commonly harvested 

commercial clam in coastal Georgia, which could greatly affect its observed distribution, 

through artificial removal from the ecosystem via overexploitation, or through introduction 

by humans into areas not naturally inhabited by the species (Župan et al., 2012). 

Interestingly, L. ovalis was the only species for which Spearman correlation tests in 

cumulative and time series data showed significant correlation in environmental space 

between frequency of occurrence and distance from the environmental center, for every time 

bin except the Holocene. This could be a signal of anthropogenic influence, causing modern 

specimens of L. ovalis to appear beyond their natural environmental parameters even as 

previous time slices showed that the species has sufficient dispersal capability to allow it to 

quickly track preferred habitat when environments change and equilibrate to an abundant-

center distributional pattern in environmental space.   
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CONCLUSIONS 

Here we tested the abundance center and niche center hypotheses of the structure of 

species in geographic and environmental spaces, respectively (ACH and NCH). Uniquely, we 

utilize fossil and modern occurrence data for six marine bivalve species occupying the Gulf 

and Atlantic Coastal Plains to extend our study over geologic timescales (0–2.8 Ma) in order 

to better characterize the geographic range and environments in which these species 

survived. Model results indicate there is some evidence for a relationship between species 

abundance and distance from the center of a species’ geographic range (ACH test), but that it 

is not generalizable beyond each species. Species only show greatest abundance closest to the 

geographic centerline when the geographic range polygon is edited to avoid deep water 

where the species are known to be absent, and where the polygon center is estimated as a 

centerline within that polygon (this pattern is not apparent for the standard convex hull 

method of reconstructing geographic range). Further, the ACH pattern was primarily 

observed when species’ data was modeled cumulatively across the Pleistocene and Holocene 

(vs. within individual time slices). This is consistent with previous studies that have found no 

geographic abundance-centrality pattern in short duration data, such as studies performed 

using exclusively modern species occurrences (Dallas et al., 2017; Martínez-Meyer et al., 

2013; Sagarin and Gaines, 2002).   

The niche-centrality hypothesis was tested by plotting occurrences along 3-

dimensional environmental principal component axes (i.e., environmental versus geographic 

range) and Mahalanobis distances to a centroid of a minimum volume ellipsoid were used as 

a measure of distance from the niche center. A relationship between abundance and niche 

centrality was variably observed across species, and the relationship was generally stronger 
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with cumulative data rather than separated by substage. The NCH pattern was even less 

consistently observed when environmental distance was replaced with a Maxent ecological 

niche model suitability. 

The lack of consistent patterns observed here suggests other factors may influence the 

abundance structure of species distributions. Biotic factors, including life mode and 

ecological interactions, may play an important role in the distribution of individuals 

throughout a geographic or ecological range, and life mode or biotic interactions may be as 

critical to predicting changes in local abundance as climatic parameters. Ultimately, this 

study tested abundance-centrality patterns within a highly vetted dataset of shallow marine 

bivalves, which share many aspects of their functional ecology and have similar 

environmental tolerances by virtue of inhabiting the same region globally. A more 

comprehensive study across more and ecologically different taxa would better constrain the 

generalizability of abundance-centrality patterns within the ecological niches of organisms 

writ large. Broader studies of modern taxa have revealed taxon-specificity in abundance-

centrality patterns, which may suggest there are specific biotic factors or environmental 

interactions that might influence the strength of an abundance-centrality correlation within 

any given species.  

The study of biogeography is often confronted with issues of scale – and this study 

attempts to elucidate the scale dependency of the abundance structure of species. Ecological 

change is an inevitable byproduct of climate change, and predicting the directionality of that 

ecological change is a central tenet of conservation biology and ecology. Given that bivalve 

species on average likely last 5-10 million years (Lawton and May, 1995), this study used 

time-averaged sampling to analyze an ecological principle in its geologic context, with the 
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goal of better informing a species’ biogeographic future by looking to its past. Heading into a 

regime of extreme climate change, the distributional patterns of marine bivalves may not be 

fully predictable using purely abiotic approaches, but an expectation that they will shift to 

maintain a partially abundant center can complement studies of biotic interactions and human 

exploitation and habitat change that will all experience complex and interdependent changes 

going forward.
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APPENDIX A: ANALYSIS RESULTS TABLES 

Table 1: Total unique datapoints in database. 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

E. Pleistocene 29 78 20 83 56 32 

M. Pleistocene 17 34 N/A 29 13 30 

L. Pleistocene 29 10 39 59 31 33 

Holocene 61 69 29 87 34 N/A 

Total 137 191 88 258 135 85 
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Table 2: Geographic-space linear model R^2 and p-values using convex hull model for geographic range, with distances calculated 

from polygon centroid. 

 

 

Table 3: Geographic-space linear model R^2 and p-values using geographic range polygons edited to avoid deep uninhabitable 

water, with distances calculated from occurrence point locations to range centerlines. 

 

 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative R2= 0.004, p=0.88   R2= 0.12, p= 0.46 R2=0.13, p=0.28 R2= 0.02, p= 0.70 

E. Pleist R2= 0.05, p= 0.66   R2 = 0.037, p= 0.55 R2=0.19, p=0.29 R2= 0.024, p= 0.69 

M. Pleist R2= 0.01, p= 0.78   R2= 0.68, p= 0.08 R2 = 0.12, p=0.57 R2= 0.005, p= 0.89 

L. Pleist R2= 0.14, p= 0.46   R2= 0.07, p= 0.57 R2=0.17, p=0.42 R2= 0.07, p=0.54 

Holocene R2= 0.47, p= 0.09   R2= 0.17, p= 0.37 R2=0.31, p=0.16  

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative R2= 0.73, p= 1.2e-09  R2=0.25, 

p=0.02 

R2=0.24, 

p=0.005 

R2=0.61, p=4.60e-

08 

R2=0.41, 

p=0.0001 

R2=0.34 , 

p=0.0002  

E. Pleist R2= 0.01, p= 0.65 R2=0.30, 

p=0.01 

R2=0.11, 

p=0.07 

R2=0.47, p=0.001 R2=0.33, 

p=0.003 

R2=0.15 , p=0.10 

M. Pleist R2= 0.002 , p= 0.83 R2=0.10, 

p=0.07 

 R2=0.05, p=0.37 R2=0.13 , p=0.09 R2= 2.4e-32, p=1 

L. Pleist R2= 0.30, p= 0.018 R2=0.03, 

p=0.46 

R2=0.45, 

p=0.0004 

R2=0.02, p=0.47 R2=0.15, p=0.07 R2=0.06 , p=0.22 

Holocene R2= 0.49 , p= 9.3e-05 R2=0.05, 

p=0.28 

R2=0.29, 

p=0.002 

R2=0.34, p=0.004 R2=0.20, p=0.02 R2=0.27, p=0.02 
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Table 4: Logarithmic frequency linear model R2 statistics and p-values of geographic-space distances from centerline. 

 

 

Table 5: Spearman tests for correlation between geographic space distances from the centerline and frequency of occurrence. Here, 

ρ indicates the degree of correlation between the variables, regardless of linearity, and the sign of ρ indicates the direction of the 

correlation (positive or negative relationship) and a p-value of < 0.05 is considered significant. 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative ρ= -0.86, p= 

4.0e-10 

ρ= -0.76, p= 

0.0001 

ρ= -0.91, 

p=8.1e-8  

ρ= -0.80, p=1.7e-8 ρ= -0.70, 

p=1.1e-5 

ρ= -0.62, p= 

1.0e-4  

E. Pleist ρ= -0.04, p= 

0.8 

ρ= -0.54, p= 
0.01 

ρ= -0.31, p= 

0.09 

 

ρ= -0.75, p=0.0003 ρ= -0.68, 
p=0.0002 

ρ= -0.47, 
p=0.04 

M. Pleist ρ= -0.04, p= 

0.8 

ρ= -0.3, p= 
0.09 

 ρ= -0.38, p=0.12 ρ= 0.12, p=0.6 ρ= -0.01, p=0.9 

L. Pleist ρ= -0.49, p= 

0.04 

ρ= 0.25, p= 

0.3 

ρ= -0.63, p= 

0.001 

ρ= 0.28, p=0.2 ρ= -0.20, p=0.4 ρ= -0.24, p=0.2 

Holocene ρ= -0.68, p= 

0.0002 

ρ= -0.41, p= 
0.04 

ρ= -0.56, 

p=0.001 

ρ= -0.62, p=0.002 ρ= -0.28, p=0.2 ρ= -0.52, 
p=0.01 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative R2= 0.31, p=   

0.0006  

R2=0.005, 

p=0.7 

R2=0.10, 

p=0.18 

R2=0.21, p=0.07 R2=0.35, 

p=0.006 

R2=0.52 , p=1.6e-

05  

E. Pleist R2= 0.23, p= 0.01 R2=0.40, 

p=0.0002 

R2=0.20, 

p=0.02 

R2=0.46, p=0.003 R2=0.21, p=0.02 R2=0.30 , p=0.004 

M. Pleist R2= 0.21 , p= 

0.01 

R2=0.24, 

p=0.02 

 R2=0.22, p=0.01 R2=0.16, p=0.04 R2= 16, p=0.03 

L. Pleist R2= 0.28, p= 

0.002 

R2=0.22, 

p=0.02 

R2=0.09, 

p=0.10 

R2=0.38, p=0.0003 R2=0.14, p=0.04 R2=0.45, p=0.0001 

Holocene R2= 0.34 , p= 

0.0002 

R2=0.37, 

p=0.01 

R2=0.16, 

p=0.11 

R2=0.14, p=0.13 R2=0.45, 

p=0.005 

R2=0.16, p=0.07 
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Table 6: Linear model R^2 and p-value of environmental space mahalanobis distance frequencies. 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative R2= 0.54 

p=5.0e-06 

R2=0.56, 

p=6.4e-5 

R2= 0.56, p= 

3.7e-5 

R2=0.45, p=0.0003  R2=0.30, 

p=0.0005 

R2=0.37, p=0.003 

E. Pleist    R2= 0.14, p= 

0.04 

    

M. Pleist R2= 0.06 

p= 0.21 

        R2=0.23, p=0.02 

L. Pleist R2= 7.1e-05, 

p= 0.96 

  R2= 0.28 

p= 0.008 

R2= 0.25, p= 0.004 R2=0.05, p=0.37 R2=0.05, p=0.34 

Holocene R2= 0.55, p= 

0.0002 

R2=0.32, 

p=0.003 

R2= 0.32, p= 

0.02 

R2= 0.19, p= 0.01   

 

Table 7: Logarithmic frequency linear model R2 statistics and p-values of environmental space mahalanobis distances from niche 

center. 

Species A. aequalis A. cornuta L. ovalis M. 

campechiensis 

P. tridentata S. floridana 

Cumulative R2= 0.51 p= 

1.9e-05 

R2 = 0.33, 

p=0.004 

R2= 0.51, p= 

0.0001 

R2= 0.52, 

p=8.9e-05 

R2=0.36, 

p=0.0001 

R2=0.37, 

p=0.003 

E. Pleist     R2= 0.14, p=0.04 

 

    

M. Pleist R2= 0.06, p= 

0.21 

     R2 = 0.11, 

p=0.09 

R2=0.23, 

p=0.02 

L. Pleist R2=7.1e-05, 

p= 0.96 

 R2= 0.28, p= 0.008 

 

R2= 0.26, 

p=0.004 

R2=0.5, p=0.38 R2=0.06, p=.34 

Holocene R2=0.55, 

p=0.0003 

R2 = 0.32, 

p=0.003 

R2= 0.31, p= 0.02 R2= 0.19, p= 

0.01 

R2 = 0.07, 

p=0.28 
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Table 8: Spearman tests for correlation between environmental space Mahalanobis distances from the niche center vs frequency of 

occurrence. 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative ρ= -0.95, 

p=0.0001 

ρ= -0.84, p= 
8.8e-07 

ρ= -0.82, 

p=0.0009  

ρ= -0.87, p=0.0002 ρ= -0.9, 

p=0.002 

ρ= -0.90, p= 
0.0002 

E. Pleist   ρ= -0.81, p= 

0.02 

 

   

M. Pleist ρ= -0.52, p= 

0.28 

    ρ= -0.37, 

p=0.41 

L. Pleist ρ= 0, p=1  ρ= -0.81, p= 

0.049 

ρ= -0.40, p=0.33 ρ= -0.21, p=0.6 ρ= -0.13, p=0.7 

Holocene ρ= -0.63, p= 

0.048 

ρ= -0.62, p= 

0.0008 

ρ= 0.8, 

p=0.13 

ρ= -0.61, p=0.11   

 

Table 9: Linear model R2 and p-values of environmental-space Mahalanobis distances vs Maxent habitat suitability predictions. 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative R2= 0.067 p= 

0.007 

R2=0.002, 

p=0.54 

R2= 0.008, 

p= 0.40 

R2= 0.04, p=0.02 R2=0.01, 

p=0.26 

R2=0.35, 

p=3.2e-06 

E. Pleist     R2= 0.76, 

p= 4.6e-07 

 

    

M. Pleist R2= 0.83, p= 

2.7e-07 

      R2=0.18, 

p=0.07 

L. Pleist R2= 0.56, p= 

5.2e-06 

 R2= 0.26, 

p= 0.0008 

 

R2= 0.13, p=0.01 R2=0.46, 

p=2.5e-5 

R2=0.62, 

p=5.1e-08 

Holocene R2= 0.05, p= 

0.09 

R2=0.12, 

p=0.003 

R2= 0.23, 

p= 0.008 

R2= 0.0003, p= 0.88   
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Table 10: Spearman tests for correlation between environmental-space Mahalanobis distances vs Maxent habitat suitability 

predictions. 

Species A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana 

Cumulative ρ= 0.14, 

p=0.14 

ρ=0.17, 

p=0.02 

ρ= -0.11, p= 

0.30 

ρ= 0.27. p= 0.001 ρ=-0.09, p=0.29 ρ=0.51, 

p=9.8e-05 

E. Pleist   ρ= -0.84, p= 

2.7e-06 

 

   

M. Pleist ρ= 0.81, p= 

6.8e-05 

    ρ=-0.80, 

p=2.7e-05 

L. Pleist ρ= 0.50, p= 

0.007 

 ρ= 0.46, p= 

0.003 

ρ= 0.44, p= 0.0006  ρ=0.73, p=2.9e-

06 

ρ=0.70, 

p=6.3e-06 

Holocene ρ= -0.43, p= 

0.0005 

ρ= -0.43, 

p=0.0002 

ρ= -0.74, p= 

4.1e-06 

ρ= 0.25, p= 0.02   

 

Table 11: Variables Used in Environmental Analysis 

Variable Definition Unit Scaling Factor 

biogeo08 Mean Annual SSS psu 100× 

biogeo09 Minimum Monthly SSS psu 100× 

biogeo10 Maximum Monthly SSS psu 100× 

biogeo11 Annual Range in SSS psu 100× 

biogeo13 Mean Annual SST degrees C 100× 

biogeo14 SST of the coldest ice-free month degrees C 100× 

biogeo15 SST of the warmest ice-free month degrees C 100× 

biogeo16 Annual Range in SST degrees C 100× 
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APPENDIX B: MAXENT MODELING 

Table 12: Maximum training sensitivity plus specificity (MSS) and Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) for each Maxent model. AUC describes the relationship between model sensitivity vs. specificity as a 

predictor of model performance (e.g., Elith et al., 2006). AUC values over 0.75 are considered reasonably predictive models for 

fossil data, which are necessarily less robust than modern occurrence data. MSS describes the threshold value above which Maxent 

models predict that habitat is suitable for the species being modeled. 

  
A. aequalis A. cornuta L. ovalis M. campechiensis P. tridentata S. floridana  

Holocene 

AUC 0.92 0.87 0.83 0.82 0.60 N/A 

MSS 0.27 0.31 0.38 0.58 0.48 N/A  
Late Pleistocene 

AUC 0.95 0.93 0.88 0.88 0.85 0.75 

MSS 0.34 0.48 0.27 0.33 0.35 0.49  
Middle Pleistocene 

AUC 0.95 0.92 N/A 0.71 0.80 0.77 

MSS 0.39 0.49 N/A 0.47 0.49 0.44  
Early Pleistocene 

AUC N/A 0.89 0.81 0.80 0.79 0.70 

MSS N/A 0.49 0.55 0.45 0.46 0.51 
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Figure A: Maxent model training maps. Empty boxes indicate insufficient data to create 

model. Warmer colors indicate regions with more suitable habitat; white squares indicate 

species occurrence data. MSS and AUC values in Table 11 above.
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Figure B1: Maxent model response curves. A curve for a well-fit model should appear as a normal distribution curve. Lack of 

normality indicates that environmental data provided for training the model did not sufficiently sample the range of environments 

in which the species may survive Saupe et al., 2012; Owens et al., 2013). These models may be interpreted only within the range 

of environmental values sampled – that is, any model extrapolation in these instances is likely to be artifactual. 
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Figure B2: Maxent model response curves. A curve for a well-fit model should appear as a normal distribution curve. See Figure 

B1 for detailed explanation of figure interpretation. 
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Figure B3: Maxent model response curves. A curve for a well-fit model should appear as a normal distribution curve. See Figure 

B1 for detailed explanation of figure interpretation.
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Figure C: Linear model fits to Mahalanobis distances calculated in e-space plotted against 

logistic probability predictions using Maxent ecological niche models. Blue line shows linear 

model fit, darker gray band indicates 95% confidence interval for linear model fit, and lighter 

gray band shows 95% data prediction band. 
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APPENDIX C: R CODE 

 

--- 

title: "Geographic ACH - Centerline Analysis" 

author: "Rhiannon Nolan" 

date: "2023-05-10" 

output: 

  html_document: 

  toc: true 

--- 

 

```{R, echo=FALSE} 

#GLOBAL R chunk options. 

#   (to hide this message add "echo=FALSE" to the code chunk 

options) 

 

knitr::opts_chunk$set(comment = NA, message = FALSE, warning = 

FALSE, width = 100) 

knitr::opts_chunk$set(fig.align = "center", fig.height = 4, 

fig.width = 6) 

 

#knitr::opts_chunk$set(cache = TRUE, autodep=TRUE) 

``` 

 

```{r} 

#run this for the version of the geog range traced in ArcMap, using 

distance from a centerline rather than a point in an alpha hull 

library(tidyverse) 

master <- read_csv("C:/Users/rznol/Dropbox/Rhiannon-Cori/ACH 

Datasets/Climate/Geog_Centerlines/master_geogcent.csv") 

 

#choose which species to use this run by deleting leading # 

#centln <- subset(master, Taxa == "Abra_aequalis") 

#centln <- subset(master, Taxa == "Arcinella_cornuta") 

#centln <- subset(master, Taxa == "Lunarca_ovalis") 

#centln <- subset(master, Taxa == "Mercenaria_campechiensis") 

#centln <- subset(master, Taxa == "Pleuromeris_tridentata") 

centln <- subset(master, Taxa == "Stewartia_floridana") 

 

#separate out time bins 

centln_all <- subset(centln, Time == "Cumulative") 

#get rid of extreme outliers 

centln_all <- centln_all %>% filter(Distance < 300) 

 

centln_EPleist <- subset(centln, Time == "Early Pleistocene") 

centln_MPleist <- subset(centln, Time == "Middle Pleistocene") 

centln_LPleist <- subset(centln, Time == "Late Pleistocene") 

centln_Holo <- subset(centln, Time == "Holocene") 

 

#give them the names from the previous iteration 
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euc_geog <- centln_all 

euc_epleist <- centln_EPleist 

euc_mpleist <- centln_MPleist 

euc_lpleist <- centln_LPleist 

euc_holo <- centln_Holo 

 

#create data frames for histograms 

euc_geog_df <- data.frame(centln_all) 

euc_epleist_df <- data.frame(centln_EPleist) 

euc_mpleist_df <- data.frame(centln_MPleist) 

euc_lpleist_df <- data.frame(centln_LPleist) 

euc_holo_df <- data.frame(centln_Holo) 

``` 

 

```{r} 

#create objects that are the histogram frequencies as values 

hist_euc_geog <- hist(euc_geog$Distance, freq=TRUE, breaks = 25) 

hist_euc_epleist <- hist(euc_epleist$Distance, freq=TRUE, breaks = 

25) 

hist_euc_mpleist <- hist(euc_mpleist$Distance, freq=TRUE, breaks = 

25) 

hist_euc_lpleist <- hist(euc_lpleist$Distance, freq=TRUE, breaks = 

25) 

hist_euc_holo <- hist(euc_holo$Distance, freq=TRUE, breaks = 25) 

``` 

 

```{r} 

#linear models of histograms 

#cumulative data 

library(dbplyr) 

euc_freq_geog <- data.frame(hist_euc_geog$counts) 

euc_freq_geog <-euc_freq_geog %>%  mutate(id = 1:n()) 

str(euc_freq_geog) 

lm_geog <- lm(hist_euc_geog.counts ~ id, data = euc_freq_geog) 

 

#epleist 

library(dbplyr) 

euc_freq_epleist <- data.frame(hist_euc_epleist$counts) 

euc_freq_epleist <-euc_freq_epleist %>%  mutate(id = 1:n()) 

str(euc_freq_epleist) 

lm_epleist_geog <- lm(hist_euc_epleist.counts ~ id, data = 

euc_freq_epleist) 

 

#mpleist 

library(dbplyr) 

euc_freq_mpleist <- data.frame(hist_euc_mpleist$counts) 

euc_freq_mpleist <-euc_freq_mpleist %>%  mutate(id = 1:n()) 

str(euc_freq_mpleist) 

lm_mpleist_geog <- lm(hist_euc_mpleist.counts ~ id, data = 

euc_freq_mpleist) 
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#lpleist 

library(dbplyr) 

euc_freq_lpleist <- data.frame(hist_euc_lpleist$counts) 

euc_freq_lpleist <-euc_freq_lpleist %>%  mutate(id = 1:n()) 

str(euc_freq_lpleist) 

lm_lpleist_geog <- lm(hist_euc_lpleist.counts ~ id, data = 

euc_freq_lpleist) 

 

#holo 

library(dbplyr) 

euc_freq_holo <- data.frame(hist_euc_holo$counts) 

euc_freq_holo <-euc_freq_holo %>%  mutate(id = 1:n()) 

str(euc_freq_holo) 

lm_holo_geog <- lm(hist_euc_holo.counts ~ id, data = euc_freq_holo) 

``` 

 

```{r} 

summary(lm_geog) 

summary(lm_epleist_geog) 

summary(lm_mpleist_geog) 

summary(lm_lpleist_geog) 

summary(lm_holo_geog) 

``` 

 

## Spearman Tests 

 

```{r}  

#spearman tests for environmental data - freq vs mahal 

#this tests for correlation between variables, with result values 

between {-1,1}, where a 0 indicates no correlation 

cumul_mahal <- as.numeric(euc_freq_geog$hist_euc_geog.counts) 

cumul_freq <- as.numeric(euc_freq_geog$id) 

corr_cumulat_freq <- cor.test(cumul_freq, cumul_mahal, data = 

euc_freq_geog , method = 'spearman') 

corr_cumulat_freq 

 

#time bins enviro spearman tests 

 

#epleist 

epleist_mahal2 <- 

as.numeric(euc_freq_epleist$hist_euc_epleist.counts) 

epleist_freq <- as.numeric(euc_freq_epleist$id) 

corr_epleist_freq <- cor.test(epleist_freq, epleist_mahal2, data = 

euc_freq_epleist , method = 'spearman') 

corr_epleist_freq 

 

#mpleist 

mpleist_mahal2 <- 

as.numeric(euc_freq_mpleist$hist_euc_mpleist.counts) 
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mpleist_freq <- as.numeric(euc_freq_mpleist$id) 

corr_mpleist_freq <- cor.test(mpleist_freq, mpleist_mahal2, data = 

euc_freq_mpleist , method = 'spearman') 

corr_mpleist_freq 

 

#lpleist 

lpleist_mahal2 <- 

as.numeric(euc_freq_lpleist$hist_euc_lpleist.counts) 

lpleist_freq <- as.numeric(euc_freq_lpleist$id) 

corr_lpleist_freq <- cor.test(lpleist_freq, lpleist_mahal2, data = 

euc_freq_lpleist , method = 'spearman') 

corr_lpleist_freq 

 

#holo 

holo_mahal2 <- as.numeric(euc_freq_holo$hist_euc_holo.counts) 

holo_freq <- as.numeric(euc_freq_holo$id) 

corr_holo_freq <- cor.test(holo_freq, holo_mahal2, data = 

euc_freq_holo , method = 'spearman') 

corr_holo_freq 

``` 

 

# Log Transform 

 

```{r, eval=FALSE} 

#run this for the version of the geog range traced in ArcMap, using 

distance from a centerline rather than a point in an alpha hull 

library(tidyverse) 

master <- read_csv("C:/Users/rznol/Dropbox/Rhiannon-Cori/ACH 

Datasets/Climate/Geog_Centerlines/master_geogcent.csv") 

 

#choose which species to use this run 

#centln <- subset(master, Taxa == "Abra_aequalis") 

#centln <- subset(master, Taxa == "Arcinella_cornuta") 

centln <- subset(master, Taxa == "Lunarca_ovalis") 

#centln <- subset(master, Taxa == "Mercenaria_campechiensis") 

#centln <- subset(master, Taxa == "Pleuromeris_tridentata") 

#centln <- subset(master, Taxa == "Stewartia_floridana") 

 

#separate out time bins 

centln_all <- subset(centln, Time == "Cumulative") 

centln_EPleist <- subset(centln, Time == "Early Pleistocene") 

centln_MPleist <- subset(centln, Time == "Middle Pleistocene") 

centln_LPleist <- subset(centln, Time == "Late Pleistocene") 

centln_Holo <- subset(centln, Time == "Holocene") 

 

#give them the names from the previous iteration 

euc_geog <- centln_all 

euc_epleist <- centln_EPleist 

euc_mpleist <- centln_MPleist 

euc_lpleist <- centln_LPleist 
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euc_holo <- centln_Holo 

 

#create data frames for histograms 

euc_geog_df <- data.frame(centln_all) 

euc_epleist_df <- data.frame(centln_EPleist) 

euc_mpleist_df <- data.frame(centln_MPleist) 

euc_lpleist_df <- data.frame(centln_LPleist) 

euc_holo_df <- data.frame(centln_Holo) 

``` 

 

```{r} 

#create objects that are the histogram frequencies as values - log 

value 

hist_log_geog <- hist(euc_geog$Log, freq=TRUE, breaks = 25) 

hist_log_epleist <- hist(euc_epleist$Log, freq=TRUE, breaks = 25) 

hist_log_mpleist <- hist(euc_mpleist$Log, freq=TRUE, breaks = 25) 

hist_log_lpleist <- hist(euc_lpleist$Log, freq=TRUE, breaks = 25) 

hist_log_holo <- hist(euc_holo$Log, freq=TRUE, breaks = 25) 

``` 

 

```{r} 

#linear models of histograms 

#cumulative data 

library(dbplyr) 

log_freq_geog <- data.frame(hist_log_geog$counts) 

log_freq_geog <-log_freq_geog %>%  mutate(id = 1:n()) 

str(log_freq_geog) 

lm_geog_log <- lm(hist_log_geog.counts ~ id, data = log_freq_geog) 

 

#epleist 

library(dbplyr) 

log_freq_epleist <- data.frame(hist_log_epleist$counts) 

log_freq_epleist <-log_freq_epleist %>%  mutate(id = 1:n()) 

str(log_freq_epleist) 

lm_epleist_geog_log <- lm(hist_log_epleist.counts ~ id, data = 

log_freq_epleist) 

 

#mpleist 

library(dbplyr) 

log_freq_mpleist <- data.frame(hist_log_mpleist$counts) 

log_freq_mpleist <-log_freq_mpleist %>%  mutate(id = 1:n()) 

str(log_freq_mpleist) 

lm_mpleist_geog_log <- lm(hist_log_mpleist.counts ~ id, data = 

log_freq_mpleist) 

 

#lpleist 

library(dbplyr) 

log_freq_lpleist <- data.frame(hist_log_lpleist$counts) 

log_freq_lpleist <-log_freq_lpleist %>%  mutate(id = 1:n()) 

str(log_freq_lpleist) 
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lm_lpleist_geog_log <- lm(hist_log_lpleist.counts ~ id, data = 

log_freq_lpleist) 

 

#holo 

library(dbplyr) 

log_freq_holo <- data.frame(hist_log_holo$counts) 

log_freq_holo <-log_freq_holo %>%  mutate(id = 1:n()) 

str(log_freq_holo) 

lm_holo_geog_log <- lm(hist_log_holo.counts ~ id, data = 

log_freq_holo) 

``` 

 

```{r} 

summary(lm_geog_log) 

summary(lm_epleist_geog_log) 

summary(lm_mpleist_geog_log) 

summary(lm_lpleist_geog_log) 

summary(lm_holo_geog_log) 

``` 
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--- 

title: "Environmental NCH Analysis" 

author: "Rhiannon Nolan" 

date: "April 02, 2023" 

output: 

  html_document: 

  toc: true 

--- 

 

```{R, echo=FALSE} 

#GLOBAL R chunk options. 

#   (to hide this message add "echo=FALSE" to the code chunk 

options) 

 

knitr::opts_chunk$set(comment = NA, message = FALSE, warning = 

FALSE, width = 100) 

knitr::opts_chunk$set(fig.align = "center", fig.height = 4, 

fig.width = 6) 

 

#knitr::opts_chunk$set(cache = TRUE, autodep=TRUE) 

``` 

 

### Data Conversion 

 

```{R} 

library(tidyverse) 

 

#load in env csv file with lat, long, time bins,environmental data, 

and logistic predictions from MAXENT 

env <- read_csv("C:/Users/rznol/Dropbox/Rhiannon-Cori/ACH Datasets/R 

Files/occ_near_csv/full_env/env_all.csv") 

 

#change names of Time bins for easier reading of figures 

env <-  env %>%  mutate(    Time = 

      fct_collapse( 

        Time 

      , "E Pleist" = c("Early Pleistocene")                               

      , "M Pleist" = c("Middle Pleistocene")           

      , "L Pleist" = c("Late Pleistocene")  

      , "Holo" = c("Holocene")  

      ) 

  ) 

 

#set order of time bins to chronological 

env$Time <-  factor(    env$Time 

  , levels = c( "E Pleist" 

               , "M Pleist" 

               , "L Pleist" 

               , "Holo" 

     ) 
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  ) 

 

``` 

 

```{r} 

#separate out which species you want to run 

library(tidyverse) 

 

#choose which species to use this run by deleting the # in front of 

it 

env_sp <- subset(env, species == "Abra_aequalis") 

#env_sp <- subset(env, species == "Arcinella_cornuta") 

#env_sp <- subset(env, species == "Lunarca_ovalis") 

#env_sp <- subset(env, species == "Mercenaria_campechiensis") 

#env_sp <- subset(env, species == "Pleuromeris_tridentata") 

#env_sp <- subset(env, species == "Stewartia_floridana") 

 

#separate out time bins 

env_sp_all <- env_sp 

env_sp_EPleist <- subset(env_sp, Time == "E Pleist") 

env_sp_MPleist <- subset(env_sp, Time == "M Pleist") 

env_sp_LPleist <- subset(env_sp, Time == "L Pleist") 

env_sp_Holo <- subset(env_sp, Time == "Holo") 

``` 

 

# Environmental Space 

 

```{R, fig.height = 8, fig.width = 8} 

# Scatterplot matrix of variables to check for colinearity 

library(ggplot2) 

library(GGally) 

 

#columns to use for analysis - check using names(env) to find which 

columns are environmental variables 

use_col_ind <- c(7:14) 

use_col_names <- names(env_sp)[use_col_ind] 

use_col_names 

 

#scatterplot - takes a while to plot so just run when needed 

 

#p <- 

#  ggpairs( 

#    data = env, 

#    columns = use_col_names 

#  ) 

#print(p) 

``` 

 

```{R, fig.height = 5, fig.width = 8} 

#create PCA 
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pca <- 

  princomp( 

    env_sp[, use_col_ind] 

  , cor = TRUE 

  ) 

summary(pca) 

 

#show loadings to find what each PC axis formula is being used 

pca %>% loadings() %>% print(cutoff = 0.2) # cutoff = 0 to show all 

values 

 

``` 

 

```{R} 

par(mfrow=c(1,2)) 

#histogram showing percent of variance explained by each component 

screeplot(pca) 

#vector plot of varianbles and data, plotted in the first two 

components PC-space 

biplot(pca) 

par(mfrow=c(1,1)) 

``` 

 

```{r} 

# create data frame of PC values 

pca_coord <- data.frame(pca$scores) 

df_env <- data.frame(pca_coord$Comp.1, pca_coord$Comp.2, 

pca_coord$Comp.3) 

df_env <-df_env %>%  mutate(id = 1:n()) 

``` 

 

# Create Separate PCs for each Time Bin, using only environmental 

data from that time bin 

 

```{r} 

library(MASS) 

 

#time bins using enviro data 

 

pca_EPleist <- princomp(env_ep_df[, use_col_ind], cor = TRUE) 

pca_MPleist <- princomp(env_mp_df[, use_col_ind], cor = TRUE) 

pca_LPleist <- princomp(env_lp_df[, use_col_ind], cor = TRUE) 

pca_Holo <- princomp(env_h_df[, use_col_ind], cor = TRUE) 

 

#create data frames of first 3 components, convert to matrix 

 

pca12 <- data.frame(pca_EPleist$scores) 

df12 <- data.frame(pca12$Comp.1, pca12$Comp.2, pca12$Comp.3) 

 

pca13 <- data.frame(pca_MPleist$scores) 
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df13 <- data.frame(pca13$Comp.1, pca13$Comp.2, pca13$Comp.3) 

 

pca14 <- data.frame(pca_LPleist$scores) 

df14 <- data.frame(pca14$Comp.1, pca14$Comp.2, pca14$Comp.3) 

 

pca15 <- data.frame(pca_Holo$scores) 

df15 <- data.frame(pca15$Comp.1, pca15$Comp.2, pca15$Comp.3) 

``` 

 

## Centroids and Mahalanobis Distances in E-Space 

 

```{r} 

# cumulative range centroid 

library(MASS) 

mve_env <- cov.rob(df_env) 

 

# Time bin range centroids 

library(MASS) 

env_mve_epleist <- cov.mve(df12) 

env_mve_mpleist <- cov.mve(df13) 

env_mve_lpleist <- cov.mve(df14) 

env_mve_holo <- cov.mve(df15) 

 

# mahalanobis distances 

#cumulative 

mahal_env <- mahalanobis(df_env, mve_env$center, cov(df_env)) 

 

#EPleist 

env_mahal_epleist <- mahalanobis(df12, env_mve_epleist$center, 

cov(df12)) 

#MPleist 

env_mahal_mpleist <- mahalanobis(df13, env_mve_mpleist$center, 

cov(df13)) 

#LPleist 

env_mahal_lpleist <- mahalanobis(df14, env_mve_lpleist$center, 

cov(df14)) 

#Holo 

env_mahal_holo <- mahalanobis(df15, env_mve_holo$center, cov(df15)) 

``` 

 

```{r} 

#create objects that are the histogram frequencies as values 

env_hist_mahal <- hist(mahal_env, breaks = 25) 

env_hist_mahal_epleist <- hist(env_mahal_epleist, breaks = 25) 

env_hist_mahal_mpleist <- hist(env_mahal_mpleist, breaks = 25) 

env_hist_mahal_lpleist <- hist(env_mahal_lpleist, breaks = 25) 

env_hist_mahal_holo <- hist(env_mahal_holo, breaks = 25) 

``` 

 

# Linear Modeling 
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```{r} 

#linear models of histograms 

#cumulative 

library(dbplyr) 

env_mahal_freq <- data.frame(env_hist_mahal$counts) 

env_mahal_freq <-env_mahal_freq %>%  mutate(id = 1:n()) 

str(env_mahal_freq) 

lm_env <- lm(env_hist_mahal.counts ~ id, data = env_mahal_freq) 

``` 

 

```{r} 

#linear models of time bin environmental data - mahalanobis 

distances vs frequencies 

 

#epleist 

library(dbplyr) 

env_mahal_freq_epleist <- data.frame(env_hist_mahal_epleist$counts) 

env_mahal_freq_epleist <-env_mahal_freq_epleist %>%  mutate(id = 

1:n()) 

str(env_mahal_freq_epleist) 

lm_epleist_env <- lm(env_hist_mahal_epleist.counts ~ id, data = 

env_mahal_freq_epleist) 

 

#mpleist 

library(dbplyr) 

env_mahal_freq_mpleist <- data.frame(env_hist_mahal_mpleist$counts) 

env_mahal_freq_mpleist <-env_mahal_freq_mpleist %>%  mutate(id = 

1:n()) 

str(env_mahal_freq_mpleist) 

lm_mpleist_env <- lm(env_hist_mahal_mpleist.counts ~ id, data = 

env_mahal_freq_mpleist) 

 

#lpleist 

library(dbplyr) 

env_mahal_freq_lpleist <- data.frame(env_hist_mahal_lpleist$counts) 

env_mahal_freq_lpleist <-env_mahal_freq_lpleist %>%  mutate(id = 

1:n()) 

str(env_mahal_freq_lpleist) 

lm_lpleist_env <- lm(env_hist_mahal_lpleist.counts ~ id, data = 

env_mahal_freq_lpleist) 

 

#holo 

library(dbplyr) 

env_mahal_freq_holo <- data.frame(env_hist_mahal_holo$counts) 

env_mahal_freq_holo <-env_mahal_freq_holo %>%  mutate(id = 1:n()) 

str(env_mahal_freq_holo) 

lm_holo_env <- lm(env_hist_mahal_holo.counts ~ id, data = 

env_mahal_freq_holo) 

``` 
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```{R} 

#summaries of linear models using mahal dist and frequency 

summary(lm_env) 

summary(lm_epleist_env) 

summary(lm_mpleist_env) 

summary(lm_lpleist_env) 

summary(lm_holo_env) 

``` 

 

```{r} 

#add col that contains mahal dists 

env_sp$mahal <- mahal_env 

env_sp_EPleist$mahal <- env_mahal_epleist 

env_sp_MPleist$mahal <- env_mahal_mpleist 

env_sp_LPleist$mahal <- env_mahal_lpleist 

env_sp_Holo$mahal <- env_mahal_holo 

 

#add all the working time bins back into one dataset 

env_sp_2 <- rbind( 

  env_sp_EPleist, 

  env_sp_MPleist,  

  env_sp_LPleist,  

  env_sp_Holo 

  ) 

``` 

 

## Spearman Tests 

 

```{r} 

#spearman tests for environmental data - freq vs mahal 

#this tests for correlation between variables, with result values 

between {-1,1}, where a 0 indicates no correlation 

cumul_mahal <- as.numeric(env_mahal_freq$env_hist_mahal.counts) 

cumul_freq <- as.numeric(env_mahal_freq$id) 

corr_cumulat_freq <- cor.test(cumul_freq, cumul_mahal2, data = 

env_mahal_freq , method = 'spearman') 

corr_cumulat_freq 

 

#time bins enviro spearman tests 

 

#epleist 

epleist_mahal2 <- 

as.numeric(env_mahal_freq_epleist$env_hist_mahal_epleist.counts) 

epleist_freq <- as.numeric(env_mahal_freq_epleist$id) 

corr_epleist_freq <- cor.test(epleist_freq, epleist_mahal2, data = 

env_EPleist , method = 'spearman') 

corr_epleist_freq 

 

#mpleist 
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mpleist_mahal2 <- 

as.numeric(env_mahal_freq_mpleist$env_hist_mahal_mpleist.counts) 

mpleist_freq <- as.numeric(env_mahal_freq_mpleist$id) 

corr_mpleist_freq <- cor.test(mpleist_freq, mpleist_mahal2, data = 

env_MPleist , method = 'spearman') 

corr_mpleist_freq 

 

#lpleist 

lpleist_mahal2 <- 

as.numeric(env_mahal_freq_lpleist$env_hist_mahal_lpleist.counts) 

lpleist_freq <- as.numeric(env_mahal_freq_lpleist$id) 

corr_lpleist_freq <- cor.test(lpleist_freq, lpleist_mahal2, data = 

env_Lpleist , method = 'spearman') 

corr_lpleist_freq 

 

#holo 

holo_mahal2 <- 

as.numeric(env_mahal_freq_holo$env_hist_mahal_holo.counts) 

holo_freq <- as.numeric(env_mahal_freq_holo$id) 

corr_holo_freq <- cor.test(holo_freq, holo_mahal2, data = env_holo , 

method = 'spearman') 

corr_holo_freq 

``` 

 

# Log Scale Linear Models 

 

```{r} 

#create objects that are the histogram frequencies as values 

env_hist_mahal <- hist(mahal_env, breaks = 25) 

env_hist_mahal_epleist <- hist(env_mahal_epleist, breaks = 25) 

env_hist_mahal_mpleist <- hist(env_mahal_mpleist, breaks = 25) 

env_hist_mahal_lpleist <- hist(env_mahal_lpleist, breaks = 25) 

env_hist_mahal_holo <- hist(env_mahal_holo, breaks = 25) 

``` 

 

```{r} 

library(dbplyr) 

log_env <- data.frame(env_hist_mahal$counts) 

log_env <- log(abs(log_env)) 

 

log_env_ep <- data.frame(env_hist_mahal_epleist$counts) 

log_env_ep <- log(abs(log_env_ep)) 

 

log_env_mp <- data.frame(env_hist_mahal_mpleist$counts) 

log_env_mp <- log(abs(log_env_mp)) 

 

log_env_lp <- data.frame(env_hist_mahal_lpleist$counts) 

log_env_lp <- log(abs(log_env_lp)) 

 

log_env_h <- data.frame(env_hist_mahal_holo$counts) 
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log_env_h <- log(abs(log_env_h)) 

``` 

 

```{r} 

#linear models of histograms 

#cumulative data 

library(dbplyr) 

 

#log_env <- log_env %>% filter(log_env >= 0) 

log_env <-log_env %>%  mutate(id = 1:n()) 

lm_log <- lm(env_hist_mahal$counts ~ id, data = log_env) 

 

log_env_ep <-log_env_ep %>%  mutate(id = 1:n()) 

log_env_ep <-log_env_ep %>%  mutate(id = 1:n()) 

lm_log_ep <- lm(env_hist_mahal_epleist$counts ~ id, data = 

log_env_ep) 

 

log_env_mp <-log_env_mp %>%  mutate(id = 1:n()) 

lm_log_mp <- lm(env_hist_mahal_mpleist$counts ~ id, data = 

log_env_mp) 

 

log_env_lp <-log_env_lp %>%  mutate(id = 1:n()) 

lm_log_lp <- lm(env_hist_mahal_lpleist$counts ~ id, data = 

log_env_lp) 

 

log_env_h <-log_env_h %>%  mutate(id = 1:n()) 

lm_log_h <- lm(env_hist_mahal_holo$counts ~ id, data = log_env_h) 

``` 

 

```{r} 

summary(lm_log) 

summary(lm_log_ep) 

summary(lm_log_mp) 

summary(lm_log_lp) 

summary(lm_log_h) 

``` 
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