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ABSTRACT 

With the rise of technology use in buildings, it is now possible to collect data that can be used to 

improve building energy consumption. One factor that has significant impact on building energy 

consumption is occupancy. Recent studies have shown promising results in obtaining occupancy 

information from existing infrastructure such as WiFi router networks. However, these existing 

frameworks require additional investments through software upgrades, added infrastructure, 

computational resources, and may raise occupant privacy concerns. Additionally, with occupant 

thermal comfort statistics being lower than ASHAREA specified standards, a novel approach for 

indoor climate control is needed. To address the limitations in existing frameworks and the lower 

occupant thermal comfort statistics, this study proposes a framework to estimate occupancy from 

existing WiFi network data with minimal computational efforts and reduced privacy concerns. 

The structure of the occupancy data was studied to learn patterns within the data. The learned 

patterns are then used to make short term occupancy profile predictions using neural networks. 

The WiFi measured occupancy data showed a correlation up to 0.96 implying that WiFi client-

count can be a reliable source of occupant count. HVAC energy consumption values were 

estimated using simulation models developed in EnergyPlus for the lecture hall used for data 

collection. The HVAC energy consumption for different occupancy-based schedules was 
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estimated and compared against a fixed schedule (typical 6am-6pm operation assuming full 

occupancy), and a registered schedule (using total number registered occupants per each lecture 

scheduled in the lecture hall). The energy consumption results suggest that occupant demand-

driven HVAC operation can results in energy savings of 50% compared to the fixed schedules. 

The results from the occupancy pattern study revealed that by dividing the 24-hour 

occupancy profiles into smaller segments bound by external schedules, significant patterns can 

be learned. In this study, the external schedules were defined by the length of lectures scheduled 

for the Fall 2019 semester. Additionally, each time-segment will have at least one frequently 

occurring pattern labeled as Most Likely Template (MLT) and a pattern with zero-occupancy 

profiles labeled as Holiday Template (HT). The MLT patterns identified per time-segment can 

serve as expected occupancy for that time-segment. However, the different patterns learned for 

each time-segment suggest that using MLT profiles for expected occupancy may not always be 

correct. Therefore, a prediction mechanism was devised to avoid incorrect profile assignments 

for a time-segment. Using the patterns learned and neural networks (Laterally Primed Adaptive 

Resonance Theory, LAPART), short term occupancy profile predictions were made. The results 

from the prediction analysis imply that reliable occupancy prediction is possible if there are 

intrinsic or extrinsic variables with significant correlation to occupancy. The forecast of occupant 

count can be used for pre-conditioning the space personalized to the number of occupants in the 

space (i.e., establishing thermal setpoints as a function of occupant count) which can increase 

occupants’ thermal comfort and reduce unnecessary HVAC demand.   

Keywords 

WiFi; Commercial buildings, Occupancy; Prediction; HVAC; Energy Efficiency; Demand-

Driven; Neural Networks; Fuzzy ART; LAPART. 
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Figure 1: Total Energy Consumption distribution in the U.S. (EIA, 2019) 

Chapter-01: Introduction 

1. Introduction 

Commercial and residential building energy consumption accounts for 45% of the total energy 

consumption in the U.S as illustrated in Figure 1 (EIA 2019). The latest Energy Information 

Administration (EIA) projections suggest that residential building energy consumption is down 

and will continue the downward trend for the next two decades (EIA 2019). On the contrary, 

commercial building energy consumption is expected to grow for the next three years at a rate of 

0.5% per year. The aging commercial building stock in the U.S. (CBECS, 2012) provides an 

opportunity to develop novel frameworks to reduce commercial building energy consumption.  
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Unlike residential buildings that are typically occupied by fewer ‘long-term’ occupants, 

commercial building occupants are higher in number and stochastic in nature. The complexity in 

commercial building occupancy has led to significant deviations in actual energy consumption 

compared to modeled energy consumption (Azar and Menassa 2012a). To address these 

deviations, numerous frameworks were proposed to collect, analyze, and model occupancy in 

commercial buildings. As the technology integration into commercial buildings grew, novel 

frameworks were proposed to detect, estimate, and track occupants and occupant movement 

within the buildings. Collecting occupancy data often required dedicated infrastructure which 

can be expensive for building owners. This led to a set of studies that proposed occupancy data 

collection from existing infrastructure. Based on the infrastructure used, existing frameworks can 

be classified into two sets: 1) frameworks that use dedicated infrastructure and 2) frameworks 

that use existing infrastructure. Studies such as Fleuret et al (2008), N. Li et al (2012), Pan et al 

(2014), and  Labeodan et al (2015) collected data from chair sensors, vibratory sensors, cameras, 

and RFID tags to obtain occupant information. Existing infrastructure frameworks used humidity 

sensors, thermostats, bluetooth, and commodity WiFi to obtain occupancy information 

(Ekwevugbe et al. 2013; M. Wang et al. 2014; Ekwevugbe et al. 2017). Both the listed 

frameworks collected occupancy data at different levels with specific objectives. Three different 

levels of occupancy were identified from the existing literature: 1) occupancy detection, 2) 

occupancy estimation, and 3) occupancy tracking.  

The costs associated with dedicated infrastructure for occupancy data collection led 

researchers to favor methods that used existing infrastructure. Commodity WiFi gained 

popularity in the past few years due to its availability in most commercial buildings. The current 

WiFi based frameworks predominantly used two metrics to obtain occupancy data: 1) Received 
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Signal Strength (RSS) and 2) Channel Slate Information (CSI). These WiFi based metrics were 

used in frameworks such as WinOSS (Zou et al. 2017), WiFree (Zou et al. 2018), 

FreeDetector(Zou et al. 2017) , FreeCount (Zou et al. 2018), and WiFi Pineapple (Çiftler et al. 

2018). While these frameworks offer valuable evidence to the utility of commodity WiFi as a 

source of occupancy data, they often require additional infrastructure, upgrades, and 

cumbersome computational requirements. Additionally, the data collected consists of unique 

occupant identifiers that raises privacy concerns. Furthermore, these frameworks were 

implemented in highly controlled office spaces with limited occupancy and may not reflect the 

occupant dynamics of large commercial buildings such as airports, libraries, institutional 

buildings, and gymnasiums. These shortcomings may hinder large scale implementation of these 

frameworks and the realization of the full energy saving potential in large commercial buildings 

with dynamic occupancy.  

 In commercial buildings, a substantial amount of energy is spent for Heating, Ventilation 

and Air Conditioning (HVAC) systems. Typically, commercial building HVAC systems are 

operated on static/fixed schedules (e.g., 6am – 6pm). Often these schedules do not include the 

real-time occupant loads and literature suggests that operating HVAC systems based on 

occupancy schedules can result in significant energy savings (Z. Yang and Becerik-Gerber 

2014). Additionally, obtaining accurate and high-resolution occupancy information ahead of time 

allows for better management of building energy by avoiding wasteful HVAC demand (W. 

Wang et al. 2018). To this extent, existing frameworks collected data from office spaces (e.g., 

office spaces in commercial and institutional buildings) to make occupancy predictions (Peng et 

al. 2018; W. Wang et al. 2018; W. Wang et al 2018). The occupants in these office spaces were 

assigned a unique identifier (e.g., MAC address) and using the identifiers the occupant’s state 
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(i.e., ‘in’ or ‘out’) was predicted and consequently the total occupancy of the space. However, 

this approach is limited to commercial spaces which are frequently occupied by the same 

occupants (aka: ‘long-term’ occupants). Occupants of large commercial buildings such as 

airports, shopping malls, and gymnasiums cannot be classified as ‘long-term’ occupants and 

assigning identifiers to occupants is not only infeasible but may also raise occupant privacy 

concerns. Furthermore, only 39% of occupants in commercial office buildings in North America 

reported to be satisfied with building temperatures which is significantly lower than ASHARE 

standard (i.e., at least 80%) (D. Li et al. 2017).  

The heat dissipation of occupants inside buildings contribute towards the cooling load in 

the cooling dominated months and  (Q. Wang et al. 2016; W. Wang et al. 2017). This occupant 

heat dissipation effect has profound impact on heating loads in heating dominated months (Q. 

Wang et al. 2016). Additionally, the metabolic rates of occupants vary depending on the type of 

commercial building. The metabolic rates of occupants in gymnasiums, stores, and terminal 

buildings are reported to be higher at 1.6met (metabolic equivalent unit) followed by schools at 

1.2met compared to other types of commercial buildings (Ahmed et al. 2017). The higher 

metabolic rates induce higher heat loss of occupants due to their homotherm nature (Van Marken 

Lichtenbelt and Kingma, 2013). The metabolic rates and the amount of heat dissipated by 

occupants in both summer and winter months are identical (Ahmed et al., 2017), highlighting 

that occupants’ thermal interaction in all types of weathers remain constant. Furthermore, human 

body radiates different levels of heat throughout the day, implying that the occupants’ thermal 

interactions within buildings are dynamic throughout the day (Mege, 2021). Moreover, dynamic 

variation of indoor spatial temperature that accounts of thermo-physiological parameters such as 

occupants’ metabolic rate and sweat production can positively impact their comfort and health 
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(Van Marken Lichtenbelt and Kingma, 2013). In summary, a constant heating or cooling setpoint 

temperature may not improve occupants’ thermal comfort inside buildings. New setpoints that 

are a function of number of occupants in a space may contribute towards improving occupant 

comfort inside buildings. Additionally, knowing the occupant count for a space ahead in time can 

allow for pre-conditioning the space to that specific number of people can result in increased 

occupant comfort and avoid HVAC wasteful demand. With emphasis on the need for such 

HVAC strategies (Klein et al., 2012; Liao and Barooah, 2010), an occupancy prediction 

approach that addresses the identified limitations is essential.  

This research presents a novel approach for accurate occupancy prediction using data 

collected from existing infrastructure and reflects the dynamics of a large commercial space that 

does not utilize occupant identifiers. To this extent, this study includes a feasibility test where 

identifier-free occupancy data were collected for a relative dynamic environment (i.e., a large 

lecture hall) using the university WiFi network. These occupancy data were analyzed to learn 

patterns of repetition using neural networks and the patterns learned were used to make short 

term occupancy predictions. HVAC energy consumption was estimated using EnergyPlus 

models at different stages to evaluate the potential energy savings and to validate the occupancy 

data.  
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2. Research Questions 

The goal of this research is to use WiFi networks to obtain reliable occupancy data and detect 

patterns within the data to make short term predictions that can be used to reduce HVAC energy 

consumption and increase occupant comfort levels. This is achieved by answering the following 

questions: 

1. How accurately does the WiFi ‘client-count’ data represent the actual occupant in a 

relative dynamic environment?  

2. What amount of HVAC energy savings can be achieved using real-time WiFi occupancy 

data from a relative dynamic environment?  

3. How can patterns of repetition be recognized in the WiFi occupancy data?  

4. How should the learned patterns be used to make short term occupancy predictions?     

These questions are answered by the achieving the following objectives  

1. Estimate the accuracy of WiFi client count to establish it as a reliable source of occupant 

data for this study. 

2. Estimate the potential energy savings of WiFi-based occupancy schedules over static 

occupancy schedules.  

3. Analyze occupancy data to recognize patterns using neural networks.  

4. Predict occupancy with variables that are significantly correlated using neural networks.  
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3. Methodology  

The methodology for this study is divided into four parts, one per objective: 1) WiFi occupancy 

estimation: An occupancy counter was setup to establish the ground truth for occupancy. The 

WiFi data was processed and validated for accuracy, 2) HVAC energy estimation: Different 

occupancy schedules were created for HVAC operation and the associated energy consumption 

was estimated using EnergyPlus models, 3) Occupancy pattern recognition: Patterns in WiFi 

occupancy were learned using a Fuzzy ART neural network, and 4) Occupancy profile 

prediction: Using the patterns learned, occupancy profile predictions were made with LAPART 

neural networks. Figure 2 graphically illustrates the methodology.  

 This dissertation is divided into six chapters starting with Chapter 1 that introduces the 

area of study and ends with Chapter 6 that provides an overall conclusion, contribution to the 

existing body of knowledge, and future directions. Chapters 2, 3, 4, and 5 form the main body of 

this dissertation and each chapter corresponds to an objective listed in the methodology. Chapter 

2 has been presented and published in the proceedings of Canadian Society for Civil Engineering 

Annual conference, 2019.  This chapter establishes the WiFi data as an accurate source of 

occupancy for large commercial buildings. Chapter 3 has been published in Procedia Computer 

Science, 2019 (https://doi.org/10.1016/j.procs.2019.08.069). This chapter establishes that 

occupancy-based schedules result in significant HVAC energy savings compared to static/fixed 

schedule. Chapter 4 was presented at the Canadian Society for Civil Engineering Annual 

Conference, 2021 and will be published in Springer Nature, 2021. This chapter relates to the 

investigation of pattern recognition in the occupancy data collected from the WiFi networks and 

Fuzzy ART neural networks. Chapter 5 presents the results of the feasibility test that offers 

evidence to the possibility of short-term occupancy prediction using intrinsic variables that are 

https://doi.org/10.1016/j.procs.2019.08.069
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highly correlated to the occupancy profiles. The manuscript resulting from this chapter will be 

submitted to the journal Energy and Buildings. Thus, the fundamental knowledge gained from 

this research suggests that WiFi device count can accurately represent occupancy in a relative 

dynamic environment. Significant occupancy patterns can be learned from the WiFi data by 

fragmenting the data into smaller time-segments bound by external schedules. Additionally, the 

prediction feasibility test results lend evidence to the possibility of predicting occupancy profiles 

for a time-segment using variables that are significantly correlated to the occupancy of a time-

segment. Furthermore, the patterns learned, and the subsequent predictions can aid in realizing 

substantial HVAC energy savings and can also be used towards improving occupant comfort 

levels.  
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ABSTRACT 

More than half of the commercial building stock in the United States was built before 1980 prior 

to the increased focus on energy efficiency. In the current age of Smart and Green buildings, 

owners incorporating expensive sensor infrastructure to reduce building energy consumption and 

improve the building occupants’ satisfaction, efficiency, and comfort levels. The success of these 

automated building systems is influenced by the ability to estimate building occupancy. 

Recently, researchers shifted their focus towards exploring different occupancy estimation 

techniques with both dedicated sensors and existing infrastructure (e.g., CO2 sensors, Smart 

meters, temperature, and humidity sensors, and wi-fi networks). However, there are concerns 

about the cost effectiveness, computational effort, accuracy, and privacy protection for these 
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techniques. This study explores the usage wi-fi router data to generate the of number of IP 

addresses connected to the router to estimate the occupancy within a building. To this end, 

occupancy patterns in a thirty-year-old university building are estimated using existing wi-fi 

infrastructure and compared and calibrated to ground data obtained manually and from dedicated 

occupancy estimating sensors to evaluate the accuracy. The estimated occupancy data patterns 

using existing wi-fi network represent a cost-effective method of occupancy estimation with less 

computational processing and reduced privacy concerns, that could assist owners in the decision-

making process towards investing into smart and energy efficient technologies. 

1. Introduction 

With the rise of technology, Smart buildings and green initiatives have grown in the past few 

years. In 2011, a report from the United States Energy Information Administration (EIA) 

reported an increase in the number of pilot studies related to smart grids. It stated that the smart 

meter installations in the United States would exceed 80 million by the year 2015 (SAIC, 2011). 

This is close to the EIAs’ 2016 reported value of above 70 million smart meter installations in 

the residential, commercial, industrial, and transportation sectors. Although the current number is 

slightly behind the predicted value, it is evident that building owners are investing in smart 

technologies to improve efficiency and comfort. With more than half of commercial building 

stock in the US being over 32 years old (CBECS 2012), the potential for building owner’s 

investment into smart technologies to optimize energy consumption and improve occupant 

comfort is great. 

Commercial buildings consume about 19% of total energy consumption in the US (Azar 

and Menassa 2014) in which about 50% of energy is consumed by HVAC (heating, ventilation, 
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and air conditioning) equipment. Energy models and predictions were often mismatched with the 

actual building performances in terms of their energy consumption. Often the mismatch between 

modelled energy consumption and actual energy consumption in commercial buildings is 

attributed to the occupants and occupant behavior of the buildings (Azar and Menassa 2012b). In 

the past decade, studies have emphasized on the impact of occupants on building energy 

consumption (Yang and Wang 2013, Labeodan et al. 2015, Hong et al. 2016). As the influence 

of occupants on building energy consumption became evident, the importance of occupancy 

information has become the point of interest for researchers. 

Numerous occupancy detection and estimation techniques were introduced over the past 

few years. Studies have explored different techniques to detect, estimate and track occupants 

within the building. Some of the techniques include but are not limited to usage of sensor 

networks such as passive infrared sensors (PIR) (Dodier et al. 2006), RFID tags (Li et al. 2012), 

occupancy sensors and motion detectors (Duarte et al. 2013, Stoppel and Leite 2014, Mantha et 

al. 2015), vibration sensors (Pan et al., 2014), chair sensors (Labeodan et al., 2015), and Ultra-

wideband (UWB) (Choi et al. 2018) among others. 

However, dedicated sensor infrastructure can be expensive for large scale deployment in 

commercial buildings. To address these issues, researchers have investigated occupancy 

detection, estimation and tracking for multiple purposes using existing infrastructure such as 

smart meters (Kleiminger et al. 2013), cameras (Liu et al. 2013), and wi-fi routers 

(Vattapparamban et al. 2016, Zou et al. 2017, Zou et al. 2018) among others. Each of these 

existing infrastructure systems have different levels of detection and estimation accuracies and 

privacy concerns. Z.Chen et al. (2018), performed a comparative review of different occupancy 

sensing techniques. The article presented a summary of different types of sensors used to detect 
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and estimate occupancy along with their limitations. Overall, from literature is it evident 

occupancy data can be categorized into three levels depending on the extent of information 

obtained: 1) detection, 2) estimation, and 3) location tracking (Zou et al. 2017).  

This paper focuses only on occupancy estimation using existing infrastructure. 

Infrastructure such as smart meters are capable of detecting occupancy but have no capability of 

estimating the occupancy (D. Chen et al. 2013). Cameras have high accuracy, however they have 

high computational requirements and privacy concerns which would restrict their usage ( Liu et 

al. 2013Z). Wi-fi signals are capable of detecting and estimating occupancy with partial privacy 

concerns of the occupants (Zou et al. 2017, Zou et al. 2018). However, from the studies on 

occupancy estimation using wi-fi routers/Access Points (AP’s) and signals (Received Signal 

Strength, RSS), it is evident that the occupancy estimation requires either significant 

computational resources, additional software updates to the routers, or additional devices 

installed (Depatla et al. 2015, Vattapparamban et al. 2016, Zou et al. 2017). Table 1 summarizes 

some of the occupancy estimation techniques proposed in recent literature along with their 

computational requirements, added infrastructure, reported accuracy, and concerns. 
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Table 1: Summary of Wi-Fi based Occupancy Estimation Methods 

Name 
Infrastructure 

Used 

Additional 

Resources 

Accuracy 

reported 
Concerns Source 

WinOSS Wi-Fi 
Firmware 

upgrades 

98.85% 

(detection 

only) 

Occupant 

identification 

(Zou et al. 

2017) 

WiFree Wi-Fi 

Second 

Wi-Fi 

Router 

92.80% 
Computational 

requirements 
(Zou et al. 2018) 

Meraki Wi-Fi 

Meraki 

wireless 

APs 

- 
Occupant 

identification 
(Cisco, 2013) 

Wi-Fi 

Pineapple 
Wi-Fi 

Wi-Fi 

Sniffers 
- 

Occupant 

identification 

(Vattapparamban 

et al. 2016) 

FreeDetector Wi-Fi 
Firmware 

upgrades 

94.0% 

(detection 

only) 

Computational 

requirements 
(Zou et al. 2017) 

 

From the summary presented in Table 1, it is evident that the techniques implemented to 

detect and estimate occupancy require additional resources such as routers capable of handling 

specific task (e.g. Meraki routers), upgrading firmware, and wi-fi sniffers (e.g. wi-fi pineapple) 

among others, identifies occupants through unique identifiers (e.g. MAC addresses), or limited to 

occupancy detection only. The added infrastructure, and firmware upgrades may increase the 

cost of gathering occupant data for commercial buildings. Similarly, identifying and tracking 

individuals may raise privacy concerns when implemented in university buildings or other public 

buildings. In this context, this paper asks a question: Can Wi-fi Routers serve as a cost-effective, 

reliable, and accurate source of occupancy estimates that reduces computational requirements 

and privacy concerns? 
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2. Methodology 

To address the question asked, this study proposes the methodology presented in Figure 3 and 

consisting of three steps: 1) Establish ground truth, 2) Data acquisition, and 3) Data processing, 

and accuracy.  

 

 

 

 

 

 

 

 

The methodology is used to estimate occupancy of a large lecture hall inside a thirty-year old 

Mechanical Engineering Building at University of New Mexico that is equipped with a campus 

wide wi-fi network. To estimate the occupancy, it is assumed that when students spend time 

within the university building, they connect to the university wi-fi network for their needs. The 

router infrastructure covers the entire building which facilitates the detection and estimation of 

occupants within the areas of wi-fi coverage. The lecture hall in question was preinstalled with 

three wi-fi routers spread across the entire room. 

2.1. Step1: Establish Ground Truth 

To establish ground truth, the lecture hall in the Mechanical Engineering building shown in 

Figure 4(a) was selected as it is one of the classrooms regularly used during the semester. The 

lecture hall is capable of seating over one hundred students at a time. It has two entrances one on 

Establish Ground-truth 

Data Acquisition 

Data Processing and 

Accuracy 

Figure 3: Methodology (Objective-I) 



21 
 

(a) (c) 

(b) 

the north end and one on the south end. On average five different classes take place on a regular 

weekday. To obtain an actual count during a normal class, a people-counting sensor (EBTRON: 

CENCUS-C100) shown in Figure 4(b) was installed that uses the thermal signature of occupants 

to estimate the occupant count as they walk through the door. Each entrance was installed with a 

single C100 as shown in Figure 4(c). When an individual enters through the door, the C100 

sensor is activated, and it is directionally sensitive. It consists of two infrared sensors that detects 

the thermal signature of the occupant and increases the count when an individual enters and 

decreases when the individual exits based on the order of activation (e.g., if 1 to 2 is entry, 2 to 1 

is exit).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: (a)Lecture Hall under study, (b) EBTRON: CENCUS-C100 (c) Installed sensor 

on door frame. 
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The installed sensors were calibrated and tested for over 3 months during regular 

semester weekdays. The sensor logs the occupancy count every time an occupant walks through 

the door to attend a class and sends the data to the server located at the Physical Plant 

Department on the university campus. The occupancy count data is made available for download 

from the server as a Comma Separated Value (CSV) file. The raw data consists of the occupant 

count for the entire day with timestamps. This data is then validated against manual counts to 

estimate the accuracy and establish the sensor count as the ground truth. 

2.2.Step2: Data Acquisition from Routers 

The lecture hall is equipped with three wi-fi routers to facilitate wi-fi coverage for the entire hall. 

Students often connect to the wi-fi network during classes and this data is logged and sent to the 

network servers held at the Information Technology (IT) department for the university campus. 

This data consists of the number of clients (i.e., number of Media Access Control (MAC) 

addresses) connected to the network at a given time throughout the day. Such data can be 

obtained for any building equipped with a wireless network managed by a central network 

server. For this investigation, the IT department was asked to share the data with number of 

clients connected through the wi-fi routers inside the lecture hall throughout the day. The number 

of connections at a given time should approximately match the total occupancy of the lecture 

hall. The IT department was asked to filter any information that could identify an occupant to 

eliminate privacy concerns. 

2.3.Step3: Data Processing and Accuracy 

The client list is shared on daily basis as a CSV file containing the data from the previous day. 

This data requires minimal processing to estimate occupancy of the room as the count of total 

number of clients at a given time is considered as the total occupancy. This client count data is 
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then compared with the ground truth (data obtained by the sensors (C100) installed for the 

lecture hall) to find the correlation between the two estimates and measure the accuracy.  

3.Results and Discussion 

The installed sensors were connected to the university’s Delta Control systems network 

(Facilities management system) to allow viewing the data logging in real time as shown in 

Figure 5. The sensors were calibrated and tested during regular semester classes and special 

seminar talks where the total attendance was obtained via manual count. A data point is logged 

every time a student walks through the door. The count increases as students walk in through the 

door and decreases as students walk out. No specific instructions were given to the students on 

how to enter or exit the room. The student’s behavior was unaltered throughout the period of 

calibration and testing. The logged data provides fine grained occupancy information in real time 

as students walk in and walk out of the lecture hall. The data is then compared to the manual 

count over multiple days and the sensor achieved 97.7% accuracy in estimating the occupancy 

count. Therefore, the sensor count is used going forward as representative of the ground truth. 

 

 

 

 

 

 

 

 Figure 5: Data logged by the Sensor in Real Time (June 19, 2018) 
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The wi-fi routers in the lecture hall allow students to connect to the campus network 

through one of the routers and the information of the individual is logged on the university IT 

department’s network servers. The servers log the total number of clients connected to the 

campus wi-fi every five minutes throughout the day. The total number of unique clients 

connected to the three routers that serve the lecture hall were isolated from the rest of the 

database with a timestamp. This information was shared via CSV file from Jan 22, 2019, to Feb 

21, 2019. All the information such as MAC or IP address of the users that can identify an 

individual was filtered out by the IT department to protect the identity of the occupants.  

The total count versus time from the two data sets are plotted alongside each other using 

simple MATLAB script as shown in Figure 6 from (a) to (d) representing the data from Jan 22, 

2019, to Jan 25, 2019, respectively. The timesteps at which the data logged by the C100 sensor is 

different from that of the wi-fi routers. To form a correlation between the two data sources, the 

occupancy values need to be obtained for the same timesteps from each source. Using the 

“griddedInterpolant” function in MATLAB, occupant count and client count were interpolated 

for the same timesteps. The extracted values provided the occupant count (x1) from the C100 

sensor and client count (x2) from the wi-fi router. As time (y) is common for both x1 and x2, 

these values are plotted against each other to estimate the correlation. The correlation plot with 

linear regression line is shown in Figure 7 and Figure 8 for days Jan 22, 2019, to Jan 25, 2019. 
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Figure 6: Sensor (C100) Occupancy count and Wi-fi Router Count vs time (a) Jan 22, 2019, 

(b) Jan 23, 2019, (c) Jan 24, 2019, (d) Jan 25, 2019 

(c) 

(d) 
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Figure 7: Correlation Plots with Linear Regression Lines. (a) Jan 22, 2019, (b) Jan 23, 2019 
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Figure 8: Correlation Plots with Linear Regression Lines: (a) Jan 24, 2019, (b) Jan 25, 2019 



29 
 

Similarly, three weeks (only weekdays) data was analyzed to observe the correlations 

between the client count from the routers and the occupant count from the C100 sensor. The R2 

values ranged from 0.887 to 0.963 and the intercept of linear regression lines ranged from 0.23 to 

1.27. This highlights that the wi-fi router client count agrees with sensor occupancy count. 

Therefore, it is apparent that meaningful occupancy data can be extracted from the wi-fi routers 

implying that the routers can serve as an accurate source of occupancy count. Since information 

that can identify an individual is filtered out by the IT department before the data was pulled out 

of the servers, the router count has little privacy concerns. Apart from a little cleaning of the raw 

data, no processing or computation was required to obtain the occupancy count from the routers. 

This allows the reallocation of computational resources elsewhere while using the router 

occupancy data for optimizing HVAC’s energy usage.  

No infrastructure or firmware upgrades were made to the routers to extract the occupancy 

count from the routers. The student behavior was not altered in anyway during the testing and 

calibrating of the C100 sensor or during the wi-fi router data acquisition period making this a 

non-intrusive occupancy estimation technique. The EBTRON C100 sensors costed $450 each 

and most classrooms in the Mechanical Engineering building have two entrances. Installation of 

these sensors for every classroom to estimate occupancy is not economically viable. Gathering 

reliable and accurate occupancy estimates from the w-fi routers can be cost-effective compared 

to methods that need additional infrastructure, firmware updates, and special operating systems.  
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4. Conclusion, limitations, and future directions 

The R2 values of 0.887 to 0.963 and linear regression intercept values of 0.23 to 1.27 

demonstrate that accurate occupancy counts can be obtained from wi-fi routers with low privacy 

concerns and minimal computational efforts. As no infrastructure or firmware upgrades were 

made to the original existing infrastructure, this method has no additional cost impacts. These 

results address the question raised in the introduction of this paper that wi-fi routers can server as 

a cost-effective, reliable, and accurate source of occupancy data. However, there are few 

limitations to this study that need to be addressed in future. The client count from the router may 

not necessarily represent the total occupants in the lecture hall. There might be instances where 

students carry more than one wi-fi capable device which may result in over counting of 

occupants. The wi-fi data needs to be analyzed over many weeks to conclude that routers can 

provide accurate occupancy counts. These limitations will be addressed in the future steps of this 

research 

References 

Azar, Elie, and Carol C. Menassa. 2012. “Agent-Based Modeling of Occupants and Their Impact 

on Energy Use in Commercial Buildings.” Journal of Computing in Civil Engineering 26 

(4): 506–18. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000158. 

———. 2014. “A Comprehensive Framework to Quantify Energy Savings Potential from 

Improved Operations of Commercial Building Stocks.” Energy Policy 67: 459–72. 

https://doi.org/10.1016/j.enpol.2013.12.031. 

Chen, Dong, Sean Barker, Adarsh Subbaswamy, David Irwin, and Prashant Shenoy. 2013. “Non-

Intrusive Occupancy Monitoring Using Smart Meters.” In Proceedings of the 5th ACM 



31 
 

Workshop on Embedded Systems For Energy-Efficient Buildings - BuildSys’13. 

https://doi.org/10.1145/2528282.2528294. 

Chen, Zhenghua, Chaoyang Jiang, and Lihua Xie. 2018. “Building Occupancy Estimation and 

Detection: A Review.” Energy and Buildings 169: 260–70. 

https://doi.org/10.1016/j.enbuild.2018.03.084. 

Choi, Jeong Woo, Xuanjun Quan, and Sung Ho Cho. 2018. “Bi-Directional Passing People 

Counting System Based on IR-UWB Radar Sensors.” IEEE Internet of Things Journal 5 

(2): 512–22. https://doi.org/10.1109/JIOT.2017.2714181. 

Cisco. 2013. “Location Analytics,” 29. 

Depatla, S, A Muralidharan, and Y Mostofi. 2015. “Occupancy Estimation Using Only WiFi 

Power Measurements.” IEEE Journal on Selected Areas in Communications 33 (7): 1381–

93. https://doi.org/10.1109/JSAC.2015.2430272. 

Dodier, Robert H., Gregor P. Henze, Dale K. Tiller, and Xin Guo. 2006. “Building Occupancy 

Detection through Sensor Belief Networks.” Energy and Buildings. 

https://doi.org/10.1016/j.enbuild.2005.12.001. 

Duarte, Carlos, Kevin Van Den Wymelenberg, and Craig Rieger. 2013. “Revealing Occupancy 

Patterns in an Office Building through the Use of Occupancy Sensor Data.” Energy and 

Buildings 67: 587–95. https://doi.org/10.1016/j.enbuild.2013.08.062. 

Hong, Tianzhen, Hongsan Sun, Yixing Chen, Sarah C. Taylor-Lange, and Da Yan. 2016. “An 

Occupant Behavior Modeling Tool for Co-Simulation.” Energy and Buildings 117: 272–81. 

https://doi.org/10.1016/j.enbuild.2015.10.033. 



32 
 

Kleiminger, Wilhelm, Christian Beckel, Thorsten Staake, and Silvia Santini. 2013. “Occupancy 

Detection from Electricity Consumption Data.” In Proceedings of the 5th ACM Workshop 

on Embedded Systems For Energy-Efficient Buildings - BuildSys’13. 

https://doi.org/10.1145/2528282.2528295. 

Labeodan, Timilehin, Wim Zeiler, Gert Boxem, and Yang Zhao. 2015. “Occupancy 

Measurement in Commercial Office Buildings for Demand-Driven Control Applications - A 

Survey and Detection System Evaluation.” Energy and Buildings 93: 303–14. 

https://doi.org/10.1016/j.enbuild.2015.02.028. 

Li, Nan, Gulben Calis, and Burcin Becerik-Gerber. 2012. “Measuring and Monitoring 

Occupancy with an RFID Based System for Demand-Driven HVAC Operations.” 

Automation in Construction. https://doi.org/10.1016/j.autcon.2012.02.013. 

Liu, Dixin, Xiaohong Guan, Youtian Du, and Qianchuan Zhao. 2013. “Measuring Indoor 

Occupancy in Intelligent Buildings Using the Fusion of Vision Sensors.” Measurement 

Science and Technology. https://doi.org/10.1088/0957-0233/24/7/074023. 

Mahdavi, Ardeshir, and Farhang Tahmasebi. 2015. “Predicting People’s Presence in Buildings: 

An Empirically Based Model Performance Analysis.” Energy and Buildings 86: 349–55. 

https://doi.org/10.1016/j.enbuild.2014.10.027. 

Mantha, Bharadwaj R K, Chen Feng, Carol C Menassa, and Vineet R Kamat. 2015. “Real-Time 

Building Energy and Comfort Parameter Data Collection Using Mobile Indoor Robots.” 

International Association for Automation and Robotics in Construction (IAARC) 

Proceeding: 1–9. http://www.iaarc.org/publications/fulltext/FFACE-ISARC15-

2999958.pdf. 



33 
 

Pan, Shijia, Amelie Bonde, Jie Jing, Lin Zhang, Pei Zhang, and Hae Young Noh. 2014. “BOES: 

Building Occupancy Estimation System Using Sparse Ambient Vibration Monitoring.” 

Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 

90611O. https://doi.org/10.1117/12.2046510. 

SAIC. 2011. “U.S. Smart Grid Case Studies.” 

http://www.eia.gov/analysis/studies/electricity/pdf/sg_case_studies.pdf. 

Stoppel, Christopher M., and Fernanda Leite. 2014. “Integrating Probabilistic Methods for 

Describing Occupant Presence with Building Energy Simulation Models.” Energy and 

Buildings 68 (PARTA): 99–107. https://doi.org/10.1016/j.enbuild.2013.08.042. 

Vattapparamban, Edwin, Bekir Sait Çiftler, Ismail Güvenç, Kemal Akkaya, and Abdullah Kadri. 

2016. “Indoor Occupancy Tracking in Smart Buildings Using Passive Sniffing of Probe 

Requests.” 2016 IEEE International Conference on Communications Workshops, ICC 2016, 

38–44. https://doi.org/10.1109/ICCW.2016.7503761. 

Yang, Rui, and Lingfeng Wang. 2013. “Development of Multi-Agent System for Building 

Energy and Comfort Management Based on Occupant Behaviors.” Energy and Buildings 56 

(January): 1–7. https://doi.org/10.1016/j.enbuild.2012.10.025. 

Zou, Han, Hao Jiang, Jianfei Yang, Lihua Xie, and Costas J. Spanos. 2017. “Non-Intrusive 

Occupancy Sensing in Commercial Buildings.” Energy and Buildings 154 (September): 

633–43. https://doi.org/10.1016/j.enbuild.2017.08.045. 

Zou, Han, Yuxun Zhou, Hao Jiang, Szu Cheng Chien, Lihua Xie, and Costas J. Spanos. 2018. 

“WinLight: A WiFi-Based Occupancy-Driven Lighting Control System for Smart 

Building.” Energy and Buildings 158 (November): 924–38. 



34 
 

https://doi.org/10.1016/j.enbuild.2017.09.001. 

Zou, Han, Yuxun Zhou, Jianfei Yang, Weixi Gu, Lihua Xie, and Costas Spanos. 2017. 

“FreeDetector: Device-Free Occupancy Detection with Commodity WiFi.” 2017 IEEE 

International Conference on Sensing, Communication and Networking, SECON Workshops 

2017. https://doi.org/10.1109/SECONW.2017.8011040. 

———. 2018. “FreeCount: Device-Free Crowd Counting with Commodity WiFi.” 2017 IEEE 

Global Communications Conference, GLOBECOM 2017 - Proceedings 2018–Janua: 1–6. 

https://doi.org/10.1109/GLOCOM.2017.8255034. 

Zou, Han, Yuxun Zhou, Jianfei Yang, and Costas J. Spanos. 2018. “Device-Free Occupancy 

Detection and Crowd Counting in Smart Buildings with WiFi-Enabled IoT.” Energy and 

Buildings 174: 309–22. https://doi.org/10.1016/j.enbuild.2018.06.040. 

  



35 
 

 

  



36 
 

Chapter-03 – Real-Time Occupancy Estimation Using WiFi Network to Optimize HVAC 

Operation 

Krishna Chaitanya Jagadeesh Simmaa, Andrea Mammolib1, Susan M Bogusc 

acDepartment of Civil Engineering, University of New Mexico, Albuquerque, 87131, USA 

bDepartment of Mechanical Engineering, University of New Mexico, Albuquerque, 87131, USA  

ABSTRACT 

Commercial and residential buildings consume about 27% of total energy used in the US, out of 

which nearly half is consumed by commercial building sector, and it expected to grow in the next 

30-year period. Literature suggests that occupancy data may improve the energy consumption of 

the buildings, especially in HVAC operation. In the past few years, studies came up with various 

frameworks based on existing infrastructure to estimate occupancy, out of which commodity WiFi 

gained popularity in detecting, estimating, and tracking occupants within buildings. However, 

there are concerns with those frameworks such as added infrastructure and computational efforts, 

upgrades to existing infrastructure, and privacy of occupants. This paper presents a simplistic 

framework based on commodity WiFi to estimate real time occupancy data without any added 

infrastructure or upgrades, while protecting the occupant privacy and can produce significant 

energy reduction in HVAC operation. The framework is tested on a large lecture hall in an 

institutional building that has multiple classes scheduled. The initial tests showed that the WiFi 

based occupancy had a 0.96 correlation with the established ground truth. Additionally, the WiFi 
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based occupancy schedule resulted in at least 50% savings in HVAC energy consumption over 

static schedule. 

© 2019 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Commercial and residential buildings consume about 27% of total energy used in the US (U.S. 

Energy Information Institution, 2018a), out of which nearly half is consumed by commercial 

building sector and it is expected to grow in the next 30-year period. In both commercial and 

residential sectors, HVAC (Heating, Ventilation and Cooling) holds major share in terms of energy 

consumed (U.S. Energy Information Institution, 2018b). HVAC is often known to run on poorly 

controlled building schedules (Carbon Trust, 2007) highlighting the potential for energy savings. 

Various building energy management systems such as smart BEMS (Building Energy 

Management Systems) (Rocha, Siddiqui, & Stadler, 2015), MACS (Multi-agent Control Systems) 

(Dounis & Caraiscos, 2009), and MACES (Multi-agent comfort and energy system) (Klein et al., 

2012) among others were proposed in literature aimed at reducing building energy consumption 

and improving occupant comfort. Although these frameworks reported potential reductions in 

building energy consumption, they do not incorporate real-time occupancy information into their 

systems. The frameworks assume peak-hour, off-peak hour occupant loads, and occupant 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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preferences to program thermostat setpoints. This allows ample room for additional building 

energy savings that can be achieved when occupant count is used to manage building energy 

consumption while maintaining occupant comfort.  

The occupant impact in reducing building energy consumption is highlighted by Azar and 

Menassa (Azar & Menassa, 2012c) which signifies the importance of collecting occupant 

information. The findings of Azar and Menassa (Azar & Menassa, 2012c) led the following studies 

to develop various techniques to obtain occupancy information that can be used to improve 

building energy consumption. Infrastructure networks such as cameras, RFID sensors, PIR 

sensors, and motion sensors among other to detect and estimate occupancy were proposed across 

studies (Z. Chen et al., 2018). However, costs associated in establishing dedicated networks led 

researchers to look for cost effective solutions to estimate occupancy in commercial buildings. 

Most modern buildings are equipped with infrastructure such as CO2 sensors, temperature sensors, 

humidity sensors, smart meters, and WiFi networks, among others. These infrastructure networks 

exhibit variations in their readings in occupant presence allowing for occupant detection, 

estimation, and tracking contingent on type of infrastructure. Recent studies started evaluating the 

level of detection and estimation accuracy of these infrastructure networks (Z. Chen et al., 2018). 

Out of the listed existing infrastructure, occupancy based on WiFi networks gained popularity in 

the past three years owing to its availability and wide coverage inside the many commercial 

buildings [4 –11].   

The WiFi network facilitates detection, estimation and tracking of users connected to the 

network within the building through the MAC (Media Access Control) addresses (Vattapparamban 

et al., 2016). This idea has been implemented in various occupancy estimating frameworks such 

as WiFree (Zou, Zhou, Yang, & Spanos, 2018), WinOSS (Zou, Jiang, et al., 2017), Wi-Fi Pineapple 
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(Vattapparamban et al., 2016), and Meraki (Cisco, 2013). These methods capture the received 

signal strength (RSS) of probe requests using wireless sniffers to infer the occupant count in the 

test zone. Using the RSS facilitates tracking of a specific user within the range of the WiFi network 

for added accuracy. Recently introduced MAC address randomization may increase the inaccuracy 

of the occupancy obtained by scanning probe request (Vattapparamban et al., 2016). Other methods 

use channel state information (CSI) to estimate the number of occupants by forming transmitter 

and receiver pairs (TX - RX) [5–7]. For this system to work, set of two routers are needed for the 

test space where one router acts as transmitter (TX) and the other acts as receiver (RX) (Zou, Zhou, 

Yang, Gu, et al., 2018). However, these methods require upgrades to the existing infrastructure, 

additional infrastructure (a second pair of routers), and heavy computational requirements to 

capture CSI data to infer the occupancy data. Additionally, MAC addresses can be used to identify 

an individual and track their location and activity over the network which raises the privacy 

concerns of the occupants. Table 2 summarizes the existing frameworks to detect occupancy using 

WiFi networks. 

Table 2: Existing WiFi based Occupancy Detecting Frameworks 

Name 
Processing 

Method 

Additiona

l 

Resources 

Type of 

Test Zone 
Concerns Source 

WinOSS RSS 
Firmware 

upgrades 

Controlled 

space  

Occupant 

identification 

(Zou, Jiang, et al., 

2017) 

WiFree 

Channel 

State 

Informatio

n (CSI) 

Second 

Wi-Fi 

Router, 

upgrade, 

and new 

firmware 

Controlled 

small space 

Computationa

l requirements 

(Zou, Zhou, Yang, & 

Spanos, 2018) 

Meraki 
MAC 

address 

Meraki 

wireless 

APs 

Large 

buildings 

Occupant 

identification 
(Cisco, 2013) 
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Wi-Fi 

Pineapple 
RSS 

Wi-Fi 

Sniffers 

Large 

institutiona

l building 

Occupant 

identification 

(Çiftler et al., 

2018)(Vattapparamba

n et al., 2016) 

FreeDetecto

r 

Channel 

State 

Informatio

n (CSI) 

Firmware 

upgrades 

Controlled 

space 

Computationa

l requirements 

(Zou, Zhou, et al., 

2017) 

FreeCount 

Channel 

State 

Informatio

n (CSI) 

Firmware 

upgrades 

Controlled 

small space 

Computationa

l requirements 

(Zou, Zhou, Yang, 

Gu, et al., 2018) 

 

From the table it is evident that existing methods either requires complex information 

processing or a personal identifier (i.e., MAC address) to obtain occupancy data. Added 

infrastructure such as secondary router or probe sniffers or firmware upgrades are needed to 

execute the exiting frameworks which may also hinder large scale deployment in commercial 

buildings. Most importantly, majority of these frameworks were tested over small controlled 

spaces with limited occupants where the occupant dynamics does not represent the complexity of 

a real-time occupant movement in commercial buildings (Zou, Jiang, et al., 2017; Zou, Zhou, 

Jiang, et al., 2018; Zou, Zhou, Yang, & Spanos, 2018). As high discrepancies were noted between 

predicted energy consumption and actual consumption (Azar & Menassa, 2012c) due to occupant 

impact, it is important to acquire real-time occupant data especially in institutional buildings. 

Institutional buildings such as university campus buildings have large number of occupants 

entering and exiting throughout the day. For examples, students may use the building for only 

during their scheduled classes which are an hour to two hour long and leave the building when 

done. In such scenarios the building can be occupied by many unique occupants within a day which 

raises the randomness in occupants and occupant behavior. With the increased randomness in 

occupants and occupant behavior, it is necessary to understand the HVAC energy consumption 

while improving occupant comfort levels and saving energy. 
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Using occupancy based operating schedules as opposed to fixed schedules reportedly 

increase the HVAC energy savings (J. Yang, Santamouris, & Lee, 2016). However, it is vital that 

the occupancy schedules used to estimate the reported HVAC savings need to represent the 

dynamics of a real-time occupant movement within the buildings (Kwok, 2011). With increasing 

number of smart buildings that are equipped with WiFi networks covering the entire building, it is 

possible to obtain such real-time occupant data that can be used to optimize HVAC operations. To 

allow building owners to maximize their energy saving with minimal efforts, a framework to 

estimate accurate real-time occupancy with nominal computational efforts and no additional 

infrastructure requirements that also addresses the privacy concerns is necessary. As a part of the 

framework development the initial findings on WiFi occupancy data are presented in (Krishna 

Chaitanya J Simma, Bogus, & Mammoli, 2019). The current paper summarizes the findings of the 

initial work and continues developing the framework. In this context, this paper asks a question: 

What amount of HVAC energy savings can be achieved using real-time occupancy data from WiFi 

network in an institutional building? 

2. Methodology 

To address the issues highlighted in the introduction and the question, a methodology is proposed 

as shown in Figure 9. The proposed methodology is divided into two phases, Phase-I and Phase-

II. In phase-I, the ground truth is established using people counting sensor (EBTRON, C100) and 

occupancy data are extracted from the WiFi network with the assistance of the university’s 

Information Technology department.   
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The occupancy data from WiFi network is validated against the ground truth to estimate accuracy. 

The results of Phase-1 are summarized in this paper but for detailed steps and results on Phase-I, 

readers are encouraged to refer to (Krishna Chaitanya J Simma et al., 2019). Phase-II consists of 

following steps: 1) build a 3D model for the area of study, 2) Build energy models and HVAC 

operating schedules using occupancy data from people counting sensors, WiFi network, and fixed 

schedule, 3) Perform energy analysis to estimate potential HVAC energy savings using fixed 

schedules, ground truth and WiFi based occupancy schedules. 

A large lecture hall (Rm-218: 26’x40’) inside the thirty-year old Mechanical Engineering 

at University of New Mexico (UNM) was used for this study. The ME building is equipped with 

campus WiFi network with routers throughout the building and Rm-218 was preinstalled with three 

WiFi routers. The underlying assumption in estimating occupancy using WiFi network is that 

students who enter the building carry at least one WiFi capable device and connects to the campus 

Figure 9: Methodology (Objective-II) 
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network during their stay. UNM’s Information Technology department provided the data of 

number of users connected to the network inside the lecture hall. 

2.1. Methodology overview 

The methodology is aimed to establish a framework that allows large scale implementation. To 

achieve the set goal, the following criteria were established: 1) Minimal infrastructure and 

computational effort: estimating occupancy is the primary input to optimize the HVAC operation 

and occupant comfort. It is essential that the occupancy data can be obtained with minimal effort 

that can be utilized in occupancy predictions via machine learning. 2) Privacy: Commercial 

buildings include office buildings, public libraries, governmental offices, shopping malls, and 

institutional buildings. These are often occupied by public, and it is of paramount importance that 

the privacy of the public is protected. 3) Real-time non-intrusive occupant dynamics: As 

institutional buildings tend to have different students occupying a space throughout the data, it is 

essential to capture the true dynamics of occupant movements throughout the day.  

3.  Results and Discussion 

3.1. Phase-I 

 Phase-I is aimed at establishing the ground truth and estimating the accuracy of the WiFi based 

occupancy data. Figure 9 shows the comparison between the established ground truth (from C100 

sensor) and router data obtained from the IT department. The router data comprises of number of 

clients connected to the campus network inside the Rm-218 with a timestamp. The sensor data is 

the occupant count obtained from the people counting sensors installed on the door frames which 

also serves as ground truth.  

 A single day from each of the first six weeks of data collected is shown in Figure 10. The ground 

truth established by the people counting sensor on an average estimated 97.7% of the occupancy 
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of the room obtained by manual count. The data presented in Figure 10 shows students entering 

and leaving the room under study for their scheduled classes throughout the day. The occupant’s 

behavior was not modified in anyway during the data collection duration. Therefore, the plots in 

Figure 10 show the natural movement of occupants in and out of the room reflecting a realistic 

occupant information. The maximum number of users connected to the WiFi routers in the same 

room seem to follow the same trend as the occupant count. The WiFi router data when compared 

to the ground truth achieved 96% accuracy. The correlation plot for occupant count and maximum 

number of clients connected and the R2 values for the days shown in Figure 10 were presented in 

Figure 11. The R2 values ranged between 0.86 to 0.96 for the first seven weeks of the data 

collected indicating strong correlation between ground truth and the WiFi occupant count.  
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Figure 10: Occupancy data comparison for a single day from each of the first six weeks of 

the study period 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Phase-II 

To validate the utility of WiFi occupancy data further, an energy analysis needs to be performed 

on HVAC operation to ensure that the WiFi data results in significant energy savings. To perform 

building energy analysis with occupancy data, a set of software tools are required to interoperate 

in collaboration. For this study, the software used to build the energy models are SketchUp - a 3D 

modeling tool developed by Trimble, OpenStudio - a cross-platform tool set capable of running 
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Figure 11: Correlation plots for router data versus people counter data 

whole building energy models, and EnergyPlus - a DOE (Department of Energy) developed 

building energy simulation program.  

 

 

 

 

 

 

 

 

 

 

For a comparative analysis, occupancy schedules were built using ground truth (C100 sensor data), 

WiFi data, and fixed schedule. The energy consumption associated with ground truth and WiFi 

occupant schedules were compared against the fixed schedule. Most of the buildings operate on a 

fixed schedule (specific time period in a day) assuming maximum occupancy (Z. Yang & Becerik-

Gerber, 2014). Using the fixed schedule as a baseline can help understand the maximum amount 

of savings that can be achieved using occupant data. Additionally, by comparing the occupant 
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Figure 12: (a) & (b) Lecture Hall, (c) Lecture Hall layout, (d) Energy Model for 

the lecture hall 

schedule derived by WiFi data to the baseline and ground truth can validate the accuracy of the 

WiFi data. 

3.1.1. Building modelling 

 The lecture hall used in this study is shown in  Figure 12 (a) and (b). Figure 12 (c) shows the 

lecture hall layout. A 3D model is built using SketchUp Pro-09 which creates wall surfaces with 

thermal properties, location details, and shading areas. A legacy OpenStudio plugin version 0.9.3 

is needed for SketchUp to convert the building model to energy model shown in Figure 12 (d).  
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3.1.2. Energy modelling and occupancy schedules 

The energy model file created in SketchUp is exported as an EnergyPlus input data file (IDF) that 

can be opened by EP-Launch (EnergyPlus v9.1.0). A pre-designed weather file for the location is 

added to run the energy model. The programs allow for modeling different schedules for heating, 

cooling, office equipment, lights, and occupancy. Using the ground truth and WiFi data occupancy 

schedules and heating schedules were created for energy models. Since the testing period is in 

fourth week of January, only heating schedules were created. The fixed schedule is designed to 

operate HVAC between from 7am to 7pm at maximum occupant capacity. The simulation is run 

only for the first week of the data collected. The models were run for similar set of parameters 

while the occupancy schedules were altered in each run. This allows to capture the energy 

consumption changes due to occupant data variations. 

3.1.3. HVAC Energy analysis 

As explained in section 0 three occupancy schedules were created for 1) fixed schedule, 2) ground 

truth schedule, and 3) WiFi data schedule and the fixed schedule is used as a baseline to compare 

the rest of the schedules. The HVAC energy consumption was estimated for each schedule from 

the model are presented in Table 3. As expected, the fixed schedule energy consumption for HVAC 

is the highest of the three schedules modelled. The lowest energy consumption was noted by the 

ground truth schedule and the WiFi schedule was also closer to the ground truth schedule.  

The ground-truth schedule has only 3% lower energy consumption than WiFi schedule indicating 

slight difference and 57% lower than fixed schedule. The WiFi schedule’s energy consumption 

was 56% lower than the energy consumption of the fixed schedule. However, setting up people 

counting sensors for each classroom is expensive. In this case, WiFi routers function as people 
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counting sensors which does not affect HVAC stability as WiFi data is used for occupancy 

forecast only while regular temperature sensors maintain the temperature of the zone. 

Additionally, WiFi data provided with near identical results to the ground truth data highlighting 

that a simple client count data from the routers can result in significant HVAC energy savings.  

Table 3: Energy consumption data from energy models 

 

 

 

 

 

 

 

 

 

4. Conclusion 

It is well established that demand control HVAC operation can result in significant energy 

savings. Obtaining occupancy data has become a major concern for commercial buildings to 

operate HVAC. The expense of establishing dedicated infrastructure to obtain occupancy data 

may lead to building owners shying away from taking steps towards energy conservation. 

Therefore, this study proposed a WiFi based occupancy data collection with minimal 

computational efforts and limited privacy concerns. The WiFi data obtained from UNM’s IT 

department consists of client count with a timestamp for each day. This data consists of no 

identifiers such as MAC addresses of the users connected to the network and thus it minimizes 

the privacy concerns of the occupants. The data is received as a CSV (comma separated value) 

file from the IT department which requires minimal denoising and thus reducing the 

Schedule Type 

HVAC Energy 

Consumption 

[MJ/m2] 

Energy 

difference  

[MJ/m2] 

Percentage 

savings 

Fixed Schedule 591.70 - - 

Ground truth 

occupancy 
253.70 338.53 57% 

WiFi occupancy 260.93 330.77 56% 
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computational requirements. The WiFi data achieved highest correlation of .964 and R2 values 

for the next six weeks of data collected stayed between 0.86 to 0.96.   

The energy simulations using occupancy data from people counting sensor and WiFi routers 

resulted in over 50% lower HVAC energy consumptions compared to the fixed schedule. The 

sensor schedule resulted in energy consumption similar to that of the WiFi schedule with only 

3% variation. However, the costs associated in establishing the ground truth hinders its wide 

range application. This highlights that WiFi data can achieve HVAC energy savings that are 

similar to the savings achieved by actual occupancy data without any added infrastructure or 

costs. Additionally, the occupant behavior was not altered in anyway during the data collection 

for both sensor data and WiFi data thus capturing the natural movement of the occupants in Rm-

218. Therefore, the proposed methodology successfully captured the natural dynamics of the 

occupant movements with minimal expenses and computation. Furthermore, the methodology 

avoids the collection of any personal identifiers thereby reducing the privacy concerns of the 

occupants.  

Hence reliable and accurate occupant data can be obtained using simple client count which 

can also result in significant energy savings in HVAC operation. The 56% lower HVAC energy 

consumption using WiFi schedule answers the question asked in section 1. Saving more than half 

the energy consumed by a fixed schedule provides confidence to move the current study forward 

to the next phases of this study. However, these savings can only be observed in buildings which 

are occupied only during specific hours of the day such as schools, university buildings, public 

libraries, and office spaces with specific working hours. Buildings that are occupied throughout 
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the day may not result in reported savings. With preliminary results leading to solid energy 

savings, more data need to be analyzed to ensure the patterns follow over longer periods.  
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Abstract  

Research that predicts occupancy patterns in commercial buildings has gained in significance ever 

since the influence of occupants on building energy consumption became evident. Studies have 

employed a variety of sensory systems to collect the occupancy data and understand human 

behaviors throughout buildings. However, establishing a dedicated sensor network to collect 

occupancy data can become expensive for building owners. In this context, obtaining occupancy 

data from an existing WiFi network could eliminate the cost concerns. Data within the WiFi routers 

mailto:jagadeesh145@unm.edu
mailto:tcaduell@unm.edu
mailto:sbogus@unm
mailto:amammoli@epri.com


56 
 

provide sufficient information for accurate estimates of occupancy. To estimate occupancy levels, 

this work proposes to learn and recognize WiFi connection using an Adaptive Resonance Theory 

(ART) artificial neural network. A detailed understanding of occupancy patterns using the WiFi 

data is helpful for developing heating and cooling schedules that optimize HVAC energy 

consumption. For this study, occupancy data was collected over a 17-week semester at the 

University of New Mexico using existing WiFi routers located in a large lecture hall used by 

multiple classes. This data was used to learn patterns of repetition using the neural network. The 

results show that if the 24-hour occupancy profiles can be subdivided into smaller time segments 

defined by external schedules such as lecture start and end times or other constraints, significant 

patterns can be detected. A detailed understanding of these patterns can greatly facilitate 

occupancy load forecasting for effective building management (e.g., HVAC operation).  

1. Introduction 

The U.S. Energy Information Administration (EIA) projects global building energy consumption 

to increase by 1.3% per year for the next three decades (EIA & Hojjati, 2019). In the United States, 

commercial building energy consumption has increased over the past four decades and is projected 

to increase by 0.5% per year for the next three decades while residential consumption is projected 

to decrease by 0.1% per year during the similar time period (U.S. Energy Information Institution, 

2018a). Similarly, emerging economies like India, China, and other Southeast Asian and African 

countries are expected to increase their building energy consumption by 2% annually for the next 

three decades (EIA & Hojjati, 2019). China’s building energy consumption increased 1.7 times 

from 2001 to 2014 and it is over 20% of its current energy consumption (Huo et al., 2020). 

Similarly, India has doubled its building energy consumption since 2000 and it is over 33% of its 

total energy consumption (Basu et al. 2014). India’s energy consumption is expected to grow at a 
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rate of 2.7% until 2040, higher than any other region (Outlook, 2017). Additionally, India is 

expected to increase its commercial floor space by 13,000 million square feet and the US is 

expected to increase almost twice that amount by 2030 (Basu et al. 2014). Despite the slowdown 

since 2015, China is also expected to increase its commercial floor space in the next two decades 

(Jiang, Yan, Guo, & Hu, 2019).  

From these projections, it is evident that global commercial building energy demand will 

increase for the next three decades. Over the past decade, studies have established the critical role 

of occupancy in commercial building energy consumption (Chen et al. 2018). In this context, 

numerous frameworks were proposed to detect, estimate, and track occupants within buildings 

(Chen et al. 2018). To this extent, a basic framework to estimate occupancy from WiFi routers was 

proposed in (Simma et al. 2019). Preliminary energy simulations showed that significant HVAC 

energy savings can be achieved by using occupancy detected by the proposed framework (Simma 

et al. 2019). However, occupancy in commercial buildings such as airports, libraries, gymnasiums, 

schools, colleges, and universities tend to change over time. To establish the consistency of 

potential energy savings reported in (Simma et al. 2019), it is imperative to understand the variety 

of occupancy patterns and its impact on building energy consumption.  

In the past decade, studies proposed frameworks that utilize the data collected from various 

sensory networks within the buildings to measure the occupant patterns for building energy 

analysis. The occupant behavior models can be generalized into deterministic models that use 

diversity  in occupant behavior (Ding, Chen, Wei, & Yang, 2021), stochastic models such as 

Agent-based models and Markov chains (Gaetani et al. 2016) and machine learning models such 

as Support vector machine (SVM), K-nearest neighbors (kNN), and Artificial Neural Networks 

(ANN) (Wang et al. 2018). In general, the deterministic and stochastic models (e.g., Monte Carlo) 
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focused on predicting specific individual behaviors such as opening of windows, user preferences 

(e.g., lights, blinds, heaters, and fans), activities and clothing. While the machine learning models 

(e.g., ANN, kNN, SVM) focused on predicting occupancy profiles for single/multi office spaces 

with small occupancy volumes.  

In W. Wang et al. (2018) experiments of occupancy prediction, the ANN model reportedly 

had higher accuracy over the kNN and SVM models. Additionally, the accuracy and reliability of 

these models can be increased by using fused data from multiple sensor networks (e.g., WiFi probe 

data (MAC/IP address) fused with environmental sensors). On the other hand, the Hidden Markov 

model (HMM) is also widely used in occupancy predictions (Dong et al. 2010, Ding et al. 2021). 

Studies that implemented various forms of HMM reported occupancy prediction accuracy ranging 

from 73% to 98.4% (Ding et al., 2021). A summary of some of the occupant prediction studies 

along with the description of test space used and occupant volume is presented in Table 4.  

Table 4: Summary of Occupant Prediction Studies 

Source Methodology Focus Test Space Max Occupant volume 

(Ding et al., 

2021) 
K-means 

Occupancy 

state (in or 

out) 

Multiple 

university 

buildings 

Variable 

(Wang, et al. 

2018) 

ANN, SVM, 

kNN 

Occupancy 

number 
Office 18 

(B. Dong et al., 

2010) 
HMM 

Occupancy 

number 

Open-

plan 

Office 

4 

(Liao et al.2012) Agent-based Occupancy Office 
Single and multi-occupant 

scenarios 

(Parys, et al.2011) 
Markov-

Chain 
User Behavior Office - 

 

From Table 4 it is evident that these studies were conducted in small spaces (e.g., 

single/multiple office) with limited occupancy. These spaces do not represent the dynamic time 
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variant occupancy patterns of large commercial spaces such as airports, public libraries, shopping 

centers, university buildings and gymnasiums, among others. Large commercial spaces have 

significantly high variability in occupancy compared to single/multi office spaces. Additionally, 

these spaces might not be occupied by the same set of occupants (e.g., shoppers at shopping malls, 

and travelers at airports). Current studies focus on understanding occupant behavioral aspects (e.g., 

opening of windows, lighting, and activities) to reduce energy consumption. The strategies to 

reduce energy consumption in these studies are purely based on occupant behavior modification. 

However, in large commercial spaces with dynamic occupancy, individual behaviors patterns such 

as temperature preferences, opening windows, and lighting preferences among others might have 

little impact on the overall building energy consumption since individuals do not have the ability 

to modify settings for personal preference. A methodology to detect occupancy patterns in 

complex occupancy environments such as airports, libraries, universities, and public buildings is 

needed.  

From the occupancy data collected in previous studies (Simma et al. 2019, Simma et al. 

2019), it was evident that university lecture halls follow specific occupancy schedules for all 

weekdays. This implies that days with similar scheduled occupancy follow a specific pattern. 

Detecting these patterns can aid in occupancy load forecast studies and occupant comfort studies. 

To this extent, Fuzzy Adaptive Resonance Theory (ART) (Carpenter et al. 1991) was used to 

analyze occupancy data collected from WiFi routers for a large lecture hall at University of New 

Mexico. Fuzzy ART is a neural network approach that is capable of rapid learning and representing 

categories of patterns in data. Additionally, Fuzzy ART’s encoding of its inputs guarantees single 

pass convergence during the learning process. The lecture hall in this study has a capacity of 100 

occupants with occupancy varying between 30% to 90% of total capacity depending on the lecture 
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Data acquisition Data normalization Fuzzy ART 

clusters 
Output Processing 

& Pattern Analysis 

scheduled, thus, providing a complex test environment where occupancy has regularity over daily 

and weekly time scales. Therefore, it is hypothesized that Fuzzy ART detects pattern in the 

occupancy profiles from a complex environment and clusters them in categories.  

2. Methodology 

The methodology shown in Figure 13 is used to identify occupancy patterns in a large lecture hall 

using WiFi routers: 1) Data acquisition, 2) Data normalization, 3) Fuzzy ART clusters, 4) Output 

processing and analysis.  

 

 

 

2.1.Data Acquisition 

The occupancy data for the lecture hall was collected from three preexisting WiFi routers without 

any modifications or additional infrastructure. The number of unique users connected to the WiFi 

routers is regarded as the number of occupants present in the hall. Occupant identifiers such as 

MAC (Media Access Control) addresses and user IDs were filtered out of the data. Detailed 

analysis of reliability, accuracy and validation processes of the WiFi router data were presented in 

(Simma et al. 2019, Simma et al. 2019).  

Data for this study was collected in the Fall semester of 2019 in the Mechanical Engineering 

building at the University of New Mexico. The semester consisted of 17 weeks starting from 

August 19 through December 14. From these 17 weeks, only the weekdays are analyzed as the 

lecture hall remained unoccupied on the weekends. During the week, Mondays, Wednesdays, and 

Fridays shared similar class schedules with four lectures that took place throughout the day. 

Figure 13: Methodology (Objective-III) 
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Similarly, Tuesdays and Thursdays shared identical class schedules with five lectures on each day. 

Therefore, the collected data consisted of 17 occupancy profiles for each weekday. 

2.2.Data Normalization 

The data for each 24-hour weekday was divided into 200 seven-minute timesteps starting at 

midnight. The Fuzzy ART neural network requires real valued inputs in the [0,1] interval for stable 

learning. Therefore, all occupancy data were mapped to values between 0-1. The normalization 

process was done using the maximum occupancy of the lecture hall (i.e., 100) and was uniformly 

applied to all 17 weeks of data. A sample of normalized data for one week (Mon-Fri) is shown in 

Figure 14. The Fuzzy ART input are occupancy profile vectors with 200 points each.  

 

 

 

 

 

 

2.3.Fuzzy ART Clusters 

Figure 15 shows four consecutive 24-hour Monday occupancy profiles of the lecture hall. From 

the figure it is evident that even though the scheduled occupancy on Mondays is identical, the 

occupancy profiles show variations. Similarly, the rest of the Mondays in the dataset showed 

variations. Fuzzy ART is capable of clustering these profiles into categories and visually represent 

Figure 14: Normalized 5-day Week Occupancy Data 
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Figure 15: Monday occupancy profiles, a) Aug-19, b) Aug-26, c) Sep-02, d) Sep-09 

them by templates using a granularity control parameter called Vigilance (ρ) that ranges between 

0 and 1.  

 

 

 

 

 

 

 

 

Vigilance determines the tolerance of variability between occupancy profiles that go into each 

category. Whenever the variability in the input profiles exceed the set tolerance, a new category is 

created. As the ρ value increases the tolerance for variability decreases resulting in the creation of 

more categories. Therefore, at ρ value 1, maximum number of categories are learned, often equal 

to total samples in the set. 

2.4.Output Processing and Pattern Analysis 

Given a ρ values, the neural network algorithm clusters similar occupancy profiles represented by 

a fuzzy template. In this case, a 200x1 daily occupancy input vector (i.e., 24-hour profiles in Figure 

15) was presented to the ART algorithm. The algorithm then creates a fuzzy template category that 

consists of the minimum and maximum bounds for the profiles. The fuzzy template is essentially 
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the envelope of the member profiles of a category. In the case discussed here, a daily template (i.e., 

a 200-dimensional hyperbox) consists of 200 minimum and maximum values one for each timestep 

in the profile. 

Using the data collected, three different experiments were conducted: 1) Individual 

weekdays analyzed separately (e.g., 17 samples of 24-hour occupancy input vectors for Mondays 

are presented to Fuzzy ART), 2) The entire semester data (i.e., 85 samples of 200x1 24-hour 

occupancy input vectors collected over 17 weeks) analyzed, and 3) samples of time segments 

defined by lecture start and end time analyzed. A heatmap is created with templates generated. 

Each template is assigned a unique color to visualize pattern variation across the semester. 
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Figure 16: Four templates learned by Fuzzy ART from 17 Mondays input @ ρ = 0.92 

3. Results and Discussion  

The data collected was normalized as explained in the Methodology and presented to the Fuzzy 

ART algorithm in various combinations for the experiments listed in Section 2.3. As explained in 

the methodology, despite identical occupancy schedules for Mondays, Figure 15 shows slightly 

different patterns of occupancy on four consecutive Mondays. Therefore, for the first experiment, 

all 17 Monday profiles are presented to Fuzzy ART.   

3.1.Experiment-1 

Five Fuzzy ARTs are trained separately, one for each day of the week. As explained in Section 

2.4, the output consists of templates representing different patterns of occupancy profiles in the 

data. For example, the four templates learned for 17 Mondays for ρ value 0.92 are shown in Figure 

16. The four templates learned represent four different occupancy patterns observed among 17 

Monday profiles. 

 

 

 

 

 

 

 

   

Template-01 

Template-03 
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However, in Figure 16 template-02, the minimum and maximum curves are widely spread 

(e.g., between x-axis value 130-148 the minimum is 0 and the maximum is above 0.50). The 

occupancy predictions are generated using a central curve between the minimum and maximums 

of the templates. Widely separated bounds of the template indicated a large variation of occupancy 

around the central curve, implying that the template is too general to be used for prediction. 

Therefore, the templates learned need to have tighter boundaries (i.e., smaller range between 

minimum and maximum) for accurate predictions.  

Unlike template-01 in Figure 16, template-02 shows significant variability in the profiles 

that are clustered. These patterns are not ideal to be used in prediction studies as the predicted 

value might fall over a wide region between minimum and maximum. Additionally, template-04 

represents a ‘Point Template (PT)’, meaning only one profile is represented in this category 

making it a unique occupancy profile. To address the over generalized wide boundary issue, higher 

ρ values were used during the learning process. As explained in Section 2.3, the number of patterns 

detected will increase with ρ, making more templates that are less generalized (i.e., tighter bounds 

on the template enveloped, less variation). For example, ρ values 0.97 and 0.98 generated 9 and 

14 different templates respectively from 17 Monday input profiles. Out of the 14 categories learned 

at ρ value 0.98, 11 are point templates. This infers that the occupancy patterns in the input data are 

less repetitive.  

Similarly, the templates generated for rest of the weekdays at different ρ values revealed 

similar issues. To visualize the impact of vigilance over number of templates learned (i.e., patterns 

detected), a heatmap was created with templates learned for each weekday Neural Network (NN). 

Table 5 (i) and (ii) show the heatmap for five NNs at ρ values 0.92 and 0.95 where Table 5 (ii) 

shows a higher number of templates than in Table 5 (i). Further increment in ρ value resulted in 
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increased number of templates from each NN. In the case of Tuesdays and Thursdays, 15 and 13 

templates were learned respectively from 17 input profiles indicating that the input occupancy 

profiles have significant variability.  

Table 5: Heatmap of templates at ρ = 0.920 (i) and ρ = 0.950 (ii). Each color corresponds to 

a template. 

ρ = 0.95 
 Mon Tue Wed Thur Fri 

wk-1 t1_m t1_t t1_w t1_tr t1_f 

wk-2 t1_m t1_t t1_w t1_tr t1_f 

wk-3 t2_m t2_t t1_w t2_tr t2_f 

wk-4 t1_m t2_t t1_w t3_tr t1_f 

wk-5 t1_m t3_t t1_w t4_tr t2_f 

wk-6 t1_m t3_t t2_w t5_tr t3_f 

wk-7 t3_m t4_t t2_w t6_tr t1_f 

wk-8 t3_m t4_t t2_w t7_tr t4_f 

wk-9 t4_m t5_t t1_w t6_tr t1_f 

wk-10 t1_m t5_t t1_w t8_tr t1_f 

wk-11 t4_m t6_t t2_w t4_tr t3_f 

wk-12 t4_m t7_t t3_w t9_tr t4_f 

wk-13 t4_m t8_t t3_w t9_tr t3_f 

wk-14 t5_m t6_t t3_w t8_tr t5_f 

wk-15 t4_m t6_t t4_w t7_tr t4_f 

wk-16 t2_m t9_t t3_w t5_tr t4_f 

wk-17 t6_m t10_t t4_w t7_tr t6_f 

ρ = 0.92 
 Mon Tue Wed Thur Fri 

wk-1 t1_m t1_t t1_w t1tr t1_f 

wk-2 t1_m t1_t t1_w t1_tr t1_f 

wk-3 t1_m t1_t t1_w t1_tr t1_f 

wk-4 t2_m t1_t t1_w t2_tr t1_f 

wk-5 t2_m t1_t t1_w t2_tr t1_f 

wk-6 t2_m t2_t t1_w t3_tr t2_f 

wk-7 t2_m t2_t t1_w t3_tr t1_f 

wk-8 t2_m t2_t t1_w t4_tr t2_f 

wk-9 t2_m t2_t t1_w t2_tr t1_f 

wk-10 t2_m t3_t t1_w t5_tr t1_f 

wk-11 t2_m t3_t t1_w t5_tr t3_f 

wk-12 t2_m t4_t t1_w t5_tr t2_f 

wk-13 t2_m t5_t t1_w t6_tr t2_f 

wk-14 t3_m t3_t t1_w t6_tr t2_f 

wk-15 t2_m t3_t t2_w t4_tr t2_f 

wk-16 t3_m t5_t t1_w t4_tr t3_f 

wk-17 t4_m t6_t t2_w t4_tr t4_f 
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3.2.Experiment-2  

The lecture hall has a scheduled occupancy of registered students with ten different classes 

repeating on multiple weekdays as explained in Section 2.1. Therefore, the occupancy profiles 

should be similar on days with similar scheduled occupancy. For example, Mondays, Wednesdays, 

and Fridays share comparable scheduled occupancy. Tuesdays and Thursdays share identical 

scheduled occupancy. From Experiment-1, it is evident that individual weekdays (e.g., Templates 

from 17-Monday Fuzzy ART) showed little repetitiveness. Therefore, analyzing the whole data 

set could identify patterns from days that share similar scheduled occupancy. To that extent, in this 

experiment occupancy data from all weekdays (i.e., 17 weeks of 5-weekday data) were used in 

one Fuzzy ART. 

Two different input orders were tested in this experiment to ensure that the order of input 

does not affect the patterns learned. The first order started the input with 17-Mondays followed by 

17-Tuesdays, and so on and the second input order had week-1 data (Mon, Tue, Wed, and so on) 

followed by week-2, and so on up to week-17. The first learning order at ρ values 0.90 and 0.96 

generated 14 and 42 categories, respectively. Similarly, the second learning order at ρ values 0.90 

and 0.96 generated 15 and 41 categories, respectively. The heatmaps shown in Table 6 (i) and (ii) 

are for learning order one at ρ values 0.90 and 0.96. In both learning orders tested, the NN learned 

over 40 templates out of which at least 14 are point templates. These results indicate that the 

majority of the 24-hour profiles do not resonate with other profiles.   

 

  



68 
 

Table 6: Experiment-2 full dataset heatmaps for ρ = 0.90 (i) and ρ = 0.96 (ii) 

 

 

 

 

 

 

 

 

3.3.Experiment-3 

Figure 17 shows a template with a section of the occupancy profile with a wide interval. The 

reasons for such wide intervals during a specific part of the templates are attributed to unscheduled 

class cancellations, class relocation, and other interruptions. This is an indication that each class 

period has its own statistics. The two prior occupied segments in Figure 17 with tighter minimum 

and maximum intervals confirming this hypothesis. As explained earlier in Section 3.1, templates 

with tighter bounds are required for accurate prediction. Since parts of the 24-hour profiles have 

their own statistics, the full day profiles are subdivided into individual class segments (aka time-

segments). A time segment defines the interval of time in which the lecture hall is scheduled to be 

occupied. The lecture hall has ten different classes scheduled in a week with different occupancy 

volumes resulting in ten occupied time segments over the week.  

ρ = 0.90 
 Mon Tue Wed Thur Fri 

Wk-1 t1 t4 t2 t9 t8 

Wk-2 t1 t4 t1 t9 t3 

Wk-3 t1 t4 t8 t9 t7 

Wk-4 t1 t4 t2 t6 t12 

Wk-5 t1 t4 t2 t9 t12 

Wk-6 t1 t4 t8 t6 t12 

Wk-7 t1 t4 t8 t6 t12 

Wk-8 t2 t5 t8 t3 t3 

Wk-9 t1 t4 t8 t10 t12 

Wk-10 t1 t5 t2 t10 t1 

Wk-11 t2 t5 t2 t5 t12 

Wk-12 t2 t6 t2 t11 t13 

Wk-13 t1 t5 t8 t11 t12 

Wk-14 t2 t6 t8 t11 t12 

Wk-15 t2 t5 t8 t3 t3 

Wk-16 t2 t7 t8 t12 t8 

Wk-17 t3 t7 t3 t3 t14 

ρ = 0.96 
 Mon Tue Wed Thur Fri 

Wk-1 t1 t8 t6 t25 t23 

Wk-2 t1 t8 t6 t25 t36 

Wk-3 t2 t9 t19 t26 t36 

Wk-4 t1 t9 t6 t27 t37 

Wk-5 t3 t10 t6 t28 t37 

Wk-6 t3 t11 t19 t29 t38 

Wk-7 t3 t10 t20 t30 t37 

Wk-8 t4 t12 t20 t2 t2 

Wk-9 t4 t12 t21 t31 t37 

Wk-10 t1 t13 t21 t32 t38 

Wk-11 t5 t14 t21 t33 t39 

Wk-12 t5 t15 t3 t34 t40 

Wk-13 t5 t16 t22 t35 t40 

Wk-14 t6 t14 t22 t31 t40 

Wk-15 t5 t13 t23 t2 t2 

Wk-16 t2 t17 t22 t29 t41 

Wk-17 t7 t18 t24 t24 t42 
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Figure 17: 24-Hour templates with wide Min and Max interval 

 

 

 

 

 

 

 

In this experiment, individual time segments for each class were presented to Fuzzy ART. 

Additionally, the 17th week was removed from the analysis as it was designated as finals week 

having statistical variability independent of the previous 16 regular weeks. Templates learned for 

time segment 1 (i.e., class-01 scheduled on MWF from 10:00am – 10:50am) at ρ value 0.80 are 

shown in Figure 18. 
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Figure 18: Six templates learned from time segment - 01 (i.e., class-01) 

  

 

 

 

 

 

 

 

 

 

 

   

 

 

The templates learned for individual time segments have tighter bounds unlike the templates 

learned in previous experiments. The heatmap shown in Table 7 demonstrates that time intervals 

with similar occupancy schedule do follow a pattern. From the heatmap, Template-1 can be 

observed at least once on Mondays, Wednesdays, and Fridays. Additionally, the holiday/cancelled 
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class template (i.e., Template-2) can be visualized from the heatmap. This implies that the patterns 

detected are less generalized and can be reliably used in occupancy forecast studies.  

Table 7: Heatmap for time segment-01. Each color corresponds to a template. 

 

 

 

 

 

 

 

 

4. Conclusion 

As hypothesized, Fuzzy ART was able to detect different patterns in the occupancy profiles with 

similar scheduled occupancy. The experiments further demonstrated that 24-hour occupancy 

profiles may consists of segments that are statistically independent. If these 24-hour profiles can 

be subdivided into smaller time segments defined by external schedules or constraints, 

significant repeating occupancy patterns can be detected. Additionally, templates learned from 

the smaller time segments are defined by tighter bounds inferring less generality. Furthermore, 

the heatmaps developed in this study aided in visualization of pattern variations over time. The 

current methodology successfully demonstrates that significant occupancy patterns can be 

ρ = 0.80 
 Mon Wed Fri 

wk-1 t1 t1 t3 

wk-2 t1 t1 t3 

wk-3 t2 t3 t2 

wk-4 t1 t3 t3 

wk-5 t1 t3 t5 

wk-6 t1 t4 t4 

wk-7 t1 t1 t5 

wk-8 t1 t5 t2 

wk-9 t1 t4 t1 

wk-10 t3 t1 t3 

wk-11 t3 t1 t6 

wk-12 t1 t1 t2 

wk-13 t3 t3 t5 

wk-14 t3 t3 t1 

wk-15 t3 t2 t2 

wk-16 t3 t4 t2 
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learned from WiFi router data collected in complex occupancy environment. As commercial 

spaces tend to have rush hours with increased occupant volumes during specific part of the day, 

it is possible to isolate these into individual time segments for pattern detection. These patterns 

could aid studies that focus on occupancy load forecasts to optimize HVAC operation and 

improve occupant comfort. 
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Abstract  

The role of occupants in building energy management is well established. Occupant information 

from commercial buildings can function as a metric for the heating, ventilation, and air-

conditioning (HVAC ) loads. Predicting these loads ahead in time could aid in setting up HVAC 

protocols to minimize wasteful energy demand and improve occupant comfort. To this extent, 

several frameworks were proposed that use occupancy data collected from commercial office 

buildings and graduate student offices to predict occupancy. However, the occupancy data 

collected in these frameworks are controlled and have limited complexity compared to larger 
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commercial spaces such as airports, libraries, lecture halls, and shopping malls. Therefore, this 

paper presents the results of a study that demonstrates the feasibility of occupancy predictions 

from a relative dynamic environment using WiFi data and neural networks. The results 

demonstrate that reliable occupancy predictions are possible using intrinsic variables that have 

significant correlation with the occupancy profile of a time-segment. Similar conclusion scan be 

extended to extrinsic variables if they are significantly correlated to the occupancy.   

Keywords 

Occupancy Prediction, Neural Networks, HVAC, Commercial Buildings, Energy, LAPART 

1. Introduction 

Integration of technology into various industrial fields is taking place rapidly. The construction 

industry and built environment (residential and commercial buildings) have seen their share of 

technology integration in the name of modernization. The investment into modernization of 

infrastructure recommended in the ASCE Infrastructure Report card[1], led to the surge of 

renovations, sensor networks, smart devices to control indoor climate, and WiFi infrastructure in 

most commercial buildings. With buildings consuming over 20% of total delivered energy 

globally in 2018 [2], the need for energy efficiency through modernization is a priority. In 

addition, the global commercial building footprint is projected to increase along with the energy 

consumption per unit area for the next three decades [2][3][4]. In this context, the modernization 

of commercial buildings with various technologies provides opportunities to achieve an 

unrealized energy saving in commercial buildings.  

The growth in commercial buildings garnered researchers’ interest in their energy consumption 

and their energy-saving potential[5]. This raised the significance of building energy modeling to 
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identify energy efficient designs. However, the actual energy consumption revealed large 

discrepancies with modeled energy and the reasons for it were attributed to variable building 

occupancy [6]. Since this finding, commercial building occupancy became an integral part of 

energy management strategies. The dynamic nature of occupancy within buildings complicates 

the modeling process [7]. Modernization of buildings with technology aided studies to obtain 

occupant information from various sensory infrastructure (e.g., environmental sensors, dedicated 

occupancy sensors, RFID, Bluetooth devices, and WiFi networks) [8]. However, accuracy, 

complexity, costs associated with dedicated infrastructure and privacy concerns impeded the 

wide scale implementation of these frameworks.  

In commercial buildings, heating, ventilation, and air conditioning (HVAC) accounts for 40% of 

total energy consumption [9].  A demand-driven HVAC operational strategy can play a 

significant role in the energy efficiency of commercial buildings [7]. From the results in [10], it 

is evident that existing WiFi routers can be a source of reliable occupancy estimation without 

added infrastructure and complex computational resources while preserving occupants’ privacy. 

Additionally, the occupancy-based HVAC schedules and the corresponding energy consumption 

results published in [11] emphasize that demand-driven HVAC operation can significantly 

reduce building energy consumption. However, knowing the occupancy profiles of a building in 

advance can improve energy efficiency furthermore by reducing unnecessary energy demands of 

the HVAC systems [5],[9]. Additionally, the knowledge of occupant load in advance can be used 

to pre-condition (heat/cool) the space which can improve occupant thermal comfort levels.  

To acquire knowledge of occupancy, prediction frameworks were proposed that frequently 

employed Markov chains, support vector machine, k-nearest neighbor (kNN), and Artificial 

Neural Networks (ANN) [12]. Using the data collected from a variety of sensory infrastructure 
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within commercial spaces such as commercial offices, university offices, single, and multi-

person offices, occupancy predictions were made at different levels. Some frameworks predicted 

the state of the occupant (‘in’ or ‘out’) [13], others predicted the number of occupants by 

detecting their state [14],[15], and the rest focused on behavioral aspects (choice of lighting, 

windows, and blinds) of occupants [16], [17]. While these frameworks provide insight into 

predicting fixed number of “long-term” occupants in office spaces, occupancy prediction in a 

dynamic environment (e.g., airports, shopping malls, gymnasiums) remains a challenge. This 

paper presents the results of a study that demonstrates the feasibility of making short term 

occupancy prediction in a relatively dynamic environment using WiFi data and neural networks.  

2. Literature 

Occupant behavior is considered one of the most complex processes taking place within 

buildings [18]. The stochastic nature of building occupants complicates the process of indoor 

microclimate control (heating and cooling) and energy conservation strategies. Researchers 

attempted to model and predict this complex behavior of occupants to achieve various energy 

efficiency goals over the past decade. Studies used occupants’ behavioral aspects such as 

windows, blinds, and lighting choices to improve energy efficiency [16]. The comprehensive 

review conducted by [17] highlights that building occupants tend to override any automated 

window shading, and lighting protocols to suit their personal preference. However, generalizing 

such behavior of occupants can be tedious and may not always aid in realizing the maximum 

possible energy savings in commercial buildings. More importantly, in commercial spaces such 

as airports and university buildings, occupants may not have control over lighting and shading.  



80 
 

Discrete methods as in case of [15] used ‘occupancy matrix’ to define spatial distribution of 

occupancy in an office space. The occupancy matrix is formed by dividing a 2-D space into 

multiple zones based on the thermal zones and presence of an occupant in each zone. A binary 

system of zeros and ones was used to represent occupancy and non-occupancy zones. Occupancy 

data from the test space was obtained using dedicated iBeacon infrastructure. This occupancy 

data coupled with the thermal zone information defined the dynamic spatial occupancy 

distribution. Using the spatial occupancy distribution (i.e., occupancy matrix) cooling 

requirements for unoccupied zones was reduced. However, office spaces are typically occupied 

by same set of occupants during the occupied state and this approach may not be applicable for 

larger commercial spaces with new occupants every day.  

Environmental sensors such as CO2 sensors use the correlation between the standard quantity 

(e.g., CO2/person) per person to estimate occupancy. In [19], occupancy data from CO2 sensors 

were used with hidden Markov model algorithm to predict occupancy. This system utilizes the 

correlation between occupants and CO2 concentrations to predict occupancy. Using this 

approach, the prediction made for an office space achieved an accuracy ranging between 85% - 

93%. While the occupancy inferred is non-intrusive in nature, environmental sensors such as 

CO2 sensors can be unreliable in occupancy estimation due to the complexity of CO2 

concentrations which could results in inaccurate predictions [5]. Additionally, the results are 

from tests performed for a maximum of five occupants and the prediction accuracy may differ in 

dynamic environment with higher number of occupants. 

In a different approach, WiFi probe data (i.e., media access control (MAC) address) was used in 

tandem with Markov based feedback recurrent neural network algorithm to predict occupancy 

[5]. A graduate student office with 25 ‘long-term’ residents was used to conduct various 
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validation experiments. Each MAC address was assigned to a single occupant and that 

information was stored as memory. Using the neural network approach, the state of each MAC 

address (“in” or “out”) was predicted and thereby estimate the total occupancy of the office 

space. Contingent on allowed tolerances, this approached reached accuracy ranging between 

80% to 94%. However, in a dynamic occupancy environment (e.g., airports and shopping malls) 

a MAC address assignment approach is not possible as occupants of such commercial spaces 

cannot be classified as ‘long-term’ residents. Additionally, MAC addresses contain occupant 

identifiers and may raise occupant privacy concerns.  

A separate set of studies proposed frameworks for using occupancy data obtained from different 

sources such as RFID tags [20], cameras [8], and smart meters [21], among others to improve 

energy efficiency of commercial buildings. In summary, these frameworks achieve their goals 

with limitations such as privacy concerns, added infrastructure expenses, and limited 

applicability, among others. These limitations may hinder large scale implementation of these 

frameworks and when implemented may not realize the full potential in energy savings.  

Occupant comfort level data highlight the need for HVAC energy conserving strategies to 

incorporate occupant comfort parameters [22]. The heat dissipation of occupants inside buildings 

contribute towards the cooling load in the cooling dominated months and  [23][15]. This 

occupant heat dissipation effect has a profound impact on heating loads in heating dominated 

months [23]. Additionally, the metabolic rates of occupants vary depending on the type of 

commercial building. The metabolic rates of occupants in gymnasiums, stores, and terminal 

buildings are reported to be higher at 1.6met (metabolic equivalent unit) followed by schools at 

1.2met compared to other types of commercial buildings [24]. The higher metabolic rates induce 

higher heat loss of occupants due to their homotherm nature [25]. The metabolic rates and the 



82 
 

amount of heat dissipated by occupants in both summer and winter months are identical [24], 

highlighting that occupants’ thermal interaction in all types of weathers remain constant. 

Furthermore, the human body radiates different levels of heat throughout the day, implying that 

the occupants’ thermal interactions within buildings are dynamic throughout the day [26]. 

Moreover, dynamic variation of indoor spatial temperature that account for thermo-physiological 

parameters such as occupants’ metabolic rate and sweat production can positively impact their 

comfort and health [25].  

In summary, a constant heating or cooling setpoint temperatures may not improve occupants’ 

thermal comforts inside buildings. A new setpoint that is a function of number of occupants in a 

space may contribute towards improving occupant comfort inside buildings. Additionally, 

knowing the occupant count for a space ahead in time can allow for pre-conditioning the space to 

that specific number of people can result in increased occupant comfort and avoid HVAC 

wasteful demand. With emphasis on the need for such HVAC strategies [27], [28], an occupancy 

prediction approach that addresses the identified limitations is essential.  

To this extent, predicting occupancy from a dynamic environment such as airports, public 

libraries, institutional buildings, and gymnasiums among others can be used to create HVAC 

operational schedules to improve occupants’ thermal comfort and reduce energy consumption. In 

this study, using patterns detected in WiFi measured occupancy [29] and the LAPART neural 

network [30], occupancy predictions were made for a university lecture hall that has relatively  

complex occupancy patterns. 
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3. Methodology 

The methodology for this study consists of three parts: 1) Occupancy pattern detection: Using a 

Fuzzy ART Neural Network to learn patterns in WiFi measured occupancy data, 2) Occupancy 

prediction: Using a LAPART neural network to make short term occupancy profile predictions, 

and 3) Energy Calculations: HVAC energy consumption was estimated using predicted 

occupancy profiles. Figure 19 graphically illustrates the components of the methodology.  

 

 

 

 

 

 

 

 

 

3.1.Part-I: Occupancy pattern detection 

Sixteen weeks of occupancy data were collected from existing WiFi routers in a lecture hall at 

University of New Mexico between August 18, 2019, and December 07, 2019. The structure of 

patterns in the WiFi measured occupancy need to be studied to learn the statistical variability in 

the data. This allows for learning rules by which occupancy profiles represented by input 

Figure 19: Methodology 



84 
 

 

Hyperbox 

iii) High ρ iv) Higher ρ 

i) 2D data 

Point template: Category with 

only one sample 

ii) ρ = 0 

patterns can be classified into various categories [31]. Patterns in the occupancy data were 

learned using the Fuzzy ART Neural Network [32]. This self-organizing neural network 

segments data into unlabeled categories, the granularity (i.e., size of the hyperbox) of which is 

determined by a single vigilance parameter, ρ. The effect of ρ on number of categories learned is 

visualized in Figure 20.  

 

 

 

 

 

 

 

 

 

In this study, each category represents a collection of ‘similar’ occupancy profiles. Fuzzy ART 

executes an unsupervised learning process and for every input profile (examples shown in 

Figure 21, i) and ii), the neural network searches for a category that it matches [33]. Figure 21. 

Plots are in a 9D space where, the timestep axis represents the orthogonal axes of 2D space plots 

shown in figure 2. The learned categories are visually represented by a fuzzy template shown in 

Figure 21, (iii) (i.e., n-dimensional hyperbox) and the template selected by the neural network 

that best matches the input profiles is referred to as the matching template. The fuzzy templates 

Figure 20: Fuzzy ART, effect of ρ on hyperboxes. i) synthetic 2D data, ii) hyperbox 

at ρ = 0, iii) hyperboxes at a high ρ (e.g., 0.8), and iv) hyperboxes at a higher ρ value 

(e.g., 0.95) 
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(ii)

are defined by the minimum and maximum of member profiles. Essentially, each fuzzy template 

is an envelope of member profiles.  

Various experiments were performed to learn patterns in the occupancy data and the results were 

presented in [34]. The results in [34] emphasize that significant patterns can be learned from 

WiFi measured occupancy data by dividing a 24-hour profile into smaller time-segments bound 

by external schedules. The time-segments in this study were defined by the duration of lectures 

scheduled. The scheduled lectures repeat twice or thrice in a week. For examples, lectures that 

are scheduled for 50 minutes repeat three times in a week and lectures that are scheduled for 75 

minutes repeat twice in a week. The occupancy profiles for 50-minute and 75-minute time-

segments are represented by a 9-D and 12-D vectors, respectively. Ten different time-segments 

were identified throughout the data collected. Occupancy profiles of individual time-segments 

are clustered into various categories by the Fuzzy ART neural network algorithm. The hyperbox 

learned to enclose the data points of a category will be referred to as a template for the remainder 

of this paper.  
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Figure 21: i) sample input profile-1, ii) sample input profile-2, iii) A sample fuzzy template 

representing category of similar profiles.  

 

 

 

 

 

 

From the templates learned for each time-segment, the one that occurred most frequently was 

identified. The fuzzy template representing this frequently repeating template is termed as Most 

Likely Template (MLT). The time-segments identified in the data take place on multiple days. 

For example, time-segment #1 is a 50-minute time-segment that was scheduled on Mondays, 

Wednesdays, and Fridays from 10:00 am to 10:50am. The MLT for a time-segment can be 

different on each scheduled day (i.e., for time-segment #1, the MLT on Mondays and 

Wednesdays is Template #1 but for Fridays, it is Template #2). Similarly, the MLTs for each 

time-segment were identified on all scheduled days. Additionally, each time-segment has a 

template with zero occupancy profiles (i.e., occupancy remained zero throughout the time-

segment) and it is termed as Holiday Template (HT). HT profiles represent holidays, lecture 

cancellations, and relocations, among others. 

Furthermore, HVAC energy consumption for a 5-day week was estimated for four different 

occupancy schedules: 1) MLT Schedule: a composite profile for each day of the week was 

created by concatenating the MLT average profiles (i.e., average of measured member 

occupancy profiles) for all the time-segments in a day, 2) WiFi Schedule: occupancy profile with 
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actual WiFi measured samples for each time-segment, 3) Registered Schedule: occupancy profile 

with registered number of students for each lecture (i.e., time-segments) scheduled in a day, and 

4) Fixed Schedule: a fixed schedule that assumes maximum occupancy during working hours 

(from the beginning of the first time-segment to the end of last time-segment in a day). These 

energy simulations were performed in EnergyPlus using a dual-duct energy model. Detailed 

steps for dual-duct energy simulation setup are explained in Section 3.3. The HVAC energy 

consumption results can corroborate the potential use of MLTs as expected occupancy for a 

time-segment. 

3.2. Part-II: Occupancy prediction 

The MLTs identified for each time-segment may be used as expected occupancy. As explained 

in section 3.1, multiple templates were learned for each time-segment as shown in Figure 22. 

Each profile shown in Figure 22 gives an example of the average occupancy profiles (i.e., 

average of measured member occupancy profiles) of the six templates learned for time-segment 

#4. Out of the six occupancy profiles shown in Figure 22, Template #1 (shown in blue dashed 

line) was identified as the time-segment’s MLT, and Template #2 (shown in red) was identified 

as the HT. Hypothetically, when MLT profile is used as expected occupancy for time-segment 

#4 and the actual occupancy matches the HT profile, the occupancy is overestimated.  
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Additionally, for time-segment #1, the MLT on Fridays is Template #2 as explained in section 

3.1. However, Template #2 is also the HT for time-segment #1. Therefore, when Template #2 

profile is used as expected occupancy, the occupancy maybe underestimated relative to the actual 

occupancy. Figure 23 shows the MLT and HT profiles along with the rest of the learned profiles 

for time-segment#1.  
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Therefore, operating HVAC systems based on a fixed MLT profile as expected occupancy may 

result in wasteful HVAC demand when occupancy is overestimated and occupants’ discomfort 

when occupancy is underestimated. A mechanism is needed to able to detect a better suited 

template for a time-segment when MLT is incorrect. Intrinsic and extrinsic parameters available 

can be used to detect a more suited template profile. Some of the extrinsic variables that can be 

used are day of week, time of the day, occupancy schedules, and other parameters that are unique 

to a specific type of commercial building. Extrinsic variables such as day of the week and 

occupancy schedules were used to select the MLT profiles for a time-segment. Intrinsic variables 

may hold sufficient information to be able to find a better matching template. For this study, the 

first two samples of real-time WiFi measured occupancy at the start of each time-segment may 

be used to find a better matching template for the reminder of the time-segment. Therefore, the 

feasibility of using the first two real-time WiFi measured occupancy need to be verified. To this 
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extent, using the first two time-samples of a time-segment, the 2D Euclidean distance between 

the first two points of its resonant template and the MLT were compared with the Euclidean 

distance of the full resonant template with the MLT distance. If these distances are highly 

correlated then, it is possible that the initial time-segment will be predictive of the full-time 

segment. The data used to test the correlations were calculated using Equation 1.  

Equation 1: Equation to calculate the multidimensional distance. For a 2-D point (n = 2); 9-

D point (n = 9); 12-D point (n = 12); xi = n-dimensional MLT profile; ai = n-dimensional 

template profile 

Multidimension distance per template w.r.t MLT = √∑ (𝑥𝑖 − 𝑎�̇�)2
𝑛
𝑖=1  

For 50-min time-segments, distances in 2D and 9D spaces were computed and for 75-min time-

segments, distances in 2D and 12D spaces were computed. A total of n-1 pairs of distances were 

calculated for each time-segment where n is the number of templates learned for that time-

segment. The calculated points were plotted against each other and the R2 values were 

calculated. The R2 value represents the part of the variance of a dependent variable (i.e., full 

template) explained by an independent variable (i.e., the first two template samples). Here a high 

R2 value implies the possibility of distinguishing the templates using the first two template time-

samples. Therefore, a high correlation between the distances calculated in different spaces lends 

evidence that it may be possible to learn to associate the 2D points with 9D points. Based on this 

hypothesis, using Neural Networks and the first two measured occupancy-samples of a time-

segment a matching template was predicted for that time-segment. The template predictions were 

made using Laterally Primed Adaptive Resonance Theory (LAPART) neural network [30]. 
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LAPART adopts a neural inferencing mechanism to make predictions from learned patterns [30], 

[35]. LAPART architecture consist of two pattern classifier subnetworks (i.e., Fuzzy ART 

subnetworks referred to as the A-side and B-side) laterally connected with adaptive connections. 

The graphical illustration in Figure 24 shows LAPART architecture with Fuzzy ART 

subnetworks [33]. This architecture implements a dual system of inference rules. Recognizing a 

member of a familiar category by one subnetwork prompts a rule which infers that a member of 

a familiar category will be recognized by the other subnetwork [30]. The second rule enables the 

other network to reject the prediction inconsistent with the input data. Figure 25 illustrates the 

prediction rule in LAPART system. For example, if an input sample x’ is found in ‘category-a’, 

then the corresponding value y’ should be in ‘category-b’ if the inference is correct. The 

granularity (i.e., size of the hyperbox) of these categories in subnetwork-A and subnetwork-B are 

determined by vigilance parameters ρa and ρb respectively.  

 

 

 

 

 

 

 

 

 

Figure 24: Graphical illustration of LAPART architecture 
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In this study, the training set for LAPART consists of N pairs of input patterns (i.e., N= 3x16 for 

lectures scheduled thrice a week and N=2x16 for lectures scheduled twice a week).  The first 

member of the pair is for the A side input (from the 2D space) while the second member of the 

pair is for the B-side input (from the 9D space as shown in Table 8. The A-side input patterns 

consists of the first two measured occupancy samples of time-segments with dimensionality two 

and the B-side input patterns consists of the corresponding matching template profiles with 

dimensionality nine or twelve. The testing set has similar structure and dimensionality as the 

training set shown in Table 8. Here, LAPART system uses the A-side input patterns and the 

relations inferred during training to predict B-side template profiles. The B-side training set it 

then used to verify the predictions. The sample input data shown in Table 8 corresponds to time-

segment-1 scheduled from 10:00 am to 10:50am on Mondays, Wednesdays, and Fridays. 

Therefore, it has 48 patterns and Table 8 shows the first 16 samples (i.e., 16 Mondays). Similar 

input datasets were formed for all the time-segments. 

Figure 25: Associations between stimuli in LAPART 
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Table 8: Sample of LAPART Training Input 

 A-Side Input  Template # 

for B-side 

inputs 

B-side Input  

 A - 1 A - 2 B - 1 B -2 B -3 B -4 B -5 B -6 B -7 B -8 B -9 

1 0.28 0.36 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

2 0.19 0.33 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

3 0.01 0.00 t2 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.06 

4 0.19 0.30 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

5 0.27 0.34 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

6 0.06 0.26 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

7 0.16 0.31 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

8 0.12 0.29 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

9 0.34 0.34 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

10 0.09 0.41 t3 0.11 0.3 0.41 0.43 0.45 0.45 0.46 0.46 0.25 

11 0.03 0.25 t3 0.11 0.3 0.41 0.43 0.45 0.45 0.46 0.46 0.25 

12 0.25 0.25 t1 0.21 0.31 0.43 0.45 0.47 0.47 0.47 0.46 0.21 

13 0.02 0.27 t3 0.11 0.3 0.41 0.43 0.45 0.45 0.46 0.46 0.25 

14 0.03 0.25 t3 0.11 0.3 0.41 0.43 0.45 0.45 0.46 0.46 0.25 

15 0.19 0.19 t3 0.11 0.3 0.41 0.43 0.45 0.45 0.46 0.46 0.25 

16 0.06 0.22 t3 0.11 0.3 0.41 0.43 0.45 0.45 0.46 0.46 0.25 

Since feasibility of occupancy profile prediction is being tested in this study, all the A-side 

samples from training were used in testing. LAPART system predicts a matching midpoint 

(average of template upper bound and lower bound) profile for every A-side input. These results 

provide evidence that occupancy profiles of a time-segment can statistically be distinguished by 

the first two measured occupancy samples of that time-segment.  

3.3.Part-III: HVAC energy estimation 

A comprehensive HVAC energy analysis was performed using the predicted occupancy (i.e., 

midpoint template profiles) for a 14-week period starting from August 18, 2019, to November 

24, 2019. The energy simulations were performed in EnergyPlus, version 9.0. The simulations 

were performed on four different occupancy schedules: 1) fixed schedule, 2) registered schedule, 

3) WiFi schedule, and 4) predicted schedule. The fixed/static schedule assumes maximum 
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occupancy for the lecture hall and the HVAC system runs from the beginning of the first time-

segment in the day to the end of last time-segment in the day. The registered schedule runs the 

HVAC systems only during the time-segments (i.e., scheduled lectures) assuming registered 

students per lecture as its occupancy. The WiFi schedule runs the HVAC systems using the 

actual measured occupancy during the time-segments. Additionally, the occupancy measured 

outside the durations of time-segments were omitted from the WiFi schedule. The predicted 

schedule runs the HVAC systems using predicted composite profiles (i.e., concatenating the 

midpoint profiles predicted for individual time-segments in Section 3.2). 

The lecture hall is served by a dual-duct HVAC unit and hence, a dual-duct model was built in 

EnergyPlus for all the energy consumption estimates in this study. The dual-duct model was 

designed using the instructions provided in EnergyPlus ‘Input Output Reference’. The modules 

that are essential for a dual-duct model as listed in EnergyPlus – Input Output Reference manual 

are: 1) HVAC Template: Thermostat, 2) HVAC Template Zone: Dual Duct, 3) HVAC Template: 

Plant – Chilled water loop, 4) HVAC Template: Plant - Chiller, 5) HVAC Template Plant: 

Tower, 6) HVAC Template: Plant Hot water loop, and 7) HVAC Template: Plant – Boiler. 

Figure 26 shows the list of modules created for the dual-duct HVAC system in EnergyPlus 

model. 
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Figure 26: EnergyPlus Dual-Duct model’s module list 

 

 

 

 

 

 

 

In addition to the list of modules shown in Figure 26, the occupancy schedules were added to 

‘Schedule Compact’ module. Additionally, thermostat schedules for setpoint temperature were 

created for corresponding occupancy schedules. These EnergyPlus schedules were built for a 14-

week period starting from August 18, 2019, to November 24, 2019. The limitations within 

EnergyPlus Schedule Compact module restricted the entries for occupancy schedule to a 14-

week period. However, a 14-week period should be adequate enough to draw conclusions on 

energy consumption for different occupancy schedules.  
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4. Results 

The HVAC energy consumption values for four different occupancy conditions listed in Section 

3.1 are provided in Table 9. 

 

Table 9: HVAC energy consumption for a 5-day week 

Occupancy Type Energy Consumed [GJ] 

Fixed Schedule 2.44 

Registered Schedule 1.28 

WiFi Schedule 1.04 

MLT- Schedule 0.84 

 

The pairs of multi-dimensional points (i.e., 2-D, and 9-D or 12-D) calculated per template w.r.t 

the MLT of each time-segment were plotted as shown in Figure 27. The example correlation 

plots provided in Figure 27 are for time-segments #1, #2, #3, and #4 where time-segments #1, 

#2, and #3 are 2-D vs 9-D plots and time-segment #4 is a 2-D vs 12-D plot. The r2 values for 

each time-segment ranged between 0.76 to 0.98. 

 

 

 

 

 

R² = 0.94

0.000

0.400

0.800

1.200

1.600

0.000 0.200 0.400 0.600

9
D

2D

2D vs 9D
R² = 0.76

0.000

0.400

0.800

1.200

1.600

0.000 0.200 0.400 0.600

9
D

2D

2D vs 9D



97 
 

R² = 0.94

0.000

0.400

0.800

1.200

1.600

0.000 0.200 0.400 0.600

9
D

2D

2D vs 9D
R² = 0.98

0.000

0.400

0.800

1.200

1.600

0.000 0.200 0.400 0.600

1
2

D

2D

2D vs 12D

 

 

 

 

 

Figure 27: Correlation between A-side and B-side inputs for different time-segments. Top 

row: time-segment #1 & #2, bottom row: time-segment #3 & #4. 

Figure 28 shows LAPART predicted midpoint occupancy profile (shown in green) at ρa = 0.90 

and ρb = 0.90. Figure 28 includes the A-side input of two measured occupancy samples (shown 

in black), and the corresponding B-side input of average template profile (shown in red) for time-

segment #1. The R2 value for predicted midpoint profile and input average template profile in 

Figure 28 is 0.955. Figure 29 shows four predicted midpoint occupancy profiles that matched 

with the 48 A-side inputs for time-segment #1 at ρa = 0.90 and ρb = 0.90. Similarly, midpoint 

profiles for the given A-side inputs were predicted for all the ten time-segments at ρa = 0.90 and 

ρb = 0.90. Table 10 provides the training error for LAPART algorithm estimated for all time-

segments.  
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Figure 28: LAPART predicted occupancy profile for a given A-side input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: LAPART predicted midpoint template profiles for time-segment #1 at A-ρ = 

0.90 and B-ρ = 0.90 
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Table 10: Training Error for LAPART 

Training Error 

Time-Segment Error Fraction 

Time-Segment -1 0.063 

Time-Segment -2 0.021 

Time-Segment -3 0.000 

Time-Segment -4 0.000 

Time-Segment -5 0.000 

Time-Segment -6 0.000 

Time-Segment -7 0.000 

Time-Segment -8 0.000 

Time-Segment -9 0.000 

Time-Segment -10 0.000 

 

Figure 30 shows an example 24hr. composite profile formed for Monday (week-1) using the 

predicted midpoint profiles for time-segments 1 to 4. Similar composite profiles were created for 

each weekday for all 16-weeks. These composite profiles were used as occupancy for the 

‘predicted schedule’ in EnergyPlus HVAC model as explained in Section 3.3. EnergyPlus 

simulations were performed for four different occupancy schedules listed in Section 3.3. The 

energy consumption was estimated for a 14-week period from August 18, 2019, to November 24, 

2019. The 14-week energy consumption for all the four occupancy schedules listed in Section 

3.3 are presented in Table 11.  
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Figure 30: A 24hr composite profile created from predicted midpoint profiles for time-

segments 1 to 4. 

 

 

 

 

 

  

  

Table 11: HVAC energy consumption for a 14-week period 

Occupancy Schedule Type 

Total 

Energy 

[GJ] 

Fixed occupancy 43.92 

Registered occupancy 18.30 

WiFi occupancy 14.51 

Predicted occupancy 14.27 

5. Discussion 

This section discusses the implications, potential benefits, and limitations of this study. The 

proposed methodology has the following implications.  

The current occupancy prediction strategies use complex occupancy data and unique IDs to 

make predictions. Though these methods are successful, their applicability is limited to buildings 

that have occupants who can be categorized as ‘long-term’ occupants. In this study, the patterns 

learned from WiFi measured occupancy data provide an alternative way to forecast occupancy in 
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buildings with occupants that cannot be classified as ‘long-term’ occupants. From the patterns 

learned, the MLT pattern identified for each time-segment can serve as an occupancy forecast for 

that time-segment. The HVAC energy consumption results for different occupancy schedules 

presented in Table 9 justify the use of MLT patterns as a baseline for expected occupancy. As 

explained in Section 3.2, MLTs may not always match with the actual occupancy of a time-

segment.  

To address this, a variable that has sufficient information to predict a better matching template is 

needed. The variable examined in this study was the pair of time-samples at the beginning of 

each time-segment. The correlation analysis and the results presented in Figure 27 suggests that 

the first two measured occupancy samples of a time-segment can possibly be used to predict a 

better matching template for that time-segment. Based on this premise, occupancy template 

predictions were made for a time-segment using the first two measured occupancy samples. The 

predicted profiles are shown in Figure 29 and it can be observed that the first two measured 

samples contain sufficient information to predict templates with statistical variability. For 

example, Template -2 and Template-4 illustrate statistical variability compared to Template-1 

and Template-3. A visual comparison between the predicted profile and the input profiles shown 

in Figure 28 highlight the prediction accuracy. Additionally, the low training error presented in 

Table 10 further strengthens the prediction accuracy.  

The modeled HVAC energy consumption results are provided in Table 11. As expected, the 14-

week energy consumption for the fixed occupancy schedule is the highest. The energy 

consumption for registered occupancy suggests that when other source of occupancy data is 

available, a registered schedule can be used to realize significant energy reduction compared to a 

fixed occupancy schedule. Furthermore, the energy consumption of WiFi occupancy highlights 
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that the actual occupancy is typically lower than registered occupancy emphasizing the 

importance of collecting occupancy data. The energy consumption of Predicted Occupancy is 

within 2% of WiFi occupancy’s energy consumption that further validates the prediction 

occupancy.  

The proposed methodology for occupancy forecast uses existing infrastructure that eliminates 

additional investments and occupant privacy concerns. More importantly, this approach can be 

implemented in commercial buildings such as shopping centers, airports, and gymnasiums where 

the occupants cannot be designated as ‘long-term’ occupants. The MLT patterns identified from 

the set of patterns learned for a time-segment can be used as a baseline for occupancy forecast of 

that time-segment. Additionally, the results lend evidence to the possibility of using variables 

that are significantly correlated to the occupancy, a better matching template can be predicted for 

a time-segment.  

Knowing the occupancy count can be used to precondition a space/zone ahead in time to increase 

occupant thermal comfort during a time-segment. As the impact of occupants’ metabolic rates 

and the associated heat loss is evident in the literature, the temperature setpoints can be made a 

function of expected number of occupants. This temperature setpoint schema accounts for the 

total heat loss from n number of occupants and estimates a new setpoint Tn that is lower/higher 

(i.e., lower for summer months and higher for winter months) than the standard temperature 

setpoints. For example, different temperature setpoints can be employed for different occupant 

counts. This particular practice not only ensures the occupant thermal comfort but also reduces 

the HVAC demand (in case of low occupancy).  Additionally, as the metabolic rates vary 

throughout the day, different setpoint can be used for different time-segments with similar 

occupancy. For examples, Tn1 can be the setpoint for time-segment#1 with 40 occupants that 
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takes place at 9am and Tn4 can be the setpoint for time-segment#4 with 40 occupants that takes 

place at 1:00pm. This temperature setpoint schema can positively impact occupants’ thermal 

comfort and their health. 

The preconditioning can be advantageous in a scenario where the time-lag to bring the space 

temperature to the setpoint is high. If the time-lag is smaller, real-time occupant information is 

sufficient to regulate the temperature of the space.  

6. Summary and Conclusion 

The feasibility test conducted in this study highlights that the intrinsic variables with significant 

correlation with occupancy can be used as a predictor for occupancy pattern (via learned 

templates) of a time-segment. This conclusion can be extended to extrinsic variables that 

significantly impact occupancy of a time-segment.  

In summary, significant patterns can be learned from WiFi data that does not contain any form of 

occupant identifiers. Occupancy predictions are possible from the learned patterns for a relative 

dynamic environment such as airports, libraries, institutional buildings, and shopping malls. As 

occupants in such commercial spaces cannot be classified as ‘long-term’ residents, the current 

framework provides a novel occupancy prediction strategy. Additionally, the current approach of 

using the first two measured samples as predictors for the matching occupancy profile can aid in 

minimizing wasteful HVAC demand and avoiding occupant thermal discomfort. In future, the 

current methodology and lessons learned can be implemented for different types of commercial 

buildings that do not have a registered occupancy and external schedule (e.g., shopping malls, 

airports, and gymnasiums). External variables such as deals offered at a warehouse (e.g., 

Costco), flights scheduled at an airport, weather related flight schedule changes/cancellations, 
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and gymnasium memberships can have significant correlation with the occupancy. These 

variables can be examined to find their potential in forecasting occupancy count. Furthermore, a 

detailed occupancy comfort study can be conducted to quantify the impact of the proposed 

variable temperature setpoint schema.   
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Chapter-6: Conclusion 

6.1. Overall Conclusion 

The results from the experiments and analyses conducted in this research contribute to a better 

understanding of occupancy structure, patterns, and the possibility of occupancy prediction in 

commercial buildings. Chapter 2 of this dissertation established that reliable occupancy data can 

be obtained from WiFi networks that are free from all occupant identifiers. The device count 

obtained from pre-existing WiFi routers consistently measured the actual occupancy (i.e., ground 

truth obtained using people counting sensors) of a lecture hall for a 16-week period. Typically, 

the device count data is passively collected by WiFi routers and does not require upgrades or 

added infrastructure. The occupant identifiers such as MAC addresses or IP addresses are not 

needed to estimate the occupancy thereby reducing occupant’s privacy concerns. This simplistic 

way of obtaining occupancy that does not require additional investment or raise occupancy 

privacy concerns can be favored by building owners and their efforts towards building energy 

reduction.  

 Chapter 3 investigated the effects of different occupancy schedules on HVAC energy 

consumption. The results in Chapter 3 provide evidence that real-time occupancy data are 

required to maximize HVAC energy savings. On the contrary to the existing literature, occupants 

and their behavior remained unaltered during data collection period allowing to capture true 

occupant dynamics from a relatively complex environment. In addition to the occupancy 

schedules based on WiFi data, occupancy schedules were built using registered occupancy data 

(i.e., data of registered students per class) and people counter data (i.e., ground truth). In general, 

occupancy-based schedules resulted in significant HVAC energy reduction compared to a 

fixed/static schedule that typically assumed maximum occupancy for a space. When available, 
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registered occupancy can result in significant HVAC energy savings, but the real-time 

occupancy data can further increase the energy savings. These results emphasize the need for 

unaltered real-time occupancy data to reduce HVAC energy consumption in commercial 

buildings.  

 Chapter 4 investigated the structure of WiFi measured occupancy data to identify patterns 

of repetitions using neural networks. Three different experiments were conducted with the data 

collected between August 2019 and December 2019. The experiments were conducted using 

different combinations of datasets and Fuzzy ART neural network. The results from these 

experiments suggest that significant pattern recognition is possible by dividing occupancy 

profiles into smaller segments bound by external schedules. These smaller segments are termed 

as time-segments and the external schedules are typically the lecture durations, rush hours, and 

peak hours. Additionally, from the set of occupancy patterns learned for each time-segment, at 

least one pattern repeats frequently which is termed as Most Likely Template (MLT). 

Furthermore, each time-segment may also have a Holiday Template (HT) that represents zero-

occupancy profiles for the time-segment. The MLT occupancy profile learned for each time-

segment can be treated as expected occupancy for those time-segments based on which the 

HVAC systems can be operated.  

 Chapter 5 investigated the feasibility of occupancy prediction using the occupancy data 

that is free of occupant identifiers such as MAC address, IP addresses, and unique IDs. Using the 

occupancy patterns learned and the LAPART neural network, occupancy prediction analysis was 

conducted. The results from the analysis suggest that occupancy profile prediction for a time-

segment is possible if there exists a variable (i.e., a predictor) that is significantly correlated to 

the occupancy profile of that time-segment. Contrary to the existing literature that uses unique                                            
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occupant identifiers to predict their presence in a space and consequently the space occupancy, 

this approach predicts a matching occupancy profile for a time-segment using a predictor. The 

feasibility tests conducted in this study used the first two measured occupancy values (i.e., 

intrinsic variables) to predict a matching profile from the set of profiles learned for each time-

segment. As suggested previously, the MLT profiles can be used as expected occupancy. 

However, when the actual occupancy deviates from the MLT profile, using the first two 

measured occupancy values to predict a matching profile can avoid incorrect occupancy profile 

prediction. This mechanism ensures that there is no unwanted HVAC demand and insufficient 

thermal conditioning when occupancy is overestimated and underestimated, respectively. 

Similarly, occupancy profile prediction can be made using extrinsic variables if they are 

significantly correlated to the occupancy profiles.   

Using the occupancy count, a new strategy for indoor thermal setting can be implemented. The 

indoor heating and cooling requirements are dependent on occupant homotherm nature and their 

thermal interactions with indoor climate. Therefore, dynamic heating and cooling setpoints that 

are a function of occupant count (e.g., a lower cooling setpoint for higher occupancy relative to 

standard practice that accounts for occupant heat radiation at a given time of the day) can aid in 

increasing occupant thermal comfort inside buildings. A forecast of occupant count can allow for 

preconditioning a space using the proposed dynamic thermal setpoints. As the preconditioning 

temperatures are dependent on the expected occupant count, the time required to pre-condition 

the space changes with the occupant count. This emphasizes the need for an occupant count 

forecast to ensure maximum occupant comfort and an unwanted HVAC demand.  

While the current framework eliminates the occupant privacy concerns, the use of WiFi networks 

for occupant data highlights the need for strengthening the cybersecurity against attacks. When 
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the proposed framework is implemented to regulate indoor climate control of commercial 

buildings, the interdependency between the WiFi network and the HVAC systems increases. The 

interdependency between the WiFi and HVAC infrastructure becomes critical and a cyber-attack 

on the WiFi network can adversely affect the occupant comfort inside buildings. Therefore, 

strong security measures are needed for protecting the WiFi networks prior to its interaction with 

the HVAC infrastructure. Standards such as ANSI/TIA-862, ANSI/ASHRAE Standard 135-

1995, BACnet, RESTful web services, and WPA2 among other can be implemented for securing 

the wireless connections and IoT devices on the networks [1]. 

6.2. Implications and Future Directions 

This research implies that WiFi networks in commercial buildings provide a reliable source of 

occupancy data that can be used to create demand driven HVAC operational schedules to reduce 

building energy consumption. Contrary to the existing literature, the identifier free occupancy 

data collected from a relatively dynamic environment represents occupancy of large commercial 

spaces such as airports, libraries, universities, and other public buildings. Therefore, the energy 

consumption results in this research signify the energy saving potential in large commercial 

buildings. Results from pattern analysis imply that patterns of occupied and unoccupied 

segments can be detected from dynamic environments using WiFi data. Furthermore, the 

occupancy profile prediction results lend evidence to the possibility of occupancy load 

forecasting that can aid effective HVAC operation to reduce energy consumption and increase 

occupant comfort.  

 In the future, a study of extrinsic variables that are significantly correlated to the 

occupancy could be conducted. Furthermore, the feasibility of occupancy prediction ahead of 

time using extrinsic variables could be investigated. The occupancy forecast could be used to 
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preheat and precool the space ahead of scheduled occupancy using the proposed dynamic 

thermal setpoints. The effect of dynamic thermal setpoints for preheating and precooling a space 

on occupant comfort levels could then be investigated. This research took advantage of an 

available occupancy schedule for the lecture hall to identify occupied and unoccupied segments. 

Occupancy data from different types of commercial buildings that do not have an occupancy 

schedule could be analyzed to identify novel ways to detect the occupied and unoccupied 

segments. Additionally, the patterns from different building types could be compared and their 

temporal variability could be investigated to understand the pattern stability over time.  
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