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Fig. 1.  The functional pathway for GVS.  Electrodes are attached to the mastoid process 

behind the ear.  Stimulation of the vestibular nerve excites a neural pathway that leads to 

the PIVC.  Image obtained from [10]. 
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1.3 Manual Tracking Tasks 

 Manual tracking tasks are present in almost every facet of everyday life.  For 

example, simple tasks such manipulating a mouse on a computer or driving a car involve 

motor control response to visual stimuli.  In fact, some of the earliest research in manual 

tracking was conducted as aircraft pilot research.  Mathematically these tasks can be 

modeled as feedback control systems.  If the reference trajectory is known beforehand, then 

the model becomes a feedforward system as subjects use precognition to anticipate the 

output [13].  In certain experiments, disturbance rejection can also be assessed by adding 

a disturbance signal the subject is required to reject.   

 In a manual tracking experiment model, the input is usually a reference the subject 

is supposed to track using an input device such as a wheel or joystick.  The objective is to 

match the position of the reference object with another object whose position changes from 

manipulation of the input device.  Hence, the input of the feedback control system is the 

position of the reference object and the output is the position of the controlled object.  

Feedback occurs when the subject corrects the position of the output to match the trajectory 

of the reference.  Different variants of the task will provide different reference trajectories 

or additive noise components.  Some experiments have utilized reference signals composed 

of a summation of sine functions at various frequencies while others have used chirps or a 

3-D reference target that required subjects to track a single fixed point. 

 The reference trajectory is often programed using a function generator. Recently, 

software programs such as MATLAB are used to create the reference. Data collection is 

also often performed in the same software program used to generate the reference signal.  
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Programs such as MATLAB are versatile enough to perform the experiment, collect data, 

and perform analysis of the data.  Analysis of the data often requires system identification 

techniques to analyze performance of the manual tracking task [7][8]. 

 

1.4 System Identification  

 Determining parameters of the feedback control system in a manual tracking task 

is critical to assessing performance of the subject.  Depending on the form of the reference 

input, several varieties of system identification may be used.  When the reference input is 

sinusoidal in nature, frequency domain techniques can illicit performance differences 

between subjects and conditions.  Some research has focused on modeling the feedback 

control system as a second order LTI system [13].   This research identified statistically 

significant differences in damping ratios and natural frequencies between control and PD 

populations in task that switched controller sensitivity in 30-second intervals.  This study 

also used multiple model adaptive estimation to determine when subjects determined the 

switch in controller sensitivity. 

 Various methods of linear regression are also used to assess performance through 

system identification.  Two techniques used in a study which I co-authored, were linear 

discriminant analysis and multivariate linear regression.  In this study, GVS was applied to 

a set of manual tracking tasks performed by both a control group and set of PD patients.  

The PD patients performed the task both before and after a fast acting does of L-Dopa was 

administered.  The coefficients identified in the resulting linear regression were statistically 

significant across the different subject populations [7].  Identifying and comparing both 
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LTI parameters and regression coefficients from different trials can be useful in 

determining differences between subject groups in a manual tracking task experiment.  

However there are other frequency based techniques that can be used to discriminate 

performance if the objective is not necessarily to determine parameters of the model but 

rather distinguish differences in the output of each trail by using time series analysis. 

 

1.5 Contribution 

 As stated previously, assessing performance across multiple groups in manual 

tracking tasks performed by PD patients has focused on determining the parameters of the 

black box of visuomotor dynamics that performs a the task.  These parameters are then 

compared across subject populations in order to determine if any statistical differences are 

present.  This type of analysis can be helpful for research that focuses on creating models 

designed to predict future performance under different conditions.  It has also shown to be 

helpful in experiments where parameters of the task are varied to produce a hybrid control 

environment.  In this case, the subject may utilize different black boxes of control dynamics 

depending on a set of varying parameters, or modes, used in a particular duration of time 

in the experiment [14].  

 An in depth review of the research in the use of GVS in manual tracking tasks 

performed by PD patients has shown a lack of time series analysis performed on the output 

of the task in reference to the input.  In tasks where a sum of sines input is used, the 

visuomotor dynamics of the subject performing the task transforms the input to an output 

that contains the same frequency content as the input from the tracking as well as additive 
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noise.  The output also lags the input because of processing delay that occurs in visuomotor 

feedback loop.  The additive noise is the direct result of what could be called sub 

movements.  These sub movements occur when a subject deviating from the smooth 

tracking of the target either through an involuntary movement or a voluntary movement 

designed to reacquire tracking of the input through a corrective action.  Often these 

involuntary movements are the result of an unintended overshoot of the tracking objective.  

The input and output of a manual tracking experiment, as well as identified sub movements 

can be seen in figure 2. 

 

Fig. 2.  An example of input and output data from a manual tracking task with a reference 

input signal consisting of a sum of two sine waves at different amplitudes and frequencies.  

The blue line is the reference trajectory and the red line is the output trajectory.  The two 

classes of sub movements are indicated on the graph.  This particular task is from the 

switching manual task described above.  The parameters for this particular portion of the 

experiment result in the controller becoming less sensitive, requiring more effort on the 

part of the subject to perform the tracking. 

 

 The voluntary correction usually leads into an involuntary overshoot.  The 

magnitude of the overshoot displays a degree of randomness, which in turn leads to 

randomness in the magnitude of the correction.  This consistent oscillation between 

overshoot and correction leads to the presence of high frequency noise in the output signal.  
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The power associated with the high frequency noise is an indicator of how well a subject 

performed the task of tracking the reference input.  If a subject has relatively low power in 

the range of frequencies that are higher than the input, then the subject will have performed 

the tracking well.  The magnitude of the overshoots and corrections will be lower resulting 

in a better overall tracking of the signal.  The analysis I performed on this data compared 

the total signal power of a trial under the influence of GVS versus a trial where GVS was 

turned off.  This had the effect of eliciting performance differences between the two 

populations. 

 In PD patients, several of the motor symptoms, including tremor and bradykinesia, 

can exacerbate sub movements in manual tracking tasks.  When studying the effects of 

potential treatments, such as GVS, my analysis of output signal power is useful as 

preliminary measure of performance that does not require significant additional 

preprocessing and can be applied across a variety of manual tracking tasks involving PD 

patients.  The paper that included an analysis based on my method utilized the previously 

discussed switching manual tracking task [7].  It was performed on data obtained from the 

reduced controller sensitivity mode which is the result of increasing the tracking error 

between the input and output while the task is being performed.  The increased tracking 

error amplifies sub movements and allows for better differentiation of output signal power 

relative to the other mode in which the tracking error is reduced.  Reduction in error reduces 

the magnitude and number of sub movements in the experiment interval. 

 My analysis determined the use of GVS during manual tracking tasks lowers output 

signal power on PD patients performing the task.  The output signal power for the 

population performing task while GVS is on was significantly lower (p < 0.05) than the 
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output signal power for the population performing the task while GVS was off.  This 

analysis and the results were included in the following publication: 

 S. Lee, D. Kim, D. Svenkeson, G. Parras, G., M Oishi, M. McKeown, 

“Multifaceted effects of noisy galvanic vestibular stimulation on manual tracking 

behavior in Parkinson’s disease,” Frontiers in Systems Neuroscience, vol. 9, pp. 

5, 2015.  http://journal.frontiersin.org/article/10.3389/fnsys.2015.00005/full 

 

The signal power difference between the GVS off and GVS on condition is an additional 

strong indicator that GVS improved performance and may reduce the severity of motor 

symptoms in PD patients.  This could lead to tremendous increases in quality of life through 

the non-invasive treatment that is GVS.  This treatment is preferable to the complications 

that can arise with prolonged L-Dopa regimens or the invasiveness involved with deep 

brain stimulation. 

 

 

 

 

 

 

 

 

 

 

http://journal.frontiersin.org/article/10.3389/fnsys.2015.00005/full
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Chapter 2 

Frequency Based System Identification 

 

2.1 Advantages and Disadvantages of Frequency Based System 

Identification 
 

 Frequency domain analysis is useful in determining the parameters that define an 

LTI system.  If the input and output of a system are known and the input of the system 

contains uniform frequency content throughout the spectrum, then an accurate 

representation of the system can be determined.  Frequency domain analysis has the 

advantage of being near absolute in terms of defining a system.  However, the presence of 

Gibbs phenomena associated with real world digital signals does lead to spectral leakage, 

which can affect accuracy of system identification in the frequency domain.  Use of 

windowing functions with overlap can minimize spectral leakage and increase the accuracy 

of the system. 

 Another advantage of frequency based system identification is the ease through 

which in can be implemented.  The context of the application can dictate the parameters 

used in a specified method, such as Welch’s method [15] or the Blackmon-Tukey method.  

In other system identification methods, there can be a significant amount of trial and error 

to find the model that best fits the data.  In a linear regression based model, the number and 

value of coefficients must be predetermined before the regression is run.  Bootstrapping 

can also be used to add robustness to the model but requires additional effort [7].  In state 

space identification models, the order of the system that leads to most accurate model often 
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has to be determined through trial and error.  Algorithm choice also plays a key role in 

determining the best-fit model. 

 One of the primary disadvantages of frequency based system identification in the 

context of manual tracking is lack of frequency content in the input.  The biological 

restrictions of the visuomotor system prohibit tracking of high frequency inputs, as the 

average human response time to visual stimuli young, healthy individuals is approximately 

0.25s or 4 Hz [16].  The average response time is most likely greater for PD patients.  Most 

manual tracking experiments do not have reference inputs with frequency content higher 

than 1 Hz for this reason.  In addition, muscle fatigue prevents tracking of high frequency 

signals for long periods.  In an LTI system, input of a range of frequencies is required to 

obtain a model.  However sum of sines inputs often have less than nine sinusoids of varying 

frequencies, an assumption I make based on my literature survey.  This leads to significant 

gaps in frequency content.  Even if a model is sought that would only be valid between 0 

and 1 Hz, there is too little frequency content in the input for the model to be valid.  

Nonetheless, frequency based system identification techniques can be used to extract useful 

information from the input and output signals. 

 

2.2 Methodology 

 The methodology I use evaluate the effectiveness of GVS at increasing 

performance in a manual tracking task utilizes Welch’s method for estimating the power 

spectral density (PSD) of a signal [15].  Once the PSD of both the input and the output are 

estimated, I calculate the total power by integrating over its length.  The difference in 
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output signal power between trials with GVS and trials without indicates the effectiveness 

of GVS at increasing tracking performance.   

 Welch’s method requires an analyzed stochastic signal meet the conditions of 

stationarity [15].  In the case of manual tracking experiments, a subject’s performance is 

not likely to deviate over a short period of time resulting in fixed mean and variance for 

the magnitude of sub movements.   If the experiment required tracking effort over an 

extended period of time than what would be considered normal for everyday life, 

performance would likely deviate and sub movements would increase in magnitude as the 

experiment progresses.  This would violate stationarity as the mean and variance of sub 

movements would change as a function of time.    Therefore, I make the assumption that 

the output is a stationary signal for a short time manual tracking task.  The input is not 

stochastic and can be analyzed without restriction. I will now show how Welch’s method 

can be utilized to estimate the power spectral density (PSD) of the input and output signal.   

 Assume 𝑈[𝑘], 𝑘 =  0, 1, … , 𝐾 − 1 is the input to a manual tracking experiment of 

length K and 𝑌[𝑘], 𝑘 =  0, 1, … , 𝐾 − 1 is the stationary output of a manual tracking 

experiment of length 𝐾.  Also assume the DC gain has been removed from both the input 

and the output such that 𝐸[𝑈]  =  𝐸[𝑌]  =  0.  The first step in Welch’s method segments 

the full length of the signal into N segments that are D units apart and with length L. Hence, 

𝑈1 = 𝑈[𝑘]                                                 𝑘 = 0, 1, … , 𝐿 − 1 

𝑈2 = 𝑈[𝑘 + 𝐷]                                        𝑘 = 0, 1, … , 𝐿 − 1 

and finally  

𝑈𝑁 = 𝑈[𝑘 + (𝑁 − 1)𝐷]                        𝑘 = 0, 1, … , 𝐿 − 1 
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 If D < L, the segments are said to overlap.  The percentage of overlap, OL, is defined 

as 

𝑂𝐿 =  
(𝐿 − 𝐷)

𝐿
 

Each segment is then multiplied by a windowing function of length L, and the Discrete 

Fourier Transform (DFT) of each segment is taken.  The windowing function is defined as 

𝑊[𝑘], 𝑘 =  0, 1, …  𝐿 − 1.  The sequence of DFTs, 𝑈𝑛(𝑓) is defined as: 

𝑈𝑛(𝑓) =  
1

𝐿
∑ 𝑈𝑛[𝑘]

𝐿−1

𝑘=0

𝑊[𝑘]𝑒−
𝑗2𝜋𝑓𝑘

𝐿                𝑛 = 1, 2, … , 𝑁 

The sequence of periodograms for the sequence of DFTs is: 

𝐼𝑛(𝑓) =  
𝐿2

∑ 𝑊2[𝑘]𝐿−1
𝑘

|𝑈𝑛(𝑓)|2                     𝑛 = 1, 2, … , 𝑁 

Where 

𝑓 =  
𝑓

𝐿
              𝑓 = 0, … ,

𝐿

2
 

The final estimate is of the power spectral density is: 

𝑆𝑈𝑈(𝑓) =  
1

𝑁
∑ 𝐼𝑛(𝑓)

𝑁−1

𝑛

 

The estimate of the PSD for the input function is an average of the sequence of 

periodograms.  The PSD estimate for the output 𝑌[𝑘] is computed in the same fashion.  In 

MATLAB, the pwelch function can be used to estimate the PSD.   



15 
  

 Once the PSD is estimated for the input and output, the total power is found by 

integrating over the length of the PSD.  In MATLAB, this is computed using the 

bandpower function.  The integral is estimated using the rectangle method.  When using 

the bandpower function in MATLAB with a time domain signal as the input, the 

command utilizes Welch’s method as the default method for estimating the PSD that is 

used to calculate signal power.   

 In order to apply a paired T-Test between trials with GVS and trials with out, I 

added the input of a trial with GVS activated to the output of a trial without GVS.  Then I 

added the input of the same trial without GVS to the output of the trial with GVS.  This 

has the effect of normalizing two trials with respect to the input signals.  Thus a Paired T-

Test will discriminate against signal power contained in the output only.  In the application 

of Welch’s method and bandpower calculations to the data from the experiment, I apply 

my methodology only to the combined input/output signal.  However, superposition is a 

property of the DFT and I felt it was important to treat both the input and the output 

separately in this description of my methodology.  
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Chapter 3 

Data Application 

 

3.1 Experiment Description 

3.1.1 Subjects 

 Participants in the manual tracking experiment consisted of fourteen control 

subjects and twelve PD patients recruited from the Pacific Parkinson’s Research Center.  

The PD group consisted of 10 males and 2 females with a mean age of 61.4 ± 6.5 years.  

Only ten Control and PD subjects recorded data that was used in this experiment.  None of 

the participants reported any vestibular or auditory disorders. Table 1 provides a list of 

symptom severity for the PD subjects whose data was used in my analysis.  All subjects 

were tested after a 12-hour withdrawal period of L-Dopa medication.   

Patient 
Number Age (yr) Sex 

Duration since 
Diagnosis (yr) 

UPDRS 
Motor Score 

Hoehn and 
Yahr Stage Handedness 

1 58 M 4 18 2 R 

3 67 M 4 16 2 R 

4 56 M 2.5 21 2 L 

5 53 M 3 32 2.5 R 

6 49 M 7.5 35 2 R 

7 65 F 5 32 2 R 

8 68 M 1.5 22 2 R 

9 66 M 1 24 2 R 

10 70 M 1 21 2 R 

11 59 M 1.5 10 2 R 

 

Table 1.  Characteristics of PD Subjects.  UPDRS is Unified Parkinson’s Disease Rating 

Scale.  There were originally twelve subjects but only data from ten subjects was used. 
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3.1.2 Ethics Statement 

 This study was conducted with approval from the University of British Columbia 

Clinical Research Ethics Board.  All subjects gave written, informed consent prior to 

participation.  Research was conducted according to the principles expressed in the 

Declaration of Helsinki. 

 

3.1.3 Description of the Manual Tracking Task 

 Subjects were seated approximately 80 cm from a screen that displayed the 

reference target and the cursor they controlled.  Connecting the reference target and the 

cursor was a black rod.  Figure 3 contains a picture of what the subject would see on the 

screen.  The reference target moved up in down according to a specified target trajectory 

which was composed by the summation of two sinusoids with frequencies of 0.06 and 0.1 

Hz.  Subjects were asked to keep the black rod between the target and the cursor straight 

by controlling the cursor with a joystick.   

 The tracking error, Δ, was defined as the difference in position between the target 

and the cursor.  The experiment contained two modes in which Δ was scaled by a factor of 

α.  In the ‘Better’ mode, α was set to 0.3 and in the worse mode, α was set to 2.  Thus 

subjects appeared to perform better or worse depending on the mode of the experiment.  

My noise power method only utilized data obtained from subjects performing the task in 

the worse mode.  The exaggeration of error in this mode increased sub movement activity, 

allowing for differences between trials with GVS and without GVS to be more apparent. 
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 Throughout the duration of the experiment, subjects performed eight 90-second 

trails with a 30-second rest period between each trial.  Trials 1, 2, 5 and 8 were conducted 

with the presence of GVS below sensory threshold while the trials 3, 4, 6 and 7 were 

conducted without GVS.  Each trial was divided into three 30-second blocks that alternated 

between the better or worse modes.  Figure 3 shows the pattern of trials. 

 

Fig. 3. Set up of the switching manual tracking task.  (A) The main objective of the task 

was to keep the black rod connecting the blue target and the yellow cursor in a horizontal 

position.  The tracking error, Δ, was scaled by α = 0.3 for the ‘Better’ condition and α = 2 

for the ‘Worse’ condition.  (B) Sequence of trials followed by rest.  GVS was applied in 

four trials.  Imagine from [7] 
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 The normal control subjects performed the set of 8 trials once.  PD subjects 

performed the set of 8 trials twice.  The first set of trials was performed after a 12 hour 

overnight withdrawal period from L-Dopa.  After the trial concluded, the PD subjects were 

given a single dose of fast acting L-Dopa.  After the effects of this dose were felt by the 

subjects, they completed another set of the 8 trials. 

3.1.4 Stimulus 

 GVS was applied through 17 cm2 carbon rubber electrodes in a bilateral and bipolar 

fashion.  An electrode was placed over the mastoid process behind each ear of the subject 

and coated with Tac gel (Pharmaceutical Innovations) to optimize adhesiveness and 

conductivity.  The average impedance of the subjects was approximately 1 kΩ.  The GVS 

signals were digitally generated on a computer using MATLAB.  The digital signals were 

then converted to analog signals using a NI USB-6221 BNC (National Instruments) digital 

acquisition module.  The analog signals were then subsequently passed to Model DS5 

(Digitimer) constant current stimulator. 

 The GVS signals were zero-mean, linearly detrended, noisy currents with a 1/f-type 

power spectrum.  The stimulus signals generated were between 0.1 and 10 Hz applied 

according to a Gaussian probability density function.  Figure 2 contains an example of the 

GVS single in addition to the probability density function.  GVS was applied at a level 

below sensory threshold so that subjects were not bothered by any sensation while 

conducting the manual tracking task. 

 Sensory threshold was determined by using a systematic procedure for determining 

the minimum level of current detectable by the subject.  Subjects were given a test stimuli 
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of 20 μA for 20 seconds.  If the subject did not detect the current after the initial 20 seconds, 

an additional 20 μA was applied for another 20-second duration.  The process was repeated 

until the subject detected the current.  After detection, the current was decreased by a 20 

μA level until the subject no longer felt the stimulus.  Then the current was increased again 

to confirm sensory threshold.  A 30-second rest period occurred between each stimulus test 

in order to prevent effects due to hysteresis.  GVS was applied at 90% of sensory threshold 

value during the manual tracking experiment.    

 

Fig. 4.  Characteristics of the GVS signal.  (A) An example of the GVS signal during a 

trial.  This is the highest level current intensity used in the experiment. (B) The Gaussian 

probability density function of the GVS signal.  Image from [7]. 
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3.2 Preprocessing 

 Although my analysis requires the raw data to be intact, some preprocessing steps 

are necessary in order for Welch’s method to be applied.  The raw position data collected 

from the target and cursor display positions in the experiment were not collected at a 

uniform sampling rate.  With the interp1 function in MATLAB, I used linear 

interpolation with extrapolation to apply a uniform sampling rate of 55 Hz.  The position 

data also contained a DC gain component which I removed using the detrend function.   

 The 30-second ‘worse’ mode sections were separated from the 90-second trial 

blocks.  I created a pairing of GVS on and GVS off sections in order to facilitate a paired 

T-Test.  This pairing is outlined in Table 2.  In order to normalize signal power occurring 

from tracking the reference target, I added the target signal to the cursor display signal of 

the other section in the pair.  This had the effect of eliminating any signal power differences 

that were due to tracking.  Each section contained the signal power that resulted from 

tracking both inputs.  The only difference between the two signals now occurs in the high 

frequency noise component.  As a result, I was easily able to determine statistically 

significant differences in performance related to frequency and magnitude of sub 

movements.   

 GVS On Trial GVS Off Trial 

Pair 1 Trial 1 Section 2 Trial 3 Section 2 

Pair 2 Trial 2 Section 1 Trial 4 Section 1 

Pair 3 Trial 2 Section 3 Trial 4 Section 3 

Pair 4 Trial 5 Section 2 Trial 7 Section 2 

Pair 5 Trial 8 Section 1 Trial 6 Section 1 

Pair 6 Trial 8 Section 3 Trial 6 Section 3 

 

Table 2.  GVS On and GVS Off pairs. 
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3.3 Characteristics and Outliers 

 I screened for outliers on two different levels.  The first screening for outliers was 

done by a visual inspection of the data plots from each trial.  By using the subplot 

function in MATLAB, I was able to quickly scan all eight trials conducted by each subject 

in the three subject populations.  One of the prominent visual issues I overserved was 

saturation.  Due to hardware limitations, some subjects achieved saturation as they 

attempted to track the reference input.  This occurs when the subject uses the joystick to 

move the cursor in a position beyond the position detection limits of the hardware.   An 

example of saturation is seen in figure 5.  In several instances, saturation occurs in periods 

of multiple seconds.   

  

Fig. 5.  Saturation occurs in multiple instances in this trial.  Just before the 20 second mark 

and during the 80 second mark, saturation is held for several seconds.  This degree of 

saturation renders this data unusable. 

 

 Saturation is an issue because it skews results by artificially creating high frequency 

content.  Computing the DFT in a section with saturation would be similar to computing 

the DFT of a rectangular function.  Data that contains large amounts of saturation was not 

utilized in my analysis.  Unfortunately, the definition of what constitutes a large amount of 
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saturation is somewhat subjective.  However, there was a clear distinction in the amount of 

saturation contained in data from Parkinson’s subjects 2 and 12.  Their data was not used 

in my analysis. 

 Visual screening also detected outliners in the form of significant deviation of the 

tracking objective by the subject.  Figure 6 shows a trial that contains this type of outlier.  

This significant deviation could have possibly been the result of some external factor, 

which renders the data unusable.  It also renders useless the normalization of the input 

trajectory that is necessary for pairing trials.  I considered significant long periods of cursor 

movement in the opposite direction of the target to be significant deviation from the 

tracking objective.   

 

Fig. 6. The first 30-second block contains significant deviation from the tracking objective 

starting shortly after the 20-second mark.  This deviation may have been due to external 

factors, which is likely given the relatively poor performance in the ‘better’ section from 

30 to 60 seconds, and the lack of data in the second ‘worse’ block from 60 to 90 seconds. 

 

 The second level of screening for outliers occurred when I examined the numerical 

data obtained from my analysis.  I examined the data to see if any of the paired GVS on 

and GVS off sections had values that differed by more than an order of magnitude.  Any 

data points that met these criteria would have required additional visual scrutiny of the 
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manual tracking plots and the MATLAB code.  Fortunately, I did not find any outliers as 

a result of this screening.  Finally, statistical outliers in the data were noted but not 

removed. 

 

3.4 Results 

 The results of my analysis are indicated in Table 3.  The GVS was significantly  (p 

< 0.05) associated with reductions in high frequency noise in the both the combined PD 

subject group and the PD subject group that performed the experiment after receiving a 

dose of fast acting L-dopa.  While GVS was associated with reductions in high frequency 

noise in both the Parkinson’s before L-dopa population and the control population, the 

results were not statistically significant.  Finally, GVS was associated with an increase in 

standard deviation among all populations when it was applied.  Only the PD group after L-

dopa showed a reduction in standard deviation when GVS was on. 

Total Signal Power 

    Normal Parkinsons 
Parkinsons 
Before L-Dopa 

Parkinsons  
After L-Dopa 

GVS ON 
AVG 42521.5703 48506.86435 49731.0142 47192.0368 

SD 35067.0070 37738.22179 39831.1046 35679.7902 

GVS OFF 
AVG 44262.8828 52319.01327 52969.1211 51620.7493 

SD 32432.5225 35950.91901 36171.6414 36038.5210 

  T Test 0.3466 0.02235 0.2132 0.0333 

 

Table 3.  The results of my analysis indicate p < 0.05 (highlighted values), which for the 

combined PD population and the PD population on fast acting L-Dopa when tested against 

the GVS condition.  Units for the results are square of the position units utilized during the 

experiment.  
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3.5 Discussion 

 The results indicate the presence of GVS has a beneficial effect on a subject’s 

manual tracking task performance.  The boxplot in figure 7 displays the distribution of the 

difference between noise power between the GVS off and GVS on paired trials.  A positive 

difference would indicate a larger noise power value in the in the GVS off trial.  Two key 

differences between the GVS off and GVS on populations are the difference in skew and 

the number of outliers.  The GVS on population has a more positive skew as indicated by 

the value of the 75th percentile boundary.  The positive skew indicates GVS had a beneficial 

impact on sub movement reduction as there are more positive values in the distribution. 

 

Fig. 7.  The box plots of the three populations.  The red line indicates the median of the 

population. The upper and lower edges of the box represent the boundaries of the 75th and 

25th quartiles respectively.  The whiskers indicate the range of values not considered 

outliers.  The red crosses are outliers, which are data points outside of 2.7 standard 

deviations. 
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One suggestion for the beneficial effect of GVS involves a concept known as stochastic 

facilitation.  Previous studies indicated additive stochastic biological noise had a wide 

range of benefits in the non-linear nervous system.  Several studies detected an increase in 

signal to noise ratio in EEG readings, while another study identified improved sensorimotor 

performance in patients with chronic stroke.  Stochastic facilitation in relation to manual 

tracking tasks most likely relates to modulation of brain rhythms in the basal ganglia.   The 

difference in performance between a trial with GVS off and GVS on, as displayed in figure 

8, may be indicative of this modulation as it relates to reduction of sub-movements. 

 

Fig. 8.  Two paired trails form the after L-dopa population.  The decreased frequency and 

magnitude of sub-movements in the GVS on trial could be indicative of stochastic 

facilitation.  Not all paired trials contained easily recognizable sub-movement reduction. 
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 While statistical significance was only detected in both the combined group of PD 

patients and the group of PD patients on L-dopa medication, the trend of GVS reducing 

high frequency sub-movements is present throughout all groups.  Additional data may be 

able to determine with statistical significance if GVS improves performance in the control 

group and in the group of PD patients after L-dopa withdrawal.  However, the increased 

standard deviation associated with GVS in concerning.  Because the only group that 

experienced a reduction in standard deviation were the PD patients on L-dopa, the 

inference is that medication is required in order for all PD patients to benefit from GVS.  

Otherwise some PD patients benefit while others do not.  Additional scrutiny of the data is 

needed to determine if any of the subject demographics of the PD patients are correlated to 

better performance when they are off medication and under stimulation by GVS. 
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Chapter 4 

Evaluating Other Data Sets 

 

4.1 Time and Frequency Localized Approaches 

 All approaches to system identification and performance evaluation of manual 

tracking tasks so far discussed have not included approaches localized to both time and 

frequency.  While frequency based techniques provide a solid foundation in providing 

performance metrics for manual pursuit tracking tasks, they can only be applied to linear 

deterministic or stationary stochastic signals.  The presence of nonlinearities in a signal 

necessitates the use of additional techniques that are localized in both the time and 

frequency domains. 

 

4.1.1 Wavelets 

 A wavelet-based approach has been used in multiple studies related to analysis of 

EEG signals in PD patients.  Wavelets are well suited to the study of biological rhythms 

due to their multiresolution analysis capabilities [17][18][19].  In general, biological 

signals are often nonlinear and nonstationary in nature.  In my analysis of sub movements 

in manual tracking tasks, I made the assumption that sub movements over a short term 

period were equivalent to stationary noise.  Relaxing this assumption would require an 

analysis that was localized in both the frequency and time domains.   

 One of the manual tracking sets I was working on contained a chirp signal that was 

corrupted by noise.  Subjects were asked to pursue the chirp signal while disregarding the 
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noise corruption.  Because I was unable to use standard frequency domain based techniques 

due to the nonlinear chirp target signal, I instead utilized the Short Time Fourier Transform 

(STFT) to perform the analysis.  However, the main drawback with using the STFT is the 

sacrifice between time resolution and frequency resolution.  The wavelet transform dos not 

have the same limitations.  Both continuous and discrete versions of the wavelet transform 

can be performed in MATLAB using the cwt and dwt functions respectively.  Selecting 

the right wavelet and parameters for the intended application is essential to performing a 

quality analysis. 

 

4.1.2 Fractional Fourier Transform 

 The Fractional Fourier Transform (FrFT) has recently seen an increase in use for 

digital signal and imaging applications.  However, my review of the literature has found 

little use in biomedical applications.  There are a few papers highlighting its use in medical 

imaging applications in ultrasound and x-ray [20][21].  The main benefit of the FrFT is that 

it transforms signals into a domain that is between time and frequency.  Linear chirps in 

signals are easily identified in this domain which would be very useful in the manual 

tracking data set I was working on that future a linear chirp.   A linear chirp is transformed 

in to a delta function in the Fractional Fourier domain, much like a sinusoid would be in 

the frequency domain [21]. 

 To study a PD patient’s ability to track a signal consisting of a linear chirp corrupted 

by noise, as indicated in figure 7, FrFT could be utilized to compare the delta functions for 

both the input and the output.  The resulting comparison could provide a measure for how 

well the subject rejected the noise and tracked the underlying target input.   
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Fig. 9. Application of the fractional Fourier transform could provide quantifiable 

assessment of performance for tasks involving chirp signals such as this one. 
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Chapter 5 

 

Conclusion 

 

5.1 Summary 

 Throughout this thesis, I have discussed the importance of using manual tracking 

tasks to develop new treatments for the visuomotor symptoms associated with PD.  

Although these manual tracking tasks are performed in a lab environment, in many ways 

these tasks are proxies for the everyday tasks they perform in outside environment.  

Promising new non-invasive treatments such as GVS may be able to improve the quality 

of life for sufferers of PD.  Researchers invest a tremendous amount of effort into 

understanding the effect GVS has on PD patients performing these manual tracking tasks.  

While there are a breadth of other methods for assessing performance, frequency domain 

based analysis can provide a quick and reliable metric for determining how well an 

individual performed the task.  This is based on the premise that less power in 

frequencies higher than the input is reflective of fewer and weaker sub-movements and 

better tracking performance.  Determining improved performance is vital to proving the 

efficacy of treatments such as GVS.   
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5.2 Directions for Future Work  

 The assumption that sub-movement generation is stationary over the length of the 

trial for every patient is necessary to make in order to apply my method.  It is also an 

assumption that may not hold for longer trials.  In reality, every individual, PD or 

otherwise, fatigues at different rates, varying attention spans and varying physiologies.  

Humans and the biological signals they generate are inherently nonlinear.  To provide 

assessment for a more robust set of tracking tasks under more robust conditions, methods 

which are localized in both the frequency and time domains must be explored.  

Applications of the wavelet and fractional Fourier transforms can bridge the nonlinearity 

gap and provide quantifiable assessments of performance.   
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