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ABSTRACT  

 

 

 Multiple linear regression was used to determine the relationships between 

diversity-independent factors (i.e., abiotic, climatic) 2, 5, and 10 Myrs-prior to the most 

elevated Phanerozoic extinctions. We constructed five abiotic variables from Phanerozoic 

proxy records1–5 to compare to extinction rates: mean temperature, temperature 

instability, carbon cycle instability, continental weathering rates, and habitat instability. 

All three models were statistically significant (P < 0.05) and explained > 70% of the 

variation in Alroy’s6 three-timer generic extinction rates. However, the 2 Myr-prior 

model explained the most variance in extinction rates and had the most predictive power, 

based on adjusted and predictive R2 (~ 72% and 41%, respectively). Carbon cycle and 

habitat instabilities significantly contributed to this model (P < 0.05), thus suggesting that 

these variables positively contribute to the most severe extinctions during the 

Phanerozoic. However, carbon cycle and habitat instabilities seem to behave as extinction 

intensifiers, requiring an additional trigger to set off a major extinction event. Using the 

equation of the best fit line of the 2 Myr-prior model and the significant variables carbon 

cycle and habitat instabilities, we predicted a modern three-timer generic extinction rate 

of 0.85 (PI: 0.29, 1.40), falling between the end-Ordovician and end-Triassic mass 

extinctions in taxonomic severity. These results provide important information regarding 

the role diversity-independent factors play in intensifying the most elevated extinctions 

during the Phanerozoic and will continue to play in our present and future. Furthermore, 

these results support the importance the fossil record for contextualizing the potential 

severity of the modern extinction crisis.  
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Introduction 

The marine fossil record provides a fundamental resource to inform predictions of the 

severity of the modern extinction crisis7–9. It is not only essential to use the fossil and 

geologic records to set baselines for conservation policy 10, it is necessary that we use the 

dynamic record of Earth-life interactions in the paleobiologic record to inform predictions of 

the consequences of anthropogenic climate change and human-driven extinction on future 

biodiversity. We modelled the influence of abiotic environmental conditions (e.g., 

temperature or sea level) on elevated extinction rates during the Phanerozoic. Our hypothesis 

that initial abiotic conditions have an amplifying or dampening role in the most elevated 

Phanerozoic (~ 541 Ma to Recent) extinctions, was evaluated using multiple linear regression 

models. Model output allowed for estimation of future extinction rates of marine genera 

under “modern” environmental conditions.   

Macroevolutionary extinction hypotheses have been generated and tested at 

ecological and geological time scales11–14. Extinction and origination are the basic parameters 

used to estimate diversity in these models and are the drivers of diversity over geologic 

timescales. Extinction is regulated by the interaction of biotic and abiotic factors15,16 (e.g. 

competition, predation, temperature, pH, nutrient availability, etc.). Although there are many 

hypotheses with varying degrees of support regarding the proximate triggers of major past 

extinctions, relationships between extinction severity and boundary conditions have not been 

investigated as heavily. Negative diversity-dependence (high diversity reducing 

diversification rates) has been invoked as a complex of biotic factors that contributed to the 

correlation between Phanerozoic extinction and preceding diversity13,17,18. However, these 

analyses did not include the role of diversity-independent factors (i.e., abiotic, climatic) in 
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shaping extinction susceptibility. However, diversity-independent factors have been found to 

be strong predictors of diversity, extinction, and origination throughout the Phanerozoic19–21.  

Published Phanerozoic extinction6,22 and abiotic proxy records1–5 were used to 

determine if certain Earth system states preconditioned high or low extinction rates once an 

extinction event was triggered. Two different extinction rate estimates were used to identify 

sixteen common periods of elevated Phanerozoic extinction: Alroy’s6 three-timer generic 

extinction and Bambach’s22 re-analysis of the original Sepkoski Phanerozoic diversity 

compendium23. Generic extinction rates were used in both studies because they increase the 

sample size and are comparable with earlier studies24. Although both the Alroy6 and 

Bambach22 data were used to establish the dataset of elevated Phanerozoic extinctions, 

Alroy’s6 extinction rates are focused on here because they better consider the many 

preservation and sampling biases that negatively impact a literal interpretation of the fossil 

record24 (see SI for Bambach-based analytical results).  

On long time scales, geochemically and geophysically sourced proxies record Earth 

system evolution in the form of climatic and spatial changes. Global climate is heavily 

influenced by the carbon cycle, which is primarily modulated by the interaction and 

associated feedbacks of atmospheric pCO2, chemical weathering, temperature, the hydrologic 

cycle, and tectonics25. In addition to climatic-driven conditions in the form of temperature, 

ocean oxygenation, and ocean acidification, marine taxonomic relationships with area of 

available habitat (i.e., habitat loss) has been found to be a driver of extirpation and 

biodiversity loss in modern settings26,27. Thus our analysis focused on abiotic environmental 

records of oxygen (δ18O), carbon (δ13C), and strontium (87Sr/86Sr), as well as 

sedimentological eustatic sea level (SL)1–4 to approximate climate and habitat conditions. We 
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derived six abiotic proxies from these records: mean temperature (x̅ δ18O), temperature 

instability (s δ18O), carbon cycle instability (s δ13C), continental weathering rates (m 

87Sr/86Sr), and habitat instability (s SL) where x̅, s, and m are mean, standard deviation, and 

slope, respectively. These environmental records and proxies were subset to 2, 5, and 10 Myr 

bins prior to episodes of elevated extinction to further test for temporal sensitivity.  

Multiple linear regression was used to test the hypothesis that preceding 

environmental factors (i.e., x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL) explain the variation 

in the most elevated Phanerozoic three-timer extinction rates. Extinction rates were then 

estimated for the modern extinction crisis using the results from the regression model with 

the most explanatory power while accounting for model complexity. This approach 

demonstrates the utility of the fossil and geologic records to inform predictions about 

impending extinction vulnerability. 

Results 

Multiple linear regression models were generated at different temporal bin sizes using 

the R Programming environment28; these sensitivity analyses demonstrated that the 2 Myr-

prior model was the least overfit and had the most predictive power (Table 1 and SI for other 

model results). The 87Sr/86Sr data were multiplied by 104 to allow for conceptually more 

comparable slopes in the linear models. All abiotic environmental proxies were detrended 

using LOESS smoothing to remove secular trends and focus on the sub-trends within these 

data (see SI). After detrending, outliers in the environmental proxy datasets were identified 

as observations outside three standard deviations of the datasets, and were removed prior to 

modeling given the high likelihood that these proxies had modified or reset values due to 



Page 4 of 75 

 

tectonic and diagenetic alteration29–31. The models did not grossly violate the assumptions of 

multiple linear regression32  (see SI).   

The 2, 5, and 10 Myr pre-extinction models explained > 70% of the variance in three-

timer extinction rates (see SI). However, using a leave-one-out cross-validation technique 

(predictive R2) indicated overfit models for all models with the 2 Myr-prior model classified 

as least overfit33. The 2 Myr-prior model had an adjusted R2 of ~ 72% and had a predictive 

R2 of ~ 41%, indicating a moderately predictive, but slightly over fit model. Only carbon 

cycle and habitat instability variables were statistically significant in the model and explained 

51.5% and 22.1% of the variation, respectively (Table 1). These results indicate a strong  
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Fig. 1 | Detrended environmental proxy data 

and select 2 Myr-prior model fitness indices.  

 Diversity-independent (i.e., abiotic, 

climatic) environmental proxies used here were 

δ18O19, δ13C20, 87Sr/86Sr18, and eustatic SL21, sourced 

from and supplemented with the primary 

literature19,22. Abiotic environmental proxy data were 

subjected to LOWESS regression, a non-parametric, 

polynomial regression, through which the residuals 

can be calculated from the fitted polynomial (top 

left). These residuals are extracted and then used in 

place of the original data. This removes the secular 

trends and allows for analysis of sub-trends in the 

data. We constructed five abiotic environmental 

variables from these data (x̅ δ18O, s δ18O, s δ13C, m 
87Sr/86Sr, and s SL) and used multiple linear 

regression to model their effects on the most elevated 

Phanerozoic three-timer extinction rates. 

 Table 1 contains model fitness indices of 

the 2 Myr-prior multiple linear regression analysis 

between three-timer elevated extinction rates and 

variables constructed from the detrended proxy data 

(bottom left). These model fitness indices indicate 

that this statistically significant model explained ~ 

81% of the variance in extinction rates and ~ 72% 

when accounting for the number of predictors in the 

model. Also, the model output indicated carbon cycle 

and habitat instabilities as having had significantly 

contributed to the model. Partial R2 of the predictors 

reveals carbon cycle and habitat instabilities as 

explaining the most variation in the most elevated 

three-timer extinction rates, ~ 52% and ~ 22%, 

respectively. The predicted R2 suggests a moderately 

predictive, slightly overfit model. This model was 

determined to be the least overfit and have the most 

predictive power.   
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correlation between elevated Phanerozoic extinction rates, carbon cycle instability, and 

habitat instability.  

The possibility of no relationship was detected between three-timer extinction rates 

and mean temperature, temperature instability, and continental weathering rates using the 

95% confidence bands in the predictor effect plots (PEP, Fig. 2 A, B, and D). In contrast, the 

95% confidence band for carbon cycle and habitat instabilities does not include the 

possibility of no relationship with extinction rates (Fig. 2 C and E). This suggests that most 

severe extinctions occurred after two-million-year intervals of increased carbon cycle and 

habitat instabilities. 

PEP for each of the variables and three-timer extinction rates reveal that these trends 

are primarily driven by extreme abiotic parameter values and extinction rates. The highest 

and shared abiotic trends are occurring during the Stage 3 – Stage 4, Series 3 – Furogian, and 

end-Permian intervals followed by three-timer extinction rates at ~ 1.41, 1.50, and 1.79, 

respectively, against the mean of 0.68 for all events. We find all models to be poor estimators 

of extinction rates when these are removed (see SI). This contrasts with the same process 

applied to the relationship between current diversity and future extinction rates found by 

Alroy13. However, these are well-known and well-characterized intervals of elevated 

extinction that describe important periods of biodiversity decline in the Phanerozoic. 

Therefore, even though they are very extreme, removing them would prevent a realistic 

evaluation of the hypothesis that initial abiotic environmental conditions contribute to the 

enhancement of elevated extinctions22,34. We further assessed for the effect of environmental 

variable sampling intensity (i.e., number of datapoints in a bin) on extinction rates and found 

no significant relationships, except for δ18O (Spearman rank-order correlation ρ = -0.645, P =  
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Fig. 2 | Partialled out effects plots of the 2 Myr-prior 

model and 2 Myr stepped boxplots of carbon cycle 

and habitat instability. 

 The 2 Myr-prior model contained five predictor 

variables (x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL). Using 

partialled out effects plots (above), also called partial residual 

plots, we can see the effects of individual variables while 

adjusting for the effects of all other variables in the model. 

The plots contain the 95% CI (inner dotted lines) and PI 

(outer dotted lines). Note the only viable trends between 

three-timer extinction rates and carbon cycle or habitat 

instabilities.  

 Boxplots were constructed (right) to assess for the 

possibility of these two significant variables behaving as 

extinction triggers. Carbon cycle and habitat instabilities were 

binned into 2 Myr intervals from 2 Myrs up to 10 Myrs. If 

these did behave as triggers, we would expect them to depict 

an exponential decay. However, they do not and thus only 

behave as extinction intensifiers.  

 

Extinction Interval 

Late Pliocene 

Eocene – Oligocene 

End – Cretaceous 

Cenomanian – Turonian  

Tithonian 

Toarcian 

End – Triassic 

End – Permian  

Guadalupian 

Early - Serpukhovian 

End – Devonian 

Givetian – Frasnian  

Eifelian – Givetian  

End - Ordovician 

Series 3 – Furogian  

Stage 3 – Stage 4  
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0.007). This provides evidence that the 2 Myr-prior s δ13C and s SL effect on three-timer 

extinction rates is a real signal. See SI for tables 2 and 3 containing the number of abiotic 

variable datapoints per bin and their summary statistics.    

Whereas the 2 Myr model was classified as the least overfit model, models binning 

data over longer time intervals (i.e., 5 and 10 Myr-prior) were statistically significant at P < 

0.05 and shared carbon cycle instability as a statistically significant predictor variable P < 

0.05 (see SI). This larger pattern demonstrates the strength of preceding carbon cycle 

instability as a predictor of subsequent elevated extinction rates. To investigate this pattern 

further, we constructed boxplots of carbon cycle and habitat instability into 2 Myr intervals 

from 2 Myrs up to 10 Myrs prior to elevated extinction intervals (Fig. 2). If carbon cycle or 

habitat instability directly triggered these elevated extinctions, we would expect to see the 2 

Myr bins resembling an exponential decay function, otherwise these parameters behave 

solely as extinction intensifiers. This exercise was used to determine the possibility of these 

environmental variables contributing to triggering the extinction events. These boxplots 

demonstrate no clear trend, which suggests that although the carbon cycle and habitat 

instability factors likely worsened an extinction event, a different and/or larger perturbation 

was required to trigger episodes of elevated extinction rates. (see SI for further analyses).       

The results of our models provide evidence in support of carbon cycle and associated 

global climate flux 2 Myrs prior to the most elevated three-timer Phanerozoic extinction 

rates. Carbon cycle and habitat instabilities significantly contributed to the 2 Myr-prior 

model, the least overfit model explaining the most variance of three-timer extinction rates. 

Both s δ13C and s SL were positively correlated with extinction rates and these results can be 
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explained by the fact that the burial of carbon in the ocean is modulated by sea level3. These 

results suggest that prolonged periods of biotic stress, caused by the combined effect of 

carbon cycle and habitat fluctuations, may have “primed” taxa toward destabilization before 

encountering a larger environmental perturbation that triggered extinction. In other words, 

highly volatile Earth system conditions may predispose species to be less successful at 

weathering additional environmental stress from a large igneous province, asteroid impact, 

rapid climate change, or other major extinction trigger. This indicates that, prior to extinction 

events, diversity-independent environmental factors may influence subsequent extinction 

severity significantly through time, and may help explain the unexplained variance in 

negative diversity-dependent models13,17,18.  

Determining how interannual and longer, large-scale patterns of climate variability 

(e.g., North Atlantic and El Niño-Southern Oscillations) impact modern ecological structure 

is becoming a subject of more recent interest to population ecologists35–37. These studies 

apply the concepts of the so-called Moran effect, or synchronous population fluctuations 

mediated by abiotic fluctuations (i.e., weather or climate variability), to understand organism 

dispersal patterns, abundance structure, range shifts, and disruption of tightly connected 

trophic interactions35,38. Diversity-dependent and -independent factors interact to produce the 

ecological patterns observed in specific and interspecific populations35,39. A Moran effect at 

the geologic scale is likely at play when considering the results described here with those 

found regarding negative diversity-dependent diversification rates13,17,18. The implication 

being that there is a synergistic effect of diversity-dependent and -independent factors that 

initiated destabilization of ecological and evolutionary processes prior to the most elevated 

extinction events. These factors likely influence each other in complex ways and should be 
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studied in more detail in both the modern and geologic records35,37, through which important 

understanding for the modern extinction crises can be derived.  

Modern Extinction Crisis    

It has been argued whether modern humans (Homo sapiens) have had an effect on the 

Earth system since our evolution and dispersal40–43. On the other hand, anthropogenic climate 

change and habitat fragmentation/loss have been invoked as major drivers of the modern 

extinction crisis44–46. Our models provide a potential test of the sensitivity of our current 

Earth system to the types of anthropogenic triggers that may provoke elevated extinction 

rates in our near future. Using our results above, we can ask a simple question: has the Earth 

system over the last 2 Myrs been in a state through which the modern extinction crisis could 

become further accelerated?  

 Using the significant abiotic environmental variables s δ13C and s SL and the 

equation of the best fit line from the 2 Myr-prior model, we calculated a modern three-timer 

extinction rate of 0.85 (PI: 0.29, 1.40) for the “6th Mass Extinction” provided current 

anthropogenic activities are strong enough to trigger an interval of elevated extinction rates. 

This predicted rate falls in intensity between the end-Ordovician and end-Triassic three-timer 

extinction rates of 0.81 and 0.94, respectively. We chose to only include s δ13C and s SL in 

the model prediction because they were the only variables whose fit for the line did not 

contain the possibility of no relationship (i.e., did not contain the possibility of zero slope).   

 

Model results indicate abiotic preconditioning of the current Earth system, which has 

implications for the modern extinction crisis. Our estimate of a potential modern extinction 

rate is within the realm of some of the most severe of the “Big5” mass extinctions. This 
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suggests that the state of the Earth’s carbon cycle over the last 2 Myrs is likely exacerbating 

the current extinction crisis.  

Notably, these results pertain to generic, not species level, extinction (the latter being 

the standard focus when investigating modern extinction risk). Although much previous work 

supports the utility of genera as proxies for species in diversity studies47,48, the magnitude of 

these results and the conflicting perspectives on the modern extinction crisis8,9 support the 

pressing need to improve translatable metrics between fossil and modern biodiversity 

records8,49. Nevertheless, our results provide useful information about the distal contributions 

to extinction and the role of the initial abiotic environment in enhancing periods of elevated 

extinction rates. Furthermore, the finding that high carbon cycle and sea level fluctuations 

had the strongest influence on elevated extinctions, lends additional support to the need to 

focus on interactions between the global carbon cycle, its perturbations, and consequences 

for the Earth’s biosphere3,50,51.           

Methods 

 Environmental Proxy and Extinction Rate Data 

 Three-timer extinction rate data6 was sourced through personal communication with 

J. Alroy. The environmental proxy data δ18O, δ13C, 87Sr/86Sr, and eustatic SL were sourced 

from Veizer and Prokoph2, Bachan et al.3, Prokoph and Veizer1, and Boulila4, respectively. 

The δ18O, δ13C, and 87Sr/86Sr data were supplemented using Zaky et al.5 and Veizer and 

Prokoph2. The Veizer and Prokoph2, Bachan et al.3, Prokoph and Veizer1, and Boulila4 data 

were all geologic timescale (GTS) standardized to GTS2012, GTS2012, GTS2004, and 

GTS2016, respectively. The Zaky et al.5 data were GTS standardized to GTS2012.  
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  Environmental Proxy Data 

 The environmental proxy data δ18O, δ13C, 87Sr/86Sr, and eustatic SL are argued to 

represent temperature, carbon cycle, continental weathering, and habitat availability on 

geologic timescales.  

Oxygen isotope values are largely influenced by temperature but can face a number 

of diagenetic overprints. However, Veizer and Prokoph2 argue against the probability of 

worldwide increased diagenetic alteration in older sedimentary rocks in favor of an evolving 

18O enrichment from a decline in the planetary thermal regime, hydrothermal interactions, 

and a dynamic Earth system toward the Recent.  

Carbon isotope values are sensitive to atmosphere-ocean carbon cycle dynamics 

reflected in dissolved inorganic carbon in seawater, but are also influenced by primary 

productivity, ocean circulation, sedimentation rate, ocean latitudinal and depth gradients, and 

are fairly insensitive to diagenetic alteration52. The δ13C values were sourced from bulk 

carbonate rock and marine fossil calcite compilation which show clear excursions because of 

high resolution sampling and meet low diagenetic alteration protocols3. 

The 87Sr/86Sr is the ratio of continental fluvial input to hydrothermal mantle input53, 

and because of the fluvial input we can consider this a proxy for continental weathering. 

Strontium isotopes are well mixed with respect to the seawater with a known residence time 

of approximately ≥ 4Myr and are independent of organism habitat or their physiological 

effects, therefore the 87Sr/86Sr is interpreted as a global signal1,54. Samples in this dataset 

come from fossils with low-Mg calcite, micritic carbonate (nanoplankton), and whole rock1.  

Eustatic SL were sourced from globally correlated, tectonically inactive/dormant or 

correctable sequence-stratigraphic studies4. 
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  Extinction Rate Data 

 Bambach22 originally identified eighteen extinctions from the Phanerozoic that fit the 

Sepkoski 1986 definition of a mass extinction55. We originally constructed models using 

extinction rates calculated from both Bambach22 and Alroy6 to compare their performance. 

The Alroy6 three-timer extinction rate data could not be subset to the Bambach22 eighteen 

due to bin size differences (i.e., ~ 3 and 10 Myr, respectively), and therefore only sixteen 

three-timer extinction rate observations were extracted. The Bambach models performed 

poorly and consequently we did not include their results in the main text (see SI for results). 

We only consider the methods as they pertain to the three-timer extinction rate models 

throughout the rest of this section. However, the methods here are identical to those applied 

to the Bambach22 data, with exception to any model interpretation due to lack-of-fit and of 

statistical significance.  

The Alroy6 three-timer extinction rate dataset was chosen for these analyses because 

they explicitly attempt to account for biases in fossil preservation and sampling. These data 

were originally downloaded from the Fossilworks website with a number of downloading 

criteria to account for preservation biases and sample standardized using the shareholder 

quorum subsampling method56. Alroy6 used the following downloading criteria from 

Fossilworks: exclusion of Tetrapoda, Ostracoda, Arachnida, and Insecta metazoans; 

exclusion of terrestrial collections,  collections of unlithified sediments, preserved soft parts, 

compression or aragonitic fossils, or fossils collected by bulk sieving, collections at the 

geographic scale of a basin or geological group, occurrences with genus names qualified by 

aff., ex gr., sensu lato, or quotation marks; occurrences of informal taxa, ichnofossils, form 

taxa, and occurrences unresolved to the taxonomic level of a genus; and subgenera were 
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treated as distinct genera. The three-timer rate equation is a log normal ratio of genera 

sampled before, within, and after a bin, all multiplied by a conditional log normal probability 

of being sampled given a genus was definitely present throughout the bin56. This equation 

attempts to reduce the Signor-Lipps effect and the Pull of the Recent, while also accounting 

for Lazarus taxa56.   

Although biases exist in compiled paleontological data such as those used in these 

analyses6,24, we searched the scientific literature to ensure these data are the best currently 

available.  

 Select Model Fitness Indices  

Models with statistically significant Bonferroni corrected P-values were examined for 

explanatory power and goodness-of-fit using multiple R2, adjusted R2, and predictive R2. 

Multiple R2 and adjusted R2 were extracted from the model output and predictive R2 was 

calculated. Predictive R2, a leave-one-out cross-validation technique also called cross-

validated R2, allows for a model with a small amount of data to be assessed for 

predictability33. PRESS, essential to calculating predictive R2, is calculated through iterative 

fitting of the model, but removing a different observation each time to find the prediction 

error of the model33. Predictive R2 is calculated as the predictive residual sum of squares 

divided by total sum of squares (1-(PRESS/TSS)) and this alteration is only for making 

PRESS more easily interpretable in terms of the model it was calculated from57,58. Predicted 

R2 and adjusted R2 can be thought as the lower and upper bounds of how well the predictors 

explain the dependent variable and predict new observations58. Predictive R2 is commonly 

used in chemometrics and drug design as a measure of predictability in partial least squares 

analyses and it has been determined that values greater than 30% are suggested to be 
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significant and negative values are possible when PRESS is larger than TSS59–61. However, 

we chose a more conservative cutoff for a reasonable predictive R2 of greater than 60% to 

represent a reliably predictive model. Indeed, the difference between adjusted R2 and 

predictive R2 estimates the degree of overfitting of the model. We used the PRESS() function 

from the MPV package in R to calculate PRESS and TSS was extracted from the model 

output.   

Only the 2 Myr-prior model had a balance of both explanatory power and goodness-

of-fit with an adjusted R2 of ~ 72% and predictive R2 ~ 41% (see SI Table 4). However, this 

predictive R2 value indicates an overfit model. This represents that ~ 30% of the variance 

was explained by an overcomplicated model.  

Evaluation of Predictors in the Model 

Statistically significant predictors in the 2 Myr-prior model were s δ13C and s SL (P = 

0.0005 and 0.02, respectively) (see model output in SI for all other models). The 2 Myr-prior 

model was reconstructed using an interaction term s δ13C x s SL to assess for interaction 

effects. There were no detectable interaction effects (P = 0.27), so the interaction term was 

removed from the model. Based on P-values alone, s δ13C and s SL are important in 

explaining most of the variance in the model. This is also apparent when inspecting the 

partialled out R2 values of the predictors (see SI Table 4). However, this is challenged by 

inspection of the partialled out effects plots (PEP), the slope of the least squares best-fit line 

for s SL contains the possibility of zero slope via its wide confidence band (Fig. 4). 

Inspection of s δ13C PEP revealed a tighter relationship with extinction rates and narrower 

confidence band, not containing the possibility of zero slope. 
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Assessment of Statistically Significant Predictors as Extinction Triggers 

The other two models, 5 Myr and 10 Myr-prior, did not have the same level of 

predictability as the 2 Myr-prior model, but they did all share s δ13C as significantly 

contributing to the model and explaining the most variance in extinction rates. Although not 

interpretable, we decided to further investigate this possible trend of carbon cycle instability 

becoming more important the closer the model is to the extinction interval (see SI). We took 

10 Myr-prior bins of s δ13C and sliced them into 2 Myr bins before the sixteen three-timer 

extinction rate bins. Boxplots of the 2 Myr bins were constructed in base R28. This was an 

exploratory procedure conducted to investigate the potential for our environmental variables 

to have been triggers in subsequent extinctions. The s SL was also investigated using the 

procedure described above for similar reasons, although this variable had only contributed 

significantly to the 2 Myr and 5 Myr-prior models.  

  Estimating a modern three-timer extinction rate consisted of subsetting the data 2 

Myr prior to time 0. We calculated x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL for this bin 

and using the equation for the best-fit-line, predicted a modern extinction rate. This was 

achieved using the predict() function with our new data (i.e., the last 2 Myr) in R, which 

outputs a fitted value and prediction interval. 
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Supplemental Information 

 

Environmental Proxy Detrending and Outlier Removal 

  Proxy Detrending 

 All Phanerozoic extinction and environmental data used here contained some sort of 

secular trend. However, Alroy6 described this trend for the three-timer extinction rate data as 

high rates in the Cambrian and Ordovician and low rates in the Cenozoic appearing to show 

an overall declining trend. All original Phanerozoic environmental data (stable isotopes for 

oxygen (δ18O)1,2,5 and carbon (δ13C)3,5, strontium isotope ratios (87Sr/86Sr)1,2,5, as well as 

sedimentological eustatic sea level (SL)4) were detrended using locally estimated scatterplot 

Fig. 3 | LOESS regression fitted polynomial for environmental variables. 

 Each environmental proxy was fitted with LOESS regression. This is a non-parametric, polynomial 

regression, whereby the residuals can be calculated from the fitted polynomial. This effectively removes the secular 

trends and then the residuals are used to better assess the sub-trends in the data. See Fig. 1 to see proxies detrended. 
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smoothing (LOESS). Detrending of timeseries data can be done linearly, performing 

regression on the timeseries and analyzing the residuals of the least squares best-fit line. 

LOESS by comparison is a non-parametric, polynomial regression, whereby the residuals can 

be calculated from the fitted polynomial. These residuals are extracted and then used in place 

of the original data. We chose the lowess.as() function from the fANCOVA package in the R 

Programming environment28 with automatic smoothing parameter selection (auto-span), 

using generalized cross-validation criterion, and fitting by re-descending M estimator outlier 

rejection with Tukey’s biweight function to perform loess. Auto-span controls how data are 

weighted surrounding a fitted point but calculates the optimal span value automatically, using 

generalized cross-validation (GCV) methods. GCV determines a span value that minimizes 

the residual sum of squares of the fitted polynomial by iteratively removing points and 

recalculating the fitted polynomial62. Re-descending M estimator outlier rejection with 

Tukey’s biweight function was used because we assumed the data had outliers. We were able 

to remove secular trends from all variables and all fitted polynomials seem to accurately 

represent the environmental timeseries’ (Fig. 3). We had initially attempted to use arial 

extent of carbonate continental shelf, as well as other variables extracted from these studies 

(e.g., arial extent of clastic shelf or reef environments)63,64. However, their data were too 

coarse for these analyses (i.e., geologic eon and stage) and were not used.  

Outlier Removal 

Lastly, values outside three standard deviations of the data were classified as outliers 

and were removed from all environmental proxy datasets. Prior to removing outliers, there 

were 57715, 38149, 5283, and 5494 data points for δ18O, δ13C, 87Sr/86Sr, and SL datasets, 

respectively. After removal of outliers there were 57414, 37182, 5166, and 5439 data points 
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for δ18O, δ13C, 87Sr/86Sr, and SL datasets, respectively. There was a total of 106641 before 

and 105201 after outlier removal, a total of 1440 data points removed.  

Environmental Variable Construction 

 Mean, standard deviation, or slope (i.e., x̅, s, and m) were calculated for their 

respective detrended variables in bins sized at 2, 5, and 10 Myr before each of the 16 

extinction bins. The resulting variables were as follows: x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, 

and s SL. We defined these as mean temperature, temperature instability, carbon cycle 

instability, continental weathering rates, and habitat instability based on what their 

interpretations represent over long timescales1–4. The resulting datasets are available in tables 

5 and 6.  

  Carbonate Continental Shelf 

 Areal extent of carbonate continental shelf was explored as a proxy for habitat area. 

Walker et. al63 provides a useful compilation, but the data are too coarse for our analyses 

(i.e., at the geologic Epoch level). The use of linear interpolation between Epochs was 

explored to increase the resolution of these data. However, using linear interpolation between 

Epochs applies a gross assumption of trends at the geologic Stage or lower levels. Next the 

dataset compiled by Foote64 was explored because these data have higher resolution (i.e., 

geologic Stage). However, here too the resolution was too coarse to match our analyses. It is 

likely that area of carbonate continental shelf would be a good proxy for habitat area, given t 

without added interpolation and associated assumptions. It is likely that area of carbonate 

continental shelf would be a good proxy for habitat area, given the stronger affinity marine 

taxa have for carbonate sediments64, but the most recent data available are still too coarse65. 

This would be an excellent area for testing the observed relationship between habitat  
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Tables 2 and 3 | Number of abiotic variable datapoints per bin and their summary table for the 

models using three-timer extinction rates. 

 Number of datapoints for all abiotic variables used in the models using three-timer extinction rates per bin 

(Table 2). Summary statistics for each bin size for all abiotic variables (Table 3).  

Table 3: 
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instability (based on s SL) and extinction enhancement were these data to increase in 

resolution moving forward.  

Model Output and Model Assumption Analysis  

Models with Proportion Extinction Rates 

Bambach22 extinction rates were calculated using proportion of genus extinct to total 

genus diversity within a bin. The bins were on average ~ 3 Myr in length. All the same 

calculations made for the proxies in the models using three-timer extinction rates were made 

for the proportion rates. However, where bins start and end are very different between 

proportion and three-timer extinction rates due to different bin sizes and changes made to the 

international chronostratigraphic chart between publication dates (an eight year difference).  

The models using proportion extinction rates all performed poorly (Bonferroni 

corrected P-values for 2 Myr-prior: P = 1, 5 Myr-prior: P = 0.42, and 10 Myr-prior: P = 

0.21). The 2 Myr-prior model was built with only sixteen observations because there are 

missing data in some bins due to small sample size.  

Models with Three-timer Extinction Rates 

All the models using Alroy6 three-timer extinction rates performed well (Bonferroni 

corrected P-values for 2 Myr: P = 0.01, 5 Myr: P = 0.003, 10 Myr: P = 0.04, see SI). There 

were no gross violations of the assumptions of multiple linear regression. However, Cook’s 

Distance revealed the likelihood of outlying data from the end-Permian observation in the 5 

Myr-prior model > 2.0 and Stage 3 – Stage 4 observation in the 10 Myr-prior model at ~ 0.9. 

Only the 5 Myr-prior model required the addition of an interaction term. The s δ18O, s 

δ13C, and s SL predictors all initially were significant in the model. After including all 

interaction effects, only s δ18O x s SL significantly contributed to the model, indicating the 
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need for its inclusion. The final 5 Myr-prior model resulted in six predictors as opposed to 

the original five. 

Model Assumptions 

All datasets were initially assessed for linear relationships using a combination of 

scatterplots, correlation values, and distribution matrices of kernel density plots (in R code). 

Six multiple linear regression models were constructed in R using the lm() function. The 

assumptions of multiple linear regression (i.e., linear relationship between independent and 

dependent variables and that residual terms are independent, have constant variance, and are 

normally distributed32) were visually assessed using residual vs. fitted value plots, Cook’s 

distance plots, residual vs. predictor plots, QQ-plots, standardized residual vs. observation 

and leverage vs. observation plots, leverages checked for suspect values, histogram of 

standardized residuals, autocorrelation of residuals plots, and interaction plots between 

statistically significant predictors after models were examined (Figs. 4-9). Furthermore, these 

assumptions were assessed using the Shapiro-Wilk test for normality, Breusch-Pagan test for 

homogenized residuals variance, Breusch-Godfrey test for serial correlation of order up to 1, 

variance inflation factor (VIF) analysis for multicollinearity, and Bonferroni outlier test to 

determine extreme standardized residuals (Table 4). 

No gross violations of the assumptions of multiple linear regression were found. 

However, independence of the residual terms was likely violated because these proxies 

represent different aspects of the Earth system that influence one other and some isotopic 

values in these data have been derived from the same sample (e.g., the same bivalve used for 

δ18O, δ13C, or 87Sr/86Sr analyses).   
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Proportion Extinction Rates  

 2 Myr-prior model: The assumptions of multiple linear regression were not grossly 

violated for the 2 Myr-prior model using proportion extinction rates. Of the assessable 

assumptions, normality of the residuals comes closest to being violated (Fig. 4, K). However, 

the Shapiro-Wilk test and the normality plot suggest this was a weak violation (P = 0.90, Fig. 

4, H). No evidence was found suggesting inconstant variance of the residuals (Fig.4, Table 

4). The Capitanian extinction had the highest Cook’s distance, < 0.8. The analyses of the 

standardized residuals and leverages do not suggest any outlying data. VIF analysis resulted 

in low values, but x̅ δ18O and m 87Sr/86Sr show slightly higher multicollinearity than the other 

abiotic variables (Table 4).  

 5 Myr-prior model: No violations of the assumptions were found in this model (Fig. 

5). Again, Cook’s distance ( > 0.8) for the Capitanian extinction was relatively higher than 

the other observations, but not alarming.  

 10 Myr-prior model: No violations of the assumptions were found in the 10 Myr-

prior model (Fig. 6). The early Dresbachian may be somewhat of an influential point, but it 

was calculated at only ~ 0.6, warranting no concern.  

Three-timer Extinction Rates  

 2 Myr-prior model: The 2 Myr-prior model using three-timer extinction rates shows 

no strong evidence for the violation of the assumptions of multiple linear regression (Fig. 7, 

Table 4). Cook’s distance for the Stage 3 – Stage 4 and Series 3 – Furogian extinction 

intervals were relatively high, but both being < 0.8 is not concerning. All VIF values 

calculated for this model are below two (Table 4). 
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 5 Myr-prior model: The 5 Myr-prior model does not seem to be in gross violation of 

the assumptions of multiple linear regression. There is evidence for the violation of the 

assumption of normally distributed residual terms (Fig. 8, H and K). However, the Shapiro-

Wilk test for normality provided evidence against the violation of this assumption. The 

Cook’s distance ( > 2.0) for the end-Permian provides evidence for outlying data (Fig. 8, B). 

The standardized residual and leverage vs observation plots suggest that there are no 

datapoints far outside their distributions (Fig. 8, I and J). This model required the inclusion of 

the interaction term s δ18O x s SL, which greatly increased VIF values (Table 4), indicating 

that this model might be over-complicated.  

 10 Myr-prior model: There were no gross violations of the assumptions of multiple 

linear regression found for the 10 Myr-prior model. Stage 3 – Stage 4 is a highly influential 

point (Cook’s distance > 1.0), and both Stage 3 – Stage 4 and Series 3 – Furogian seem to 

have higher leverage values compared to their distribution (Fig. 4, B and J). However, these 

results are not extreme enough to require any transformations of the data.       
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A. B. C. 

D. E. F. 

G. H. I. 

J. K. L. 

Fig 4 | Proportion extinction rate 2 Myr-prior model plots for model assumption assessment. 

 The assumptions that the residual terms have constant variance and are normally distributed, as well as 

investigation of possible outliers for multiple linear regression were assessed using the plots above. A. residual vs. fitted, B. 

Cook’s distance, C.- G. residuals vs x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL, H. normal probability, I. and J.  

standardized residuals and leverage vs observation number, K. histogram and kernel density estimation of standardized 

residuals, L. autocorrelation analysis of residuals for one lag plots. 

A. B. C. 

D. E. F. 

G. H. I. 

J. K. L. 

Fig 5 | Proportion extinction rate 5 Myr-prior model plots for model assumption assessment. 

 The assumptions that the residual terms have constant variance and are normally distributed, as well as 

investigation of possible outliers for multiple linear regression were assessed using the plots above. A. residual vs. fitted, B. 

Cook’s distance, C.- G. residuals vs x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL, H. normal probability, I. and J.  

standardized residuals and leverage vs observation number, K. histogram and kernel density estimation of standardized 

residuals, L. autocorrelation analysis of residuals for one lag plots. 
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A. B. C. 

D. E. F. 

G. H. I. 

J. K. L. 

Fig 6 | Proportion extinction rate 10 Myr-prior model plots for model assumption assessment. 

 The assumptions that the residual terms have constant variance and are normally distributed, as well as 

investigation of possible outliers for multiple linear regression were assessed using the plots above. A. residual vs. fitted, B. 

Cook’s distance, C.- G. residuals vs x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL, H. normal probability, I. and J.  

standardized residuals and leverage vs observation number, K. histogram and kernel density estimation of standardized 

residuals, L. autocorrelation analysis of residuals for one lag plots. 
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Fig 7 | Three-timer extinction rate 2 Myr-prior model plots for model assumption assessment. 

 The assumptions that the residual terms have constant variance and are normally distributed, as well as 

investigation of possible outliers for multiple linear regression were assessed using the plots above. A. residual vs. fitted, B. 

Cook’s distance, C.- G. residuals vs x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL, H. normal probability, I. and J.  

standardized residuals and leverage vs observation number, K. histogram and kernel density estimation of standardized 

residuals, L. autocorrelation analysis of residuals for one lag plots. 

A. B. C. 

D. E. F. 

G. H. I. 

J. K. L. 
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A. B. C. 

D. E. F. 

G. H. I. 

J. K. L. 

Fig 8 | Three-timer extinction rate 5 Myr-prior model plots for model assumption assessment. 

 The assumptions that the residual terms have constant variance and are normally distributed, as well as 

investigation of possible outliers for multiple linear regression were assessed using the plots above. A. residual vs. fitted, B. 

Cook’s distance, C.- G. residuals vs x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL, H. normal probability, I. and J.  

standardized residuals and leverage vs observation number, K. histogram and kernel density estimation of standardized 

residuals, L. autocorrelation analysis of residuals for one lag plots. 
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A. B. C. 

D. E. F. 

G. H. I. 

J. K. L. 

Fig 9 | Three-timer extinction rate 10 Myr-prior model plots for model assumption assessment. 

 The assumptions that the residual terms have constant variance and are normally distributed, as well as 

investigation of possible outliers for multiple linear regression were assessed using the plots above. A. residual vs. fitted, B. 

Cook’s distance, C.- G. residuals vs x̅ δ18O, s δ18O, s δ13C, m 87Sr/86Sr, and s SL, H. normal probability, I. and J.  

standardized residuals and leverage vs observation number, K. histogram and kernel density estimation of standardized 

residuals, L. autocorrelation analysis of residuals for one lag plots. 
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Table 4 | Statistical tests used to assess for violation of model assumptions. 

 Tests used: Shapiro-Wilk W test for normality of the residuals, Breusch-

Pagan BP test for constant variance of the residuals, Breusch-Godfrey LM test to 

determine degree of residual dependence, Outlier test with Bonferroni corrected 

P-values of the most extreme standardized residuals (from left to right: 

Capitanian, Capitanian, late Maastrichtian, end-Ordovician, end-Permian, and 

end-Permian, and VIF of the model predictors.     
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Table 5 | Datasets used in model construction testing the relationship between proportion 

extinction rates and abiotic variables. 
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Table 6 | Datasets used in model construction testing the relationship between three-timer 

extinction rates and abiotic variables. 
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Statistical Software Code 

 All analyses were conducted within the R Programming environment28.  

library(ggplot2) 

library(GGally) 

library(psych) 

library(car) 

library(MASS) 

library(lmtest) 

library(MPV) #PRESS 

library(relaimpo) 

library(effects) 

library(forecast) 

library(broom) 

library(dplyr) 

library(plyr) 

library(reshape2) 

library(fANCOVA) 

library(DataCombine) 

library(extrafont) 

 

setwd("F:/Projects/Masters/Boundary Conditions/Analyses/Master Data File") 

 

dat<-read.csv("mstrdf.csv", sep=",",check.names=FALSE,header=TRUE) 

 

#subsetting data for analysis 

dat0.1<-dat[,c(3,6:10)] 

dat0.2<-dat[,c(3,6:10,33:34)] 

 

#original data 

dat1<-dat0.1[-c(100355,106025:106590),] 

rownames(dat1)<-NULL 

dat1$stron<-dat1$stron*10^4 

 

#computation time ~5 minutes 

 

  #for detrending data 

  dat0.1<-dat[,c(3,6:10)] 

  dat0<-dat0.1[-c(100355,106025:106590),] 

  rownames(dat0)<-NULL 

  dat0$stron<-dat0$stron*10^4 

 

  #detrending linear regression and lowess regression 

   

  #resorting dox 
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  sort.dox<-(dat0[complete.cases(dat0$dox), ])[,1:2] 

  sort.dox<-sort.dox[order(sort.dox$orgage),] 

  #resorting dcarb 

  sort.dcarb<-(dat0[complete.cases(dat0$dcarb), ])[,c(1,3)] 

  sort.dcarb<-sort.dcarb[order(sort.dcarb$orgage),] 

  #resorting strontium 

  sort.stron<-(dat0[complete.cases(dat0$stron), ])[,c(1,4)] 

  sort.stron<-sort.stron[order(sort.stron$orgage),] 

  #resorting sea level 

  sort.sl<-(dat0[complete.cases(dat0$sl), ])[,c(1,5)] 

  sort.sl<-sort.sl[order(sort.sl$orgage),] 

  #resorting carbonate 

  sort.patc<-(dat0[complete.cases(dat0$patc), ])[,c(1,6)] 

  sort.patc<-sort.patc[order(sort.patc$orgage),] 

   

  #loess regression detrending with autospan and symmetric family discounting unusual 

points 

 

     

    #oxygen 

    doxloe<-loess.as(sort.dox$orgage,sort.dox$dox,degree=1,criterion=c("aicc","gcv")[2], 

                     family=c("gaussian","symmetric")[2],user.span=NULL,plot=FALSE) 

    doxloe$pars$span 

     

    #carbon 

    dcarbloe<-

loess.as(sort.dcarb$orgage,sort.dcarb$dcarb,degree=1,criterion=c("aicc","gcv")[2], 

                       family=c("gaussian","symmetric")[2],user.span=NULL,plot=FALSE) 

    dcarbloe$pars$span 

     

    #strontium 

    stronloe<-

loess.as(sort.stron$orgage,sort.stron$stron,degree=1,criterion=c("aicc","gcv")[2], 

                       family=c("gaussian","symmetric")[2],user.span=NULL,plot=FALSE) 

    stronloe$pars$span 

     

    #sea level 

    slloe<-loess.as(sort.sl$orgage,sort.sl$sl,degree=1,criterion=c("aicc","gcv")[2], 

                    family=c("gaussian","symmetric")[2],user.span=NULL,plot=FALSE) 

    slloe$pars$span 

     

    #ccs 

    patcloe<-loess.as(sort.patc$orgage,sort.patc$patc,degree=1,criterion=c("aicc","gcv")[2], 

                      family=c("gaussian","symmetric")[2],user.span=NULL,plot=FALSE) 

    patcloe$pars$span 
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    #dox detrended 

    dox<-as.data.frame(cbind(sort.dox$orgage,doxloe$residuals)) 

    colnames(dox)<-c("orgage","dox") 

    #dcarb detrended 

    dcarb<-as.data.frame(cbind(sort.dcarb$orgage,dcarbloe$residuals)) 

    colnames(dcarb)<-c("orgage","dcarb") 

    #ston detrended 

    stron<-as.data.frame(cbind(sort.stron$orgage,stronloe$residuals)) 

    colnames(stron)<-c("orgage","stron") 

    #sl detrended 

    sl<-as.data.frame(cbind(sort.sl$orgage,slloe$residuals)) 

    colnames(sl)<-c("orgage","sl") 

    #patc detrended 

    patc<-as.data.frame(cbind(sort.patc$orgage,patcloe$residuals)) 

    colnames(patc)<-c("orgage","patc") 

 

   

  #removing data outside 3sd (99.73% CI) 

  #data[!(abs(d3sd$dox - mean(d3sd$dox,na.rm=TRUE))/sd(d3sd$dox.dox,na.rm=TRUE))> 

3,] 

 

    dox.sd3<-dox[!abs(scale(dox$dox)) > 3,] #data-(mean.var1/sd.var1)>3sd 

  dox.sd3 <- dox.sd3[order(dox.sd3$orgage),] 

  rownames(dox.sd3)<-NULL 

   

  dcarb.sd3<-dcarb[!abs(scale(dcarb$dcarb)) > 3,]  

  dcarb.sd3 <- dcarb.sd3[order(dcarb.sd3$orgage),] 

  rownames(dcarb.sd3)<-NULL 

   

  dcarb.sd3.no<-dat0.1[,c(1,3)][!abs(scale(dat0.1$dcarb)) > 3,]  

  dcarb.sd3.no <- dcarb.sd3[order(dcarb.sd3.no$orgage),] 

  rownames(dcarb.sd3.no)<-NULL 

   

  stron.sd3<-stron[!abs(scale(stron$stron)) > 3,]  

  stron.sd3 <- stron.sd3[order(stron.sd3$orgage),] 

  rownames(stron.sd3)<-NULL 

   

  sl.sd3<-sl[!abs(scale(sl$sl)) > 3,]  

  sl.sd3 <- sl.sd3[order(sl.sd3$orgage),] 

  rownames(sl.sd3)<-NULL 

   

  patc.sd3<-patc[!abs(scale(patc$patc)) > 3,]  

  patc.sd3 <- patc.sd3[order(patc.sd3$orgage),] 

  rownames(patc.sd3)<-NULL 
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  #new dataframe of detrended variables and! outliers removed  

    d<-data.frame(orgage=c(dox.sd3[,1],dcarb.sd3[,1],stron.sd3[,1],sl.sd3[,1],patc.sd3[,1])) 

    dcom1<-rbind.fill(data.frame(dox.sd3[,2]),data.frame(dcarb.sd3[,2])) 

    dcom2<-rbind.fill(dcom1,data.frame(stron.sd3[,2])) 

    dcom3<-rbind.fill(dcom2,data.frame(sl.sd3[,2])) 

    dcom4<-rbind.fill(dcom3,data.frame(patc.sd3[,2])) 

     

    dat1<-cbind(d,dcom4) 

    colnames(dat1)<-c("orgage","dox","dcarb","stron","sl","patc") 

 

#before after detrending plots +autocorrelation 

  #oldschool plots, before detrending 

   

    plot(dat0$orgage,dat0$dox)#oxygen isotopes 

  plot(dat0$orgage,dat0$dcarb)#carbon isotopes 

  plot(dat0.2$orgage,dat0.2$stron)#strontium isotope ratios 

  #plot(dat0[-100355,]$orgage,dat0[-100355,]$stron)#strontium isotope ratios without 

"extreme" value 

  plot(dat0$orgage,dat0$sl)#sea level 

  plot(dat0$orgage,dat0$patc)#proportion carbonate 

 

  #detrended plots 

 

    font_import() 

    loadfonts(device = "win") 

    #pdf(file = "F:/Projects/Masters/Boundary Conditions/Analyses/Results 

Plots/Scatterplots/proxies.pdf",width = 11,height = 11)  

    windowsFonts(A = windowsFont("Times New Roman")) 

    par(mfrow=c(2,2)) 

    plot(dat1$orgage,dat1$dox,xlim = rev(range(dat1$orgage)), 

            xlab="Time (Ma)",ylab="Oxygen Isotopes",col="black",bg="brown",pch=21,  

         cex.lab=1.5,cex.axis=1.5,cex.main=1.5,cex.sub=1.5)#oxygen isotopes 

    title(main="A.",adj=0,family="serif",font=2) 

    plot(dat1$orgage,dat1$dcarb,xlim = rev(range(dat1$orgage)), 

         xlab="Time (Ma)",ylab="Carbon Isotopes",col="black",bg="dark green",pch=21,  

         cex.lab=1.5,cex.axis=1.5,cex.main=1.5,cex.sub=1.5)#carbon isotopes 

    title(main="B.",adj=0,family="serif",font=2) 

    plot(dat1$orgage,dat1$stron,xlim = rev(range(dat1$orgage)), 

         xlab="Time (Ma)",ylab="Strontium Isotope Ratios",col="black",bg="purple",pch=21,  

         cex.lab=1.5,cex.axis=1.5,cex.main=1.5,cex.sub=1.5)#strontium isotope ratios 

    title(main="C.",adj=0,family="serif",font=2) 

    plot(dat1$orgage,dat1$sl,xlim = rev(range(dat1$orgage)), 

         xlab="Time (Ma)",ylab="Sea Level",col="black",bg="dark blue",pch=21,  

         cex.lab=1.5,cex.axis=1.5,cex.main=1.5,cex.sub=1.5)#sea level 

    title(main="D.",adj=0,family="serif",font=2) 

    plot(dat1$orgage,dat1$patc)#proportion carbonate 
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  par(mfrow=c(1,1)) 

 

#all data counts 

 

  aods<-describe(dat0.1[,1:5],na.rm=TRUE) 

  adds<-describe(dat1[,1:5],na.rm=TRUE) 

  ads<-data.frame(aods$n,adds$n,row.names = rownames(adds)) 

  ads$removed <- (ads$aods.n-ads$adds.n) 

  tot<-cbind(sum(ads[2:5,1]),sum(ads[2:5,2]),sum(ads[2:5,3])) 

  colnames(tot)<-colnames(ads) 

  ads<-rbind(ads,tot) 

  row.names(ads)[6]<-"tot" 

 

#binned dataframe construction 

 

  #functions 

  #Bambach ox iso means 

  var1<-function(var,age_col,age_end,age_start){ 

    m<-rbind(mean(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             mean(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             mean(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             mean(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             mean(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             mean(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             mean(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             mean(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             mean(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             mean(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             mean(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             mean(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             mean(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             mean(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             mean(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             mean(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE), 

             mean(var[age_col>=age_end[17] & age_col<=age_start[17]],na.rm=TRUE), 

             mean(var[age_col>=age_end[18] & age_col<=age_start[18]],na.rm=TRUE)) 

    return(m) 

  } 

   

  #Bambach ox iso sd 

  var2<-function(var,age_col,age_end,age_start){ 

    s<-rbind(sd(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             sd(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             sd(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             sd(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 
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             sd(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             sd(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             sd(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             sd(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             sd(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             sd(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             sd(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             sd(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             sd(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             sd(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             sd(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             sd(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE), 

             sd(var[age_col>=age_end[17] & age_col<=age_start[17]],na.rm=TRUE), 

             sd(var[age_col>=age_end[18] & age_col<=age_start[18]],na.rm=TRUE)) 

    return(s) 

  } 

   

  #Bambach carb iso sd 

  var3<-function(var,age_col,age_end,age_start){ 

    s<-rbind(sd(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             sd(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             sd(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             sd(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             sd(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             sd(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             sd(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             sd(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             sd(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             sd(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             sd(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             sd(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             sd(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             sd(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             sd(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             sd(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE), 

             sd(var[age_col>=age_end[17] & age_col<=age_start[17]],na.rm=TRUE), 

             sd(var[age_col>=age_end[18] & age_col<=age_start[18]],na.rm=TRUE)) 

    return(s) 

  } 

   

  #Bambach stron iso sd 

  var4<-function(var,age_col,age_end,age_start){ 

    {lm1sr<-lm(var~age_col,subset=(age_col>=age_end[1] & age_col<=age_start[1])) 

    lm2sr<-lm(var~age_col,subset=(age_col>=age_end[2] & age_col<=age_start[2])) 

    lm3sr<-lm(var~age_col,subset=(age_col>=age_end[3] & age_col<=age_start[3])) 

    lm4sr<-lm(var~age_col,subset=(age_col>=age_end[4] & age_col<=age_start[4])) 
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    lm5sr<-lm(var~age_col,subset=(age_col>=age_end[5] & age_col<=age_start[5])) 

    lm6sr<-lm(var~age_col,subset=(age_col>=age_end[6] & age_col<=age_start[6])) 

    lm7sr<-lm(var~age_col,subset=(age_col>=age_end[7] & age_col<=age_start[7])) 

    lm8sr<-lm(var~age_col,subset=(age_col>=age_end[8] & age_col<=age_start[8])) 

    lm9sr<-lm(var~age_col,subset=(age_col>=age_end[9] & age_col<=age_start[9])) 

    lm10sr<-lm(var~age_col,subset=(age_col>=age_end[10] & age_col<=age_start[10])) 

    lm11sr<-lm(var~age_col,subset=(age_col>=age_end[11] & age_col<=age_start[11])) 

    lm12sr<-lm(var~age_col,subset=(age_col>=age_end[12] & age_col<=age_start[12])) 

    lm13sr<-lm(var~age_col,subset=(age_col>=age_end[13] & age_col<=age_start[13])) 

    lm14sr<-lm(var~age_col,subset=(age_col>=age_end[14] & age_col<=age_start[14])) 

    lm15sr<-lm(var~age_col,subset=(age_col>=age_end[15] & age_col<=age_start[15])) 

    lm16sr<-lm(var~age_col,subset=(age_col>=age_end[16] & age_col<=age_start[16])) 

    lm17sr<-lm(var~age_col,subset=(age_col>=age_end[17] & age_col<=age_start[17])) 

    lm18sr<-lm(var~age_col,subset=(age_col>=age_end[18] & age_col<=age_start[18]))} 

    { return(rbind((-1*lm1sr$coefficients[2]),(-1*lm2sr$coefficients[2]),(-

1*lm3sr$coefficients[2]),(-1*lm4sr$coefficients[2]), 

                   (-1*lm5sr$coefficients[2]),(-1*lm6sr$coefficients[2]),(-

1*lm7sr$coefficients[2]),(-1*lm8sr$coefficients[2]), 

                   (-1*lm9sr$coefficients[2]),(-1*lm10sr$coefficients[2]),(-

1*lm11sr$coefficients[2]),(-1*lm12sr$coefficients[2]), 

                   (-1*lm13sr$coefficients[2]),(-1*lm14sr$coefficients[2]),(-

1*lm15sr$coefficients[2]),(-1*lm16sr$coefficients[2]), 

                   (-1*lm17sr$coefficients[2]),(-1*lm18sr$coefficients[2])))} 

  } 

   

  #Bambach sl sd 

  var5<-function(var,age_col,age_end,age_start){ 

    s<-rbind(sd(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             sd(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             sd(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             sd(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             sd(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             sd(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             sd(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             sd(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             sd(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             sd(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             sd(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             sd(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             sd(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             sd(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             sd(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             sd(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE), 

             sd(var[age_col>=age_end[17] & age_col<=age_start[17]],na.rm=TRUE), 

             sd(var[age_col>=age_end[18] & age_col<=age_start[18]],na.rm=TRUE)) 

    return(s) 
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  } 

   

  #Bambach carbshelf means 

  var6<-function(var,age_col,age_end,age_start){ 

    m<-rbind(mean(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             mean(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             mean(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             mean(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             mean(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             mean(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             mean(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             mean(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             mean(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             mean(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             mean(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             mean(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             mean(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             mean(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             mean(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             mean(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE), 

             mean(var[age_col>=age_end[17] & age_col<=age_start[17]],na.rm=TRUE), 

             mean(var[age_col>=age_end[18] & age_col<=age_start[18]],na.rm=TRUE)) 

    return(m) 

  } 

   

  #Bambach carbshelf means 

  var7<-function(var,age_col,age_end,age_start){ 

    m<-rbind(mean(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             mean(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             mean(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             mean(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             mean(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             mean(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             mean(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             mean(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             mean(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             mean(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             mean(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             mean(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             mean(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             mean(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             mean(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             mean(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE), 

             mean(var[age_col>=age_end[17] & age_col<=age_start[17]],na.rm=TRUE), 

             mean(var[age_col>=age_end[18] & age_col<=age_start[18]],na.rm=TRUE)) 

    return(m) 
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  } 

   

  ####################### 

  # Bambach Data Frames # 

  ####################### 

   

  #Bambach 2myr df 

  b2mo<-var1(dat1$dox,dat1$orgage,dat$b2me,dat$b2ms) 

  b2sdo<-var2(dat1$dox,dat1$orgage,dat$b2me,dat$b2ms) 

  b2sdc<-var3(dat1$dcarb,dat1$orgage,dat$b2me,dat$b2ms) 

  b2slsr<-var4(dat1$stron,dat1$orgage,dat$b2me,dat$b2ms) 

  b2sdsl<-var5(dat1$sl,dat1$orgage,dat$b2me,dat$b2ms) 

  b2mc<-var6(dat1$patc,dat1$orgage,dat$b2me,dat$b2ms) 

  b2cm<-var7(dat1$dcarb,dat1$orgage,dat$b2me,dat$b2ms) 

   

  dat.bam2<-

data.frame(cbind(dat$ext_rate_gperg[1:18],b2mo,b2sdo,b2sdc,b2slsr,b2sdsl,b2mc,b2cm)) 

  row.names(dat.bam2)<-dat$ext_int[1:18] 

  colnames(dat.bam2)<-

c("extrate","b2mo","b2sdo","b2sdc","b2slsr","b2sdsl","b2mc","b2cm") 

   

  #Bambach 5myr df 

  b5mo<-var1(dat1$dox,dat1$orgage,dat$b2me,dat$b5ms) 

  b5sdo<-var2(dat1$dox,dat1$orgage,dat$b2me,dat$b5ms) 

  b5sdc<-var3(dat1$dcarb,dat1$orgage,dat$b2me,dat$b5ms) 

  b5slsr<-var4(dat1$stron,dat1$orgage,dat$b2me,dat$b5ms) 

  b5sdsl<-var5(dat1$sl,dat1$orgage,dat$b2me,dat$b5ms) 

  b5mc<-var6(dat1$patc,dat1$orgage,dat$b2me,dat$b5ms) 

  b5cm<-var7(dat1$dcarb,dat1$orgage,dat$b2me,dat$b5ms) 

   

  dat.bam5<-

data.frame(cbind(dat$ext_rate_gperg[1:18],b5mo,b5sdo,b5sdc,b5slsr,b5sdsl,b5mc,b5cm)) 

  row.names(dat.bam5)<-dat$ext_int[1:18] 

  colnames(dat.bam5)<-

c("extrate","b5mo","b5sdo","b5sdc","b5slsr","b5sdsl","b5mc","b5cm") 

   

  #Bambach 10myr df 

  b10mo<-var1(dat1$dox,dat1$orgage,dat$b2me,dat$b10ms) 

  b10sdo<-var2(dat1$dox,dat1$orgage,dat$b2me,dat$b10ms) 

  b10sdc<-var3(dat1$dcarb,dat1$orgage,dat$b2me,dat$b10ms) 

  b10slsr<-var4(dat1$stron,dat1$orgage,dat$b2me,dat$b10ms) 

  b10sdsl<-var5(dat1$sl,dat1$orgage,dat$b2me,dat$b10ms) 

  b10mc<-var6(dat1$patc,dat1$orgage,dat$b2me,dat$b10ms) 

  b10cm<-var6(dat1$dcarb,dat1$orgage,dat$b2me,dat$b10ms) 
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  dat.bam10<-

data.frame(cbind(dat$ext_rate_gperg[1:18],b10mo,b10sdo,b10sdc,b10slsr,b10sdsl,b10mc,b1

0cm)) 

  row.names(dat.bam10)<-dat$ext_int[1:18] 

  colnames(dat.bam10)<-

c("extrate","b10mo","b10sdo","b10sdc","b10slsr","b10sdsl","b10mc","b10cm") 

   

  #################################### 

   

  #functions 

  #Alroy ox iso means 

  var1<-function(var,age_col,age_end,age_start){ 

    m<-rbind(mean(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             mean(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             mean(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             mean(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             mean(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             mean(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             mean(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             mean(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             mean(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             mean(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             mean(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             mean(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             mean(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             mean(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             mean(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             mean(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE)) 

    return(m) 

  } 

   

  #Alroy ox iso sd 

  var2<-function(var,age_col,age_end,age_start){ 

    s<-rbind(sd(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             sd(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             sd(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             sd(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             sd(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             sd(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             sd(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             sd(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             sd(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             sd(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             sd(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             sd(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             sd(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 
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             sd(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             sd(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             sd(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE)) 

    return(s) 

  } 

   

  #Alroy carb iso sd 

  var3<-function(var,age_col,age_end,age_start){ 

    s<-rbind(sd(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             sd(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             sd(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             sd(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             sd(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             sd(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             sd(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             sd(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             sd(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             sd(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             sd(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             sd(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             sd(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             sd(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             sd(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             sd(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE)) 

    return(s) 

  } 

   

  #Alroy stron iso slope 

  var4<-function(var,age_col,age_end,age_start){ 

    {lm1sr<-lm(var~age_col,subset=(age_col>=age_end[1] & age_col<=age_start[1])) 

    lm2sr<-lm(var~age_col,subset=(age_col>=age_end[2] & age_col<=age_start[2])) 

    lm3sr<-lm(var~age_col,subset=(age_col>=age_end[3] & age_col<=age_start[3])) 

    lm4sr<-lm(var~age_col,subset=(age_col>=age_end[4] & age_col<=age_start[4])) 

    lm5sr<-lm(var~age_col,subset=(age_col>=age_end[5] & age_col<=age_start[5])) 

    lm6sr<-lm(var~age_col,subset=(age_col>=age_end[6] & age_col<=age_start[6])) 

    lm7sr<-lm(var~age_col,subset=(age_col>=age_end[7] & age_col<=age_start[7])) 

    lm8sr<-lm(var~age_col,subset=(age_col>=age_end[8] & age_col<=age_start[8])) 

    lm9sr<-lm(var~age_col,subset=(age_col>=age_end[9] & age_col<=age_start[9])) 

    lm10sr<-lm(var~age_col,subset=(age_col>=age_end[10] & age_col<=age_start[10])) 

    lm11sr<-lm(var~age_col,subset=(age_col>=age_end[11] & age_col<=age_start[11])) 

    lm12sr<-lm(var~age_col,subset=(age_col>=age_end[12] & age_col<=age_start[12])) 

    lm13sr<-lm(var~age_col,subset=(age_col>=age_end[13] & age_col<=age_start[13])) 

    lm14sr<-lm(var~age_col,subset=(age_col>=age_end[14] & age_col<=age_start[14])) 

    lm15sr<-lm(var~age_col,subset=(age_col>=age_end[15] & age_col<=age_start[15])) 

    lm16sr<-lm(var~age_col,subset=(age_col>=age_end[16] & age_col<=age_start[16]))} 
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    { return(rbind((-1*lm1sr$coefficients[2]),(-1*lm2sr$coefficients[2]),(-

1*lm3sr$coefficients[2]),(-1*lm4sr$coefficients[2]), 

                   (-1*lm5sr$coefficients[2]),(-1*lm6sr$coefficients[2]),(-

1*lm7sr$coefficients[2]),(-1*lm8sr$coefficients[2]), 

                   (-1*lm9sr$coefficients[2]),(-1*lm10sr$coefficients[2]),(-

1*lm11sr$coefficients[2]),(-1*lm12sr$coefficients[2]), 

                   (-1*lm13sr$coefficients[2]),(-1*lm14sr$coefficients[2]),(-

1*lm15sr$coefficients[2]),(-1*lm16sr$coefficients[2]) 

    ))} 

  } 

   

  #Alroy sl sd 

  var5<-function(var,age_col,age_end,age_start){ 

    s<-rbind(sd(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             sd(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             sd(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             sd(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             sd(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             sd(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             sd(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             sd(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             sd(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             sd(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             sd(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             sd(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             sd(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             sd(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             sd(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             sd(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE)) 

    return(s) 

  } 

   

  #Alroy carbshelf means 

  var6<-function(var,age_col,age_end,age_start){ 

    m<-rbind(mean(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             mean(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             mean(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             mean(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             mean(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             mean(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             mean(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             mean(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             mean(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             mean(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             mean(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             mean(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 
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             mean(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             mean(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             mean(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             mean(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE)) 

    return(m) 

  } 

   

  #Alroy carbon iso means 

  var7<-function(var,age_col,age_end,age_start){ 

    m<-rbind(mean(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             mean(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             mean(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             mean(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             mean(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             mean(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             mean(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             mean(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             mean(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             mean(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             mean(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             mean(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             mean(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             mean(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             mean(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             mean(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE)) 

    return(m) 

  } 

   

  ##################### 

  # Alroy Data Frames # 

  ##################### 

   

  #Alroy 2myr df 

  a2mo<-var1(dat1$dox,dat1$orgage,dat$a2me,dat$a2ms) 

  a2sdo<-var2(dat1$dox,dat1$orgage,dat$a2me,dat$a2ms) 

  a2sdc<-var3(dat1$dcarb,dat1$orgage,dat$a2me,dat$a2ms) 

  a2slsr<-var4(dat1$stron,dat1$orgage,dat$a2me,dat$a2ms) 

  a2sdsl<-var5(dat1$sl,dat1$orgage,dat$a2me,dat$a2ms) 

  a2mc<-var6(dat1$patc,dat1$orgage,dat$a2me,dat$a2ms) 

  a2cm<-var7(dcarb.sd3.no$dcarb,dcarb.sd3.no$orgage,dat$a2me,dat$a2ms) 

   

   

  dat.alr2<-

data.frame(cbind(dat$ext_rate_gperg[19:34],a2mo,a2sdo,a2sdc,a2slsr,a2sdsl,a2mc,a2cm)) 

  row.names(dat.alr2)<-dat$ext_int[19:34] 

  colnames(dat.alr2)<-c("extrate","a2mo","a2sdo","a2sdc","a2slsr","a2sdsl","a2mc","a2cm") 
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  #Alroy 5myr df 

  a5mo<-var1(dat1$dox,dat1$orgage,dat$a2me,dat$a5ms) 

  a5sdo<-var2(dat1$dox,dat1$orgage,dat$a2me,dat$a5ms) 

  a5sdc<-var3(dat1$dcarb,dat1$orgage,dat$a2me,dat$a5ms) 

  a5slsr<-var4(dat1$stron,dat1$orgage,dat$a2me,dat$a5ms) 

  a5sdsl<-var5(dat1$sl,dat1$orgage,dat$a2me,dat$a5ms) 

  a5mc<-var6(dat1$patc,dat1$orgage,dat$a2me,dat$a5ms) 

  a5cm<-var7(dcarb.sd3.no$dcarb,dcarb.sd3.no$orgage,dat$a2me,dat$a5ms) 

   

  dat.alr5<-

data.frame(cbind(dat$ext_rate_gperg[19:34],a5mo,a5sdo,a5sdc,a5slsr,a5sdsl,a5mc,a5cm)) 

  row.names(dat.alr5)<-dat$ext_int[19:34] 

  colnames(dat.alr5)<-c("extrate","a5mo","a5sdo","a5sdc","a5slsr","a5sdsl","a5mc","a5cm") 

   

  #Alroy 10myr df 

  a10mo<-var1(dat1$dox,dat1$orgage,dat$a2me,dat$a10ms) 

  a10sdo<-var2(dat1$dox,dat1$orgage,dat$a2me,dat$a10ms) 

  a10sdc<-var3(dat1$dcarb,dat1$orgage,dat$a2me,dat$a10ms) 

  a10slsr<-var4(dat1$stron,dat1$orgage,dat$a2me,dat$a10ms) 

  a10sdsl<-var5(dat1$sl,dat1$orgage,dat$a2me,dat$a10ms) 

  a10mc<-var6(dat1$patc,dat1$orgage,dat$a2me,dat$a10ms) 

  a10cm<-var7(dcarb.sd3.no$dcarb,dcarb.sd3.no$orgage,dat$a2me,dat$a10ms) 

   

  dat.alr10<-

data.frame(cbind(dat$ext_rate_gperg[19:34],a10mo,a10sdo,a10sdc,a10slsr,a10sdsl,a10mc,a1

0cm)) 

  row.names(dat.alr10)<-dat$ext_int[19:34] 

  colnames(dat.alr10)<-

c("extrate","a10mo","a10sdo","a10sdc","a10slsr","a10sdsl","a10mc","a10cm") 

   

  #carbon isotope midpoints 

  a2c<-dat$a2ms[1:16]-1 

  a5c<-dat$a5ms[1:16]-2.5 

  a10c<-dat$a10ms[1:16]-5 

   

  mean.carb<-data.frame(cbind(dat$ext_rate_gperg[19:34],a2c,a5c,a10c,a2cm,a5cm,a10cm)) 

  row.names(mean.carb)<-dat$ext_int[19:34] 

  colnames(mean.carb)<-c("extrate","a2c","a5c","a10c","a2cm","a5cm","a10cm") 

   

  sd.carb<-data.frame(cbind(dat$ext_rate_gperg[19:34],a2c,a5c,a10c,a2sdc,a5sdc,a10sdc)) 

  row.names(sd.carb)<-dat$ext_int[19:34] 

  colnames(sd.carb)<-c("extrate","a2c","a5c","a10c","a2sdc","a5sdc","a10sdc") 

 

  ################################# 

  #Within Bin Assessment Dataframe# 
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  ################################# 

   

  var8<-function(var,age_col,age_end,age_start){ 

    s<-rbind(sd(var[age_col>=age_end[1] & age_col<=age_start[1]],na.rm=TRUE), 

             sd(var[age_col>=age_end[2] & age_col<=age_start[2]],na.rm=TRUE), 

             sd(var[age_col>=age_end[3] & age_col<=age_start[3]],na.rm=TRUE), 

             sd(var[age_col>=age_end[4] & age_col<=age_start[4]],na.rm=TRUE), 

             sd(var[age_col>=age_end[5] & age_col<=age_start[5]],na.rm=TRUE),                     

             sd(var[age_col>=age_end[6] & age_col<=age_start[6]],na.rm=TRUE), 

             sd(var[age_col>=age_end[7] & age_col<=age_start[7]],na.rm=TRUE), 

             sd(var[age_col>=age_end[8] & age_col<=age_start[8]],na.rm=TRUE), 

             sd(var[age_col>=age_end[9] & age_col<=age_start[9]],na.rm=TRUE), 

             sd(var[age_col>=age_end[10] & age_col<=age_start[10]],na.rm=TRUE), 

             sd(var[age_col>=age_end[11] & age_col<=age_start[11]],na.rm=TRUE), 

             sd(var[age_col>=age_end[12] & age_col<=age_start[12]],na.rm=TRUE), 

             sd(var[age_col>=age_end[13] & age_col<=age_start[13]],na.rm=TRUE), 

             sd(var[age_col>=age_end[14] & age_col<=age_start[14]],na.rm=TRUE), 

             sd(var[age_col>=age_end[15] & age_col<=age_start[15]],na.rm=TRUE), 

             sd(var[age_col>=age_end[16] & age_col<=age_start[16]],na.rm=TRUE)) 

    return(s) 

  } 

   

  #2myr binned sdc 

  wib2.sdc<-var8(dat1$dcarb,dat1$orgage,dat$a2me,dat$a2me+2) 

  wib4.sdc<-var8(dat1$dcarb,dat1$orgage,dat$a2me+2,dat$a2me+4) 

  wib6.sdc<-var8(dat1$dcarb,dat1$orgage,dat$a2me+4,dat$a2me+6) 

  wib8.sdc<-var8(dat1$dcarb,dat1$orgage,dat$a2me+6,dat$a2me+8) 

  wib10.sdc<-var8(dat1$dcarb,dat1$orgage,dat$a2me+8,dat$a2me+10) 

   

  wib.sd.carb<-data.frame(cbind(dat$ext_rate_gperg[19:34],wib2.sdc,wib4.sdc, 

                                wib6.sdc,wib8.sdc,wib10.sdc)) 

  row.names(wib.sd.carb)<-dat$ext_int[19:34] 

  colnames(wib.sd.carb)<-c("extrate","0-2","2-4","4-6","6-8","8-10") 

  

  #2myr binned sdsl 

  wib2.sdsl<-var8(dat1$sl,dat1$orgage,dat$a2me,dat$a2me+2) 

  wib4.sdsl<-var8(dat1$sl,dat1$orgage,dat$a2me+2,dat$a2me+4) 

  wib6.sdsl<-var8(dat1$sl,dat1$orgage,dat$a2me+4,dat$a2me+6) 

  wib8.sdsl<-var8(dat1$sl,dat1$orgage,dat$a2me+6,dat$a2me+8) 

  wib10.sdsl<-var8(dat1$sl,dat1$orgage,dat$a2me+8,dat$a2me+10) 

   

  wib.sd.sl<-data.frame(cbind(dat$ext_rate_gperg[19:34],wib2.sdsl,wib4.sdsl, 

                                wib6.sdsl,wib8.sdsl,wib10.sdsl)) 

  row.names(wib.sd.sl)<-dat$ext_int[19:34] 

  colnames(wib.sd.sl)<-c("extrate","0-2","2-4","4-6","6-8","8-10") 
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######################### 

# Abiotic Summary Stats # 

######################### 

 

  count1<-function(var,age_col,age_end,age_start){ 

    m<-rbind(length(which(!is.na(var[age_col>=age_end[1] & age_col<=age_start[1]]))), 

             length(which(!is.na(var[age_col>=age_end[2] & age_col<=age_start[2]]))), 

             length(which(!is.na(var[age_col>=age_end[3] & age_col<=age_start[3]]))), 

             length(which(!is.na(var[age_col>=age_end[4] & age_col<=age_start[4]]))), 

             length(which(!is.na(var[age_col>=age_end[5] & age_col<=age_start[5]]))),                     

             length(which(!is.na(var[age_col>=age_end[6] & age_col<=age_start[6]]))), 

             length(which(!is.na(var[age_col>=age_end[7] & age_col<=age_start[7]]))), 

             length(which(!is.na(var[age_col>=age_end[8] & age_col<=age_start[8]]))), 

             length(which(!is.na(var[age_col>=age_end[9] & age_col<=age_start[9]]))), 

             length(which(!is.na(var[age_col>=age_end[10] & age_col<=age_start[10]]))), 

             length(which(!is.na(var[age_col>=age_end[11] & age_col<=age_start[11]]))), 

             length(which(!is.na(var[age_col>=age_end[12] & age_col<=age_start[12]]))), 

             length(which(!is.na(var[age_col>=age_end[13] & age_col<=age_start[13]]))), 

             length(which(!is.na(var[age_col>=age_end[14] & age_col<=age_start[14]]))), 

             length(which(!is.na(var[age_col>=age_end[15] & age_col<=age_start[15]]))), 

             length(which(!is.na(var[age_col>=age_end[16] & age_col<=age_start[16]]))), 

             length(which(!is.na(var[age_col>=age_end[17] & age_col<=age_start[17]]))), 

             length(which(!is.na(var[age_col>=age_end[18] & age_col<=age_start[18]])))) 

    return(m) 

  } 

   

  #Bombach 

  #ox iso 

  b2ox<-count1(dat1$dox,dat1$orgage,dat$b2me[1:18],dat$b2ms[1:18]) 

  b2oxd<-describe(b2ox) 

  b5ox<-count1(dat1$dox,dat1$orgage,dat$b2me[1:18],dat$b5ms[1:18]) 

  b5oxd<-describe(b5ox) 

  b10ox<-count1(dat1$dox,dat1$orgage,dat$b2me[1:18],dat$b10ms[1:18]) 

  b10oxd<-describe(b10ox) 

  #carb iso 

  b2carb<-count1(dat1$dcarb,dat1$orgage,dat$b2me[1:18],dat$b2ms[1:18]) 

  b2carbd<-describe(b2carb) 

  b5carb<-count1(dat1$dcarb,dat1$orgage,dat$b2me[1:18],dat$b5ms[1:18]) 

  b5carbd<-describe(b5carb) 

  b10carb<-count1(dat1$dcarb,dat1$orgage,dat$b2me[1:18],dat$b10ms[1:18]) 

  b10carbd<-describe(b10carb) 

  #stron iso 

  b2stron<-count1(dat1$stron,dat1$orgage,dat$b2me[1:18],dat$b2ms[1:18]) 

  b2strond<-describe(b2stron) 

  b5stron<-count1(dat1$stron,dat1$orgage,dat$b2me[1:18],dat$b5ms[1:18]) 

  b5strond<-describe(b5stron) 
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  b10stron<-count1(dat1$stron,dat1$orgage,dat$b2me[1:18],dat$b10ms[1:18]) 

  b10strond<-describe(b10stron) 

  #sl  

  b2sl<-count1(dat1$sl,dat1$orgage,dat$b2me[1:18],dat$b2ms[1:18]) 

  b2sld<-describe(b2sl) 

  b5sl<-count1(dat1$sl,dat1$orgage,dat$b2me[1:18],dat$b5ms[1:18]) 

  b5sld<-describe(b5sl) 

  b10sl<-count1(dat1$sl,dat1$orgage,dat$b2me[1:18],dat$b10ms[1:18]) 

  b10sld<-describe(b10sl) 

  #patc  

  b2patc<-count1(dat1$patc,dat1$orgage,dat$b2me[1:18],dat$b2ms[1:18]) 

  b2patcd<-describe(b2patc) 

  b5patc<-count1(dat1$patc,dat1$orgage,dat$b2me[1:18],dat$b5ms[1:18]) 

  b5patcd<-describe(b5patc) 

  b10patc<-count1(dat1$patc,dat1$orgage,dat$b2me[1:18],dat$b10ms[1:18]) 

  b10patcd<-describe(b10patc) 

   

   

  sumstatb<-

as.data.frame(rbind(b2oxd,b5oxd,b10oxd,b2carbd,b5carbd,b10carbd,b2strond,b5strond,b10st

rond, 

                  b2sld,b5sld,b10sld,b2patcd,b5patcd,b10patcd)) 

  row.names(sumstatb)<-c("b2ox","b5ox","b10ox","b2carb","b5carb","b10carb","b2stron", 

                         "b5stron","b10stron","b2sl","b5sl","b10sl","b2patc","b5patc","b10patc") 

   

  cpbb<-

as.data.frame(cbind(b2ox,b5ox,b10ox,b2carb,b5carb,b10carb,b2stron,b5stron,b10stron,b2sl,

b5sl, 

              b10sl,b2patc,b5patc,b10patc)) 

  colnames(cpbb)<-

c("b2ox","b5ox","b10ox","b2carb","b5carb","b10carb","b2stron","b5stron","b10stron", 

                    "b2sl","b5sl","b10sl","b2patc","b5patc","b10patc") 

  row.names(cpbb)<-dat$ext_int[1:18] 

   

  ###################################### 

   

  count2<-function(var,age_col,age_end,age_start){ 

    m<-rbind(length(which(!is.na(var[age_col>=age_end[1] & age_col<=age_start[1]]))), 

             length(which(!is.na(var[age_col>=age_end[2] & age_col<=age_start[2]]))), 

             length(which(!is.na(var[age_col>=age_end[3] & age_col<=age_start[3]]))), 

             length(which(!is.na(var[age_col>=age_end[4] & age_col<=age_start[4]]))), 

             length(which(!is.na(var[age_col>=age_end[5] & age_col<=age_start[5]]))),                     

             length(which(!is.na(var[age_col>=age_end[6] & age_col<=age_start[6]]))), 

             length(which(!is.na(var[age_col>=age_end[7] & age_col<=age_start[7]]))), 

             length(which(!is.na(var[age_col>=age_end[8] & age_col<=age_start[8]]))), 

             length(which(!is.na(var[age_col>=age_end[9] & age_col<=age_start[9]]))), 
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             length(which(!is.na(var[age_col>=age_end[10] & age_col<=age_start[10]]))), 

             length(which(!is.na(var[age_col>=age_end[11] & age_col<=age_start[11]]))), 

             length(which(!is.na(var[age_col>=age_end[12] & age_col<=age_start[12]]))), 

             length(which(!is.na(var[age_col>=age_end[13] & age_col<=age_start[13]]))), 

             length(which(!is.na(var[age_col>=age_end[14] & age_col<=age_start[14]]))), 

             length(which(!is.na(var[age_col>=age_end[15] & age_col<=age_start[15]]))), 

             length(which(!is.na(var[age_col>=age_end[16] & age_col<=age_start[16]])))) 

    return(m) 

  } 

   

  #Alroy 

  #ox iso 

  a2ox<-count2(dat1$dox,dat1$orgage,dat$a2me[1:16],dat$a2ms[1:16]) 

  a2oxd<-describe(a2ox) 

  a5ox<-count2(dat1$dox,dat1$orgage,dat$a2me[1:16],dat$a5ms[1:16]) 

  a5oxd<-describe(a5ox) 

  a10ox<-count2(dat1$dox,dat1$orgage,dat$a2me[1:16],dat$a10ms[1:16]) 

  a10oxd<-describe(a10ox) 

  #carb iso 

  a2carb<-count2(dat1$dcarb,dat1$orgage,dat$a2me[1:16],dat$a2ms[1:16]) 

  a2carbd<-describe(a2carb) 

  a5carb<-count2(dat1$dcarb,dat1$orgage,dat$a2me[1:16],dat$a5ms[1:16]) 

  a5carbd<-describe(a5carb) 

  a10carb<-count2(dat1$dcarb,dat1$orgage,dat$a2me[1:16],dat$a10ms[1:16]) 

  a10carbd<-describe(a10carb) 

  #stron iso 

  a2stron<-count2(dat1$stron,dat1$orgage,dat$a2me[1:16],dat$a2ms[1:16]) 

  a2strond<-describe(a2stron) 

  a5stron<-count2(dat1$stron,dat1$orgage,dat$a2me[1:16],dat$a5ms[1:16]) 

  a5strond<-describe(a5stron) 

  a10stron<-count2(dat1$stron,dat1$orgage,dat$a2me[1:16],dat$a10ms[1:16]) 

  a10strond<-describe(a10stron) 

  #sl  

  a2sl<-count2(dat1$sl,dat1$orgage,dat$a2me[1:16],dat$a2ms[1:16]) 

  a2sld<-describe(a2sl) 

  a5sl<-count2(dat1$sl,dat1$orgage,dat$a2me[1:16],dat$a5ms[1:16]) 

  a5sld<-describe(a5sl) 

  a10sl<-count2(dat1$sl,dat1$orgage,dat$a2me[1:16],dat$a10ms[1:16]) 

  a10sld<-describe(a10sl) 

  #patc  

  a2patc<-count2(dat1$patc,dat1$orgage,dat$a2me[1:16],dat$a2ms[1:16]) 

  a2patcd<-describe(a2patc) 

  a5patc<-count2(dat1$patc,dat1$orgage,dat$a2me[1:16],dat$a5ms[1:16]) 

  a5patcd<-describe(a5patc) 

  a10patc<-count2(dat1$patc,dat1$orgage,dat$a2me[1:16],dat$a10ms[1:16]) 

  a10patcd<-describe(a10patc) 
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  sumstata<-

as.data.frame(rbind(a2oxd,a5oxd,a10oxd,a2carbd,a5carbd,a10carbd,a2strond,a5strond,a10str

ond, 

                  a2sld,a5sld,a10sld,a2patcd,a5patcd,a10patcd)) 

  row.names(sumstata)<-c("a2ox","a5ox","a10ox","a2carb","a5carb","a10carb","a2stron", 

                         "a5stron","a10stron","a2sl","a5sl","a10sl","a2patc","a5patc","a10patc") 

   

  cpaa<-

as.data.frame(cbind(a2ox,a5ox,a10ox,a2carb,a5carb,a10carb,a2stron,a5stron,a10stron,a2sl,a5

sl, 

              a10sl,a2patc,a5patc,a10patc)) 

  colnames(cpaa)<-

c("a2ox","a5ox","a10ox","a2carb","a5carb","a10carb","a2stron","a5stron","a10stron", 

                    "a2sl","a5sl","a10sl","a2patc","a5patc","a10patc") 

  row.names(cpaa)<-dat$ext_int[19:34] 

   

  sumstatb 

  cpbb 

  sumstata 

  cpaa 

 

#Extinction rate vs time plots 

plot(dat.alr2$extrate, xlab="",xaxt = "n",main="Extincton Rate vs Interval 

(Time)",ylab="Extinction Rate") 

axis(side=1,labels=F) 

axis(1, at=1:16, labels=rownames(dat.alr2), las=2) 

 

#Environmental variable boxplots 

boxplot(dat1[,-c(1,5,6)]) 

boxplot(dat1[,5]) 

 

#dat.bam2 

     

    p <- ggpairs(dat.bam2[,c(1:6)],title="Scatter Plot, Correlation, and Distribution Matrix") 

    print(p) 

     

    #Bambach model 1 

    bmod1<-lm(extrate~.-b2mc-b2cm,data=dat.bam2,na.action=na.omit) 

    summary(bmod1) 

    p1<-glance(bmod1)$p.value 

    p.adjust(p1,"bonferroni",5) 

    #Predictive R2 

    ##model validation using PRESS statistic 

    #removes each observation, refits model, 
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    #calculates the out-of-sample predicted  

    #value for each omitted observation, Press 

    #is calculated as the sum of squares of all 

    #the resulting prediction errors. 

    #lowest values of PRESS indicate the best structures 

 

    bmod1at<-drop1(bmod1, .~., test="F") 

    bmod1ts<-sum(bmod1at[2:6,2],bmod1at[1,3]) 

    bmod1pr2<-(1-(PRESS(bmod1)/bmod1ts))*100 

    bmod1pr2 

 

    #diagnostic plots 

            plot(bmod1,which=c(1,4))  

      #residuals v.s fitted values 

      plot(dat.bam2$b2mo[-c(11,15)], bmod1$residuals,main="Res. vs Mean 18O") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam2$b2sdo[-c(11,15)], bmod1$residuals,main="Res. vs Stdev 18O") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam2$b2sdc[-c(11,15)], bmod1$residuals,main="Res. vs Stdev 13C") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam2$b2slsr[-c(11,15)], bmod1$residuals,main="Res. vs Slope 87Sr/86Sr") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam2$b2sdsl[-c(11,15)], bmod1$residuals,main="Res. vs Stdev Sea Level") 

      abline(h = 0, col = "gray75") 

      qqPlot(bmod1$residuals, las = 1, main="QQ Plot") 

      std <- studres(bmod1) #standardized residuals 

      plot(std,main="Standardized Residuals vs Observation Number") 

      lev<-hatvalues(bmod1) 

      plot(lev,main="LeverAge vs Observation Number") 

 

 

    #table of diagnostic info 

    as.data<-as.matrix(cbind(bmod1$fitted.values,bmod1$residuals,std,lev)) 

    colnames(as.data)<-c("fit","res","std","lev") 

    as.data 

    p=6 

    n=15 

    2*p/n 

    3*p/n 

     

    #normality 

 

      std.res<-(rstandard(bmod1)) 

      h<-hist(std.res) 

      xfit<-seq(min(std.res),max(std.res),length=40)  

      yfit<-dnorm(xfit,mean=mean(std.res),sd=sd(std.res))  
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      yfit <- yfit*diff(h$mids[1:2])*length(std.res)  

      lines(xfit, yfit, col="blue", lwd=2) 

 

    describe(std.res) 

    shapiro.test(rstandard(bmod1)) 

     

    #error variance  

    bptest(extrate~.,data=dat.bam2,studentize=FALSE) 

    #autocor 

    checkresiduals(bmod1,test="BG",lag=1) 

    bgtest(bmod1,type="F") 

     

    #multicollinearity 

    vif(bmod1) 

     

    #outliers 

    outlierTest(bmod1) 

  #dat.bam5 

 

    p <- ggpairs(dat.bam5[,c(1:6)],title="Scatter Plot, Correlation, and Distribution Matrix") 

    print(p) 

     

    #Bambach model 2 

    bmod2<-lm(extrate~.-b5mc-b5cm,data=dat.bam5,na.action=na.omit) 

    summary(bmod2) 

    p2<-glance(bmod2)$p.value 

    p.adjust(p2,"bonferroni",5) 

    #Predictive R2 

    bmod2at<-drop1(bmod2, .~., test="F") 

    bmod2ts<-sum(bmod2at[2:6,2],bmod2at[1,3]) 

    bmod2pr2<-(1-(PRESS(bmod2)/bmod2ts))*100 

    bmod2pr2 

     

    #diagnostic plots 

      plot(bmod2,which=c(1,4))  

      #residuals v.s fitted values 

      plot(dat.bam5$b5mo, bmod2$residuals,main="Res. vs Mean 18O") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam5$b5sdo, bmod2$residuals,main="Res. vs Stdev 18O") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam5$b5sdc, bmod2$residuals,main="Res. vs Stdev 13C") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam5$b5slsr, bmod2$residuals,main="Res. vs Slope 87Sr/86Sr") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam5$b5sdsl, bmod2$residuals,main="Res. vs Stdev Sea Level") 

      abline(h = 0, col = "gray75") 
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      qqPlot(bmod2$residuals, las = 1, main="QQ Plot") 

      std <- studres(bmod2) #standardized residuals 

      plot(std,main="Standardized Residuals vs Observation Number") 

      lev<-hatvalues(bmod2) 

      plot(lev,main="LeverAge vs Observation Number") 

     

    #table of diagnostic info 

    as.data<-as.matrix(cbind(bmod2$fitted.values,bmod2$residuals,std,lev)) 

    colnames(as.data)<-c("fit","res","std","lev") 

    as.data 

    p=6 

    n=18 

    2*p/n 

    3*p/n 

     

    #normality 

 

      std.res<-(rstandard(bmod2)) 

      h<-hist(std.res) 

      xfit<-seq(min(std.res),max(std.res),length=40)  

      yfit<-dnorm(xfit,mean=mean(std.res),sd=sd(std.res))  

      yfit <- yfit*diff(h$mids[1:2])*length(std.res)  

      lines(xfit, yfit, col="blue", lwd=2) 

 

    describe(std.res) 

    shapiro.test(rstandard(bmod2)) 

     

    #error variance  

    bptest(extrate~.,data=dat.bam5,studentize=FALSE) 

    #autocor 

    checkresiduals(bmod2,test="BG",lag=1) 

    bgtest(bmod2,type="F") 

     

    #multicollinearity 

    vif(bmod2) 

     

    #outliers 

    outlierTest(bmod2) 

 

  #dat.bam10 

 

    p <- ggpairs(dat.bam10[,c(1:6)],title="Scatter Plot, Correlation, and Distribution Matrix") 

    print(p) 

     

    #Bambach model 3 

    bmod3<-lm(extrate~.-b10mc-b10cm,data=dat.bam10,na.action=na.omit) 
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    summary(bmod3) 

    p3<-glance(bmod3)$p.value 

    p.adjust(p3,"bonferroni",5) 

    #Predictive R2 

    bmod3at<-drop1(bmod3, .~., test="F") 

    bmod3ts<-sum(bmod3at[2:6,2],bmod3at[1,3]) 

    bmod3pr2<-(1-(PRESS(bmod3)/bmod3ts))*100 

    bmod3pr2 

     

    #diagnostic plots 

      plot(bmod3,which=c(1,4))  

      #residuals v.s fitted values 

      plot(dat.bam10$b10mo, bmod3$residuals,main="Res. vs Mean 18O") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam10$b10sdo, bmod3$residuals,main="Res. vs Stdev 18O") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam10$b10sdc, bmod3$residuals,main="Res. vs Stdev 13C") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam10$b10slsr, bmod3$residuals,main="Res. vs Slope 87Sr/86Sr") 

      abline(h = 0, col = "gray75") 

      plot(dat.bam10$b10sdsl, bmod3$residuals,main="Res. vs Stdev Sea Level") 

      abline(h = 0, col = "gray75") 

      qqPlot(bmod3$residuals, las = 1, main="QQ Plot") 

      std <- studres(bmod3) #standardized residuals 

      plot(std,main="Standardized Residuals vs Observation Number") 

      lev<-hatvalues(bmod3) 

      plot(lev,main="LeverAge vs Observation Number") 

 

    #table of diagnostic info 

    as.data<-as.matrix(cbind(bmod3$fitted.values,bmod3$residuals,std,lev)) 

    colnames(as.data)<-c("fit","res","std","lev") 

    as.data 

    p=6 

    n=18 

    2*p/n 

    3*p/n 

     

    #normality 

      std.res<-(rstandard(bmod3)) 

      h<-hist(std.res) 

      xfit<-seq(min(std.res),max(std.res),length=40)  

      yfit<-dnorm(xfit,mean=mean(std.res),sd=sd(std.res))  

      yfit <- yfit*diff(h$mids[1:2])*length(std.res)  

      lines(xfit, yfit, col="blue", lwd=2) 

    describe(std.res) 

    shapiro.test(rstandard(bmod3)) 
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    #error variance  

    bptest(extrate~.,data=dat.bam10,studentize=FALSE) 

    #autocor 

    checkresiduals(bmod3,test="BG",lag=1) 

    bgtest(bmod3,type="F") 

     

    #multicollinearity 

    vif(bmod3) 

     

    #outliers 

    outlierTest(bmod3) 

     

  #dat.alr2 

  p <- ggpairs(dat.alr2[,c(1:6)],title="Scatter Plot, Correlation, and Distribution Matrix") 

  print(p) 

 

  #Alroy model 1 

  mod1<-lm(extrate~.,data=dat.alr2[,c(1:6)],na.action=na.omit) 

  mod1sum<-summary(mod1) 

  mod1sum 

  p1<-glance(mod1)$p.value 

  p1ad<-p.adjust(p1,"bonferroni",6) 

  p1ad 

  #Predictive R2 

  mod1at<-drop1(mod1, .~., test="F") 

  mod1ts<-sum(mod1at[2:6,2],mod1at[1,3]) 

  mod1pr2<-(1-(PRESS(mod1)/mod1ts)) 

  mod1pr2 

   

  #diagnostic plots 

    plot(mod1,which=c(1,4))  

    #residuals v.s fitted values 

    plot(dat.alr2$a2mo, mod1$residuals,main="Res. vs Mean 18O") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr2$a2sdo, mod1$residuals,main="Res. vs Stdev 18O") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr2$a2sdc, mod1$residuals,main="Res. vs Stdev 13C") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr2$a2slsr, mod1$residuals,main="Res. vs Slope 87Sr/86Sr") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr2$a2sdsl, mod1$residuals,main="Res. vs Stdev Sea Level") 

    abline(h = 0, col = "gray75") 

    qqPlot(mod1$residuals, las = 1, main="QQ Plot") 

    std <- studres(mod1) #standardized residuals 

    plot(std,main="Standardized Residuals vs Observation Number") 
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    lev<-hatvalues(mod1) 

    plot(lev,main="LeverAge vs Observation Number") 

 

  #table of diagnostic info 

  as.data<-as.matrix(cbind(mod1$fitted.values,mod1$residuals,std,lev)) 

  colnames(as.data)<-c("fit","res","std","lev") 

  as.data 

  p=6 

  n=16 

  2*p/n 

  3*p/n 

 

  #normality 

    std.res<-(rstandard(mod1)) 

    h<-hist(std.res) 

    xfit<-seq(min(std.res),max(std.res),length=40)  

    yfit<-dnorm(xfit,mean=mean(std.res),sd=sd(std.res))  

    yfit <- yfit*diff(h$mids[1:2])*length(std.res)  

    lines(xfit, yfit, col="blue", lwd=2) 

  describe(std.res) 

  shapiro.test(rstandard(mod1)) 

   

  #error variance  

  bptest(extrate~.,data=dat.alr2,studentize=FALSE) 

  #autocor 

  checkresiduals(mod1,test="BG",lag=1) 

  bgtest(mod1,type="F") 

   

  #multicollinearity 

  vif(mod1) 

   

  #Bonferroni outlier test 

  outlierTest(mod1) 

 

  #interactions 

  #sdc*sdsl 

  plot(dat.alr2[,4]*dat.alr2[,6],mod1$residuals,main="std13c*sdsl") 

   

  #dat.alr5 

 

  p <- ggpairs(dat.alr5[,c(1:6)],title="Scatter Plot, Correlation, and Distribution Matrix") 

  print(p) 

 

  #Alroy model 2 

  mod2<-lm(extrate~.,data=dat.alr5[,c(1:6)],na.action=na.omit) 
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  mod2<-

lm(extrate~.+a5sdo*a5sdc+a5sdc*a5sdsl+a5sdo*a5sdsl,data=dat.alr5[,c(1:6)],na.action=na.o

mit) 

  mod2<-lm(extrate~.+a5sdo*a5sdsl,data=dat.alr5[,c(1:6)],na.action=na.omit) 

  mod2sum<-summary(mod2) 

  mod2sum 

  p2<-glance(mod2)$p.value 

  p2ad<-p.adjust(p2,"bonferroni",6) 

  p2ad 

  #SSS table 

  options(contrasts = c("contr.sum","contr.poly")) 

  drop1(mod2, .~., test="F") 

  #Predictive R2 

  mod2at<-drop1(mod2, .~., test="F") 

  mod2ts<-sum(mod2at[2:7,2],mod2at[1,3]) 

  mod2pr2<-(1-(PRESS(mod2)/mod2ts)) 

  mod2pr2 

 

  #diagnostic plots 

 

    plot(mod2,which=c(1,4))  

    #residuals v.s fitted values 

    plot(dat.alr5$a5mo,mod2$residuals,main="Res. vs Mean 18O") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr5$a5sdo,mod2$residuals,main="Res. vs Stdev 18O") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr5$a5sdc,mod2$residuals,main="Res. vs Stdev 13C") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr5$a5slsr,mod2$residuals,main="Res. vs Slope 87Sr/86Sr") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr5$a5sdsl,mod2$residuals,main="Res. vs Stdev Sea Level") 

    abline(h = 0, col = "gray75") 

    qqPlot(mod2$residuals, las = 1, main="QQ Plot") 

    std <- studres(mod2) #standardized residuals 

    plot(std,main="Standardized Residuals vs Observation Number") 

    lev<-hatvalues(mod2) 

    plot(lev,main="Leverage vs Observation Number") 

 

  #table of diagnostic info 

  as.data<-as.matrix(cbind(mod2$fitted.values,mod2$residuals,std,lev)) 

  colnames(as.data)<-c("fit","res","std","lev") 

  as.data 

  p=7 

  n=16 

  2*p/n 

  3*p/n 
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  #normality 

    std.res<-(rstandard(mod2)) 

    h<-hist(std.res) 

    xfit<-seq(min(std.res),max(std.res),length=40)  

    yfit<-dnorm(xfit,mean=mean(std.res),sd=sd(std.res))  

    yfit <- yfit*diff(h$mids[1:2])*length(std.res)  

    lines(xfit, yfit, col="blue", lwd=2) 

  describe(std.res) 

  shapiro.test(rstandard(mod2)) 

   

  #error variance  

  bptest(extrate~.,data=dat.alr5,studentize=TRUE) 

  #autocor 

  checkresiduals(mod2,test="BG",lag=1) 

  bgtest(mod2,type="F") 

   

  #multicollinearity 

  vif(mod2) 

   

  #outliers 

  outlierTest(mod2) 

   

  #interactions 

  #sdo*sdc 

  plot(dat.alr5[,3]*dat.alr5[,4],mod2$residuals,main="std18o*std13c") 

  #sdc*sdsl 

  plot(dat.alr5[,4]*dat.alr5[,6],mod2$residuals,main="std13c*sdsl") 

  #sdo*sdsl 

  plot(dat.alr10[,3]*dat.alr10[,6],mod2$residuals,main="std18o*sdsl") 

 

  

###########################################################################

### 

  ###10 My intervals 

   

  #dat.alr10 

 

  p <- ggpairs(dat.alr10[,c(1:6)],title="Scatter Plot, Correlation, and Distribution Matrix") 

  print(p) 

 

  #Alroy model 3 

  mod3<-lm(extrate~.,data=dat.alr10[,c(1:6)],na.action=na.omit) 

  mod3sum<-summary(mod3) 

  mod3sum 

  p3<-glance(mod3)$p.value 
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  p3ad<-p.adjust(p3,"bonferroni",5) 

  p3ad 

  #SSS table 

  options(contrasts = c("contr.sum","contr.poly")) 

  drop1(mod3, .~., test="F") 

  #Predictive R2 

  mod3at<-drop1(mod3, .~., test="F") 

  mod3ts<-sum(mod3at[2:6,2],mod3at[1,3]) 

  mod3pr2<-(1-(PRESS(mod3)/mod3ts)) 

  mod3pr2 

 

  #diagnostic plots 

 

    plot(mod3,which=c(1,4))  

    #residuals v.s fitted values 

    plot(dat.alr10$a10mo, mod3$residuals,main="Res. vs Mean 18O") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr10$a10sdo, mod3$residuals,main="Res. vs Stdev 18O") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr10$a10sdc, mod3$residuals,main="Res. vs Stdev 13C") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr10$a10slsr, mod3$residuals,main="Res. vs Slope 87Sr/86Sr") 

    abline(h = 0, col = "gray75") 

    plot(dat.alr10$a10sdsl, mod3$residuals,main="Res. vs Stdev Sea Level") 

    abline(h = 0, col = "gray75") 

    qqPlot(mod3$residuals, las = 1, main="QQ Plot") 

    std <- studres(mod3) #standardized residuals 

    plot(std,main="Standardized Residuals vs Observation Number") 

    lev<-hatvalues(mod3) 

    plot(lev,main="Leverage vs Observation Number") 

   

  #table of diagnostic info 

  as.data<-as.matrix(cbind(mod3$fitted.values,mod3$residuals,std,lev)) 

  colnames(as.data)<-c("fit","res","std","lev") 

  as.data 

  p=6 

  n=16 

  2*p/n 

  3*p/n 

   

  #normality 

    std.res<-(rstandard(mod3)) 

    h<-hist(std.res) 

    xfit<-seq(min(std.res),max(std.res),length=40)  

    yfit<-dnorm(xfit,mean=mean(std.res),sd=sd(std.res))  

    yfit <- yfit*diff(h$mids[1:2])*length(std.res)  
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    lines(xfit, yfit, col="blue", lwd=2) 

  describe(std.res) 

  shapiro.test(rstandard(mod3)) 

   

  #error variance  

  bptest(extrate~.,data=dat.alr10,studentize=FALSE) 

  #autocor 

  checkresiduals(mod3,test="BG",lag=1) 

  bgtest(mod3,type="F") 

   

  #multicollinearity 

  vif(mod3) 

   

  #outliers 

  outlierTest(mod3) 

 

  #################### 

#Type 3 ANOVA Table# 

#################### 

 

 

  a2myr.vp<-(data.frame(mod1sum[["coefficients"]][,"Pr(>|t|)"][2:6])) 

  a2myr.p<-rbind(p1ad,a2myr.vp) 

  anova.a2myr<-a2myr.p 

  a2r2<-data.frame(mod1sum$r.squared) 

  a2ir2<-calc.relimp(mod1,type="lmg")#fit considering all other variables in the model 

  a2ir2<-as.data.frame(a2ir2@lmg) 

  colnames(a2ir2)<-"a2ir2" 

  a2r2<-InsertRow(a2ir2,a2r2,1) 

  anova.a2myr$a2r2<-a2r2 

  a2ar2<-data.frame(mod1sum$adj.r.squared) 

  length(a2ar2)<-nrow(a2myr.p) 

  anova.a2myr$a2ar2<-a2ar2 

  mod1pr2<-data.frame(mod1pr2) 

  length(mod1pr2)<-nrow(a2myr.p) 

  anova.a2myr$mod1pr2<-mod1pr2 

  colnames(anova.a2myr)<-c("P-Value","Multiple R2 (subsequent values are relative 

R2)","Adjusted R2","Predicted R2") 

  row.names(anova.a2myr)<-c("2 Myr-prior Model","Average Temperature","Temperature 

Stability","Carbon Cycle Stability","Continental Weathering Rates","Habitat Stability") 

  colnames(anova.a2myr[2])<-"Multiple R2 (subsequent values are relative R2)" 

  anova.a2myr<-as.matrix.data.frame(anova.a2myr) 

 

  a5myr.vp<-(data.frame(mod2sum[["coefficients"]][,"Pr(>|t|)"][2:7])) 

  a5myr.p<-rbind(p2ad,a5myr.vp) 

  anova.a5myr<-a5myr.p 
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  a5r2<-data.frame(mod2sum$r.squared) 

  a5ir2<-calc.relimp(mod2,type="lmg")#fit considering all other variables in the model 

  a5ir2<-as.data.frame(a5ir2@lmg) 

  colnames(a5ir2)<-"a5ir2" 

  a5r2<-InsertRow(a5ir2,a5r2,1) 

  anova.a5myr$a5r2<-a5r2 

  a5ar2<-data.frame(mod2sum$adj.r.squared) 

  length(a5ar2)<-nrow(a5myr.p) 

  anova.a5myr$a5ar2<-a5ar2 

  mod1pr2<-data.frame(mod2pr2) 

  length(mod2pr2)<-nrow(a5myr.p) 

  anova.a5myr$mod2pr2<-mod2pr2 

  colnames(anova.a5myr)<-c("P-Value","Multiple R2 and Relative Importance of 

Variables","Adjusted R2","Predicted R2") 

  row.names(anova.a5myr)<-c("5 Myr-prior Model","Average Temperature","Temperature 

Stability","Carbon Cycle Stability","Continental Weathering Rates","Habitat 

Stability","Temperature-Sea Level Interaction") 

  anova.a5myr<-as.matrix.data.frame(anova.a5myr) 

 

  a10myr.vp<-(data.frame(mod3sum[["coefficients"]][,"Pr(>|t|)"][2:6])) 

  a10myr.p<-rbind(p3ad,a10myr.vp) 

  anova.a10myr<-a10myr.p 

  a10r2<-data.frame(mod3sum$r.squared) 

  a10ir2<-calc.relimp(mod3,type="lmg")#fit considering all other variables in the model 

  a10ir2<-as.data.frame(a10ir2@lmg) 

  colnames(a10ir2)<-"a10ir2" 

  a10r2<-InsertRow(a10ir2,a10r2,1) 

  anova.a10myr$a10r2<-a10r2 

  a10ar2<-data.frame(mod3sum$adj.r.squared) 

  length(a10ar2)<-nrow(a10myr.p) 

  anova.a10myr$a10ar2<-a10ar2 

  mod3pr2<-data.frame(mod3pr2) 

  length(mod3pr2)<-nrow(a10myr.p) 

  anova.a10myr$mod3pr2<-mod3pr2 

  colnames(anova.a10myr)<-c("P-Value","Multiple R2 (subsequent values are relative 

R2)","Adjusted R2","Predicted R2") 

  row.names(anova.a10myr)<-c("10 Myr-prior Model","Average Temperature","Temperature 

Stability","Carbon Cycle Stability","Continental Weathering Rates","Habitat Stability") 

  anova.a10myr<-as.matrix.data.frame(anova.a10myr) 

 

################## 

#Model assessment# 

################## 

 

#partialled out predictor effect  
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  d2<-cbind(dat.alr2,(rownames(dat.alr2))) 

  colnames(d2)[9] <- "extint" 

  color_pallet_function <- colorRampPalette( 

    colors = c("blue", "brown", "purple"), 

    space = "Lab" # Option used when colors do not represent a quantitative scale 

  ) 

  num_colors <- levels(d2$extint) 

  ext_int_color_colors <- color_pallet_function(num_colors) 

 

    peplot <- function(mod,var,ci=.95, plot_points = "n", 

                     xlab=var,ylab=names(mod[12]$model)[1], 

                     main="", 

                     pe_lty=1,pe_lwd=3,pe_col="black", 

                     ci_lty=1,ci_lwd=1,ci_col="black", 

                     pch_col="black",pch_ty=19, 

                     pe_cex=1,pe_font=1, 

                     ylim=c(min(pred[,"lwr"]),max(pred[,"upr"]))){ 

    modDat <- mod[12]$model 

    modDat1 <- modDat[,-1] 

    modDat2 <- modDat[,which(names(modDat)!=var)] 

    x <- resid(lm(modDat1[,var] ~., data=modDat1[,which(names(modDat1)!=var)])) 

    y <- resid(lm(modDat2[,1] ~ ., modDat2[,-1])) 

    plot(x,y,type=plot_points,xlab=xlab,ylab=ylab, 

         ylim=ylim,col=pch_col,pch=pch_ty,cex=pe_cex, 

         main=main,font=1) 

    part <- lm(y~x) 

    wx <- par("usr")[1:2] 

    new.x <- seq(wx[1],wx[2],len=100) 

    conf <- predict(part, new=data.frame(x=new.x), interval="conf", 

                    level = ci) 

    lines(new.x,conf[,"fit"],lwd=pe_lwd,lty=pe_lty,col=pe_col) 

    lines(new.x,conf[,"lwr"],lwd=ci_lwd,lty=ci_lty,col="steelblue") 

    lines(new.x,conf[,"upr"],lwd=ci_lwd,lty=ci_lty,col="steelblue") 

    pred <- predict(part, new=data.frame(x=new.x), interval="prediction", 

                    level = ci) 

    lines(new.x,pred[,"fit"],lwd=pe_lwd,lty=pe_lty,col=pe_col) 

    lines(new.x,pred[,"lwr"],lwd=ci_lwd,lty=ci_lty,col="darkred") 

    lines(new.x,pred[,"upr"],lwd=ci_lwd,lty=ci_lty,col="darkred") 

     

     

  } 

  peplot.l <- function(mod,var,ci=.95, plot_points = "n", 

                       xlab=var,ylab=names(mod[12]$model)[1], 

                       main="", 

                       pe_lty=1,pe_lwd=3,pe_col="black", 

                       ci_lty=1,ci_lwd=1,ci_col="black", 
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                       pch_col="black",pch_ty=19, 

                       pe_cex=1, 

                       ylim=c(min(pred[,"lwr"]),max(pred[,"upr"]))){ 

    modDat <- mod[12]$model 

    modDat1 <- modDat[,-1] 

    modDat2 <- modDat[,which(names(modDat)!=var)] 

    x <- resid(lm(modDat1[,var] ~., data=modDat1[,which(names(modDat1)!=var)])) 

    y <- resid(lm(modDat2[,1] ~ ., modDat2[,-1])) 

    plot(x,y,type=plot_points,xlab=xlab,ylab=ylab, 

         ylim=ylim,col=pch_col,pch=pch_ty,cex=pe_cex, 

         main=main) 

    legend("bottomright",  

           legend = d2$extint,  

           col =ext_int_color_colors,  

           pch = c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16),  

           bty = "y",pt.cex = 0.79,cex = 0.29,text.col = "black", 

           horiz = F ,inset =F, ncol=2,title="Extinction Interval") 

    part <- lm(y~x) 

    wx <- par("usr")[1:2] 

    new.x <- seq(wx[1],wx[2],len=100) 

    conf <- predict(part, new=data.frame(x=new.x), interval="conf", 

                    level = ci) 

    lines(new.x,conf[,"fit"],lwd=pe_lwd,lty=pe_lty,col=pe_col) 

    lines(new.x,conf[,"lwr"],lwd=ci_lwd,lty=ci_lty,col="steelblue") 

    lines(new.x,conf[,"upr"],lwd=ci_lwd,lty=ci_lty,col="steelblue") 

    pred <- predict(part, new=data.frame(x=new.x), interval="prediction", 

                    level = ci) 

    lines(new.x,pred[,"fit"],lwd=pe_lwd,lty=pe_lty,col=pe_col) 

    lines(new.x,pred[,"lwr"],lwd=ci_lwd,lty=ci_lty,col="darkred") 

    lines(new.x,pred[,"upr"],lwd=ci_lwd,lty=ci_lty,col="darkred") 

     

     

  } 

 

  #2myr 

 

  par(mfrow=c(3,2),family="serif",bty="l") 

  peplot(mod1,"a2mo",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

         pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

         ci_lty=2,xlab=expression("Mean Temperature (r"[i]*")"), 

         ylab=expression("Extinction Rate (r"[i]*")"), 

         pe_cex=2,pe_font=2) 

  title(main="A.",adj=0,family="serif",font=2) 

  peplot(mod1,"a2sdo",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

         pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

         ci_lty=2,xlab=expression("Temperature Instability (r"[i]*")"), 
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         ylab=expression("Extinction Rate (r"[i]*")"), 

         pe_cex=2) 

  title(main="B.",adj=0,family="serif",font=2) 

  peplot(mod1,"a2sdc",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

         pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

         ci_lty=2,xlab=expression("Carbon Cycle Instability (r"[i]*")"), 

         ylab=expression("Extinction Rate (r"[i]*")"), 

         pe_cex=2) 

  title(main="C.",adj=0,family="serif",font=2) 

  peplot(mod1,"a2slsr",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

         pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

         ci_lty=2,xlab=expression("Continental Weathering Rates (r"[i]*")"), 

         ylab=expression("Extinction Rate (r"[i]*")"), 

         pe_cex=2) 

  title(main="D.",adj=0,family="serif",font=2) 

  peplot(mod1,"a2sdsl",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

         pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

         ci_lty=2,xlab=expression("Habitat Instability (r"[i]*")"), 

         ylab=expression("Extinction Rate (r"[i]*")"), 

         pe_cex=2) 

  title(main="E.",adj=0,family="serif",font=2) 

 

  #5myr 

 

    par(mfrow=c(3,2),family="serif",bty="l") 

    peplot(mod2,"a5mo",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Mean Temperature (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="A.",adj=0,family="serif",font=2) 

    peplot(mod2,"a5sdo",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Temperature Instability (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="B.",adj=0,family="serif",font=2) 

    peplot(mod2,"a5sdc",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Carbon Cycle Instability (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="C.",adj=0,family="serif",font=2) 

    peplot(mod2,"a5slsr",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Continental Weathering Rates (r"[i]*")"), 
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           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="D.",adj=0,family="serif",font=2) 

    peplot(mod2,"a5sdsl",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Sea Level Instability (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="E.",adj=0,family="serif",font=2) 

 

    par(mfrow=c(3,2),family="serif",bty="l") 

    peplot(mod3,"a10mo",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Mean Temperature (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="A.",adj=0,family="serif",font=2) 

    peplot(mod3,"a10sdo",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Temperature Instability (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="B.",adj=0,family="serif",font=2) 

    peplot(mod3,"a10sdc",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Carbon Cycle Instability (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="C.",adj=0,family="serif",font=2) 

    peplot(mod3,"a10slsr",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Continental Weathering Rates (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="D.",adj=0,family="serif",font=2) 

    peplot(mod3,"a10sdsl",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

           pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

           ci_lty=2,xlab=expression("Sea Level Instability (r"[i]*")"), 

           ylab=expression("Extinction Rate (r"[i]*")"), 

           pe_cex=2) 

    title(main="E.",adj=0,family="serif",font=2) 

 

    par(mfrow=c(1,1)) 

    peplot.l(mod1,"a2sdc",plot_points="p",ylim=NULL,pch_col=ext_int_color_colors, 

             pch_ty=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

             ci_lty=2,xlab=expression("Carbon Cycle Instability (r"[i]*")"), 
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             ylab=expression("Extinction Rate (r"[i]*")"), 

             pe_cex=2) 

    title(main="C.",adj=0,family="serif",font=2) 

 

#within-bin sd carbon and sea level boxplots and ANOVA 

 

  me<-c(0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0) 

  dat_me<-cbind(me,wib.sd.carb[2:6]) 

  dat_me<-cbind((rownames(dat_me)),dat_me)              

  colnames(dat_me)<-c("extint","me","0-2","2-4","4-6","6-8","8-10") 

  dat_me$extint<- as.factor(dat_me$extint) 

   

  dat_me$extint <- factor(dat_me$extint,  

                          levels = c("Late Pliocene","Eocene-Oligocene","End-Cretaceous", 

                                     "Cenomanian-Turonian","Tithonian","Toarcian","End-Triassic", 

                                     "End-Permian","Guadalupian","Early-Serpukhovian","End-

Devonian", 

                                     "Givetian-Frasnian","Eifelian-Givetian","End-Ordovician", 

                                     "Series 3-Furogian","Stage 3-Stage 4")) 

  df=melt((dat_me),id.vars=c("extint","me"),na.rm=FALSE) 

 

  dat_me2<-cbind(me,wib.sd.sl[2:6]) 

  dat_me2<-cbind((rownames(dat_me2)),dat_me2)              

  colnames(dat_me2)<-c("extint","me","0-2","2-4","4-6","6-8","8-10") 

  dat_me2$extint<- as.factor(dat_me2$extint) 

   

  dat_me2$extint <- factor(dat_me2$extint,  

                           levels = c("Late Pliocene","Eocene-Oligocene","End-Cretaceous", 

                                      "Cenomanian-Turonian","Tithonian","Toarcian","End-Triassic", 

                                      "End-Permian","Guadalupian","Early-Serpukhovian","End-

Devonian", 

                                      "Givetian-Frasnian","Eifelian-Givetian","End-Ordovician", 

                                      "Series 3-Furogian","Stage 3-Stage 4")) 

  df2=melt((dat_me2),id.vars=c("extint","me"),na.rm=FALSE) 

 

  boxplot(df$value ~ df$variable,xlab="2 Myr Bins From 0 to 10 Myrs",  

          ylab="Carbon Cycle Instability") 

   

  # Add data points 

  mylevels <- levels(df$variable) 

  levelProportions <- summary(df$variable)/nrow(df) 

  for(i in 1:length(mylevels)){ 

     

    thislevel <- mylevels[i] 

    thisvalues <- df[df$variable==thislevel, "value"] 
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    # take the x-axis indices and add a jitter, proportional to the N in each level 

    myjitter <- jitter(rep(i, length(thisvalues)), amount=levelProportions[i]/2) 

    points(myjitter, thisvalues, pch=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

col=ext_int_color_colors)  

    legend("topright",  

           legend = d2$extint,  

           col =ext_int_color_colors,  

           pch = c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16),  

           bty = "y",pt.cex = 0.79,cex = 0.29,text.col = "black", 

           horiz = F ,inset =F, ncol=2,title="Extinction Interval") 

     

  } 

  title(main="A.",adj=0,family="serif",font=2) 

 

  #Sea Level 

 

  boxplot(df2$value ~ df2$variable,xlab="2 Myr Bins From 0 to 10 Myrs",  

          ylab="Sea Level Instability") 

   

  # Add data points 

  mylevels <- levels(df2$variable) 

  levelProportions <- summary(df$variable)/nrow(df2) 

  for(i in 1:length(mylevels)){ 

     

    thislevel <- mylevels[i] 

    thisvalues <- df2[df2$variable==thislevel, "value"] 

     

    # take the x-axis indices and add a jitter, proportional to the N in each level 

    myjitter <- jitter(rep(i, length(thisvalues)), amount=levelProportions[i]/2) 

    points(myjitter, thisvalues, pch=c(16,16,0,16,16,16,1,2,16,16,5,16,16,6,16,16), 

col=ext_int_color_colors)  

  } 

  title(main="B.",adj=0,family="serif",font=2) 

 

#ANOVA 

carb.short <-wib.sd.carb[,-1] 

colnames(carb.short)<-c("two","four","six","eight","ten") 

carb.long <- melt(carb.short, variable.name = "interval", value.name = "sdcarb") 

mod4<-aov(sdcarb~interval,data=carb.long) 

summary(mod4) 

pairwise.t.test(carb.long$sdcarb,carb.long$interval,pool.sd=TRUE,p.adjust.method="bonferr

oni") 

 

sl.short <-wib.sd.sl[,-1] 

colnames(sl.short)<-c("two","four","six","eight","ten") 

sl.long <- melt(sl.short, variable.name = "interval", value.name = "sdsl") 
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mod5<-aov(sdsl~interval,data=sl.long) 

summary(mod5) 

pairwise.t.test(sl.long$sdsl,sl.long$interval,pool.sd=TRUE,p.adjust.method="bonferroni") 

 

###Future estimates 

 

      #new df 

      dat1.2<-subset(dat1,orgage<=2.4) 

      rownames(dat1.2)<-NULL 

       

      #Last 2Myrs 

      #subset time and abiotic proxies 

      myr2orgage<-(-1*dat1.2$orgage[subset=dat1.2$orgage>=0&dat1.2$orgage<=2]) 

      myr2dox<-dat1.2$dox[subset=dat1.2$orgage>=0&dat1.2$orgage<=2] 

      myr2dcarb<-dat1.2$dcarb[subset=dat1.2$orgage>=0&dat1.2$orgage<=2] 

      myr2stron<-dat1.2$stron[subset=dat1.2$orgage>=0&dat1.2$orgage<=2] 

      myr2sl<-dat1.2$sl[subset=dat1.2$orgage>=0&dat1.2$orgage<=2] 

      myr2patc<-dat1.2$patc[subset=dat1.2$orgage>=0&dat1.2$orgage<=2] 

       

      #plots, what's happening in the bins? 

      plot(myr2orgage,myr2dox) 

      plot(myr2orgage,myr2dcarb) 

      plot(myr2orgage,myr2stron) 

      plot(myr2orgage,myr2sl) 

      plot(myr2orgage,myr2patc) 

       

      mmo<-mean(myr2dox,na.rm=TRUE) 

      msdmo<-sd(myr2dox,na.rm=TRUE) 

      msdc<-sd(myr2dcarb,na.rm=TRUE) 

      lm1sr<-lm(dat1.2$orgage~dat1.2$stron,na.action=na.omit) 

      mslsr<-((lm1sr$coefficients[2])) 

      msdsl<-sd(myr2sl,na.rm=TRUE) 

      #mmc<-mean(dat1.2$patc[subset=dat1.2$orgage>=0&dat1.2$orgage<=2],na.rm=TRUE) 

      a2mbt<-data.frame(a2mo=mmo,a2sdo=msdmo,a2sdc=msdc,a2slsr=mslsr,a2sdsl=msdsl) 

      row.names(a2mbt)<-"ext.now" 

      ndf<-dat.alr2[1:6] 

      modm<-lm(extrate~.,data=ndf[,c(1,4,6)]) 

      ext_now<-predict(modm,newdata=a2mbt[c(3,5)],interval="predict") 

      ext_now 

 

#corr between extinction magnitude and number of data points 

#corr dataframe 

sapply(cpaa, class) 

is.numeric(dat.alr2$extrate) 

extmag<-(dat.alr2$extrate) 

cordf<-cbind(extmag,cpaa[,c(1,4,7,10)]) 
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sapply(cordf, class) 

i <- c(1:5) 

cordf[ , i] <- apply(cordf[ , i], 2,            # Specify own function within apply 

                    function(x) as.numeric(as.character(x))) 

sapply(cordf, class) 

 

#normality 

describe(cordf) 

shapiro.test(cordf$extmag) #almost sig 

shapiro.test(cordf$a2ox) #sig 

shapiro.test(cordf$a2carb) #sig 

shapiro.test(cordf$a2stron) #not sig 

shapiro.test(cordf$a2sl) #not sig 

 

p <- ggpairs(cordf, 

             upper = list( 

               continuous = wrap('cor', method = "spearman") 

             ), 

title="Scatter Plot, Correlation, and Distribution Matrix") 

print(p) 

 

#spearman rank correlation analyses (data above are not normally distributed) 

cor.test(cordf$extmag,cordf$a2ox,method="spearman",exact=TRUE) 

cor.test(cordf$extmag,cordf$a2carb,method="spearman",exact=TRUE) 

cor.test(cordf$extmag,cordf$a2stron,method="spearman",exact=TRUE) 

cor.test(cordf$extmag,cordf$a2sl,method="spearman",exact=TRUE) 
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