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Tuning of Real-Time Optimization of Heliostat Concentrated Solar 
Power

by

Zachary Lee Bernius

B.S. Mechanical Engineering, University of New Mexico, 2023

M.S. Mechanical Engineering, University of New Mexico, 2024

ABSTRACT

This paper investigates a real-time optimization algorithm for autonomously 
calibrating the heliostats in a concentrated solar power plant with the goal of 
maximizing power generation. The current state-of-the-art uses human operators to 
provide feedback for the heliostats. We use real-time/online measurements to 
produce an autonomous closed-loop system that does not require human 
intervention. The paper investigates tuning the gain of the real-time optimization 
algorithm to quickly and robustly converge to the optimal alignment and stabilize 
the system. The exponential stability of the system is certified using a quadratic 
Lyapunov function and static output feedback methods to couple the Lyapunov 
functions of the plant and the controller. To validate stability, performance, and 
robustness, the algorithm is simulated using different p ower distributions and gains, 
as well as tested using an actual heliostat, that show the need for the real-time 
optimization algorithm.
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1 Introduction

Concentrated Solar Power (csp) is among the most reliable forms of renewable en-

ergy and can rival non-renewable sources [10] by using reflected sunlight to gener-

ate power [16]. Another well-known method for energy production using the Sun

is photovoltaics, or solar panels. While both csp and solar panels use sunlight for

producing power, these methods differ in how the sunlight is used. Solar panels ab-

sorb sunlight directly to transform the energy into electricity [2]. A csp plant con-

centrates solar energy to heat a working fluid which is used in a traditional thermo-

dynamic cycle to produce electricity. This has three main advantages. First, while

the power capacity varies as a function of time of year and time of day, csp is avail-

able regardless of the time of year. Second, csp uses concentrated sunlight to heat

a working fluid, enabling thermal storage which can be used to continuously gener-

ate power, even at night. Third, reflecting sunlight to heat a working fluid provides

a more efficient mechanism for transforming solar energy. There are several differ-

ent mechanisms for concentrating solar power in csp, including fresnel lenses [15],

through parabolic dishes [12], and power towers that use heliostats, which are con-

sidered in this paper. A heliostat is a collection of mirrors (referred to as facets),

that reflects sunlight onto a power tower, also known as the receiver, to heat the

working fluid. A challenge of csp using heliostats is the high initial costs of build-

ing the plant. Another challenge with heliostats is that they require control systems

for alignment and pointing.

The Carnot efficiency of power generation increases with the heat-flux on the re-

ceiver. Thus, to maximize power generation, the heliostats need to continually re-

align with the Sun’s movement to reflect sunlight optimally onto the power tower.

Ideally, this realignment can be performed autonomously using Real-time Optimiza-

tion (rto) [6] to find and maintain the optimal pointing alignment.
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Currently, the desired alignment is facilitated by open-loop controls from a human-

operator in the form of an azimuth and an elevation angle tracked by the heliostats.

The open-loop azimuth and elevation angle set-points are computed using the cur-

rent position of the Sun, the position of the mirror, and the position of the receiver.

An inner-loop controller tracks the desired azimuth and elevation angle to move the

heliostats to their actual azimuth and elevation angle. This differs from the outer-

loop feedback controller mentioned in later sections, which selects the desired az-

imuth and elevation angle in real-time to maximize power.

There are several issues with the current open-loop approach that unnecessarily re-

duce power generation. First, model uncertainty introduces error, resulting in mis-

alignment of the sunspot on the receiver. This is introduced by misalignment of co-

ordinate frames between the heliostat and the receiver. Essentially, the blueprint

location and orientation of the heliostat differs from its actual location and ori-

entation, leading to misalignment in the absence of corrective feedback. In addi-

tion, miscalibration of the encoders used by the inner-loop heliostat controllers can

result in the heliostat reflecting sunlight in an unintended direction. Second, the

heliostats do not track the Sun perfectly to adjust to the Sun’s movement. Slight

tracking error causes the sunspot to gradually drift away from the desired position.

This requires the operator to continuously monitor and adjust commands to the

heliostats. Third, there are disturbances that impact the heliostats, such as wind,

which can misalign them. Lastly, another disadvantage of this human-in-the-loop

approach is that it requires the constant intervention of a skilled operator. This ex-

perienced operator must be paid to estimate the desired alignment and pointing

of the heliostats. To address these issues, this paper presents a rto algorithm for

autonomously aligning the heliostats in a csp plant to maximize power generation

despite model uncertainty and disturbances using real-time feedback.

Other methods have been proposed for real-time maximization of power genera-
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tion in csp. A commonly used method is System Observation for Heliostat Orien-

tations while Tracking (sohot) [8]. This method uses drones to take images of the

heliostats and ray-tracing programs to calculate the heliostats’ optimal pointing

alignment and then adjusts the alignment to correct the alignment errors. However,

this method is time-consuming and expensive. Furthermore, it does not address the

need for autonomous feedback, instead provides more data to the human-operator

and relies on them to adjust the alignment, increasing their workload and the skill-

level necessary to operate the csp plant. In contrast, the method presented in this

paper is less expensive since it uses power measurements from existing sensor in-

frastructure. Furthermore, our motivation for tuning the rto controller is to reduce

the time required to find the optimal pointing alignment of a heliostat. There is

also the advantage of being conceptually simple, using power measurements directly

from the receiver. There have also been other closed-loop control approaches done

by Kribus et al. in [7] and by Freeman et al. in [4]. The method in [7] compares

four images around the receiver to measure sunlight spillage and uses it as feedback

to adjust the heliostat. The work in [4] builds upon [7] by using a small mechani-

cal vibration to perturb the light waves that are picked up by photo-sensors around

the receiver along with calculating the heliostat’s surface normal vector to improve

calibration and standalone movement. Our method differs because we use real-time

measurements and a gradient ascent algorithm to maximize power. An advantage

of our data-driven method is that it is compatible with a variety of data collection

methods commonly used by existing csp plants. Another advantage of our method

is that it filters the sensors’ measurement to obtain a robust estimate of the opti-

mal pointing alignment of the heliostats whereas other methods assume that the

sensor measurements obtained by specialized sensors are truth. Lastly, our method

does not require us to calculate the optimal pointing alignment vector.

There are many advantages to closing the loop for real-time heliostat alignment.
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First, feedback improves robustness to model uncertainty. Second, feedback im-

proves tracking by minimizing drift from the optimal pointing alignment. Third,

feedback allows the heliostat to respond faster to disturbances. Lastly, the closed-

loop approach does not require an operator to move the heliostats after the initial

desired azimuth and elevation angle.

This paper adopts a standard rto architecture [11] which is applied to the prob-

lem of aligning the csp heliostats in real-time. The focus of this paper is on tuning

the gain of the rto to provide exponential stability, reduce alignment time, and

improve robustness to model uncertainty. Tuning the gain is imperative for several

reasons. First, if the wrong gain is used then the closed-loop comprised of the rto

controller and heliostat will become unstable. Second, even when the closed-loop is

stable, a mistuned gain could cause the rto to drive the heliostat into a misaligned

equilibrium that reduces power generation. Third, the tuning of the rto affects the

closed-loop settling time of the heliostat. Reducing the settling time will improve

tracking of the Sun and rejection of disturbances such as wind. Finally, a properly

tuned gain can improve robustness to model uncertainty, in particular the sunspot

shape produced by the heliostat facets.

We present a semi-definite programming (sdp) approach for tuning the gain of the

rto. We exploit the fact that the heliostat and power tower csp plant can be mod-

eled as a Hammerstein system with an exponential non-linearity. Thus, by taking

the logarithm of power, the closed-loop system becomes an uncertain linear sys-

tem. This allows us to adapt semi-definite programming techniques for designing

output feedback controllers to tune the rto for performance and robustness. The

sdp problem has linear matrix inequality (lmi) constraints which restrict the opti-

mization to stabilizing gains. These constraints are parameterized for robustness to

the unknown shape of the sunspot produced by the heliostat facets. The cost of the

sdp problem minimizes the settling-time of the closed-loop system.
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The remainder of this paper is organized as follows. In Section 2, we formally de-

fine the heliostat alignment problem. In Section 3, we present our approach for tun-

ing the rto gain to optimize performance and robustness. Finally, in Section 4, we

present numerical simulations that demonstrate the effectiveness of our approach.

1.1 Notation and Definitions

The convex hull is defined as

C =
{∑N

i=1
ξi∆i :

∑N

i=1
ξi = 1, ξi ≥ 0

}
(1)

where N is the number of vertices and ∆i are the vertices of the convex hull.

2 RTO Tuning Problem

In this section, we describe the heliostat alignment problem and the architecture of

the rto we will employ to solve this problem. The block diagram of a heliostat-csp

in closed-loop with a rto controller is shown in Fig. 1. In the subsequent sections,

we will describe the components of the block diagram.

H(s) P (y) log
Open-loop r y Power

∇ logPFIntegrator
−Σ−1(y − r⋆)δr

r

Plant

Controller

Figure 1: Closed-loop Block Diagram. This figure shows the components of the
closed-loop block diagram: the plant, the estimator, and the rto controller. The
figure also shows the connections between each component.
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2.1 Heliostat Dynamics

The plant is modeled as a Hammerstein system consisting of the heliostat dynamics

and a nonlinear power function. The heliostat is modeled as a known linear system

with generic state-space realization

xk+1 = Axk +Brk (2a)

yk = Cxk (2b)

where xk ∈ Rn is the state, and rk ∈ R2 and yk ∈ R2 are the desired and actual

heliostat alignments, respectively, at time k. The heliostat dynamics are inherently

multi-input/multi-output where the inputs r = (raz, rel) ∈ R2 are the desired az-

imuth raz and elevation angle rel of the heliostat and the outputs y = (yaz, yel) ∈ R2

are the actual azimuth yaz and elevation angle yel measured by the encoders on the

heliostat. The heliostats are servo-ed by an inner-loop controller that ensures that

measured outputs y converge y → r to the desired outputs r. This means that the

steady-state gain C(I − A)−1B = I is identity. Furthermore, this means that the

heliostat dynamics (2) are Schur stable. The objective of this paper is to compute

the set-point r which maximizes power generation.

2.2 Power Function

The heliostat reflects a beam of sunlight onto the receiver. The intensity of light

across this beam has a Gaussian distribution [14]

P (y) =
P̄√

(2π)2|Σ|
exp

(
−1

2
(y − r∗)TΣ−1(y − r∗)

)
(3)

where the unknown matrix Σ−1 ∈ R2×2 determines the shape of the sunspot created

by the heliostat, r⋆ ∈ R2 is the unknown optimal pointing alignment of the heliostat
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that maximizes the reflected sunlight on the receiver, P̄ is the power provided by

the Sun, and y ∈ R2 is the azimuth and elevation angle of the heliostat according to

(2). The unknown optimal pointing alignment r⋆ of the heliostat has a complicated

dependence on the relative positions of the Sun, heliostat, and receiver.

The shape matrix Σ−1 =

σ11 σ12

σ12 σ22

 is the main source of uncertainty in the helio-

stat alignment problem. While we do not know the true value of the shape matrix

Σ−1, we have access to sensors that can measure the power Pk = P (yk) for the cur-

rent alignment yk of the heliostat (2). The rto will use these real-time power mea-

surements to estimate the heliostat’s optimal pointing alignment r⋆. We model the

uncertainty of the power function (3) as a convex hull of the shape matrices Σ−1

D =
{∑N

i=1
ξiΣ

−1
i :

∑N

i=1
ξi = 1, ξi ≥ 0

}
(4)

The vertices Σ−1
i of the set (4) are empirically gathered from images of the sunspots

created by heliostats on the receiver. With thousands of images, each gathered

sunspot shape is not necessarily a vertex of the set (4), but are still contained within

the set (4).

The set (4) will be used to tune the rto gain to ensure robustness to the shape of

the sunspot.

A major source of noise is the time-varying nominal power P̄k provided by the Sun.

For instance, when the Sun disappears behind a cloud, the nominal power P̄k will

decrease. By taking the logarithm of power (3), we obtain

logP (y) = log P̄k − (y − r⋆)TΣ−1(y − r⋆)

where νk = log P̄k is considered as an additive disturbance, that is independent of

the alignment y of the heliostats. Furthermore, when we take the gradient ∇y logP (y)
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Figure 2: Conceptual Convex Hull. This figure is meant to illustrate what the con-
vex hull using heliostat-receiver data would look like. This figure is generated using
100 different shape matrices Σ−1.

of the log-power with respect to alignment, this term disappears. We assume that

the noise νk = log P̄k is slowly varying with respect to the gathered data. The

change in the Sun’s location is also treated as a disturbance. The goal is to reject

these disturbances and track an unknown output that maximizes power.

2.3 Gradient Estimator

Since the parameters P̄ , r⋆, and Σ−1 of the power function (3) are unknown (and

slowly varying), the rto uses gradient ascent to iteratively find the optimal point-

ing alignment r⋆. This requires a data-driven algorithm for estimating the gradient

∇ logP (y) of the power function (3). To estimate the gradient, a data-set is con-

structed from real-time power measurements logPk = logP (yk) gathered at dif-

ferent locations yk over time k. These power measurements are taken from the re-

ceiver via sensors or images. One of the advantages of using the rto is that this
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data can take the form of temperature, heat-flux, light intensity, or other forms

that are representative to power generation. A variety of methods can be used to

estimate the gradient ∇ logP (y) [5] from the data-set {yk, logPk}. One common

method to estimate the gradient is using e.g. batch least squares (bls) [1]. Since

the focus of this paper is on tuning the rto gain, we assume that the gradient is

estimated without error. This is a reasonable assumption since csp plants tend to

be well instrumented due to their expense in commissioning. Due to the ability to

use many sensors, such as multiple thermocouples and millions of pixels in BCS im-

ages, as well as a relatively large window of time to make measurements due to the

slow movement of the Sun and clouds, we are estimating the gradient with millions

of power samples.

2.4 RTO Algorithm

The rto uses a gradient ascent algorithm to iteratively find the unknown optimal

pointing alignment r⋆ which maximizes power generation. Since the logarithm of

the power function (3) is concave, the power is maximized when the gradient is zero

∇ logP = 0. The rto dynamics ascend the gradient

rk+1 = rk + F∇ logP (yk) (5a)

rk = rk (5b)

where the current estimate rk ∈ R2 of the optimal pointing alignment r⋆ is both

the state and output of the rto controller, and the input is the estimated gradient

∇ logP (yk) of the power (3) at the current alignment yk. The rto (5) is a purely

integral controller.

The objective of this paper is to tune the gain F ∈ R2×2 of the rto controller (5).

The gain F can be interpreted as a step-size for the gradient ascent optimization

9



algorithm. If this gain is not properly tuned then the rto will not converge to the

optimal pointing alignment r⋆. This issue is exacerbated by the fact that the rto is

operating in closed-loop with a dynamic system (2) rather than merely a static cost

function (3). Thus, the rto gain must be tuned to stabilize the closed-loop system

(2) and (5) with the non-linearity (3) as shown in Fig. 1. Finally, we need to con-

sider the parametric uncertainty of the power function (3), which can negatively

effect stability and performance. This paper investigates the problem of tuning the

rto gain to provide stability, minimize alignment time, and ensure robustness to

parametric uncertainty in the power function (3).

2.5 Control Objectives and Assumptions

This section formally defines the rto tuning problem and our assumptions on this

problem.

Problem 1. Tune the gain F ∈ R2×2 of the rto (5) to achieve the following con-

trol objectives:

(a) Stabilize the closed-loop system shown in Fig. 1 with heliostat dynamics (2),

power function (3), and rto controller (5).

(b) Ensure that the heliostat (2) converges yk → r⋆ to the optimal pointing align-

ment r⋆ which maximizes power generation.

(c) Minimize the settling-time to reach the optimal pointing alignment r⋆.

(d) Ensure robustness to the parametric uncertainty (4) of the solar power func-

tion (3).

To meet these control objectives, we make the following assumptions about the rto

tuning problem.

Assumption 1.

10



(a) The heliostat dynamics are Schur stable and have identity steady-state gain

C(I − A)−1B = I.

(b) The intensity of light across the sunspot has a Gaussian distribution (3).

(c) The noise νk = log P̄k is slowly varying with respect to the gathered data.

(d) The gradient ∇ logP (yk) is estimated without error.

Assumption 1(a) is reasonable since the heliostats are controlled by an inner-loop

controller that points the heliostats in the desired reference direction. Assump-

tion 1(b) is consistent with experimental observations of the sunspot profile for

heliostats with a single facet. However, errors in facet installation could result in

multiple peaks in the sunlight intensity. Assumption 1(c) is reasonable since the

power fluctuations are cause by phenomenon like the movement of clouds which are

slow relative to our data-acquisition rate. Assumption 1(d) is made since the focus

of this paper is to tune the gain F for stability and robustness, not to validate the

gradient estimator.

3 Optimal Tuning of the RTO

In this section, we describe conditions on the rto gain F so that the rto algo-

rithm maximizes power, minimizes settling-time, and provides robustness to un-

certainty.

3.1 Linearity of Closed-loop Dynamics

Our key insight is that the nonlinear system depicted in Fig. 1 is equivalent to a

fully linear system under Assumption 1(d) since the gradient ∇ logP = −Σ−1(yk −

r⋆) of the logarithm of the Gaussian power distribution (3) reduces to an uncertain

linear gain -Σ−1 acting on the heliostat dynamics output yk and unknown optimal

11



reference r⋆. Thus, the three nonlinear blocks in Fig. 1 (the power function (3), the

logarithm logP , and gradient ∇ logP ) can be replaced by a linear gain block as

shown in Fig. 3. In the block diagram shown in Fig. 3, we consider the unknown

optimal pointing alignment r⋆ as a exogenous signal whose influence must be re-

jected to reach the optimal pointing alignment. We are choosing to treat the op-

timal pointing alignment r⋆ as a disturbance that can be rejected for analysis as

shown in the next section.

Taking the log of the power distribution (3) and then finding the spatial gradient

produces a signal −Σ−1(y − r∗). This allows us to treat the shape matrix Σ−1 as a

linear gain and optimal pointing alignment r⋆ as a disturbance shown in Fig. 3

Plant

r∗

-Σ−1
Open-loop y y − r∗

FIntegrator

-Σ−1(y − r∗)

δr

r

Figure 3: Block Diagram Transformation. This figure shows the transformation
treating the shape matrix Σ−1 as a linear gain and optimal pointing alignment r⋆

as a disturbance.

For the linear system shown in Fig. 3, the dynamics of the closed-loop system have

the state-space realization

xk+1

rk+1

 =

 A B

−FΣ−1C I


xk

rk

+

 0

FΣ−1

 r∗ (6)

which includes the heliostat dynamics (2), rto dynamics (5), and the gradient

−Σ−1(y − r⋆), which is equivalent to the gradient of the logarithm of the power (3).

The state of the closed-loop dynamics is comprised of the states xk and rk of the

12



heliostat and rto controller, respectively. The linear dynamics (6) will be used to

optimize closed-loop performance and robustness.

3.2 Condition for Optimal Pointing Alignment

In this section, we show that the equilibrium of the closed-loop system (6) in Fig. 3

maximizes power generation. The following proposition shows that the equilibrium

of the closed-loop system (6) corresponds the optimal pointing alignment of the

heliostat y∞ = r⋆.

Proposition 1. Let Assumption 1 hold. Then, for any non-zero gain F ̸= 0,

(x∞, r∞) = ((I − A)−1Br∗, r∗) (7)

is the equilibrium of the system.

Proof. The equilibrium states of the heliostat x∞ and controller r∞ satisfy the equi-

librium condition x∞

r∞

 =

 A B

−FΣ−1C I


x∞

r∞

+

 0

FΣ−1

 r∗

This produces the solutions x∞ = (I − A)−1Br∞ and FΣ−1C(I − A)−1Br∞ =

FΣ−1r⋆. Since C(I − A)−1B = I by Assumption 1(a), this simplifies to FΣ−1r∞ =

FΣ−1r⋆. Thus, for F ̸= 0, we have r∞ = r⋆.

Proposition 1 shows that any non-zero gain F ̸= 0 ensures that the equilibrium of

the closed-loop system (6) maximizes power generation. Thus, a gain F ̸= 0 will

satisfy control objective 1(b), that the equilibrium of the heliostat is the optimal

pointing alignment r⋆ which maximizes power. In subsequent sections, we will pro-

vide conditions on the gain F to provide fast and robust convergence to the equilib-

rium (7).
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3.3 Convergence to Optimal Pointing Alignment

In this section, we show that there exists a gain F that stabilizes the closed-loop

system (6). This is a necessary initial step to establish the feasibility of optimizing

the rto gain.

Lemma 1. Let Assumption 1 hold. Then, there exists a gain F ⪰ 0 such that the

equilibrium (7) is stable.

Proof. By Proposition 1, (x∞, r∞) = ((I − A)−1Br∗, r∗) is the equilibrium of the

system. We will use the Small-gain theorem to the prove stability of this equilib-

rium for a sufficiently small-gain F .

The Small-gain theorem states that two stable systems connected in a feedback

loop are closed-loop stable if the product of the H∞-norms of the two systems is

less than one [13]. The two systems in this case are the plant P and the controller

C. However, the following problems occur:

i) The reference r and the actual position y are not in l2 since the desired yk equals

rk and equals the optimal pointing alignment r⋆ for all time steps k.

ii) ∥C∥H∞
= ∞ since the rto controller (5) is an integral controller.

To solve these two problems, we will use a change of variables. We define

ỹk = yk − rk (8a)

δrk = rk+1 − rk (8b)

where ỹk is the error between the heliostat’s position yk and the reference rk, at

time k and δrk is the change in the reference between times k and k + 1.
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3.3.1 Transformed Plant

To transform the plant using (8a) and (8b), the state tracking error is defined as

x̃k = xk − x̄k (9)

where x̄k = (I−A)−1Brk is the equilibrium corresponding to the reference rk. Using

(9), the heliostat state-space realization (2) becomes

x̃k+1 = Axk +Brk − (I − A)−1Brk+1

which simplifies to x̃k+1 = Ax̃k − (I − A)−1Bδrk, where Brk = −A(I − A)−1Brk +

(I − A)−1Brk since A(I − A)−1 = (I − A)−1A using (8b). Furthermore, we have

Cx̃k = Cxk − C(I − A)−1Brk = ỹk where C(I − A)−1B = I by Assumption 1(a)

which is equivalent to (8a). This results in the transformed plant P̃ having a state-

space realization

P̃ =

 A −(I − A)−1B

C 0

 (10)

Since the matrix A is Schur and δr and ỹ are in l2, the transformed plant P̃ , has a

finite H∞-norm ∥P̃∥H∞
< ∞

3.3.2 Transformed Controller

To transform the controller (5) using (8a) and (8b), the reference error is defined as

r̃k = rk − r∗ (11)

implying r̃k+1 = rk+1 − r∗. This means r̃k+1 = rk − FΣ−1y + FΣ−1r∗ − r∗. This

simplified to r̃k+1 = (I − FΣ−1)r̃k − FΣ−1ỹk. Applying (8b) gives δrk = rk+1 − rk =

15



(I − FΣ−1)r̃k − FΣ−1ỹk, simplifying to δrk = −FΣ−1r̃k − FΣ−1ỹk. This results in

the transformed controller C̃ having a state-space realization

C̃ =

 I − FΣ−1 −FΣ−1

−FΣ−1 −FΣ−1

 (12)

It will be shown that the H∞-norm of the transformed controller C̃ can be made

arbitrarily small with the proper choice of F . First, we note that for (12) to be sta-

ble, we need I − FΣ−1 to be Schur I − FΣ−1 ⪯ I. This implies the symmetric

matrix F ⪰ 0 is positive definite.

To establish the existence of a stabilizing gain F , we will make the sub-optimal

simplification F = βΣ. Then, by the discrete-time KYP lemma [9], ∥C̃∥H∞
< γ

is true if the following matrix inequality is satisfied:

(1− (1− β)2)I β(1− β)I

β(1− β)I (γ2 − β2)I

 ≥ β2

I I

I I


where P = I is chosen for simplicity. Via Schur complements, this matrix inequality

holds if and only if the following two conditions are true:

i) 1− (1− β)2 − β2 ≥ 0

ii) γ2 − 2β2 − β2(1−2β)2

1−(1−β)2−β2 ≥ 0

Conditions (i) and (ii) imply β(1 − β) ≥ 0 and γ2 ≥ β2

2β(1−β)
, respectively. Rear-

ranging, we obtain the bounds β ∈ [0, 1] and β ≤ 2γ2

1+2γ2 < 1, respectively. Choosing

γ < 1
∥P̃∥H∞

and β = 2γ2

1+2γ2 means that ∥C̃∥H∞
∥P̃∥H∞

< 1. Therefore, by the Small-

gain theorem, we conclude that the closed-loop is stable.

Lemma 1 shows that there exists a gain F ⪰ 0 such that the equilibrium (7) is

stable. Therefore, Lemma 1 satisfies control objective 1(a), that the closed-loop

system (6) is stabilizable. The proof of Lemma 1 is constructive, producing a gain
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F = 2

∥P̃∥2H∞+2
Σ. However, there are two issues with this gain. First, as we will illus-

trate in Section 4, this gain is conservative, producing slow convergence to the opti-

mal pointing alignment r⋆. In the next section, we will present a method for tuning

this gain to improve settling-time. Second, this gain depends on the unknown and

uncertain shape matrix Σ−1. In Section 3.5, we will show how to design the gain F

for robustness to the shape matrix Σ−1. Nonetheless, Lemma 1 establishes that the

rto tuning problem is feasible.

3.4 Tuning the RTO to Minimize Alignment Time

In this section, we pose the problem of tuning the rto to minimize alignment time

as a lmi. First, we show that the closed-loop system (6) can be re-posed as a static

output feedback (sof) design problem. The closed-loop dynamics (6) can be factor-

ized around the gain F to produce

xk+1 =


A B

0 I

+

0
I

F

[
−Σ−1C 0

]xk (13)

which produces the closed-loop dynamics (6). Thus, closed-loop dynamics (6) can

be re-interpreted as output feedback with the open-loop state-space realization

 Â B̂

Ĉ 0

 =


A B 0

0 I I

−Σ−1C 0 0

 (14)

Therefore, the problem of tuning the rto gain can be posed as an output feedback

problem for the open-loop system (14). We adapt the lmi conditions from [3] to

characterize the rto gain that achieves exponential convergence rate α. The design

procedure is summarized by the following theorem.
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Theorem 1. Let Assumption 1 hold. If the scalar α ∈ [0, 1), symmetric positive

definite matrix S ∈ R6×6, and matrices G ∈ R6×6, V ∈ R2×2, and U ∈ R2×2 satisfy

the lmi α(G+GT − S) (ÂG+ B̂UĈ)T

(ÂG+ B̂UĈ) S

 ⪰ 0 (15a)

and

V Ĉ = ĈG (15b)

where Â, B̂, and Ĉ were defined in (14), then the rto gain

F = UV −1 (15c)

exponentially stabilizes the closed-loop system (6).

Proof. We will show the closed-loop system is stable using a quadratic Lyapunov

function V (x) = xTPx where P ≻ 0 ∈ Rn×n is a positive definite matrix. We will

show that the change in the Lyapunov function satisfies ∆V (xk) = xT
k+1Pxk+1 −

αxT
kPxk ≤ 0 which implies that the closed-loop system (6) is exponentially stable.

Substituting FV = U from (15c) into the lmi (15a) yields

α(G+GT − S) (ÂG+ B̂FV Ĉ)T

(ÂG+ B̂FV Ĉ) S

 ⪰ 0

Substituting V Ĉ = ĈG from (15b) into the above lmi yields

α(G+GT − S) (ÂG+ B̂F ĈG)T

(ÂG+ B̂F ĈG) S

 ⪰ 0
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which is equivalent to

α(G+GT − S) GT (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ)G S

 ⪰ 0.

Using the condition GTS−1G ⪰ GT +G− S from [3], we obtain

 α(GTS−1G) GT (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ)G S

 ⪰

α(G+GT − S) GT (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ)G S

 ⪰ 0

which can be re-written asGT 0

0 I


 αS−1 (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ) S−1


G 0

0 I

 ⪰ 0.

Since I ⪰ 0 and G is full-rank, this matrix is positive semi-definite if and only if

 αS−1 (Â+ B̂F Ĉ)T

(Â+ B̂F Ĉ) S

 ⪰ 0

Taking the Schur complement, the lmi above is equivalent to S−1 ≻ 0 and

αS−1 − (Â+ B̂F Ĉ)TS−1(Â+ B̂F Ĉ) ⪰ 0

Substituting P = S−1 ≻ 0 into the above inequality produces the Lyapunov in-

equality

αP − (Â+ B̂F Ĉ)TP (Â+ B̂F Ĉ) ⪰ 0

Pre and post multiplying by the closed-loop state x̂k = (xk, rk) produces the Lya-
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punov decrease condition

∆V (x̂k) = x̂T
k (Â+ B̂F Ĉ)TP (Â+ B̂F Ĉ)x̂k − αx̂T

kPx̂k ≤ 0

which implies that the closed-loop system (6) is exponentially stable.

Theorem 1 provides a convex characterization of the rto gain F = UV −1 that

exponentially stabilize the closed-loop system (6). The exponential decay factor

α ∈ [0, 1) ⊂ R can be interpreted as the slowest pole of the closed-loop system.

This factor α determines the rate at which the rto drives the heliostat to the op-

timal pointing alignment r⋆. This convergence rate can be optimized using the fol-

lowing optimization problem.

min α2 (16a)

s.t. S ≻ 0 (16b)

(15) (16c)

Although the optimization problem (16) is non-convex in both α and S, we can

use a line-search to iteratively optimize α. Therefore, Theorem 1 and (16) satisfy

control objective 1(c).

It is tempting to simplify the tuning problem (15) by setting G = S. However, as

the following proposition shows, this simplification is infeasible.

Proposition 2. If G = S then α = 1 and F = 0 is the only feasible solution

of (15).

Proof. Consider partitioning the Lyapunov matrix S into

S =

S11 S12

ST
12 S22

 ≻ 0
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where the partitions S11 and S22 correspond to the plant and controller dynamics,

respectively, and S12 corresponds to the coupling in the closed-loop dynamics (6).

Using the substitutions BUC = BFCS from the proof of Theorem 1, the Schur

complement of (15a) with G = S is

0 ⪯ αS − (Â+ B̂F Ĉ)S(Â+ B̂F Ĉ)T =∗ ∗

∗ (α− 1)S11 + FCS12 + (FCS12)
T − FCS11(FC)T


where the terms ∗ are inconsequential for this proof. From (15b), we have [V Σ−1C, 0] =

[Σ−1CS11, CS12], which implies that CS12 = 0 since Σ−1 is positive definite. Thus, (15a)

holds for G = S if and only if matrix FCS11C
TF T ⪯ (α − 1)S11 i.e. the positive

semi-definite matrix FCS11C
TF T ⪰ 0 must be less than or equal to the negative

semi-definite matrix (α − 1)S11 ⪯ 0 where α ≤ 1 and S11 ≻ 0. This can only hold

if these matrices are zero i.e. α = 0 so that (α − 1)S11 = 0 and F = 0 so that

FCS11C
TF T = 0.

Proposition 2 demonstrates the necessity of optimizing over the matrix G ̸= S in

Theorem 1. A straightforward corollary of Proposition 2 is that Lyapunov function

requires non-zero coupling S12 = ST
21 ̸= 0 between the heliostat and rto dynamics.

Intuitively, this is necessary since the heliostat state xk will diverge xk ̸→ x∞(rk)

from its reference dependent equilibrium x∞(rk) when the rto is aggressively con-

verging to its equilibrium rk → r⋆. Likewise, the reference may diverge to drive the

heliostat state closer to equilibrium. The coupling S12 = ST
21 ̸= 0 in the Lyapunov

matrix S accounts for the interaction between the heliostat and rto dynamics.
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3.5 Tuning the RTO for Robustness

For robustness, we need to design a rto gain F that stabilizes the closed-loop sys-

tem (6) for all Σ−1 contained in the set (4). This can be accomplished by requiring

that the lmi (15a) holds for all Σ−1C. However, this imposes an infinite number of

constraints, making the problem (16) computationally intractable. We exploit con-

vexity to reduce the infinite number of constraints into a finite number. Specifically,

we enforce the lmi (15a) only on the vertices of the uncertainty set (4). The follow-

ing corollary shows that the resulting rto gain F is robust for all Σ−1 contained in

the convex-hull (4).

Corollary 1.1. Let Assumption 1 hold. If the scalar α ∈ [0, 1), symmetric positive

definite matrix S ∈ R6×6, and matrices Gi ∈ R6×6, V ∈ R2×2, and U ∈ R2×2 satisfy

the lmis α(Gi +Gi
T − S) (ÂGi + B̂UĈi)

T

(ÂGi + B̂UĈi) S

 ⪰ 0 (17a)

and

V Ĉi = ĈiGi (17b)

for i = 1, . . . , N , where Â, B̂ were defined in (14) and Ĉi =

[
Σ−1

i C 0

]
, then the

rto gain F = UV −1 (15c) exponentially stabilizes the closed-loop system (6) for all

Σ−1 in the set (4).

Proof. Consider the lmis (17a) for the vertices Σ−1
i of the uncertainty set (4)

α(Gi +Gi
T − S) (ÂGi + B̂UĈi)

T

(ÂGi + B̂UĈi) S

 ⪰ 0.
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Substituting F = UV −1 from (15c) and V Ĉi = ĈiGi from (17b) gives

α(Gi +Gi
T − S) GT

i (Â+ B̂F Ĉi)
T

(Â+ B̂F Ĉi)Gi S

 ⪰ 0.

Using the condition GTS−1G ⪰ GT +G− S from [3], we obtain

 α(GT
i S

−1Gi) GT
i (Â+ B̂F Ĉi)

T

(Â+ B̂F Ĉi)Gi S

 ⪰

α(Gi +Gi
T − S) GT

i (Â+ B̂F Ĉi)
T

(Â+ B̂F Ĉi)Gi S

 ⪰ 0

which can be re-written asGT
i 0

0 I


 αS−1 (Â+ B̂F Ĉi)

T

(Â+ B̂F Ĉi) S


Gi 0

0 I

 ⪰ 0.

Since I ⪰ 0 and Gi is full-rank for all i = 1, . . . , N , this matrix is positive semi-

definite if and only if

 αS−1 (Â+ B̂F Ĉi)
T

(Â+ B̂F Ĉi) S

 ⪰ 0.

Taking an arbitrary convex combination with ξi ≥ 0 and
∑N

i=1 ξi = 1, we obtain

N∑
i=1

ξi

 αS−1 (Â+ B̂F Ĉi)
T

(Â+ B̂F Ĉi) S

 =

 αS−1
(
Â+ B̂F Ĉ(ξ)

)T(
Â+ B̂F Ĉ(ξ)

)
S

 ⪰ 0

where we define Ĉ(ξ) =
∑N

i=1 ξiĈi. Taking the Schur complement, we obtain

αS−1 −
(
Â+ B̂F ĈΣ(ξ)−1

)T
S−1

(
Â+ B̂F ĈΣ(ξ)−1

)
⪰ 0

where any shape-matrix Σ in the convex-hull (4) can be expressed as the convex

23



combination Σ−1(ξ) =
∑N

i=1 ξiΣ
−1
i of the vertices Σ−1

i . Substituting P = S−1 ≻ 0,

we obtain the Lyapunov inequality

αP − (Â+ B̂F ĈΣ−1)TP (Â+ B̂F ĈΣ−1) ⪰ 0

for any Σ−1 in the set (4). Thus, according to Theorem 1, the closed-loop system is

exponentially stable for all shape matrix Σ−1 contained in the set (4).

Corollary 1.1 shows that the infinite number of constraints imposed by the shape

matrix Σ−1 can be reduced by taking advantage of convexity. This allows us to pro-

duce a gain F that is robust to the shape of the power distribution (3). Therefore

Corollary 1.1 satisfies control objective 1(d) to ensure robustness to the parametric

uncertainty of the power function (3).

4 Simulations and Results

In this section, we illustrate the presented method for tuning the rto gain F . We

will compare convergence rates of the optimized rto gain F with the conservative

gain presented in Lemma 1. We will compare robustness of the gain F tuned using

(4) with non-robust optimization-based tuning (16).

4.1 Numerical Details

In this section, we numerically define the parameters used for our simulations of the

closed-loop system with the rto algorithm.
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4.1.1 Heliostat Dynamics

The heliostat dynamics (2) are modeled as

H(s) =

Haz,az(s) Haz,el(s)

Hel,az(s) Hel,el(s)


where azimuth and elevation angle directions of the heliostat are assumed to be

uncoupled Haz,el(s) = Hel,az(s) = 0. The azimuth and elevation angle directions

each have their own general second order transfer function

Hi(s) =
ωn

2

s2 + 2ζωns+ ωn
2 + ωn

2u

for both azimuth i = az, az and elevation i = el, el angle, where ζaz = 1.1, ζel = 0.9,

ωn,az = 1
10
, and ωn,el =

1
20
. Since ζaz = 1.1 > 1, the dynamics are over-damped,

reflecting the typical design of the inner-loop servos on the heliostats. An under-

damped ζel was chosen to demonstrate that the system can stabilize with different

damping ratios between the two directions. The natural frequencies ωn were chosen

to represent the time the heliostats take to move in each direction. The values ζ

and ωn differ between each direction to simulate possible differences between the

azimuth and elevation angle transfer functions.

The heliostat model H(s) was converted into discrete time with a sample time of 6

seconds. For each simulation, r0 ̸= r⋆ is the alignment provided by the operator.

However, this alignment is non-optimal due to uncertainty about the heliostat posi-

tion and encoder errors.

4.1.2 Power Distributions

Two power functions (3) will be used to simulate the rto algorithm. Each power

distribution is representative of a sunspot that can be encountered at a csp plant.
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Figure 4: Example Power Distribution. This figure shows the power intensity P (y)
at a given yaz and yel.

The power distribution (3) shown in Fig. 4 is an example of a distribution that is

used in the simulations. The distributions used in the simulations are viewed from

the top to show clear differences between them. The example distribution is meant

to give context for the power intensity at each azimuth and elevation angle for the

distributions.

The power distributions in Fig. 5 are used to simulate the rto algorithm with an

ideal (left) and a non-ideal (right) situation. The matrices Σ for these power distri-

butions are Σ =

7.5 0

0 7.5

 and Σ =

10 4

4 5

, respectively. The optimal reference

r⋆ is the origin r⋆ = (0, 0). The power in the simulations is represented as a per-

centage for clarity. These choices are made without loss of generality to ensure the

clarity of the plots. The optimal reference r⋆ and maximum power intensity P (r⋆)

are known in order to validate the rto algorithm. In practice, the optimal point-

ing alignment r⋆ and maximum power intensity P (r⋆) will be unknown. The ideal
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(a) (b)

Figure 5: Normal Distribution (left) and Oblong Distribution (right). This figure
shows the power intensity P (y) at a given yaz and yel.

power distribution can be encountered when the Sun is above the heliostat and the

heliostat is inline with the receiver, causing better focusing of the sunspot on the

receiver. The non-ideal power distribution can be encountered when the Sun is not

inline or directly above the heliostat, causing the sunspot to be stretched on the re-

ceiver.

4.1.3 Gradient Estimator

For our simulations, a bls algorithm was used to estimate the gradient. Using the

first-order Taylor series expansion

logPi ≈ logP (ȳ) +∇ logP (ȳ)T (yi − ȳ) = θTϕi

where the parameter θ and regressor ϕ vectors are defined as

ϕi =

 1

yi − ȳ

 and θ =

 logP (ȳ)

∇ logP (ȳ)
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allow us to use the real-time dataset (logPi, yi) to estimate the gradient ∇ logP (ȳ)

at the current alignment ȳ. The parameters θ are estimated using the bls estima-

tor θ̂ = (ΦΦT )−1ΦP where Φ =

[
ϕ1 ... ϕN

]
is the batch regressor matrix and

P =

[
P1 ... PN

]T
is the batch output vector with N measurements. The esti-

mated gradient ∇ logP (ȳ) is pulled from the estimated parameter vector θ̂.

4.1.4 Controller design

The controller (5) used in the simulations requires the gain F to be computed us-

ing the shape matrices Σ−1 from the power distributions (3). The power distribu-

tions in Fig. 5 are used to calculate F from Theorem 1 using the matlab package

Yalmip with the SDPT3 solver. This solver was used to solve the sdp problem (16)

where (15a) ∈ R12×12. Since including α as a decision variable renders (16) non-

convex, we optimize α via a line-search. We found the optimal α = 0.9999999 which

is the smallest value for which (16) is feasible. The gain F was found in 1.668338

seconds.

4.2 Destabilizing RTO

In this section, we show that the rto (5) can destabilize the closed-loop system if

the gain F is not properly tuned. The purpose of this simulation is to motivate the

careful tuning procedure presented in this paper.

Fig. 6 shows the simulation results for the heliostat (2) in closed-loop with the

rto controller (5) using the power intensity (3) in Fig. 5(b) and an aggressive gain

F = 5Σ−1. The gradient ∇ logP (yk) was estimated using bls with 10 sensors in a

circular configuration with radius 0.1 around the current position yk. Thus, we are

simulating the nonlinear system shown in Fig. 1 rather than the linear closed-loop

system (6), which is equivalent under the assumption of perfect gradient estimation.

Fig. 6 shows the time-varying estimated optimal pointing alignment rk produced
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Figure 6: Oblong Distribution Simulation with Aggressive Gain. This simulation
shows (yaz, yel) and (raz, rel), versus time (top). The simulation also shows P (y)
versus time (bottom).

by the rto (5) and the actual time-varying alignment yk of the heliostat (2). The

actual heliostat alignment yk lags the desired alignment rk, but both increasingly

overshoot the optimal pointing alignment yk → rk ̸→ 0. Although, both the he-

liostat dynamics (2) and rto gradient ascent dynamics (5) are over-damped in

azimuth, we see oscillator closed-loop behavior due to the interaction of these dy-

namic systems; justifying the need for careful analysis of the non-trivial closed-loop

dynamics. Fig. 6 shows that the power Pk = P (yk) is not converging to the maxi-

mum power P̄ = 100%.

4.3 Conservative Convergence of RTO

In this section, we compare the performance of the rto gain F tuned using the op-

timization problem (16) with the conservative gain suggested by Lemma 1. The

purpose of this comparison is to illustrate that the presented tuning procedure can
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reduce the settling time to the optimal pointing alignment r⋆ over a naive tuning.

Figure 7: Simulation with Conservative Gain. This simulation shows (yaz, yel) and
(raz, rel), versus time (top). The simulation also shows P (y) versus time (bottom).

Fig. 7 shows the simulation results for the nonlinear closed-loop system shown in

Fig. 1 using the conservative gain suggested by Lemma 1. The H∞-norm was com-

puted using the matlab command norm. The power distribution (3) used in these

simulation results is shown in Fig. 5(b). The gradient ∇ logP (yk) was estimated us-

ing batch least squares, like in the previous simulation results.

Fig. 7 shows the time-varying estimated optimal pointing alignment rk produced

by the rto algorithm (5) and the actual time-varying alignment yk of the heliostat

(2). The actual heliostat alignment yk lags the desired alignment rk, but both con-

verge to the optimal pointing alignment yk → rk → 0. Similar to the unstable case,

we see oscillator closed-loop behavior due to the interaction of the dynamic sys-

tems, the heliostat dynamics (2) and rto controller gradient ascent dynamics (5),

showing that this is not a simple gradient ascent problem and justifying the need

for careful analysis of the non-trivial closed-loop dynamics. Fig. 7 shows that the

30



power Pk = P (yk) converges Pk → 100% to the maximum power P̄ = 100%.

This simulation empirically validates Proposition 1 and Lemma 1. The simulation

shows that the equilibrium of the closed-loop system (6) is the optimal pointing

alignment r⋆ and that this equilibrium is able to be stabilized. Furthermore, these

simulation results will help show later that the optimized gain reduces settling time

to the optimal pointing alignment r⋆ compared with the Small-gain theorem design.

4.4 Validating Stability

In this section, we show that the gain F from Theorem 1 stabilizes the closed-loop

system shown in Fig. 1 and converges faster than the conservative gain shown in

Fig. 7. These simulations are also meant to show that the rto algorithm can con-

verge to the optimal pointing alignment r⋆ with an ideal and non-ideal sunspot

shape. In the physical system, encountering ideal situations is rare. However, it is

important to show the rto can maximize power in ideal and non-ideal situations.

Figure 8: Normal Distribution Simulation. This simulation shows (yaz, yel) and
(raz, rel), versus time (top). The simulation also shows P (y) versus time (bottom).
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Fig. 8 shows the simulation results for the heliostat (2) in nonlinear closed-loop

with the rto controller (5) using the power intensity (3) in Fig. 5(a). The gradient

∇ logP (yk) was estimated using batch least squares, like in the previous simulation

results.

Fig. 8 shows the time-varying estimated optimal pointing alignment rk produced by

the rto algorithm (5) and the actual time-varying alignment yk of the heliostat (2).

The actual heliostat alignment yk lags the desired alignment rk, but both converge

to the optimal pointing alignment yk → rk → 0. Fig. 8 shows that the power Pk =

P (yk) converges Pk → 100% to the maximum power P̄ = 100%.

Figure 9: Oblong Distribution Simulation. This simulation shows (yaz, yel) and
(raz, rel), versus time (top). The simulation also shows P (y) versus time (bottom).

Fig. 9 shows the simulation results for the heliostat (2) in nonlinear closed-loop

with the rto controller (5) using the power intensity (3) in Fig. 5(b). The gradient

∇ logP (yk) was estimated using batch least squares, like in the previous simulation

results.

Fig. 9 shows the time-varying estimated optimal pointing alignment rk produced by
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the rto algorithm (5) and the actual time-varying alignment yk of the heliostat (2).

The actual heliostat alignment yk lags the desired alignment rk, but both converge

to the optimal pointing alignment yk → rk → 0. Fig. 9 shows that the power Pk =

P (yk) converges Pk → 100% to the maximum power P̄ = 100%.

These simulations empirically validate Proposition 1 and Lemma 1. The simula-

tions show that the equilibrium of the system is the optimal pointing alignment r⋆

and that the equilibrium is able to be stabilized. The simulations also empirically

validate Theorem 1, proving the gain F found with Theorem 1 stabilizes the closed-

loop system in Fig. 1 and settles faster than the conservative gain in Fig. 7. The

simulations show that the rto algorithm will maximize power despite initial condi-

tions with ideal and with non-ideal power distributions.

4.5 Validating Robustness

This section demonstrates the robustness of the presented rto tuning to uncer-

tainty in the shape matrix Σ−1 of the power distribution (3). The following simula-

tions are meant to show that the rto algorithm can converge to the optimal point-

ing alignment r⋆ regardless of the power distribution (3). In the physical system,

the power distribution is not known beforehand and is difficult to predict. However,

it is important to show that the system can maximize power in varying situations.

The same gain F is used for each power distribution.

Fig. 10 and Fig. 11 show the simulation results for the heliostat (2) in nonlinear

closed-loop with the rto controller (5) using 25 different power distributions (3).

The gradient ∇ logP (yk) was estimated using batch least squares, like in the previ-

ous simulation results.

Fig. 10 and Fig. 11 show the actual time-varying alignment yk of the heliostat (2).

The actual heliostat alignment yk for each power distribution (3) converge to the

optimal pointing alignment yk → rk → 0. Fig. 10 and Fig. 11 show that the power
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Figure 10: Robust Simulation with Constant Initial Condition. This simulation
shows (yaz, yel) versus time (top). The simulation also shows P (y) versus time (bot-
tom).

Pk = P (yk) converges Pk → 100% to the maximum power P̄ = 100% for each power

distribution.

These simulations validate Proposition 1 and Lemma 1, showing that the equi-

librium of the system is the optimal pointing alignment r⋆ and showing that the

equilibrium is stabilizable. These simulations also show that the gain F from The-

orem 1 and tuned using (4) stabilizes the system and is robust to the power distri-

bution (3), empirically validating robustness and Theorem 1. This means that the

rto algorithm will maximize power despite initial conditions and uncertainty in the

power distributions.

4.6 Validating Solar tracking

In this section, we show that the gain F from Theorem 1 stabilizes the closed-loop

system shown in Fig. 1 and tracks a moving Sun over a 12 hour period using the
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Figure 11: Robust Simulation with Random Initial Conditions. This simulation
shows (yaz, yel) versus time (top). The simulation also shows P (y) versus time (bot-
tom).

oblong distribution in Fig. 5(b). This is done by adding a sine wave with a period

of 24 hours to r⋆ in (3). These simulations are also meant to show that the rto al-

gorithm can converge to the optimal pointing alignment r⋆ and maintain this align-

ment while the Sun moves throughout the day.

Fig. 12 shows the simulation results for the heliostat (2) in nonlinear closed-loop

with the rto controller (5) using the power intensity (3) in Fig. 5(b). The gradient

∇ logP (yk) was estimated using batch least squares, like in the previous simulation

results.

Fig. 12 shows the time-varying estimated optimal pointing alignment rk produced

by the rto algorithm (5) and the actual time-varying alignment yk of the heliostat

(2). The actual heliostat alignment yk lags the desired alignment rk, but both con-

verge to the optimal pointing alignment yk → rk → r⋆. Fig. 12 shows that the

power Pk = P (yk) converges Pk → 100% to the maximum power P̄ = 100%.
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Figure 12: Solar Tracking Simulation. This simulation shows (yaz, yel) and (raz, rel),
versus time (top). The simulation also shows P (y) versus time (bottom).

This simulation empirically validates Proposition 1 and Lemma 1. The simulation

shows that the equilibrium of the system is the optimal pointing alignment r⋆ and

that the equilibrium is able to be stabilized. The simulations also empirically val-

idate Theorem 1, proving the gain F found with Theorem 1 stabilizes the closed-

loop system in Fig. 1. The simulation shows that the rto algorithm will maximize

power despite initial conditions and movement of the Sun.

4.7 Validating Robust Solar tracking with Noise

In this section, we demonstrate the robustness of the presented rto tuning to un-

certainty in the shape matrix Σ−1 of the power distribution (3) and we show that

the gain F from Theorem 1 stabilizes the closed-loop system shown in Fig. 1 and

tracks a moving Sun over a 12 hour period despite noise. This is done by adding

a sine wave with a period of 24 hours to r⋆ in (3) and error to the power measure-

ments logPi. These simulations are also meant to show that the rto algorithm can
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converge to the optimal pointing alignment r⋆ and maintain this alignment while

the Sun moves throughout the day and despite noise.

Figure 13: Solar Tracking Simulation. This simulation shows (yaz, yel) versus time
(top). The simulation also shows P (y) versus time (bottom).

Fig. 13 shows the simulation results for the heliostat (2) in nonlinear closed-loop

with the rto controller (5) using the same gain F for 25 different power distribu-

tions (3). The gradient ∇ logP (yk) was estimated using batch least squares, like in

the previous simulation results.

Fig. 13 shows the actual time-varying alignment yk of the heliostat (2). The actual

heliostat alignment yk of each power distribution (3) converge to the optimal point-

ing alignment yk → rk → r⋆. Fig. 13 shows that the power Pk = P (yk) converges

Pk → 100% to the maximum power P̄ = 100% for each distribution.

These simulations empirically validate Proposition 1 and Lemma 1. The simula-

tions show that the equilibrium of the system is the optimal pointing alignment r⋆

and that the equilibrium is able to be stabilized. The simulations also empirically

validate Theorem 1, proving the gain F found with Theorem 1 and tuned using
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(4) stabilizes the closed-loop system in Fig. 1 and is robust to the power distribu-

tion (3), empirically validating robustness and Theorem 1. The simulations show

that the rto algorithm will maximize power despite initial conditions, movement of

the Sun, noise, and uncertainty in the power distributions.

4.8 Physical Heliostat Test

In this section, we show results from a physical test on a single heliostat using two

different set-points from a human operator. We show that the rto algorithm re-

aligns the heliostat to optimize power. These tests are meant to empirically vali-

date the rto algorithm presented in this paper using actual data and heliostat dy-

namics.

Figure 14: First Initial Offset. This figure shows the BCS image before realignment.

Fig. 14 and Fig. 15 show the heliostat alignment using the first offset before and af-

ter using the rto algorithm. The gradient was estimated using bls and the light

intensities of each pixel from the BCS images. The relative pixel locations were
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Figure 15: First Realignment. This figure shows the BCS image after using the rto
algorithm.

converted into azimuth and elevation angle positions to output new references for

the heliostats to track.

Fig. 15 shows that the rto algorithm aligns the sunspot so that the maximum

power intensity is on the desired target location.

This result empirically shows that the rto algorithm will maximize power on the

receiver using an actual heliostat.

Fig. 16 and Fig. 17 show the heliostat alignment using the second offset before and

after using the rto algorithm. The gradient was estimated using bls and the light

intensities of each pixel from the BCS images. The relative pixel locations were

converted into azimuth and elevation angle positions to output new references for

the heliostats to track.

Fig. 17 shows that the rto algorithm aligns the sunspot so that the maximum

power intensity is on the desired target location.

This result empirically shows that the rto algorithm will maximize power on the
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Figure 16: Second Initial Offset. This figure shows the BCS image before realign-
ment.

Figure 17: Second Realignment. This figure shows the BCS image after using the
rto algorithm.
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receiver using an actual heliostat.

5 Conclusion

In this paper, a closed-loop approach was presented for csp plants using heliostats

and power towers. We presented an optimization-based tuning procedure that opti-

mizes the settling time while guaranteeing stability and robustness to model uncer-

tainty. Our method re-structures the problem as a sof problem and uses known

sof methods to couple the Lyapunov functions of the plant (2)(3) and the con-

troller (5) to stabilize the feedback loop. The rto algorithm accomplishes the con-

trol objectives outlined in Problem 1. This is shown in Section 4 using a variety

of power distributions (3) and using actual BCS images and heliostats. This data-

driven approach uses real-time data to continually improve the heliostat alignment.

Unlike other methods, our approach maximizes how much power a given csp plant

can produce by compensating for faults in hardware installation and miscalibration.

The rto algorithm also improves the heliostats’ response to disturbances like wind

by optimizing the settling time of the heliostat to the optimal pointing alignment r⋆

using data. The ability of this method to use a variety of sensors that are already

a part of the infrastructure of many csp plants and different estimators adds flex-

ibility that lets this method be applied to various csp plants with unique require-

ments.

The method presented in this paper will allow csp using heliostats and power tow-

ers to be more competitive with non-renewable sources by not only improving ef-

ficiency and power generation, but by also reducing operation costs by minimizing

the need for a human operator.
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