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ABSTRACT 

 

 Little research has assessed explore-exploit behavior in addiction using drug cues and 

even fewer studies have measured the neural activity underlying these behaviors. The present 

study aims to explore brain mechanisms of disordered decision-making in alcohol use 

disorder (AUD) through electroencephalography (EEG) during performance of a novelty 

bandit task with alcohol imagery and using a validated computational model of explore-

exploit dynamics. Individuals with AUD (n = 28) and age and sex-matched controls (n = 27) 

showed differences in choice behavior and showed differences in EEG activity as a function 

of exploratory behavior, chosen stimulus type, and explore-exploit computational parameters. 

Individuals with AUD also showed a relationship between self-reported symptom severity 

and exploratory behavior as well as EEG activity and chosen stimulus type. These findings 

indicate that AUD may be characterized by aberrant exploratory behavior that relates to 

markers of functional cortical dynamics. 
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INTRODUCTION 

Alcohol use disorder (AUD) is a substance use disorder (SUD) characterized by an 

impaired ability to stop or decrease alcohol use despite adverse consequences (NIAAA, 

2017) and is one of the most common and debilitating psychological disorders in the world 

(Grant et al., 2015). The Diagnostic and Statistical Manual of Mental Disorders (5th ed.; 

DSM-5; American Psychiatric Association, 2013) defines AUD as meeting at least two of 

eleven criteria during a 12-month period. Criteria for AUD listed in the DSM-5 include the 

inability to control drinking, craving, tolerance, withdrawal, risky behavior, and adverse 

social, occupational, and health consequences. AUD can be classified as mild, moderate, or 

severe depending on how many diagnostic criteria are endorsed.  

 It’s estimated that roughly one third of all adults in the United States will meet 

criteria for AUD at some point in their lives (Grant et al., 2015), while the consequences of 

alcohol use go beyond the diagnosis itself. With an average of over 90,000 deaths per year, 

alcohol ranks as the third leading preventable cause of death in the United States (Esser et al., 

2020) and results in considerable impairment in physical health, mental health, and social 

functioning (Rehm, 2011; Ugochukwu et al., 2013). Adding to the disease burden and in part 

reflecting an inadequate understanding of the disorder, only 7.3% of those diagnosed with 

AUD receive treatment within a year (SAMHSA, 2019). AUD correlates with a number of 

putative risk factors such as genetic polymorphisms, neuroticism, impulsivity, parental loss, 

peer alcohol use, and the prices of alcoholic beverages (Kendler, 2012). The disorder also 

shares significant psychiatric comorbidity with other SUDs, personality disorders, anxiety 

disorders, major depressive disorder, attention-deficit hyperactivity disorder, and post-

traumatic stress disorder (Castillo-Carniglia, Keyes, Hasin, & Cerdá, 2019).  
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Though risk factors and comorbidities have been identified, the etiology of AUD is 

still a matter of ongoing research (Gowin, Sloan, Stangl, Vatsalya & Ramchandani, 2017). 

While continuous exploitation of alcohol’s rewarding properties is clearly at play in AUD, 

there is a period of time in the development of the disorder where exploration must take place 

when alcohol is still novel and its reward value unknown (Bidwell et al., 2015), while 

exploration must also happen when those with AUD have to explore rewarding alternatives 

to unhealthy drinking behavior. The tradeoff between this kind of exploitation and 

exploration is a hallmark computational problem in reinforcement learning (RL) that is 

increasingly relevant to psychiatric research (Addicott, Pearson, Sweitzer, Barack, & Platt, 

2017). The explore-exploit tradeoff is only just beginning to be studied in the context of 

SUDs (Aloi et al., 2021), and measures of this decision-making property may help to 

improve the diagnosis, treatment, and assessment of AUD. 

Computational neuroscience has emerged as a leading framework for leveraging 

mathematical models of normative brain function to better understand the neural 

underpinnings of decision-making problems like the explore-exploit tradeoff. Computational 

approaches can uncover pathological operations underlying motivated decision-making 

revealing what specific deficits drive maladaptive decisions to consume substances despite 

adverse consequences. Better characterization of how SUDs like AUD exhibit irregular 

neuronal computations could contribute to refinement of existing substandard methods of 

classifying and diagnosing AUDs, predicting AUD risk, and for establishing sensitive 

measures of treatment-induced change.  

Though progress has been made in the identification and treatment of AUD, questions 

remain as to optimal methods for screening and classifying alcohol use behavior as 
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pathological and assessing where individuals with an AUD lie along the spectrum of severity 

(Leggio, Kenna, Fenton, Bonenfant, & Swift, 2009; Hagman, 2017; Campbell and 

Strickland, 2019). While used as the gold standard for self-reported severity of AUD, 

questionnaires like the Alcohol Use Disorders Identification Test (AUDIT) (Bush et al., 

1998) have demonstrated variable success as screening tools (Lange, Shield, Monteiro, & 

Rehm, 2019; Moehring et al., 2019). Further complicating the picture, there is evidence that 

AUD is heterogeneous and can be categorized into subtypes (Müller et al., 2020). The 

assessment of AUD fundamentally relies on self-reported symptomatology and is thus 

subject to response bias. Unlike other medical diagnoses, AUD and other psychological 

disorders are outcome-based rather than process-based (Kwako et al., 2016) and there has 

been a concerted effort to use neuroscience to improve SUD nosology for over two decades 

(Charney et al., 2002).  

Neural Correlates of Alcohol Use Disorder 

 In order to best understand how AUD relates to neural signatures of pathological 

decision-making, it’s important to understand how alcohol affects the brain. Ethanol, the 

chemical responsible for the psychoactive effects of alcoholic beverages, interacts with a 

number of ligand-gated ion channels and its potentiation of the gamma-aminobutyric acid 

(GABA)-A receptor is particularly important for the sedative-hypnotic effects that are typical 

of acute alcohol exposure (Koob, 2003). Alcohol affects a variety of neurotransmitters both 

directly and indirectly and meta-analyses show that alcohol users have reduced striatal 

D2/D3 dopamine receptor availability (Kamp et al., 2019). Receptor features of AUD may 

play a role in potential alterations of explore-exploit behavior which is also affected by 
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alterations in dopaminergic functioning (Frank, Doll, Oas-Terpstra, & Moreno, 2009; Costa, 

Tran, Turchi, & Averbeck, 2014; Chakroun, Mathar, Wiehler, Ganzer, & Ganzar, 2020).  

Koob and Volkow (2016) proposed an influential three-stage recurring model of 

addiction that links a series of overlapping and interacting brain circuits that are the targets of 

acute and chronic effects of addictive drugs such as alcohol. During the binge/intoxication 

stage, neutral stimuli gain incentive salience associated with drug availability fostering habit 

formation and drug seeking with associated changes in the basal ganglia. The 

withdrawal/negative affect stage consists of opponent “anti-reward” effects that occur after 

the drug disappears via neuroadaptation in circuits like the extended amygdala. The stage of 

preoccupation/anticipation involves heightened drug cue salience against a backdrop of 

augmented reward thresholds and sensitized stress neurocircuitry which can lead to relapse 

from deficits in executive function as mediated by the prefrontal cortex. Models of explore-

exploit behavior probe neural computations involved in both habit formation and executive 

functions like cognitive flexibility, key processes in Koob and Volkow’s (2016) three-stage 

model.    

 Studies using functional magnetic resonance imaging (fMRI) have been able to parse 

altered neural activity including reliably enhanced activation of ventral striatum, anterior 

cingulate, and ventromedial prefrontal cortex (vmPFC) after exposure to alcohol cues in 

individuals with AUD (Schacht, Anton, & Myrick, 2013). Among those regions that respond 

to alcohol cues, ventral striatal activity is particularly predictive of relapse behavior 

(Courtney et al., 2016). Related reward circuitry is active when comparing heavy to light 

drinkers in areas like the anterior cingulate and insular cortices in response to alcohol cues 

(Ihssen, Cox, Wiggett, Fadardi, & Linden, 2011). Even prior to diagnosis, individuals at-risk 
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for AUD have shown enhanced activation of the nucleus accumbens in response to monetary 

reward cues compared to HCs (Crane et al., 2017).  

Altogether, the fMRI research on AUD has highlighted aberrant activity in a network 

of brain regions implicated in reward responsivity and executive function. Task-related fMRI 

research in AUD has demonstrated altered fronto-striatal connectivity in transitions from 

goal-directed to habitual action that may represent a candidate biomarker for impaired 

decision-making in AUD (Galandra, Basso, Cappa, & Canessa, 2018). However, despite a 

significant literature characterizing brain networks that are relevant to AUD 

symptomatology, fMRI is inadequate to fully characterize the disorder’s neuropathology 

because it is an indirect measure of brain activity. fMRI can’t capture certain 

neurophysiological properties and lacks the temporal resolution at which the brain operates 

during a variety of processes which are relevant to neural activity underlying aberrant 

decision-making. 

Electroencephalography (EEG) Studies of Alcohol Use Disorder 

 Electroencephalography (EEG) is a neuroimaging tool well suited to capture unique 

neurophysiological properties of AUD. Because neurocognitive processes occur over very 

short periods of time spanning from tens of milliseconds (ms) to several seconds, EEG’s high 

temporal resolution allows it to capture the brain’s rapid dynamics (Cohen, 2014). In contrast 

to fMRI, which primarily measure changes in brain hemodynamics, EEG is a direct measure 

of neuroelectric activity and can reveal more of the brain’s distinct physical properties (Pang 

& Robinson, 2018). The brain is an immensely complex system which transfers information 

multidimensionally and EEG data has the added benefit of being at least four-dimensional 

yielding information about time, space, frequency, power (the strength of frequency-specific 
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based activity), and phase (the timing of frequency-specific activity) (Cohen, 2014). The 

event-related potential (ERP) represents a simple and precise measure of EEG signal in the 

time domain with decades of research including in the study of alcohol addiction 

(Pfefferbaum, Horvath, Roth, & Kopell, 1979). 

The P300 (P3) component of the ERP has been specifically implicated in the etiology 

of AUD since it appears to be attenuated in pre-adolescent sons of those with the disorder 

(Begleiter, Porjesz, Bihari, & Kissin, 1984). The P3 family has two subcomponents which 

reflect differentiable psychological processes. The P3a has a mid-frontal topographical 

distribution, responds and habituates rapidly to novel stimuli, and is thought to reflect a top-

down central orienting response (Polich, 2007). The P3b has a more posterior-parietal 

distribution and is thought to relate to context updating (Donchin, 1981) and accumulation of 

evidence leading to a decision (Cavanagh, 2015; Twomey, Murphy, Kelly, & O'Connell, 

2015; Rac-Lubashevsky & Kessler, 2019).  

Both P3 subcomponents play an important role in decision-making suggesting their 

potential role as distinct computational biomarkers in AUD. In a recent meta-analysis on the 

P3 in AUD, Hamidovic & Wang (2019) found that the P3b subcomponent is reduced for 

visual stimuli and auditory stimuli to a lesser degree while findings were mixed for the P3a. 

The authors suggest that the P3a could be representative of alcohol’s neurotoxic effects while 

the P3b corresponds to AUD’s heritability. This assessment comes from findings showing 

that attenuation of the P3a is specifically associated with frontocortical and hippocampal 

damage in AUD (Knight, 1984; 1996) while the P3b relates to AUD’s heritability (Holguin, 

Corral, & Cadaveira, 1998). Because individuals with AUD recover from some of alcohol’s 

neurotoxic effects during abstinence (Nixon & Crews, 2004), the P3 subcomponents could 
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play a role in indexing AUD’s dynamic course and phenotypic variation. In line with the 

notion that P3b reflects AUD heritability, attenuated P3b amplitude during a visual oddball 

task at age 14 predicted drinking behavior at age 17 (Harper, Malone, & Iacono, 2021).  

 EEG research has also made great progress in characterizing the brain’s reward signal 

(Glazer, Kelley, Pornpattananangkul, Mittal, & Nusslock, 2018). There have been mixed 

findings as to whether AUD is generally associated with blunted (Koob, 2011; Aloi et al., 

2020) or enhanced reward responsivity (Bjork, Smith, & Hommer, 2008; van Holst, Clark, 

Veltman, van den Brink, & Goudriaan, 2014; Hixson, Burkhouse, Gorka, & Klumpp, 2019). 

Despite this ambiguity, little research has been done probing the relationship between AUD 

and the reward positivity (RewP), an ERP component elicited by rewards and enhanced 

during better-than-expected feedback (Cavanagh, 2015; Holroyd, Pakzad-Vaezi, & 

Krigolson, 2008). One preliminary study found that AUD seemed to normalize the RewP of 

individuals with internalizing psychopathologies (depressive and anxiety disorders) since 

those without a comorbid AUD showed a blunted RewP compared to those with a comorbid 

AUD (Hixson et al., 2019). Sehrig, Odenwald, & Rockstroh (2021) found that inducing 

craving with visual and olfactory alcohol cues accentuated the RewP and variable decision-

making in a risk-taking task among high-craving participants. Probing the role of the RewP 

in AUD will be crucial for fully characterizing its neuropathology as research has 

increasingly highlighted the role of the RewP in predicting substance use problems (Joyner et 

al., 2019). 

Time-frequency (TF) analysis of EEG captures important multidimensional 

information about the brain which isn’t captured by ERPs. For example, TF data can be 

interpreted in terms of neural oscillations which are a fundamental organizing mechanism 
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from synapses to brain networks across multiple spatial and temporal scales (Varela, 

Lachaux, Rodriguez, & Martinerie, 2001; Cohen, 2014). Some research during resting EEG 

(when participants are not engaged in an experimental task) demonstrates that elevated beta 

band activity (13-30 Hz) may be a risk marker for AUD (Coutin-Churchman, Moreno, Añez, 

& Vergara, 2006; Rangaswamy et al., 2004). One study found that patients with severe AUD 

show attenuated delta (1-4 Hz) and theta band (4-8 Hz) activity at rest that’s associated with 

cortical atrophy measured by structural MRI (Coutin-Churchman et al., 2006). Another found 

that AUD patients have decreased delta band activity at rest over frontopolar regions 

compared to controls and that delta power is modulated by whether patients abstained from 

or relapsed back into alcohol use during treatment (Saletu-Zyhlarz et al., 2004).  

Task-related spectral activity maps onto a number of cognitive domains relevant to 

AUD. During a Go/NoGo task individuals with AUD have shown diminished delta, theta, 

and slow alpha band (8-9.5 Hz) activity during both response execution and inhibition as 

well as diminished fast alpha band (10-12.5 Hz) activity during response inhibition which 

suggests compromised early attentional processing (Pandey et al., 2016). Theta activity along 

the midline frontal cortex in particular has been suggested as an important marker of 

cognitive control (Cavanagh & Frank, 2014) and research suggests that it relates to AUD 

severity during flanker task performance suggesting weakened response conflict resolution 

(Harper, Malone, & Iacono, 2018). 

Based on over half a century of research it is clear that AUD is associated with 

measurable alterations in brain activity. In spite of this, while research in cancer and heart 

disease has uncovered biomarkers that have been used effectively in screening, diagnosis, 

prognosis, monitoring and treatment selection over the past 20 years, psychiatry has yet to 
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uncover remotely comparable indicators of dysfunction for AUD and other psychological 

disorders (Ludwig & Weinstein, 2005; Jaffe, Babuin, & Apple, 2006; Jollans & Whelan, 

2018). This is in large part due to the complexity and heterogeneity of symptom presentation 

in AUD which cannot be captured by standardized self-report measures. By improving our 

understanding of the psychological dimensions of AUD such as complex decision-making, 

we can get closer to a better understanding of the brain mechanisms underlying AUD 

symptomatology.  

Decision-Making in Alcohol Use Disorder 

Many consequences of SUDs result from their deleterious acute and long-term effects 

on cognition and behavior (Kwako, Momenan, Litten, Koob, and Goldman, 2016). In AUD, 

there are associated deficits in response inhibition (Lawrence, Luty, Bogdan, Sahakian, & 

Clark, 2009), delay discounting (Petry, 2001), episodic memory (Noël et al., 2012), working 

memory (Kopera et al., 2012), and cognitive control (Wilcox et al., 2014). Impairments in 

other executive functions are also a feature of AUD and have been found in reward-guided 

decision-making (Beylergil et al., 2017), cue reactivity (DePalma, Ceballos, & Graham, 

2017), attentional bias (Zetteler, Stollery, Weinstein, & Lingford-Hughes, 2006), social 

cognition, and emotional processing (Bora and Zorlu, 2017; Le Berre, 2019). 

The field of computational psychiatry, defined broadly as a mathematical approach to 

assess latent drivers of behavior in psychopathology, has recently made important strides in 

better understanding the precise decision-making aberrations and their neural correlates in 

addiction (Gueguen, Schweitzer, & Konova, 2021). In simple RL paradigms there appear to 

be minimal differences between those with SUDs and HCs (Park et al., 2010; Myers et al., 

2016) and mixed evidence has been found for reduced dopaminergic encoding of reward 
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prediction error (RPE; the difference between expected and received reward) (Chiu, Lohrenz, 

& Montague, 2008; Deserno et al., 2015).  

To better understand how addiction might be characterized by a shift to habitual 

compulsion from goal-directed behavior, ‘model-free’ and ‘model-based’ algorithms have 

been used to map these distinct mechanisms. An imbalance between these systems has been 

demonstrated in AUD (Huys, Deserno, Obermayer, Schlagenhauf, & Heinz, 2016) and has 

been shown to increase with shorter durations of abstinence (Doñamayor, Strelchuk, Baek, 

Banca, & Voon, 2018), though it may only be present after chronic use (Nebe et al., 2018). 

Hogarth (2020) contends that much of the work on habitual behavior in rodent models of 

addiction occurs in decision environments which don’t reflect the complexity present in 

human addiction and contrary to habit theories of addiction, the imbalance between habitual 

and goal-directed behavior in addiction appears to be driven by reduced model-based RL 

rather than resulting from overreliance on model-free decision-making (Sebold et al., 2014; 

Reiter et al., 2016).  

Gueguen, Schweitzer, & Konova (2021) propose a multidimensional and temporally 

dynamic model of computational decision-making which accounts for loss aversion, risk 

tolerance, learning rate, ambiguity tolerance, and model-based/mode-free imbalance. They 

argue that broadening the parameter space of computational decision-making could increase 

fidelity with regard to assessing different addictive substances, stages in the ‘addiction 

cycle’, and clinical subtypes given the heterogeneity problem in psychiatric nosology 

(Konova et al., 2020; Feczko et al., 2019). Moreover, a lack of exploration of potentially 

rewarding activities which serve as an alternative to drinking may be important for AUD. 

Given the multitude of decision-making parameters that could be relevant to AUD, the 
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explore-exploit dilemma represents an understudied dimension of decision-making that 

deserves expanded investigation.  

The Explore-Exploit Tradeoff  

The explore-exploit tradeoff represents a crucial component of reward-guided 

decision-making, wherein individuals choose between exploring options with uncertain 

outcomes or exploiting known outcomes (Addicott et al., 2017). While exploitation may 

maximize near-term reward, the information that is learned during exploration can be used 

later to maximize rewards in the long-term so that a deliberate balance between the two 

strategies is required to optimize performance (Barack & Gold, 2016). The restless multi-

armed bandit task captures this tradeoff and can model flexible, adaptive behavior in 

response to changing stimulus probabilities that ties to motivational neurocircuits (Cavanagh, 

2015; Ebitz, Albarran, & Moore, 2018; Costa, Mitz, & Averbeck, 2019). Importantly, the 

task also taps into model-based directed exploration rather than random exploration driven by 

decision noise (Zajkowski, Kossut, & Wilson, 2017).  

Using Partially Observable Markov Decision Processes (POMDPs), which are useful 

in tasks where the future depends on present choices, has allowed an optimal characterization 

of normative explore-exploit decision-making (Averbeck, 2015). Importantly, the models 

yielded by these frameworks can be parameterized to fit individual behavior (Furl & 

Averbeck, 2011) and can suggest biases or deficits that help specify pathological decision-

making (Averbeck et al., 2013). POMDP modeling provides measures of trial-by-trial 

changes in choice behavior in response to dynamic presentation of information in ways 

which may better capture latent computations of real-world decision-making. Importantly, 

POMDP modeling of bandit task choice behavior has shown preference over alternative RL 
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models in predicting animal behavior (Costa, Mitz, & Averbeck, 2019). There is a body of 

literature assessing explore-exploit processes in addiction. This includes studies of cigarette 

smokers (Addicott et al., 2013), methamphetamine users (Harle et al., 2015), cocaine users 

(Wang et al., 2019), AUD compared to binge eating disorder (Morris et al., 2016), 

individuals with more than one SUD (Smith et al., 2020), and adolescents with AUD or 

cannabis use disorder (Aloi et al., 2021). However, few of these studies have used drug cues, 

few have measured the neural activity of substance users, and none have used predictive 

computational modeling approaches. 

The present study aims to investigate the relationship between neural activity and 

explore-exploit decision-making in response to alcohol cues in AUD vs. controls and along 

the spectrum of severity within AUD. To measure categorical neurobehavioral features of 

AUD, between-group analyses will measure brain responses during explore-exploit behavior 

as a function of whether or not someone has an AUD or is a healthy control using the whole 

sample. Variance along the AUD spectrum will be measured via brain responses during 

bandit performance as a function of AUDIT scores only among individuals who have an 

AUD.  

METHODS 

Inclusion and Exclusion Criteria 

All participants had to be between the ages of 18 and 55 and fluent in English with no 

history of epilepsy or seizure, no neurological impairment or learning disorder, no current 

use of psychoactive medication, and no history of head trauma resulting in loss of 

consciousness for over 5 minutes. Control participants also had to have an AUDIT score of 3 

or below at the time of their participation. AUD participants had to be recruited from 



13 
 

ABQDRINQ (NIH #R01AA025762), a separate study conducted by investigators from the 

UNM Center on Alcoholism, Substance Abuse, and Addictions (CASAA) and the Mind 

Research Network (MRN) to assess neurocognitive patterns associated with changes in the 

drinking behavior of moderate to heavy drinkers. Inclusion criteria for ABQDRINQ included 

self-identity as a heavy/binge/weekly drinker, being right-handed, having used alcohol during 

the 30 days prior to study admission, having an AUDIT score > 8 for men and > 7 for 

women, and explicitly seeking help for their drinking. Additional exclusion criteria for 

ABQDRINQ included being in treatment for AUD during the 6 months prior to admission, 

history of major alcohol withdrawal, and past-year substance dependence other than nicotine 

or cannabis. 

Participants 

30 participants (17 female) were recruited from the ABQDRINQ study for an AUD 

sample. 28 controls (16 female) were recruited from other studies in the Cavanagh lab as well 

as from the community. One control participant was removed due to having an AUDIT score 

that was too high and preliminary data preprocessing revealed two participants whose EEG 

data were compromised, resulting in a final n = 28 (16 female) in the AUD group and n = 27 

(16 female) controls. Table 1 includes descriptive statistics for demographic information 

between groups. Chi-square tests of independence revealed no statistically significant 

differences between groups for sex (p = 0.874), ethnicity (p = 0.933), or race (p = 0.231). 

Independent samples t-tests revealed no statistically significant differences between groups 

for age (p = 0.741) or years of education (p = 0.151). Welch’s unequal variances t-tests 

showed statistically significant group differences for AUDIT (p < .001) and Beck Depression 

Inventory (BDI; Beck, Steer, & Garbin, 1988) scores (p  = 0.023). Across the whole sample, 
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none of these variables were intercorrelated, but within AUD, AUDIT scores correlated with 

BDI (Spearman’s rho = 0.403, p = 0.034) and years of education (Spearman’s rho = 0.454, p 

= 0.015). Though both groups differed by BDI, it was not included in analyses as depressive 

symptoms are a characteristic feature of AUD (Li et al., 2020) and thus shouldn’t be included 

as a covariate (Dennis et al., 2009). 

Table 1 

Group Demographics  

  Control AUD 

N (female)  27 (16)  28 (16)  

 
 

 
 

 
 

Age (SD)  37.7 (10.7)  38.6 (9.43)  

      

Years of 

education (SD) 
 16.1 (2.96)  15 (2.3)  

      

AUDIT (SD)  1.33 (0.92)  10.5 (5.57) 
 

      

BDI (SD)  4.63 (7.69) 11 (12.1)  

     
 

Ethnicity Hispanic: 9  10  

 Non-Hispanic: 17  18  
Race Asian: 3  0  

 African American: 0  0  

 Caucasian: 19  17  
 Native American/Alaskan: 2  5  

 Native Hawaiian/Pacific Islander: 0  0  

 Mixed race: 0  1  

 Other: 2  3  
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Procedure 

For recruitment of some controls, the AUDIT was completed over the phone in 

addition to in lab before participation to ensure individuals’ scores didn’t meet the AUDIT 

exclusion criterion, but in lab AUDIT scores were used for statistical analyses. After arriving 

at the lab and going over and signing a consent form, individuals completed a series of paper 

questionnaires including the AUDIT and BDI. EEG was recorded on a 64-channel Brain 

Vision system (Brain Products GmbH, Munich, Germany) between .01-100 Hz at a sampling 

rate of 500 Hz. Vertical electrooculogram (VEOG) and electrocardiogram (EKG) were used 

to capture ocular and cardiac artifacts and linked mastoid electrodes were used for baseline 

referencing with CPz as an online reference.  

Task 

Participants completed a series of computerized tasks including the three-armed 

bandit task with alcohol and non-alcohol beverage stimuli (Figure 1). The task consisted of 

350 trials in which participants chose between three images that were probabilistically 

associated with a reward. 

Fixation crosses were 

displayed for a variable 

length of time between 

600 and 800 ms 

between trials. Trials 

consisted of three 

peripheral choice 

targets being presented 

600 to  00 ms

Response   100 to 300 ms

delay

Maximum  1 00 ms

1000 ms

1000 ms

Response   100 to 300 ms

delay

Maximum  1 00 ms

 ovel insertio n

Figure 1 

Three-Armed Bandit Task Schematic 
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in the upper, left, or right area pseudo-randomly assigned on each trial (Figure 1). 

Participants had 1500 ms to select one of the three images by pressing one of three face 

buttons on a handheld controller corresponding to the locations of the images. If the 

participant failed to respond in time, a null signal (“ o Response Detected”) would be 

displayed. After their response and a delay between 100 and 300 ms, feedback was provided 

with either a green +1 or a red ~ for 1000 ms. During the experiment, 50 images (split evenly 

between alcohol and non-alcohol stimuli) were introduced which randomly replaced one of 

the existing options with a minimum of 5 trials and a maximum of 9 trials between novel 

insertions (mean number of trials between novel insertions = 6.86, SD = 1.63). At the start of 

the experiment, the three initial choices were randomly assigned a reward probability of 0.2, 

0.5, or 0.8. Novel choice options were also randomly assigned one of these reward 

probabilities when introduced. No more than two of the three options could be assigned the 

same reward probability at a time. Participants were instructed to win as many points as 

possible by choosing the image that rewarded them most often. They were also told about the 

probabilistic nature of the rewards and that the images’ positions did not affect the 

probability of receiving a reward.  

Data Analysis 

To test hypotheses about the neural substrates of explore-exploit behavior in AUD 

these data were modeled as a function of both i) discrete explore-exploit decision events 

surrounding novel stimulus insertions, and ii) continuous changes in latent value parameters 

associated with alcohol and non-alcohol choice options using the well-validated POMDP 

model of explore-exploit behavior (Averbeck, 2015).  
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Computational Modeling 

Optimal explore-exploit decision making was modeled based on estimates of state 

and action values derived from a POMDP. Each trial represents a decision state where state 

value is the value of the option with the highest action value among the three choices and the 

action value is the sum of its immediate expected value (IEV) and future expected value 

(FEV). IEV is an estimate of the likelihood that a given option will be rewarded based on 

prior outcomes, whereas FEV is the sum of potential future rewards. An additional 

parameter, referred to as the exploration BONUS, reflects trial-to-trial changes in exploration 

based on the difference in the FEV of an individual option relative to the average FEV of all 

available options. Figure 2 shows how the POMDP parameters change across trials since 

novel stimuli are introduced to model explore-exploit behavior. IEV increases as the stimulus 

with the highest reward probability is sampled. The BONUS parameter diminishes as novel 

stimuli are explored. POMDP-derived explore-exploit parameters have already demonstrated 

predictive validity for modeling behavior in nonhuman primates (Costa et al., 2019) and in 

humans (Hogeveen et al., 2021).  

EEG Data Preprocessing and Analysis 

All EEG preprocessing was carried 

out in MATLAB and made use of 

EEGlab (Delorme & Makeig, 2004). 

EEG data were epoched at -500 to 1000 

ms relative to stimulus presentation for 

cue-locked data and at -500 to 1000 ms 

relative to feedback stimulus presentation. 

Figure 2 

POMDP Parameters 
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Data were high-pass filtered at 0.1 Hz and independent components analysis was used to 

remove eyeblinks. Bad electrodes and epochs were removed after visual inspection of the 

data and data were averaged referenced. EEG epochs were separated into three categories 

based around the insertion of novel stimuli with pre-insertion, insertion, and post-insertion 

trials being delineated for different analyses. TF measures were derived from custom-written 

MATLAB functions (Cavanagh, Cohen, & Allen, 2009). The fast Fourier transformed (FFT) 

power spectrum of single trial EEG data was multiplied with the FFT spectrum of complex 

Morlet wavelets with the final result representing time on the x-axis (in ms), frequency on the 

y-axis (in Hz), and power represented by a color scale (in decibels) for TF analysis.  

Regions of interest in ERP were selected from electrodes which were closest to 

maximal activation along the midline during conditions or behaviorally relevant contrasts 

between conditions i.e. alcohol minus non-alcohol insertion trials. P3a was selected from 

midfrontal electrodes and P3b was selected from posterior-parietal electrodes and time 

windows for P3 subcomponents were based on the peak of maximum activation between 250 

and 500 ms (Johnson, 1993; Polich, 2007). The RewP was defined as maximal activation 

appearing at around 250 ms over fronto-central sites following rewarding feedback 

(Cavanagh, 2015). The frontal theta region of interest was selected based on maximal 

activation within the approximate theta band range in the time window following cue 

presentation across conditions (Cavanagh & Frank, 2014). Feedback-related TF activity was 

selected based on condition wherein reward-locked TF activity showed the largest amount of 

activity in the delta range and non-reward-locked activity showed the largest amount of 

activity in the theta range, both reflecting prior research on feedback-related oscillatory 

dynamics (Cohen, Elger, & Ranganath, 2007; Knyazev, 2007). 
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Hypotheses 

In the context of a bandit task, the P3a is elicited by novel salient stimuli (Polich, 

2007; Cavanagh, 2015) such as novel insertions. The P3b is elicited by cues with enhanced 

motivational significance (Nieuwenhuis et al., 2005; Cavanagh, 2015) such as cues with 

higher reward probabilities. The RewP is elicited by surprising rewards during feedback after 

participants have made bandit selections (Cavanagh, 2015). Robust linear mixed effects 

models (RLMMS) were used for analysis with predictor variables of interest as fixed effects 

and participant ID as a random effect and were generated using the R package robustlmm. 

An RLMM approach was chosen because it does not make parametric assumptions about 

data structure (besides that model parameters are estimable) and has demonstrated efficiency 

in limiting outlier influence (Koller, 2016).  

Discrete explore-exploit behaviors were measured via participant’s selection of the 

novel option (i.e. exploration), the best alternative (i.e. exploiting the non-novel option with 

highest reward probability), or the worst alternative (i.e. non-novel option with lowest reward 

probability). On the first two trials after a novel insertion, participants are expected to be 

more likely to explore the novel stimulus than to exploit the best alternative option based on 

prior data collected in the Hogeveen lab (Hogeveen et al., 2021). This demonstrates that 

participants learn to explore novel stimuli rather than engaging in random exploration which 

often occurs in bandit tasks that lack novel stimuli (Daw, O’Doherty, Dayan, Seymour, & 

Dolan, 2006; Speekenbrink & Konstantinidis, 2015; Averbeck, 2015).  

It’s hypothesized that those with AUD will demonstrate higher selection of novel and 

best alcohol stimuli than controls and that AUD severity will scale positively with selection 

of best and novel alcohol stimuli within AUD. To test these hypotheses, RLMMs will be run 
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predicting choice probabilities with group for the between groups analysis and AUDIT for 

the within group analysis and chosen cue type as fixed effects. Following main effects 

analyses, interactions between group and cue type and AUDIT and cue type will be run to 

evaluate the potential influence of AUD and severity on choice behavior toward alcohol 

stimuli.  

EEG features are hypothesized to be affected by choice behavior in response to novel 

alcohol cues between groups. The P3a, P3b, and frontal theta activity are hypothesized to be 

increased in AUD in response to alcohol cues relative to controls. Individual RLMMs will be 

run predicting P3a amplitude, P3b amplitude, and frontal theta power, respectively, by an 

interaction between cue type, group, and probability of choosing the novel stimulus. EEG 

features are also hypothesized to increase with selection of novel alcohol cues within AUD as 

a function of AUDIT. To test these hypotheses, individual RLMMS will be run predicting 

P3a amplitude, P3b amplitude, and frontal theta power, respectively, by an interaction 

between cue type, AUDIT, and probability of choosing the novel stimulus. 

Since the BONUS parameter represents a potentially more sensitive measure of 

exploratory behavior, it is also hypothesized to increase and scale positively with EEG 

features toward alcohol cues in AUD relative to. Individual RLMMs will be run predicting 

P3a amplitude, P3b amplitude, and frontal theta power, respectively, with an interaction 

between group, cue type, BONUS and IEV to distinguish explore and exploit decision-

making. Similarly, the BONUS parameter is hypothesized increase in response to alcohol 

cues in conjunction with AUDIT as a function of increased activity of EEG features within 

AUD. Individual RLMMs will be run predicting P3a amplitude, P3b amplitude, and frontal 

theta power by an interaction between AUDIT, cue type, BONUS and IEV.   
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Because aberrant reward sensitivity is a feature of AUD (Hixson et al., 2019), 

feedback-locked activity is also hypothesized to be affected by choice behavior between 

groups. Despite prior evidence showing the RewP doesn’t predict explore-exploit behavior 

(Cavanagh, 2015), the present study aims to investigate the degree to which the RewP and 

feedback-locked delta activity may relate to the potentially more sensitive POMDP 

parameters given the increasing importance of the RewP in SUD research (Joyner et al., 

2019). It’s hypothesized that the RewP and related delta activity are augmented in AUD in as 

a function of BONUS for alcohol cues relative to controls. Individual RLMMs will be run 

predicting RewP amplitude and reward-locked delta activity, respectively, by an interaction 

between group, cue type, and BO US or IEV. It’s also hypothesized that the RewP and 

reward-locked delta activity will increase with BONUS toward alcohol cues along the 

AUDIT spectrum within AUD. Individual RLMMs will be run predicting RewP and reward-

locked delta activity, respsectively, by an interaction between AUDIT, cue type, and BONUS 

or IEV. Similar models will be run on non-reward-locked activity to differentiate specificity 

to the reward signal. 

RESULTS  

Behavioral Data  

On the Alcohol Three-Armed Bandit Task, periodic novel stimulus insertions 

explicitly forced participants to make explore-exploit choices (cf., Costa et al., 2019). 

Therefore, to directly quantify explore-exploit behavior, we computed the choice probability 

of selecting the novel stimulus (exploration) versus the best available alternative 

(exploitation) on the first two trials post-insertion. Participants tended to choose the best 

alternative more often than the novel stimulus (MD = 0.064; t(54) = 2.73, p = 0.008) and 
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tended to choose the novel stimulus more often than the worst stimulus (MD = 0.066; t(54) = 

3.78, p < .001).  

Figure 3 displays the probability of each group selecting a novel stimulus between 

alcohol and non-alcohol stimulus types at each probability of reward across trials since a 

novel insertion. Figure 4 displays probabilities of selecting the novel, best, or worst stimulus 

for each group across trials since a novel insertion. Participants chose the best stimulus more 

often as trials since a novel insertion increased (beta = 0.013, p <.001; Figure 4) 

demonstrating that they learned to exploit the stimulus most likely to offer a reward over 

time. Participants also chose the novel stimulus more often as a function of reward 

probability and trials since a novel insertion (beta = 0.017, p = 0.005 ; Figure 3), 

demonstrating that they learned to explore rewarding novel stimuli over time. Across groups, 

participants showed a preference for exploring novel non-alcohol stimuli (M = 0.355, SD = 

0.138) over alcohol stimuli (M = 0.289, SD = 0.141); t(109) = 3.373, p = 0.001. Figure 5 

shows response times across trials since a novel insertion between groups and cue types. 

Importantly, the probability of exploring the novel stimulus was predicted by an 

interaction between group and cue type (Table 2; beta = 0.202, t = 5.594, p < .001). 

Specifically, those with AUD selected novel alcohol stimuli more often than controls (beta = 

0.136, z = 3.689, p < .001) and controls selected non-alcohol stimuli more often than alcohol 

stimuli (beta = 0.168, z = 6.524, p < .001) (Figure 6). No statistically significant relationships 

were found for probability of selecting the best or worst stimulus between groups. For the 

within AUD analysis, the probability of selecting the best stimulus was positively predicted 

by AUDIT scores (Figure 7; Table 3; beta = 0.008, t = 2.436, p = 0.002), but did not vary as a 

function of cue type, indicating a generalized association between AUD severity and sticking 
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with the best available option. This effect remained after controlling for years of education as 

a fixed effect (beta = 0.009, t = -0.834, p = 0.016), which was correlated with AUDIT within 

AUD (Figure 9). Figure 8 shows the relationship between AUDIT and BDI scores. 

Figure 3  

Novel Choice Behavior by Group and Stimulus Type 

 
Note. The probability of choosing the novel stimulus at each level of reward probability  
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Figure 4 

Explore-Exploit Choice Probabilities Between Groups 

 
Note. Probability of selecting the novel option, the best alternative, or the worst alternative (i.e. the 

non-novel option with the lowest reward probability). 

 

Figure 5 

 

Response Time by Group and Chosen Cue Type 

 
Note. Response time in milliseconds over trials since a novel insertion 
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Table 2  

 

Probability of Choosing the Novel Stimulus Between Groups and Within AUD 

*Main effects and interactions modelled separately 

Between 

groups       

Main effects       

  Effect Estimate SE p     

 Intercept 0.336 0.024 <.001   

 Group 0.034 0.029 0.243   

 Cue type -0.071 0.026 0.009   

Interaction             

 Group*cue type 0.202 0.036 <.001   

Within AUD       

Main effects             

 Intercept 0.26 0.055 <.001   

 AUDIT 0.006 0.005 0.173   

 Cue type 0.036 0.023 0.125   

Interaction             

 AUDIT*cue type -0.001 0.004 0.865   
 

 

Figure 6 

 

Boxplot of Probability of Choosing the Novel Stimulus by Group and Cue Type 

 
Note. Probability of choosing the novel stimulus on insertion and one trial after 
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Table 3  

 

Probability of Choosing the Best Stimulus Between Groups and Within AUD  

Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect Estimate SE p     

 Intercept 0.385 0.023 <.001   

 Group -0.001 0.029 0.975   

 Cue type -0.002 0.02 0.927   

Interaction             

 Group*cue type -0.02 0.035 0.574   

Within AUD       

Main effects             

 Intercept 0.301 0.042 <.001   

 AUDIT 0.008 0.003 0.022   

 Cue type -0.011 0.025 0.658   

Interaction             

 AUDIT*cue type 0.005 0.004 0.303   
 

Figure 7 

 

Within AUD p(best) by AUDIT with Model Fit 
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Figure 8 

 

Relationship Between BDI and AUDIT within AUD 

 
Figure 9 

 

Relationship Between Years of Education and AUDIT within AUD 
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POMDP Data 

For analyses of subject-level POMDP parameter estimates, one control participant 

was removed as an outlier for having a BONUS score that was 8.113 standard deviations 

below the mean. Between groups, BONUS was predicted by an interaction between group 

and cue type (Table 4; beta = 0.126, t = 2.189, p = 0.033). Specifically, AUD had higher 

BONUS values for alcohol stimuli than controls (beta = 0.155, z = 2.285, p = 0.022), 

suggesting that they showed a stronger preference for novel alcohol stimuli, and AUD had 

higher BONUS values for alcohol stimuli than for non-alcohol stimuli (beta = 0.1, z = 2.5, p 

= 0.012), suggesting they showed a preference for alcohol stimuli over non-alcohol stimuli as 

they sampled novel cues (Figure 10). 

Table 4 

 

BONUS Between Groups and Within AUD 

Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect Estimate SE p     

 Intercept -0.184 0.048 <.001   

 Group 0.095 0.063 0.134   

 Cue type 0.045 0.03 0.141   

Interaction             

 Group*cue type 0.126 0.058 0.033   

Within AUD       

Main effects             

 Intercept 0.301 0.042 0.01   

 AUDIT 0.012 0.007 0.005   

 Cue type 0.1 0.032 0.005   

Interaction             

 AUDIT*cue type 0.006 0.006 0.323   
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Figure 10 

 

Boxplot of BONUS by Group and Cue Type 

 

 
 

EEG Data 

Wilcoxon signed-rank tests revealed no significant differences in P3a amplitude 

between pre-insertion and insertion trials (p = 0.747), insertion and post-insertion trials (p = 

0.811), or pre-insertion and post-insertion trials (p = 0.779). P3b amplitude did not correlate 

with probability of choosing the best stimulus (rho = -0.153, p = 0.112) or with IEV (rho = -

0.071, p = 0.46). Rewarding feedback elicited a RewP based on a paired samples t-test 

between feedback amplitude following reward (M = 2.08, SD = 1.07) versus non-reward (M 

= 1.88, SD = 1.14); t(54) = 2.32, p = 0.024.  

 Figures 11-17 show ERP and TF plots with marked regions of interest as well as 

topographical plots. During the first two trials post-insertion, P3a amplitude was predicted by 

a three-way interaction between group, cue type, and probability of choosing the novel 

stimulus (Table 5; beta = 10.814, t = 2.511, p = 0.015). This relationship is driven by the 
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difference between stimulus types in AUD (beta = 5.71, z = 2.371, p = 0.018) with a positive 

relationship between P3a and probability of selecting the novel stimulus for alcohol stimuli 

(beta = 4.715, p = 0.047) (Figure 18). Within AUD frontal theta power at feedback during 

non-reward trials was predicted by an interaction between cue type and AUDIT scores (Table 

5; beta = 0.036, t = 2.493, p = 0.019).  

Figure 11 

 

P3a Region of Interest Across Conditions 
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Figure 12 

 

P3b Region of Interest Across Conditions
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Figure 13 

 

P3a and P3b Topographical Plots  
  

 
Note. The P3a topographical plot is a contrast of alcohol minus non-alcohol insertion trials at 450ms 

post-insertion. Electrode FCz is circled. The P3b topographical is a contrast of alcohol minus non-

alcohol insertion trials at 360ms post-insertion. Electrode POz is circled.  

 

Figure 14  

Cue-Locked TF Region of Interest 

 
Note. TF Plot at electrode FCz. Hz = hertz, ms = milliseconds, dB = decibels 
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Figure 15 

Feedback-Locked ERP Region of Interest                           

 

Figure 16 

 

Topographical Plots at Feedback 

                             
Note. Both topos taken from the trough of ERP N2 component at 360ms. Electrode FCz circled. 
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Figure 17 

 

TF Regions of Interest at Feedback 

 
Note. TF Plot at electrode FCz. Hz = hertz, ms = milliseconds, dB = decibels 
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Table 5 

 

P3a Amplitude by Group or AUDIT, Chosen Cue Type, and Probability of Choosing 

the Novel Stimulus 

Main effects and interactions modelled separately 

Between 

groups       

Main effects       

  Effect Estimate SE p     

 Intercept -4.44 0.662 <.001   

 Group 0.519 0.679 0.448   

 Cue type 0.204 0.243 0.404   

 p(chose novel) 0.747 1.303 0.568   

Interactions             

 Group*cue type -3.219 1.359 0.022   

 Cue type*p(chose novel) -5.106 3.572 0.158   

 Group*p(chose novel) -2.685 3.521 0.448   

 

Group*cue type*p(chose 

novel) 10.81 4.306 0.015   

Within AUD       

Main effects             

 Intercept -4.468 0.96 <.001   

 AUDIT 0.055 0.068 0.431   

 Cue type 0.104 0.303 0.734   

 p(chose novel) 0.92 1.952 0.639   

Interactions             

 AUDIT*cue type 0.248 0.173 0.166   

 Cue type*p(chose novel) 15.09 6.031 0.02   

 AUDIT*p(chose novel) 0.411 0.462 0.378   

 

AUDIT*cue type*p(chose 

novel) -0.725 0.449 0.121   
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Figure 18 

 

P3a Amplitude by Group*Cue Type*p(novel) Scatter Plot 

 

Note. Fit lines are schematic and don’t reflect model estimates shown as beta weights on the 

inlaid bar plot 

 

EEG and POMDP Data 

 

 P3a amplitude was predicted by a three-way interaction between group, cue type, and 

IEV (Table 6; beta = -3.792, t = -2.404, p = 0.019). This relationship was driven by the 

contrast between stimulus types in AUD (beta = 2.52, z = 2.184, p = 0.029), the contrast 

between groups for non-alcohol stimuli (beta = 0.261, z = 0.219, p = 0.017), and a negative 

relationship between IEV and P3a amplitude in controls for non-alcohol stimuli (beta = -

1.927, p = 0.037) (Figure 19). Across groups, cue-locked frontal theta power scaled 

positively with the BONUS parameter (Figure 20; Table 7; beta = 0.661, t = 2.122, p = 

0.037). Other models stipulated in the introduction without statistically significant findings or 

non-hypothesized incidental findings can be found in the appendices. 

 

 

  



37 
 

Table 6 

 

P3a Amplitude by Group or AUDIT, Chosen Cue Type, and POMDP 

Main effects and interactions modelled separately 

Between 

groups       

Main effects       

  Effect Estimate SE p     

 Intercept -3.58 0.665 <.001   

 Group 0.643 0.704 0.365   

 Cue type 0.149 0.216 0.495   

 BONUS -0.276 0.709 0.698   

 IEV -0.864 0.483 0.077   

Interactions             

 Group*cue type 3.645 1.405 0.012   

 Cue type*BONUS -0.465 1.402 0.741   

 Group*BONUS -0.753 2.083 0.719   

 Cue type*IEV 1.275 1.077 0.241   

 Group*IEV 4.054 1.7 0.02   

 

Group*cue 

type*BONUS 0.644 2.196 0.771   

 Group*cue type*IEV -3.792 1.577 0.019   

Within AUD       

Main effects             

 Intercept -4.046 0.95 <.001   

 AUDIT 0.07 0.07 0.329   

 Cue type 0.245 0.321 0.45   

 BONUS -0.956 1.074 0.378   

 IEV -0.495 0.735 0.504   

Interactions             

 AUDIT*cue type 0.269 0.33 0.421   

 Cue type*BONUS -2.188 4.323 0.617   

 AUDIT*BONUS -0.021 0.376 0.955   

 Cue type*IEV -0.797 3.365 0.814   

 AUDIT*IEV 0.408 0.374 0.281   

 

AUDIT*cue 

type*BONUS 0.176 0.356 0.626   

 AUDIT*cue type*IEV -0.243 0.334 0.473   
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Figure 19 

P3a Amplitude Predicted by IEV*Group*Cue Type Scatter Plot 

 

Note. Fit lines are schematic and don’t reflect model estimates shown as beta weights in 

inlaid bar plot 
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Table 7 

 

Cue-Locked Frontal Theta Power by Group or AUDIT, Chosen Cue Type, and 

POMDP  
Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect 

Estimat

e SE p     

 Intercept 1.919 0.273 <.001   

 Group -0.274 0.274 0.323   

 Cue type -0.165 0.098 0.1   

 BONUS 0.661 0.311 0.037   

 IEV 0.215 0.212 0.314   

Interactions             

 Group*cue type -0.248 0.619 0.69   

 Cue type*BONUS 0.636 0.62 0.31   

 Group*BONUS 0.084 0.901 0.926   

 Cue type*IEV -0.246 0.475 0.606   

 Group*IEV -0.522 0.727 0.475   

       

 

 

Group*cue type*BONUS -0.579 0.971 0.554   

 Group*cue type*IEV 0.03 0.693 0.966   
Within AUD       

Main effects             

 Intercept 0.775 0.269 0.007   

 AUDIT 0.02 0.02 0.32   

  Cue type -0.09 0.093 0.342   

 BONUS -0.047 0.309 0.88   

 IEV 0.126 0.211 0.551   

Interactions             

 AUDIT*cue type 0.112 0.089 0.222   

 Cue type*BONUS 0.313 1.168 0.791   

 AUDIT*BONUS 0.024 0.102 0.813   

 Cue type*IEV 1.023 0.91 0.272   

 AUDIT*IEV 0.155 0.101 0.133   

 AUDIT*cue type*BONUS -0.018 0.096 0.851   

 AUDIT*cue type*IEV -0.116 0.09 0.211   
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Figure 20 

Cue-Locked Frontal Theta by BONUS with Model Fit 

 
Note. Scatter plot with model fit from table 8 
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DISCUSSION 

The present study sought to assess the relationship between explore-exploit behavior 

in AUD vs. controls and within AUD according to self-reported severity. As hypothesized, 

group and cue type interacted to predict probability of choosing the novel stimulus. Increased 

selection of novel alcohol stimuli in AUD demonstrates a bias for exploration of alcohol cues 

relative to controls. No group or cue effects on selection of the best stimulus suggests that 

individuals with AUD may over-rely on exploration rather than exploitation of alcohol-

related stimuli.  

Within AUD, AUDIT scores predicted probability of selecting the best stimulus. This 

contradicts a previous finding on AUDIT scores and selection of the best stimulus in the 

novelty bandit (Aloi et al., 2021), though the present study focuses on adults rather than 

adolescents and did not offer a monetary reward. This relationship may also be due to the 

appetitive quality of all stimuli on the task i.e. images of beverages, driving their selection in 

those with more severe AUD symptoms. It also may be related to “stimulus stickiness”, 

which assays choice repetition regardless of reinforcement history (Kanen et al., 2021). This 

may relate to an incidental finding wherein AUDIT scaled with theta power following non-

rewarding feedback (Appendix K). 

P3a amplitude did not differ as a function of whether it occurred on pre-insertion, 

insertion, or post-insertion trials. This may be due to the fact that P3a had a more complex 

relationship with novel stimuli. Between groups, the hypothesis that P3a amplitude would 

increase as a function of probability of selecting the novel stimulus in AUD to alcohol 

stimuli was confirmed. When comparing controls to AUD, exploration of cue types was 

differentiated in AUD with a positive relationship between the P3a and probability of 
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selecting the novel stimulus for alcohol cues. No other group-cue type estimate was 

statistically significant. This finding suggests that the P3a plays a role in executive function 

during exploration of alcohol cues in AUD, capturing attention and signaling the need for 

cognitive control. This relates to findings from the fMRI literature wherein alcohol imagery 

elicits increased vmPFC activation in AUD (Schacht, Anton, & Myrick, 2013) and decision-

making relates to altered vmPFC-striatal connectivity (Galandra, Basso, Cappa, & Canessa, 

2018).     

The BONUS parameter was predicted by an interaction between group and cue type 

which was driven by the difference between cue exploration within AUD. Like the 

probability of choosing novel stimuli, BONUS values for alcohol stimuli were higher for 

AUD than for controls, suggesting that the BONUS parameter accords with measures of 

exploratory behavior in reflecting group and cue interactions. Although P3a amplitude did 

not relate to the BONUS parameter as previously hypothesized, P3a amplitude was predicted 

by an interaction between IEV, group, and cue type as an incidental finding. In AUD relative 

to controls, IEV scaled positively with P3a amplitude for non-alcohol stimuli. Future 

analyses will look at the relationship between liking of these same stimuli measured in 

another task of the experiment to evaluate whether non-alcohol stimuli were particularly 

well-liked and better correlate with IEV. BONUS did positively predict cue-locked frontal 

theta power across groups, though this was not explicitly hypothesized and is thus a post-hoc 

finding. It suggests that cue-locked frontal theta may play a general role in regulating 

exploratory behavior and accords with previous work on its role in novelty detection 

(Cavanagh & Frank, 2014) and metacognitive decision-making in the face of subjective 

uncertainty (Soutschek, Moisa, Ruff, & Tobler, 2021). 
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Future Directions 

Important signal in brain activity and behavior may be lost by averaging across 

particular trials (Stokes & Spaak, 2016) and trial-level analysis is an important potential 

future direction in the analysis of explore-exploit behavior. Instead of modeling subject-level 

POMDP parameters, trial-by-trial estimates could be used to better capture variance which 

takes place after novel insertions. Additionally, by covarying for trends in stimulus liking, 

analyses may yield more specific coordination between brain activity and choice behavior. 

Future iterations of the present study may use neutral cues in addition to non-alcohol 

beverages to contrast potential liking effects. Follow-up analyses may also model stimulus 

stickiness to assess the behavioral pattern underlying the relationship between AUDIT scores 

and probability of selecting the best stimulus (Robbins & Cardinal, 2019). 

 In addition to cue liking, other sources of data are available for follow-up analysis on 

the present dataset. In particular, information from the ABQDRINQ study indicates whether 

or not participants went forward with treatment. This could represent an important individual 

difference for neurobehavioral characteristics since treatment-seeking status can produce 

clinically significant effects (Prisciandaro et al., 2016). Additionally, because present AUDIT 

measurements were taken at one timepoint, they are potentially less sensitive to overall AUD 

severity during the 12-month period that is stipulated for diagnosis of an AUD. The 

ABQDRINQ study followed participants for a year prior to their participation in the present 

study and recorded AUDIT scores at various timepoints. Cumulative AUDIT scores and 

variability over time could be an improved marker of within AUD severity. Correlations 

between BDI and years of education represent potential sources of heterogeneity and 

although including years of education didn’t change the AUDIT-behavior relationship, 
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follow-up research may need to account for these within-group correlations in more complex 

analyses. 

Conclusion 

 A clear difference in performance on the novelty bandit task was demonstrated 

between those with AUD and controls for alcohol vs. non-alcohol stimuli both in terms of 

raw behavior and POMDP model parameters of behavior. This alone represents an important 

contribution to our understanding of explore-exploit behavior in addiction by showing the 

influence of substance-related cues in driving exploration rather than habitual exploitation as 

has been the primary finding of the literature on explore-exploit process in addiction thus far. 

Several EEG features were predicted from group, severity, choice behavior, and cue type in 

ways which accord with prior research and in ways which suggest a more nuanced 

relationship between brain dynamics in explore-exploit in AUD and the need for follow-up 

analyses. Further spectral decomposition and phase synchronization analyses of these 

findings could better explain these neural dynamics and their mechanistic role in altering 

decision-making in AUD. This study indicates the need for further evaluation of potential 

EEG biomarkers of AUD which are sensitive to the aberrations in dynamic exploration that 

characterize the disorder. 
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APPENDIX A 

 

P3 Subcomponents by Group or AUDIT and Chosen Cue Type 

 

P3a Amplitude by Group or AUDIT and Chosen Cue Type   

Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect Estimate SE p     

 Intercept -4.19 0.494 <.001   

 Group 0.533 0.674 0.432   

 Cue type 0.147 0.225 0.517   

Interaction             

 Group*cue type 0.065 0.454 0.886   
Within AUD       

Main effects             

 Intercept -4.286 0.816 <.001   

 AUDIT 0.067 0.068 0.3218   

 Cue type 0.139 0.282 0.627   

Interaction             

 AUDIT*cue type 0.02 0.052 0.705   
 

P3b Amplitude by Group or AUDIT and Chosen Cue Type   

Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect Estimate SE p     

 Intercept 3.875 0.453 <.001   

 Group -0.882 0.622 0.162   

 Cue type 0.056 0.182 0.762   

Interaction             

 Group*cue type -0.156 0.367 0.672   
Within AUD       

Main effects             

 Intercept 3.716 0.854 <.001   

 AUDIT -0.069 0.072 0.345   

 Cue type -0.024 0.225 0.915   

Interaction             

 AUDIT*cue type -0.071 0.038 0.075   
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APPENDIX B 

 

Cue-Locked Frontal Theta by Group or AUDIT and Chosen Cue Type 

Main effects and interactions modelled separately 

Between groups     

Main effects     

  Effect Estimate SE p 

 Intercept 1.902 0.21 <.001 

 Group -0.15 0.286 0.602 

 Cue type -0.105 0.098 0.289 

Interaction         

 Group*cue type -0.075 0.197 0.706 

Within AUD     

Main effects         

 Intercept 1.01 0.372 0.011 

 AUDIT 0.076 0.269 0.021 

 Cue type -0.134 0.125 0.012 

Interaction         

 AUDIT*cue type -0.028 0.023 0.224 
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APPENDIX C 

 

P3b Amplitude by Group or AUDIT, Chosen Cue Type, and Probability of Choosing 

the Novel Stimulus 

Main effects and interactions modelled separately 

Between 

groups     

Main effects     

  Effect Estimate SE p 

 Intercept 3.755 0.581 <.001 

 Group -0.89 0.624 0.16 

 Cue type 0.079 0.198 0.692 

 p(chose novel) 0.355 1.082 0.743 

Interactions         

 Group*cue type 0.207 1.155 0.859 

 Cue type*p(chose novel) -2.869 3.039 0.349 

 Group*p(chose novel) 3.596 3.024 0.238 

 Group*cue type*p(chose novel) -0.7 3.662 0.849 

Within AUD     

Main effects         

 Intercept 3.108 0.975 0.003 

 AUDIT -0.08 0.073 0.28 

 Cue type -0.097 0.248 0.7 

 p(chose novel) 2.321 1.753 0.192 

Interactions         

 AUDIT*cue type 0.009 0.121 0.939 

 Cue type*p(chose novel) -1.299 4.218 0.761 

 AUDIT*p(chose novel) 0.123 0.369 0.742 

 

AUDIT*cue type*p(chose 

novel) -0.15 0.314 0.636 
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APPENDIX D 

 

Cue-Locked Frontal Theta Power by Group or AUDIT, Chosen Cue Type, and 

Probability of Choosing the Novel Stimulus 

Main effects and interactions modelled separately 

Between 

groups       

Main effects       

  Effect Estimate SE p     

 Intercept 1.723 0.281 <.001   

 Group -0.168 0.286 0.56   

 Cue type -0.075 0.105 0.475   

 p(chose novel) 0.531 0.56 0.346   

Interactions             

 Group*cue type 0.111 0.618 0.858   

 Cue type*p(chose novel) 2.592 1.621 0.115   

 Group*p(chose novel) -0.938 1.572 0.553   

 Group*cue type*p(chose novel) -1.834 1.956 0.353   

Within AUD       

Main effects             

 Intercept 1.013 0.438 0.027   

 AUDIT 0.075 0.032 0.025   

 Cue type -0.134 0.129 0.307   

 p(chose novel) -0.004 0.86 0.996   

Interactions             

 AUDIT*cue type -0.056 0.071 0.433   

 Cue type*p(chose novel) 0.44 2.463 0.86   

 AUDIT*p(chose novel) 0.153 0.2 0.451   

 AUDIT*cue type*p(chose novel) 0.049 0.183 0.79   
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APPENDIX E 

 

Feedback-Locked ERPs by Group or AUDIT and Chosen Cue Type 

 

Reward Amplitude by Group or AUDIT and Chosen Cue Type 

Main effects and interactions modelled separately 

Between groups     

Main effects     

  Effect Estimate SE p 

 Intercept 1.928 0.211 <.001 

 Group 0.283 0.29 0.334 

 Cue type -0.097 0.087 0.268 

Interaction         

 Group*cue type 0.187 0.18 0.305 

Within AUD     

Main effects         

 Intercept 2.191 0.427 <.001 

 AUDIT -0.002 0.036 0.96 

 Cue type -0.019 0.095 0.847 

Interaction         

 AUDIT*cue type 0.005 0.018 0.771 

 

 

Non-Reward Amplitude by Group or AUDIT and Chosen Cue Type   

Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect Estimate SE p     

 Intercept 1.646 0.236 <.001   

 Group 0.509 0.325 0.124   

 Cue type -0.163 0.091 0.078   
Interaction             

 Group*cue type -0.033 0.182 0.855   

Within AUD       

Main effects             

 Intercept 1.858 0.47 <.001   

 AUDIT 0.029 0.04 0.467   

 Cue type -0.179 0.11 0.116   
Interaction             

 AUDIT*cue type -0.008 0.021 0.712   
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APPENDIX F 

Feedback-Locked TF Power by Group or AUDIT and Chosen Cue Type 

Reward TF Power by Group or AUDIT and Chosen Cue Type   

Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect Estimate SE p     

 Intercept 1.479 0.254 <.001   

 Group 0.031 0.352 0.929   

 Cue type 0.072 0.073 0.33   

Interaction             

 Group*cue type -0.238 0.142 0.098   

Within AUD       

Main effects             

 Intercept 1.465 0.506 0.008   

 AUDIT 0.009 0.043 0.84   

 Cue type -0.039 0.087 0.661   

Interaction             

 AUDIT*cue type 0.017 0.015 0.273   
 

 

Non-Reward TF Power by Group or AUDIT and Chosen Cue Type  
Main effects and interactions modelled separately 

Between groups      

Main effects      

  Effect Estimate SE p   

 Intercept 1.664 0.185 <.001  

 Group -0.329 0.255 0.203  

 Cue type 0.055 0.062 0.381  
Interaction           

 Group*cue type -0.089 0.122 0.473  
Within AUD      

Main effects           

 Intercept 0.512 0.303 0.103  

 AUDIT 0.082 0.025 0.003  

 Cue type 0.012 0.079 0.88  
Interaction           

 AUDIT*cue type 0.029 0.013 0.038  
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APPENDIX G 

 

P3b Amplitude by Group or AUDIT, Chosen Cue Type, and POMDP   

Main effects and interactions modelled separately 

Between groups       

Main effects       

  Effect 

Estimat

e SE p     

 Intercept 3.69 0.583 <.001   

 Group -0.778 -0.623 0.217   

 Cue type 0.004 0.186 0.985   

 BONUS 0.088 0.614 0.886   

 IEV 0.125 0.419 0.766   

Interactions           

 Group*cue type -1.514 1.141 0.19   

 Cue type*BONUS -0.038 1.137 0.974   

 Group*BONUS 1.233 1.704 0.472   

 Cue type*IEV -1.297 0.874 0.144   

 Group*IEV -0.654 1.402 0.642   

 Group*cue type*BONUS -1.93 1.781 0.284   

 Group*cue type*IEV 1.397 1.282 0.281   

Within AUD       

Main effects             

 Intercept 3.416 0.998 0.002   

 AUDIT -0.074 0.077 0.342   

 Cue type -0.099 0.26 0.705   

 BONUS 0.219 0.917 0.812   

 IEV 0.482 0.65 0.463   

Interactions             

 AUDIT*cue type 0.145 0.219 0.512   

 Cue type*BONUS 0.322 2.754 0.908   

 AUDIT*BONUS 0.165 0.283 0.561   

 Cue type*IEV 2.856 2.206 0.208   

 AUDIT*IEV 0.331 0.275 0.236   

 AUDIT*cue type*BONUS -0.112 0.227 0.626   

 AUDIT*cue type*IEV -0.242 0.222 0.286   
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APPENDIX H 

 

Reward Amplitude by Group or AUDIT, Chosen Cue Type, and POMDP 

Parameters   

Main effects and interactions modelled separately           

Between groups       

Main effects       

  Effect 

Estimat

e SE p     

 Intercept 2.02 0.269 <.001   

 Group 0.189 0.284 0.51   

 Cue type -0.078 0.087 0.376   

 BONUS 0.054 0.287 0.85   

 IEV 0.003 0.195 0.987   

Interactions             

 Group*cue type 0.749 0.544 0.175   

 Cue type*BONUS -1.149 0.543 0.04   

 Group*BONUS 0.132 0.811 0.871   

 Cue type*IEV 0.306 0.417 0.466   

 Group*IEV -0.507 0.666 0.448   

 Group*cue type*BONUS 1.581 0.85 0.687   

 Group*cue type*IEV -0.342 0.612 0.578   

Within AUD       

Main effects             

 Intercept 2.466 0.479 <.001   

 AUDIT -0.001 0.037 0.979   

 Cue type -0.031 0.111 0.783   

 BONUS 0.316 0.399 0.433   

 IEV -0.286 0.286 0.323   

Interactions             

 AUDIT*cue type 0.019 0.114 0.868   

 Cue type*BONUS -0.74 1.426 0.608   

 AUDIT*BONUS 0.007 0.149 0.962   

 Cue type*IEV 0.084 1.145 0.942   

 AUDIT*IEV 0.065 0.144 0.655   

 AUDIT*cue type*BONUS 0.104 0.117 0.386   

 AUDIT*cue type*IEV -0.021 0.115 0.854   
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APPENDIX I 

 

Non-Reward Amplitude by Group or AUDIT, Chosen Cue Type, and POMDP 

Parameters 

Main effects and interactions modelled separately         

Between groups      

Main effects      

  Effect Estimate SE p   

 Intercept 1.587 0.295 <.001  

 Group 0.456 0.316 0.155  

 Cue type -0.175 0.093 0.068  

 BONUS -0.151 0.309 0.625  

 IEV 0.12 0.21 0.569  

Interactions           

 Group*cue type 0.645 0.585 0.276  

 Cue type*BONUS -0.034 0.583 0.953  

 Group*BONUS -0.593 0.874 0.5  

 Cue type*IEV 0.807 0.448 0.078  

 Group*IEV 0.214 0.719 0.767  

 Group*cue type*BONUS -0.122 0.914 0.895  

 Group*cue type*IEV -0.667 0.658 0.315  
Within AUD      

Main effects           

 Intercept 1.741 0.501 0.001  

 AUDIT 0.034 0.039 0.389  

 Cue type -0.113 0.13 0.393  

 BONUS -0.581 0.46 0.215  

 IEV -0.015 0.326 0.962  

Interactions           

 AUDIT*cue type -0.023 0.134 0.867  

 Cue type*BONUS 1.19 1.7 0.491  

 AUDIT*BONUS 0.132 0.168 0.437  

 Cue type*IEV 0.195 1.351 0.887  

 AUDIT*IEV -0.079 0.165 0.632  

 AUDIT*cue type*BONUS -0.115 0.14 0.423  

 AUDIT*cue type*IEV 0.018 0.136 0.896  
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APPENDIX J 

 

Reward TF Power by Group or AUDIT, Chosen Cue Type, and POMDP  
Main effects and interactions modelled separately         

Between groups      

Main effects      

  Effect Estimate SE p   

 Intercept 1.491 0.292 <.001  

 Group -0.018 0.347 0.958  

 Cue type 0.062 0.071 0.389  

 BONUS -0.257 0.248 0.303  

 IEV 0.034 0.169 0.839  

Interactions           

 Group*cue type 0.133 0.418 0.751  

 Cue type*BONUS 0.122 0.413 0.769  

 Group*BONUS 0.047 0.644 0.943  

 Cue type*IEV 0.306 0.319 0.342  

 Group*IEV -0.069 0.552 0.901  

 Group*cue type*BONUS -0.883 0.647 0.179  

 Group*cue type*IEV -0.402 0.473 0.399  
Within AUD      

Main effects           

 Intercept 1.462 0.545 0.012  

 AUDIT 0.016 0.04 0.722  

 Cue type 0.034 0.102 0.742  

 BONUS -0.495 0.374 0.195  

 IEV -0.149 0.273 0.588  

Interactions           

 AUDIT*cue type 0.051 0.087 0.56  

 Cue type*BONUS -0.728 1.045 0.495  

 AUDIT*BONUS 0.001 0.123 0.992  

 Cue type*IEV -0.046 0.862 0.958  

 AUDIT*IEV 0.074 0.116 0.532  

 AUDIT*cue type*BONUS -0.025 0.086 0.775  

 AUDIT*cue type*IEV -0.023 0.088 0.795  
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APPENDIX K 

 

Non-Reward TF Power by Group or AUDIT, Chosen Cue Type, and POMDP 

Main effects and interactions modelled separately       

Between groups     

Main effects     

  Effect Estimate SE p 

 Intercept 1.7 0.222 <.001 

 Group -0.387 0.25 0.128 

 Cue type 0.037 0.063 0.557 

 BONUS 0.044 0.214 0.837 

 IEV 0.044 0.147 0.765 

Interactions         

 Group*cue type -0.333 0.366 0.366 

 Cue type*BONUS -0.32 0.362 0.381 

 Group*BONUS 0.516 0.558 0.359 

 Cue type*IEV -0.251 0.279 0.373 

 Group*IEV 0.165 0.471 0.723 

 Group*cue type*BONUS 0.719 0.568 0.212 

 Group*cue type*IEV 0.32 0.412 0.442 

Within AUD     

Main effects         

 Intercept 0.457 0.353 0.204 

 AUDIT 0.074 0.028 0.011 

 Cue type -0.067 0.087 0.451 

 BONUS 0.527 0.31 0.099 

 IEV 0.257 0.221 0.252 

Interactions         

 AUDIT*cue type 0.002 0.086 0.984 

 Cue type*BONUS -0.066 1.081 0.952 

 AUDIT*BONUS 0.024 0.111 0.832 

 Cue type*IEV -0.298 0.866 0.812 

 AUDIT*IEV -0.035 0.108 0.749 

 AUDIT*cue type*BONUS 0.019 0.089 0.829 

 AUDIT*cue type*IEV 0.023 0.087 0.783 
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