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ABSTRACT

The analysis of covariance (ANCOVA) is a statistical technique originally
developed by Fisher (1932) to increase the precision of the estimate of a treatment effect
in experimental data. It is used when researchers have both qualitative and quantitative
predictors of a continuous outcome. ANCOVA’s most basic assumptions are similar to
those of analysis of variance (ANOVA) and other related linear models, but also include
an additional assumption regarding the regression line relating the outcome and the
covariate. This assumption, referred to as homogeneity of regression, requires that the
within-group regression slopes be the same for all groups. Typically, one also assumes

that the covariate is a fixed effect, but some methodologists question this practice.



Consequences of either employing a model allowing for heterogeneity of regression (an
ANCOHET model) or presuming that the covariate is random can be dealt with fairly
easily if both do not occur simultaneously. However, a problem arises when one
simultaneously encounters both a random covariate and heterogeneity of regression: the
interaction between the random covariate and the fixed factor of treatment will affect the
apparent evidence for the main effect of treatment. The current study investigated the
utility of different methods of testing for the main effect of treatment in the presence of
heterogeneity of regression with a random covariate. Using a Monte Carlo simulation, a
2x3x5x2x3 design manipulated the number of groups, sample size per group, extent of
heterogeneity of regression, presence of a group effect, and test location to investigate
this issue. For each combination of these factors, different types of tests of the group
effect were conducted, as explained in the Method section. Two error terms, the mean
square for the interaction and an average of the mean square error for an ANCOHET
model and the interaction mean square, performed poorly across all simulations for all
metrics. On the other hand, the ANCOHET and ANCOVA error terms produced Type |
error rates, power, confidence interval coverage rates and widths, as well as average
standard errors under low and medium levels of heterogeneity of regression that were
acceptable. When heterogeneity of regression was high or extreme, the ANCOHET
approach underestimated the true standard error, whereas the ANCOVA error term did
not. Using an approach to increase the ANCOHET standard error based on Chen (2006)
did not result in a large enough increase to make up for this underestimation. In
conclusion, with the low and moderate levels of heterogeneity of regression typically

reported in the literature the ANCOHET test of the group effect can be recommended



even with a random covariate. Under large or extreme levels of heterogeneity of

regression, an error term from a standard ANCOV A should instead be used.
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INTRODUCTION

ANCOVA — An Overview

The analysis of covariance (ANCOVA) is a statistical technique originally
developed by Fisher (1932) to increase the precision of the estimate of a treatment effect
in experimental data, and hence to increase the power of detecting such an effect. It can
be used when researchers have both qualitative and quantitative predictors of a
continuous outcome. In experimental data, where units are randomly assigned to different
groups, the qualitative predictor is defined by two or more treatment conditions, with one
or more groups often serving as a control for an active treatment. The quantitative
predictor is often, though not necessarily, a pre-measure of the dependent variable, and is

referred to as the concomitant variable or covariate.

ANCOVA Assumptions

The following is the basic ANCOVA model:
Yl'j :,Ll+0lj+ﬁXi]'+€ij

where Y;; is the score of the ith individual in the jth group on the dependent variable, x is
a “grand mean” parameter (but should be conceived as an average of intercepts when the
covariate is not centered at its mean), a; is the effect associated with group j, £ is the
population within-group regression coefficient characterizing the linear relationship
between Y and X, X;; is the score of the ith individual in the jth group on the covariate,

and ¢&;; is the error term for the same subject. The most basic assumptions involve the



error term, ¢;. That is, the errors are assumed to be independent and normally distributed

with a mean of zero and a constant variance.

There is an additional assumption regarding the regression line relating the
outcome and the covariate, namely, that the within-group regression slope be the same
for each group. This assumption can be seen in the model where the slope, S, does not
have a subscript and takes on the same value regardless of an individual’s group
membership. This assumption is referred to as homogeneity of regression. Finally, one
typically assumes that the effects of both the treatment and the covariate are fixed (cf.

Maxwell, Delaney, & Kelley, 2018, Chapter 9).

Regarding the Homogeneity of Regression Assumption

The conventional ANCOV A model as specified does not allow for a distinct slope
for each group. Thus, predictions for each individual are based on a single slope estimate
that is computed as a weighted average of the slope estimates for each group considered

separately.

In many situations, the within-group regression slopes will be similar, and can be
reasonably represented by a single slope parameter. However, as these within-group
slopes become more and more disparate, using a single parameter or weighted average of
the separate slopes to represent the relationship between the covariate and the outcome in

these groups will be misleading.

Consequences of Violating the Homogeneity of Regression Assumption

Far from being disastrous, the presence of heterogeneity of regression in

ANCOVA is fairly easily dealt with analytically. How one should deal with



heterogeneity of regression in ANCOVA can be approached in a similar fashion to how
one would proceed when a significant interaction is observed in a two-way ANOVA. In a
two-way ANOVA, a significant interaction between the two factors means that the
difference on the dependent variable across levels of one factor is not consistent across
levels of the other factor. In an ordinal interaction, the superiority of one group over the
other is maintained across levels of the off factor. For a disordinal interaction, this
superiority is not maintained. Whereas the presence of an interaction in factorial ANOVA
can require a more nuanced interpretation of main effects, so too can the presence of
unequal within-group regression slopes in ANCOVA. In other words, the presence of a
significant main effect of treatment in the presence of heterogeneity of regression (which
heterogeneity would be detected via a test of the interaction between the continuous
covariate and the grouping variable) often cannot be adequately followed up by the
comparison of adjusted, conditional means at the grand mean of the covariate,
particularly in the case of a disordinal interaction. Because the within-group regression
lines are not parallel, the difference in conditional means is not consistent across the
values of X. As a result, the presence of a significant effect of treatment does not
necessarily allow one to conclude that the means of the treatment conditions are
significantly different at all values of X. Instead, it may be the case that the conditional
means are significantly different at certain values of the covariate but not others.
Heterogeneity of regression should signal to the researcher that a more thorough
investigation of the relationship between the treatment effect and level of the covariate

may be warranted.



In the presence of heterogeneity of regression, researchers may choose to use a
different approach to interpret the significant effect of treatment. Two options, neither of
which is recommended, would be to either ignore the covariate completely or to block on
the covariate and then perform a factorial ANOVA (Glass, Peckham, & Sanders, 1972).
Both options throw away important information by either ignoring the covariate all
together, or by discretizing a continuous variable and decreasing the amount of error
variance in the dependent variable that the otherwise continuous covariate would be able

to account for (Maxwell, Delaney, & Dill, 1984).

There are two notable approaches for assessing differences in treatment
conditions in the presence of heterogeneous slopes: the Johnson-Neyman technique (J-
N) (D’Alonzo, 2004; Johnson & Neyman, 1936; Preacher, Curran, & Bauer, 2006), and
the simple slopes technique (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 2003;
Preacher, Curran, & Bauer, 2006) which Rogosa referred to as a pick-a-point procedure
(Rogosa, 1980, p. 313ff.). The J-N technique allows one to determine the range of values
of X at which there are significant treatment differences, whereas the simple slopes or
pick-a-point technique can test for between-group differences at certain selected values of
X. When using the simple slopes approach, in lieu of a priori relevant values at which to
test for group differences, a common practice is to test at the grand mean of the covariate
and at one standard deviation on either side of this mean (Maxwell, Delaney, & Kelley,

2018; Preacher et al., 2006; Preacher & Hayes, 2004).

However, there are also legitimate reasons to be interested in the omnibus test for
the effect of treatment even in the presence of heterogeneity of regression. One potential

application of research findings involving heterogeneity of regression would involve



treatment assignment based on an individual’s measured level of the covariate of interest.
Returning to a two-way ANOVA as an example, consider a 2x2 ANOVA comparing two
possible treatment conditions for subjects classified as one of two personality types (e.g.
Type A or not Type A). Although one might have hypothesized that one could achieve
optimal results by assigning each personality type to the treatment matched to that type, it
is possible that even if the treatment and personality type factors interacted, one might
observe an ordinal interaction where the superiority of one group is maintained across the
levels of the off factor. If treatment A is always better than treatment B, then there is no
reason to ever assign an individual to treatment B. In ANCOVA, however, the off factor
is continuous as opposed to discrete. Due to the fact that the regression lines are not
parallel, unlike ANOVA, in theory there exists some point at which the lines will
intersect. However, this “cross over” point, or the point at which the direction of the

treatment effect changes, may not be within the range of possible values of the covariate.

Similarly, in certain real-world settings the collection of data on the covariate may
be time-prohibitive and/or cost-prohibitive in practice (e.g., genetic testing, performing a
full cognitive battery, etc.). In other real-world settings, assignment of individuals to
different treatments may not be practical (e.g., because of the cost or staff required to
administer different treatments) even if the score on the covariate were known. In either
case, there are many situations where a treatment assignment based on the level of a
covariate is not a realistic option. Instead, it may be sufficient to know the impact of the
treatment for the “average” individual. Thus, even in the presence of heterogeneity of
regression, conducting a test of between-group differences at the center of the distribution

of the covariate can still be of substantive interest.



Type I Error Rates in the Presence of Heterogeneity of Regression

Whereas Type I error rates, the probability of incorrectly rejecting the null
hypothesis of no group differences, are relevant in the case of homogeneity of regression,
the issue is not as clear cut when the relationship between the covariate and the outcome
differs across two or more groups. In lieu of theoretically relevant points along X at
which to test for group differences, researchers will often begin by conducting the test at
the sample grand mean of X, or X, and then one standard deviation above and below X, as
previously mentioned. The absence of a main effect for treatment in the presence of
heterogeneity of regression could be represented graphically by a plot showing that the
heterogeneous regression lines for two groups intersect at the population mean of X or
ux. In such a case, given the test of the main effect of group would typically be conducted
at the sample grand mean of X, or X, it is only when X and ux are equal that the expected
difference between the predicted means on the dependent variable at the sample grand
mean of X would be zero. However, when X and ux are not the exact same, as will
typically be the case since X is an estimate of ux, the rejection of the null hypothesis is no
longer an incorrect rejection, since the two groups are only the same on the dependent
variable at uy. Since X in a sample will rarely ever equal sx in the case where X is a
random variable (more on this below), it is not necessarily correct to attribute rejection of
the null hypothesis of no group main effect to a Type I error in the presence of
heterogeneity of regression, because testing for group differences anywhere other than
[x, that is, at the exact point of intersection between the two regression lines, will result

in the test being conducted at a point where the true difference is non-zero.



Accuracy in Parameter Estimation

Along with the push for a decreased reliance on null hypothesis significance
testing (NHST) (e.g., Cohen, 1994; Schmidt, 1996; Wasserstein & Lazar, 2016) has come
the recommendation for the increased reporting of confidence intervals (e.g., Cumming &
Finch, 2001; Thompson, 2007). Confidence intervals not only provide the same
information as NHST (i.e., is the parameter significantly different than the null value
hypothesized?), but they also provide the direction of the difference and a range of
plausible values. As covered more extensively in sources devoted to the topic (see
Kelley, Maxwell, & Rausch, 2003 and Lai & Kelley, 2012), just because a confidence
interval excludes the value posited under the null hypothesis, does not mean that the
range of possible values gives a researcher a high degree of certainty in the value they
found. For instance, a study might find that the difference in means between two groups
constitutes a medium effect according to benchmarks proposed by Cohen (1992).
However, the confidence interval constructed around this standardized difference might
include as plausible values effect sizes that range from small to large, even if the study
were adequately powered based on conventional power analysis to detect a significant
difference. As a result, even though the null hypothesis was rejected, the corresponding

confidence interval might still be “embarrassingly large” (Cohen, 1994, p. 1002).

Thus, it is not only important that a confidence interval contains the population
parameter, but that it does so in a way that the range of plausible values is sufficiently
narrow (Maxwell, Kelley, & Rausch, 2008). This is what is referred to as accuracy in
parameter estimation (AIPE). In line with this, the current dissertation will report

information on coverage and width of confidence intervals around estimated effects.



To Fix or To Presume Random?

With the basic ANCOVA model shown above, researchers can make inferences to
hypothetical replications that either involve the same X values observed in the original
study, or involve different random samples from a population of X values. As Henderson
observed, “It is the fixed model that is almost always intended when covariance analysis
is discussed in the statistical literature. It is mixed models, however, that usually best
represent the real world from which most meaningful inferences are drawn” (Henderson,

1982, p. 624).

Mixed models are models that contain a combination of both fixed and random
effects. Fixed effects are variables whose specific values are of interest, and researchers
are not intending to make inference beyond those values. Good examples of fixed effects
are the classification or treatment variables in ANOVA or ANCOVA. When one is
comparing the efficacy of two separate treatments, say Cognitive Behavioral Therapy
(CBT) versus Motivational Interviewing, it is not typical to attempt to make inferences
beyond the two treatments under examination, and therefore these two treatments are
considered the levels of a fixed factor. Similarly, when the covariate is treated as a fixed
factor, as Rogosa remarked, “Inferences from these data are restricted to subpopulations
having the same values or configuration of X because inferences from the linear model

are conditional on the observed values of X’ (Rogosa, 1980, p. 308).

On the other hand, random effects are involved when researchers aim to draw
conclusions regarding levels of a factor that were not included in the design of a study.
When the levels of a discrete factor such as therapist are treated as random, this would

mean that replications of a study would include different therapists than in the original



study. What would it mean for a covariate X to be presumed to be random? This would
imply that the new sample of interest in any replication would have different individual
values of the covariate and hence the groups in the new sample would also have different
mean levels on the covariate than the original sample because of sampling variability.
This assumption is regarded as more realistic by many methodologists. For example,
Huitema remarked “Because subjects are randomly sampled from the population, it is
realistic to view the X-values in a given experiment as a random sample of X-values from
a population of values... One reason, then, why future samples will generally have

different values of X is because X is a random variable” (Huitema, 1980, p. 188).

Consequences of Treating a Factor as Random

There are several major consequences of treating a factor as random. The first
deals with the inferences that can be made. When treating a factor as fixed, researchers
can make inferences to only the levels of the factor that were included in the original
study. This might be fine in some situations, but it is often the case that one is interested
in making inferences to a population that has levels not included in the original study.
Just as one implicitly treats participants as a random sample from a population as a way
of justifying inferences being made about the population from which the participants are
selected, treating a factor as random allows making inferences to the population of

possible levels of that factor, not just the levels included in the study.

The second consequence of presuming a factor is random has to do with how the
tests of effects are to be carried out. In a two-way ANOVA where factor A is fixed and
factor B is random, it can be shown that any interaction between the two factors will

intrude on the expected mean square of the fixed factor (Maxwell et al., 2018, Ch. 10).
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This in turn implies that an appropriate test of factor A must use as a denominator error
term a different effect than mean square within, which would be used in a conventional
two-way ANOVA with two fixed factors. In fact, the appropriate error term for the test
of the fixed effect in the mixed two-way ANOVA can be shown to be the mean square

for the A x B interaction.

Additionally, Crager (1987) presented work on the impact of a random covariate
on the standard error of the difference in adjusted means for a standard ANCOVA. In

particular, he asserts that the variance of the difference in predicted means would be:

Var(¢) = o E + @Z : i) n(nl— 1)]

where ¢ is the estimated difference in adjusted means (see Appendix A for further
discussion). In an update to Crager, Chen (2006) extended this work to a random
covariate in the presence of heterogeneity of regression. In particular, Chen suggested
that the square of the standard error in adjusted means derived under the assumption of a

fixed covariate will be too small by the following term:

ox

var[E(eIX)] = (B =~ B s

where f1 and p are the regression coefficients in the two groups, 71 and n are the sample
sizes in the two groups, X designates the observed set of scores on the covariate, and

o is the variance of the population of the X covariate scores.
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The Issue at Hand: Heterogeneity of Regression with a Random Covariate

Consequences of individually violating either of the previous two assumptions,
that is, homogeneity of regression and that all factors are fixed, are easily dealt with.
However, a problem arises when one simultaneously encounters both a random covariate

and heterogeneity of regression. This problem is illustrated in Figure 1.

This figure represents three replications of an experiment. In each replication, the
group means of both the control and experimental groups are constant (Y, and Yg,
respectively), as are the within-group slopes (,[?j). Thus, neither of these factors can
contribute to the variability in adjusted means (i.e., the difference between Yy and Y/,
represented by the braces “{*). The only difference between the three replications is that
the group means of the covariate (X ;) are varying. This variability in the covariate means
produces estimates of the adjusted treatment effect that differ from replication to
replication. The principle illustrated by this simple diagram of the implications of
variability in the covariate means for the estimated variability in the predicted means on
the dependent variable (and also for difference in such estimated means across groups) is

developed more rigorously in Appendix A.
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METHOD
The current study sought to investigate the appropriateness of different methods
of testing for the main effect of treatment in the presence of heterogeneity of regression

with a random covariate.

How to Test for Treatment Main Effects

Given the potential for the effect of a random factor to intrude upon the mean
square for the treatment effect, the traditional ANOVA approach to a two-way design
with a fixed factor and a random factor indicates that using the typical MS error as the
denominator of the ' test would not test exclusively for a consistent treatment main
effect. Instead, it could be regarded as testing for the presence of a treatment main effect
or the interaction between the treatment and the random factor. To test for the treatment
main effect one must use as a denominator error term the interaction mean square. This
suggests a potentially more adequate test of treatment in an ANCOVA with a random
covariate and heterogeneous regressions might utilize in the denominator an error term
that takes into account the impact of the random covariate. This study considered the

following as potential error terms to use in the test of a main effect of treatment:

1. A procedure using as an error term that associated with a model allowing for
heterogeneity of regression (an “ANCOHET” model).

2. Using the interaction between the fixed factor of treatment and the random
covariate, i.e. MSa x x, as the error term.

3. An error term based on a standard ANCOVA or equivalently an average of
the error terms in (1) and (2) where each is weighted by its degrees of

freedom.
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4. A pooled error term using an unweighted average of the MS;esiquai for the

ANCOHET model used in (1) and the interaction error term used in (2).

Rogosa described a variation of method (1) as a “safer ANCOVA” (1980, p. 312)
test of the treatment effect, because the estimate of mean square error used in the
denominator of the test does not presume equality of regression slopes across groups.
However, the numerator of the Rogosa test, which was implemented in the simulations of
Harwell and Serlin (1988), is based on the adjusted means from a conventional
ANCOVA (see Appendix B for more detailed discussion). As such, theoretical as well as
simulation results suggest that the method is inappropriately liberal. Thus, the
ANCOHET method used in the current dissertation employs a numerator that takes into

account the fact that different slopes are being estimated in each group.

What exact degree of departure from the nominal alpha level warrants a judgment
that a test is either liberal or conservative is not entirely clear. In one early paper,
Cochran (1952) declared that a difference from a nominal .05 alpha level “is regarded as
unimportant...if the exact P lies between .04 and .06” (p. 328). Bradley (1978) suggested
that a stringent criterion of robustness might be requiring the true alpha level to depart
from the nominal alpha by no more than .1a, that is, in the case of a nominal .05 alpha
level if the true alpha was between .045 and .055, whereas a liberal criterion might allow
the true alpha to depart from the nominal alpha by .5a, that is, the true alpha could be
acceptable if it were between .025 and .075. Serlin (2000) suggested one could test non-
specific null hypotheses that when rejected would allow the inference that the true alpha
of a procedure was within pre-specified limits, and suggested appropriate limits of up to

250, or from .0375 to .0625 in the case of a nominal alpha of .05 (see Serlin, 2000, Table
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1, p. 237). In numerous simulation studies, rejection rates are highlighted as liberal or
conservative if they are outside the range specified by the sampling error given the
number of simulations being run (see Appendix D, Equation D.1). For example, in the
Harwell and Serlin (1988) study where 2,000 simulations were run in each condition, the
range of 1.96 standard errors below or above the nominal alpha was from .040 to .060.

In the current research which used 10,000 simulations in each condition, the comparable
range of 1.96 standard errors around the nominal .05 level yielded limits of .046 and .054,

which is approximately equal to Bradley’s stringent criterion for robustness.

A further issue is that the exact pick-a-point test derived by Rogosa and others
presumes that the values of the covariate would be fixed over replications, which was not
the case in the current simulation study. Because of that, an additional factor that needed
to be considered was the exact point on the covariate where the difference across groups
was to be assessed. In most practical situations with a random covariate, the population
mean will be unknown. Thus, it is of interest to evaluate the impact of testing the
treatment effect at other reasonable values of the covariate at which investigators might
choose to test for a treatment effect. In rare situations, the population mean on the
covariate may be known and could be used as the point at which to conduct the test.
Much more often, the population mean will be unknown but could be approximated by
the sample grand mean on the covariate. A third reasonable alternative would be to test
for the treatment effect at the point where the standard error of the difference is at its
lowest value, a point known in the literature as the center of accuracy (see, e.g., Rogosa,
1980). Each of these three points will be used as the test location in the current study,

with the predicted difference in means in each case being estimated by using the
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ANCOHET model. However, it should be noted that in the two-group case this predicted
difference using heterogeneous regressions at the center of accuracy will exactly equal
the difference in adjusted means computed in a standard ANCOV A with homogeneous
slopes (Maxwell et al., 2018, p. 528; Rogosa, 1980, p. 310). As a result of the test being
conducted at a point other than ., the rejection rate is expected to be greater than the
nominal .05 rate, at least when the ANCOHET error term is used as the denominator
error term in the test. On the other hand, utilizing the mean square for the interaction
between the treatment and covariate as the error term, while having what would be
regarded as the appropriate mean square in a traditional ANOVA approach to
determining error terms in a mixed design, may well result in a lack of power for testing
the treatment main effect. If the treatment factor has two levels, using the interaction
mean square as the denominator of the F test will only have one degree of freedom, since
dfdenom = (a-1)(1) where a is the number of levels in the treatment factor. This will result
in an Fritical of 161. Consequently, it may be possible to construct and utilize a pooled
error term that will allow empirical a levels to remain close to the nominal .05 level
without a substantial loss in power. Two pooled error terms, as described in the next

section, were constructed using (1) and (2) above with different weighting schemes.

Additional Error Terms

Along with the mean square error for the ANCOHET model and the mean square
for the interaction between the covariate and the grouping variable, two additional error

terms were utilized in testing for the main effect of group:

ANCOVA. The first weighting scheme consisted of a weighted average of the

mean square error from the ANCOHET model that allowed for heterogeneity of



16

regression and the mean square for the interaction, where the weights were the degrees of
freedom associated with that mean square. This turned out to be equivalent to using the
mean square error from an ANCOVA analysis, and will henceforth be referred to as the

ANCOVA error term.

Equal Weights. The second weighting scheme (referred to as Unweighted or

UNW henceforth) was calculated as an unweighted average of the mean square error
from an ANCOHET model and the mean square for the interaction. Given the
ANCOHET error term was anticipated to potentially be an underestimate of error and
thus lead to overly liberal tests and the interaction error term with its small degrees of
freedom was anticipated to lead to overly conservative tests, this alternative was included
to allow an investigation of a potential compromise between the ANCOHET and the
interaction error term approaches. The denominator degrees of freedom used in tests with
this error term also was simply the average of the degrees of freedom associated with the

ANCOHET error mean square and with the interaction mean square.

Simulation Design

The simulation study was conducted by manipulating the following factors
displayed in Table 1. The design manipulated the number of groups (2 or 3), sample size
per group (10, 30, or 100), extent of heterogeneity of regression (none, low, medium,
high, extreme), presence or absence of a treatment effect, and location of test (at the
population mean of the covariate ux, at the sample grand mean X, or at the center of
accuracy C, which is defined in Appendix A). The 2x3x5x2x3 design created 180
different conditions. To decrease the complexity of the study design and interpretation,

data were generated from a normal distribution where the homogeneity of variance
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assumption was met (see more on this below). Differing levels of heterogeneity of
regression were defined based on the extent of difference in within-group correlations of
the covariate and dependent variable (see below for a discussion of how these and other
levels were chosen). Regarding the different levels of effect size (i.e., difference between
the means of the control and treatment), a null effect size was used for estimates of Type
I errors, and non-null conditions were designed, generally following the approach of
Harwell and Serlin (1988, Table 2, p. 272), in order to achieve a power of 80% for a
conventional ANCOVA test of the treatment effect (see section on Non-null conditions
below). For each condition, 10,000 samples were generated. Only equal-#n cases were

considered.

Data Generation

Data were generated using the data processing and generation abilities of SAS
9.4, commonly referred to as the “data step.” See Appendix C for examples of the SAS
syntax used to generate and analyze the simulated data, including comments highlighting
the goal of each step of the program. For the two-group null condition, data were

generated according to the following model:

YP=DbXi+e

for individuals in the first group and

Y =DXi +e

for individuals in the second group. In each of these equations, s indexes the simulation

or sample number (ranging from 1 to 10,000) and b1 and b are respectively the raw or
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unstandardized population regression coefficients for the first and second groups. Both X;
and e; were generated from a normal distribution with a mean of zero and a standard
deviation and variance of one (i.e., X and e ~ N(0,1)). This data generation method results

in population regression lines that intersect when wux = 0.

Following the data generation, the data step computed and saved the values at
which the test of the grouping variable would occur. Then, the GLM Procedure (i.e.,
PROC GLM) was used to analyze each of the 10,000 simulated datasets per condition
and the relevant p values and confidence intervals for the difference between the adjusted
means were computed and saved. Type I error rates were calculated as the proportion of

the total number of simulations where the p values were less than the nominal .05.

Non-Null Conditions to Determine Power

After the null conditions were simulated to determine Type I error rates, an
additional set of conditions was constructed to determine the power of the separate
approaches. For these non-null cases, a constant value was added to specific groups

during the data generation phase.

For each of the three sample size conditions, constants were added to a single
group mean in the two-group condition. The constants were chosen so that the null
hypothesis of no between-group difference in adjusted means would be rejected 80% of
the time in a conventional ANCOVA if the slope were equal to the mean of the values in
the heterogeneous slope conditions. For the three-group case, a constant was added to the
simulated data points in only one of the three groups. Rather than powering according to

an omnibus test of between group differences, powering based on a contrast was
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employed instead. In particular, the nonzero group was compared to the average of the
two groups whose means were set to be zero. In real world applications, this type of
situation might be seen where researchers are comparing a single active condition to two

distinct control conditions.

Table 2 contains a list of the constants used to produce a power of 80% for each
combination of sample size and number of groups. Also included are two measures of
effect size: Cohen’s d and f. For the smallest sample size condition (n = 10; N =20 or
30), the difference in means would constitute an effect size that is very large (i.e.,
exceeds the conventional cutoff for a large effect). For the middle sample size condition
(n=130; N=60 or 90), the effect size would be considered medium to large, that is,
between Cohen’s cutoffs for a medium and a large effect. For the largest sample size
condition (n = 100; N =200 or 300), the effect size would be classified as small to

medium.

Confidence Interval Construction and Accuracy Estimation

Given rejection rates in testing the group factor that are somewhat above .05 when
there is no main effect for treatment can be misleading in the presence of heterogeneity of
regression — particularly when the covariate is random — confidence interval coverage
was also evaluated. To accomplish this, we calculated the actual between-group
difference that would be seen in the population when evaluated at a value other than the
population mean of the covariate. Since the population values of the slopes are known,
this exact value can be calculated as the difference between the expected means of the
groups at the X value, say X, used as the point to conduct the test. This would be

calculated as:
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Yll - Yzl = blxp - bsz

where b1 and b> denote the known population raw regression coefficients. Confidence
interval coverage was then calculated as the proportion of individual confidence intervals
that contain the actual difference in adjusted population means. In general, confidence

intervals for the difference in adjusted means are calculated as:
estimate + (critical value)(estimated standard error)

In the three-group case, confidence intervals were constructed around the estimated value
of a contrast, with the contrast comparing one estimated mean with the average of the two
other estimated means. The standard errors of the estimated difference in means
corresponding to the four different error terms used in the tests of the treatment effect in
the two-group case will be given next, followed by the standard errors of the contrast

estimates of interest in the three-group case.

Standard Errors for Two-group Case

ANCOHET. In the case of ANCOHET, the estimated standard error of the
difference in predictions at X, , derived as shown in Appendix A under the assumption X

1s fixed, is:

—2 —\2
Er |1 1 X, — X X, —X
ANCOHET:Gg 5 = |—+|—+—+ (% Qz (%, 22
P dfr|me np XX —X1)? XXz — X3)
This equation takes into account the sampling error of the Y group means along with the
sampling error of the estimates of each group’s slope and how far X, is from the group

means on X. For the ANCOHET approach, the precision of the difference in group means
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is inversely related to the distance X, is from the group means. The ratio jTF above is the
F
mean square error for the ANCOHET model which allows for a different slope in each
group:
Yij =u+ (Xj +,8in]' + Sij

ANCOVA. In the conditions where the ANCOVA error term is used, the standard

error of the difference between group means is calculated as follows:

1 1 X —X;)?

moonz 3y (X - X))

Ep
dfr

ANCOVA: 8¢ _p = \/

In this case, jTF refers to the mean square error for the traditional ANCOVA model
F

assuming homogeneity of regression, i.e.

Yl'j:,Ll+0C]'+ﬁXi]'+€ij

Interaction. For the interaction error term the standard error is calculated as it
would be calculated for testing a contrast in an ANOVA where the mean square for the

interaction is used as the error term, i.e.

A 1 1
Interaction: 6y, _y , = \/MSA,CX [n_1 + -

Equal Weights. As a final alternative, the standard error for the equal weights or
unweighted case is calculated by using in place of the mean square for interaction an
unweighted average of the mean square for interaction and the mean square error from

the ANCOHET model, i.e.
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1

1
UNW: O-?pl_?pz = \/MSUNW [n_1+ n_z

MSe+MS pxx

Where MSUNW = 2

Chen’s Increment to ANCOHET Standard Error. As previously mentioned, the
impact of a random covariate in the presence of heterogeneity of regression may result in
an estimated standard error that is too small when using the ANCOHET approach (Chen,
2006; Crager, 1987). Chen (2006) concludes that the square of the standard error derived

under the assumption of a fixed covariate will be too small by the following term:

o%

Var[E(é|X)] = (B, - ﬁz)zm

For estimates of confidence interval coverage and width, Chen’s increment was also
9

evaluated.

On the other hand, Chen’s increment to the ANCOHET standard error assumes
that both the standardized regression slopes and covariate variability (i.e., Bjand o2,
respectively) are known, population values. Due to this assumption, Chen’s

recommended increment in practice could also be an underestimation.

Standard Errors for Three-group Case

In the three-group case, attention was focused on a contrast between the predicted
mean in one group and the average of the predicted means in the other two groups. That
is,  was defined by the coefficients c1 =1, c2=-.5, and ¢3 =-.5. Standard errors of the

estimate of this contrast at point X, were estimated as follows.
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ANCOHET. In the case of ANCOHET, the estimated standard error of the

contrast in predictions at X}, is:

E c? c2(Xx, — X
ANCOHET: 55, = |3+ ZL+Z—’( P _’)2
FIST S Xy - X)

ANCOVA. In the conditions where the ANCOVA error term is used, the standard

error of the contrast in the estimated group means is calculated as follows:

Ezi+ (Zg%)

ANCOVA: 65 =
Py . =2
Afe|&n 35X, — X))

Interaction. For the interaction error term the standard error for the test of the

contrast is calculated as:

2
C:
Interaction: 6% = [MSyyx zi

n.
7 ]

Equal Weights. The standard error for the contrast in the equal weights or

unweighted case is calculated as:

Chen’s Increment to ANCOHET Standard Error. The Chen increment to the

square of the ANCOHET standard error of a contrast is:
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0%
(ny +ny +n3)

Var[E(E1X)] = (cify + 2B, + c33)?

Along with sample size planning to ensure an a priori probability of rejecting the
null hypothesis, it is also possible to plan a study that results in parameter estimates that
are sufficiently accurate. While developing an AIPE framework in the context of
ANCOHET is beyond the scope of this paper, accuracy of parameter estimates based on
different error terms was incorporated. Specifically, confidence interval coverage and
average confidence interval width are presented. In the case of unstandardized mean
differences, which the current study dealt with, the width of the confidence interval does
not depend on the mean difference (Maxwell et al., 2008). Thus, confidence interval

coverage width will not be distinguished between the null and non-null conditions.

Average Standard Error compared to the True Standard Deviation

In addition to carrying out tests and constructing confidence intervals for each
simulated data set, the estimated difference in predicted means across groups was
retained for further analysis. Specifically, the standard deviation of the estimated
differences in conditional means across the 10,000 replications for each cell in the
simulation design was computed and interpreted as the “true standard deviation” of the
sampling distribution of the estimated mean difference across groups which was being
estimated by the various methods for computing the standard error of these differences
(Muthén & Muthén, 2002). This permitted the average standard error corresponding to
each of the denominator error terms to be compared to this true standard deviation, which
would be the ideal value to use for testing the main effect of group as it accurately

reflects the impact of both the random covariate and the heterogeneous regressions on the
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distribution of the group differences across replications. Because the CI coverage rates
and widths, which are also reported, are driven by the estimated standard error for a
particular simulation and based on that simulation’s unique distribution of covariate
scores, those values can be thought of as applying to hypothetical replications where the
same distribution of X values were obtained. On the other hand, since the current study
investigated the impact of a random covariate in the presence of heterogeneity of
regression, the goal is to make inferences to a broader range of X values. Comparing the
average standard errors associated with different error terms to the true standard deviation
is helpful in determining which error term comes closest to what might be considered

ideal for use in testing the main effect of group.

Homogeneity of Variance Assumption

The importance of the homogeneity of variance assumption for ANOVA has been
researched extensively (Glass et al., 1972; Sawilowsky & Blair, 1992; Scheff¢, 1999).
This same assumption also applies to ANCOVA. In the case of ANCOVA, however, it is
no longer the variability of the Y scores that is required to be homogeneous. Instead, it is
assumed that the variability of the residuals is the same across groups. When the
assumption of homogeneity of regression lines between groups holds, the variability of

both the residuals and the Y scores will be homogeneous.

When generating data according to the methods described above, it is only
possible to ensure that either the variability of the outcome or the variability of the
residuals will be homogeneous across groups — but it is impossible for both to be
homogeneous. Preliminary work showed that when the variability of the original Y scores

was homogeneous (and thus the variability of the residuals was heterogeneous), Type I
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error rates were far greater than both the nominal .05 and the elevated rates reported in
Harwell and Serlin (1988) when sample sizes were unequal between groups — as high as
.19 (see Appendix D). As a result of these findings, coupled with the suggestions of
Rogosa (1980, see p. 317, first full paragraph), data were generated in a way that
produced homogeneous residuals, even though this resulted in heterogeneity of variance

across groups on the original Y variable.

Justification for Levels of Simulation Factors

The decision to use the levels of the factors as described in the preceding Table 1
was based on two sources of information: previous simulation work in the area of
analysis of covariance allowing for heterogeneous regressions (ANCOHET) and
empirical findings involving ANCOHET, displayed in Tables 3 and 4, respectively. In
order to assess the extent of empirical heterogeneity of regression, a reverse citation
search was performed within several prominent psychological journals (Developmental
Psychology, Health Psychology and Journal of Personality and Social Psychology) over
the years 2015 — 2018 looking for articles that cited Aiken and West (1991). Although
many of the 82 articles citing Aiken and West (1991) involved only interactions defined
as the product of two continuous measures, thirteen articles, reporting on 16 different
experiments involving a total of 19 analyses, were identified involving a categorical
grouping variable and a covariate that presented evidence of heterogeneity of regression,
and that provided enough information to allow a judgment about the magnitude of the
heterogeneity of regression observed. Standardized regression coefficients for the
covariate-dependent variable relationship within each group, or the standardized

regression coefficient for the interaction between the covariate and the grouping variable,
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were recorded for each experiment. These regression coefficients were then used to
calculate Cohen’s g (more info on this measure of effect below), which allowed the
categorization of the extent of heterogeneity of regression for each analysis. These
published results were combined with analyses from four other studies investigating
heterogeneity of regression, for three of which complete data were available locally. This
permitted the extent of heterogeneity of regression observed empirically in a total of 23
analyses to be categorized in Table 4 as follows: Small: 0 - .2; Medium: .2 - .4; Large: .4
- .6; and Extreme: > .6, with the lower limit of the interval being inclusive of the value.

Table 4 also reports the number of groups and sample size for each study.

Number of Groups. Only one of the simulation studies (Klockars & Beretvas,
2001) reported in Table 3 and none of the empirical studies reported in Table 4 employed
study designs utilizing more than two or three groups. As a result, the current study will

also use only these two levels.

The decision of which pattern of group differences to test in the two-group
conditions was straight-forward: with only two means there is only one difference that
can be investigated, and the omnibus test will suffice. With three groups, on the other
hand, a significant omnibus tests allows one to conclude that at least one adjusted mean is
not equal to the others. As a result, it is unlikely that a researcher would be interested in
only an omnibus significance test. With three groups, three pairwise comparisons and
numerous complex contrasts can be tested. To mimic real-world scenarios, and to aid in
the construction of a single confidence interval per simulation condition, the decision was

made to test a complex comparison. As mentioned previously in the section on power,
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this complex comparison and corresponding confidence interval compared the adjusted

mean of a single group to the average of the remaining groups.

Sample Size per Group. Marszalek and colleagues (2011) found that the median
group sample size for psychology studies published in 2006 ranged from 18 to 26 per
group, depending on the area of psychological research (Abnormal » =26, Applied n =
21, Developmental n = 25, Experimental n = 18). Sample sizes of 10 and 30 per group
were clear favorites in the simulation studies reported. Given the overlap between the
empirical and simulation studies, sample sizes of 10 and 30 were used in the current
dissertation. However, given the “persistence of underpowered studies in psychological
research” (see Cohen, 1962 and more recently Maxwell, 2004) a condition with group
sizes of 100 was added to represent a sample size that would not result in a lack of power.
Of the empirical articles examined, the smallest sample size examined was 32 per group,

whereas the largest sample totaled over 2,500 participants.

Extent of Heterogeneity. The simulation studies reviewed employed numerous
methods of depicting heterogeneity of regression in their research designs. Two studies
used only one condition to represent heterogeneity of regression (Chen, 2006; Harwell &
Serlin, 1988). One used a single mean correlation about which different levels of
heterogeneity varied (Klockars & Beretvas, 2001). Finally, three studies used both
different mean levels of correlation and amounts of heterogeneity (see Hamilton, 1977;
Levy, 1980; Wu, 1984). Because varying both the mean correlation and extent of
heterogeneity could quickly lead to an unnecessarily complicated simulation with
potentially thousands of conditions, the current study used one level of mean correlation

(r=".3), and heterogeneity was balanced around this value. The value of .3 was chosen
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because this is roughly the average correlation between two variables in psychological
research (Cohen, 1992). Based on examination of common differences between within-
group correlations from simulation studies and those found in empirical studies, low,
medium, and high levels of heterogeneity of regression were represented by differences
in the within-group correlations of .1, .3, and .5, respectively. These values for the
difference in the within-group correlations also closely align with what is considered a
small, medium and large effect according to the effect size measure Cohen’s g (Cohen,
1992). Cohen'’s ¢ is calculated as the difference between two correlation coefficients after
having performed Fisher’s r-to-z-transformation as:

1 1+7r
o= Yoo (123

Cohen’s ¢ is then calculated as:

1 1+n 1 1+mn
0=, =2, = glog (75) - 3009 (75)

When correlations are centered around » = .3 and the differences in the two correlations
are .1, .3 and .5, these translate to Cohen’s ¢ values of .11, .33, and .57, which are nearly
equal to the cutoffs for what Cohen (1992) established as small, medium and large
differences, respectively. Tables 5 and 6 provide the raw coefficients used to achieve the
standardized coefficients listed for two- and three-group designs, respectively. Also

included are two effect sizes for the difference between the regression coefficients:

Cohen’s g and f°.

Given that so few of the empirical studies reviewed found within-group

correlations with opposite signs (see observed heterogeneity in Table 4 for Blaire et al.,
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2015; Lam et al., 2018; Rudolph, Davis, & Monti, 2017; Sturge-Apple et al., 2016), and
often one of the opposite-signed regression coefficients was not significantly different
from zero, it was decided that only one condition would include within-group
correlations of opposite sign such as -.2 and +.8, and this would represent an extreme
level of heterogeneity. A difference this large between two correlations would result in a

Cohen’s g or 1.30, or nearly two times greater than the cutoff for a large effect.
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RESULTS

Rejection Rates for Two-Group, Null Conditions

The rejection rates for the omnibus test for the two-group designs where there was
no difference between population means on the dependent variable at the grand mean on
the covariate are presented in Table 7. The omnibus tests were performed at three
separate locations (ux, X, and the center of accuracy (Ca)) for three equal-n conditions
using four separate error terms (see above for detailed description). Furthermore, these
three factors were crossed with five levels of heterogeneity of regression: none, low,
medium, high, and extreme. Rejection rates were considered outside the range specified
by sampling error if they deviated by more than .0043 on either side of .05 (i.e., outside
the interval [.0457, .0543]). Computation of the standard error of the rejection rate

statistic is shown in Appendix D (Equation D.1).

In what follows, the error rates shown in Table 7 will be described separately for

each error term.

Error Term: ANCOHET Error. For none, low, and medium levels of

heterogeneity of regression, using the error term associated with the ANCOHET model
produced rejection rates within the sampling error range of .05 regardless of the point on
X at which the test was conducted. Moreover, when the test was being conducted at the
population grand mean (ux), rejection rates were always within sampling error even
under high and extreme levels of heterogeneity of regression. On the other hand, higher
rejection rates were observed under the high and extreme heterogeneity conditions when

the test was conducted at the sample mean (X) and the center of accuracy (Ca,). Under
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extreme levels of heterogeneity of regression, rejection rates were over twice the nominal
.05. However, as noted in the Introduction in the section on “Type I Error Rates in the
Presence of Heterogeneity of Regression,” at points other than ux there will be a true
difference in expected conditional means across groups and so these should not be

regarded as Type I errors but as detecting the small true treatment effect at those points.

Error Term: Interaction. When there was no heterogeneity of regression, using

the mean square for interaction between the covariate and the grouping variable as an
error term produced rejection rates within sampling error of the nominal level. This
would be expected in that the mean square for interaction in such cases reflected only
residual error variance. However, even beginning with low levels of heterogeneity,
rejection rates began to drop significantly below .05. These rates approached zero as the
level of heterogeneity of regression increased. This was also true for the effect of sample
size within a single level of heterogeneity of regression: there was a negative relationship
such that as sample size increased the rejection rates decreased. The same pattern of

results was observed for tests conducted at all three locations.

Error Term: ANCOVA. The first alternative weighting scheme sought to combine

the mean square error term from the ANCOHET model with the mean square for the
interaction term — essentially a weighted average of the previous two error terms
discussed. When testing the main effect of group at either Xor Ca, this ANCOVA error
term produced rejection rates within sampling error for all sample sizes and across all
levels of heterogeneity of regression, with one exception. The one minor exception (i.e., n
= 10, medium heterogeneity, tested at X) where the rejection rate was outside of the

interval around .05 was only .0002 below the cutoff of .0457. Given that this occurred in
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1/30 or 3.33% of the conditions (tested at either X or Ca), it is possible that this result was
due to chance. Changing the starting seed of the random number generator saw the
rejection rate for this condition fall back within the range of sampling error at 5.03%,

supporting the hypothesis that this aberrant finding was due to chance.

However, when the test occurred at ux, this error term produced rejection rates
that were always significantly below .05 for the medium, high, and extreme heterogeneity

of regression conditions.

Error Term: Unweighted. This error term very rarely produced rejection rates
within sampling error of .05 for any of the conditions. In fact, of the 45 conditions where

this error term was evaluated, only seven were neither liberal nor conservative.

Rejection Rates for Three-Group., Null Conditions

The rejection rates for the three-group conditions are presented in Table 8. As
previously mentioned, rather than an omnibus test, the decision was made to test a
contrast comparing the adjusted mean of one group to the average of the remaining two
groups. Where heterogeneity of regression was present, the two adjusted means averaged

together came from the groups with equal population regression slopes.

The pattern of results observed for the three-group simulations mirrored that of
the two-group simulations almost exactly. Due to this similarity, the specifics of the

findings will not be discussed in detail.

In summary, it was clear that using UNW as an error term would be ill-advised as

it consistently produced rejection rates outside of the bounds of sampling error: it was
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either too liberal for low and absent levels of heterogeneity of regression, or it was too
conservative for moderate to extreme levels. Similarly, using the mean square for the
interaction as an error term consistently produced rejection rates significantly below the
nominal .05 even at the lowest levels of heterogeneity. On the other hand, the error terms
based on an ANCOHET model (HET columns in Tables7 and 8) and an ANCOVA
model (ANC columns in Tables 7 and 8) produced much more acceptable rejection rates
across all samples sizes and when evaluated at both X and the center of accuracy. As
mentioned previously, and will be discussed further below, the fact that the ANCOHET
error term produced rejection rates significantly greater than .05 for tests at these points
other than ux for high and extreme levels of heterogeneity of regression is not necessarily
a problem. On the other hand, the fact that ANCOVA produced rejection rates
significantly below .05 when tests were conducted at ux could be regarded as

problematic.

Power Results for Two-Group Conditions

Power results for the two-group conditions are presented in Table 9. Deviating
from the methods used in previous studies upon which the current research is based (i.e.,
Harwell & Serlin, 1988), power will be discussed even in cases where rejection rates

were significantly greater than .05.

Error Term: ANCOHET Error. Regardless of sample size, extent of heterogeneity

of regression, or the location at which the test was conducted, power based on analyses
using the ANCOHET error term saw high levels of power. Despite the attempt to adjust
effect size so that power would be approximately the same for each level of sample size,

power increased slightly as sample size increased. Additionally, holding sample size



35

constant, for tests conducted at X or at C,, power decreased slightly as heterogeneity of
regression increased, with the only substantial decrease occurring in the jump from high

to extreme levels. However, these decreases only saw a loss in power of approximately

4%.

Error Term: Interaction. As predicted, using the mean square from the interaction

between the grouping variable and covariate produced extremely low levels of power.
When there was no heterogeneity of regression, where power was the highest, none of the
conditions had power levels over 20% (highest 18.21%). Interestingly, within each level
of heterogeneity of regression, power decreased as sample size increased. Also, holding
sample size constant, increasing heterogeneity was associated with substantial decreases
in power. These results were consistent across all three locations at which the test was

conducted.

Error Term: ANCOVA. When heterogeneity of regression was absent, low,

medium or even high, using ANCOVA as an error term produced power levels that were
high and similar to those seen in simulations using the ANCOHET error term. It was only
for extreme levels of heterogeneity that power levels were lower (between 59-60%).
Again, within each level of heterogeneity of regression, power increased as sample size

increased.

Error Term: Unweighted. When heterogeneity of regression was absent or low,

using UNW as an error term produced power that was slightly less than the ANCOHET
and ANCOVA error terms though still relatively high. However, power dropped off

steeply when heterogeneity was medium, high and extreme. Within each level of



36

heterogeneity of regression, power decreased as sample size increased. Also, holding
sample size constant, increasing heterogeneity was associated with substantial decreases
in power. These results were consistent between all three locations at which the test was

conducted.

In summary, using the error terms from both the ANCOHET model and the
ANCOVA model (ANC) produced consistently high levels of power. The only notable
exception was for the ANCOVA error term under extreme levels of heterogeneity of
regression where there was lower power. These findings were consistent regardless of
where the test was conducted. The other two error terms produced power results that

were considerably lower.

Power Results for Three-Group Conditions

As previously mentioned for the rejection rates, the pattern of results for the three-
group power scenarios was nearly identical to that of the two group conditions. Those
results are presented in Table 10. The only notable differences between the two- and
three-group cases occurred when the mean square for the interaction was used as an error
term. For these cases, power for the three-group simulations was nearly twice what it was
for the two-group condition. This is likely due to the change in error degrees of freedom.
In the three group case, dferor doubled from one to two, explaining this increase in power
as a result of doubling the degrees of freedom. However, power was still low, with a
maximum of just below 35% when no heterogeneity of regression was present, and

quickly declined as the extent of heterogeneity increased.
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Confidence Interval Coverage

Confidence interval coverage for the two- and three-group conditions is presented
in Tables 11 and 12, respectively. Given the similarity in coverage rates, the results will
be covered simultaneously. Across the board, the population parameter was captured
within the confidence intervals a high proportion of the time (range: 88.0 - 100%), with a
majority of the coverage rates falling above 93%. The location at which the test of
between group differences was conducted did not impact the coverage rates. Under high
and extreme levels of heterogeneity of regression, using mean square interaction or UNW

as an error term produced confidence intervals that often had 100% coverage rates.

Even under high and extreme levels of heterogeneity of regression, the confidence
interval coverage rates for the ANCOHET approach were between 94% and 96% for the
two-group case and between 91% and 93% for the three-group case. This is in contrast to
what might have been predicted based on Chen (2006)’s suggested increment to the
ANCOHET standard error based on its purported under-estimation particularly at high
levels of heterogeneity of regression. When this increment was implemented, as
presented in Tables 13 and 14, coverage rates increased to 95% to 97% in the two-group
scenario and between 91% to 95% in the three-group scenario. Thus, in the two-group
case where the ANCOHET procedure was working very well, the Chen procedure
inflated the coverage of 95%, and in the three-group case where the ANCOHET coverage
was a little low, the only case in which the chen increment improved the coverage

substantially was in the case of extreme heterogeneity of regression.
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Confidence Interval Accuracy

Two Groups. Even though the confidence interval coverage rates were high across
the board, it does not mean that each error term performs similarly in capturing the true
population difference in adjusted means with equally narrow intervals. To evaluate this
feature of the results, the average confidence interval width was also calculated, and the
results are presented in Tables 15 and 16 for the two- and three-group cases, respectively.
The impact of sample size within levels of heterogeneity was consistent and unsurprising.
When group sizes increased, the accuracy of the confidence intervals increased. It was
only under extreme levels of heterogeneity of regression and only when using mean
square interaction as the error term that the impact of increasing sample size reversed:

increasing sample sizes then was associated with wider confidence intervals.

Both the ANCOHET error term and ANCOVA produced similar confidence
interval accuracy for all combinations of test location and of sample size, and for most
levels of heterogeneity of regression. The only situation where the accuracy deviated
slightly was for extreme heterogeneity, where ANCOVA produced confidence intervals
that were 1.25 times as large. It makes sense that CI widths would be smaller for
ANCOHET than ANCOVA at high levels of heterogeneity of regression since the mean
square error from the ANCOHET approach is smaller than the mean square error based
on ANCOVA as a result of allowing for heterogeneity of regression. Tables 17 and 18
present additional CI widths for the two and three group conditions, respectively, where
the Chen (2006) increment to the ANCOHET standard errors was employed. The Chen

adjustment produced confidence interval widths that fell in between the widths based on
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the ANCOHET and ANCOVA error terms under extreme levels of heterogeneity of

regression.

For conditions where heterogeneity of regression was either low or absent,
confidence intervals based on the UNW error term had similar widths to both ANCOHET
and ANCOVA. This changed for medium, high, and extreme levels of heterogeneity of

regression where the intervals based on UNW were 1.1 to 7.7 times as large.

The largest widths were seen for confidence intervals constructed using the mean
square interaction. As the level of heterogeneity of regression increased, confidence
intervals became wider under this method. When heterogeneity of regression was absent,
confidence intervals using the interaction resulted in widths that were 4.9 times as large
as the ANCOHET and UNW methods when n = 10. This difference in accuracy reached
its largest level under extreme heterogeneity of regression when n = 100, where the

widths were 69.1 times as large.

Three Groups. The pattern of confidence interval accuracy was very similar for
the two- and three-group cases. The main difference is that the three-group conditions
were more accurate, due in large part to the addition of an extra group increasing the total
sample size. The largest increase in accuracy was seen for confidence intervals
constructed using the mean square interaction as an error term. These confidence interval
widths were anywhere from 33% to 25% as large in the three-group compared to the two-
group condition. However, they were still anywhere from 1.9 to 19.4 times as large as

the confidence intervals constructed by either the ANCOHET or the ANCOV A methods.
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In summary, both the ANCOHET and ANCOVA error terms produced
confidence intervals with the highest accuracy (i.e., smallest widths). This was consistent
regardless of the location at which the test was conducted, sample size, and extent of
heterogeneity of regression. While the UNW confidence intervals produced similar levels
of accuracy to the other two methods under low levels of heterogeneity, they quickly
became less accurate as heterogeneity of regression increased. By far, using the mean

square interaction as an error term produced the least accurate confidence intervals.

Average Standard Error Compared to True Standard Deviation

Two Groups. Tables 19, 20 and 21 present comparisons in the two-group
scenarios of the average standard error for each denominator error term to the true
standard deviation for tests conducted at X, C,, and u, respectively. As mentioned
previously, the true standard deviation is the standard deviation of the difference in
estimated conditional means across the 10,000 simulations. Though not presented in any
tables, the average of these parameter estimates was essentially zero for all combinations

of heterogeneity of regression and sample size.

For tests conducted at either X, or Ca, the average standard errors for both
ANCOHET and ANCOVA were nearly identical to the true standard deviation when the
heterogeneity of regression was medium, low, or absent. Specifically, expressing the
average standard error as a percentage of the true standard error, the mean percentage
across conditions for tests at X was 99.1% for ANCOHET and 99.5% for ANCOVA, and
for tests at Ca the mean percentage was 98.5% for ANCOHET and 99.1% for ANCOVA.

When heterogeneity was high or extreme, the average standard error from an ANCOVA
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error term was a close estimate of the true standard deviation (mean percentages were
99.3% at X and 99.0% at C,). On the other hand, the ANCOHET error term
underestimated the true standard deviation by 4% to 6% when heterogeneity of regression
was high, and this number increased to over 20% when heterogeneity was extreme. The
Chen increment to the ANCOHET standard error was not enough of an adjustment to
improve the average standard errors, as it underestimated the true standard error by 11%

to 13% when heterogeneity of regression was extreme.

Alternatively, when the test was conducted at w.x, as shown in Table 21, the
average standard errors from the ANCOHET approach were close the true standard
deviations, even at high levels of heterogeneity of regression. Specifically, ANCOHET
standard errors averaged 97.5% of true standard deviations for no, low and medium
levels of heterogeneity, and averaged 97.2% of the true standard deviations for high and
extreme levels of heterogeneity. Conversely, the ANCOVA standard error was an
overestimation of the true standard deviation when heterogeneity was extreme, with the

ANCOVA average standard error being 118% to 124% of the true standard deviations.

Neither the average standard errors based on using the interaction as an error term
or using the UNW provided good estimates of the true standard deviation, regardless of
where the test was conducted. When heterogeneity of regression was absent, the true
standard deviation was underestimated regardless of sample size. When heterogeneity of
regression was high or extreme, the average standard errors from both of these errors

term overestimated the true standard deviation.
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Three Groups. Tables 22, 23 and 24 present the three-group comparisons of the
average standard error for each denominator error term to the true standard deviation for
tests conducted at X, C,, and uy, respectively. These results largely mirror what was
found for the two-group scenario. That is, for tests conducted at either X, or Ca, the
average standard errors for both ANCOHET and ANCOVA were again nearly identical
to the true standard deviation (i.e., the average standard errors were 98% to 99% of the
true standard deviation) when the heterogeneity of regression was medium, low, or
absent. But when the heterogeneity of regression was high or extreme, the average
standard error from an ANCOVA error term was still a close estimate of the true standard
deviation (98% to 99% of the true value) whereas the ANCOHET underestimated the
true standard deviation particularly when heterogeneity was extreme. For tests at ux , as
had been seen in the two-group case, the ANCOHET average standard error was again
very accurate for all levels of heterogeneity, whereas the ANCOVA average standard

error badly overestimated error when heterogeneity was extreme.
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DISCUSSION

As mentioned in the introduction, ANCOV A was first introduced by Ronald
Fisher in the early 20" century in the field of agriculture as a method of controlling for
variables that were not part of the experimental design, but were nonetheless expected to
be related to the outcome of interest (Eden & Fisher, 1927; Fisher, 1932). One of this
method’s main benefits is to increase the precision of the treatment effect estimate, also
increasing power to detect such an effect, by accounting for these individual differences.
In the area of psychological research, where individual differences often account
substantially more of the variability in outcomes than between treatment differences,
ANCOVA provides an often needed boost to power and precision and has been widely

adopted.

Early on, some researchers stressed the importance of assuming that between-
group regression slopes were homogenous, with some going so far as referring to it as
“this key assumption” (Kirk, 1995, p. 724). Others have gone so far as to imply that
ANCOVA should be abandoned when heterogeneity of regression exists (Keppel, 1973,
p. 484, 499). Fortunately, approaches accommodating heterogeneous slopes were
developed. The Johnson-Neyman technique (D’ Alonzo, 2004; Johnson & Neyman, 1936)
provided researchers with guidance on how to determine “regions of significance”
specifying where on the X continuum there were significant differences between groups,
but this procedure is computationally tedious and not widely implemented in standard
statistical software. Rogosa’s work in the area of ANCOHET, particularly his
development of the “pick-a-point” procedure, made the problems previously inherent to

heterogeneity of regression seem more approachable, particularly with more recent
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guidance on where to conduct the test in lieu of a priori meaningful values (Aiken &
West, 1991). Due to the increasing acknowledgement of its importance in research across
disciplines, multiple online utilities have been developed to implement the Johnson-
Neyman technique and the pick-a-point procedure (e.g., Hayes & Matthes, 2009;

Preacher et al., 2006).

Of direct relevance to the current dissertation, Rogosa (1980) noted that previous
simulation studies investigating heterogeneity of regression in the context of ANCOVA
were flawed. In particular, he noted that some of the simulations violated the assumption
of equal residual variances. In the context of a randomized study, where sz will be equal
in the long run between groups, whenever the interaction term is nonzero, if the
variability of the Y scores is homogeneous, then heterogeneity of regression will mean the
residual variances will necessarily be unequal between groups. Additionally, he

highlighted the need for an explicit definition of a treatment effect.

Whereas the work of Harwell and Serlin (1988) made improvements over prior
simulation studies, their work had several drawbacks that the current study sought to
ameliorate. As covered more extensively in Appendix D, they stated in their Method
section that standardized regression coefficients were employed when simulating data.
However, based on preliminary work for the current study, it appears as if they actually
used unstandardized coefficients, because using standardized coefficients with
heterogeneity of regression as extreme as they reportedly used (B1=0.2, B2=0.9, B3 =
0.9) would have resulted in significantly higher rejection rates. This point is important,
because using standardized regression coefficients allows other researchers to compare

the heterogeneity of regression they are experiencing in a way that does not depend on
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the scale of the variables they are investigating. The current study uses standardized
regression coefficients in denoting the different conditions of heterogeneity of regression
and makes the contribution of characterizing the magnitude of heterogeneity of
regression using multiple effect sizes measure commonly used (e.g., Cohen’s ¢, f°; see

Table 5).

Additionally, previous simulation work in the area had a limited view of Type |
error rates in the presence of heterogeneity of regression. In null conditions where
rejection rates were above the bounds of sampling error, Harwell and Serlin (1988) did
not report power levels stating that “liberal Type I error rates render the interpretation of
power values problematic” (p. 277). Chen (2006) took the same approach, as evident in
his Table 1 Scenario II. However, it can be argued that these are not actually Type I error
rates in that, given the presence of heterogeneity of regression, there is some true effect at
every point along the X scale except where the lines cross, which in the current
simulations was at ux. Because tests are typically conducted at a central tendency value
based on the sample, and this value rarely will be exactly the population value, one would
expect higher rejections rates than the nominal .05 due to the presence of a quite small
but true effect. To address this issue, in addition to reporting power for non-null
conditions regardless or rejection rates for the null conditions, the current study focused

on confidence interval coverage rates and widths as a way of comparing error terms.

The main impetus motivating the current study is the limited understanding of the
impact of a random covariate in the context of ANCOV A with heterogeneity of
regression. The main idea is exemplified by Figure 1, where the difference in adjusted

means in a thrice replicated study is impacted by the obtained sample mean on the
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covariate. Crager (1987) addressed this in the context of a standard ANCOVA, and
concluded that a random covariate will have little impact. On the other hand, other
authors based on their simulations recommended different approaches than using the
ANCOHET model to test for the treatment effect (Chen, 2006; Harwell & Serlin, 1988).
As argued in Appendix B, theory suggests Rogosa’s “safer ANCOVA” should be liberal,
as confirmed by Harwell and Serlin’s results, when dealing with heterogeneity of
regression and a random covariate, yet it is still unclear how the standard ANCOVA and
ANCOHET would fare with varying degrees of heterogeneity of regression, setting the

stage for the current dissertation.

The current study makes the contribution of examining the impact of two separate
factors. The first was to clarify how the decision of where to conduct the test impacts
rejection rates and power. For the location of the test, the options were: ux, which is
typically unknown; X, the value most likely to be used; and C,, where the distance
between regression lines is the same for ANCOVA and ANCOHET. The second
contribution involved determining the optimal error term to use. The first error term was
from an ANCOHET model where heterogeneous regression slopes were allowed. The
second error term was from a standard ANCOVA model that restricted the interaction to
be zero. The third error term took the traditional mixed models ANOVA approach and
used the interaction between the covariate and the grouping variable. Finally, the fourth
error term averaged the mean square from the ANCOHET model and the interaction.
This fourth error term was included because it involved a term that was thought to be too

liberal (ANCOHET) with one that was thought to be too conservative (interaction).
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Studyv Findings

The goal of this project was to examine the performance of several different error
terms in assessing between-group differences in ANCOV A models where heterogeneity
of regression was present. The first error term, derived from a model allowing for
heterogeneity of regression, performed quite well across all levels of the factors of the
simulation. The rejection rates for the null conditions were as expected for no, low, and
medium levels of heterogeneity of regression, and only exceeded the nominal .05 in cases
of high and extreme heterogeneity of regression when tests were conducted at X or at Ca.
Using the ANCOHET error term also saw high power and confidence interval coverage
rates even in the presence of extreme heterogeneity of regression. Regarding the accuracy
of how well the parameter of interest was estimated (i.e., mean difference), the
ANCOHET error term resulted in the narrowest confidence intervals under extreme
heterogeneity of regression, and was similar to the ANCOVA error term under the other
levels. When heterogeneity of regression was absent, low, or medium, the average of the
ANCOHET standard errors was 99% of the true standard deviation based on the standard
deviation of estimated conditional means across the 10,000 replications. When
heterogeneity of regression as high or extreme, however, the ANCOHET standard error
was only 87% of the true standard deviation, and this value dropped below 80% when
heterogeneity was extreme, implying that the small confidence interval widths are too
small. While these results validated to some extent Chen’s (2006) claim that the
conventional ANCOHET error term would underestimate the impact of the random
covariate, Chen’s suggested increment to the ANCOHET standard error made little

difference under lower levels of heterogeneity of regression, and did not bring the
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average standard error close enough to the true standard deviation when heterogeneity of
regression was extreme. Even though the confidence interval coverage rate was high and
the interval widths were narrow, comparing the average standard error to the true
standard deviation suggests that the standard error based on the ANCOHET approach is
an underestimation of the variability over replications in the estimated treatment effect at

either X, or Ca , particularly when heterogeneity of regression is extreme.

The second error term, involving the interaction between the grouping variable
and the covariate saw rejection rates within sampling error of the nominal .05 only in
cases of no heterogeneity of regression (the only situation where errors are true Type |
errors), and became very conservative when any level of heterogeneity of regression was
present and increasingly so as sample size increased making it more likely this error term
would be inflated over residual error by the presence of the interaction in the population.
Power was low when this error term was used, which was unsurprising given the degrees
of freedom for the error term was either one or two depending on the number of groups
involved in the analysis. Confidence interval coverage rates of the true population
difference were high, but this was mainly due to the fact that the width of the confidence

intervals was so large.

The third error term, derived from a standard ANCOVA model, performed
similarly to the ANCOHET error term. Its use resulted in rejection rates within sampling
error of .05 regardless of the extent of heterogeneity of regression under the conditions of
no group difference when tests were conducted at X or at Ca. In these cases the
overestimation of residual error was offset by the difference in predicted means not being

exactly zero. However, when the test was conducted at ux the ANCOVA procedure
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resulted in rejection rates that were significantly below the desired .05 level for all cases
where there was any heterogeneity of regression, except in the case of low heterogeneity
of regression combined with the smallest sample size. Using this error term resulted in
high levels of power, declining only when heterogeneity of regression was extreme. This
decline is to be expected inasmuch as using a single common slope will necessarily
produce an overestimate of residual error when extreme heterogeneity of regression is
present. Additionally, high confidence interval coverage rates were coupled with high
accuracy (i.e., narrow confidence interval widths) generally, with widths noticeably
exceeding those of the ANCOHET only in the case of extreme heterogeneity where
ANCOHET underestimates the true standard deviation. Use of the ANCOVA error term
resulted in average standard errors that were 99% of the true standard deviation even at

extreme levels of heterogeneity of regression.

The final error term, computed as an average of the mean square error from the
ANCOHET model and the mean square due to the interaction, performed poorly in nearly
all conditions. It was either too liberal or too conservative depending on the extent of
heterogeneity of regression, and it produced low power for even medium levels of
heterogeneity. While confidence interval coverage rates were high, the accuracy of the

parameter estimates was low

Recommendations for Dealing with Heterogeneity of Regression

Typically, when analyzing data using a two-way ANOVA, even if the interaction
between factors is non-significant, it is often left in the model regardless. One potential
argument for this analytic method is that just because the interaction is non-significant in

the sample does not mean that it is null in the population. Additionally, power analyses
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typically focus on main effects, and interaction tests are generally underpowered. The
same argument could be made for analyzing ANCOVA data, regardless of whether the
interaction term is significant. When testing for an interaction in the context of
ANCOVA, one suggestion is to use a larger value of a than one typically uses (e.g., o=
.10 or .25) in order to avoid a Type II error (Kirk, 1995). This makes sense given a

typical study’s propensity to be underpowered when testing such effects.

While incorporating this interaction into an analysis has the impact of removing
degrees of freedom from the error term, its impact is likely to be negligible. Since a
continuous covariate only accounts for one degree of freedom, its interaction with a
grouping variable will only remove from the error term the total number of groups minus
one (i.e., a — 1 where a is the number of groups). Even in the current student’s smallest
sample, where a = 2 and n = 10, the difference in Firiticat between the ANCOVA and
ANCOHET models is 0.04. The impact of this loss of a degree of freedom on power will

only diminish as a study’s sample size increases.

However, the literature review of empirical studies suggested that the vast
majority of studies finding heterogeneity of regression report either a small or medium
level of heterogeneity of regression. In such cases, the current dissertation indicates
that using an ANCOHET model that allows for heterogeneity of regression to conduct a
test of the treatment effect near the center of the distribution of covariate scores could be
used. At these levels of heterogeneity of regression, with nominal 95% confidence
intervals, the ANCOHET approach achieves coverage of approximately 95% in the two-
group case and between 91% to 93% in the three-group case. Additionally, the average

standard errors are 99% of the true standard deviation of the estimated difference in
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conditional means across replications. On the other hand, when heterogeneity of
regression is large or extreme, using an error term based on ANCOVA would be the
recommended approach. In these cases, the degree of overestimation of residual error
associated with using a single slope approximately matched the additional variability
induced by the random covariate and consequently resulted in average standard errors
that were quite close to the true standard deviation. Although differences between the
ANCOHET and ANCOVA methods for assessing treatment effects for an "average"
individual might be regarded for some practical purposes as inconsequential, the
ANCOHET procedure is recommended for general use based on levels of heterogeneity
of regression that are most likely to be encountered in practice, that is, where the extent
of heterogeneity of regression corresponds to a medium effect size or less. In such cases,
ANCOHET’s standard error approximates well the true standard deviation of estimated
differences, and in addition achieved greater power and narrower confidence intervals
than ANCOVA in general. In the rare case of high or extreme heterogeneity of
regression, using ANCOVA to test for the main effect of treatment is recommended as its
overestimation of residual error was in the current simulations demonstrated to be
approximately the correct adjustment needed to match the increased true standard
deviation in treatment effects over replications resulting from the presence of a random

covariate.
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X.(1) X. () X. () =

Figure 1. Reproduces Fig 3.1 from Maxwell et al. (1993). This figure illustrates the
impact of having a random covariate in the presence of heterogeneity of regression across
three replications (indicated by the number in parentheses). Each replication has identical
slopes for the experimental condition, the control condition, and also unadjusted group
means on Y. It is therefore the variability in the group means on X that results in different
estimates of the adjusted treatment effect.



Table 1.
Simulation Design
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Factors

Levels

Number of groups
Sample Size Per Group

Extent of Heterogeneity of Regression

Effect Size

Type of Test for Group Main Effect

2,3
10, 30, 100

- None

- Low (r=25, .35)

- Medium (r = .15, .45)
- High (»=.05, .55)

- Extreme (r = -.20, .80)

Null, Non-Null?

- At Population Grand Mean
- At Sample Grand Mean
- At Center of Accuracy

4 See section regarding power for non-null simulation conditions



Table 2.

Effect Sizes and Non-Zero Means Used in Non-Null Simulation Conditions
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Two-Group Case

Three-Group Case

Effect Size Effect Size
n Mean f d n Mean f d
10 1.33473  0.66736 1.27324 10 1.12725 0.53139 1.07532
30 0.73607  0.36804 0.70216 30 0.63356 0.29866 0.60437
100 039816  0.19908 0.37982 100 0.34424 0.16228 0.32838



Table 3.
Simulation Studies Investigating ANOV A Models with Heterogeneity of Regression

Unequal
Article Heterogeneity Homogeneity  Groups Sample Size n Outcome
Power,
Harwell and Serlin Type I
(1988) 2,.9 Yes 3 10, 30 Yes Error
Power,
Type I
Levy (1980) 3,.7,.1,.7; .0, .8;-.1,.9; -3, .9 Yes 2 10, 20, 30 Yes Error
Power,
Type I
Hamilton (1977) Mean Slope: .3 (.2, 4; .1, .5; .0, .6;-.1,.7; -2, .8;-.3,.9) Yes 2 10, 20, 30 Yes Error
Mean Slope: .4 (.3, .5; .2, .6;.1,.7; .0, .8;-.1,.9)
Mean Slope: .5 (4, .6; .3,.7; .2, .8;.1,.9)
Mean Slope: .6 (.5, .7; .4, .8; .3, .9)
Mean Slope: .7 (.6, .8; .5, .9)
Amount of heterogeneity manipulated so that the
difference in slopes would be detected by the ANCOVA Power,
Klockars and Beretvas  tests of slopes 20, 50 or 75% of the time. Mean slope was Type I
(2001) always 1. Yes 3,5 12, 36 No Error
Ex. .04, 1, 1.96;-.65,1,2.65;-1.25,1,3.25
Power,
2,.6;.0,.8;.3,.7,.1,.9; 4, .6;.3,.9;,.5,.9; .3,.5, .5 .7 Type I
Wu (1984) .6, .8 Yes 2 10, 20, 30 Yes Error
Power,
Equal n: Type 1
Chen (2006) 2,.8 Yes 2 10,20, 50 Yes Error
Unequal n:
20, 10; 50,
25;50, 40

v9



Table 4.
Empirical Findings of Heterogeneity of Regression

Observed Heterogeneity of
Group Heterogeneity Interaction Cohen’s  Regression Effect

Study s Sample Size rjor f; bi q Size Category
Winkins et al. (2007) 21%’22015’ 0.77.0.68, 0.51 0.36 Medium
Blaire et al. (2015) 2 963 0.21, -0.06 0.27 Medium
Cheval et al. (2015) 2 41, 41 -0.156 0.17 Small
Hostinar, Johnson and Gunnar (2015) 2 41, 41 -0.17,-0.07 0.10 Small
Friesen et al. (2015) Study 1 2 103 0.12 0.13 Small
Friesen et al. (2015) Study 2 2 179 0.24 0.27 Medium
Song, Over and Carpenter (2015) 2 32,32 0.33, 0.09 0.25 Medium

-0.28; 0.31; Medium;
Stock et al. (2015) Study 1 2 85, 88 0.26 0.29 Medium

-0.21; 0.23; Medium;
Stock et al. (2015) Study 2 2 111,111 0.30 0.33 Medium
Trautwein et al. (2015) Study 1 2 2,557 -0.22 0.24 Medium
Trautwein et al. (2015) Study 2 2 415 -0.20 0.22 Medium
Crotwell (2016) 2 79, 89 0.557,0.424 0.18 Small
Ho, Kteily and Chen (2017) 2 424 0.28 0.31 Medium
Matos et al. (2017) 2 170 -0.101 0.11 Small
Rudolph, Davis and Monti (2017) 3 338 0.12,-0.02, -0.14 0.20 Medium

0.26, -0.08; 0.35; Medium;

Lam et al. (2018) 2 172 0.11,-0.19 0.30 Medium
Simulation of Sturge-Apple et al.
(2016) by Maxwell et al. (2018) 2 69, 71 0.255,-0.235 0.50 Large
Rosenthal's Pygmalion data re- 2 64, 246 0.781, 0.750 0.08 Small

analyzed by Maxwell et al. (2018)
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Reid et al. (2018) 2 372 0.43,0.07 0.39 Medium
Simons et al. (2018) 2 409 0.137, 0.027 0.11 Small

Note. Extent of heterogeneity of regression based on Cohen’s g was defined as follows: Small: 0 - .2; Medium: .2 - .4; Large: .4 -
.6; Extreme: > .6, with the lower limit of the intervals being inclusive of the value.

Studies with multiple groups but only one sample size did not involve randomization to treatments, but created groups based on
either median splits or evaluating at the mean and/or the mean + 1 standard deviation.

Multiple examples of heterogeneity of regression and the corresponding effect size measure within one study are separated by a
semicolon. If an article included multiple experiments, each is presented on a separate row of the table.

99



Table 5.

Two-Group Simulation Standardized and Raw Regression
Coefficients and Associated Effect Sizes

Standardized

Coefficients Raw Coefficients q f?

B1 B2 bl b2
0.250 0.350 0.258 0.374  0.110  0.003
0.150 0.450 0.152 0.504 0.334 0.031
0.050 0.550 0.050 0.659  0.568  0.093
-0.200 0.800 -0.204 1.333 1.301 0.642

Table 6.

Three-Group Simulation Standardized and Raw Regression Coefficients and
Associated Effect Sizes

Standardized Coefficients Raw Coefficients q f?
P1 B2 B3 bl b2 b3

0.250 0.350 0.350 0.258 0.374 0.374  0.110 0.003

0.150 0.450 0.450 0.152 0.504 0.504 0.334 0.028

0.050 0.550 0.550 0.050 0.659 0.659  0.568 0.082

-0.200 0.800 0.800 -0.204 1.333 1.333  1.301 0.525



Table 7.

Rejection Rates for Two-Group, Null Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 .0483 .0502 0471 .0542 0475 .0520 0478  .0589* 0471 .0523 0480 .0585%*
30  .0481 .0492 .0483  .0802* .0491 .0495 .0491 .0814* .0491 .0495 .0493  .0810*
100 .0514 .0512 0516 .0852%* .0510 0511 .0509 .0850* .0510 0512 0507 .0848%*
Low 10 .0483 .0459 .0475 .0542 .0471 .0468 .0475  .0580%* .0465 .0469 0477  .0583*
30 .0481 .04521  .0480 .0754* .0489 04547 0487  .0759* .0494 .0454+ 0490 .0754%*
100 .0514 .03867 .0508 .0689* .0519 .03877 0516 .0697* 0518 .0387+ 0515 .0700%*
Medium 10 .0483 .0381F .0449F .0483 .0487 .0398+  .0455+ .0515 0478 .03987 0458  .0512
30  .0481 .0205F .0451fF .0438% .0518 02117 .0489  .0460 .0529 02127 .0493 .0460
100 .0514 .0021F  .0481 .01037 .0533 00217 .0510 .0111% .0535 00217 .0504 .01137
High 10 .0483 .0226F .0395F .0342% .0538 .02347 .0470  .03917% .0544%* .02357 .0473  .0400+
30 .0481 .0043F .0394F .01267 .0590%* .00437 .0483  .01517% .0594%* .00437 .0488  .0150%
100 .0514 .0000fF .0418fF .00067 .0602* .00007 .0500 .00067 .0603* .00007 .0504 .0007%
Extreme 10 .0483 .0009%F .0185% .0048% .1027%* .00107 0466  .00787 .1094* 0011+ .0506 .0085+%
30 .0481 .0000fF .0135f .00007 .1139* .00007 .0472  .00007 d153* .00007 .0488  .0000t
100 .0514 .0000F .0140%1 .0000% .1195% .00007 .0515 .00007 .1195%* .00007 .0521  .0000+

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSiesiaual from ANCOHET and
MSa « x; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of
rejections across 10,000 simulations.

* signifies value significantly above sampling error
1 signifies value significantly below sampling error
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Table 8.

Rejection Rates for Three-Group, Null Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 .0489 .0486 .0488  .0540 .0470 .0491 0472 .0544 .0473 .0496 .0473  .0548*
30 .0463 .0476 .0463  .0684* .0465 .0484 .0468  .0688 .0466 .0484 .0470  .0689*
100 .0479  .0483 .0476  .0716* .0477 .0486 .0477  .0718 .0477 .0486 .0475  .0719%*
Low 10 .0489 .0459 .0486  .0524 .0473 .0465 .0476  .0536 .0475 .0464 .0485  .0536
30 .0463 .04001 .04531 .0630* .0475 .0403+ 0474 .0623* .0476 .0404+ 0474  .0624*
100 .0479 .0289f  .0472  .0525 .0484 0291+ .0479  .0523 .0483 0291+ 0475 .0524
Medium 10 .0489 .0357F .0461 .04367 .0501 .0372% .0476  .0460 .0510 03737 .0478  .0461
30  .0463 .01861 .04361 .0364f .0501 0186+ .0475  .0387F .0507 0186+ .0475  .0385%
100 .0479 .0010F .0445% .00727 .0523 .0010F 0491  .0074+ .0524 .00107 0491  .0074%
High 10 .0489 .0191F .0412F .02887 .0564*  .02007F .0484  .0350t .0572% 02017 .0496  .03527
30 .0463 .00341 .0381F .0099t 0567*  .0035+ .0488  .0125F .0564* .0035+ .0487  .0125+%
100 .0479 .0000F .0393fF .00027 .0589*  .0000F .0483  .0002+ .0594* .00007 .0485  .0002}
Extreme 10 .0489 .0014f .0187f .00327 .1016*  .0017F .0490 .0076t .1016* .00187 .0501  .00817
30  .0463 .0000f .01491 .0000f .1078*  .0000+ .0493 0000} .1085* .0000+ .0490  .0000+
100 .0479 .00001 .0150f .00007 .1083*  .0000% .0499  .0000t .1089* .00007 .0501  .0000%

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSiesiaual from ANCOHET and
MSa « x; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of
rejections across 10,000 simulations.

* signifies value significantly above sampling error
T signifies value significantly below sampling error
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Table 9.
Power for Two-Group Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 .7500 .1772 7523 7103 7752 .1814 7769 7318 7780 1821 1796 7336
30 7844 1737 7843 7742 7925 1753 7933 7796 7939 1753 7940 7797
100 .7994 .1725 7992 7952 .8023 1733 8026 7977 .8025 1733 8027 7973
Low 10 .7500 .1692 7510 7065 7727 1730 7754 7236 7770 1740 7782 7251
30 7844 1573 7831 7474 7952 .1580 7943 7530 7958 1581 7948 7525
100 .7994 .1304 7985 7197 .8020 1305 8017 7205 .8015 1305 8013 .7206
Medium 10 .7500 .1341 7424 6486 7706 1392 7633 .6636 1745 1397 7668  .6683
30 .7844 .0785 7746 5749 7917 .0789 7829 5794 7910 .0790 7834 5801
100 .7994 .0093 7904 2709 1977 .0093 7894 2732 1972 .0093 7884 2730
High 10 .7500 .0844 7235 5259 7635 .0866 7422 5463 1677 .0875 7478 5489
30 .7844 .0146 7578 3118 7835 .0146 7587 3173 7855 .0146 7610 3179
100 .7994 .0000 7739 .0257 .7906 .0000 7640 .0293 .7906 .0000 7650  .0292
Extreme 10 7500 .0043 5781 .1076 7266 .0047 5881 .1338 7315 .0049 5895 1376
30  .7844 .0000 .6090  .0010 7427 .0000 5931 .0028 7426 .0000 5946 .0028
100 .7994 .0000 .6255  .0000 7486 .0000 5995  .0000 7475 .0000 5991 .0000

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOV A error; UNW = Unweighted average of MSiesiqual from ANCOHET and
MSa xx; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Table entries give the proportion of rejections

across 10,000 simulations.
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Table 10.
Power for Three-Group Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 .7481 .3334 7504 7232 7633 .3444 7653 7368 .7640 .3446 7674 7371
30 7852 3411 7847 7718 71872 3454 7873 7745 7874 3454 1876 7747
100 .7950 .3569 7955 7855 7975 3582 71974 7873 7973 3585 7974 7872
Low 10 7481 .3242 7505 7177 7634 3347 7653 7286 7647 .3345 7669 7307
30 7852 3149 7837 7552 .7893 3181 7872 7569 7891 3180 7872 7568
100 .7950 .2506 7941 7270 7975 .2509 7964 7273 7974 2511 7965 7273
Medium 10 .7481 .2563 7430 6708 7591 2639 7548 .6797 7599 2647 7563 .6803
30 7852  .1531 7726160 7839 1550 7754 6220 7832 1550 7756 6214
100 .7950 .0159 7862 3397 7931 0161 7851 3430 7929 0161 7848 3431
High 10 .7481  .1528 7259 5723 7553 1601 7351 5824 7561 1611 7360 .5832
30 7852 .0315 7620 3775 7785 .0322 7557 3830 7781 .0322 1577 3831
100 .7950 .0001 7724 .0399 7852 .0001 7619 .0421 7859 .0001 7629 0421
Extreme 10 .7481 .0080 5938 .1366 7258 .0010 5883 .1684 7249 .0101 5898 1709
30 .7852  .0000 6312 .0033 7399 .0000 .6068  .0069 7404 .0000 6092 .0069
100 .7950 .0000 .6373  .0000 7478 .0000 6111 .0000 7493 .0000 6122  .0000

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOV A error; UNW = Unweighted average of MSiesiqual from ANCOHET and
MSa xx; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Table entries give the proportion of rejections

across 10,000 simulations.

IL



Table 11.

Confidence Interval Coverage for Two-Group Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 .9478  .9477 .9402 .9233 9525 .9462 9519  .9345 .9505 .9497 9502  .9337
30 .9506  .9483 .9487 .9143 9519 .9482 9524 9142 .9493 9476 9497 9175
100 .9459 9519 .9450 .9060 .9529 .9526 9533 9189 .9492 .9492 9489 9162
Low 10 .9506 .9503 .9448 .9304 9532 .9494 9534 9368 9491 .9494 .9501 .9320
30 .9449 9531 9427 9185 .9479 9519 9478 9187 9517 .9498 9519 9180
100 .9494 9665 .9496 .9288 .9497 .9644 9497 9285 .9520 9635 9520 9317
Medium 10  .9511 9590 .9473 9417 9523 9615 9534 9452 .9504 9591 9541 9428
30 .9524 9769 .9529 9518 9505 9767 9529 9571 .9484 .9809 9518  .9507
100 .9520 .9978 .9537 .9888 9518 .9983 9550  .9900 .9474 .9979 9513 9882
High 10 .9498 9770 9516 .9570 9456 .9720 9542 9583 .9501 9748 9585 9612
30 .9485  .9937 9570 .9836 9536 .9950 9625 9868 9501 .9953 9579 9872
100 .9487 1 9572 .9998 .9498 1 9594 9998 .9550 1 9632 .9998
Extreme 10 .9522  .9986 .9796 .9936 .9498 .9985 9807  .9958 9511 .9985 9825 9974
30 .9480 1 9841 1 9513 1 9858 1 .9520 1 9871 1
100 .9468 1 9838 1 9507 1 9858 1 .9508 1 9858 1

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOV A error; UNW = Unweighted average of MSiesiqual from ANCOHET and
MSa « x; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of times
the confidence interval contained the population value across 10,000 simulations.
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Table 12.

Confidence Interval Coverage for Three-Group Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 9213 9481 9081  .9011 9193 9514 9130 9101 9169 9490 9105  .9035
30 9218  .9552 9183  .8971 9174 .9484 9152 .8941 9173 .9499 9159  .8880
100 9142 9494 9128  .8923 9162 9541 9156  .8897 .9204 9508 9196  .8928
Low 10 9238 .9517 9135  .9077 9215 9530 9177 9137 9225 9529 9155  .9093
30 9231  .9561 9203 .9039 9118 9572 9097  .8957 9198 9532 9192 .9003
100 9157 9673 9146  .9066 9210 .9680 9210 9150 9176 9692 9174 9152
Medium 10 9194 9588 9109 9199 9242 9613 9218  .9206 9212 .9624 9198 9262
30 9163 9815 9164  .9393 9165 .9838 9184  .9380 9165 9836 9189  .9436
100 9173  .9990 9210 .9830 9172 .9992 9214 9842 9179 .9986 9215 9868
High 10 9215 .9770 9187  .9397 9168 9775 9219  .9406 9228 .9808 9280  .9476
30 9229 9973 9305  .9807 9191 9973 9289  .9780 9184 9974 9270  .9807
100 .9191 1 9285 9995 9231 1 9349 9994 9169 1 9291 9993
Extreme 10 .9243 9986 9600  .9923 9255 .9989 9648 9925 9210 9996 9634 9931
30 9226 1 9674 1 .9205 1 .9685 1 9239 1 9676 1
100 9164 1 9671 1 9170 1 9684 1 9191 1 9675 1

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOV A error; UNW = Unweighted average of MSiesiqual from ANCOHET and
MSa « x; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of times
the confidence interval contained the population value across 10,000 simulations.
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Table 13.

Confidence Interval Coverage for Two-Group Conditions, Including Chen’s Increment to ANCOHET Standard Error

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET ANC  Chen HET ANC Chen HET ANC Chen
None 10 .9478 9402  .9539 9525 9519 9587 .9505 9502 .9559
30 9506 .9487  .9524 9519 9524 9536 .9493 .9497 9518
100 9459 9450  .9468 9529 .9533 9538 .9492 .9489 .9497
Low 10 9506 .9448 9571 9532 9534 9591 9491 9501 9550
30 9449 9427 9465 .9479 9478 9506 9517 9519 9533
100 9494 9496  .9502 .9497 .9497 .9505 9520 9520 9529
Medium 10 9511 9473 9579 .9523 9534 .9590 9504 9541 .9589
30 9524 9529 9560 9505 9529 .9543 9484 9518 9532
100 .9520 .9537 .9542 9518 .9550 .9546 9474 9513 .9506
High 10 .9498 9516  .9613 9456 9542 9585 9501 9585 .9609
30 9485 9570  .9560 9536 .9625 9618 9501 .9579 9578
100 9487 9572  .9554 .9498 9594 9567 9550 9632 9612
Extreme 10 9522 9796  .9733 9498 .9807 .9706 9511 .9825 .9740
30 9480 9841 9716 9513 .9858 9725 9520 9871 9736
100 .9468 .9838  .9688 .9507 9858 9716 9508 9858 9714

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; Chen = Chen (2006)’s suggested
increment to the ANCOHET standard error; C, = Center of Accuracy. Refer to text for more information regarding
error terms used. Numbers in table represent the proportion of times the confidence interval contained the population

value across 10,000 simulations.
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Table 14.
Confidence Interval Coverage for Three-Group Conditions, Including Chen’s Increment to ANCOHET Standard Error

Location of Test

ll,tX X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET ANC Chen HET ANC Chen HET ANC Chen
None 10 9213 9081 .9259 9193 9130  .9251 9169 9105 9221
30 9218 9183 .9227 9174 9152 9186 9173 9159 9197
100 9142 9128 9146 9162 9156 9167 .9204 9196 .9208
Low 10 9238 9135 9282 9215 9177 9336 9225 9155 9265
30 9231  .9203 .9252 9118 9097 9137 9198 9192 9223
100 9157 9146 9163 9210 9210  .9213 9176 9174 9183
Medium 10 9194 9109 .9260 9242 9218 9312 9212 9198 9296
30 9163 9164 9211 9165 9184 9253 9165 9189 .9208
100 9173 9210 .9213 9172 9214 9211 9179 9215 9210
High 10 9215 9187 .9321 9168 9219 9287 9228 .9280 9356
30 9229 9305 .9309 9191 9289 9292 9184 9270 9266
100 9191 9285 .9261 9231 9349 9317 9169 9291 9253
Extreme 10 9243 9600 .9495 9255 9648 9518 9210 9634 .9494
30 9226 9674 9481 9205 9685  .9472 9239 9676 9487
100 9164 9671 .9448 9170 9684 9452 9191 9675 9451

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; Chen = Chen (2006)’s suggested
increment to the ANCOHET standard error; C, = Center of Accuracy. Refer to text for more information regarding
error terms used. Numbers in table represent the proportion of times the confidence interval contained the population
value across 10,000 simulations.
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Table 15.
Average Confidence Interval Width for Two-Group, Null Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 1.99 9.01 1.92 1.95 1.93 9.06 1.92 1.94 1.92 9.05 1.91 1.94
30 1.05 5.24 1.04 1.01 1.04 5.28 1.04 1.01 1.04 5.19 1.04 1.01
100 0.56 291 0.56 0.54 0.56 2.89 0.56 0.54 0.56 2.86 0.56 0.54
Low 10 1.99 9.33 1.92 1.97 1.93 9.25 1.92 1.96 1.92 9.33 1.92 1.97
30 1.05 5.69 1.04 1.05 1.04 5.65 1.04 1.04 1.04 5.70 1.04 1.05
100 0.56 3.77 0.56 0.61 0.56 3.78 0.56 0.61 0.56 3.77 0.56 0.61
Medium 10 1.99 11.20 1.94 2.14 1.94 11.19 1.95 2.14 1.92 11.33 1.94 2.15
30 1.05 9.22 1.06 1.35 1.04 9.19 1.05 0.35 1.04 9.30 1.05 1.36
100 0.56 8.89 0.57 1.07 0.56 8.85 0.57 1.07 0.56 8.82 0.57 1.07
High 10 1.99 15.01 2.00 2.51 1.93 15.00 2.00 2.51 1.93 15.14 2.00 2.52
30 1.05 14.97 1.09 1.90 1.04 14.90 1.08 1.89 1.04 14.95 1.08 1.89
100 0.56 15.26 0.58 1.73 0.56 15.29 0.58 1.74 0.56 15.36 0.58 1.74
Extreme 10 1.98 34.40 2.38 4.64 1.94 34.72 2.40 4.68 1.92 34.66 2.39 4.67
30 1.05 37.71 1.31 4.36 1.04 37.60 1.31 4.35 1.04 37.53 1.31 4.34
100 0.56 38.67 0.70 4.29 0.56 38.63 0.70 4.28 0.56 38.64 0.70 4.29

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOV A error; UNW = Unweighted average of MSiesiqual from ANCOHET and
MSa « x; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the average width of

the confidence intervals over 10,000 simulations.
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Table 16.

Average Confidence Interval Width for Three-Group, Null Conditions

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW
None 10 1.51 2.98 1.44 1.46 1.48 2.98 1.44 1.47 1.48 2.99 1.44 1.47
30 0.80 1.72 0.79 0.78 0.80 1.74 0.79 0.78 0.79 1.72 0.79 0.78
100 0.43 0.95 0.43 0.42 0.43 0.95 0.43 0.42 0.43 0.94 0.43 0.43
Low 10 1.50 3.04 1.44 1.48 1.48 3.05 1.44 1.48 1.48 3.05 1.44 1.48
30 0.80 1.84 0.79 0.80 0.79 1.82 0.79 0.80 0.80 1.83 0.79 0.80
100 0.43 1.14 0.43 0.46 0.43 1.14 0.43 0.46 0.43 1.14 0.43 0.46
Medium 10 1.51 3.50 1.46 1.58 1.48 3.48 1.46 1.58 0.48 3.49 1.46 1.58
30 0.80 2.61 0.80 0.97 0.79 2.61 0.80 0.97 0.79 2.59 0.80 0.97
100 0.43 2.29 0.43 0.72 0.43 2.30 0.43 0.72 0.43 2.29 0.43 0.72
High 10 1.51 4.35 1.49 1.80 1.48 4.34 1.49 1.78 1.48 4.36 1.50 1.79
30 0.80 3.90 0.82 1.28 0.80 3.89 0.82 1.28 0.79 3.92 0.82 1.29
100 0.43 3.80 0.44 1.12 0.43 3.80 0.44 1.12 0.43 3.80 0.44 1.12
Extreme 10 1.51 8.84 1.76 3.01 1.47 8.87 1.76 3.02 1.47 8.90 1.76 3.03
30 0.80 9.29 0.98 2.76 0.80 9.30 0.98 2.77 0.80 9.26 0.97 2.75
100 0.43 9.41 0.53 2.69 0.43 9.42 0.53 2.69 0.43 9.42 0.53 2.69

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA Error; UNW = Unweighted average of MSiesiqual from ANCOHET and
MSa « x; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the average width of
the confidence intervals over 10,000 simulations.
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Table 17.
Average Confidence Interval Width for Two-Group, Null Conditions, Including Chen’s Increment to ANCOHET Standard Error

Location of Test

Ux X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET ANC Chen HET ANC Chen HET ANC Chen
None 10 1.99 1.92 2.04 1.93 1.92 1.98 1.92 1.91 1.97
30 1.05 1.04 1.06 1.04 1.04 1.05 1.04 1.04 1.05
100 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Low 10 1.99 1.92 2.04 1.93 1.92 1.98 1.92 1.92 1.97
30 1.05 1.04 1.06 1.04 1.04 1.05 1.04 1.04 1.05
100 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Medium 10 1.99 1.94 2.05 1.94 1.95 2.00 1.92 1.94 1.98
30 1.05 1.06 1.07 1.04 1.05 1.06 1.04 1.05 1.06
100 0.56 0.57 0.57 0.56 0.57 0.57 0.56 0.57 0.57
High 10 1.99 2.00 2.09 1.93 2.00 2.03 1.93 2.00 2.02
30 1.05 1.09 1.09 1.04 1.08 1.08 1.04 1.08 1.08
100 0.56 0.58 0.58 0.56 0.58 0.58 0.56 0.58 0.58
Extreme 10 1.98 2.38 2.23 1.94 2.40 2.18 1.92 2.39 2.17
30 1.05 1.31 1.17 1.04 1.31 1.17 1.04 1.31 1.17
100 0.56 0.70 0.63 0.56 0.70 0.63 0.56 0.70 0.62

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; Chen = Chen (2006)’s suggested increment to
the ANCOHET standard error; C, = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers
in table represent the average width of the confidence intervals over 10,000 simulations.
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Table 18.
Average Confidence Interval Width for Three-Group, Null Conditions, Including Chen’s Increment to ANCOHET Standard
Error

Location of Test

HUXx X Ca
Extent of Denominator Denominator Denominator
Heterogeneity Error Term Error Term Error Term
of Regression n HET ANC Chen HET ANC Chen HET ANC Chen
None 10 1.51 1.44 1.53 1.48 1.44 1.50 1.48 1.44 1.50
30 0.80 0.79 0.80 0.80 0.79 0.80 0.79 0.79 0.80
100 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43
Low 10 1.50 1.44 1.53 1.48 1.44 1.50 1.48 1.44 1.50
30 0.80 0.79 0.80 0.79 0.79 0.80 0.80 0.79 0.80
100 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43
Medium 10 1.51 1.46 1.55 1.48 1.46 1.51 0.48 1.46 1.51
30 0.80 0.80 0.80 0.79 0.80 0.81 0.79 0.80 0.81
100 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43
High 10 1.51 1.49 1.56 1.48 1.49 1.53 1.48 1.50 1.54
30 0.80 0.82 0.82 0.80 0.82 0.82 0.79 0.82 0.82
100 0.43 0.44 0.44 0.43 0.44 0.44 0.43 0.44 0.44
Extreme 10 1.51 1.76 1.67 1.47 1.76 1.63 1.47 1.76 1.63
30 0.80 0.98 0.89 0.80 0.98 0.88 0.80 0.97 0.88
100 0.43 0.53 0.47 0.43 0.53 0.47 0.43 0.53 0.47

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOV A Error; Chen = Chen (2006)’s suggested increment to
the ANCOHET standard error; C, = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers
in table represent the average width of the confidence intervals over 10,000 simulations.
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Table 19.
True Standard Deviation and Average Standard Errors for Tests Conducted at X, Two-Group
Scenario

Y. -7,
Extent of Estimate Average Standard Error
Heterogeneity Standard

of Regression n  Deviation HET Inter ANC UNW Chen
None 10 4595 4556 3589 4544 4271 4664
30 2620 .2596 2049 .2595 2465 2614
100 1392 1416 1136 1416 1358 1419
Low 10 4591 4559 3651 4552 4305 4671
30 2627 2592 2229 2595 2554 2613
100 1416 1415 1475 1418 1530 .1420
Medium 10 4668 4549 4391 4599 4674 4699
30 2650 2596 3595 2634 3282 2642
100 1437 1415 3479 1437 2692 .1434
High 10 4844 4562 5937 4745 5517 4790
30 2698 2597 5873 2712 4623 2692
100 1482 1416 .6026 .1480 4385 1462
Extreme 10 5811 4552 1.3569 5661 1.0188 5130
30 3269 2597 1.4837 3266 1.0657 2913
100 1779 1416 1.5202 .1784 1.0797 .1584

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW =
Unweighted average of MSesideval from ANCOHET and MSy x x; Chen = Chen (2006)’s suggested
increment to the ANCOHET standard error



Table 20.
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True Standard Deviation and Average Standard Errors for Tests Conducted at the Center of
Accuracy, Two-Group Scenario

2, — 7,
Extent of Estimate Average Standard Error
Heterogeneity Standard
of Regression n Deviation HET Inter ANC UNW Chen
None 10 4608 4530 3568 4534 4252 4638
30 2611 2589 2082 2589 2477 2608
100 1410 1416 A115 1415 1347 1418
Low 10 4618 4549 3673 4560 4318 4662
30 2625 .2593 2232 2598 2556 2615
100 1419 1414 .1484 1417 1537 1419
Medium 10 4694 4542 4405 4611 4692 4694
30 2660 2591 .3640 2631 3304 2639
100 1451 1415 3508 1437 2711 1434
High 10 4838 4541 .5961 4744 5527 AT75
30 2721 2596 .5894 2713 4633 .2693
100 1469 1414 .6024 1478 4383 1461
Extreme 10 .5808 4532 1.3538 .5658 1.0172 S113
30 3310 2593 1.4772 3258 1.0610 2906
100 .1793 1416 1.5223 .1786 1.0811 1585

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW =

Unweighted average of MSiesidgeual from ANCOHET and MSy x x; Chen = Chen (2006)’s suggested

increment to the ANCOHET standard error
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Table 21.
True Standard Deviation and Average Standard Errors for Tests Conducted at ux, Two-
Group Scenario

-1
Extent of Estimate Average Standard Error
Heterogeneity Standard

of Regression n Deviation HET Inter ANC UNW Chen
None 10 4800 4705 3563 4545 4258 4809
30 2632 2620 2052 2597 2468 2639
100 1432 1419 1129 1415 1353 1422
Low 10 4816 4697 3636 4547 4293 4806
30 2674 2621 2284 2602 2583 2643
100 1411 1419 1475 1418 1529 1424
Medium 10 4753 4676 4481 4595 4718 4827
30 2621 2626 3596 2631 .3280 2662
100 1419 .1420 .3489 .1438 2698 .1438
High 10 4774 4687 .5950 4726 5512 4912
30 2647 2620 5842 2710 4602 2714
100 .1435 .1420 .6013 .1480 4376 .1466
Extreme 10 4761 4686 1.3503 5642 1.0142 5253
30 2648 2619 1.4780 3261 1.0616 .2930
100 .1440 .1420 1.5191 1784 1.0789 .1588

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW =
Unweighted average of MSesideval from ANCOHET and MSy x x; Chen = Chen (2006)’s suggested
increment to the ANCOHET standard error
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Table 22.
True Standard Deviation and Average Standard Errors for Tests Conducted at X, Three-Group
Scenario

Y,-Y
Extent of Estimate Average Standard Error
Heterogeneity Standard

of Regression n Deviation HET Inter ANC UNW Chen
None 10 4050 4007 .3423 3910 3758 4068
30 2278 2257 .1994 2244 2183 2269
100 1239 1227 .1094 1225 1197 1229
Low 10 4063 4004 3504 3914 3796 4070
30 .2298 2253 2086 2242 2229 2266
100 1219 1228 1309 1228 .1308 1231
Medium 10 4123 4008 .3996 3964 4051 4104
30 2309 2255 2997 2271 2709 2287
100 1251 1229 2635 1243 2072 1243
High 10 4265 .3999 4982 4054 4573 4157
30 2368 2258 4465 2332 3572 2328
100 1265 1228 4357 1275 3205 1263
Extreme 10 4931 3997 1.0170  .4784 7740 4429
30 2772 2260 1.0665  .2769 711 2501
100 1522 1228 1.0801  .1513 7687 .1358

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW =
Unweighted average of MSesideval from ANCOHET and MSy x x; Chen = Chen (2006)’s suggested
increment to the ANCOHET standard error



Table 23.

84

True Standard Deviation and Average Standard Errors for Tests Conducted at the Center of
Accuracy, Three-Group Scenario

-1
Extent of Estimate Average Standard Error
Heterogeneity Standard

of Regression n Deviation HET Inter ANC UNW Chen
None 10 4078 4000 3432 3911 3759 4061
30 2274 2256 1977 2242 2176 2266
100 A217 1228 1076 1226 .1190 1230
Low 10 4016 4005 .3499 3923 3799 4070
30 2267 2256 2099 2246 2237 2270
100 1232 1229 1313 1228 1309 1232
Medium 10 4089 4007 4000 3970 4055 4105
30 2281 2252 2977 2269 2697 2285
100 1237 1228 2624 1242 2066 1241
High 10 4181 4006 .5005 4072 4593 4165
30 2373 2255 4499 2331 3591 2326
100 1276 1228 4355 1275 3203 1263
Extreme 10 4903 3991 1.0210  .4795 7769 4428
30 2761 2258 1.0616  .2763 7677 2497
100 1518 1227 1.0800 .1512 .7686 1357

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW =

Unweighted average of MSiesidgeual from ANCOHET and MSy x x; Chen = Chen (2006)’s suggested

increment to the ANCOHET standard error
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Table 24.
True Standard Deviation and Average Standard Errors for Tests Conducted at ux, Three-Group
Scenario

7, -7,

Extent of Estimate Average Standard Error
Heterogeneity Standard

of Regression n Deviation HET Inter ANC UNW Chen

None 10 4154 4081 3415 .3905 3754 4141

30 2257 2266 .1969 2239 2170 2277

100 1236 1230 .1086 1226 1194 1232

Low 10 4129 4078 3484 3904 3781 4143

30 2246 2268 2116 2244 2245 2281

100 1237 1230 A312 1228 1309 1233

Medium 10 4180 4094 4013 .3968 4062 4191

30 2286 2269 2989 2272 2706 2301

100 1236 1230 2623 1243 2066 1244

High 10 4164 4081 4987 4059 4576 4237

30 2248 2270 4474 2332 3577 2341

100 1226 1230 4365 1275 3210 1265

Extreme 10 4123 4096 1.0138 4792 1724 4515

30 2256 2273 1.0657 2767 7705 2513

100 1235 .1229 1.0800 .1512 7686 1359

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW =
Unweighted average of MSiesidgeual from ANCOHET and MSy x x; Chen = Chen (2006)’s suggested
increment to the ANCOHET standard error
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Appendix A

Derivation of the Standard Error of the Difference across Groups in Predicted Scores in
Analysis of Covariance: Implications of Heterogeneity of Regression and a Random

Covariate

Heterogeneity of regression in analysis of covariance (ANCOVA) can be assessed by
comparing a model that allows for a different slope in each of the j =1, 2, ... a groups
with one that assumes a common within-group slope:

Full: ¥, =u+a;+f,X; +¢
Restricted: Yy =pu+ao,+ Yii Xij +¢,

Rogosa (1980) has shown that, if there is heterogeneity of regression in the population,
the typical ANCOVA test of treatment effects is not distributed appropriately. An
alternative procedure in the presence of mild to moderate heterogeneity suggested by
Rogosa (1980) is to compute the adjusted treatment sum of squares as in a typical
ANCOVA but use as an error term the error associated with the ANCOHET model, just
as would be done in ANOVA when the interaction was nonsignificant. This provides a
test of the hypothesis that there are no treatment effects in the case of a covariate whose
values are assumed to be fixed, and achieves an unbiased estimate of residual variance
that does not assume homogeneity of regression at the cost of only a — 1 degrees of

freedom for error (see Appendix B for further discussion of Rogosa’s “safer ANCOVA”).

To characterize the treatment effect more completely, it is desirable with moderate to
pronounced heterogeneity to assess the treatment effect as a function of the value of the

covariate. If the traditional ANCOVA model were exactly right the vertical distance
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between the population regression lines would be a constant for all values of X. When
there is reason to believe this is not the case, one would like to estimate the magnitude of
the treatment effect as a function of X and have a way of assessing its significance. A test
of the treatment effect at a given X value may be arrived at by developing an estimate of
the treatment effect somewhat like is done in a standard ANCOVA test of the difference
between adjusted means—that is, the difference between the predicted scores for
different conditions at a given value of X—and then deriving the variability of this
estimated difference. A ratio of the square of the estimated effect to its variance estimate

can then be used as a statistical test.

The basic problem involves the estimation of the vertical distance between regression
lines. Because this is difficult to envision, let us begin our consideration of this problem
by referring to the simple regression situation involving a single group with one predictor
and one dependent variable. Besides deriving estimates of the dependent variable in this
case using a simple regression equation, we can also relatively easily derive estimates of
the variability of our predictions. The model for this situation is typically written in

standard regression texts (e.g. Neter, Wasserman, & Kutner, 1983, p. 60) as

Y, =6 +pX +é
where the intercept £, and slope [, parameters are to be estimated by least squares, the

X, values are assumed to be fixed constants, and the errors of prediction &, are assumed

to be normally distributed with mean of 0 and variance &* .

We will begin our derivation by considering a deviation form of the regression

equation  using  the least squares estimates of the  parameters
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S, =b="= and ,5’0 =Y —bX . Let X, be the particular X value at which

we wish to estimate Y, and let the corresponding predicted value YP be the estimated

mean of the conditional probability distribution. Then, in this simple (i.e., two-variable)

regression situation, we can write

Y, =Y +b(X, - X)
(A.1)

Under the assumption that the X values are fixed and that the errors are normally

distributed in the population, the variability of fp can be shown' to be decomposable into

the following two components:

o; =or+(X,-X) o, (A2)

p

2 = o?/n. However, we now have the

The first component, the variability of ¥ is oy

magnitude of the estimate of error depending on the X value as well as the variability in
Y. That is, because £ is not known but is estimated by a statistic, we expect our slope

estimates to vary somewhat from sample to sample. How much difference the error in b

makes gets larger and larger as X, moves farther away from X .

The variance of our slope statistic itself can be derived fairly easily once we rewrite

the definitional formula for the slope in a convenient form, namely

b=>kY, (A3)
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where the k; are simple functions? of the X values:

X -X

;= m (A4)

Now, because the variance of a linear combination of independent random variables is

simply the sum of the original variances, each weighted by the square of the original
weight, we immediately have the following expression for o, , the variance of the slope

estimate b:
= Var (b) =Var(Y_kY,) =D k’Var(¥) (A5)

where Var is to be read as “the variance of” the expression that follows within
parentheses. Making use of the fact that the variances of ¥; are constant and equal to ¢,

then substituting for k; we obtain

_O' Zkz o Z{Z(X X) }
, (X, —X) _ g 1
[Z(X -Xr]  XX-X)

(A.6)

We are now ready to substitute our results into Equation A.2 to obtain the final form

of the variability of our estimated conditional mean fp :

2 2
O o
o, =—+(X, -

" n Z(X X)?

_62[1 (¥, - %y } 0
DX -X)
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Thus, we have now derived the variance of the estimated mean Y score for a particular X

score X, in simple regression, and we have shown that it is more variable than the sample

mean Y score, and increasingly so as X, departs more from X .

Neter, Wasserman, and Kutner (1983, pp. 83-84) assert that, if X is random,
estimation and testing can proceed in simple regression just as if X were fixed, as long as

the following two conditions are met:
1. The conditional distributions of Y given X; are normal.

2. The X; are independent random variables whose distribution does not depend

on the intercept or slope parameters, or on the variance of the errors, o .

Assuming these conditions obtain, we can write the expected variance of a prediction
shown in Equation A.7 in terms of the population variance of the X scores, o . Given
the denominator of the term shown on the right in brackets above is the numerator of the

. 2
sample variance, s , and

In the case of random X, our model would have two sources of random variability, X and

error, so we now explicitly denote the sigma in Equation A.7 as referring to the error
variability, i.e. . . Thus, in the case of random X we could write the variance of the

predicted scores as:
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, 2[1 (X,,—)_()z}
o; =0, | —+—"——>

n (n—l)of( (A8)

A similar but somewhat different result obtains in ANCOVA. The similarity concerns
the variance of the estimated mean Y score for a particular X score in a particular group.

For X = X, and group j, with the assumption of homogeneity of regression, the slope

would be estimated by the pooled within-group slope, ﬁ’ =b,,, and the intercepts would

be estimated as i +a; = )7J ~by X ;- Hence, the predicted scores at X', could be written:

A

Y =

p

HBX, =Y, —by X, +by X, =Y, +by (X, - X))

Q>

+

)

(A.9)

Thus, as in the simple-regression situation, the variance of our estimated conditional

mean Y score increases as X, departs from X ;:

2

j— j— O p—
O';pj =Var(Y,) + Var[b, (X, - X )] = n_+ (X, —Xj)2Var(bw)
j

_ Al0
2| 1 (Xp_Xj)2 ( :

”_j+ ZZ(X,; _)_(j)z

J

(The intermediate steps of the derivation follow along the same lines as those for
Equation A.7.) However, in ANCOVA, interest centers on the predicted scores at the

grand mean on X (i.e., the adjusted Y means) and in the vertical distance between them.
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Letting X, = X in Equation A.9 results in the standard equation for the adjusted mean in

group j:
Y=Y +by(X-X,)=Y, —by,(X,-X)

Thus, the square of the standard error of this adjusted mean, following Equation A.10, is

2 2| 1 ()?/‘_)_()2
’ n; ZZ(X@/_X_/)
j i

(A1)

In one-way designs, the contrasts that are most often of interest are pairwise
comparisons between groups. Because interpretation of a treatment effect is considerably
more complicated in the case of heterogeneous regressions, where the magnitude of the
difference between groups changes continuously as a function of the covariate, it is even
more likely that contrasts would focus on only two groups at a time. Thus, for these
reasons and for simplicity of development in what immediately follows, we consider only
the two-group case. In the two-group case, under the assumption of homogeneous slopes,
we would be most interested in the difference between the two adjusted means:

Y, =Y, =¥ =by (X, = X)~[¥, = by, (X, - X)]

LY oo (A.12)
=Y, -Y)-by (X, - X,)

Notice that, although the comparison is a comparison of the estimated ¥ means at X , X
does not appear in the final form of Equation A.12. Furthermore, this would be true
regardless of the particular value X, at which we might compute the difference between

our estimates of the conditional ¥ means. Thus, it perhaps should not be surprising that,
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although it is unlike the simple regression situation, the standard error of this estimated
treatment effect does not depend on the value of X at which we estimate it. That is, when
homogeneous slopes are assumed, the precision of our estimate of the treatment effect is
“maintained for all values of X’ (Rogosa, 1980, p. 311), with the variance of our estimate

in Equation A.12 being

1 1 (X, -X,)
2 2 1 2
. ., =0 | —+—+ =
i mon, Y (X,-X,)
Jj i

(A13)

This variance expression is like those for the conditional mean (in Equation A.7) and for
the adjusted mean (in Equation A.11) in that there is a component for the variability of
the mean estimates and another component for the variability of the slope estimate. For
the component reflecting the mean estimates, because we now are concerned with the
difference between two independent group means (see Equation A.12), the variance of
their difference is the sum of the variances of each mean separately. For the component
reflecting the slope estimate, the variance of the slope is simply multiplied, as in

Equations A.7 and All, by the square of the relevant coefficient, which here is
()? =X, ) as shown in Equation A.12. We can estimate the variance of the difference in
adjusted means by replacing 6> in Equation A.13 by the mean square error associated
with the traditional ANCOVA full model. Denote this mean square error s>. Thus, (N —

3)s?> would be equal to the residual sum of squares associated with the model using a

common, pooled estimate of the slope in this two-group case.
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In the case where the covariate is considered to be a random variable, and the
distribution of the dependent variable and the covariate is bivariate normal, the consistent
conclusion of statisticians (e.g., Schefté, 1959, pp. 195-197) and behavioral science
methodologists (e.g. Huitema, 1980, p. 111) is that, with the conventional assumption of
homogeneity of regression, tests of the treatment effect in ANCOVA and the regression
of the dependent variable on the covariate can be conducted in exactly the same fashion
as when the covariate was considered to be fixed. As Winer, Brown and Michels (1991)
affirmed, “the analysis of covariance need not be restricted to the case in which X is a
fixed variable” (1991, p. 770). Crager (1987) reached a similar conclusion asserting that
with a random covariate, the usual “ANCOVA estimates of the slope parameter and
treatment effect contrasts are unbiased” and “the usual ANCOVA treatment effect
contrast z-tests are valid significance tests for treatment effects” (1987, p. 895). In his
derivations, Crager (1987, p. 901) suggests relating one part of the formula for the
variance of the difference in adjusted means shown in Equation A.13 to Student’s ¢
distribution. In the case of a two-group, equal-n design, Crager states that the variance of

this difference could be expressed, in the case of a random covariate, as follows:

2 2| 2 2 ()? -X )2
Yl B PR =12 — Al4
i, =€ L}a X, =X) =+ (X, - X, (A9

Note that the last term within brackets above can be seen to be directly related to a
conventional two-group ¢ test comparing the means on the X variable, which in the case

of equal-n could be written as



95

)_(1_)?2

t= — — (A.15)
Z(Xil_Xl) +Z(Xi2_X2) 2
2(n-1) [n}
Squaring this ¢ statistic and re-arranging terms, we could write this as
- =12
X, -X
£ (X - %) (A.16)

:n(n_l)Z(Xn _)?1)2 +Z(Xi2 _)?2)2

Thus, we see that n(n —1) times the term within brackets on the right in Equation A.14 is
distributed as a ¢* variable with 2(n—l) degrees of freedom, or equivalently as an F
with 1 and 2(11—1) degrees of freedom. Given the expected value of an F random

variable with dfy,,,, denominator degrees of freedom is df;., /(@fiom —2), We can

write the expected value of the term within brackets on the right in Equation A.14 as

g Z(Xll)%_glz:t%)(}ﬂ)?z)z :(iziij{n(;—l)}:{22((::;))}{74(;11—1)}n(nl—z)

i

Thus, the variance of the difference in adjusted means in ANCOVA with a random

covariate shown in Equation A.14 could be written as

2 1
o; ;=0 {—+ } (A.17)
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To understand the differing impacts of the various contributions to this variance, it is
worth noting that even with a random covariate, the variability contributed by the two
group means indicated by the 2/n term in Equation A.17 will be 2(n — 2) times as large as
the variability due to the sampling error in the slope estimate and the sampling error in
the group means of the random covariate. For example, with n = 10, 2/n would be 16
times as large as 1/n(n -2), and with n = 50, 2/n would be 96 times as large as 1/n(n -2).
We are now finally ready to return to the problem of estimating the vertical distance
between two nonparallel regression lines and determining the variability of that estimate.
We begin by returning to the case of X being fixed where the results are well understood.
These results build on those we have presented previously for the simple regression
situation and for ANCOVA with homogeneous slopes. The prediction equation for the

ANCOHET model can be written:

Y, =a,+bX, (A.18)

Thus, if we substitute for Xj; some particular value of the covariate—for example, X,—

the difference in estimated conditional means for the two groups would be

fpl —);pzz a,+ lep—(a2+b2Xp) =a,- a,+(b—- b,)X (A19)

p

An alternative way of writing this estimated difference, in which we substitute the

expressions for our estimated values of the intercepts, makes it easier to understand the
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variance estimate. That is, we can write the vertical distance between the two regression

lines:

A

Vo=V, =Y, b1 X))~ (Y, —ba X,) + (b1 — b2)X,

pl

=Y, - Y, +bi(X, - X)) - bo(Xp— X,)

To determine the variability of this estimate, we must consider not only the sampling

error of the Y group means, but also both the variance of our estimate of b1, which equals
o?/Zi(Xn — X,)?, and the variance of our estimate of b, 6°/Zi(X;» — X, )2 Thus, similar to

Equation A.13, but now allowing for heterogeneous slopes, the variability of our estimate

of the vertical distance between the lines with X being regarded as fixed can be written:

X,-X)y  (X,-X,)
o oLyl Km XS | KoL) (A21)
P17 Tp2 noon, Z(Xil_Xl) Z(XiZ_XZ)

i i

A comparison with the variance of the estimate of a single mean in regression (Equation
A.7) or ANCOVA (Equation A.10) shows that the variance of the distance between two
regression lines is simply the sum of the variances of conditional means estimated by
each. We can estimate this variance, and thereby move toward carrying out a test of the
significance of the difference between the regression lines at any arbitrary value of X, by

simply replacing ¢ in Equation A.21 by the mean square error associated with the model
allowing for heterogeneous slopes, which we denote s, . In the two-group situation in

which we estimate a slope and an intercept for each group, our model would have N — 4
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degrees of freedom. Thus, a test of the significance of the difference between the two
lines—that is, of the treatment effect at an X value X,—would be carried out as a simple ¢

test with N — 4 degrees of freedom. That is,

f=—Lt—— (A.22)

where the denominator is

1/2
=5 L+L+ ()(p_‘ivl)2 + (Xp_)_(z)z
P M, (X, -X) DX, - X,

& (A.23)

with snee being the square root of s, , which, as we suggested previously, is the sum of

squares error Er divided by N — 4 for the ANCOHET Full model:

Full: ¥, =u+a,+B,X; +¢, (A.24)

As can be seen in this expression for the estimated standard error (Equation A.23), the
precision of our estimate of the treatment effect decreases the farther the particular point
Xp at which we are evaluating it is from the group means of the covariate. This is similar
to what we saw in the simple regression situation (Equation A.7). Thus, if X, is chosen
near the center of the distribution of X scores, the accuracy of our estimation of the
treatment effect increases. In fact, it turns out that the accuracy is greatest at a point

corresponding to a weighted average of the group means on the covariate (with the
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weight for each mean being the sum of squares on the covariate in the other group). This

point is referred to in the literature as the center of accuracy, denoted C,, and so we have:

(X, -X,) X +Y (X, - X)X,

C =- i (A.25)

“ iZ(XU—)_(j)Z

j=1 i

Surprisingly, the vertical distance between the two nonparallel regression lines at the
center of accuracy corresponds exactly to the estimate of the difference between adjusted
means in a typical ANCOVA assuming a common slope. Thus, one can interpret the
difference between adjusted means in ANCOVA as the treatment effect for an “average”
individual—that is, an individual whose X score is roughly at the center of the
distribution of X scores—regardless of whether the regressions are parallel. The
difference between the ANCOHET and the ANCOVA tests of this difference is in the
error term. The ANCOVA test is perfectly valid only if the assumption of parallelism is
exactly met. The ANCOHET test is actually more like the tests commonly used in
factorial ANOVA in that it is valid regardless of whether there is an interaction in the
population (nonparallelism). The form of the error term for the ANCOHET test of the

treatment effect at the center of accuracy reduces to

12

& L (X, ~X,)

TearTear 0 non, ZZ(XU'_)_(J')Z
Joi

(A.26)
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If X is a random variable and the slopes are heterogeneous, the implications for
the variability of the difference in predicted means in the two groups are not well

understood. Chen (2006) considered this situation and argued when tests are conducted,

as is often the case, at the observed grand mean on the covariate, that is, letting X, =X,

that the standard error shown in Equation A.23 would be too small because it ignores the
sampling error that causes X to depart from . He suggested that an expression for the
variance of a contrast in means like that shown in Equation A.21, which was derived
under the assumption of a fixed covariate, would need to be increased when the covariate

was random by an amount dependent on the sampling variability in X and on the
difference in the slopes in the two groups; Chen specifically indicated (2006, p. 4163) the

needed increment was

2
Oy

(B.-B,) Var(X)=(B-5,) (A.27)

n+n
Although Chen simply said about this result “it can be shown” rather than presenting a
proof, it appeared he was presuming the population slopes could be treated as known,
fixed constants rather than themselves being subject to sampling variability. Thus, it
seems plausible that the needed increment might be even greater if the sampling

variability in the slopes was also considered.

This conjecture was leant some indirect support by recent work on a different but
related issue. Instead of the situation considered by Chen (2006) that is the focus of the

current dissertation where the treatment factor is a fixed factor and only the covariate is
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treated as random, a recent article by Liu, West, Levy, and Aiken (2017) considered the
situation where one is interested in two random predictors, X and Z, and their interaction.
What is analogous to the difference in adjusted means in that situation is what Liu et al.
(2017), following Cohen, Cohen, West and Aiken (2003), term the simple slope of the
outcome Y on the predictor X at the sample mean of Z. Their mathematical derivations
indicate that the variability in the estimate of this simple slope is extremely complex,
involving the sum of more than 10 different terms, with the final result depending not
only on the sampling variability in the estimated Z mean and sampling variability in the
slope estimates but also the covariances of various terms such as the intercept and slope,
the intercept and mean, and the slope and mean. Because of this complexity, Liu et al.
(2017) proposed comparing an estimated effect in their situation to a distribution
generated for each empirical data set collected by use of bootstrapping methods applied

to that data set.

It is hoped that in the simpler situation of a fixed treatment factor considered in
the current dissertation that the variability in the estimate of the treatment effect in the
case of heterogeneous regressions on a random covariate might be adequately
approximated by some simpler method. Toward that end, multiple estimates of
denominator error terms are considered and evaluated in terms of the tests and confidence

intervals that result from using such error terms.

! The proof makes use of the fact that both ¥ and b can be expressed as linear
combinations of the Y; and that the covariance of ¥ and b can be shown to be zero.
2 This is a legitimate rewriting of the definitional formula for the slope because

> (X, - X)(¥,+7)=%(x,-X)¥,. This in turn is true because
(X, -X)(Y,-Y)=2(X,-X)Y,-2(X,-X)Y, but (X,-X)V =V £(X,-X)=0

because the sum of the deviations from the mean must equal zero. Thus, we have



D (X, -X) Y
b=
Z(Xi_)?)z

which may be rewritten

Z(Xi_)?)

=y =y

Z(Xi_)?)z

102



103

References

Chen, X. (2006). The adjustment of random baseline measurements in treatment effect

estimation. Journal of Statistical Planning and Inference, 136, 4161-4175.

Cohen, J., Cohen, P., West, S. G.,, & Aiken, L. S. (2003). Applied multiple
regression/correlation analysis for the behavioral science (3™ ed.). New York:

Routledge.

Crager, M. R. (1987). Analysis of covariance in parallel-group clinical trials with

pretreatment baselines. Biometrics, 43, 891-901.

Huitema, B. E. (1980). The analysis of covariance and alternatives. New York: John

Wiley & Sons.

Liu, Y., West, S. G., Levy, R., & Aiken, L. S. (2017). Tests of simple slopes in multiple
regression models with an interaction: Comparison of four approaches.

Multivariate Behavioral Research, 52, 445-464.

Neter, J., Wasserman, W., & Kutner, M. H. (1983). Applied linear regression models.

Homewood, IL: Irwin.

Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88,

307-321.
Scheffé, H. (1959). The analysis of variance. New York: John Wiley & Sons.

Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in

experimental design. (3" ed.). New York: McGraw-Hill.



104

Appendix B

On the Rogosa “Safer” Test of the Group Effect

As noted by Maxwell, Delaney, and Kelley (2018, p. 528), one of the more
surprising results of ANCOVA analyses with heterogeneous slopes (or “ANCOHET?”) is
that in the two-group case, as shown by Rogosa (1980, Equation 7), the difference in
predicted values in the two groups at the center of accuracy is exactly equal to the
difference in adjusted means in a conventional ANCOVA. The distribution of the error
term used in a conventional ANCOVA, as also noted by Rogosa (1980, p. 311), is exactly
correct only if the within-group slopes are perfectly homogeneous. Because of this
Rogosa proposed what he termed a “safer ANCOVA” (1980, p. 312), where the
numerator is like that in a conventional ANCOV A but the denominator is computed
using a model allowing for heterogeneous regressions. It was this procedure that was,
reasonably enough, used by Harwell and Serlin (1988) in conducting what they denoted

as a Rogosa F test (e.g., in their Table 8, p. 275).

Thus, it is important to understand how the Rogosa “safer” F' test of the group
effect compares to the test of the group effect at a given value of the covariate (e.g., as
developed in Appendix A). One challenge in relating Rogosa’s (1980) formulas to a
traditional ANOVA or ANCOVA formulation of an F test of a group effect is that he
describes tests only for the two-group situation and approaches these as one might if one
were doing a two-group ¢ test in which the numerator only has the difference between
adjusted means, rather than being a mean square for an effect that is to be compared to a

mean square error as in a conventional ANCOVA F test.
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To think of how the numerator of the ANCOVA F compares to the numerator of
an ANCOHET F, it is helpful to think of the multiplier of the error estimate in the
denominator of the Rogosa approach as a term that could be shifted to the numerator
when one wants to approximate the numerator used in a conventional ANCOVA. The
basic idea is seen clearly if one reverts back to a simple two-group ¢ test and relates this

to the £ that would be used if an ANOVA were performed instead.

A conventional two-group, independent # test might be written:

) { 11 }
ST —+—
R (B.1)
Rogosa’s tests are expressed in a fashion analogous to the square of such a form of the ¢

test, but keeping the multiplier of the variance estimate in the denominator, i.e.
— —=\2
(F-%)
o (B.2)

If one were doing an ANOVA of these data, the term involving sample sizes would in

=

essence be shifted to the numerator of the test statistic, which if one first expressed the
reciprocals of the sample sizes using a common denominator before moving to the

numerator would result in the following form of the test statistic:

s{1+1}s{%+m} 5
noon mn, (B.3)
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Now in the equal-n case, the multiplier of the difference in group means would be just
half of sample size in each group. This results in a simple form that is clearly equal to the
conventional ANOVA F given the difference in group means would be just twice the

absolute value of the difference between either group mean and the grand mean:

1
[NSRIN]
| |
—_
=<l
|
Rl
SN—"
(&)
1
e
|
—~—
W]
—_
2~
|
~i

2 20— 2
- — Y -Y
F = = )} - 27’1()]1 — Y)z — ]Zl:n( ' ) — MSBetw
- s’ - s? - s? - s? - MS i

(B.4)

Rogosa (1980) writes the F statistic used in a conventional ANCOVA in the first
part of his Equation 11 in a form analogous to the square of a two-group ¢ where the
multiplier indicating the sample sizes is in the denominator rather than the numerator:

— —1\2
(¥ -%)

— =2
1 1 (XI_XZ)
n n, SSX, +S88X,

(B.5)

Now a conventional ANCOVA F would compute a numerator of MS for the group effect
by shifting the multiplier to the numerator. In the equal n case this could be expressed as

follows:

]

]|
|
|
N —
[SS]

1 ( :
2, (B-X)
| n SSX, +SSX, |

Sancova (B.6)
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n
The multiplier of the squared difference in adjusted means will of course be less than 2
to the extent that the other term (i.e., the squared difference between group means on the
covariate over that sum of squares within on the covariate) is nonzero. The reason that
using the ANCOV A numerator, as Harwell and Serlin apparently did in their Rogosa F,
produces more Type I errors than the pick-a-point tests that one might carry out instead is
that the multiplier shown in the numerator above will be larger than the one that would be
used in a pick-a-point test. That test could be expressed as (see Equations 19 and 20 of

Appendix A):

(7 -7,.)

, |1 1 (Xp_)?l)z (Xp_)?z)z
Shet | —F—F =5t =
n.n, Z(Xil_Xl) Z(Xiz_Xz)

(B.7)

The sum of the last two terms in the multiplier in the denominator will be larger than the
last term in the ANCOVA denominator shown in Equation B.5 whenever the test is
conducted at a point other than the true center of accuracy, as almost certainly would be
the case in realistic situations with a random covariate. Because the difference in
adjusted mean in ANCOV A would be expected to be the same as that in the ANCOHET
test, the difference in the adjusted numerator mean squares in the ANCOVA as opposed
to the ANCOHET test will boil down to the difference in the multipliers. One way of
expressing this intuitively is that the estimation of a single pooled slope reduces the

effective sample size per group less than does the estimation of two separate slopes in the
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two groups. Thus the numerator of the ANCOVA would be expected to be somewhat

larger than that in the ANCOHET test, and hence may be positively biased.
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Appendix C

SAS Syntax Used to Simulate Data, Perform Data Analysis and Analyze Results

Presented in this appendix is an example of the SAS code used to generate and
analyze the data for the simulations. The syntax for the two-group case is presented first
followed by the three-group case. Most of the syntax is to prepare for a macro program
that can be called to generate the data for a specific cell of the design. This macro
program is a general framework that incorporates macro variables, whose values change
based on user specification, to simulate data and generate the desired output. While the
macro program is presented below, the following macro variables are used within the
program. The only difference between the two-group and three-group macro variables is
that the three-group program contains the additional macro variables ‘slope3’ and

‘sampsize3’ as a result of having an additional group.

The nine macro variables, in order of appearance, are:

1. numsamples — number of simulation samples, always 10,000 in this project, but
could be specified as something else

2. slopel — unstandardized regression slope for the first group

3. slope2 — unstandardized regression slope for the second group

4. sampsizel — sample size for the first group

5. sampsize2 — sample size for the second group

6. mean — constant added to produce difference in adjusted means (takes on a value

of zero for the null conditions)



7. location — specifies the location at which the test of between group differences

occurs. Can take on the following values:

a. X
b. xbar
c. ca

8. output — specifies the output to be generated. Can take on the following values:

a. Typel

b. Power

c. ci

d. ci_width
e. trueSD

9. seed — establishes the starting seed for the random number generator, which is
important for replicating results exactly

Macro Program for Two-Group Conditions

% macro ODSOff, /*Macro to turn off output for certain SAS procedures*/

ods graphics off; /*This prevents output from 10,000 ANCOHETSs from being*/
ods exclude all; /*Displayed*/

ods noresults;

% mend;

%macro ODSOn;  /*Macro to turn output back on*/

ods graphics on;

ods exclude none;

ods results;

% mend;

% macro two_group_simulation(numsamples, slopel, slope2, sampsizel, sampsize?2,

mean, location, output, seed);

110
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data CI 2grp;
call streaminit(&seed);
do sampleid=1 to &numsamples; *Loops over total number of simulations;
do i=1 to (&sampsizel + &sampsize2); *Loops over total sample size;
x =rand("Normal", 0, 1); *Randomly generates x
values from Normal Distribution with mean = 0 and standard deviation = 1;
e =rand("Normal", 0, 1); *Randomly generates error

values from Normal Distribution with mean = 0 and standard deviation = 1;
if 1 LE (&sampsizel) then do;
group=0;
y = &mean + &slopel *x + e; *Creates Y values based on
macro values of mean and slope and randomly generated values of x and e for first group;

end;
if i GT (&sampsizel) then do;
group = 1;
y = &slope2*x +e;  *Creates Y values for second group;
end;
output;
end;
end;
run;

proc sort data=work.ci_2grp;by sampleid group;run;

/*Calculates Correlations and Saves to Output Dataset*/
Y%odsoff,

proc corr data=work.ci_2grp outp=corr;

by sampleid group;

var X;

with y;run;

%odson;

data work.corr grp0;set work.corr (where=(_type ="CORR" and group=0));drop
_name__type group;rename x=corr_grp0O;run;

data work.corr _grpl;set work.corr (where=(_type ="CORR" and group=1));drop
_name__type group;rename X=corr_grpl;run;

data work.corr both;merge work.corr grp0 work.corr grpl;by sampleid;run;

/*Calculates Mean of X for Each Simulation*/
Y%odsoff,

proc means data= CI_2grp mean stddev;

by sampleid;

var X;

output out=simmean mean=xbar var=var;run;
proc means data=CI 2grp mean stddev;

by sampleid group;
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var X;
output out=simmean_grp mean=xbar var=var n=n;run;
%odson

proc transpose data=simmean_grp out=simmean_trans_mean
(rename=(coll=xmean_grp0 col2=xmean_grpl));

var xbar;

by sampleid;

run;

proc transpose data=simmean_grp out=simmean_trans_var (rename=(coll=xvar_grp0
col2=xvar grpl));

var var,

by sampleid;

run;

proc transpose data=simmean_grp out=simmean_trans_n (rename=(coll=n_grp0
col2=n_grpl));

var n;

by sampleid;

run;

/*Merge Group and Overall Means for X*/
data simmean bygroup;merge simmean_trans mean simmean_trans_var
simmean_trans_n;drop name ;run;

/*Merge mean of X for Each Simulation with Original Data*/
data CI 2grp merge; merge CI 2grp simmean simmean_trans mean simmean_trans_var
simmean_trans_n corr_both end=lastobs;

by sampleid;
SSx_grp0=(n_grp0-1)*xvar_grp0; *Calculate Sums of Squares for Each Group;
SSx_grpl=(n_grpl-1)*xvar grpl;
Ca=((SSx_grpl*xmean_grp0)+(SSx_grpO*xmean_grp1))/(SSx_grp1+SSx_grp0);
/*Calculate Center of Accuracy™*/

Xdev_Xbar= x-xbar; /*Centers X around X bar*/

Xdev Ca=x-ca; /*Centers X around the Center of Accuracy*/
drop type freq name ;

run;

/*Chen Calculation Dataset™/
data chen_calc;set work.ci_2grp merge;by sampleid; if first.sampleid;dropix ey
xdev_xbar xdev_ca;run;

data work.chen_calc;set work.chen_calc;

chen_incr= ((corr_grp0-corr _grpl)*(corr_grpO-corr_grpl))*(var/(n_grp0+n_grpl));
partial chen incr=2.3*chen_incr;

run;
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/*Perform ANCOHET for Each Simulation Iteration based on Test Location and Output
Results to ANCOHET _Stat Dataset™/
%if &location= xbar %then %do;
Y%odsoff
proc glm data=CI_2grp merge outstat=ANCOHET stat;
by sampleid;
class group;
model y =xdev_xbar group group*xdev_xbar/solution;
Ismeans group/ pdiff=all cl at xdev_xbar =0 ;
ods output Ismeans=Ismeans_y;
run;quit;
%odson

proc transpose data=work.lsmeans y out=Ismeans_y trans

(rename=(coll=y lsmean grp0 col2=y lIsmean grpl));

var Ismean;

by sampleid;

run;

data work.Ismeans_y trans;set work.lsmeans y trans;drop name _label ;run;
%end;

%if &location=ca %then %do;

Y%odsoff

proc glm data=CI 2grp merge outstat=ANCOHET _stat;
by sampleid;
class group;
model y = xdev_ca group group*xdev_ca/solution;
Ismeans group/ pdiff=all cl at xdev ca=0;
ods output Ismeans=Ismeans_y;

run;quit;

%odson

proc transpose data=work.Ismeans_y out=Ismeans_y trans

(rename=(coll=y Ismean_grp0 col2=y Ismean grpl));

var Ismean,;

by sampleid;

run;

data work.Ismeans_y trans;set work.Ismeans_y trans;drop name _label ;run;
%end;

%if &location= x %then %do;

Y%odsoff

proc glm data=CI_2grp merge outstat=ANCOHET stat;
by sampleid;
class group;
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model y = x group group*x/solution;
Ismeans group/ pdiff=all clatx =0 ;
ods output Ismeans=Ismeans_y;
run;quit;
%odson

proc transpose data=work.lsmeans y out=Ismeans_y trans

(rename=(coll=y lsmean grp0 col2=y lIsmean grpl));

var Ismean;

by sampleid;

run;

data work.Ismeans_y trans;set work.lsmeans y trans;drop name _label ;run;
%end;

/*Save Sums of Squares and Degrees of Freedom from Individual ANCOHET Models
and then Merge*/
data ANCOHET stat;set ANCOHET stat (where=(_type ne "SS1"));run;
proc transpose data=ANCOHET stat out=ancohetSS_wide prefix=SS;
by sampleid;
id _source ;
var SS;
run;
proc transpose data=ANCOHET stat out=ancohetDF wide prefix=df;
by sampleid;
id _source ;
var df;
run;

data ANCOHETstat wide; merge ancohetss wide ancohetdf wide;by sampleid;drop
_name
run;

/*Create Confidence Interval Data Set*/

data ci_info; set ci_2grp merge;by sampleid; if first.sampleid;drop i x e group y
xdev_xbar xdev_ca;run;

data ci_info;merge work.ci_info Ismeans_y trans ancohetstat wide chen calc;by
sampleid;run,;

/*Calculate Quantities for Type I Error Rates, Power, and CI's*/
data work.ci_info;set work.ci_info;

%if &location ne x %then %do;

MSE ANCOHET = (sserror/dferror);

MSE_ANCOVA =
(sserror+SSXdev_ &location. group)/(dferror+dfXdev_&location. group);
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MSE interaction = (SSXdev_&location. group/dfXdev &location. group);
MSE weightl =

(sserror+SSXdev &location. group)/(dferror+dfXdev &location. group);
MSE_ weight2 = (MSE_ANCOHET + MSE _Interaction)/2;

%end;

%if &location=x %then %do;
Xp_diff Xbar grp0 = (0 - xmean_grp0)*(0 - xmean_grp0);
Xp diff Xbar grpl = (0 - xmean grp1)*(0 - xmean grpl);

MSE ANCOHET = (sserror/dferror);

MSE ANCOVA = (sserror+SS&location. group)/(dferror+df&location. group);
MSE interaction = (SS&location. group/df&location. group);

MSE_ weightl = (sserror+SS&location. group)/(dferror+df&location. group);
MSE weight2 = (MSE_ANCOHET + MSE _Interaction)/2;

%end;

%if &location= xbar %then %do;

Xp_diff Xbar grp0 = (xbar - xmean_grp0)*(xbar - xmean_grp0);
Xp_diff Xbar grpl = (xbar - xmean_grpl)*(xbar - xmean grpl);
%end;

%if &location= ca %then %do;

Xp_diff Xbar grp0 = (ca - xmean_grp0)*(ca - xmean_grp0);
Xp_diff Xbar grpl = (ca - xmean_grpl)*(ca - xmean_grpl);
%end;

ratio_grp0 = Xp_diff Xbar grp0/ssx_grp0;
ratio_grpl = Xp_diff Xbar grpl/ssx_grpl;
ratio 01 = ((xmean_grp0 - xmean_grpl)*(xmean_grp0 -

xmean_grpl))/(ssx_grpO+ssx_grpl);
samp_inv = (1/n_grp0) + (1/n_grpl);

Stderr ANCOHET = sqrt(MSE_ANCOHET*(samp_inv + ratio_grp0 + ratio_grp1));
ANCOHET variance=(stderr_ancohet)*(stderr ancohet);

stderr_ancohet2 = sqrt(mse_ancohet)*sqrt((samp_inv + ratio_grp0 + ratio_grpl));
Stderr ANCOVA = sqrt(MSE_ANCOVA*(samp_inv + ratio_01));

Stderr Interaction = sqrt(MSE _interaction*samp_inv);

Stderr Weightl = sqrt(MSE_weightl*(samp_inv + ratio_01));

Stderr Weight2 = sqrt(MSE_weight2*samp _inv);

stderr_ancohet chen=sqrt(ANCOHET variance+chen_incr);
stderr_partial chen=sqrt(ANCOHET variance+partial chen_incr);

%if &location ne x %then %do;
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CV_ancohet=sqrt(finv(.95, dfgroup, dferror));

CV_ANCOV A=sqrt(finv(.95, dfgroup, (dferror+1)));
CV_Interaction=sqrt(finv(.95, dfgroup, dfXdev &location. group));
CV_Weightl=sqrt(finv(.95, dfgroup, (dferror+dfXdev &location. group)));
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+dfXdev &location. group)/2)));
%end;

%if &location = x %then %do;

CV_ancohet=sqrt(finv(.95, dfgroup, dferror));

CV_ANCOV A=sqrt(finv(.95, dfgroup, (dferror+1)));
CV_Interaction=sqrt(finv(.95, dfgroup, df&location. group));
CV_Weightl=sqrt(finv(.95, dfgroup, (dferror+df&location. group)));
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+df&location. group)/2)));
%end;

Ismeans_y diff =y Ismean grp0 -y Ismean grpl;

ci_halfwidth ancohet=CV_ancohet*Stderr ANCOHET;
ci_lower ancohet=Ismeans_y diff-ci_halfwidth ancohet;
ci_upper ancohet=Ismeans_y diff+ci_halfwidth ancohet;
ci_width_ancohet=2*CV_ancohet*Stderr ANCOHET;

ci_halfwidth chen=CV_ancohet*stderr ancohet chen;
ci_lower chen=lsmeans y diff-ci_halfwidth chen;
ci_upper _chen=Ismeans y diff+ci halfwidth chen;
ci_width chen=2*CV_ancohet*stderr ancohet chen;

ci_halfwidth chen partial=CV_ancohet*stderr partial chen;
ci_lower chen partial= Ismeans_y diff-ci_halfwidth chen partial;
ci_upper _chen partial=Ismeans_y diff+ci_halfwidth chen partial;
ci_width_chen partial=2*CV_ancohet*stderr partial chen;

ci_halfwidth ANCOVA=CV_ANCOVA*Stderr ANCOVA;
ci_width ANCOVA=2*CV_ANCOVA*Stderr ANCOVA;
ci_lower ANCOVA=Ismeans y diff-ci_halfwidth ANCOVA;
ci_upper ANCOVA=Ismeans y diff+ci_halfwidth ANCOVA;

ci_halfwidth interaction=CV _Interaction*Stderr interaction;
ci_width_interaction=2*CV _Interaction*Stderr interaction;
ci_lower interaction=Ismeans_y diff-ci_halfwidth interaction;
ci_upper_interaction=Ismeans y diff+ci_halfwidth interaction;

ci_halfwidth weight]1=CV_Weightl *Stderr weightl;
ci_width weight1=2*CV_Weightl*Stderr weightl;
ci_lower weightl=Ismeans y diff-ci halfwidth weightl;
ci_upper weightl=Ismeans_y diff+ci_halfwidth weightl;
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ci_halfwidth weight2=CV_Weight2*Stderr weight2;
ci_width weight2=2*CV_Weight2*Stderr weight2;
ci_lower weight2=Ismeans y diff-ci_halfwidth weight2;
ci_upper weight2=Ismeans_y diff+ci halfwidth weight2;

%if &location= x %then %do;

MU adj gO0=&mean + (&slopel*0);

Mu_adj gl=&slope2*0;

difference population = mu_adj g0 - mu_adj gl;
%end;

%if &location = xbar %then %do;

MU adj gO0=&mean + (&slopel*xbar);
Mu_adj gl=&slope2*xbar;

difference population = mu_adj g0 - mu_adj gl;
%end;

%if &location = ca %then %do;

MU adj gO0=&mean + (&slopel*ca);

Mu adj gl=&slope2*ca;

difference population = mu_adj g0 - mu_adj gl;
%end;

%if &location ne x %then %do;

F _ANCOHET = (ssgroup/dfgroup)/(sserror/dferror);

F ANCOVA =
(ssgroup/dfgroup)/((sserror+SSXdev &location. group)/(dferror+dfXdev &location. gr
oup));

F _interaction=(ssgroup/dfgroup)/(ssXdev_&location. group/dfXdev_ &location. group);
F weightl=(ssgroup/dfgroup)/((SSXdev_&location. group +
sserror)/(dfXdev_&location. group + dferror));

F weight2 = (ssgroup/dfgroup)/(MSE_weight2);

p_ANCOHET = 1-probf(F ANCOHET,dfgroup,dferror);

p_ANCOVA = 1-probf(F ANCOVA,dfgroup,(dferror+dfXdev_ &location. group));
p_interaction=1-probf(f interaction,dfgroup,dfXdev_&location. group);
p_weightl=1-probf(F_weightl, dfgroup, (dferror+dfXdev &location. group));
p_weight2=1-probf(F_weight2, dfgroup, ((dferror+dfXdev_ &location. group)/2));
%end;

%if &location=x %then %do;

F _ANCOHET = (ssgroup/dfgroup)/(sserror/dferror);

F ANCOVA =

(ssgroup/dfgroup)/((sserror+SS&location. group)/(dferror+df&location. group));
F interaction=(ssgroup/dfgroup)/(ss&location. group/df&location. group);
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F weightl=(ssgroup/dfgroup)/((SS&location. group + sserror)/(df&location. group +
dferror));

F weight2 = (ssgroup/dfgroup)/(MSE_weight2);

p_ANCOHET = 1-probf(F ANCOHET,dfgroup,dferror);

p_ANCOVA = 1-probf(F_ ANCOVA,dfgroup,(dferror+df&location. group));
p_interaction=1-probf(f interaction,dfgroup,df&location. group);
p_weightl=1-probf(F_weightl, dfgroup, (dferror+df&location. group));
p_weight2=1-probf(F_weight2, dfgroup, ((dferror+df&location. group)/2));

%end;

RejectHO ANCOHET = (p_ancohet<=.05);

RejectHO ANCOVA = (p_ ANCOVA<=.05);

RejectHO Interaction = (p_interaction<=.05);

RejectHO Weightl = (p_weight1 <=.05);

RejectHO Weight2 = (p_weight2<=.05);

Pop ParamInCI ancohet = (ci_lower ancohet<difference population &
ci_upper_ancohet>difference population);

Pop ParamInCI ancohet chen = (ci_lower chen<difference population &
ci_upper chen>difference population);

Pop ParamInCI_ ANCOVA = (ci_lower ANCOVA<difference population &
ci_upper ANCOV A>difference population);

Pop ParamInCI interaction = (ci_lower_interaction<difference population &
ci_upper_interaction>difference population);

Pop ParamInCI weightl = (ci_lower weightl<difference population &
ci_upper weightl>difference population);

Pop ParamInCI weight2 = (ci_lower weight2<difference population &
ci_upper weight2>difference population);

run;

%if &output= Typel %then %do;

proc freq data=ci_info;

titlel "Type I Error Rates for";

title2 "bO=&slopel, b1=&slope2";

title3 "and";

title4 "nO0=&sampsizel, nl=&sampsize2";

title5 "at &location";

table RejectHO ANCOHET RejectHO ANCOVA RejectHO Interaction
RejectHO Weightl RejectHO Weight2/nocum,;
run;

%end;

%if &output= Power %then %do;
proc freq data=ci_info;

titlel "Power Rates for";

title2 "bO=&slopel, b1=&slope2";
title3 "and";
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title4 "nO0=&sampsizel, nl=&sampsize2";

title5 "at &location";

table RejectHO ANCOHET RejectHO ANCOVA RejectHO Interaction
RejectHO Weightl RejectHO Weight2/nocum,;

run;

%end;

%if &output= ci %then %do;

proc freq data=ci_info;

titlel "Confidence Interval Coverage Rates for";
title2 "bO=&slopel, b1=&slope2";

title3 "and";

title4 "nO0=&sampsizel, nl=&sampsize2";

title5 "at &location";

table pop_paraminCI_ancohet pop paraminCI_ancova pop paraminClI interaction
pop_paraminCI_weight] pop_ paraminCI_weight2
Pop ParamInCI ancohet chen/nocum;run;
%end;

%if &output=ci_width %then %do;

proc means data=ci_info n mean stddev min max;

titlel "Average Confidence Interval Width for";

title2 "bO=&slopel, b1=&slope2";

title3 "and";

title4 "nO0=&sampsizel, nl=&sampsize2";

title5 "at &location";

var ci_width ancohet ci_width _ancova ci_width_interaction ci_width weightl
ci_width weight2 ci_ width chen ci_width chen partial;
run;

%end;

%if &output= trueSD %then %do;

proc means data=ci_info n mean stddev min max;
titlel "True SD and Empirical SD";
title2"bO=&slopel, bl1=&slope2";

title3 "and";

title4 "nO0=&sampsizel, nl=&sampsize2";

title5 "at &location";

var Ismeans_y diff Stderr ANCOHET Stderr ANCOVA Stderr Interaction
Stderr Weightl Stderr Weight2 stderr ancohet chen;
run;

%end;

% mend two_group_ simulation;



Macro Program for Three-Group Conditions

% macro three group simulation(numsamples, slopel, slope2, slope3, sampsizel,
sampsize2, sampsize3, mean, location, output, seed);

data CI 3grp;
call streaminit(&seed);
do sampleid=1 to &numsamples;
do i=1 to (&sampsizel + &sampsize2 + &sampsize3);
x=rand("Normal", 0, 1);
e=rand("Normal", 0, 1);
if i LE (&sampsizel) then do;
group = 0;
group_contrast=0;
y = &mean + &slopel *x + e;

end;
if 1 GT (&sampsizel) and 1 LE (&sampsize2+&sampsizel) then do;
group = 1;
group contrast=1;
y = &slope2*x + e;
end;
if 1 GT (&sampsizel+&sampsize2) then do;
group=2;
group_contrast=1;
y = &slope3*x + e;
end;
output;
end;
end;
run;

data ci_3grp;set ci_3grp;

if group=0 then group 2grp=0;

if group in (1,2) then group 2grp=1;
run;

/*Calculates Correlations and Saves to Output Dataset*/
Y%odsoff,

proc corr data=work.ci_3grp outp=corr;

by sampleid group;

var X;

with y;run;

%odson;

/*Calculates Correlations Grouping 1 and 2 Together*/
Y%odsoff,
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proc corr data=work.ci_3grp outp=corr_2grp;
by sampleid group 2grp;

var X,

with y;run;

%odson;

/* Assembles Correlation Data Sets */

data work.corr _grp0;set work.corr (where=(_type ="CORR" and group=0));drop
_name__type group;rename x=corr_grpO;run;

data work.corr _grp1;set work.corr (where=(_type ="CORR" and group=1));drop
_name__type group;rename x=corr_grpl;run;

data work.corr _grp2;set work.corr (where=(_type ="CORR" and group=2));drop
_hame__type group;rename X=corr_grp2;run;

data work.corr_both;merge work.corr_grp0 work.corr_grpl work.corr_grp2;by
sampleid;

avg corr 1 2=mean(corr_grpl,corr grp2);run;

data work.corr_grp0 2grp;set work.corr 2grp (where=(_type ="CORR" and
group 2grp=0));drop name type group 2grp;rename x=corr_grp0O other;run;
data work.corr_grpl 2grp;set work.corr 2grp (where=(_type ="CORR" and
group 2grp=1));drop name type group 2grp;rename x=corr_grpl other;run;

data work.corr both; merge work.corr _both work.corr grp0 2grp
work.corr_grpl 2grp;by sampleid,
corr_diff=avg corr 1 2-corr grpl other;run;

/*Calculates Mean of X for Each Simulation*/
Y%odsoff,

proc means data= CI_3grp mean stddev;

by sampleid;

var X;

output out=simmean mean=xbar var=var;run;

proc means data=CI 3grp mean stddev;

by sampleid group;

var X;

output out=simmean_grp mean=xbar var=var n=n;run;

proc means data=ci_3grp mean stddev;

by sampleid group contrast;

var x;

output out=simmean_grp contrast mean=xbar var=var n=n;run;
%odson

proc transpose data=simmean_grp out=simmean_trans_mean
(rename=(coll=xmean_grp0 col2=xmean_grpl col3=xmean_grp2));
var xbar;
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by sampleid;

run;

proc transpose data=simmean_grp out=simmean_trans_var (rename=(coll=xvar_ grp0
col2=xvar grpl col3=xvar_grp2));

var var,

by sampleid;

run;

proc transpose data=simmean_grp out=simmean_trans_n (rename=(coll=n_grp0
col2=n_grpl col3=n_grp2));

var n;

by sampleid;

run;

proc transpose data=simmean_grp contrast out=simmean_trans mean_contrast
(rename=(coll=xmean_grp0_ contrast col2=xmean_grpl contrast));

var xbar;

by sampleid;

run;

proc transpose data=simmean_grp contrast out=simmean_trans var_ contrast
(rename=(coll=xvar_grp0_contrast col2=xvar_grpl contrast));

var var;

by sampleid;

run;

proc transpose data=simmean_grp contrast out=simmean_trans n_contrast
(rename=(coll=n_grp0 contrast col2=n_grp1 contrast));

var n;

by sampleid;

run;

data simmean;set simmean;drop type freq ;run;

/*Merge Group and Overall Means for X*/

data simmean bygroup;merge simmean_trans _mean simmean_trans_var
simmean_trans_n simmean_trans mean_contrast simmean_trans_var contrast
simmean_trans n_contrast simmean;drop name ;run;

/*Merge mean of X for Each Simulation with Original Data*/
data CI 3grp merge; merge CI 3grp simmean_bygroup corr_both end=lastobs;

by sampleid;
xbar=(xmean_grp0+xmean_grpl+xmean_grp2)/3;
SSx_grp0=(n_grp0-1)*xvar_ grp0; *Calculate Sums of Squares for Each Group;

SSx_grpl=(n_grpl-1)*xvar grpl;

SSx_grp2=(n_grp2-1)*xvar grp2;

SSx_grpl contrast = (n_grpl contrast-1)*xvar grpl contrast;
grp0_weight=(ssx_grpl+ssx_grp2);

grpl weight=(ssx_grpO+ssx_grp2);



grp2 weight=(ssx_grpl+ssx_grp0);

123

ca=((grp0_weight*xmean_grp0)+(grpl weight*xmean grpl)+(grp2 weight*xmean grp

2))/(grp0_weight+grpl weight+grp2 weight);
Xdev_Xbar= x-xbar;
/*Centers X around X bar*/
Xdev Ca=x-ca;
/*Centers X around the Center of Accuracy*/
run;

/*Chen Calculation Dataset™/
data chen_calc;set work.ci 3grp merge;by sampleid;if first.sampleid; dropix ey
xdev_xbar xdev_ca;run;

data work.chen_calc;set work.chen_calc;

chen_incr = ((corr_grp0-avg corr 1 2)*(corr_grpO0-
avg corr 1 2))*(var/(n_grpO+n_grpl+n_grp2));
partial chen incr=2.3*chen_incr;

run;

%if &location= xbar %then %do;
/*Perform ANCOHET for Each Simulation Iteration and Output Results to
ANCOHET Stat Dataset*/
Y%odsoff
proc glm data=CI 3grp merge outstat=ANCOHET stat;
by sampleid;
class group;
model y =xdev_xbar group group*xdev_xbar/solution; *&location is a
MACRO variable that specifies the location of the test for between group differences;
Contrast "Contrast" group 1 -.5 -.5;
Ismeans group/ pdiff=all cl at xdev_xbar =0 ;
ods output Ismeans=Ismeans_y;
run;quit;
%odson

proc transpose data=work.lsmeans y out=Ismeans_y trans
(rename=(coll=y lsmean grp0 col2=y Ismean grpl col3=y Ismean_grp2));

var Ismean;

by sampleid;

run;

data work.Ismeans_y trans;set work.lsmeans y trans;drop name label ;run;
%end;

%if &location=ca %then %do;

Y%odsoff

proc glm data=CI 3grp merge outstat=ANCOHET _stat;
by sampleid;



class group;
model y = xdev_ca group group*xdev_ca/solution; *&location is a MACRO
variable that specifies the location of the test for between group differences;
Contrast "Contrast" group 1 -.5 -.5;
Ismeans group/ pdiff=all cl at xdev ca=0;
ods output Ismeans=Ismeans_y;
run;quit;
%odson

proc transpose data=work.Ismeans_y out=Ismeans_y trans

(rename=(coll=y lIsmean_grp0 col2=y Ismean_ grpl col3=y Ismean grp2));

var Ismean,;

by sampleid;

run;

data work.Ismeans_y trans;set work.Ismeans_y trans;drop name _label ;run;
%end;

%if &location=x %then %do;
Y%odsoff
proc glm data=CI_3grp merge outstat=ANCOHET stat;
by sampleid;
class group;
model y = x group group*x/solution; *&location is a MACRO variable that
specifies the location of the test for between group differences;
Contrast "Contrast" group 1 -.5 -.5;
Ismeans group/ pdiff=all clatx =0 ;
ods output Ismeans=Ismeans_y;
run;quit;
%odson

proc transpose data=work.lsmeans y out=Ismeans_y trans
(rename=(coll=y lsmean grp0 col2=y Ismean grpl col3=y Ismean_grp2));

var Ismean;

by sampleid;

run;

data work.Ismeans_y trans;set work.lsmeans y trans;drop name label ;run;
%end;

/*Save Sums of Squares and Degrees of Freedom from Individual ANCOHET Models

and then Merge*/
data ANCOHET stat;set ANCOHET stat (where=(_type ne "SS1"));run;
proc transpose data=ANCOHET stat out=ancohetSS_wide prefix=SS;
by sampleid;
id _source ;
var SS;
run;
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proc transpose data=ANCOHET stat out=ancohetDF wide prefix=df;
by sampleid;
id _source ;
var df;

run;

data ANCOHETstat wide; merge ancohetss wide ancohetdf wide;by sampleid;drop
_name ;
run;

/*Create Confidence Interval Data Set*/

data ci_info; set ci_3grp merge;by sampleid; if first.sampleid;drop i1 x e group
group_contrast y xdev_xbar xdev_ca;run;

data ci_info;merge work.ci_info Ismeans_y trans simmean_bygroup ancohetstat wide
chen_calc;by sampleid;run;

data work.ci_info;set work.ci_info;

%if &location ne x %then %do;

MSE ANCOHET = (sserror/dferror);

MSE _ANCOVA =

(sserror+SSXdev &location. group)/(dferror+dfXdev &location. group);
MSE interaction = (SSXdev_&location. group/dfXdev_&location. group);
MSE weightl =

(sserror+SSXdev_ &location. group)/(dferror+dfXdev_&location. group);
MSE weight2 = (MSE_ANCOHET + MSE _Interaction)/2;

%end;

%if &location = x %then %do;

Xp_ diff Xbar grp0 = (0 - xmean grp0)*(0 - xmean_ grp0);
Xp_diff Xbar grpl = (0 - xmean_grp1)*(0 - xmean_grpl);
Xp diff Xbar grp2 = (0 - xmean grp2)*(0 - xmean grp2);

MSE ANCOHET = (sserror/dferror);

MSE ANCOVA = (sserror+SS&location. _group)/(dferror+df&location. group);
MSE interaction = (SS&location. group/df&location. group);

MSE_ weightl = (sserror+SS&location. group)/(dferror+df&location. group);
MSE weight2 = (MSE_ANCOHET + MSE Interaction)/2;

%end;

%if &location = xbar %then %do;

Xp_diff Xbar grp0 = (xbar - xmean_grp0)*(xbar - xmean_grp0);
Xp_diff Xbar grpl = (xbar - xmean_grpl)*(xbar - xmean grpl);
Xp_diff Xbar grp2 = (xbar - xmean_grp2)*(xbar - xmean_grp2);
%end;
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%if &location = ca %then %do;

Xp_diff Xbar grp0 = (ca - xmean_grp0)*(ca - xmean_grp0);
Xp_diff Xbar grpl = (ca - xmean_grpl)*(ca - xmean_grpl);
Xp_diff Xbar grp2 = (ca - xmean_grp2)*(ca - xmean_grp2);
%end;

ratio_grp0 = (1*Xp_diff Xbar grp0)/ssx_grp0;
ratio_grpl = (.25*Xp diff Xbar grpl)/ssx_grpl;
ratio_grp2 = (.25*Xp_diff Xbar grp2)/ssx_grp2;
ratio 01 = (((1*xmean_grp0) + (-.5*xmean_grpl) + (-
S*xmean_grp2))**2)/(ssx_grpO+ssx_grpl-+ssx_grp2);

samp_inv_other = (1/n_grp0) + (1/n_grpl_contrast);
samp_inv = (1/n_grp0) + (.25/n_grpl) + (.25/n_grp2);

Stderr ANCOHET = sqrt(MSE_ ANCOHET*(samp_inv + ratio_grp0 + ratio_grpl +
ratio_grp2));

ANCOHET variance=(stderr ancohet)*(stderr_ancohet);

stderr_ancohet2 = sqrt(mse_ancohet)*sqrt((samp_inv + ratio_grp0 + ratio_grpl +
ratio_grp2));

Stderr ANCOVA = sqrt(MSE_ANCOVA*(samp_inv + ratio_01));

Stderr Interaction = sqrt(MSE _interaction*samp_inv);

Stderr Weightl = sqrt(MSE_weightl *samp_inv + ratio 01);

Stderr Weight2 = sqrt(MSE_weight2*samp _inv);

stderr_ancohet chen=sqrt(ANCOHET variance+chen _incr);
stderr_partial chen=sqrt(ANCOHET variance+partial chen_incr);

%if &location ne x %then %do;

CV_ancohet=sqrt(finv(.95, dfgroup, dferror));

CV_ANCOV A=sqrt(finv(.95, dfgroup, (dferror+1)));
CV_Interaction=sqrt(finv(.95, dfgroup, dfXdev &location. group));
CV_Weightl=sqrt(finv(.95, dfgroup, (dferror+dfXdev &location. group)));
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+dfXdev &location. group)/2)));
%end;

%if &location = x %then %do;

CV_ancohet=sqrt(finv(.95, dfgroup, dferror));

CV_ANCOV A=sqrt(finv(.95, dfgroup, (dferror+1)));
CV_Interaction=sqrt(finv(.95, dfgroup, df&location. group));
CV_Weightl=sqrt(finv(.95, dfgroup, (dferror+df&location. group)));
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+df&location. group)/2)));
%end;

y_Ismean grpl contrast=(y lsmean grpl +y Ismean grp2)/2;



Ismeans y diff =y Ismean grp0 -y Ismean grpl contrast;

ci_halfwidth ancohet=CV _ancohet*Stderr ANCOHET;
ci_lower ancohet=lsmeans y diff-ci_halfwidth ancohet;
ci_upper ancohet=Ismeans y diff+ci_halfwidth ancohet;
ci_width _ancohet=2*CV_ancohet*Stderr ANCOHET;

ci_halfwidth chen=CV_ancohet*stderr ancohet chen;
ci_lower chen=lIsmeans y diff-ci halfwidth chen;
ci_upper chen=lsmeans y diff+ci halfwidth chen;
ci_width chen=2*CV_ancohet*stderr ancohet chen;

ci_halfwidth chen partial=CV_ancohet*stderr partial chen;

ci_lower chen partial=Ismeans y diff-ci_halfwidth chen partial
ci_upper _chen_ partial=Ismeans_y diff+ci_halfwidth chen partial;

ci_width chen partial=2*CV_ancohet*stderr partial chen;

ci_halfwidth ANCOVA=CV_ANCOVA*Stderr ANCOVA;
ci_width ANCOVA=2*CV_ANCOVA*Stderr ANCOVA,;
ci_lower ANCOVA=Ismeans y diff-ci_halfwidth ANCOVA;
ci_upper ANCOVA=Ismeans y diff+ci_halfwidth ANCOVA;

ci_halfwidth interaction=CV_Interaction*Stderr interaction;
ci_width interaction=2*CV _Interaction*Stderr interaction;
ci_lower interaction=Ismeans y diff-ci_halfwidth_interaction;
ci_upper_interaction=lsmeans_y diff+ci_halfwidth interaction;

ci_halfwidth weight]1=CV_Weightl *Stderr weightl;
ci_width weight1=2*CV_Weightl*Stderr weightl;
ci_lower weightl=Ismeans y diff-ci_halfwidth weightl;
ci_upper weightl=Ismeans y diff+ci halfwidth weightl;

ci_halfwidth weight2=CV_Weight2*Stderr weight2;
ci_width weight2=2*CV_Weight2*Stderr weight2;
ci_lower weight2=Ismeans y diff-ci halfwidth weight2;
ci_upper weight2=Ismeans_y diff+ci_halfwidth weight2;

%if &location = x %then %do;

MU adj g0=&mean + (&slopel*0);

Mu_adj gl=&slope2*0;

difference population =mu_adj g0 - mu_adj gl;
%end;

%if &location = xbar %then %do;
MU adj g0=&mean + (&slopel*xbar);
Mu_adj gl=&slope2*xbar;
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difference population =mu_adj g0 - mu_adj gl;
%end;

%if &location = ca %then %do;

MU adj g0=&mean + (&slopel*ca);

Mu_adj gl=&slope2*ca;

difference population =mu_adj g0 - mu_adj gl;
%end;

%if &location ne x %then %do;

F _ANCOHET = (sscontrast/dfcontrast)/(sserror/dferror);

F ANCOVA =

(sscontrast/dfcontrast)/((sserror+SSXdev &location. group)/(dferror+dfXdev &location

_group));
F interaction=(sscontrast/dfcontrast)/(ssXdev_&location. group/dfXdev &location. gro

up);

F weightl=(sscontrast/dfcontrast)/((SSXdev_ &location. group +
sserror)/(dfXdev_&location. group + dferror));

F weight2 = (sscontrast/dfcontrast)/(MSE_ weight2);

p_ANCOHET = 1-probf(F_ ANCOHET,dfcontrast,dferror);

p_ ANCOVA = 1-probf(F ANCOVA,dfcontrast,(dferror+dfXdev_&location. group));
p_interaction=1-probf(f interaction,dfcontrast,dfXdev_ &location. group);
p_weightl=1-probf(F_weightl, dfcontrast, (dferror+dfXdev_ &location. group));
p_weight2=1-probf(F_weight2, dfcontrast, ((dferror+dfXdev_ &location. group)/2));
%end;

%if &location=x %then %do;

F _ANCOHET = (sscontrast/dfcontrast)/(sserror/dferror);

F ANCOVA =

(sscontrast/dfcontrast)/((sserror+SS&location. group)/(dferror+df&location. group));
F interaction=(sscontrast/dfcontrast)/(ss&location. group/df&location. group);

F weightl=(sscontrast/dfcontrast)/((SS&location. group + sserror)/(df&location. group
+ dferror));

F weight2 = (sscontrast/dfcontrast)/(MSE_weight?2);

p_ANCOHET = 1-probf(F ANCOHET,dfcontrast,dferror);

p_ANCOVA = 1-probf(F_ ANCOVA,dfcontrast,(dferror+df&location. group));
p_interaction=1-probf(f interaction,dfcontrast,df&location. group);
p_weight1=1-probf(F_weightl, dfcontrast, (dferror+df&location. group));
p_weight2=1-probf(F_weight2, dfcontrast, ((dferror+df&location. group)/2));

%end;

RejectHO ANCOHET = (p_ancohet<=.05);
RejectHO ANCOVA = (p_ ANCOVA<=.05);
RejectHO _Interaction = (p_interaction<=.05);
RejectHO Weightl = (p_weight1<=.05);
RejectHO Weight2 = (p_weight2<=.05);



129

Pop ParamInCI ancohet = (ci_lower ancohet<difference population &
ci_upper_ancohet>difference population);

Pop ParamInCI ancohet chen = (ci_lower chen<difference population &
ci_upper_chen>difference population);

Pop ParamInCI ancohet chenpart = (ci_lower chen partial<difference population &
ci_upper chen partial>difference population);

Pop ParamInCI_ ANCOVA = (ci_lower ANCOV A<difference population &
ci_upper ANCOVA>difference population);

Pop ParamInCI interaction = (ci_lower interaction<difference population &
ci_upper_interaction>difference population);

Pop ParamInCI weightl = (ci_lower weightl<difference population &
ci_upper weightl>difference population);

Pop ParamInCI_ weight2 = (ci_lower weight2<difference population &
ci_upper weight2>difference population);

run;

%if &output= Typel %then %do;

proc freq data=ci_info;

titlel "Type I Error Rates for";

title2 "bO=&slopel, bl=&slope2, b2=&slope3";

title3 "and";

title4 "n0=&sampsizel, n1=&sampsize2, n2=&sampsize3";
title5 "at &location";

table RejectHO ANCOHET RejectHO ANCOVA RejectHO Interaction
RejectHO Weightl RejectHO Weight2/nocum;

run;

%end;

%if &output= Power %then %do;

proc freq data=ci_info;

titlel "Power Rates for";

title2 "bO=&slopel, bl=&slope2, b2=&slope3";

title3 "and";

title4 "n0=&sampsizel, n1=&sampsize2, n2=&sampsize3";
title5 "at &location";

table RejectHO ANCOHET RejectHO ANCOVA RejectHO Interaction
RejectHO Weightl RejectHO Weight2/nocum;

run;

%end;

%if &output=ci %then %do;

proc freq data=ci_info;

titlel "Confidence Interval Coverage Rates for";

title2 "bO=&slopel, bl1=&slope2, b2=&slope3";

title3 "and";

title4 "n0=&sampsizel, n1=&sampsize2, n2=&sampsize3";
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title5 "at &location";

table pop_paraminCI_ancohet pop paraminCI_interaction pop paraminCI_ancova
pop_paraminCI_weightl pop paraminCI weight2 Pop ParamInCI ancohet chen
Pop ParamInCI_ancohet chenpart/nocum;run;

%end;

%if &output=ci_width %then %do;

proc means data=ci_info n mean stddev min max;

titlel "Average Confidence Interval Width for";

title2 "bO=&slopel, bl1=&slope2, b2=&slope3";

title3 "and";

title4 "n0=&sampsizel, n1=&sampsize2, n2=&sampsize3";
title5 "at &location";

var ci_width_ancohet ci_width_interaction ci_width ancova ci_width weightl
ci_width weight2 c¢i_width chen ci_width chen partial;
run;

%end;

%if &output=trueSD %then %do;

proc means data=ci_info n mean stddev min max maxdec=4;
titlel "True SD and Average Standard Errors for";

title2 "bO=&slopel, bl1=&slope2, b2=&slope3";

title3 "and";

title4 "n0=&sampsizel, n1=&sampsize2, n2=&sampsize3";
title5 "at &location";

var Ismeans_y_diff Stderr ANCOHET Stderr Interaction Stderr ANCOVA
Stderr Weightl Stderr Weight2 stderr _ancohet chen;

run;

%end;

% mend three group simulation;

Running the previous code does not generate output, but instead establishes a
macro program that will run when SAS receives the proper input. The following line of
code will generate and output the results for the true standard deviation in the two-group,
low heterogeneity of regression condition, where n = 10 and the test is being conducted at

X.

%two_group simulation(10000, .258, .374, 10, 10, 0, xbar, trueSD, 600);
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Appendix D

An Attempted Replication of Harwell and Serlin (1988)

The current research project was partially motivated by the findings of Harwell
and Serlin (1988). Harwell and Serlin investigated the Type I error rates and power of
several methods — both parametric and nonparametric - of analyzing data that include a
quantitative and qualitative predictor of a continuous outcome. While their paper focused
on multiple distributions for the dependent variable, the current paper focused solely on
the results where the outcome was normally distributed. They found that the Type I error
rates of the Rogosa approach were significantly greater than the nominal .05 for different
combinations of sample size (both equal and unequal) and levels of heterogeneity. In fact,
all eight combinations produced Type I error rates significantly greater than what would

be expected due to sampling error when a = .05 (see Table 8 on p. 275).

Because the current project was based on the work of Harwell and Serlin, the first
step was to replicate their results. The following sections contains these findings, and is
followed by a section regarding Harwell and Serlin’s purported use of standardized

regression coefficients.

Harwell and Serlin Method Overview

Along with the normal distribution, Harwell and Serlin generated data under
exponential, double exponential and Cauchy distributions. They used combinations of
two group sizes (n = 10, 30) and two sets of regression coefficients to model between
group heterogeneity of regression for three groups: .2, .2, .9 and .9, .9, .2. There were

eight combinations of slopes and sample sizes in total. They performed 2,000 simulations
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for each combination, and Type I error rates were calculated as the total number of
simulations out of 2,000 where the p value would have resulted in the rejection of the null
hypothesis given the specified nominal a (they looked at o = .01, .05 and .10). The
standard error of a proportion was used to calculate sampling error for each o used the

following equation:
SE, = |& (D.1)

where p is the nominal a, ¢ = 1 —p, and N is the number of replications of the simulation.
Any Type I error rate greater than 2 standard errors above or below a was considered to

be outside of the range specified by sampling error.

For combinations of regression heterogeneity and sample sizes where the Type |
error rate was below or within the sampling error around nominal «, they also looked at
the power of the test. Though, as mentioned previously, for the Rogosa procedure all
eight of the combinations had Type I error rates significantly greater than what would be
expected when a = .05. As a result, power was not calculated for the Rogosa procedure
for any of the combinations when o = .05. In fact, for the data where the outcome
followed the normal distribution, only one condition out of 18 had a Type I error rate

within sampling error of the nominal a.

Attempted Replication of Harwell and Serlin

The current paper attempted an exact replication of the Harwell and Serlin
findings. Initially, it was discovered that regardless of the heterogeneity of regression

level used (i.e., .2, .2,.9vs. .9, .9, .2), the Type I error rates were equal for each
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combination of sample size when the same starting seed value was used for the random
number generator. This was not the case for Harwell and Serlin, who likely used different
seed values for each of the conditions. As a result, the current paper presents results only
from one of the two levels of heterogeneity of regression. Consequently, the Type I error
rates from Harwell and Serlin were averaged for each combination of sample size in

order to making comparisons with the current simulation.

Table D1 contains the Type I error rates from the original Harwell and Serlin
article, combined with the error rates from the current project. There are also upper and
lower limits around each set of Type I error rates. The Harwell and Serlin upper and
lower limits were based on 4,000 simulations whereas the current study’s limits were
based on 10,000 simulations. The Type I error rates from each study were compared in
two ways: first, it was determined if the Harwell and Serlin average fell within the
confidence interval for the current study. Subsequently, the overlap between the
confidence intervals from each of the studies was evaluated. As seen in the table, all
confidence intervals from the current student did not contain o = .05. Additionally, the
confidence intervals from each study overlapped, but the Harwell and Serlin Type I error
rate average fell within only two of the four confidence intervals for the current study. In
conclusion, while Harwell and Serlin’s Type I error rates may have been slightly higher
than what the current study found in the case of equal-n, the overlap of the confidence

intervals from both studies suggests that the Rogosa procedure is indeed a liberal test.

Use of Standardized Regression Coefficients
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Until this point, it was assumed that Harwell and Serlin’s coefficients of .2 and .9
were the raw regression coefficients used to simulate the data. With a more careful
reading, however, Harwell and Serlin claim that they used standardized regression
coefficients of .2 and .9 to produce their simulated data (see simulation factor (b) in the
first full paragraph on pg. 272). However, this seems highly unlikely given results from
preliminary work undertaken for the current study. In order to calculate the raw
regression coefficients to produce standardized regression weights of these values, one
method involves using the standard deviation of ¥ computed separately in each group. It
is necessary to use the standard deviation of Y separately in each group because, as
mentioned previously in the body of this paper, the standard deviation of ¥ will not be the
same across groups in order to meet the assumption of heterogeneity of residual

variances.

In general, the formula for a standardized regression coefficient is:

_ Sxg
Br = by X — (D.2)

Sy

Where [, and b, are the kth standardized and unstandardized regression coefficients,

respectively, and s,, and s, are the standard deviations of the X and Y variables. Given o

=1 and ox = 1 (based on the simulation set-up), one can solve for the raw slopes to

achieve particular standardized slopes as follows:

cov(x,y)

Known: py,, = (D.3)

Ox0y

Known: o} = bfof +0Z = bf(1)+1=1+ b} (D.4)
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Known: cov(x,y) = byo% = b, (1) = by (D.5)
Combining D.2, D.3 and D.4 after squaring the terms in D.2 produces

P2, = b _ b}
YX T 12(14b%)  1+b?

(D.6)

Using equation D.5, if p,x = .9, then solving for b results in a raw regression coefficient
of b1 = 2.06474. Similarly, the same equation can be used to solve for the necessary raw

regression coefficient to produce p,. = .2, resulting in b, = 0.204124.

Table D2 contains the Type I error rates using raw regression coefficients to
produce standardized coefficients of .2, .2, and .9. As can be seen, these Type I error rates
are significantly greater than the rates Harwell and Serlin found, making it unlikely that

their study used standardized regression coefficients.

Conclusions

The current study partially replicated the findings of Harwell and Serlin (1988)
regarding Type I error rates for testing the main effect of a qualitative grouping variable
in the presence of heterogeneity of regression. However, despite the claims that their
simulations were conducted using standardized regression coefficients of .2 and .9, the
current study found this claim to be highly unlikely. Instead, standardized regression
coefficients would have produced Type I error rates significantly higher than what

Harwell and Serlin originally found.



Table D1

Comparing Type I Error Rates for Harwell and Serlin (1988) and the Current Replication Attempt

Using .2, .2, .9 as unstandardized coefficients to generate data,
as suggested by Harwell & Serlin (1988, Equation 10, p. 273)

Harwell and Serlin McLouth
Does
Does Interval
Average based Interval Contain Do

B1, B2, on 4,000 Lower Upper 10,000 Lower Upper Contain H&S Intervals
B3 N Simulations Limit Limit Simulations  Limit Limit .05? Average?  Overlap?
2,.2,.9 10,10,10 0.072 0.06525  0.07875 0.0641 0.05983 0.06837 NO NO YES

10,10,30 0.071 0.06425 0.07775 0.0728 0.06853 0.07707  NO YES YES

30,30,10 0.079 0.07225  0.08575 0.0767 0.07243  0.08097 NO YES YES

30,30,30 0.068 0.06075 0.07425 0.0619 0.05763 0.06617  NO NO YES

9¢l



Table D2

Type I Error Rates Using Raw Regression
Coefficients to Produce Standardized Coefficients of

2,.2,.9
B1, B2, B3 n Type I Error Rate
204, .204, 2.0647 10,10,10 0.180
10,10,30 0.238
30,30,10 0.232
30,30,30 0.169
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