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ABSTRACT 

Most freshwater aquatic studies rely on Eulerian monitoring, i.e., water quality and 

quantity are monitored using grab samples or semi-continuous sensors deployed at fixed cross-

sections. While Eulerian monitoring is practical, it provides a limited understanding of spatial 

and temporal heterogeneity and their effects on environmental processes. This dissertation 

summarizes the design and application of The Navigator, an alternative Lagrangian monitoring 

system that offers cost-effective solutions for in-situ, real-time data collection in lotic and lentic 

freshwater ecosystems such as streams, rivers, ponds, and reservoirs. The Navigator features a 

suite of methods – an autonomous surface vehicle (ASV) with GPS and LTE connectivity, water 

quality sensors, depth sonar, computer vision camera, cloud computing, and a webpage 

dashboard to visualize data in real-time. With these technologies, The Navigator provides insight 

into where, how, and why water quality and quantity change in time and space as it moves 

through the current or flows following user-specified pathways.  

First, we tested our prototype of The Navigator in the monitoring of water quality 

parameters at high spatial-temporal resolution along the Rio Grande and a retention pond in 
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Albuquerque, NM. Then, we deployed the Navigator to quantify experimental mixing lengths 

downstream of the outfall of a wastewater treatment plant in the Rio Grande near Albuquerque, 

NM, under various flow regimes. Lastly, we deployed The Navigator to examine the role of 

Santa Rosa Lake in attenuating the propagation of wildfire disturbances generated 170 km 

upstream during and after the Hermit’s Peak-Calf Canyon wildfire. We quantified changes in 

water density, turbidity, and other water quality parameters along the river-lake section using 

Lagrangian monitoring. 
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Chapter 1 

General Introduction 

1.1 CONTEXT 

The study of freshwater ecosystems is undergoing a transformative phase, shifting from 

the challenge of collecting sufficient data to measure processes to dealing with an abundance of 

signals and deciphering their meanings (Pellerin et al 2016; Arabi et al. 2020; Rode et al. 2016). 

Advances in technology, such as miniaturized sensors, real-time measurements, and autonomous 

platforms, have led to a growing quantity, frequency, and resolution of data (Horsburgh et al. 

2015; McCabe et al. 2017; Krajewski et al. 2006; Griffiths et al. 2022). This has raised the 

possibility of a future where limnologists can simultaneously measure the rates of multiple 

processes at various scales and in near real-time (Glasgow et al. 2004), which would greatly 

benefit managers and scientists. However, the influx of data presents a challenge in 

distinguishing the desired signal from the noise of overlapping spatiotemporal scales (Blöschl et 

al. 2019; Kraus 2017).  

  In ecohydrology, determining the variables that can or need to be monitored is an initial 

step, as it provides the foundation for designing successful studies. From this, a selection of the 

type of pattern that will be used to explain observed processes follows, i.e., spatial, temporal, or a 

combination of both (Doyle and Ensign 2009). Temporal patterns, achieved through repeated 

observations at a fixed location over time (e.g., water quality data from a sonde at a fixed 

location), referred to as Eulerian monitoring, have yielded important insights to ecohydrologists 

(Romero et al. 2016; Burns et al. 2019). Another approach, which involves capturing purely 

spatial patterns at a specific moment in time, and is referred to as synoptic monitoring, has 
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gained popularity through advancement in satellite imagery (Casper et al. 2012; Krajewski et al. 

2006). A third approach, which entails generating a single pattern that combines both temporal 

and spatial information by collecting data along a flow path, and is referred to as Lagrangian 

monitoring (e.g., water temperature data obtained from a drifting buoy) has been vastly 

underutilized in freshwater ecosystems, despite being standard practice in atmospheric and 

marine sciences (Gruberts et al. 2012, Bertani et al. 2016, Hensley et al. 2020). Within this 

context, the introduction and rapid adoption of Lagrangian monitoring techniques can be a means 

to link and integrate Eulerian and synoptic data, and increase our understanding of where, how, 

and why water quality and quantity change in time and space (Post et al. 2007; Ball et al. 2021; 

Kraus 2017) (Figure 1.1).  

Lagrangian monitoring can enhance our understanding of freshwater ecosystems and 

contribute to effective and timely management of freshwater resources (Griffiths et al. 2022; 

Bertani et al. 2016; Brown, Battaglin, and Zuellig 2009). However, upfront and day-to-day costs 

remain prohibitively expensive in freshwater applications (Hensley et al. 2020). To date, the 

HYCAT by Xylem is the only complete solution that is commercially available, but its 

$110,000-170,000 price tag is prohibitively expensive for most users. 

This dissertation focuses on the development of The Navigator, an affordable (~$5,100) 

and novel smart sensing Lagrangian monitoring technology that can collect water quality 

parameters and transmit data in real-time that are currently uncommon, i.e., at the sub-minute 

scale and following natural flow currents, resulting in better understanding of spatiotemporal 

patterns and improved predictions of water quality and quantity dynamics.  
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Figure 1.1. Monitoring approaches typically used in Ecohydrology. 

1.2 OBJECTIVES 

The specific objectives of my dissertation are: 

1. Design, deploy, and test The Navigator, an autonomous surface vehicle (ASV) for 

Lagrangian monitoring of freshwater ecosystems. 

2. Quantify experimental mixing lengths downstream of a wastewater treatment plant under 

various flow regimes and examine the predictive ability of long-standing empirical 

equations routinely used for predicting mixing lengths. 

3. Investigate the role of a flood-control reservoir in controlling the propagation of wildfire 

disturbances generated from the Hermit's Peak-Calf Canyon through a combination of 

Eulerian and Lagrangian monitoring techniques. 
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1.3 DISSERTATION LAYOUT 

Chapter 2 focuses on the design, development, and validation of The Navigator, a smart 

Lagrangian monitoring system. In Chapter 3 we quantified mixing lengths downstream of a 

wastewater treatment plant under various flow regimes using The Navigator. In Chapter 4 we 

used The Navigator to investigate the wildfire disturbance propagation from the Hermit's Peak-

Calf Canyon wildfire. Lastly, Chapter 5 presents a comprehensive summary of the overall 

findings and conclusions derived from the research conducted throughout the dissertation. 
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Chapter 2 

Development of The Navigator: A Lagrangian sensing system to characterize 

surface freshwater ecosystems.  

Aashish Khandelwal1, Tzion Castillo1,2, Ricardo González-Pinzón1 

1Civil, Construction and Environmental Engineering, University of New Mexico, Albuquerque, 

NM USA 

2Electrical Engineering, University of New Mexico, Albuquerque, NM USA 

This manuscript is currently in publication in the journal Water Research 

2.1 INTRODUCTION 

Recent advances in high-resolution sensors, real-time telemetry, analytical equipment, 

and computer technology, among others, have sparked the ‘renaissance of hydrology’ (Gabrielle, 

2019). In the context of surface water quality dynamics, this technological revolution has 

enabled the monitoring of multiple solutes across the periodic table (Abbott et al., 2018; Burns et 

al., 2019; Kirchner and Neal, 2013; Rode et al., 2016), in some cases at sub-hour resolutions 

(Jarvie et al., 2018; Lloyd et al., 2016; Nichols et al., 2022), and over multiple decades (Dupas et 

al., 2018; Huang et al., 2022; Li et al., 2020; Matson et al., 2021). However, due to affordability 

issues, those advances have contributed to an improved understanding and management of 

surface water resources only in a small number of watersheds across the globe (Arsenault et al., 

2023; Devaraj et al., 2022). To date, thus, we still lack reliable, continuous, and consistent 

information on the extent and dynamics of surface water quantity and quality at local, regional, 

and global scales (United Nations Environment Programme, 2021). To tackle this shortcoming, 
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the UN’s sustainable development goal 6 (SDG6) aims to increase data availability for evidence-

based management, regulations, and policymaking to “ensure access to water and sanitation for 

all”.  

While satellite observations can help monitor regional-to-continental scale processes 

(e.g., evapotranspiration, intercontinental water and dust fluxes) and help identify relevant large-

scale features (e.g., anoxic zones, flooding, and hurricanes) (Arabi et al., 2020; Li et al., 2022; 

Román et al., 2019; Wieland and Martinis, 2019), the temporal and spatial resolution of their 

information is typically inadequate to support local-to-regional scale decision-making associated 

with the management of surface water resources (Manfreda et al., 2018; Tapley et al., 2019). 

These limitations have kept Eulerian monitoring, i.e., the tracking of water quantity and quality 

at a site and over time, as the current standard technique applied in consulting, research, and 

enforcement of regulations associated with freshwater resources (Doyle and Ensign, 2009).   

Eulerian monitoring of surface freshwaters can be done through grab sampling followed 

by laboratory analyses or semi-continuous sensors in situ (e.g., optical and wet-chemistry 

sensors) and has been used to quantify water quantity and quality dynamics at sub-hour to 

monthly frequencies. Eulerian monitoring is spatially limited due to the sparseness of 

instrumented sites, and this is particularly inconvenient for analyses featuring highly 

heterogeneous and rapidly changing environments (Krause et al., 2015). Also, since Eulerian 

monitoring fundamentally integrates the spatial heterogeneity, dynamics, and watershed 

modifications upstream of the monitoring site (González‐Pinzón et al., 2019), this technique falls 

short when linking causation and correlation. Some of the most common examples of these 

challenges are differentiating between point and distributed sources of contamination in water 

quality assessments and separating rainfall, snowmelt, and groundwater contributions from 
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stream flow measurements. An alternative to overcoming some of the challenges of Eulerian 

monitoring is the use of Lagrangian monitoring, where water parcels are tracked as they move 

through aquatic systems. 

Lagrangian monitoring of surface waters can be done with crews sampling or monitoring 

from a moving vehicle (e.g., boat or kayak) or using instrumented autonomous surface vehicles 

(ASVs; also known as uncrewed surface vehicles USVs). Due to the intractability and 

remoteness associated with Lagrangian monitoring, and high personnel costs, there is a strong 

demand for ASVs. While Lagrangian monitoring has been widely used in oceanography using 

drifters (Subbaraya et al. 2016) and in atmospheric studies using balloons (Businger et al., 1996), 

its upfront, maintenance, and operational costs remain prohibitively expensive for the monitoring 

of surface freshwater ecosystems. Currently, most commercially available ASVs for freshwater 

ecosystems are adaptations of ASVs used in oceanography, which has resulted in large-size and 

costly vehicles for example, the Teledyne Z-Boat 1800RP.  

The advantages brought by Lagrangian monitoring can be better explained by comparing 

Eulerian and Lagrangian monitoring of a marathon race and the propagation of a disturbance in a 

river corridor. After the start of the events, Eulerian monitoring helps quantify what happens 

over time at fixed cross-sections, such as the finish line or a bridge. Therefore, Eulerian-based 

statistical analyses are limited to piece-wise rankings, histograms (or probability density 

functions), percentile analyses, and averages. On the other hand, Lagrangian monitoring would 

let us link spatiotemporal variations of relevant quantities such as stride length, cadence, heart 

rate, vertical oscillation, ground contact time, and speed for a runner, or temperature, dissolved 

oxygen, turbidity, and other water quality parameters changing as the disturbance moves 

downstream. The only requisite is that runners and rivers ‘wear’ sensors. From those individual 
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quantities and the relationships among them, e.g., change of heart rate as a function of change in 

elevation and change in dissolved oxygen levels as a function of turbidity, more robust 

spatiotemporal analyses can be performed to characterize a runner’s performance during a 

marathon or a river’s response to a disturbance.  

Since most of the progress made to date in the study and management of freshwater 

ecosystems is based on the use of Eulerian monitoring, any productive discussion about ways to 

improve the monitoring of freshwater ecosystems should consider strengthening the capabilities 

of existing infrastructure. For example, there are over 10,000 USGS streamflow stations around 

the US, and some are also instrumented with water quality sensors (“USGS WaterWatch -- 

Streamflow conditions,” n.d.). However, to our knowledge, there is no active program pursuing 

Lagrangian-based monitoring between sites located along river corridors. Integrating more 

traditional Eulerian monitoring sites with Lagrangian capabilities, thus, can help researchers, 

consultants, and stakeholders better understand where, how, and why water quality and quantity 

change in time and space.  

In this chapter, we present the development of an ASV, The Navigator, with sensing 

technology to collect and transmit water quality data in real-time over spatial and temporal scales 

that are currently uncommon, i.e., at the sub-minute scale and following flow currents or GPS 

waypoints. We describe the components and architecture of The Navigator and demonstrate its 

applicability in the Lagrangian monitoring of surface water bodies in New Mexico (USA) to: 1) 

identify water quality changes associated with land use changes along a 7th-order reach in the 

Rio Grande, 2) identify the fate of wildfire disturbances ~175 km downstream of a burned 

watershed affected by the largest wildfire ever recorded in the state, 3) monitor the water quality 

of a recreational fishing pond in the City of Albuquerque. 
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2.2 METHODS 

2.2.1 The Navigator: Overview 

The Navigator features a GPS tracker to monitor spacetime variations and to allow the 

recovery of the vehicle, a thruster and rudder system that can be automated using an autopilot, a 

data logger that can be coupled to water quality sensors (i.e., optical, wet chemistry, 

fluorometers), and real-time data transmission capabilities through LTE cellular service. The 

Navigator is ideal for Lagrangian monitoring applications in river systems without major 

obstructions, irrigation and drainage channels, and lentic systems (e.g., lakes, reservoirs, 

estuaries). The Navigator can monitor water quality parameters over longer durations than other 

ASVs commercially available, is lighter than other alternatives (2.5-5x lighter), and can be 

coupled to different sensor heads, offering high versatility. Figure 1 and Table 1 present all parts 

included in The Navigator and their assemblage to make the system work. Supplementary 

Information A1 provides access to a 3D-CAD view of The Navigator.   

2.2.2 Structure and Hardware Design 

We used a catamaran (i.e., twin hulls) framework to create a small-size vehicle with 

minimum flow resistance, better stability, and higher payload (Ferri et al., 2015). Each hull (C1 

in Table 1) is made of expanded polystyrene (XPS) foam and has three layers of fiberglass 

outside. The two hulls are connected by a carbon fiber rod structure using 3D-printed brackets 

attached to the hulls (C2 in Table 1). A Pelican box (C3) houses electronics and batteries and is 

fastened to the front two carbon rods (C1). The thruster (C4) and servo (C5) with rudder are 

mounted on the back rods (C1). Since the vehicle’s weight is distributed over two hulls, The  
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Navigator has a shallow draft of 125 mm.   

Figure 2.1. Figure 1: The Navigator: parts, design and exploded diagram.   The dimensions 

and 3D printed models in CAD can be accessed here: The Navigator CAD model. Part descriptions 

are available in Table 1. 

https://myunm252.autodesk360.com/g/shares/SH9285eQTcf875d3c539adcff82a2447a458
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Table 2.1: The Navigator component description and costs in USD, as of December 2022. 

Part Name Image Description 
Cost  

(YY 2022 USD) 

C1 
Hull: Fiberglass with 
Foam and carbon 
fiber rods 

 

An insulation foam sheet with a 
thickness of 5.1 cm is used for the hull's 
shape. Three layers of fiberglass cloth 
(50 m2) were coated outside using epoxy 
resin and hardener (250 ml). Carbon 
rods are used as beams. 

$110 

C2 
3D printed 
components 

 

Approximately 1 kg of acrylonitrile 
butadiene styrene (ABS) filament was 
used for 3D printing the rudder and 
carbon rod connections to provide 
durability and UV resistance to The 
Navigator.  

$22 

C3 
Protector case: 
Pelican  

 

This rugged case features an automatic 
purge valve that equalizes air pressure 
and a watertight silicone O-ring lid. This 
case protects all the hardware in The 
Navigator from impacts and water 
splashes.  

$80 

C4 
 
Thruster: Blue 
Robotics T200  

 

The T200 thruster is a popular 
underwater thruster used for The 
Navigator. Its flooded motor design 
makes it powerful, efficient, compact, 
and affordable. 

$236 

C5 
Digital Servo: 
Annimos 20KG with 
5V power converter 

 

This Annimos 20KG digital servo with 
high torque and full metal gear is 
waterproof and helps control the 
steering of The Navigator with a control 
angle of 270°. 

$16 

C6 
Radio Transmitter: 
Emax E8 

 

A 2.4GHz dual band antenna radio 
transmitter features an 8 channel RF 
module. 

$59 

C7 
 Wing Receiver: 
RadioMaster R88 

 

2.4GHz radio receiver for remote 
control, with a range of ~1 km. 

$20 

C8 
Autopilot: Cube 
purple with mini 
carrier 

 

This autopilot is designed to control 
boats, cars, or rovers. It provides 
hardware and an embedded software 
ecosystem to automate autonomous 
maneuvering in The Navigator.  

$340 
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Part Name Image Description 
Cost  

(YY 2022 USD) 

C9 GPS: Here 3  

 

This GPS is a high-precision global 
navigation satellite system (GNSS) that 
supports real time kinematic (RTK) 
positioning and is built with controller 
area network (CAN) protocol. It is also 
designed to be dust-proof and splash-
proof, which is ideal for The Navigator.  

$125 

C10 
Telemetry Radio 
Transmitter and 
Receiver: 3DR  

 

915MHz transmitter and receiver, 
responsible for relaying images between 
the ASV and ground station computer 
with a range of 3-5km.  

$88 

C11 
Lithium polymer 
battery: Ovonic  

 

Set of 4 Lithium polymer batteries, 
Voltage: 11.1V, Cell: 3S, Capacity: 
5500mAh, Discharge: 50C. These 
batteries power every component of 
The Navigator.  

$55 

C12 
Solar panel: Eco 
Worthy 25W 12V   

 

Waterproof solar panel 41.9 cm x 32 cm 
capable of providing 25W. This panel 
helps extend battery life. 

$36 

C13 
Solar Charge 
Controller:  
GV-5  

  

This controller acts as an interface 
between the solar panel and the 
batteries, preventing them from 
overcharging.  

$99 

C14 
Microcontroller: 
Raspberry Pi 4 

 

The Raspberry Pi 4 is a powerful, user-
programmable microprocessor board 
that can be easily programmed with 
several popular IDE software programs 
like Linux. It includes LTE and Bluetooth 
communications for The Navigator.  

$100 

C15 
Multiparameter 
sonde: Yosemitech 
Y4000 

 

The Yosemitech Y4000 multiparameter 
sonde is one of the most comprehensive 
and affordable water quality monitoring 
products available to monitor dissolved 
oxygen, conductivity, turbidity, pH, 
chlorophyll, blue-green algae, and 
temperature. 

$3,100 

C16 
Spatial AI stereo 
camera: OAK-D Lite  

 

The OAK—D Lite is a spatial AI 
powerhouse, capable of simultaneously 
running advanced neural networks while 
providing depth from two stereo 
cameras. 

$149 

C17 
 
Ping Sonar: Blue 
Robotics  

 

 

The Ping Sonar is a single-beam 
echosounder that measures distances of 
up to 50 meters underwater. A 30° 
beam width and an open-source 
software interface make it a powerful 
tool for The Navigator.  

$360 
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Part Name Image Description 
Cost  

(YY 2022 USD) 

C18 
LTE modem dongle: 
ZTE MF833V 

 

4G LTE USB modem dongle provides a 
mobile internet connection to the 
Raspberry Pi and real-time data transfer.  

$50 

C19 
 Penetrator: Blue 
Robotics WetLink 

 

This item is used to seal electrical cables 
as they pass into a component or 
through a pelican case. Each set includes 
a bulkhead, seal, plug, O-ring, and nut. 

$56 

Total cost (YY 2022 USD) $5,101 

 

The thruster (C4) can provide a thrust force of ~3 kg providing a cruise velocity of 

~0.8m/s. The digital servo (C5) controls the steering, using a dual rudder design capable of 

providing sharp turns (0.75m turning radius). The servo’s maximum torque is up to 21.5 kg/cm 

@6.8V. The dual rudder system (C2) connected to the servo was designed and manufactured by 

us and is 3D printable. The thruster is fixed, while the rudder is mounted directly behind the 

thruster.  

The Navigator has two maneuvering modes: 1) drift mode, controlled by the operator, 

and 2) autonomous mode, following GPS waypoints. For drift mode, the operator controls a 

radio transmitter (C6). The commands sent by the operator are received by the radio control 

receiver (C7).  

During autonomous mode, the autopilot (C8) gets continuous geolocation, roll, pitch, and 

heading data from GPS data (C9). This allows it to hold the course and follow GPS waypoints. 

The user can change between autonomous and drift modes using a switch on the controller (C6). 

The geolocation, depth, roll, and pitch information are transferred continuously to the user using 

a telemetry transmitter with a range of ~5km (C10) on The Navigator and a matching receiver 

(C10) attached to a field laptop can be affected by terrain factors. Power is supplied to The 

Navigator through four packs of lithium polymer batteries (C11). In our tests, this power 

provided a range of ~30 km in autonomous mode. A small solar panel (C12) and a controller 
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(C13) were added to extend the battery’s capacity. Lithium batteries (C11) were selected because 

they provide a better weight-energy density ratio, high performance, and longevity. A 12V power 

converter is used to supply the sonde, and a 5V power converter is used to power the servo (C5) 

and the microcontroller board Raspberry Pi (C14).  

The Navigator includes a multiparameter water quality sonde Yosemitech - Model Y4000 

(C15). We chose this sonde due to its compact size, low cost, and ease of integration. The Y4000 

monitors dissolved oxygen, conductivity, turbidity, pH, chlorophyll, and temperature. An 

integrated wiper system can prevent biofouling, air bubbles, and debris, thus reducing erroneous 

data. The multiparameter sonde is controlled using the Raspberry Pi board (C14) to define 

temporal resolution, deploy the sensor heads, and save data files. The sonde can be calibrated 

using the multi-sensor PC tool by Yosemite Technologies.  

The Navigator features an OAK-D Lite 13MP depth camera (C16) to collect field 

photographs and a 30-degree single-beam echosounder ping sonar (C17) to measure depth. The 

camera is connected to the Raspberry Pi board (C14) and the sonar is connected to the autopilot 

(C8). The Navigator has an LTE modem with a cellular SIM card (C18) connected to the 

Raspberry Pi (C14) to transfer real-time data that can be shared worldwide. Finally, penetrators 

(C18) are used to have watertight seal electrical cables as they pass into the pelican case (C3). 

2.2.3 Software Design  

The Navigator software provides easy-to-replicate and customized monitoring solutions 

to a broad range of users, and all our code is publicly hosted on GitHub (see Supplementary 

Information A2). The Navigator uses an Ubuntu Desktop 22.04.1 LTS Linux operating system 

running on the Raspberry Pi 4 4GB (C14). The software is designed as a set of Robot Operating 

System 2 (ROS2) nodes. To understand the architecture of our software, it is necessary to 

https://www.environmental-expert.com/products/brand-yosemitech
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understand the ROS2 ecosystem it is built on. When using ROS2, the code is organized into 

packages containing nodes based on their function, and those nodes communicate with each 

other through messages. The nodes create and observe such messages by publishing and 

subscribing to specific topics. This provides flexibility, as users can integrate additional ROS2 

packages to fit their needs without modifying already integrated nodes. Within the code 

developed for The Navigator, we have several nodes responsible for a task onboard the vehicle. 

Figure 2 presents the architecture of our software, with representative titles for the roles of the 

nodes and connections showing the topics that the nodes communicate through publishing and 

subscription. 

The Autopilot system uses ArduPilot’s ArduRover version 3.5.2 firmware. The Autopilot 

requires setup and calibration tasks, which are well-documented on the ArduPilot website. The 

operator needs to install a ground station on their field laptop to communicate with the Cube 

autopilot (C8) through the telemetry radio (C10). The data transmitted include GPS waypoints, 

battery health, the autopilot’s sensor health, etc. We used ArduPilot’s Mission Planner software 

because it is the most popular and has an extensive database with community support and 

documentation. Other options include APM Planner and QGroundControl, among others. No 

modification of The Navigator source code is required to switch between ground stations 

software.  

The ground station, which may be housed at an onshore building, a mobile unit, or a boat, 

is crucial for deploying The Navigator. The ground control station’s primary equipment is a 

laptop with ground control software installed. Additional components are a USB telemetry 

transmitter (C10) connected to the computer and an RC transmitter (C6). Wireless 

communication methods via telemetry transmitters are generally used to assign missions to The 
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Navigator. The ground station keeps track of the status of The Navigator and its onboard 

hardware and sends control instructions to remotely operated missions. 

We used Ubidots to create a website to communicate with The Navigator and visualize 

and download data. Ubidots provides a free tier for educational use and is easy to set up. We 

created a simple interface for viewing previous data over a wide time range, visualizing real-time 

updates when data are received, and restricted viewing access as specified by the user. Any 

website using HTTP could be used to communicate with The Navigator, but some slight 

modification of The Navigator source code would be necessary. The data sent to the website 

includes sonde readings, camera status, and GPS locations. Data are displayed as time-series 

plots with colored ranges and a map with pinpoints. The data are sent through the onboard USB 

LTE modem (C18).  

We used the Luxonis Depth AI platform to save images taken from the Oak D lite camera 

(C16) in The Navigator. This platform combines artificial intelligence, computer vision, depth 

perception (Stereo, ToF), and segmentation. We programmed Luxonis Depth AI to save images 

for our initial field tests.  

 

Figure 2.2: The Navigator hardware (left) and software schematic (right). 
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2.3 VALIDATION AND FIELD TESTING 

We tested The Navigator in three applications. First, the Lagrangian monitoring of a 7th-

order river reach in the Rio Grande using the drifting mode to understand where, how, and why 

water quality changes. Second, we monitored Santa Rosa Lake following GPS waypoints to 

characterize post-fire disturbances from the largest recorded wildfire in New Mexico, i.e., the 

Hermits Peak-Calf Canyon wildfire that occurred in the spring of 2022. Third, we monitored a 

small urban detention pond in the City of Albuquerque using the autonomous mode to collect 

high spatial resolution water quality data and depth along a grid path.  

Before each field day, we calibrated each sensor following the manufacturer’s 

recommendations. With the field information collected from water quality sensors and GPS data, 

we generated heatmaps using R's spacetime and trajectories package (Pebesma, 2016). These 

heatmaps (KMZ graphic format) were later imported into Google Earth to create layered water 

quality maps to display water quality data in a longitudinal framework.  
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Figure 2.3: A Map of New Mexico, USA, with red boxes enclosing the study sites. A) 7th-order 

study reach along the Rio Grande where The Navigator was used in drifting mode on day 1 (May 

19th, 2022) and day 2 (May 20th, 2022). B) Hermit’s Peak-Calf Canyon Fire perimeter in red and 

boundaries of the impacted watershed draining to Santa Rosa Lake. The Navigator was deployed in 

autonomous mode to follow a waypoint path across the lake on August 19th, 2022. C) Recreational 

fishing pond in the City of Albuquerque, where The Navigator was deployed in autonomous mode 

following a grid pattern on November 11th, 2022.  
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2.3.1 The Navigator: Drifting Mode Operation 

On May 19 (day 1) and May 20, 2022 (day 2), we monitored 28.43 km of the Rio Grande 

near the City of Albuquerque in drifting mode, i.e., moving with the river’s current. The 

watershed draining area is ~37,221 km2 and features ~55% shrub and grassland, 36% forest, and 

~2.8% developed land (“Model My Watershed,” n.d.). The study reach starts ~58 km 

downstream of Cochiti Lake, a flood and flow control reservoir that removes sediment from the 

river (Massong et al., 2010). This section of the river features the City of Rio Rancho’s 

wastewater treatment plant (WWTP) return effluent, the City of Albuquerque’s water intake for 

drinking supply, storm and agricultural return flow channels, and the City of Albuquerque’s 

WWTP return effluent. Due to low flow conditions, i.e., 21.8 m3/s compared to a 30-year median 

of 70 m3/s (USGS gage 08330000), we were not able to collect data along a 15.3 km reach 

between Montaño Bridge and Rio Bravo Bridge (Figure 3A) because the flow was too shallow 

and unsuitable for The Navigator. The United States Geological Survey (USGS) operates several 

stream gages in this reach, i.e., USGS 08329918 at Alameda Bridge, USGS 08329928 near 

Paseo Del Norte Bridge, and USGS 08330830 at Valle de Oro, which we used to report flow 

data. 

We collected data every 2-min for 5 h and 48 min on day 1 and for 4h and 52 min on day 

2. This corresponded to an average of one sampling event every 114 m on day 1 and every 80 m 

on day 2. The Navigator collected GPS, turbidity, pH, temperature, dissolved oxygen (DO), and 

specific conductivity (SC) data (Figure 4 and Figure S1). We activated the remote steering 

controller only when the vehicle was drifting near thick riparian vegetation and near the 

diversion dam used by the water treatment plant's intake facility. We followed The Navigator 
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using a kayak through the study reaches and verified the functioning of real-time data telemetry 

with the Ubidots website dashboard. 

The data collected by The Navigator revealed spatial and temporal changes in water 

quality parameters (Figure 4). On day 1, we observed an increase in water temperature from 17.0 

to 22.6 °C (Figure 4), which may be due in part to daily changes in air temperature over the 

monitoring period. We also observed a longitudinal increase in specific conductivity from 273.3 

to 291.7 μS/cm, with abrupt changes near releases from the WWTP of the City of Rio Rancho 

(i.e., 273.8 to 299.6 μS/cm) and runoff outlets from unlined channels or arroyos (i.e., 281.3 to 

290.4 μS/cm). These changes were local as lateral discharges were orders of magnitude smaller 

than that from the Rio Grande, e.g., ~0.3 m3/s in the Rio Rancho WWTP and 23.4 m3/s in the 

river. During our monitoring, the inflatable diversion dam controlling the water intake from the 

Rio Grande into the water treatment plant of the City of Albuquerque was raised and created 

water stagnation upstream and high turbulence downstream. To avoid the dam, we directed The 

Navigator to the fish bypass channel and detected changes in turbidity from 33-37 FNU upstream 

to 40-49 FNU downstream.  

On day 2, The Navigator registered drastic water quality changes as it passed through the 

Albuquerque WWTP outfall, which has a maximum capacity of 76 MGD (i.e., 3.3 m3/s), making 

it the largest in New Mexico. That day, the Rio Grande’s average flow was 18.9 m3/s, and the 

ABQ WWTP effluent discharge was 2.3 m3/s. We recorded specific conductivity values 

increasing from 276.1 to 689.8 μS/cm and temperatures rising from 18.7 to 22.9°C (Figure 4). 

The temperature and conductivity values gradually decreased downstream of the WWTP point 

source for ~ 4 km and then rose gradually as a part of a diel cycle. Similarly, The Navigator 

registered changes in DO from 6.5 to 5.3 mg/L, turbidity from 53.1 to 8.8 FNU, and pH from 8.1 
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to 7.1. These values also gradually rose to those upstream of the Albuquerque WWTP. This 

study shows how The Navigator can monitor water quality parameters at higher spatial and 

temporal resolutions, supporting identifying sources and assessing their impacts at spatial scales 

unattainable by Eulerian monitoring or grab sampling.  

 

Figure 2.4:  Longitudinal heatmap profile of water quality parameters collected by The Navigator 

along the Rio Grande River near Albuquerque, NM. The blue dots indicate USGS flow gages, green 

shade indicates low values and red indicates high values. Clock time is indicated in hh: mm.  
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2.3.2 The Navigator: Autonomous Mode Operation 

Following GPS waypoints 

The Navigator is equipped with an autopilot system capable of following GPS waypoints 

to track water quality changes autonomously. With support for site access from the US Army 

Corps of Engineers (USACE) Albuquerque District, we conducted a high-resolution Lagrangian 

monitoring of water quality changes associated with the mobilization of wildfire disturbances 

after the Hermit’s Peak-Calf Canyon Fire (Figure 2.3 B). To contextualize, as of early 2023, this 

wildfire is the largest ever recorded in New Mexico and burned 138,188 hectares between April 

and June 2022. The fires began from out-of-control prescribed burns (“Hermit Peaks Fire,” 

2022) and expanded aggressively due to sustained high-wind and dry conditions that are part of a 

climate change-induced megadrought gripping vast areas of the western United States (Freedman 

and Fears, 2020). Postfire, after the storms from the monsoon season started to mobilize burned 

materials from the burned area into Gallinas Creek and into the Pecos River, we monitored water 

quality from Santa Rosa Lake and its upstream delta, which are located ~175 km downstream 

from the burn scar perimeter.  

Since our goal was to determine how the discontinuity of a river system brought by a 

flow-regulating dam impacts the propagation of wildfire disturbances in a fluvial network, we 

monitored the Pecos River Delta-Santa Rosa Lake transition for ~8 km at a fine sampling spatial 

scale of about one sample every 64 m. The study was conducted on August 19, 2022, after a 

precipitation event of 9.4 mm fell over the burn scar on August 17-18, 2022 (USGS Atmosphere 

gage 354150105275301) and mobilized debris and sediments. The longitudinal monitoring 

followed the direction of the flow, which was 13.1 m3/s, exceeding the median of 1.0 m3/s 

between 1977-2022 (USGS gage 08382650) (“USGS WaterWatch -- Streamflow conditions,”.). 
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The Navigator’s data revealed drastic changes in the spatial patterns of water quality 

parameters (Figure 5). DO transitioned from ~ 6 mg/L in the Pecos River upstream of the delta, 

to anoxic conditions (~0 mg/L) near the delta, and then rose as the water reached the dam. The 

DO sag and recovery patterns were inversely proportional to the turbidity values, suggesting that 

microbial respiration or chemical oxygen demands (DO sink) and photosynthesis (DO source) 

were largely controlled by sediment fluxes from the wildfire (Ball et al. 2021; Smith et al. 2011; 

Reale et al. 2015). pH values were lower in zones with low DO, suggesting increased aerobic 

microbial metabolism and CO2 releases associated with the high influx of sediment from wildfire 

material (Chapra, 2008). Specific conductivity and temperature increased along the flow path 

following the DO trend. During the monitoring activity, high sediment loads come from Gallinas 

Creek and the Pecos River sinking along the delta due to the reduced flow velocity. We also saw 

floating debris and bubbles from wildfire disturbances remaining near the surface of the lake.  

Our monitoring with The Navigator indicated drastic changes in water quality parameters 

over short distances along the lake in response to post-wildfire rainfall-runoff events occurring 

hundreds of kilometers upstream. This allowed us to identify hotspots and plausible sources and 

sinks of physicochemical parameters. Since the monitoring lasted <2h, our data from the lake are 

not as affected by diel cycles as those from the Rio Grande. This study with The Navigator 

helped us understand how lakes affect the longitudinal propagation of wildfire disturbances 

along fluvial networks, acting as sinks and resetting the mobilization of wildfire material that 

becomes part of the lakebed. Our results bring into focus the importance of longitudinal 

monitoring and highlight the importance of selecting adequate sampling locations and spatial 

coverages.   
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Figure 2.5: The Navigator is monitoring Santa Rosa Lake, NM, to understand the water quality 

impact of monsoon runoff on the reservoir from the Hermit peaks/ Calf Canyon wildfire. The blue 

dot indicates USGS flow gages for Pecos River below the dam; green indicates low values, and red 

indicates a high value for water quality parameters. Clock time is in hh: mm.  
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Following a grid path. 

On November 11, 2022, we deployed The Navigator in a recreational fishing pond in the 

City of Albuquerque (Figure S3). We used a GPS grid path mission of 400 m to monitor the 

north side of the pond using Mission Planner. This monitoring activity lasted 25 min, was 

completed at an average speed of 0.27 m/s, and used a sampling frequency of one sample per 

minute, amounting to about one sample every 16 m. The Navigator monitored turbidity, pH, 

temperature, DO, conductivity, oxygen reduction potential (ORP), and chlorophyll-A. We also 

added the depth sonar and an Oak D-lite camera. We chose a zig-zag grid path to gather high 

spatial resolution of water quality parameters and test the vehicle's maneuverability. 

As expected, we observed minimum changes in surface water quality parameters due to 

the small size of the pond and the short duration of our test (Figure 6). Even though the pond is 

relatively deep with respect to its surface area, the sensors in The Navigator cannot reach deeper 

layers to detect vertical heterogeneities. The values observed in this short study fall within 

expectations for low sediment, small ponds. Logistically, this test is analogous to monitoring a 

point source or the confluence of two streams. Thus, the autonomy of The Navigator would 

allow researchers and practitioners to monitor wide water bodies from a single location while 

collecting high spatial resolution data on water quality parameters and depth.  
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Figure 2.6: a) The Navigator monitoring the Bob Gerding catch and release pond, Albuquerque, 

NM. b1-b5) Images captured by The Navigator while monitoring. c) Heatmap of the water quality 

parameters and depth data collected by The Navigator.  
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2.4 THE NAVIGATOR: COMPARISON WITH EXISTING TECHNOLOGY 

While numerous ASVs have been developed, most have focused on oceanography and 

only a few on freshwater applications. We compared the performance of The Navigator with 

three other monitoring platforms that were designed for longitudinal monitoring of freshwater 

systems: 1) the Xylem HYCAT, 2) the Teledyne Z-Boat 1800RP, and 3) the Oak Ridge National 

Laboratory (ORNL) AquaBOT (Griffiths et al., 2022). The spider map in Figure 7 represents a 

qualitative comparison because a quantitative comparison would disregard the fact that they were 

built for different applications and can be custom-made. For example, the AquaBOT is designed 

specifically for the water quality monitoring of low-mid order streams and is ~2.5x times larger 

than The Navigator. The Teledyne Z-Boat 1800 is designed for hydrographic surveys that require 

higher payloads and is ~4-7x heavier (38-78 kg) and ~5x larger than The Navigator. The Xylems 

HYCAT can monitor bathymetry and water quality and is ~5x (53kg) heavier than The 

Navigator.  
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Figure 2.7: Comparison spider map of three autonomous surface vehicle platforms and The 

Navigator.  

 

2.5 CONCLUSIONS  

The Navigator is a do-it-yourself (DIY), innovative, cost-effective (USD 5,101 in 2022), 

easily adaptable solution for Lagrangian monitoring of surface waters that can support progress 

in hydrologic sciences, watershed management, health, and wellbeing efforts worldwide. The 

Navigator can generate and share high spatial- and temporal-resolution water quality parameters, 
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site photos, and depth surveys using off-shelf technologies that are affordable, open source, and 

easy to integrate with other sensor platforms. The off-shelf emerging technologies used are 

cutting-edge, making The Navigator smarter, cheaper, smaller, lighter, and more reliable than 

other ASV systems. The Navigator can generate and share data in real-time to help make 

informed decisions leading to improved environmental and human health outcomes, supporting 

the development of more sustainable and resilient societies. 

Our field test data prove that The Navigator can help researchers, consultants, and 

stakeholders better understand the coupling of aquatic and human systems. This system provides 

tools to assist in planning, restoration, mitigation, enforcement, and disaster response efforts. The 

emphasis of this technology on understanding local-to-watershed scale spatial variations of 

natural and anthropogenic stressors can better inform holistic approaches for freshwater resource 

management. The Navigator allows for sampling spatial heterogeneities in water quality 

parameters at sub-hour to multi-day resolutions, providing data-rich solutions with minimum 

upfront (Table 1), maintenance, and operational costs.  

The Navigator facilitates the linkage between Eulerian datasets collected at a site (e.g., 

USGS stream flows and water quality data) and Lagrangian-based monitoring to provide a better 

understanding of where, how, and why spatiotemporal variation in water chemistry and 

biogeochemical processing occurs. This technology has numerous critical applications, primarily 

in the water technology and energy and food sectors (i.e., across the food-energy-water FEW 

nexus). The technologies like the Navigator can help develop holistic strategies to manage FEW 

resources as it provides high spatiotemporal resolution capturing the impacts of land use 

changes, point and diffuse sources, and climate variability on freshwater systems. It can help 

identify risks relevant to the water supply for drinking, industrial, and agricultural activities and 
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address concerns from the associated return flows (e.g., combined sewer overflows, thermal 

pollution, excess nutrients, etc.). This system can inform agencies about water quality issues 

related to excess loads, dilution requirements, unwanted leakages to aquatic ecosystems, and 

gaining and losing conditions in rivers and lakes. The spatiotemporal water quality data 

generated by this development can support the development of regulation and enforcement of 

environmental flows, thermal pollution, and mitigation and restoration efforts post-disturbance 

(e.g., wildfires, spills, land use changes, etc.). Overall, The Navigator can help address questions 

involving mass and energy balances in surface water ecosystems and support evidence-based 

decision-making.  
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Comparison of experimental and empirical mixing lengths downstream of a 

wastewater treatment plant discharging into an arid river. 
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3.1 INTRODUCTION  

Globally, large volumes of untreated and treated wastewater generated by domestic, 

industrial, and commercial sources are discharged into rivers, lakes, and marine systems, 

typically as point sources (Rice, Wutich, and Westerhoff 2013; UNESCO 2020). According to 

the United Nations, the global volume of treated wastewater generated in 2018 was 

approximately 340 billion cubic meters, and it is projected to increase by 51% to 574 billion 

cubic meters by the year 2050 (United Nations Environment Programme 2021). While 

technological advances have played a significant role in increasing the capacity to treat 

wastewater and improve its quality (Angelakis and Snyder 2015), multiple contaminants of 

concern, such as microplastics, pharmaceuticals, and per- and polyfluoroalkyl substances (PFAS) 

remain largely untreated (Aymerich et al. 2017; Podder et al. 2021; Tiwari et al. 2017; Meng, 

Kelly, and Wright 2020). Given the urgent need to increase water supply through water reuse of 

partially and fully treated wastewaters for landscaping (Baawain et al. 2020), irrigation 

(Mortensen et al. 2016), and human consumption (Mizyed 2013), the interest in understanding 
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environmental mixing, dilution, and overall wastewater management in fluvial systems is 

reemerging (Antweiler, Writer, and Murphy 2014; Aymerich et al. 2017; Kraus et al. 2017).  

There are best practice guidelines for establishing mixing zones, i.e., areas where active 

mixing and dilution of effluents occur (EPA 305(b) report 2009). In these mixing zones, 

pollutant concentrations can temporarily exceed water quality standards until contaminants are 

mixed and diluted by receiving water bodies. Near wastewater treatment plant (WWTP) outfalls, 

mixing zones are primarily influenced by the orientation of the outfall, its size, and the 

differences in flow and densities between the river and the effluent. Farther downstream, mixing 

is more influenced by the river’s geomorphology (i.e., width, depth, sinuosity) and dilution 

capacity (G. H. Jirka, Doneker, and Hinton 1996; Campos, Morrisey, and Barter 2022). In 

practice, mixing zones (a 2D problem) are estimated through mixing lengths (1D solutions), i.e., 

the distance downstream from a point source over which the concentration of solutes in a 

receiving river are heterogenous vertically or laterally (Rutherford 1994). Mixing lengths are 

typically computed using empirical formulas derived from one-dimensional solute transport 

models and consider physical and hydraulic parameters describing the river’s potential for 

dispersion and mixing through turbulence (Table 1) (Chapra 1997; Fischer 1979; Ward 1973; G. 

Jirka and Weitbrecht 2005; Rup 2006; Cleasby and Dodge 1999). However, most of those 

equations have not been tested in the field with high-resolution techniques and under various 

flow conditions but remain in use as standard practice.  

Conceptually, 1D mixing length equations assume that water is mixed vertically and 

laterally relatively quickly (Ward 1973; Fischer 1979). Most of those equations do not explicitly 

account for water temperature and density differences between the river and the effluent, even 

though temperature-related stratification affects mixing in lentic (e.g., lakes) and lotic systems 
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(e.g., streams). Understandably, the technology and resources available to derive empirical 

mixing length equations in the 1970s did not allow for multi-flow verification or realistic tests 

under different conditions imposed by the dynamics of the river (i.e., sediment, temperature, and 

solute concentrations along the hydrograph) and its interaction with a much more constant 

effluent. However, these unaccounted-for considerations are highly relevant in arid and semi-arid 

regions, where WWTP effluents can be dominant sources of water in rivers during dry periods 

(Mortensen et al. 2016; Hur et al. 2007), and where the continuously dwindling rivers flows are 

the primary source of water for multiple users and uses (Cooke, Rutherford, and Milne 2010). 

There, WWTP effluents may cause sustained water quality deterioration under drought 

conditions (Murphy et al. 2018; Hur et al. 2007; Kamjunke et al. 2022), and the correct 

estimation of mixing lengths becomes more imperative to protect communities (Campos, 

Morrisey, and Barter 2022).  

Recent technological advances offer alternatives to refining the estimation of mixing 

lengths and zones. Through high-resolution in-situ monitoring, water quality parameters such as 

temperature, dissolved oxygen, pH, and turbidity can be tracked to detect where they become 

homogenous across transects downstream of point sources (Cleasby and Dodge 1999). Also, 

remote sensing using satellite imagery can provide spatially distributed information on some 

water quality parameters, such as temperature, chlorophyll-a, and turbidity (Gholizadeh, 

Melesse, and Reddi 2016). However, their information's temporal and spatial resolution are 

typically inadequate to support local-scale and dynamic decision-making for managing surface 

water resources. Drone-based infrared and photogrammetric surveys have also gained popularity 

as they can provide better spatial resolution. Still, short battery lives, low payload capacity, high 

costs, and overwhelming regulatory restrictions severely limit the area they can cover. An 
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alternative to overcoming these challenges is using Lagrangian monitoring (i.e., as the flow 

goes), where water parcels are tracked, and mixing lengths are quickly established where and 

when the homogeneity of water quality parameters is detected.  

In this study, we quantified experimental mixing lengths downstream of a WWTP 

discharge in the Rio Grande near Albuquerque, NM, and compared our results against six 

commonly used empirical equations. Our experimental fieldwork was done under six different 

river flow conditions, generating river to WWTP discharges ranging from 1 to 33. Therefore, our 

study site provided unique opportunities to investigate how mixing lengths vary as a function of 

flow dynamics in shallow, wide river reaches. We quantified experimental mixing lengths 

monitoring the two banks of the river using Lagrangian sampling with The Navigator 

(Khandelwal et al., in review) and an instrumented kayak, and also used Eulerian monitoring 

across river transects when navigating the river was impossible due to low flows. From our 

results, we discuss the challenges associated with erroneous estimates of mixing lengths and 

opportunities to develop improved estimates.  

3.2 METHODS 

Study area 

We studied a ~9 km reach of the Rio Grande near Albuquerque under six flow conditions 

ranging from 3.7 m3/s to 50.9 m3/s, with a mean discharge of 16.7 m3/s. This reach is located ~55 

km downstream from Cochiti Lake, a large flood control reservoir maintained by the U.S. Army 

Corps of Engineers, which receives most of the flow from snowmelt and removes most of the 

sediments from the river. The reach is also located near the City of Albuquerque, where the 

treated effluent of the Southside Water Reclamation Plant is discharged. This wastewater 

treatment plant (WWTP) serves over 600,000 people and has an average daily effluent discharge 
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of 2.6-3.2 m3/s (Brown and Caldwell 2011). The WWTP outfall features a rock-lined channel 

merging into the left bank of the river at an angle of 45°. Our study reach starts 1.2 km upstream 

of the outfall of the wastewater treatment plant of the City of Albuquerque and ends 7.8 km 

downstream of the point source.  

The United States Geological Survey (USGS) operates gage USGS08330000 at Central 

Bridge, ~8.0 km upstream of the start of the reach, and gage USGS08330830 at Valle De Oro, 

~4.7 km downstream of the outfall. We obtained discharge values from these gages upstream 

(𝑄𝑢𝑝) and downstream of the WWTP (𝑄𝑑𝑜𝑤𝑛). The Albuquerque Bernalillo County Water 

Utility Authority monitors the effluent coming from the WWTP, providing discharge (𝑄𝑤𝑤𝑡𝑝) 

and water quality data at an hourly resolution (Figure 1). The effluent from the WWTP is 

relatively constant with respect to the Rio Grande, and in some dry periods, it may make up most 

of the flow in the river (Figure 2). In 2022 more than 40% of the Rio Grande 

watershed experienced exceptional drought in early summer (Pratt 2022) and, in consequence, 

the Rio Grande ran dry near Albuquerque for the first time in 40 years, and the WWTP effluent 

supplied all the discharge in the river. Since 𝑄𝑢𝑝: 𝑄𝑤𝑤𝑡𝑝 ranges between 1-33.3, our study site 

provides unique opportunities to investigate how mixing lengths vary as a function of flow in 

shallow, wide river reaches. 

https://www.drought.gov/watersheds/Rio-Grande
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Figure 3.1: (A and B) Study reach location and (C) satellite photo of the area near the 

outfall of the City of Albuquerque’s wastewater treatment plant.  
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Figure 3.2: Rio Grande discharge (blue) for the USGS08330000 at Central Bridge (𝑸𝒖𝒑), 

Southside Water Reclamation Plant outfall flow (𝑸𝒘𝒕𝒑; grey), and daily mean 𝑸𝒘𝒘𝒕𝒑 values (black). 

Red dotted lines indicate fieldwork days, and the red rectangle represents the period when the river 

ran dry, and the WWTP provided all the river flow downstream of the WWTP. 

 

Field Measurements 

Infrared imagery: We used a drone equipped with a thermal imaging infrared camera 

(FLIR Vue Pro R 640) and an RGB camera (20 MP 1'' CMOS) to visualize the mixing of WWTP 

effluent and river water with surface water temperature profiles. This fieldwork was completed 

on Nov 11, 2021, when 𝑄𝑢𝑝: 𝑄𝑤𝑤𝑡𝑝= 6.21 (Figure 3). Although the collected imagery was ideal 

for visualizing mixing patterns near the WWTP-river confluence, the technology only monitors 

temperature, is costly, and drone flying restrictions near the Albuquerque International Airport 

restricted its use in our area of interest. Thus, we only used the information collected from 

thermal imagery to design our Lagrangian and Eulerian monitoring.  
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Figure 3.3: Drone-based infrared imaging showing the higher temperature plume from the 

WWTP effluent (light grey, ~20-25 C) hanging on the left bank of the Rio Grande (black, ~15 C). 

High-resolution Lagrangian monitoring: We monitored the spatiotemporal variability of 

multiple water quality parameters along our study's left and right banks reach to characterize 
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mixing lengths. These data were collected on the left bank using The Navigator, an autonomous 

surface vehicle (ASV) instrumented with a GPS tracker and multiparameter sondes that monitor 

temperature, dissolved oxygen, pH, and specific conductivity at a depth of 0.2 m (Khandelwal, 

González-Pinzón, and Castillo 2023 under review). On the right bank, we used a kayak carrying 

a multiparameter YSI EXO2 sonde and a handheld GPS tracker to monitor the same parameters. 

The monitoring was completed under four different flow conditions, i.e., 𝑄𝑢𝑝: 𝑄𝑤𝑤𝑡𝑝 of 5.5, 7.3, 

12.5, and 22.1. On average, the data were collected at a spatial resolution of 72-102 m, over 2hr 

16min - 3hr 48min of navigation.  

Eulerian monitoring: In low flows with 𝑄𝑢𝑝: 𝑄𝑤𝑤𝑡𝑝 of 3.6 and 2.4, we could not navigate 

the study reach and used Eulerian monitoring. We used the same multiparameter YSI EXO2 

sondes along 11 transects spaced 200 m-2 km apart, depending on site access to the river. Before 

each Lagrangian or Eulerian monitoring field day, we calibrated each sensor following the 

manufacturer’s recommendations.  

Estimation of mixing lengths and comparison with existing models 

We generated heatmaps for water quality parameters using the spacetime and trajectories 

package from R (Pebesma 2016) and the sondes and GPS data. We estimated experimental 

mixing lengths (𝐿𝑚) for each parameter as the distance required for left and right bank values to 

become 5% equal or uniform downstream of the WWTP outfall (Fisher, 1979). Using this 

criterion, we confirmed that water quality parameter values upstream of the WWTP outfall were 

uniform. 
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The heatmaps (KMZ files) were arranged next to one other and imported into Google 

Earth to create layered water quality maps to display water quality data under different dilution 

ratios. The resolution of the Eulerian monitoring was increased using linear interpolation 

between transects to generate a higher resolution heatmap. 

Existing mixing length models 

We compare our experimental estimates of mixing lengths (𝐿𝑚) with multiple empirical 

equations (𝐿; Table 1). The reach characteristics required to populate those equations include 

average velocity, depth, width, channel irregularity, and longitudinal slope values. The hydraulic 

parameters velocity, depth, and width were obtained from USGS data from the upstream station. 

Onsite observations of channel meandering and inspection of satellite imagery were used to 

determine a qualitative measure of channel irregularity (sinuosity) and longitudinal slopes.  

Table 3.1: Empirical formulas used to compare mixing lengths. 

Source Equation 

Mixing length zone 
(Fischer 1979) 𝐿 =

𝑘𝑏2𝑈

𝑅𝑢∗
                              (1) 

Length of the longitudinal mixing zone 
(Rutherford 1994) 

𝐿 = 0.536
𝑈 𝑠2

𝐷𝑦
                    (2) 

Mixing length equation  
(G. Jirka and Weitbrecht 2005; Skorbiłowicz et al. 2017) 

𝐿 = 0.4
𝑈 𝑠2

𝐷𝑦
                         (3) 

Mixing length equation  
(Rup 2006; Skorbiłowicz et al. 2017)  

𝐿 = 0.29
𝑈 𝑠2

𝐷𝑦
                      (4) 

One half width mixing equation.         
(Cleasby and Dodge 1999) 

𝐿 =
0.4(𝑏/2)2 𝑈

𝐷𝑦
                     (5) 

European Union rule of thumb for river mixing zone.      
(Environmental Quality Standards 2008) 𝐿 = 10 𝑏                             (6) 

 

In Table 1, 𝐿 is the empirical mixing length, 𝑏 is the channel width, 𝑈 is the mean 

velocity, 𝑅 is the hydraulic radius, 𝑢∗ is the shear velocity, 𝑠 is the linear transverse scale, 𝐷𝑦 is 
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the transverse dispersion coefficient (𝐷𝑦~ 0.3 m2/s for the Rio Grande), and 𝑘 is a channel type 

constant (𝑘~10 for the Rio Grande).  

3.3 RESULTS AND DISCUSSION 

Flow conditions and historical drought 

The Rio Grande is a highly managed arid river system, providing water for 6 million 

people and irrigating 2 million acres of land. Drought years strain water operations, making flow 

management complex. Nearly 75% of the river's water is used for agriculture, and managing low 

flows represent an environmental concern for endangered species native to the Rio Grande, 

particularly the Rio Grande Silvery Minnow (Pratt 2022). In 2022, 40% of the Rio Grande 

watershed experienced exceptional drought, resulting in record-low flows during the summer and 

fall. In 2022, near Albuquerque, New Mexico, the river faced ~19.5% lower flows than the 

average flow since 1970. During the fieldwork days of this study, the river flow at 𝑄𝑢𝑝 ranged 

from 50.9 m3/s to 3.74 m3/s, and the wastewater flow at 𝑄𝑤𝑤𝑡𝑝 ranged from 3.01 m3/s to 1.56 

m3/s. These flow values generated dilution ratios between 22.1 and 2.4. Also, river depths ranged 

from 0.2- 0.9 m (Table 2). 

Table 3.2: Hydrologic characteristics of the Rio Grande near Albuquerque, NM.  

𝑸𝒖𝒑

𝑸𝒘𝒘𝒕𝒑

 
𝑸𝒖𝒑 

(m3/s) 

𝑸𝒘𝒘𝒕𝒑  

(m3/s) 

𝑸𝒅𝒐𝒘𝒏  

(m3/s) 
Depth 

(m) 
Width, 𝒃 

(m) 
Area 
(m2) 

Hydraulic 
radius, 𝑹 

(m) 

Mean 
velocity, 𝑼 

(m/s) 

Linear 
transverse 
scale, 𝒔 (m) 

2.4 3.74 1.6 5.4 0.2 18 4 0.2 0.9 12.6 

3.6 7.0 2.0 8.5 0.3 27 8 0.3 0.9 18.9 

5.5 15.0 2.7 15.6 0.5 38 17 0.4 0.9 26.6 

7.3 22.1 3.0 19.0 0.6 44 25 0.6 0.9 30.8 

12.5 33.4 2.7 32.0 0.7 53 37 0.7 0.9 37.1 

22.1 50.9 2.3 50.7 0.9 65 59 0.9 0.9 45.5 
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Experimental mixing lengths 

The experimental mixing lengths observed from our datasets follow a bell-shaped pattern 

with river flows and dilution ratios 𝑄𝑢𝑝: 𝑄𝑤𝑤𝑡𝑝, i.e., low and high flows have smaller mixing 

lengths and intermediate flows have greater magnitudes (Figures 4-6). Multiple mixing lengths 

were obtained from each water quality parameter tracked for a specific river flow or dilution 

ratio, even though they all followed the same bell-shaped patterns (Figures 4-6). This suggests 

that contrasting phenomena at low and high flows may affect mixing length patterns similarly. 

Noticeably, all the empirical equations used to compare our experimental observations (Table 1) 

predicted a monotonically increasing mixing length with discharge and misrepresented our data 

(Figure 6).  

As river flows decrease, the outfall effluent has a higher depth and momentum, 

supporting a relatively fast and expansive mixing driven by kinetic energy in a process analogous 

to jet diffusion (Gomolka, Twarog, and Zeslawska 2022). The reduced river depth limits vertical 

spreading, causing the negatively buoyant effluent to rise rapidly, contributing to horizontal 

mixing (Pouchoulin et al. 2020). Additionally, the shallow depth of the river increases the 

relevance of shear stresses on stirring and mixing, enhancing the dispersion of the effluent and, 

thus, reducing mixing lengths (Chen et al. 2013).  

We observed increased mixing lengths at intermediate river flows. Experimental 

observations with air and water have shown that fluids tend to remain attached to surfaces at 

increased flow velocities, a phenomenon known as the Coanda effect (Lalli et al. 2010). This 

attachment is due to pressure differences caused by differential flow velocities and contributes to 

“bank-hugging” of effluent plumes. Also, as river flows increase, river temperatures decrease, 

and the difference in water densities between the river and the WWTP increase, creating water 
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stratification, which results in reduced mixing (Elçi 2008; Buxton et al. 2022). The EPA 

regulations under Clean Water Act recommend avoiding bank-hugging plumes or dominance of 

the Coanda effect in receiving water bodies that are used for irrigation, that host migrating and 

endangered fish, or where recreational activities can be impacted by non-mixing plumes (Clean 

Water Act Section 316(a) 2007). 

At higher flows, mixing lengths consistently decreased due to increased turbulent mixing, 

which overcame the dominance of Coanda and water stratification effects (Campos, Morrisey, 

and Barter 2022). Since the wastewater temperature was consistently higher than that of the 

river, effluent plumes rose, contributing to faster vertical mixing. Combined with increased 

turbulent and vertical mixing, the higher dilution potential under high flows shortened mixing 

lengths (Lewis et al. 2020).  
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Figure 3.4: Longitudinal profiles of dissolved oxygen and temperature observed upstream 

and downstream of the Albuquerque wastewater treatment plant (WWTP) effluent during 

different flow conditions (𝑸𝒖𝒑: 𝑸𝒘𝒘𝒕𝒑). Left bank (outfall side) data are on top of right bank data. 

Dash lines indicate the experimental mixing lengths (𝑳𝒎), where left and right bank data are within 

5% difference downstream of the WWTP.  
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Figure 3.5: Longitudinal profiles of pH and specific conductivity observed upstream and 

downstream of the Albuquerque wastewater treatment plant (WWTP) effluent during different 

flow conditions (𝑸𝒖𝒑: 𝑸𝒘𝒘𝒕𝒑). Left bank (outfall side) data are on top of right bank data. Dash lines 

indicate the experimental mixing lengths (𝑳𝒎), where left and right bank data are within 5% 

difference downstream of the WWTP.  
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Experimental mixing lengths vs. empirical mixing lengths 

We compared our experimental mixing lengths with the one-dimensional empirical 

equations from Table 1 (Figure 5). Notably, none of the empirical equations can reproduce the 

bell-shaped mixing length pattern observed for all water quality parameters using Lagrangian 

monitoring. Those empirical equations are monotonically increasing and vary from simple to 

intermediately complex considerations derived from one-dimensional transport models. 

Generally, the shortest mixing length prediction was obtained with Equation 6, which only uses 

width to predict mixing (Environmental Quality Standards 2008), and the longest prediction was 

obtained with Equation 1 (Fischer 1979) which, unlike the others tested, accounts for shear 

stresses. Also, generally, the discrepancy between the predictions with empirical equations grew 

with river discharge, as all are proportional to flow velocity. In low flows with 

2.4<𝑄𝑢𝑝: 𝑄𝑤𝑤𝑡𝑝<3.6, our experimental mixing lengths were 1.5x to 7.5x longer than the 

predictions with empirical equations. In the intermediate flow region where the Coanda effect 

dominated, experimental mixing lengths were 2.5x-13x greater. In the highest 𝑄𝑢𝑝: 𝑄𝑤𝑤𝑡𝑝=22.1, 

experimental mixing lengths were 3x-7.5x smaller.  

While empirical equations have found widespread use in engineering practice for 

analyzing mixing phenomena, their derivation disregarded complexities that may be relevant in 

real-world practice. For example, most equations assume straight channel geometries, uniform 

cross-sections, and steady flow conditions. However, streams and rivers undergo highly dynamic 

flow and sediment transport processes, making vertical, lateral, and longitudinal mixing highly 

dynamic. In this context, our field observations based on Lagrangian monitoring have revealed 

shifting mechanisms dominating mixing, i.e., jet diffusion, Coanda effect, and turbulent mixing 

(Figure 6).  
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Figure 3.6: Experimental (𝑳𝒎) and empirical (𝑳) mixing lengths as a function of the dilution ratio 

(𝑸𝒖𝒑: 𝑸𝒘𝒘𝒕𝒑). Empirical equations 1-6 are described in Table 1.    

Impacts of mixing lengths on ecosystem services 

Mixing lengths are relevant in water quality assessments and studies of ecosystem 

dynamics in streams and rivers. In water resource management, mixing lengths help assess risk 

and mitigation strategies that communities downstream of point and distributed sources should 

have to reduce pollution exposure when streams or rivers are used for irrigation, fishing, 

ceremonial uses, groundwater recharge, and drinking water purposes. Regions located between a 

contaminant source and the mixing length are prone to undergo pollution issues as water 

properties (e.g., temperature, solutes, and sediments) are not homogenized and could overwhelm 

ecosystems (Campos, Morrisey, and Barter 2022; Skorbiłowicz et al. 2017).  
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In most cases, the effluent discharged from a WWTP contains higher levels of 

contaminants than the receiving stream or river, which can negatively impact ecosystem health 

and functioning (Martí, Riera, and Sabater 2009; Pascual-Benito et al. 2020; Castelar et al. 

2022). For example, the slow mixing of warmer plumes from WWTP can lead to reduced 

oxygen levels, impacting fish communities (Caissie 2006; Isaak et al. 2010; Perkins et al. 2012). 

Also, concentrated pharmaceutical and personal care products can be toxic to fish, amphibians, 

and invertebrates, disrupting hormone systems, impairing reproductive functions, and causing 

behavioral changes in these organisms (Wang et al. 2021; Issac and Kandasubramanian 2021; 

Ding et al. 2022; Adegoke et al. 2023; Hernando et al. 2006).  

While longer mixing length predictions generate more conservative and cautious 

estimates to help protect downstream water users, our results indicate that commonly used 

empirical equations may consistently underpredict mixing lengths in intermediate flow regimes, 

where the Coanda effect controls mixing. This underprediction could result in higher pollution 

risks for human populations capturing water from the same bank of upstream effluent discharges.  

Besides water quality issues, relatively high-velocity effluents discharging from WWTPs 

may cause erosion problems which, over time, can destabilize riverbanks and changes the river's 

geomorphology (Duró et al. 2020). Between 1996-2023, the erosion occurring near the 

Albuquerque WWTP outfall resulted in a ~9400 m2 area lost on the left bank side (Figure 7), 

affecting vegetation recruitment, which promotes even more erosion. To tackle these long-

standing problems, the City of Albuquerque initiated a $4.7 million restoration project in 2022 to 

realign the outfall, facilitate mixing with river water during low flow conditions, and restore 

crucial habitats for endangered fish and birds (Davis 2022). For that, the restoration project used 

root wads, which are clusters consisting of logs, roots, and boulders strategically placed along 
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the riverbank to create suitable fish habitats and mitigate streambed erosion. It is worth noting 

that the bank upstream of the outfall has exhibited consistent vegetation cover over the same 

period.  

 

Figure 3.7: Bankline evolution downstream of the Albuquerque WWTP outfall. The bank history 

has been obtained with satellite images from Google Earth. 

3.4 CONCLUSIONS 

Using high-resolution Lagrangian and Eulerian monitoring, our study assessed the impact 

of flow dynamics on mixing lengths downstream of a WWTP effluent discharge in the Rio 

Grande near Albuquerque, NM. The Lagrangian reference frame was critical to visualizing 

mixing lengths from the perspective of four different water quality parameters (i.e., dissolved 
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oxygen, temperature, pH, and specific conductivity). The Eulerian reference frame allowed us to 

continue our experimental work under the extremely low flow conditions that halted our use of 

Lagrangian equipment flowing down the river. Both Lagrangian and Eulerian monitoring designs 

were initially informed by infrared imagery. Our results show that the empirical equations 

traditionally used to estimate mixing lengths did not describe our experimental dataset correctly. 

While our experimental data revealed “bell-shaped” mixing lengths as a function of river:WWTP 

discharges, all empirical equations predicted monotonically increasing mixing lengths. Those 

mismatches between experimental and empirical mixing lengths are likely due to the existence of 

threshold processes defining mixing at different flow regimes, i.e., jet diffusion at low flows, the 

Coanda effect at intermediate flows, and turbulent mixing at higher flows, which are 

unaccounted for by the one-dimensional empirical formulas.  

The successful use of The Navigator and an instrumented kayak (since we had one 

prototype of The Navigator available) to monitor both banks of the Rio Grande and test 

empirical equations commonly used in a problem long-thought to be well understood calls for 

increased use of Lagrangian monitoring to better understand environmental dynamics. With the 

advent of real-time telemetry and high-resolution sensors, Lagrangian monitoring can rapidly 

and cost-effectively generate datasets that can more accurately describe flow and transport 

dynamics. Our findings also highlight the importance of combining Eulerian and Lagrangian 

efforts to provide a more robust understanding of the dynamics of mass and energy fluxes and 

how they affect coupled human-environment systems.  
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Chapter 4 

The role of a flood-control lake in attenuating the propagation of wildfire 

disturbances from the largest fire recorded in New Mexico, USA.  
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4.1 INTRODUCTION 

Forested watersheds play a critical role as the world's primary source of freshwater 

(Pringle 2001; Ice 2004; Sun et al. 2002). However, the frequency and extent of devastating 

wildfires are increasing (Ball et al. 2021b; Robinne et al. 2021; Gannon, Wei, and Thompson 

2020). Increased wildfire activity is closely tied to increasing aridity and variability in 

precipitation patterns, which are manifestations of global climate change (Macias Fauria, 

Michaletz, and Johnson 2011). When wildfires occur, the burning of tree canopies, understory 

vegetation, and soil layers impact the quantity and quality of water resources due to the 

intensification of overland flow, the release of ash and debris, and the disruption of soil 

processes (Reale et al. 2015; Mishra, Alnahit, and Campbell 2021; Bladon et al. 2014; Chen, 

McGuire, and Stewart 2020). The impacts of wildfires extend beyond terrestrial ecosystems, 

property, and infrastructure, as new evidence reveals that wildfires trigger cascading effects that 
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propagate through fluvial networks, affecting hydrologic and environmental processes, as well as 

ecosystem services (Murphy et al. 2018; McGuire and Youberg 2019; Dahm et al. 2015). In light 

of these concerns, it is essential to understand the impacts of wildfires on forested watersheds to 

develop effective management strategies and safeguard the integrity of ecosystems (Hohner et al. 

2019; Floyd et al. 2019). 

Post-fire precipitation events on burned soil can generate significant changes in runoff 

patterns (Wibbenmeyer, Sloggy, and Sánchez 2023) and mobilize sediments, ash, and debris 

through fluvial networks (Murphy et al. 2018). The new influx of sediments can alter the 

geomorphology and hydrodynamics of river channels and floodplains (Malmon et al. 2007; 

Barnard et al. 2023), and collapse water intake infrastructure, affecting water supply systems 

(Robinne et al. 2021). Also, the transport of ash, increased nutrients, and organic matter can 

change water chemistry and stream metabolism (Sankey et al. 2017).  

The impact of wildfire disturbances on fluvial networks is primarily driven by watershed-

related factors associated with fire severity and extent and post-fire dynamics of rainfall-runoff 

processes. However, flow and erosion control infrastructure can also play a key role (Floyd et al. 

2019). Near burned areas, erosion control structures such as gabions can help mitigate debris and 

sediment transport into fluvial networks (Callegary et al. 2021; deWolfe et al. 2008). Farther into 

the network, flow-control reservoirs can also play a crucial role in controlling the longitudinal 

propagation of disturbances due to their considerable size, the reduction of flow velocities, and 

the increase in residence times (Stone et al. 2021; Bonansea and Fernandez 2013). Since low 

flow velocities induce particle deposition, including sediments and particulate nutrients, and 

organic matter (Bonansea and Fernandez 2013; Goode, Luce, and Buffington 2012), their 

settling into reservoir beds and the increased contact times with biomass are potential pathways 
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for the removal and attenuation of wildfire disturbances. While post-wildfire disturbances have 

been associated with the deposition of increased amounts of inorganic sediment in reservoirs 

used for water supply (Emelko et al. 2016), jeopardizing the effectiveness of water treatment for 

drinking purposes, flow control reservoirs may attenuate the propagation of wildfire disturbance 

with less immediate impacts for society (Basso et al. 2021).  

This study combines datasets from Eulerian monitoring (i.e., at a site) of water quality 

parameters upstream and downstream of Santa Rosa Lake (Nichols et al.; in review) with 

Lagrangian monitoring (i.e., following flow paths) along the lake (Khandelwal et al.; in review) 

to quantify lake-induced changes and determine their role in attenuating the propagation of 

wildfire disturbances at the fluvial network scale. To achieve this, we established a rapid 

response team (Tunby et al., in review) dedicated to monitoring water quality dynamics along the 

Gallinas Creek-Pecos River-Santa Rosa Lake network (190 km) after the Hermit's Peak - Calf 

Canyon (HPCC) wildfire, the largest recorded fire in New Mexico. We seek to address how far 

downstream wildfire disturbances from the HPCC wildfire propagated in the fluvial network and 

the role of Santa Rosa Lake in that propagation.  

4.2 METHODS 

Study Site 

The HPCC wildfire, which started on April 6th, 2022, and was contained on August 21st, 

2022, became the largest recorded wildfire in New Mexico after burning 1,382 km2. The fire 

significantly affected the Gallinas Creek watershed, where most of the affected population live 

(Figure 1). Approximately 87% of its area was burned, with 19% experiencing high-severity, 

25% moderate severity, and 43% low severity burns. Gallinas Creek is a perennial stream that 

relies on snowmelt during spring and monsoonal storms in summer and fall. It originates near 
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Hermit's Peak and serves as a drinking water source for 7,200 residents in the City of Las Vegas, 

NM, located approximately 25 km downstream from the headwaters of Gallinas Creek. Further 

downstream, Gallinas Creek flows through canyons and farmlands before joining the Pecos 

River, around 128 km from its headwaters. The Pecos River flows into Santa Rosa Lake, located 

~40 km downstream of the confluence of Gallinas Creek.  

Monitoring Description 

Eulerian monitoring: Within two weeks from the beginning of the fire, our rapid 

response team installed YSI EXO multiparameter water quality sondes at three locations along 

the Gallinas Creek watershed. These sites include the La Placita fire station in Gallinas, NM 

(referred to as GFT22 km, because it is located 22 km from the headwaters of Gallinas Creek, our 

reference point at 0 km), near Montezuma, NM (GMZ29 km), and near Lourdes, NM (GL56 km). 

Two additional sondes were deployed on the Pecos River (PSR170 km and PBS190 km) in late 2020 

as part of a collaborative effort between the US Army Corps of Engineers (USACE) and the 

University of New Mexico (Figure 1). The EXO sondes recorded water temperature, specific 

conductivity, dissolved oxygen (DO), turbidity, and pH at 15-minute intervals. Each sonde 

underwent monthly cleaning and calibration, following the guidelines set by the U.S. Geological 

Survey (Wagner et al. 2006). In addition to the sondes data, discharge and reservoir data were 

gathered at 15-min intervals by USGS stream gages 08382650, 08382830, and 08382810, 

located near the PSR170 km, PBS190 km, and Santa Rosa Lake, respectively (U.S. Geological 

Survey, 2022). Figure S1 presents the Eulerian data. 

Lagrangian monitoring: Between July 15, 2022, and October 12, 2022, we carried four 

repetitions of Lagrangian monitoring following ~30 km along the transition between the Pecos 

River (a lotic system) and Santa Rosa Lake (a lentic system) to determine the impacts of wildfire 
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disturbances on water quality parameters (Figure 1). These Lagrangian monitoring campaigns 

lasted 2-3 hours to minimize the influence of diurnal variations on the water quality datasets and 

featured a sampling frequency of one recording every two minutes. After the first campaign, we 

avoided a reach consisting of rapids and a waterfall due to safety concerns between the 178-179 

km section. At the time of sampling, discharges in the Pecos River above Santa Rosa Lake 

(USGS gage 08382650) were above median historical values from 1977-2022 (Table 1). These 

higher discharge values were due to post-wildfire runoffs and the historically high monsoon 

precipitation falling in 2022. Similar trends were observed at GL56km (USGS gage 08382500).  

Our Lagrangian monitoring was completed with The Navigator (Khandelwal et al. 2023, 

under review), an autonomous surface vehicle made of fiberglass, instrumented with a GPS 

tracker to monitor space-time positioning, a thrust and rudder system to follow a preplanned GPS 

waypoint, and a Raspberry Pi microcontroller coupled to multiparameter sondes to monitor 

temperature (temp), optical dissolved oxygen (DO), turbidity (turb), pH and conductivity (Sp 

Cond). The Navigator features real-time data transmission through cellular service, enabling 

real-time tracking and easy retrieval when the survey is completed. To avoid data losses from 

any potential misfunctioning of The Navigator, we also used a kayak carrying a multiparameter 

YSI EXO2 sonde and a GPS (Figure S2). 
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Figure 4.1: Eulerian and Lagrangian monitoring of the Hermit’s Peak-Calf Canyon wildfire. The 

red line represents the burn perimeter. The red area represents the burn scar boundary of the 

Gallinas Creek watershed. GFT22 km, Gallinas Creek near La Placita fire station, 22 km 

downstream from the headwaters of Gallinas Creek; GMZ29 km, Gallinas Creek near Montezuma; 

GL56 km, Gallinas Creek near Lourdes; PSR170 km, Pecos River upstream of Santa Rosa Lake; PBS190 

km, Pecos River downstream of Santa Rosa Lake. 
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Table 4.1: Lake conditions during the Lagrangian monitoring with The Navigator. Discharge 

values are contextualized with records.   

Date 
Transect 

length 

Lake 

elevation 

Pecos River 

discharge 

08382650 

Comparable 

median Pecos 

River discharge 

(1977-2022) 

Gallinas 

Creek 

discharge 

08382500 

Comparable median 

Gallinas Creek 

discharge (1951-2022) 

Unit km m m3/s m3/s m3/s m3/s 

7/15/2022 11.60 1433.68 5.10 0.82 0.85 0.05 

7/29/2022 3.36 1434.77 8.69 1.93 1.56 0.23 

8/19/2022 7.89 1432.51 13.08 0.99 4.13 0.20 

10/12/2022 7.62 1435.83 4.59 0.57 0.08 0.00 

 

We established three distinct analysis periods based on flow time-series analyses 

(Nichols et al. 2023 under review), we established three distinct analysis periods. The pre-

monsoon period spanned from the start of our monitoring on April 25th, 2022, to June 26th, 

2022. The monsoon period, characterized by high precipitation-runoff, lasted from June 26th, 

2022, to September 13th, 2022. The post-monsoon period extended from September 13th, 2022, 

to December 1st, 2022.  

Estimation of changes in sediment transport 

The magnitude of turbidity in streams, lakes, and estuaries is often proportional to total 

suspended solids (𝑇𝑆𝑆) and can be quantified through linear regression analysis (Rasmussen et 

al. 2011). The turbidity-TSS relation is more reliable than sediment transport curves using 

streamflow (Lee, Rasmussen, and Ziegler 2008) and computational methods (Porterfield 1972). 

The USGS collected samples between June 2022 and October 2022 near GMZ29km to estimate 

𝑇𝑆𝑆 as part of their mission to identify and mitigate chronic stresses on water resources post-fire 

(USGS n.d.): 
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𝑇𝑆𝑆 =  2.028 (𝑇𝑢𝑟𝑏)  +  26.03      (1), 

where Turb is the turbidity in FNU measured in the field using sonde (Figure S3).  

We determined bulk or suspension densities following the approach proposed by 

Mccullough (1999). Bulk density (𝜌, kg/m3) was determined as:  

𝜌𝑟𝑖𝑣𝑒𝑟 𝑜𝑟 𝑙𝑎𝑘𝑒  =  𝑇𝑆𝑆 +  𝜌𝑟𝑤(1 − 𝑇𝑆𝑆)/𝜌𝑠      (2), 

where 𝜌𝑟𝑤 is the density of water at a given temperature (kg/m3) and 𝜌𝑠 is the density of 

the sediments, assumed as 2.5 kg/m3 based on the USGS samples. 

We used the approach that Bates (1953) introduced to classify deltas and their deposits 

based on the differences in bulk density between a flowing river and a lake. When the river’s 

bulk density is higher than the lake’s, hyperpycnal or stratified jet flows occur. In such scenarios, 

the river flow plunges beneath the lake's water surface and continues its course along the 

lakebed. After wildfires, river bulk densities increase primarily due to increased loads of fine-

grained sediments and ash (Kim 2002; Turner and Huppert 1992). Kim (2002) introduced a non-

dimensional density parameter, 𝑅, expressed as: 

𝑅 = 𝜌𝑙𝑎𝑘𝑒 − 𝜌𝑟𝑖𝑣𝑒𝑟/𝜌𝑙𝑎𝑘𝑒 − 𝜌𝑟𝑤      (3). 

 

𝑅 considers the buoyancy effect of the incoming freshwater into the lake. A critical value 

𝑅𝑐= -2 was proposed by Kim (2002) to separate weak plunging jets (𝑅𝑐<  𝑅  < 0) from strong 

plunging jets (𝑅  < 𝑅𝑐  < 0). In weak plunging jets, the flow originally plunges, but the density 

difference between the incoming flow and the lake water is not enough to produce a substantial 

shear and further propagation of the river flow along the lakebed.  
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Data quality control and assurance:  

Raw and converted data were processed for outliers and sensor drift with Aquarius 

Timeseries 21.1. Erroneous outliers were eliminated using a moving average filter targeting 

points deviating more than 20% from a two-hour moving window. We corrected sensor drift and 

biofouling by comparing pre- and post-cleaning and calibration values and applied a linear 

correction from the date of the previous maintenance (Wagner et al. 2006). Lastly, we performed 

a final visual inspection of data quality before statistical analyses. 

4.3 RESULTS  

Flow Dynamics 

During the pre-monsoon period, there were no significant high-flow events. Discharges 

upstream of Santa Rosa Lake, at PSR170 km, reached their lowest values during this period, with 

average values ranging from 0.02 to 0.17 m3/s. In mid-June, a block release from Santa Rosa 

Lake caused the average discharge at PBS190 km to increase to 2.81 m3/s for approximately eight 

days (Figure 3). This event resulted in the lake level dropping from 1436.3 m to 1429.8 m, the 

lowest level in 2022.  

In the monsoon period, 243 mm of precipitation occurred on the burn scar, with the 

majority falling between July 26th-30th (70 mm) and August 17th -18th (42 mm). During this 

period, there was one high flow event at PSR170 km with a discharge of 68.0 m3/s, i.e., 11x greater 

than the mean flow for the past 47 years (USGS n.d.), matching similar trends observed across 

the sites along Gallinas Creek (i.e., GFT22 km, GMZ29 km, and GL56 km ) (Nichols et al. 2023 under 

review). The high flow observed at PSR170 km resulted in a surface level of 1438.5 m on August 
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11th, the highest in 2022. The level fell again to 1431.3 m due to another block release from 

Santa Rosa Lake, which lasted for approximately ten days (Figure 2) 

In the post-monsoon period, 110 mm of precipitation was recorded within the burn scar. 

The majority of this precipitation occurred between October 3rd-8th and October 16th, with 57 

mm and 34 mm of rainfall, respectively. The peak discharge value during this period was 15.1 

m3/s at PSR170 km (Figure 2) and the lake level gradually increased from 1435.2 m to 1436.8 m.  

 

 
Figure 4.2: Discharges observed near PSR170 km Pecos River upstream of Santa Rosa Lake and 

PBS190 km, Pecos River downstream of Santa Rosa Lake. Lake levels for Santa Rosa Lake during the 

study period in 2022.  

 

Water quality dynamics from Eulerian monitoring  

During the pre-monsoon period, there was an increase in specific conductivity from the 

headwaters to the lower sites, with a 1,870 uS/cm difference between GFT22 km and PBS190 km 

(Figure S2). Turbidity values were at their lowest during the fire year at all sites upstream of 

Santa Rosa Lake, with average values ranging from 5.9 to 62.7 FNU (Figure S2). On the 

contrary, PBS190 km had the highest turbidity values of the fire year, with an average of 26.3 
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FNU. All other water quality parameters were similar between the PSR170 km and PBS190 km 

(Figures 3-4). 

 With respect to the pre-monsoon, most water quality parameters significantly changed at 

the stations upstream of Santa Rosa Lake (i.e., GFT22 km, GMZ29 km, GL56 km, and PSR170 km) 

during the monsoon period, and only a few changed downstream of the lake at PBS190 km  

(Figures 3 and S1). Turbidity experienced a significant increase at the monitoring sites, including 

PSR170 km upstream of Santa Rosa Lake (Figures 3 and S1), with period averages ranging from 

149 to 574 FNU. However, unlike observed values at locations upstream of the lake, PBS190 km 

experienced minimal reductions in turbidity, with a period average of 16 FNU (Figures 3 and 

S1). Specific conductivity significantly decreased at monitoring sites upstream of Santa Rosa 

Lake, with average ranges of 172 to 442 uS/cm, while it remained relatively high at PBS190 km, 

averaging 2087 uS/cm (Figures 3 and S1).  
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Figure 4.3: Split violin plots showing the variations in water quality at PSR170 km, Pecos River 

upstream of Santa Rosa Lake, and PBS190 km, Pecos River downstream of Santa Rosa Lake, grouped 

by analysis period.  

 

Water quality changes from Lagrangian monitoring 

At the time of sampling, discharges in the Pecos River above Santa Rosa Lake (USGS 

gage 08382650) were above median historical values from 1977-2022 (Table 1). The Lagrangian 

data showed a noticeable transition in water quality parameters between the lotic and lentic 

systems. Moreover, the data showed that the location and timing of such transition regions were 

dynamic (Figure 4.4 & 4.5). Between 7/29/2022 and 10/12/2022, we observed a shift of the delta 

positioning of ~ 1.2 km as the lake's elevation rose by 3.3 m.  

In July, we observed higher turbidity levels in the Pecos River, ranging from 368.5 to 

881.9 FNU, compared to the surface of Santa Rosa Lake, which ranged from 6.24 to 52.9 FNU. 
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The river's temperature was colder, ranging from 23.5 to 26 °C, while the lake recorded 

temperatures of 25.8 to 27.11 °C (Figures 4-5). Additionally, the river's specific conductivity was 

lower than at the lake's surface. These findings suggest that the incoming flow into the river had 

a higher bulk density than the water near the lake’s surface. As there was no water released from 

the dam during this month, there was a steady increase in the lake’s level. No significant 

differences were observed in the levels of dissolved oxygen and pH during this month. Due to 

logistical challenges, we do not have any data for the delta region during this period. 

Similar turbidity, specific conductivity, and temperature trends were observed for both 

the river and lake surface water in August (Figures 4-5), with a significant change occurring in 

the delta region. The delta region experienced dissolved oxygen levels reaching anoxic 

conditions (~0 mg/L) on 8/19/2022 (Figure 4). This suggests that drops in dissolved oxygen were 

triggered by runoff draining from the Gallinas Creek watershed, which accounted for 

approximately 31% of the total discharge near the lake, and the Pecos watershed, which 

contributed ~ 69% of the total discharge (refer Table 1). During this period, we observed floating 

debris and foamy water in the delta sections following monsoon precipitation events on the burn 

scar (see Figure S3). There was a block release during this month between August 11th-21st, 

which resulted in a drop in the lake’s elevation from 1438.5 m to 1431.3 m.  

For the October run, we no longer recorded the presence of an anoxic zone in the delta 

region, as the runoff draining from the Gallinas Creek watershed decreased (~14% of the total 

discharge near the lake) compared to the Pecos watershed (~ 86% of the total discharge). All 

other parameters followed a similar trend observed during the monsoon, with significant changes 

occurring in the delta regions (Figures 4-5). No water was released from the dam this month, 

resulting in no current due to intake and a steady increase in the lake level. 
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Figure 4.4: Lagrangian data of dissolved oxygen, specific conductivity, turbidity, pH, and water 

temperature collected with The Navigator. Data were collected during the monsoon (green, blue, 

and red) and post-monsoon (orange) periods. The red zone indicates the location of the delta, which 

shifted as the lake level rose from 1432.5 m to 1435.8 m. 
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Figure 4.5: Split violin plots showing the variations in water quality from the incoming Pecos River 

upstream of Santa Rosa Lake and along Santa Rosa Lake.  

 

Changes in sediment transport along the transition between the Pecos River and 

Santa Rosa Lake 

The non-dimensional 𝑅 parameter (Kim 2002) quantifies buoyancy effects due to density 

differences when an incoming river merges with a lake. We compared 𝑅 values with the critical 

𝑅𝑐 = -2. This critical 𝑅𝑐  separates weak plunging jets (𝑅𝑐  < 𝑅  < 0) from strong plunging jets (𝑅 

< 𝑅𝑐  < 0) (Zavala 2020). We observed 𝑅 values dropping below 𝑅𝑐 (Figure 6) during the 

monsoon, suggesting strong plunging induced by high incoming sediment loads that develop 

hyperpycnal subaqueous deltas (Zavala et al. 2021). These high-density hyperpycnal discharges 

typically consist of suspended sediment loads and may include a bedload component due to its 

high erosive nature (Lamb et al. 2010). Before and after those strong plunging jets, there were 
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weaker ones under which the river flow plunges, but the density differences were not enough to 

produce a substantial shear and erosion at the lake bottom (Lai and Capart 2009). Those weak 

plunges are referred to as hyperpycnal littoral deltas and are associated with river flows that 

remain stratified and suspended (Zavala et al. 2021). If they grow enough, hyperpycnal littoral 

deltas can eventually transport sediments deep into the lakebed.  

 

Figure 4.6: To gain insights into hyperpycnal delta dynamics, we examined the seasonal regimes of 

the non-dimensional density parameter R. 

 

 

Table 4.2: Average turbidity, temperature, total suspended sediments (TSS), and density of river 

water and lake water for different Lagrangian monitoring days and the corresponding non-

dimensional density parameter R. 

 River Lake  

Date 
Turbidity   

(FNU) 
Temperature 

(℃) 
TSS 

(kg/m3) 
𝜌𝑟𝑖𝑣𝑒𝑟  

(kg/m3) 
𝜌𝑟𝑤   

(kg/m3) 
Turbidity 

(FNU) 
Temperature 

(℃) 
TSS 

(kg/m3) 
𝜌𝑙𝑎𝑘𝑒  

(kg/m3) 
R (-) 

7/15/2022 390 24.8 0.81 997.1 997.9 53 26.5 0.13 996.7 -1.4 

7/29/2022 870 22.5 1.85 997.7 999.4 7 26.4 0.04 996.7 -2.0 

8/19/2022 470 22.1 0.98 997.8 998.7 42 26.7 0.11 996.6 -2.2 

10/12/2022 307 13.99 0.65 999.3 999.9 40 18.34 0.11 998.5 -1.7 
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4.4 DISCUSSION 

Wildfire disturbance propagation: Eulerian monitoring 

The most significant changes to water quality parameters observed in our study occurred 

during the monsoon period. We observed high-flow events coupled with a rapid increase in 

turbidity from GFT22 km to PSR170 km. Due to the low probability nature of these flows with 

respect to historical records (Nichols et al. 2023 under review), they are likely associated with 

altered hydrologic processes within the burn scar. Turbidity concentrations increased by 25x, 3x, 

11x, and 20x at GFT22 km, GMZ29 km, GL56 km, and PSR170 km, respectively, with respect to the pre-

monsoon period. Despite all these consistent turbidity changes upstream of Santa Rosa Lake, 

there were no changes in turbidity downstream of the lake at PBS190 km. With respect to the pre-

monsoon period, all sites except PBS190 km showed changes in stream metabolism during the 

monsoon season, indicating that Santa Rosa Lake buffered wildfire disturbances originating from 

the HPCC wildfire burn scar (Nichols et al. 2023 under review).  

Transition zones along Santa Rosa Lake’s delta: Lagrangian monitoring 

While Eulerian monitoring provided important insights into the generation and 

propagation of disturbances from the HPCC fire along 190 km, including the role of the lake in 

buffering those disturbances, this latter understanding comes from a black-box analysis between 

input signals from PSR170km and output signals from PBS190km. Thus, gaining a mechanistic 

understanding linking what happened along the lake and why remains elusive with Eulerian data.  

Our Lagrangian data from The Navigator provided insights into the processes affecting 

the propagation of water disturbances from burned areas into the Pecos River and Santa Rosa 

Lake. These insights cannot be fully resolved with Eulerian monitoring or coarse synoptic 
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profiling. We observed the formation of hyperpycnal flows when high turbidity and lower 

temperature flow propagating along the river forced denser waters to plunge below the lake's 

surface. As a result, on 8/19/2022, for example, we observed a significant drop in turbidity 

values from around 700 FNU (22°C) to approximately 60 FNU (26°C) along the lake’s delta, 

within merely 250 m (Figure 5). These turbidity changes were also accompanied by increases in 

dissolved oxygen from ~0 mg/L to ~4 mg/L. Similarly, on 10/12/2022, within 300 m, the 

turbidity along the delta changed from approximately 300 FNU (14°C) to ~100 FNU (18°C); in 

this event, however, there was a slight drop in oxygen from ~8 mg/L to ~ 6 mg/L.  

Our Lagrangian monitoring with The Navigator indicated drastic changes in water quality 

parameters over short distances along the lake in response to post-wildfire rainfall-runoff events 

occurring hundreds of kilometers upstream. The dissolved oxygen sag and recovery patterns 

observed were inversely proportional to turbidity, suggesting that oxygen removal from 

respiration and chemical demands and additions from photosynthesis were out of balance and 

most likely controlled by sediment fluxes from the wildfire. While reaeration could have played 

a more significant role in incorporating oxygen into the river, oxygen removal pathways 

dominated until the delta induced hyperpycnal flows which sank the sediments. pH values were 

lower in zones with low dissolved oxygen, which could be associated with increased aerobic 

microbial metabolism and CO2 releases from increased respiration due to the mobilization of 

sediments with increased carbon and nutrients (Chapra, 2008). Together, our results bring into 

focus the importance of Lagrangian monitoring to move beyond black-box analyses and improve 

mechanistic understanding of hydro biogeochemical processes (Figure 7).   
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Figure 4.7: Conceptual diagram comparing monsoon and post-monsoon hyperpycnal flows based 

on Lagrangian monitoring data. 

 

4.5 CONCLUSIONS 

The HPCC wildfire was the largest recorded in New Mexico, leaving a burn scar of 1,382 km2. 

Eulerian monitoring with five instrumented sites along the 190 km Gallinas Creek-Pecos River-

Santa Rosa Lake fluvial network revealed high flow and turbidity events during the monsoon 

period. While sites located upstream of Santa Rosa Lake had turbidity increases of 25x, 3x, 11x, 

and 20x at GFT22 km, GMZ29 km, GL56 km, and PSR170 km during the monsoon with respect to the 

pre-monsoon period, the PBS190 km site showed no changes, indicating that Santa Rosa Lake 

buffered wildfire disturbances originating from the HPCC wildfire burn scar.  

We combined Eulerian data from PSR170 km and PBS190 km with Lagrangian data from The 

Navigator to move beyond black-box analyses and pinpoint where the buffering effects happened 

and why. From this, we identified the existence of hyperpycnal flows that plunged high turbidity 
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and colder water from the river into the lakebed, creating contrasting ecotones in short distances 

(~300 m) along the lake’s delta. The simultaneous measurement of spatial and temporal 

dynamics reduced the need for interpolating data between Eulerian stations to estimate within-

lake and highly dynamic processes. Therefore, the availability of The Navigator, an easy-to-

deploy, autonomous, and affordable technology to conduct Lagrangian monitoring, was key to 

providing high-resolution data to resolve mechanistic processes that would be otherwise 

unobservable.  
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4.7 SUPPLEMENTAL INFORMATION 

1 GFT monitoring site: upstream of Santa Rosa Lake 

 

2 GMZ monitoring site: upstream of Santa Rosa Lake 

 

Pre Monsoon Monsoon

Pre Monsoon Monsoon Post Monsoon
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3 GL monitoring site: upstream of Santa Rosa Lake 

 

4 PSR monitoring site: upstream of Santa Rosa Lake 
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5 PBS monitoring site: downstream of Santa Rosa Lake 

 

Figure 4.S1) Sonde time series of QA/QC data from monitoring sites 

Figure 4.S2: The Navigator monitoring water quality in Santa Rosa Lake (left), and the kayak with 

the multiparameter sonde monitoring the Pecos River (right). 

Pre Monsoon Monsoon Post Monsoon
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Figure 4.S3: Simple linear regression analysis turbidity and suspended-sediment 

concentration data for U.S. Geological Survey stream samples on Gallinas River near Montezuma, 

NM, June 2022- Oct 2022.  

 

 

 

 

 

 

 

 

Figure 4.S4: Anoxic zone on Pecos 

river-Santa Rosa Lake delta on Aug 19, 

2022. 
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Chapter 5: Summary 

This dissertation focused on the design and development of a Lagrangian (i.e., along a 

flow path) monitoring system that offers cost-effective solutions for in-situ and real-time data 

collection. The Navigator was then applied to understand water quality changes associated with 

lateral effluents and wildfire disturbances. 

5.1 CHAPTER SUMMARIES 

Chapter 2 of this dissertation focuses on the design, development, and field validation of 

The Navigator, an autonomous surface vehicle (ASV) for Lagrangian monitoring in freshwater 

ecosystems. The Navigator offers cost-effective solutions for in-situ, real-time data collection by 

incorporating various technologies such as GPS, LTE connectivity, water quality sensors, depth 

sonar, a camera, and a webpage dashboard for data visualization. Multiple field tests were 

conducted in freshwater bodies in New Mexico, including the Rio Grande, Santa Rosa Lake, and 

a recreational fishing pond in Albuquerque. The successful tests confirmed the affordability and 

effectiveness of The Navigator in monitoring water quality parameters at high spatial-temporal 

resolution, enabling the identification of water quality changes associated with land use changes, 

the assessment of the fate of wildfire disturbances, and the monitoring of recreational fishing 

ponds.  

Chapter 3 describes the application of The Navigator for the Lagrangian-based 

quantification of mixing lengths downstream of a wastewater treatment plant discharging into the 

Rio Grande. We tested and evaluated the accuracy of long-standing empirical equations used to 

predict mixing lengths in the field. Despite advances in wastewater treatment plant efficiencies, 

multiple contaminants of concern, such as microplastics, pharmaceuticals, and per- and 
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polyfluoroalkyl substances (PFAS) remain largely untreated near discharge points and can be 

highly concentrated before they are fully mixed within the receiving river. Environmental 

agencies enforce mixing zone permits for the temporary exceedance of water quality parameters 

beyond targeted control levels under the assumption that contaminants are well-mixed and 

diluted downstream of mixing lengths, which are typically quantified using empirical equations 

derived from one-dimensional transport models. Most of these equations were developed in the 

1970s and have been assumed to be standard practice since then. However, their development 

and validation lacked the technological advances required to test them in the field and under 

changing flow conditions. While new monitoring techniques such as remote sensing and infrared 

imaging have been employed to visualize mixing lengths and test the validity of empirical 

equations, those methods cannot be easily repeated due to high costs or flight restrictions. Our 

data spans river to WWTP discharges ranging between 1-33x, thus providing a unique dataset to 

test long-standing empirical equations in the field. Our results consistently show empirical 

equations could not describe our experimental mixing lengths. Specifically, while our 

experimental data revealed “bell-shaped” mixing lengths as a function of increasing river 

discharges, all empirical equations predicted monotonically increasing mixing lengths. Those 

mismatches between experimental and empirical mixing lengths are likely due to the existence of 

threshold processes defining mixing at different flow regimes, i.e., jet diffusion at low flows, the 

Coanda effect at intermediate flows, and turbulent mixing at higher flows, which are 

unaccounted for by the one-dimensional empirical formulas. 

In Chapter 4, we used The Navigator to investigate the role of Santa Rosa Lake in 

attenuating the propagation of wildfire disturbances from the Hermit's Peak-Calf Canyon 

wildfire, which had propagated 170 km along the Gallinas Creek-Pecos River-Santa Rosa Lake 
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fluvial network. Eulerian monitoring through a network of sensors identified discharge and 

turbidity increases during high-precipitation monsoon periods. In the lake, Lagrangian 

monitoring revealed sudden changes to turbidity and dissolved oxygen levels along the delta. 

Our data suggest that the formation of hyperpycnal flows sink highly turbid and colder waters 

from the river into the lakebed, inducing fast sedimentation of wildfire disturbances. The study 

concludes that hyperpycnal flow formation acts as the primary mechanism responsible for the 

buffering capacity that halted the propagation of disturbances from the wildfire. 

5.2 PATENT  

We submitted the work behind The Navigator to get a US provisional patent on November 17th, 

2022, titled "Lagrangian Smart Sensing System for Characterizing Aquatic Resources," through UNM 

Rainforest Innovations (UNM Rainforest Innovations Portfolio 2022). This patent introduces significant 

advancements over the previous technologies, including: 

1. Integrated Hardware and Software System: The Navigator incorporates a seamlessly integrated 

hardware and software system that combines water quality sensors with autopilot systems. This 

integration enhances the overall functionality and performance of the device. 

2. Active and Passive Navigation: The Navigator is designed to autonomously switch between 

active navigation, which relies on the propulsion system, and passive navigation, which utilizes 

the natural currents of the aquatic resource. This dynamic navigation approach enhances the 

vehicle's adaptability and efficiency in different environmental conditions. 

3. Real-time Data Transmission: The Navigator is equipped with a radio frequency transmitter and a 

cellular modem that are connected to the electronic controller. This configuration enables the 

device to transmit data in real-time. By leveraging these communication technologies, data 

collected by the Navigator can be instantly shared and accessed remotely. 
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4. Camera-Assisted Obstacle Avoidance: The Navigator includes a camera that is connected to the 

electronic controller. The electronic controller is specifically programmed to analyze camera data, 

identify obstacles, and maneuver around them using the propulsion system. This feature ensures 

improved safety and navigation capabilities. 

These advancements enable the solar-powered autonomous surface vehicle to combine current-

driven and on-demand maneuvering with water sensors and a camera system. This integration empowers 

The Navigator to perform autonomous, long-range data collection missions in rugged environments. 

Furthermore, these improvements facilitate the quantification of water quantity and quality through a 

web-integrated platform. Users can access real-time visualization of the collected data and remotely 

control monitoring flow paths and routines via a user-friendly interface.  

5.3 COMMERCIALIZATION EXPLORATION 

We conducted a comprehensive market analysis through UNM's Rainforest Accelerator Program 

in Fall 2021 and MIT Water Innovation in Spring 2022 to identify target industries and sectors that can 

benefit from the Lagrangian Smart Sensing System. Our analysis revealed potential customers, including 

environmental monitoring agencies, research institutions, water resource management organizations, and 

industries reliant on accurate water quality data through 150+ industry interviews. The Navigator offers a 

wide range of critical applications primarily in the water technology sector, as well as the energy and food 

sectors. 

The smart sensors and AI analytics of the Navigator enable timely and spatially informed water 

management practices. It can be utilized by water and wastewater utilities for quantifying point and 

nonpoint sources and watershed preservation, sedimentation, seawater intrusion, algae bloom, wildfire 

impacts and wet carbon monitoring to understand aquatic ecosystems sources and sinks. Researchers, 

practitioners, and third-party contractors can leverage The Navigator for quantifying mass and energy 

balances and assessing spatial and temporal trends in variability. 
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Moreover, the spatiotemporal water quality data generated by the Navigator proves valuable for 

governmental agencies and NGOs in quantifying and addressing pollution dynamics, enforcing 

regulations, and evaluating restoration and post-disturbance solutions. Various industries, including 

governmental agencies, city water authorities, mines, power plants, carbon markets, aquaculture, and 

manufacturing plants, have shown interest in utilizing The Navigator to address similar issues. Its 

affordability compared to existing alternatives opens market opportunities in multiple countries 

worldwide. In 2021 and 2022, I won two pitch contests describing The Navigator and its potential 

applications for Lagrangian monitoring in freshwater systems. 

The Total Available Market (TAM) for Water Quality Monitoring Devices was estimated at US 

$3.4 billion in 2022 and is projected to reach US $4.3 billion by 2027, with a compound annual growth 

rate of 5%. The US market alone was $728.4 million in 2021, leading to a serviceable and attainable 

market size of $728 million in 2022 (Sushant C 2018). While brand recognition poses a barrier to entry 

for The Navigator, we are actively addressing this challenge through our current investor. Our focus 

extends beyond competition to improving water equity, resilience, and mitigating the impact of water 

shortage and quality issues. Through potential customer outreach, we are refining our pricing strategy and 

product offerings, ensuring alignment with customer needs and pain points. The primary revenue streams 

for the Navigator will be licensing and subscriptions across three product segments: the Autonomous 

Surface Vehicle (ASV), the Real-time Intelligent Analytics platform, and the Dataset. 

5.4 CHAPTER REFRENCES: 

Sushant C. 2018. “Water Quality Monitoring Systems Market by Component (PH Sensors, DO Sensors, 
Temperature Sensors, Turbidity Sensors, and Others) and Application (Utilities, Industrial, 
Commercial, and Residential): Global Opportunity Analysis and Industry Forecast, 2018 - 2025.” 
Market Overview. 

UNM Rainforest Innovations Portfolio. 2022. “2023-005 - The Navigator: A Lagrangian Smart Sensing 
System to Characterize Aquatic Ecosystems.” November 2022. 
https://innovations.unm.edu/technologies/technology-portfolio/. 

 



90 

 

Appendix A: Participation in peer-reviewed manuscripts  

During my Ph.D. training, I participated in the following peer-reviewed manuscripts: 

Nichols, Justin., Khandelwal, Aashish Sanjay., Regier, Peter., Summers, Betsy., Van Horn, 

David J. and González-Pinzón., Ricardo 2022. “The Understudied Winter: Evidence of 

How Precipitation Differences Affect Stream Metabolism in a Headwater.” Frontiers in 

Water  https://doi.org/10.3389/frwa.2022.1003159. 

Abstract 

Climate change is causing pronounced shifts during winter in the US, including shortening the 

snow season, reducing snowpack, and altering the timing and volume of snowmelt-related 

runoff. These changes in winter precipitation patterns affect in-stream freeze-thaw cycles, 

including ice and snow cover, and can trigger direct and indirect effects on in-stream physical, 

chemical, and biological processes in ~60% of river basins in the Northern Hemisphere. We used 

high-resolution, multi-parameter data collected in a headwater stream and its local environment 

(climate and soil) to determine interannual variability in physical, chemical, and biological 

signals in a montane stream during the winter of an El Niño and a La Niña year. We observed 

~77% greater snow accumulation during the El Niño year, which caused the formation of an ice 

dam that shifted the system from a primarily lotic to a lentic environment. Water chemistry and 

stream metabolism parameters varied widely between years. They featured anoxic conditions 

lasting over a month, with no observable gross primary production (GPP) occurring under the ice 

and snow cover in the El Niño year. In contrast, dissolved oxygen and GPP remained relatively 

high during the winter months of the La Niña year. These redox and metabolic changes driven by 

changes in winter precipitation have significant implications for water chemistry and biological 

https://doi.org/10.3389/frwa.2022.1003159
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functioning beyond the winter. Our study suggests that as snow accumulation and hydrologic 

conditions shift during the winter due to climate change, hot-spots and hot-moments for 

biogeochemical processing may be reduced, with implications for the downstream movement of 

nutrients and transported materials. 

 

Regier, Peter J., González-Pinzón, Ricardo., Van Horn, David J., Reale, Justin K., Nichols, 

Justin and Khandewal, Aashish. 2020. “Water Quality Impacts of Urban and Non-Urban 

Arid-Land Runoff on the Rio Grande.” Science of The Total Environment 729 (August): 

138443. https://doi.org/10.1016/j.scitotenv.2020.138443. 

Abstract 

Urban surface runoff from storms impacts the water quality dynamics of downstream 

ecosystems. While these effects are well-documented in mesic regions, they are not well 

constrained for arid watersheds, which sustain longer dry periods, receive intense but short-lived 

storms, and where stormwater drainage networks are generally isolated from sewage systems. 

We used a network of high-frequency in situ water quality sensors located along the Middle Rio 

Grande to determine surface runoff origins during storms and track rapid changes in physical, 

chemical, and biological components of water quality. Specific conductivity (SpCond) patterns 

were a reliable indicator of source, distinguishing between runoff events originating primarily in 

urban (SpCond sags) or non-urban (SpCond spikes) catchments. Urban events were 

characterized by high fluorescent dissolved organic matter (fDOM), low dissolved oxygen 

(including short-lived hypoxia <2 mg/L), smaller increases in turbidity and varied pH response. 

In contrast, non-urban events showed large turbidity spikes, smaller dissolved oxygen sags, and 

consistent pH sags. Principal component analysis distinguished urban and non-urban events by 

https://doi.org/10.1016/j.scitotenv.2020.138443
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/stormwater
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sewage
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/dissolved-organic-matter
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/turbidity
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dividing physical and biogeochemical water quality parameters, and modeling of DO along the 

same reach demonstrated consistently higher oxygen demand for an urban event compared to a 

non-urban event. Based on our analysis, urban runoff poses more potential ecological harm, 

while non-urban runoff poses a larger problem for drinking water treatment. The comparison of 

our results to other reports of urban stormwater quality suggests that water quality responses to 

storm events in urban landscapes are consistent across a range of regional climates. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drinking-water-treatment
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