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According to Kuss et al. [47], a key premise is that a Gaussian approximation to 

the posterior implies a GP approximation to the posterior process, resulting in an 

approximate predictive distribution for test cases. Introducing the approximate Gaussian 

posterior 𝑝(𝑓∗|𝒟, 𝜽, 𝒙∗) above, gives the approximate posterior 

 𝑞(𝑓∗|𝒟, 𝜽, 𝒙∗) = 𝒩(𝑓∗|𝜇∗) (81) 

 

with mean and variance defined as 

 𝜇∗ = 𝒌∗
𝑇𝑲−1𝒎 (82) 

 

 𝜎∗
2 = 𝑘(𝒙∗, 𝒙∗) − 𝒌∗

𝑇(𝑲−1 −𝑲−1𝑨𝑲−1)𝒌∗, (83) 

 

where 𝒌∗ = [𝑘(𝒙1, 𝒙∗), … , 𝑘(𝒙𝑚, 𝒙∗)]
𝑇 is a vector of prior covarianes between 𝒙∗ and the 

training inputs 𝑿. For the 𝑝𝑟𝑜𝑏𝑖𝑡 likelihood the approximate predictive probability 

𝑝(𝑦∗|𝒟, 𝜽, 𝒙∗) of 𝒙∗ belonging to class 1 can be analytically computed as 

 𝑞(𝑦∗ = 1|𝒟, 𝜽, 𝒙∗) = ∫Φ(𝑓∗)𝒩(𝑓∗|𝜇∗, 𝜎∗
2) = Φ(

𝜇∗

√1+𝜎∗
2
). (84) 

 

The parameters 𝒎 and 𝑨 of the posterior approximation can be found using Laplace’s 

method or by Expectation Propagation (EP), introduced in the next two subsections 

respectively.  

Chapter 3-4-1: Laplace’s Method 

 Since the posterior, the predictive distribution, nor the marginal likelihood, can be 

computed analytically, approximations are needed. This subsection covers the theory 

behind Laplace’s approximation method. Laplace’s method uses a Gaussian 
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approximation 𝑞(𝒇|𝑋, 𝒚) of the posterior 𝑝(𝒇|𝑋, 𝒚) in 𝑝(𝑓∗|𝑋, 𝒚, 𝒙∗) =

∫𝑝(𝑓∗|𝒇, 𝑿, 𝒙∗, 𝒇)𝑝(𝒇|𝑋, 𝒚)𝑑𝒇, obtained by 

 𝑞(𝒇|𝑋, 𝒚) = 𝒩(𝒇|𝒇̂, 𝐴−1) ∝ 𝑒𝑥𝑝 (−
1

2
(𝒇 − 𝒇̂)

𝑇
𝐴((𝒇 − 𝒇̂))), (85) 

 

where 𝒇̂ = argmax𝒇 𝑝(𝒇|𝑋, 𝒚) and 𝐴 = −∇∇log 𝑝(𝒇|𝑋, 𝒚)𝒇=𝒇̂ is the Hessian of the 

negative log posterior at that point. What is needed next is to determine 𝒇̂ and 𝐴, then to 

make predictions after obtaining 𝑞(𝒇|𝒚) [45]. 

Bayes’ rule gives the posterior over the latent variables by computing  

 𝑝(𝒇|𝑋, 𝒚) =
𝑝(𝒚|𝒇)𝑝(𝒇|𝑋)

𝑝(𝒚|𝑋)
; (86) 

 

however, with 𝑝(𝒚|𝑋) being independent of 𝒇, only the un-normalized posterior will be 

considered. Taking the logarithm of the expression above and introducing the expression 

log(𝑝(𝒇|𝑋)) = −
1

2
𝒇𝑇𝐾−1𝑓 −

1

2
log|𝐾| −

𝑛

2
log (2𝜋) for the GP prior,  

𝜓(𝒇) ≜ log 𝑝(𝒚|𝒇)  + log 𝑝(𝒇|𝑋)  

 = log 𝑝(𝒚|𝒇) −
1

2
𝒇𝑇𝐾−1𝑓 −

1

2
log|𝐾| −

𝑛

2
log (2𝜋). (87) 

 

Differentiating the expression above and determining the maximum, we obtain 𝒇̂ =

𝐾(∇ log 𝑝(𝒚|𝒇̂)), which needs to be solved iteratively via methods such as the Newton’s 

method. Having determined the maximum posterior  𝒇̂, the Laplace approximation to the 

posterior is given as a Gaussian with mean 𝒇̂ covariance matrix given by the negative 

inverse Hessian of 𝜓 
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 𝑞(𝒇|𝑋, 𝒚) = 𝒩(𝒇̂, (𝐾−1 +𝑊)−1), (88) 

 

where  𝑨 = (𝐾−1 +𝑊)−𝟏 [45]. 

After calculating the posterior, the next step in using Laplace’s method is to 

determine the computation of the predictive step. Under the Laplace approximation, the 

posterior mean for 𝑓∗ can be expressed as 

 𝔼𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗] = 𝒌(𝒙∗)
𝑇𝐾−1𝒇̂ = 𝒌(𝒙∗)

𝑇∇ log 𝑝(𝒚|𝒇̂). (89) 

 

In this case, positive training examples result in a positive coefficient for their kernel 

function, because ∇𝑖 log 𝑝(𝑦𝑖|𝑓𝑖) > 0, while negative examples result in negative 

coefficients, similar to solutions obtained via SVMs. It is also worth noting that training 

examples, for which ∇𝑖 log 𝑝(𝑦𝑖|𝑓𝑖) ≅ 0, do not contribute strongly to predictions at 

novel test points. It is also possible to compute the variance of  𝑓∗|𝑋, 𝒚 under the Gaussian 

approximation, e.g. 

 𝕍𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗] = 𝑘(𝒙∗, 𝒙∗) − 𝒌∗
𝑇(𝐾 +𝑊−1)−1𝒌∗. (90) 

 

Having obtained the mean and variance of  𝑓∗, predictions are computed by 

 𝜋̅∗ ≅ 𝔼𝑞[𝜋∗|𝑋, 𝒚, 𝒙∗] = ∫𝜎(𝑓∗)𝑞(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑑𝑓∗ (91) 

 

in which 𝑞(𝑓∗|𝑋, 𝒚, 𝒙∗) is Gaussian with mean and variance given by 𝔼𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗] and 

𝕍𝑞[𝑓∗|𝑋, 𝒚, 𝒙∗], respectively. In this case, if 𝜎(𝑧) is the cumulative Gaussian function 

then this prediction can be computed analytically; however, if it is anything else but 
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Gaussian, we need to resort to sampling or approximation methods to compute the one-

dimensional integral. If we are only concerned about the most probable classification, it 

is not necessary to compute the prediction step 𝔼𝑞[𝜋∗|𝑋, 𝒚, 𝒙∗]; however, the step is 

required if we are interested in confidence intervals related to our prediction. The 

algorithm for Laplace’s approximation for GP classification is shown in Fig. 42 [45]. 

 

Figure 42: Laplace's method for Gaussian process classification [47]. 

 A problem with Laplace’s approximation is that it is uncontrolled, meaning that 

the Hessian evaluated at 𝒇̂ may give a poor approximation to the true shape of the 

posterior. An alternative to Laplace’s approximation for GPC is expectation propagation 

(EP), which is discussed next.  

Chapter 3-4-2: Expectation Propagation 

 The EP algorithm, coined by Minka in 2001 [48], is a general approximation tool 

that can be used in a wide range of applications, including the specific case of a GP 

model for binary classification. EP is used in Bayesian machine learning to tune the 

parameters of a simpler, albeit approximate distribution, e.g. a Gaussian, to match the 

posterior distribution of the true model parameters given the experimental data. It is a 
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deterministic method well-suited for large datasets as well as dynamic systems, where 

exact Bayesian inference methods fail and where Monte Carlo methods are too slow [46]. 

 The posterior distribution over latent variables  

 𝑝(𝑓|𝑋, 𝒚) =
1

𝑍
𝑝(𝒇|𝑋)∏ 𝑝(𝑦𝑖|𝑓𝑖)

𝑛
𝑖=1 , (92) 

 

is a concept of high importance in this approach, in which the posterior is computed using 

Bayes’ rule as the product of a normalization term, 
1

𝑍
, the prior, 𝑝(𝒇|𝑋), and the 

likelihood ∏ 𝑝(𝑦𝑖|𝑓𝑖)
𝑛
𝑖=1 . The prior is assumed to be Gaussian and the likelihood 

factorizes over training cases. The normalization term is the marginal likelihood given by 

 𝑍 = 𝑝(𝒚|𝑋) = ∫𝑝(𝑓|𝑋)∏ 𝑝(𝑦𝑖|𝑓𝑖)𝑑𝒇
𝑛
𝑖=1 . (93) 

  

 The difference between the regression and classification analytic framework for 

GPs is that in the case of classification, the likelihood 𝑝(𝑦𝑖|𝑓𝑖) is not Gaussian – a 

property that was heavily relied on in arriving at analytical solution for the GP regression 

framework. When the probit likelihood, 𝑝(𝑦𝑖|𝑓𝑖) = Φ(𝑦𝑖|𝑓𝑖), is used for binary 

classification, it makes the posterior 𝑝(𝑓|𝑋, 𝒚) above, intractable. To overcome this 

intractability in the EP framework, the likelihood is approximated by a local likelihood 

approximation in the form of an un-normalized Gaussian function in 𝑓𝑖, 

 𝑝(𝑦𝑖|𝑓𝑖) ≅ 𝑡𝑖(𝑓𝑖|𝑍̃𝑖, 𝜇𝑖, 𝜎̃𝑖
2) ≜ 𝑍̃𝑖𝒩(𝑓𝑖|𝜇𝑖, 𝜎̃𝑖

2) (94) 

 

where 𝑍̃𝑖, 𝜇𝑖, and 𝜎̃𝑖
2 are site parameters, and 𝒩 is the normalized Gaussian distribution 

[45]. It is clear that we are approximating a likelihood or a probability distribution which 
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normalizes over the targets 𝑦𝑖, by an unnormalized Gaussian distribution over the latent 

variables 𝑓𝑖. 

The EP method unifies two previously developed techniques: assumed density 

filtering (ADF), which extends the Kalman filter, and loopy belief propagation, which 

extends belief propagation in Bayesian networks. EP approximates the belief states by 

only retaining expectation, such as the mean and variance, and it keeps iterating until 

these expectations are consistent throughout the network [48]. 

 EP is an extension of ADF, which is a single-pass, sequential method for 

computing an approximate posterior distribution. In ADF, observations are processed 

one-by-one, updating the posterior distribution which is then approximated before 

processing the next observation. The primary weakness of ADF is its sequential nature of 

processing – information that is discarded early may prove to be important later during 

processing. An additional weakness is that ADF may be sensitive to observation ordering, 

which is an undesirable artifact in a batch-processing context [48]. 

 Specifically, EP extends ADF to incorporate iterative refinement of the 

approximations by making additional passes through the network. Information from later 

observation refines the choices made earlier so that the most relevant information is 

retained.  EP is faster than sampling and more general than Kalman filtering, and it is 

applicable in all scenarios in which ADF applies as well. Computationally, it is more 

expensive than ADF but only by a constant factor that is proportional to the number of 

passes EP performs in the network [48]. 
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In loopy belief networks, it is known that approximate marginal distributions can 

be obtained by iterating belief propagation recursions – known as loopy belief 

propagation. EP is more general than loopy belief propagation in two ways: (1) like 

variational methods, it can use approximations that are not completely disconnected, and 

it can impose useful constraints on functional form, such as a multivariate Gaussian. 

Minka [48] describes the general form of EP as follows: 

1. Initialize the term approximations 𝑡𝑖 
2. Compute the posterior for 𝒙 from the product of 𝑡𝑖 

  𝑞(𝒙) =
∏ 𝑡𝑖(𝒙)𝑖

∫∏ 𝑡𝑖(𝒙)𝑖 𝑑𝒙
 

3. Until all 𝑡𝑖 converge: 

a. Choose a 𝑡𝑖 to refine 

b. Remove 𝑡𝑖 from the posterior to get an ‘old’ posterior 𝑞\𝑖(𝒙) by dividing 

and normalizing: 

𝑞\𝑖(𝒙) ∝
𝑞(𝒙)

𝑡𝑖(𝒙)
 

c. Combine 𝑞\𝑖(𝒙) and 𝑡𝑖(𝒙) and minimize KL-divergence to get a new 

posterior 𝑞(𝒙) with normalizer 𝑍𝑖 

d. Update 𝑡𝑖 = 𝑍𝑖𝑞(𝒙)/𝑞
\𝑖(𝒙) 

4. Use the normalizing constant of 𝑞(𝒙) as an approximation to 𝑝(𝐷): 

  𝑝(𝐷) ≈ ∫∏ 𝑡𝑖(𝒙)𝑑𝒙𝑖  

which for the binary classification case, is implemented as described in Fig. 43. 
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Figure 43: Expectation propagation for binary classification [45]. 

The classification targets 𝒚 are used in line 7. In lines 13-15, the algorithm re-

computes the approximate posterior. The re-computation is performed again because of 

the large number of rank-one updates in line 10 causing a loss in numerical precision in 

Σ. The computational complexity of the EP algorithm is dominated but the rank one-

updates in line 10 and is in the order of 𝒪(𝑛2) per variable or 𝒪(𝑛3) when sweeping over 

all variables, indicating that large datasets will take considerably longer to process, 

making this a potentially expensive process in terms of computational time [45]. 

For the second (prediction step) the algorithm is described in Fig. 44. 
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Figure 44: Algorithm for prediction step of EP [45]. 

As seen in line 8, the prediction algorithm returns 

 𝜋∗ ≜ 𝑝(𝑦∗ = 1|𝑋, 𝒚, 𝒙∗) = ∫𝜎(𝑓∗)𝑝(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑑𝑓∗, (95) 

 

which represents the predictive class probability for class 1, representing MCU upset 

probability. There is no guarantee for the algorithm to converge, but several authors have 

reported that EP for GP models works relatively well [45]. 

 The assumption that the posterior is close to a Gaussian as it is usually the case 

with low-dimensional parametric models with large amounts of data is not likely to be 

valid with a high-dimensional model with relatively few data. Laplace’s approximation 

technique centers around the mode of the posterior resulting in overly cautious predictive 

distributions, whereas EP does not rely on a local expansion. EP assumes the marginal 

distribution of the posterior is well approximated by Gaussians and Kuss et al. [47] show 

that it performs better than Laplace’s approximation for a generic set of pseudo-randomly 

generated data. 
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 Since the mean and covariance functions are key in fully specifying a GP and 

having discussed the theory behind GP classification, the next two subsections cover the 

background of the covariance function and model selection for GPML. 

Chapter 3-4-3: Covariance Functions for GPML 

 The covariance function is the critical ingredient in the GP predictor because it 

encodes some assumptions about the function which we want to infer. Generally, in a 

supervised learning problem, the concept of similarity between data points is key with the 

underlying assumption that data points with input 𝒙 which are close are likely to have 

similar outcomes or target values 𝑦 and therefore the data points used for testing the 

model that are near a training point should be able to predict the outcome of the test point 

with some probability. In GPML, the covariance function defines this similarity between 

data points. An arbitrary function of input pairs 𝒙 and 𝒙′ is generally not a valid 

covariance function, and this subsection describes the general properties of valid 

covariance functions. Supervised machine learning problems by nature share some 

general mathematical concepts, therefore each section may repeat some concepts covered 

earlier, however will be described as they apply to a machine learning discipline [45].  

A stationary covariance function 𝒙 − 𝒙′ is invariant if it is not sensitive to 

translations in the input space. For example, the squared exponential (SE) function, that 

specifies the covariance between pairs of random variables,  

 cov (𝑓(𝒙𝑝), 𝑓(𝒙𝑞)) = 𝑘(𝒙𝑝, 𝒙𝑞) = exp (−
1

2
|𝒙𝑝 − 𝒙𝑞|

2
) (96) 

 



 

 

114 

is a stationary covariance function, because it is a function of 𝒙𝑝 − 𝒙𝑞. Additionally, if 

the covariance function is also a function |𝒙 − 𝒙′| it is also isotropic, meaning that it is 

invariant to all rigid motions. The SE function is an example of an isotropic function. 

Furthermore, the function is considered a radial basis function (RBF) if it is a function of 

𝑟 = |𝒙 − 𝒙′| [45]. 

 In the case where a covariance function depends only on 𝒙 and 𝒙′ through 〈𝒙 ∙ 𝒙′〉, 

it is labeled a dot product covariance function, an example of which is 𝑘(𝒙, 𝒙′) = 𝜎0
2 +

〈𝒙 ∙ 𝒙′〉. The dot product covariance function is obtained through linear regression by 

putting 𝒩(0,1) priors on the coefficients of 𝑥𝑑(𝑑 = 1,… , 𝐷) and a prior of 𝒩(0, 𝜎0
2) on 

the bias or the constant function. An important example of a dot product covariance 

function is the inhomogeneous polynomial kernel 𝑘(𝒙, 𝒙′) = 𝜎0
2 + 〈𝒙 ∙ 𝒙′〉, where 𝑝 is a 

positive integer. The dot product covariance functions are invariant to a rotation of the 

coordinates about the origin, but are not invariant to translations [45]. 

 The general name for a function 𝑘(∙) of two arguments that maps a pair of inputs 

𝒙 ∈ 𝑋, 𝒙′ ∈ 𝑋 into ℝ is a kernel. The term stems from integral operator theory, where the 

operator 

 𝑇𝑘𝑓(𝑥) = ∫𝑘(𝒙, 𝒙
′)𝑓(𝒙′)𝑑𝜇

 

𝑋

(𝒙′) (97) 

 

and 𝜇 denotes a measure. A kernel is said to be symmetric if 𝑘(𝒙, 𝒙′) = 𝑘(𝒙′, 𝒙), 

representing a key criterion for a valid covariance function. 

 Just as in SVMs, the Gram matrix is a fundamental concept in GPML. If we 

consider a set of input points {𝑥𝑖|𝑖 = 1,… , 𝑛}, the Gram matrix contains entries 
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determined by 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗). In the case where 𝑘 is a covariance function, the 

corresponding matrix 𝐾 is referred to as the covariance matrix. A real 𝑛 × 𝑛 matrix 𝐾 is 

called positive semidefinite (PSD) if it satisfies 𝑄(𝒗) = 𝒗𝑇𝐾𝒗 ≥ 0 for all 𝑣 ∈ ℝ𝑛, where 

𝑄(𝒗) is referred to as the quadratic form. Generally, the Gram matrix belonging to a 

general kernel function does not need to be PSD, but the Gram matrix belonging to a 

covariance function in GPML must be PSD. Also, a kernel 𝑘 is said to be PSD if 

 ∫𝑘(𝒙, 𝒙′)𝑓(𝒙)𝑓(𝒙′)𝑑𝜇(𝒙)𝑑𝜇(𝒙′) ≥ 0 (98) 

 

for all 𝑓 ∈ 𝐿2(𝑋, 𝜇) and every time a kernel function gives rise to PSD Gram matrices for 

any 𝑛 ∈ (ℕ,𝒟), that kernel function is considered to be PSD [45]. 

 Another key concept in theory related to valid covariance functions for GPML is 

that of mean square continuity, or smoothness, and differentiability. If we consider 

𝒙1, 𝒙2, … to be a sequence of points and 𝒙∗is a fixed point in ℝ𝒟 such that |𝒙𝑘 − 𝒙∗| → 0 

as 𝑘 → ∞, then process 𝑓(𝒙) is continuous in mean square at 𝒙∗ if 𝔼[|𝑓(𝒙𝑘) −

𝑓(𝒙∗)|
2] → 0 as 𝑘 → ∞. If both conditions are met for all 𝒙∗ ∈ 𝐴 with  𝐴 ⊂ ℝ𝒟 then 

𝑓(𝒙) is said to be continuous in mean square at 𝒙∗, which for stationary covariance 

functions reduces to checking continuity at 𝑘(𝟎) [45]. 

 The mean square derivative of 𝑓(𝒙) in the 𝑖th direction is defined as 

𝑑𝑓(𝒙)

𝑑𝑥𝑖
= l. i. m

ℎ→0

𝑓(𝒙 + ℎ𝒆𝑖)

ℎ
, 
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when the limit exists and where l.i.m denotes the limit in mean square and 𝒆𝑖 is the unit 

vector in the 𝑖th direction. Here, the covariance function of 
𝑑𝑓(𝒙)

𝑑𝑥𝑖
⁄  is given by 

𝜕2𝑘(𝒙, 𝒙′)
𝜕𝑥𝑖𝜕𝑥′𝑖
⁄  and these definitions can be extended to higher order derivatives [45].  

 The input domain for covariance functions is 𝑋 ⊂ ℝ𝒟. A commonly used 

covariance function is the squared exponential (SE) covariance function of the form 

 𝑘𝑆𝐸(𝑟) = exp (−
𝑟2

2𝑙2
), (99) 

 

where the parameter 𝑙 defines the characteristic length scale. The SE covariance function 

is infinitely differentiable, meaning that it is very smooth. Even though there are 

arguments that such strong smoothness is not realistic for modeling real world physical 

processes along with a recommendation to use the Matérn class [49], the SE is one of the 

most widely used kernels within the kernel machine learning field [45]. 

 The Matérn class of covariance functions has the form of 

 𝑘Matérn (𝑟) =
2𝑙−𝑣

Γ(𝑣)
(
√2𝑣𝑟

𝑙
)

𝑣

𝐾𝑣 (
√2𝑣𝑟

𝑙
) (100) 

 

where 𝑣 and 𝑙 denote positive parameters, and 𝐾𝑣 is a modified Bessel function. If the 

scaling for the Matérn class is chosen in such a way that 𝑣 → ∞, the result is the SE 

covariance function. In the Matérn class, the process is 𝑘-times MS differentiable if and 

only if 𝑣 > 𝑘. Also, if 𝑣 = 𝑝 + 1 2⁄ , with p being a nonnegative integer, the Matérn 

covariance function transforms into a product of an exponential covariance function and a 

polynomial covariance function of order 𝑝. Rasmussen and Williams [45] postulate that 
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the most interesting cases of the Matérn class for machine learning may be with 𝑣 = 3/2 

and 𝑣 = 5/2, for which  

 𝑘𝑣=3/2(𝑟) = (1 +
√3𝑟

𝑙
) 𝑒𝑥𝑝 (−

√3𝑟

𝑙
), (101) 

   

 𝑘𝑣=5/2(𝑟) = (1 +
√5𝑟

𝑙
+
5𝑟2

3𝑙2
) 𝑒𝑥𝑝 (−

√5𝑟

𝑙
). (102) 

 

The reason for the machine learning suitability at these two values is that for 𝑣 = 1/2, 

the process becomes very rough and for 𝑣 ≥ 7/2 it becomes difficult to distinguish 

between finite values of 𝑣 in the presence of noise. Additionally, as mentioned earlier, as 

𝑣 → ∞, the Matérn class becomes the SE covariance function. 

 Table 8 summarizes several commonly used covariance functions. The table 

shows the covariance functions expressed in terms of 𝒙 and 𝒙′ or as a function of 𝒓 =

|𝒙 − 𝒙′|. The columns denoted S and ND denote whether the covariance functions are 

stationary and nondegenerate, respectively. 
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Table 8: Commonly used covariance functions [45]. 

    

Chapter 3-4-4: Model Selection for GP Classification 

 Many practical applications do not lend themselves to an easy specification of all 

aspects of covariance functions with confidence. Some properties, such as the stationarity 

of the covariance function may be easily determined from the context, other properties 

such as the value of hyperparameters, e.g. length-scales, are more difficult. Moreover, the 

exact form and possible hyperparameters of the likelihood function may not be known in 

advance. Thus, to use GPs as a potential analysis tool in the MCU upset problem, it is 

necessary to address model selection techniques. The model selection problem may be 

interpreted in a broad sense to include the discrete choice of the covariance function form 

in addition to the values for any hyperparameters.  

 For the model to become a practical tool in an application, one is required to make 

choices regarding some of the details of its specification. While it may be easy to specify 

some properties of the model, only vague information may be available about some other 
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aspects. As mentioned earlier, model selection refers to the discrete choices and the 

setting of hyperparameters of the covariance functions. A good choice for a model can 

help to refine its predictions and give the user a valuable interpretation of the 

experimental data properties, e.g. that a non-stationary covariance function may perform 

better than a stationary one. 

 In the previous subsection, an overview of available covariance functions was 

presented. Each of these covariance functions is associated with several free 

hyperparameters whose values need to be determined. Thus, selecting a covariance 

function for a particular application comprises of setting the hyperparameters within a 

family of covariance functions as well as comparing them across different families. 

Training of a GP entails the selection of a covariance function and its hyperparameters. 

This definition of training is in contrast to its use in Support Vector Machine (SVM) 

literature where the term refers to finding the support vectors for a fixed kernel. 

 For example, the squared exponential (SE) covariance function can be 

parameterized in terms of hyperparameters, 

 𝑘(𝒙𝑝, 𝒙𝑞) = 𝜎𝑓
2exp {−

1

2
(𝒙𝑝 − 𝒙𝑞)

𝑇

𝑀(𝒙𝑝 − 𝒙𝑞)} + 𝜎𝑛
2𝛿𝑝𝑞 (103) 

 

where 𝜽 = ({𝑴}, 𝜎𝑓
2, 𝜎𝑛

2) is a vector containing all the hyperparameters, in which 𝑀 

denotes the parameters in the symmetric matrix 𝑀. The noise level parameter  𝜎𝑛
2 is 

treated in a similar manner as a hyperparameter, so it may be, for all intents and purposes, 

be considered as such. Possible choices for the matrix 𝑀 include 

 𝑀1 = 𝑙
−2𝐼 (104) 
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 𝑀2 = diag(𝒍)
−2 (105) 

   

 𝑀3 = ΛΛ
𝑇 + diag(𝒍)−2 (106) 

   

   

where 𝑙 is a vector of positive values, and Λ is a 𝐷 × 𝑘 matrix, 𝑘 < 𝐷. For many 

covariance functions it is relatively straightforward to interpret the meaning of its 

hyperparameters which is of great importance when it comes to understanding the 

experimental data. In the case of the SE covariance function with distance measure 𝑀2, 

the 𝑙1, … , 𝑙𝐷 hyperparameters represent the characteristic length-scales, that can be 

described as the distance along a particular axis in input space such that the function 

values become uncorrelated. Such a covariance function implements automatic relevance 

determination (ARD), since the inverse of the length-scale determines the relevance of a 

particular input. If the value of the length-scale is very large, the covariance will become 

almost independent of that input, effectively removing it from the inference [45]. There is 

plenty of slack for variation even within a family of covariance functions and the task is, 

based on a set of training data, to make inferences about the form and parameters of the 

covariance function, or equivalently, about the relationships in the data. 

 The task of model selection is essentially open-ended. Even for the SE covariance 

function, the is a large variety of possible distance measures, enabling the true learning 

from data. This variety necessitates a systematic and practical approach to model 

selection. Concisely, we need to be able to compare two or more methods whose values 

of particular parameters differ or compare the performance of a GP to the performance of 

any other model. There are many suggestions for model selection in the literature. 

However, there are three general principles that need to be observed: (1) compute the 

probability of the model given the data, (2) estimate the generalization error, and (3) 
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bound a generalization error. The term generalization error refers to the average error on 

unseen test examples from the same distribution. The training error is not a useful 

measure of how the model will generalize to unseen data because the model may fit the 

noise in the training set, leading to a low training error but poor generalization 

performance. Poor generalization performance is realized when the training error is low, 

but the generalization error is significantly larger. This concept is also referred to 

overfitting the data. The next subsection covers the Bayesian view on model selection, 

which involves the computation of the probability of the model, given the data [45]. 

Chapter 3-4-5: Bayesian Model Selection 

 The computations that are needed for Bayesian inference are based on the 

posterior over the parameters, represented by 𝒘 at the lowest levels, which is computed 

via Bayes’ rule 

 𝑝(𝒘|𝒚, 𝑋, 𝜽,ℋ𝑖) =
𝑝(𝒚|𝑋,𝒘,ℋ𝑖)𝑝(𝒘|𝜽,ℋ𝑖)

𝑝(𝒚|𝑋,𝜽,ℋ𝑖)
, (107) 

 

where 𝑝(𝒚|𝑋,𝒘,ℋ𝑖) is the likelihood and 𝑝(𝒘|𝜽,ℋ𝑖) is the parameter prior. The prior 

encodes our knowledge about the parameters before seeing the data in the form of a 

probability distribution. If this prior knowledge about the parameters is vague, then the 

prior distribution is chosen to be broad. Thus, the posterior combines the information 

from the prior with the data, through the likelihood. The normalizing constant 

𝑝(𝒚|𝑋, 𝜽,ℋ𝑖) is independent of the parameters and it is referred to as the marginal 

likelihood or evidence, and is computed by 

 𝑝(𝒚|𝑋, 𝜽,ℋ𝑖) = ∫ 𝑝(𝒚|𝑋, 𝒘,ℋ𝑖) 𝑝(𝒘|𝜽,ℋ𝑖)𝑑𝒘. (108) 



 

 

122 

Next, the posterior over the parameters, in which the marginal likelihood from above 

plays the role of the likelihood, is computed by 

 
𝑝(𝜽|𝒚, 𝑋,ℋ𝑖) =

𝑝(𝒚|𝑋,𝜽,ℋ𝑖)𝑝(𝜽|ℋ𝑖)

𝑝(𝒚|𝑋,ℋ𝑖)
, 

 
(109) 

where 𝑝(𝜽|ℋ𝑖) is the hyper-prior and where the normalizing constant is given by 

 
𝑝(𝒚|𝑋,ℋ𝑖) = ∫𝑝(𝒚|𝑋, 𝜽,ℋ𝑖) 𝑝(𝜽|ℋ𝑖)𝑑𝜽. 

 
(110) 

Finally, the posterior of the model given the data is computed by 

 
𝑝(ℋ𝑖|𝒚, 𝑋) =

𝑝(𝒚|𝑋,ℋ𝑖)𝑝(ℋ𝑖)

𝑝(𝒚|𝑋)
, 

 
(111) 

where the normalizing constant 𝑝(𝒚|𝑋) = ∑ 𝑝(𝒚|𝑋,ℋ𝑖)𝑝(𝜽|ℋ𝑖)𝑖 . Note that the 

implementation of Bayesian inference calls for the evaluation of several, possibly 

intractable integrals that may call for the application of one of the approximation methods 

such as Markov chain or Monte Carlo (MCMC) [45]. 

Chapter 3-4-6: Cross-validation 

 Another method for model selection is cross-validation (CV). The idea behind CV 

is to split the training data set into two disjoint sets, one of which is used for training, and 

the other is used to validate model performance as a proxy for the generalization error. 

Model selection using CV is carried out using the measurement of the generalization 

error. A negative consequence of the holdout method is that only a fraction of the data 

can be used for training, and if the training data set is too small, it can lead to a poor 

generalization performance of the model. 𝐾-fold cross-validation is used to resolve this 

problem. In a 𝑘-fold CV setting, the data is split into 𝑘 disjoint, equally sized subsets. 

Following the split, validation is performed on a single subset and training is done using 

the union of the remaining 𝑘 − 1 subsets. The entire process is repeated 𝑘 times, each 
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time with a different subset for validation. Using the 𝑘-fold CV process, a large fraction 

of the data can be used for training and all cases appear as validation cases. The price for 

the robustness of validation is paid by computational time, because we are training 𝑘 

models instead of one. Typical values of 𝑘 range from 3 to 10, with 10 being the gold 

standard [45]. 

Chapter 3-4-7: Model Selection for GP Classification 

 This subsection deals with the computation of derivatives of the approximate 

marginal likelihood for the Laplace and expectation propagation (EP) method discussed 

earlier. The section also presents algorithms for these cases and discusses the possible use 

of CV for training binary GP classifiers, among other methods. 

 The approximate log marginal likelihood is given by 

 log 𝑞 (𝒚|𝑋, 𝜽) = −
1

2
𝒇̂𝑇𝐾−1𝒇̂ + log 𝑝(𝒚|𝒇̂) −

1

2
log|𝐵|, (112) 

 

where 𝐵 = 𝐼 +𝑊
1

2𝐾𝑊
1

2 and 𝒇̂ is the maximum of the posterior determined using 

Newton’s method, and 𝑊 is the diagonal matrix 𝑊 = −∇∇ log 𝑝(𝒚|𝒇̂). The optimization 

of the approximate marginal likelihood 𝑞(𝒚|𝑋, 𝜽) with respect to the hyperparameters 𝜽. 

To determine the, it is necessary to obtain the partial derivative  𝜕(𝒚|𝑋, 𝜽) 𝜕⁄ 𝜃𝑗 , and with 

the covariance matrix 𝐾, 𝒇̂, and 𝑊 all being a function of the hyperparameters 𝜽, we 

obtain 

 
𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕𝜃𝑗
=
𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕𝜃𝑗
|
𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡

+ ∑
𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕𝑓̂𝑗

𝜕𝑓̂𝑖

𝜕𝜃𝑗

𝑛
𝑖=1 , (113) 
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where 

 
𝜕 log𝑞(𝒚|𝑋,𝜽)

𝜕𝜃𝑗
|
𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡

=
1

2
𝒇̂𝑇𝐾−1

𝜕𝐾

𝜕𝜃𝑗
𝐾−1𝒇̂ −

1

2
𝑡𝑟 ((𝑊−1 + 𝐾)−1

𝜕𝐾

𝜕𝜃𝑗
), (114) 

and where   

 

𝜕 log 𝑞(𝒚|𝑋, 𝜽)

𝜕𝑓𝑖
= −

1

2

𝜕 log|𝐵|

𝜕𝑓𝑖
= −

1

2
𝑡𝑟 ((𝐾−1 +𝑊)−1

𝜕𝑊

𝜕𝑓𝑖̂
)

= −
1

2
[(𝐾−1 +𝑊)−1]𝑖𝑖

𝜕3

𝜕𝑓𝑖
3 log 𝑝(𝒚|𝒇̂), 

(115) 

 

and 

 

𝜕𝒇̂

𝜕𝜃𝑗
=
𝜕𝐾

𝜕𝜃𝑗
∇ log 𝑝(𝒚|𝒇̂) + 𝐾

∇ log 𝑝(𝒚|𝒇̂)

𝜕𝒇̂

𝜕𝒇̂

𝜕𝜃𝑗
 

                            = (𝐼 + 𝐾𝑊)−1
𝜕𝐾

𝜕𝜃𝑗
∇ log 𝑝(𝒚|𝒇̂). 

 

(116) 

Fig. 45 shows the implementation of the GP classification in which the normalizing 

integral is performed using the Laplace approximation technique. Deemed a better 

alternative to the Laplace approximation, EP will be used to analyze MCU upset data. 

Fig. 46 summarizes the implementation of the EP method. 


