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ARCHITECTURE AND EVOLUTION OF THE PEACE VALLIS DISTRIBUTIVE 

FLUVIAL SYSTEM, GALE CRATER, MARS. 

 

by 

 

Zachary Ellis Gallegos 

 

B.S., Earth and Planetary Science, University of New Mexico, 2010 

M.S., Earth and Planetary Science, University of New Mexico, 2019 

 

ABSTRACT 

 

           The Peace Vallis alluvial fan, located within Gale crater on the planet Mars, is a 

distributive fluvial system indicating a wet climate in Mars’ past. The Mars Science Laboratory 

rover instrument ChemCam, with the high-resolution Remote Micro-imager, was utilized to 

remotely explore the Peace Vallis alluvial fan and surrounding areas area. The Peace Vallis 

imaging campaigns 1 and 2, led by Dr. Horton Newsom and Zachary Gallegos respectively, 

acquired 20 distinct rover observations with a total of 243 individual images to investigate the 

fan. Using visual interpretation of the images and GIS techniques, this study interprets the 

processes and products that lead to the formation and evolution of this complex Peace Vallis 

distributive fluvial system including: recognition of a new fan structure perched above the Peace 

Vallis fan, shoreline deposits from Gale lake, nature of the Peace Vallis fan units, and 

stratigraphic correlation to the Mars Science Laboratory rover traverse. 
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Chapter 1 

 

Introduction 

 

 

The investigation of alluvial fan systems helps to guide interpretation of both 

regional paleo-climatic and environmental conditions as well as local geologic and 

depositional processes (Hooke, 1967; Blair & McPherson, 1994; Weissman, 2005; 

D’Arcy, 2017). The study of terrestrial alluvial fans can be completed in detail due to 

their accessibility as field sites. Alluvial fan features are also present in abundance on the 

surface of Mars (Moore, 2005; Kraal, 2008a; Morgan 2019) and record the same 

environmental information as Earth-based fans (Moore, 2003); however, they are less 

accessible and can usually only be studied using orbital imagery and data. 

 

NASA’s flagship Mars Science Laboratory rover mission “Curiosity” is currently 

exploring a region within Gale crater on the planet Mars (Grotizinger, 2012; Grotzinger, 

2015). Gale crater is a large complex impact crater situated on the border of the planetary 

dichotomy boundary, impacted into the crustal highland terrain. This area has a 

scientifically intriguing deposition and modification history which includes alluvial, 

fluvial, lacustrine, playa, and aeolian paleoenvironments reflected by the geology 

observed along the rover traverse. This rich geologic and environmental history led to the 

selection of Gale crater as the exploration zone for the Mars Science Laboratory rover 

(Golombek, 2012). 
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The inner wall of Gale crater rim is host to systems of fan structures (Grant, 2014; 

Palucis, 2016), known as a bajada, which are exposed in various forms and levels of 

degradation. This area of the crater is too distant for the MSL rover to ever study in-situ, 

however, it can be evaluated with long-distance imaging (Newsom, 2016; Gallegos 2018) 

and orbital GIS techniques (Scuderi, 2019).  

 

One fan of particular interest to the MSL mission is the Peace Vallis alluvial fan. 

This feature lies approximately north of the rover toward the crater rim ~7-18 km from 

the rover. The rover aspect and the proximity of the fan makes this feature accessible to 

photo-geologic investigation by the high-resolution ChemCam instrument Remote Micro-

imager (RMI) aboard the rover (Newsom, 2016; Gallegos, 2018).  

 

Study aim: 

This study will interpret the evolution and architecture of the Peace Vallis fan 

system and surrounding areas by analysis of long-distance MSL rover ChemCam RMI 

imagery. This system and the other fans structures in the alluvial bajada of northern Gale 

crater are also assessed with orbital GIS techniques to compare the architecture and 

evolution of these fans to each other and to other alluvial forms seen on Earth. 

  



 
 

 
 

3 
 

Chapter 2 

 

Review of Related Literature 

 

 
Alluvial fans: 

The investigation of alluvial fans on Earth is important for understanding the past 

and present regional climate and local depositional environment. In an active hydrologic 

system, sediments are carried by fluid from areas of higher elevation and deposited in areas 

of lower elevation. The size and density of the sediment determine how it flows with the 

fluid. Fine, clay-sized sediment will be transported near the top of the fluid in the wash-

load and distributed over a large distance. Larger sediment that is not as buoyant will be 

carried somewhere within the fluid column as suspended load. Sediment that is too dense 

to float in the fluid will be transported in the bed load, deposited nearer to the source.  

 

In mountainous regions, sediment from the upstream watershed is transported 

downhill through fluvial or runoff channels (Fig. 1). When the channel reaches a flat range, 

sediments are deposited in a cone-shaped fan apron as the flow sweeps side-to-side 

following the path of least resistance (Blissenbach, 1954; Bull 1972 & 1977; Harvey & 

Mather, 2005). The point on the fan where it originates near the mouth of the channel is 

called the apex of the fan. As the fan aggrades and progrades, the sediments at the apex 

may reach equilibrium with the channel. Retrogradation of the fan back up the channel can 

occur at this point. The channel may subsequently incise a trench in the fan exposing the 

previously deposited fan material. The terminus of the fan is referred to the toe of the fan. 

The segment of the fan apron nearest to the apex is referred to as the proximal fan. The 
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middle segment of the fan apron is referred to as the medial fan. The segment near the toe 

of the fan apron is referred to as the distal fan. The sides of the fan are referred to as the 

lateral sectors of the fan and the central section of the fan is referred to as the central sector 

of the fan. A general sediment coarsening trend is often observed up-fan as the proximal 

deposits contain course sediments that were deposited due to a change in stream power at 

the apex (Weissman, 2013). The distal deposits contain finer sediments able to be carried 

as bed, suspended, or wash load by the less vigorous flow.  

 

 
Figure 1. Top (modified from: Strahler, 1975): schematic illustration of an alluvial fan 

system. Bottom left: alluvial fan within a hyper-arid environment in Death Valley, CA. 

Bottom right: alluvial fan in the Zagros Mountains of Iran. 

Fan apex/head; Proximal fan 

Fan trench 

Fan toe; Distal fan 

Fan apron; Medial fan 
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There are multiple flow regimes for fan surfaces on a spectrum of sediment size, 

water availability/regularity, and stream power (Blissenbach, 1954). Debris flow is a viscus 

mix of sediment, lithics, and water. They are common in areas of high relief and deposit 

within channels or in lobate features with little internal structure. Sheet flow is a less viscus 

mix with a higher water to sediment ratio. They are common when discharge is high 

carrying fines from the upstream watershed during large, infrequent storm events. This 

leads to thin, regular deposition across a fan surface. Deposition of a fan surface can also 

be fluvial in nature, with one or more channels delivering the sediment load at a time.  

 

A dominant geomorphic alluvial form of fan structures known as distributive fluvial 

systems (DFS) (Weissman, 2010) are not dominated by pure lobate debris flow or sheet 

flow processes but are a result of continual fluvial avulsion, resulting in radial deposition 

of a fan apron. These features can exhibit varying forms due to variations in surface 

gradient, sediment supply, and discharge rate of the fluvial source (Fig. 2). Deposition can 

occur in one or more channels at a time and relates to the normal up-fan coarsening trend 

(Fig. 2). 

 

Fans can be subaerial or subaqueous in nature and can deposit into a standing body 

of water. This transition point of the fan into water is difficult to pinpoint. Fans that may 

have deposited into water are referred to as fan/deltas.   
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Figure 2. Top (from: Davidson, 2013): a schematic interpretation of the DFS depositional 

classes. Bottom (from: Weissman, 2013): illustration of the class 1 DFS depositional mode. 

Yellow = active channels. Orange = inactive channels. Blue = wetlands/lacustrine.  
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Alluvial fans on Mars: 

In the past, Mars has had an active hydrologic cycle which formed many 

geomorphic features indicative of surface water flow such as: giant outflow channels 

(Sharp & Malin, 1975; Baker, 1982), inverted channels (Baker, 2001; Newsom, 2010), 

deltas, and alluvial fans. On Mars, fan structures are observed (Moore, 2005; Kraal, 2008a; 

Morgan 2019) in many regions (Figure 3) with varying forms including: stepped deltas 

(Kraal, 2008b), deltas (Malin & Edget, 2003; Fasset & Head, 2005), alluvial fans 

(Anderson & Bell, 2010) (Fig. 4). With no observed tectonic uplift on Mars, alluvial fans 

are restricted to other high-relief environments such as within the walls of impact craters, 

on the slopes of giant outflow channels, and on the flanks of volcanic uplifts. Formation 

rate of large alluvial fans on Mars have been modeled to ~106 years in a temperate to semi-

arid environment and ~107 to ~108 years in long-lived arid environments (Armitage, 2011). 

 

 
Figure 3 (from: Morgan, 2019). The locations of fan structures across the surface of Mars. 

Red dots represent alluvial fans, green dots represent stepped deltas, and blue dots represent 

deltas. 
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Figure 4. Example of an evolved alluvial fan/delta system within Holden crater, Mars. 

 

 

 

Gale crater: 

Gale crater (centered at 5.42°S, 137.82°E) is a complex and scientifically intriguing 

area on the planet Mars. The ~154 km diameter crater situated on the highlands side of the 

planetary dichotomy, ~1850 km south of the Elysium volcanic complex, is the result of an 

impact in the Late Noachian (Thompson, 2011) – Early Hesperian (Le Deit, 2012). The 

center of the crater is draped by a thick sedimentary mound called Aeolis Mons. The mound 

rises ~5 km above the crater floor and likely covers the central peak of Gale crater.  

 

From orbit (Fig. 5), Gale crater shows evidence for past surface water and 

groundwater flow. Evidence of one or more paleo-lakes within the crater (Palucis, 2016) 

comes from orbital spectroscopic analysis of the mineralogies deposited within crater, 

including the hematite observed on Vera Rubin Ridge and the clays deposited above the 

2 km 
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ridge (Anderson & Bell, 2010; Miliken 2010). Geomorphic features around and within the 

crater also show evidence for past water flow. Fan systems along the crater rim and on the 

central mound indicate modification by surface water (Anderson & Bell, 2010; Sumner, 

2013; Palucis, 2014).  

 

Some models of the Gale crater environment include a lake with deposits partly 

filling the crater and subsequent aeolian infill of the entire crater (Grotzinger, 2015). This 

is an unlikely scenario as filling and exhuming a crater of sediment does not need to be 

called on to explain the past and current environments observed. Conversely, outward 

dipping slopes of the sediments on the mound reflect the potential for in-place 

sedimentation and modification of the mound without crater infill (Kite, 2013).  

 

This range of diverse geology/mineralogy, and the inferred environmental 

conditions that produced it, is the reason Gale crater was selected for the landing site of the 

MSL rover (Miliken, 2010; Anderson & Bell, 2010: Golombek, 2012) 
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Figure 5. CTX visual mosaic of the of 154 km diameter Gale crater and the surrounding 

areas. 

 

 

 

Gale crater alluvial bajada: 

 When alluvial deposition occurs along a long-running front, a series of alluvial fan 

features may form a chain of fans, referred to as a bajada. Segments around the inside rim, 

or crater “wall”, of Gale crater are partially lined with an alluvial bajada (Figure 6) 

consisting of fan structures of varying form and stages of degradation. Most of the fans are 

heavily eroded with prominent, predominantly linear inverted channels forms. These 

resistant features represent past fluvial channels armored by cemented sediments and/or a 

unit of fluvial boulders. The sinuosity of the inverted channels is very low suggesting these 

fan structures represent group 1 (braided bifurcating) of the DFS spectrum. These degraded 
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alluvial fan structures along the bajada are sourced from crater rim alcove watersheds with 

relatively small areas but potential for groundwater percolation through the rim.  

 

Most of the watersheds surrounding Gale crater are relatively small due to the 

precipitous crater rim. These small watersheds carve alcoves within the rim structure that 

may be due to degradation and mass wasting as part of initial crater modification or with 

later hydrologic interaction. The rim is dissected in several areas connecting larger 

watersheds to the Gale crater interior with more developed alluvial structures. These large 

fans can be mantled by fine grained material from the watershed in periodic climate events 

(Scuderi, 2019). These deposits are shown by relative crater counts to be significantly 

younger than the surrounding and underlying deposits (Grant 2018). 

 

Groups of hills are observed intermittently spaced in front of the crater wall. These 

foothills have little visible internal structure but are often surrounded by small alluvial 

forms. Areas with larger distributive fluvial systems exhibit a lack of these foothills due to 

their subsequent erosion in these high-powered fluvial environments. One interpretation is 

that these hills are mass-wasting deposits that slumped off the crater wall during initial 

crater modification; the other possibility being they are a result of later crater wall failure 

due to groundwater percolation through the crater rim or intense alluvial/fluvial activity.  
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Figure 6. A section of the Gale crater bajada in the north-east quadrant of the crater. The 

Peace Vallis channel is observed dissecting the crater in the top-left of the figure. 

 

 

Peace Vallis watershed: 

The Peace Vallis watershed is the largest watershed draining into northern Gale 

crater (Fig. 7). Early studies concluded an area of 1021 km2 (Palucis, 2014), however recent 

evidence shows an area of ~1500 km2 with the addition of an extended southern watershed 

(Newsom, 2019). The watershed records an active fluvial and alluvial history as evident 

by relatively young fluvial channels, older inverted channels, and small alluvial fans. Most 

of the terrain is a mottled, light and dark surface suggesting mobilization and transport of 

sediments into topographic lows. The Peace Vallis watershed drains surface water and 

groundwater into Gale crater primarily through the Peace Vallis channel. This channel 

flows from above the crater rim edge (~26 km with 1.4 km elevation change) down through 

the Peace Vallis alcove to the apex of the sedimentary structure known as the Peace Vallis 

fan. Other smaller tributaries flow into the main channel, incising new drains into the Peace 

Vallis alcove. Percolation of Peace Vallis watershed groundwater through the crater rim is 

also likely. 
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Figure 7 (from: Newsom, 2019). The Peace Vallis watershed on the rim of Gale crater, 

outlined in white dashes (image credit: Fred Calef). 

 

 

Peace Vallis distributive fluvial system: 

The Peace Vallis alluvial fan (Fig. 8) is located within the north rim of Gale crater. 

This feature has been the subject of previous study (Anderson & Bell, 2010; Sumner, 2013; 

Palucis, 2014) due its proximity to the Mars Science Laboratory exploration zone. It shares 

many similarities with Earth-based fans including: fan-like conical shape, inverted channel 

topography, and fluvial channels. This feature has been referred to in the literature as an 

alluvial fan but more closely resembles the definition of a DFS.  
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Figure 8. Outline of the bajada area containing he Peace Vallis DFS within Gale crater. 

 

The Peace Vallis fan is supplied with water and sediment by the Peace Vallis 

watershed. Unlike most other fan watersheds in Gale crater, Peace Vallis watershed 

represents a relatively large catchment area. This large area provided the water and 

sediment necessary to account for the individual units of the Peace Vallis fan. Previous 

research shows the sediments eroded in Peace Vallis alcove to be approximately equal in 

volume to the Peace Vallis fan (Palucis, 2014). There is likely more input of sediments and 

lithics from the highlands sourced watershed than this result implies. 

 

The Peace Vallis fan has been mapped (Fig. 9) into two visually distinct units: the 

BF (bedded and fractured) unit and the AF (alluvial fan) unit (Sumner, 2013). The 

underlying BF unit is exposed in the left-lateral sector and distal section of the fan. It 

outcrops in relatively rugged, eroded but continuous beds. The unit also contains polygonal 

fractures which have been interpreted as paraglacial in origin (Oehler, 2016). The AF unit 

is present on the proximal and medial sections of the fan. It has a smooth, undulating 
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surface mantling the underlying topography. This unit has been shown to be a late stage 

alluvial deposit from <1.6 Ga (Grant, 2018) sourced from sediments and fines accumulated 

in the Peace Vallis watershed.  

 

 
Figure 9 (from: Sumner, 2013). Geologic map of the Peace Vallis fan area with tan 

representing the AF unit and brown representing the BF fan unit.  

 

 

Several large inverted channels are observed on the fan originating near the apex 

and continuing to the medial-distal fan (Anderson & Bell, 2010; Palucis, 2016). These 

resistive features were likely formed in fluvial environments of the DFS.   

 

Two wide, flat-bottomed channels observed on the fan surface originating at the -

4435 elevation contour are result of groundwater sapping at the springline of the fan 
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(Scuderi, 2019). These features are well preserved with sharp, continuous outcrops and 

thereby represent the latest major hydrologic activity on the fan surface.   

 

Mars Science Laboratory rover: 

The Mars Science Laboratory rover (MSL) (Fig. 10) is a multi-instrument, NASA 

flagship rover mission which landed within Gale crater, Mars (5.3°S, 137.7°E) on August 

6, 2012. It consists of seven analytical instruments for investigating geochemistry, 

mineralogy, and other geologic/environmental processes in the vicinity of the rover. These 

analyses are performed via remote science, contact science, and as drill sample (Okon, 

2010). The rover also has six photographic instruments for rover navigation, as well as 

visual and multi-spectral observation of the environment within sight of the rover.  

 

After landing, the rover discovered a sedimentary environment dominated by 

sandstone and mudstones (Vasavada, 2014). The first leg of the traverse began decreasing 

in elevation to reach the Yellowknife Bay waypoint. This area is important for 

understanding the early alluvial, fluvial, and lacustrine environment at Gale crater due to 

the interbedded conglomerates, sandstones, and mudstones (Vaniman, 2014; Rampe, 2017) 

representing a prograding alluvial structure. Along the traverse up-section to the 

sedimentary units on the flanks of Aeolis Mons, the rover encountered more mudstone 

deposits with a mix with sandstones (Rice, 2017) representing shore or near shore deposits. 

Diagenetic alteration of the rocks is apparent from veins and nodules observed in certain 

units (Stack, 2014; Nachon, 2014; Nachon, 2017). Desiccation cracks are also observed in 

the mudstone (Stein, 2018) indicating past fluid interaction and a drying surface. One of 



 
 

 
 

17 
 

the main reasons for the selection of Gale crater as the exploration zone for the MSL 

mission was the identification of Vera Rubin Ridge (previously Hematite ridge) (Fraeman, 

2013). Initial orbital spectroscopic mapping indicated a hematite rich signal and the 

potential for past aqueous alteration. This are was investigated by the rover and shown to 

be a heterolithic mudstone with elevated hematite (Fraeman, 2018). Clay detections have 

also been interpreted as past water alteration (Bristow, 2015). The MSL rover is currently 

traversing across the Clay Unit to investigate the past lacustrine environment while 

ascending the lower Aeolis Mons sedimentary units.  

 

 

 
 

Figure 10 (from: Grotzinger, 2012). A schematic diagram of the Mars Science Laboratory 

with the scientific instruments annotated.  
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ChemCam Remote Micro-imager: 

The ChemCam instrument (Fig. 11) incorporates two individual remote sensing 

instruments: a laser-induced breakdown spectroscopy (LIBS) device and the Remote 

Micro-imager (RMI). There are two individual hardware components to the ChemCam 

instrument: the body unit (Wiens et al., 2012) and the mast unit (Maurice et al., 2012). The 

body unit is housed within the chassis of the rover and comprises three spectrometers which 

each detect a range of plasma light frequencies emitted by the laser target. The mast unit is 

located atop the 2.1 m tall rover mast and contains the laser and RMI telescope (Fig. 11).  

 

 
Figure 11 (from: Maurice, 2012). ChemCam mast unit (left) and the MSL mast fully 

constructed with the ChemCam mast unit integrated (right). 

 

 

 

The LIBS instrument is a relatively non-destructive analysis technique, targeting 

rock and soil samples with a 1067 nm IR laser. Each laser analysis consists of 30-150 

individual pulses which vaporizes a small ~300-500 µm diameter pit on the sample. The 

super-heated plasma created by the laser emits photons indicative of the target’s variable 
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elemental composition. The light is then collected by the telescope in the mast unit and 

detected by the spectrometers within the rover body where the data is processed and relayed 

back to investigators on Earth. The laser has fired over 600,000 individual shots on more 

than 2,500 individual targets, making it one of the most prolific planetary instruments in 

terms of geochemical data products. The Remote Micro-imager (RMI) instrument is a 

Schmidt-Cassegrain reflecting telescope device which uses a system of mirrors to direct to 

the photons of laser plasma to the ChemCam spectrometers (Fig. 12). The RMI was also 

designed for locating and documenting the pinpoint laser pits on a target created by the 

laser with a 1024x1024 pixel CCD at 14x14 µm/pxl. The detector is behind the spectra 

splitting dichroic filters which causes a “ghost” duplicating anomaly in the imagery when 

travelling through the front and back of the filter. 
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Figure 12. Top: schematic diagram of the ChemCam telescope (Maurice, 2012). Bottom: 

orbital image showing the minimum pixel size of the RMI imager at varying distances from 

the rover (image credit: Fred Calef). 
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The RMI telescopic imaging device was re-purposed on Sol 327 to also make long-

distance observations of the areas surrounding the rover (Le Mouélic, 2015). By focusing 

the optics at or near infinity (equivalent to 52.156 m) the RMI captures a resolution equal 

to the HiRISE orbiting camera (~25cm/px) at ~12 km distance. The first test on the Peace 

Vallis system (Fig. 13) targeted an area on the right-lateral, distal edge of the fan. This 

image shows outcrops of resistant material observed standing above the fan floor. Since 

this observation, the RMI has been used to image the sedimentary deposits on Aeolis Mons 

(Dromart, 2018; Le Diet, 2018), dark lineae change detection (Anderson, 2017), and on 

mid-distance observations along the rover traverse.  

 

 
Figure 13. ChemCam sequence CCAM01237 targeted at distal Peace Vallis DFS 

deposits. 
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Chapter 3  

 

Methodologies 

 

 

Data 

Peace Vallis imaging campaign: 

During the 1st and 2rd extended missions of MSL rover operations, the Peace 

Vallis campaign acquired ChemCam long-distance RMI imagery of the Peace Vallis 

distributive fluvial system as well as the surrounding geology (Newsom, 2016; Gallegos, 

2018). The Mastcam instrument (Malin, 2010) was utilized as a context imager for the 

high-resolution RMI imagery in Peace Vallis campaign. This imagery represents the first 

in-depth photogeologic analysis of a complex fluvial distributive system from the surface 

of Mars. The Mars Exploration Rover “Opportunity” also observed an alluvial bajada 

within Endeavour crater along the rover traverse; however, these fans were viewed from 

the rim of the crater looking down, meaning little geologic information was observed 

from the system at this high-elevation, down-fan view.  

 

The unique perspective of the Peace Vallis system to the MSL rover makes it a 

promising target for long-distance photo-geologic analysis. Located approximately north 

from the rover traverse, the sun illumination angles are advantageous for imaging this up-

fan slope. This viewing angle also means that the Peace Vallis system is not within the 

restrictive “Sun-blob” for the rover: a region surrounding the ecliptic where ChemCam 

may not point due to the possibility of damaging the optics if focused on the Sun 

(Maurice, 2012).  
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The Peace Vallis campaign was completed in two individual campaigns (Fig. 14). 

The first campaign was carried out by Dr. Horton E. Newsom during 2016 (Sols 1237-

1311, Mars year 32; 01/29/2016 – 04/15/2016) from the Namib Dune-Naukluft Plateau 

section of the MSL traverse. This campaign occurred shortly after the Mars summer 

solstice during a relatively clear atmospheric period. The second component of the 

campaign was carried out by M.S. candidate Zachary E. Gallegos during 2018 (Sols 1927-

2012, Mars year 33; 01/07/2018 – 04/04/2018) from the Vera Rubin Ridge section of the 

MSL traverse. This campaign occurred later in the Martian summer just before the onset 

of a planet-wide dust storm during which the Mars Exploration Rover: Opportunity lost 

contact with NASA. 
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Figure 14. Traverse route of the MSL rover with the two Peace Vallis campaign locations 

outlined with a blue (1st campaign) and red (2nd campaign) ellipse. 

 

 

 

The observations of the Peace Vallis campaign were categorized “opportunistic”, 

as other recurring rover experiments and engineering processes held precedence. This 

means that any opportunity to acquire this imagery was utilized. This produced a range of 

time-of-day for the implementation of the RMI sequences. Having one time for observation 

would allow for more uniform imagery with regard to light exposure and incidence angle, 

however, the variable brightness and differing sun angles potentially allow for additional 

directional aspects and textures to be illuminated 
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ChemCam RMI observations were acquired in left-to-right mosaics consisting of 4 

to 20 individual images. The mosaics were targeted the following raster configurations: 

5x1, 10x1, 20x1, and 10x2. Campaign 1 included three 5x1 rasters and ten 10x1 rasters. 

Campaign 2 included one 10x1 raster, five 20x1 rasters, one 2x2 raster, and one 10x2 raster. 

The 2x2 observation was intended to be a 10x2 raster but was abbreviated due to a rover 

anomaly. At times of high rover tilt, diagonal rasters were executed to approximate a 

horizontal image.  

 

The time and detail required for planning, proposing, and conducting a rover 

campaign of this scale is not trivial. The purpose of planning a campaign for long-term, 

high-data observations is to: reduce operator effort, increase rover resource utilization, 

reduce reliance on ground in-the-loop cycles (Gaines, 2017). This process requires multiple 

levels of proposal and review presented to the rover science/engineering team hierarchy. 

This rigorous process is due to a finite amount of daily time and data for all the various 

rover engineering and science activities. Proposal of campaigns with the scope of the Peace 

Vallis campaign mean less time for other geologic, astrobiologic, atmospheric, or rover 

engineering activities during the course of the campaign.  

 

The first step for the Peace Vallis campaign was to propose the plan to the specific 

instrument required for collecting the data. In this case, the ChemCam instrument team was 

notified of the initial concept for the Peace Vallis campaign 2 at the Fall 2017 ChemCam 

science team meeting. This original presentation laid the groundwork for rover resources 

needed during the entire campaign and the expected results of the study. The initial 
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proposal was met with hesitation because the amount of time and data required for the 

campaign was not trivial. This requires reallocation of the resources from other 

geochemical, photogeologic, and environmental experiments that regularly take place 

using the ChemCam. After this step, more planning was needed to refine the campaign 

with the suggestions made by the ChemCam team. The next presentation was made to the 

Geologic Working Group which includes the teams for all instruments that take part in 

geologic observations with the rover. The resources used for the campaign would affect 

the total resources available for these instruments as well so having their approval was 

important to move forward. The final step was presentation to the entire rover team during 

a Science Discussion on a rover operations sol. This was a proposal of the campaign as 

well as an invitation to the team ensuring that anyone on who wished to be involved with 

the campaign had a chance to collaborate.  

 

After making the rounds with proposals and presentations, the Peace Vallis 

campaign was given the green-light. Multiple weeks were spent on rover operations 

waiting for the opportunity to begin the campaign. Anytime there was an opportunity for a 

Peace Vallis fan observation, another analytical experiment would require the rover time 

and data. This continued until an extended stay at a potential drill site allowed for saturation 

of analytical analysis around the rover. Two observations during the campaign were 

aborted due to rover anomalies. The first was due to the ChemCam instrument being 

marked “sick” before the observation was executed. The second occurrence was due to the 

ChemCam pointing crossing the rover “hardstop” resulting in a complete shutdown of 

rover activities. This produced the abbreviated raster of ChemCam sequence CCAM05991. 
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Gale crater HiRISE digital terrain model: 

As a result of the MSL landing site selection process and continued rover 

monitoring, a mosaic of HiRISE .25m/px high-resolution orbital imagery was acquired for 

the characterization of the local north Gale crater area. Stereo imagery processing allowed 

for construction of a digital terrain model (DTM) representing ~1 m/px surficial data (Fig. 

15). This DTM includes most of the Peace Vallis fan system, however, there are major co-

location errors and other data anomalies.   

 

 
Figure 15. HiRISE DTM of the MSL exploration zone area including the Peace Vallis fan 

system. 
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Data processing 

ChemCam Remote Micro-imager corrections: 

The ChemCam RMI is an effective tool for imaging distant features in the area 

surrounding the MSL rover (Le Mouélic, 2015). Raw imagery (Fig. 16a) received from 

the RMI is processed through the RMI pipeline: a set of uniform adjustments performed 

for every image. Pipeline processed imagery contains anomalies from the camera 

technology and the optics (Maurice, 2009; Dufour, 2010) which were previously 

mitigated with manual, non-consistent correction (Figure 16b). One of the anomalies that 

affects the RMI is a fluctuating flat field value which varies with mirror and lens focus 

distance. Another anomaly is the result of light intensity varying radially within the 

image. This means the intensity of light is greater at the center of the image than at the 

edge. When viewing Peace Vallis fan and areas of Aeolis Mons, a bright halo appears at 

the edge of the image. This is likely due to stray-light entering the outer 3-4° of the RMI 

telescope boresight (Le Mouélic, 2019). The uniform corrections made to all RMI images 

in the processing pipeline do not provide adequate products for complete long-distance 

geologic/geomorphic interpretation. 

 

The Peace Vallis campaign captured 265 individual images of the Peace Vallis 

fan area at varying times in the day, times of the year, and at two major atmospheric 

regimes. This amount and range of imagery has allowed for enhanced, automatic 

correction of RMI in the Peace Vallis area. Le Mouélic et al. stacked all 265 Peace Vallis 

images together and applied a median filter to the product. The result is a flat-field filter 

that when subtracted from the individual images reveals an enhanced product (Figure 
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16c). This process allows for more accurate visual and enhanced imagery analysis for the 

Peace Vallis campaign. Currently this processing technique is only effective for 

correcting images in the direction of the Peace Vallis fan (Le Mouélic, 2019). 

 

 
Figure 16. ChemCam long-distance RMI sequence CCAM04981. A: unprocessed, raw 

ChemCam RMI image. B: RMI image with the standard RMI pipeline processing. C: 

Peace Vallis RMI image with mean-subtracted RMI processing.  

 

 

 

Analysis methods 

Visual interpretation: 

This study uses visual photo-geologic interpretation as a first order investigation 

method for understanding the Peace Vallis fan system. Images are analyzed and annotated 

based on contrast, texture, and structures observed in the frame.  

 

Enhanced image analysis is performed as part of this study by adjusting the 

threshold of the imagery. For this process, each pixel in the grayscale RMI image is given 

a value from 0 to 255. Adjusting the maximum, minimum, and mean values will reassign 

pixel values in the given range. For example, adjusting the maximum from 255 to 200 will 

A B C 
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change all the pixels with values above 200 to black and visa versa adjusting the minimum 

pixel value from 0 to 50 will change all the pixels with values below 50 to white. This 

technique is used to focus on individual units, layers, or other contrasting features. 

 

Stereo imagery is produced by taking two images from different perspectives of the 

same target. This was one of the main goals of the Peace Vallis campaign 2: to re-image 

areas from the Peace Vallis campaign 1, compare the two together, and create stereo 

anaglyphs. The difference in elevation, viewing angle, and atmospheric conditions between 

the two campaigns does not yield valuable products; however, useful stereo anaglyphs are 

constructed using a single RMI image. These products allow for enhanced viewing and 

analysis of the RMI imagery through increased depth perspective.  

 

 

 

 

GIS techniques: 

This study also performs GIS techniques to illuminate the processes and products 

of the Peace Vallis fan system which are hidden to visual interpretation. The Gale crater 

HiRISE DTM is utilized as the highest resolution elevation data. Topographic profiles are 

created to determine differences in elevation and slope between features in the north Gale 

crater area. 

 

To accurately identify the surfaces on the fan that were within line-of-sight of the 

RMI field of view, viewshed analysis (Fig. 17) is conducted on the Gale crater DTM from 

the Peace Vallis campaign imaging locations.  
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Figure 17. Viewshed analysis of the ChemCam long distance RMI sequence CCAM02241. 

 

 

Creation of viewshed products allows for accurate recognition of features seen from 

HiRISE orbital imagery with features seen in the ChemCam RMI imagery (Fig 18). 

Annotated orbital and RMI correlations are created for context. 
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Figure 18. Correlated view of features in the ChemCam long-distance RMI sequence 

CCAM02241 (bottom) with orbital data (top). The field of view is ~550 m wide. 
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Chapter 4 

 

Results 

 
 

MSL rover results 

Peace Vallis Campaign 1: 

The Peace Vallis campaign 1 (Fig. 19) was conducted from sol 1237 to sol 1311. 

The objective of this campaign was to acquire imagery of the lateral boundaries of the fan 

and the fan apex. A total of 13 distinct mosaics were captured for a total of 113 individual 

images. Each mosaic has an RMI image spacing of 10 mrad for maximum coverage within 

each mosaic except for the Peace Vallis fan trench mosaic which had a spacing of 8 mrad.  

 

 
Figure 19. The Peace Vallis campaign 1: ChemCam long-distance RMI observations on a 

Mastcam mosaic sequence mcam06038 background. 

 

 

Peace Vallis Campaign 2: 

The Peace Vallis campaign 2 (Fig. 20) was conducted from sol 1927 to sol 2012. 

The objective of this campaign was to acquire imagery of the entire central sector of the 

fan from the Peace Vallis channel to the toe of the fan.  A total of 8 distinct mosaics were 

captured with 134 individual images. Each mosaic has an RMI image spacing of 8 mrad 

for maximum overlap near the top and bottom of the mosaics.  
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Figure 20. The Peace Vallis campaign 2: ChemCam long-distance RMI observation on a 

Mastcam mosaic sequence mcam10228 background. 

 

 

Orbital GIS results 

Topographic profiles: 

Using DTM data from the HiRISE and CTX orbital instruments, topographic 

profiles were constructed to illustrate the elevation change between areas key for 

understanding the Peace Vallis fan system. The south to north topographic profile for Gale 

crater (Fig. 12a) shows a highly irregular crater interior with the current south crater floor 

standing more than 1.2 km higher than the north crater floor. The north floor of Gale crater 

(Fig. 21b) is a gently sloping surface from the north crater rim to the floor, with a steep rise 

base of Aeolis Mons. The Peace Vallis distributive alluvial fan shows ~2.5° slope down 

the fan (Fig. 21c). This is within the typical range for distributive alluvial surfaces. The 

cross profile for the Peace Vallis fan (Fig. 21d) shows a concave-down surface, with the 

left side of the profile more irregular and the right side more smooth. The profile of the 

large inverted channel running down the center of the Peace Vallis fan (Fig. 21e) shows a 

slope of ~2°, similar to that of the Peace Vallis fan profile. A fan shaped structure (Fig. 

21f) higher on the crater rim than the Peace Vallis fan has a slope of ~10° and shows two 
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irregularities: a dip more than halfway down representing the Peace Vallis fan trench and 

a bulge at the toe of the fan. 

 

Figure 21. A: Gale crater profile from south to north showing the north-south slope of the 

crater and surrounding area. Also note the central mound, Aeolis Mons, which covers the 

Gale crater central uplift. B: North Gale crater profile from above the Peace Vallis fan to 

the top of the clay unit above the rover. C: Peace Vallis distributive fan down-fan profile. 

D: Peace Vallis distributive fan medial, cross-fan profile showing a rugged west sector and 

smooth east sector. E: Large inverted channel profile on Peace Vallis fan with a ~2° slope. 

F: Peace Vallis perched fan down-fan profile with a ~10° slope. This profile also shows 

the Peace Vallis fan trench and a toe bulge.  

 

 

Digital terrain model analysis: 

Analysis is performed on the Peace Vallis DTM to illuminate features not seen in 

visible imagery. By dividing the DTM values by 121 then subtracting from the original 

DTM, the underlying structure of the Peace Vallis fan is illuminated (Fig. 22). 
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Figure 22. DTM analysis of the Peace Vallis fan area revealing the BF unit structure.     
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Chapter 5 

Discussion 

 

 
Gale crater wall layering: 

Gale crater is impacted into crustal highlands terrain. The nature of the pre-impact 

stratigraphy is not understood as no bedding relationships have been previously observed 

in the crater wall. The dominant rock type of the highlands terrain is thought to be mafic 

volcanic and plutonic lithologies but analysis of float rocks by MSL has revealed a 

potentially evolved continental-like lithology (Sautter, 2015). A long distance RMI 

targeted at older bajada surfaces captured the crater wall in the background. After threshold 

adjustment distinct, horizontal layering can be observed on the crater wall (Fig. 23).  

 

 

 
Figure 23. Crater wall stratigraphy observed in ChemCam long-distance RMI sequence 

CCAM04262. 
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Mass wasting deposits 

A survey of the crater wall foothills, which are observed sporadically from the base 

of the crater wall extending to the crater floor, reveals no observable internal structure. 

Therefore, these features are likely mass wasting deposits from the crater rim/wall and not 

older dissected alluvial deposits. Alluvial bajada deposits skirt the foothills with fan 

surfaces and inverted channels flowing around them. This implies an emplacement after 

initial crater modification and before major alluvial bajada activity.  

 

 

Inverted channels: 

There are multiple examples of inverted channels on the Peace Vallis fan, mostly 

observed in the proximal and medial fan sections and in the left-lateral sector of the fan. 

These features are discontinuous and have very low sinuosity. They resemble the inverted 

channel features on the other, older bajada fans and are thereby from the underlying, older 

BF unit fan. The prominent inverted channel which runs down the central sector of the fan 

is captured in the long-distance ChemCam RMI sequence CCAM04981 (Figure 24).  

 

 
Figure 24. Inverted channel deposits on the Peace Vallis fan captured by the long-distance 

ChemCam RMI sequence CCAM04981 and from orbit (bottom right; ~2.5 km across). 
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Another possible explanation for these inverted features is a glacial eskers origin 

deposited on top of the Peace Vallis fan surface. Several studies (Fairen, 2014; Mège & 

Bourgeois, 2011) have reported potential glacial activity within Gale crater and in other 

equatorial regions on Mars. Eskers are discontinuous with gaps between preserved 

segments and have a non-planar surface. This description matches morphology of the 

central Peace Vallis fan inverted channel. This is an unlikely origin for the inverted 

channels as there are no other local glacier indicators e.g. glacial valleys, moraines, or scour 

marks. Alcoves in the crater rim are seen on the north and northwest facing surfaces. These 

features are potentially glacial in origin. 

 

 

Relict alluvial deposits: 

There are clear examples of relict fan deposits of the paleo-fan surface now 

outcropping above the current fan trench surface (Fig. 25). These deposits are older alluvial 

surfaces that have been incised by the Peace Vallis fan trench and abandoned ~37 m above 

the current trench floor. Individual layers within these deposits are observed to be laterally 

continuous for at least 2 km. The origin of these deposits is likely incised proto-Peace 

Vallis fan deposits or incised retrogradational deposits from the current Peace Vallis fan. 
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Figure 25. Top: abandoned alluvial deposits captured by the ChemCam long-distance RMI 

sequence CCAM04300. Bottom: HiRISE orbital view of the abandoned deposits. The 

yellow box outlines the features in each image and represents ~600 m across in the lower 

image. 

 

Other relict alluvial deposits exist near the western contact of the AF and BF fan 

units. These features have two potential origins: 1) resistant inverted channels with the fan 

surface eroded around them or 2) fan surfaces which have been incised by fluvial flow and 

abandoned above the surrounding fan surface. The orbital result in Figure 29 showing the 

underlying DFS nature of the Peace Vallis fan gives evidence for these relicts as inverted 

channels. Other geomorphic features of DFS can include inactive islands and bars which 

are incised by current fluvial channels (Davidson, 2013). This geomorphic product would 

suggest these relicts are not inverted channels.  
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Peace Vallis perched fan:  

Another fan feature has been identified coming from the Peace Vallis alcove system 

(Fig. 26). This perched fan is located above the known Peace Vallis fan with the fan apex 

~6 km away from and ~475 m higher than the Peace Vallis fan and the apex. The toe of 

the fan extends to the apex of the Peace Vallis fan. This perched fan resembles the AF unit 

of the Peace Vallis fan in both texture, brightness, and crater density implying a surface 

younger than the BF unit. Thermal emission measurements from the TES instrument of the 

Mars Global Surveyor orbiter confirm the shape of the feature as well as the link to 

sediments similar to the AF unit on the Peace Vallis fan (Figure 26).   

 

This fan also displays a bulge at the toe, potentially indicative of subaqueous 

slumping due to the overpressure of Gale lake (Postma, 1984). The Peace Vallis river is 

thought to have deposited sediment into Gale lake through hyperpycnal flow (Stack, 2018) 

due to lake chemistry and temperature. This flow regime would support the deposition fines 

in a subaqueous fan.  Other subaqueous fans have been observed in a lacustrine 

environment on Mars (Metz, 2009). 
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Figure 26. Top: A newly recognized fan structure perched above the Peace Vallis fan. The 

blue arrow indicates a newly activated channel which caused a dam in the Peace Vallis 

channel. Bottom: Thermal inertia view of the perched fan and Peace Vallis fan area. 
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The toe of the perched fan was imaged in a long-distance RMI on Sol 1300 (Figure 

27). The bottom right corner shows the sloping layers of the lateral edge of the fan. The 

fan was then incised by subsequent flow in the Peace Vallis fan trench. This means the 

perched fan is not the absolute youngest system in the area since it is bisected by the Peace 

Vallis fan trench. The other alternative is that the systems may be subaerial and active 

concurrently with the Peace Vallis fan. A landslide dam is observed in the Peace Vallis 

channel just above the apex of the perched fan. The dam was caused by the activation of a 

new channel draining into the Peace Vallis alcove from the newly discovered western 

watershed (Newsom, 2019). This forced water and sediment bound for the Peace Vallis fan 

to flow outside the channel and deposit at the location of the new fan. 

 

 
Figure 27. Stereo anaglyph of long-distance ChemCam RMI sequence CCAM04300 with 

dipping layers of the perched fan above the Peace Vallis fan (bottom right). 

 

 

 

Remnant shoreline deposits: 

The paleo-lake of Gale crater has been a focus of study since the identification of 

Gale as a potential landing site for the MSL rover (Anderson & Bell 2010; Golombek, 

2010). Assessing the lake level has been accomplished so far by using stratigraphic 

relationships of lacustrine facies from orbit and with the observations made by the rover. 
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Terrestrial paleo lake levels are recorded in shore line erosion deposits (Baedke, 2005) due 

to a process of beach ridge formation and preservation (Johnston, 2007). This study shows 

lake shoreline deposits on the foothills of the crater floor (Fig. 28). These sets are observed 

running continuously for >2 km and are ~1-6 m thick. The crater wall layering in Figure 

22 may also be recording the paleo-shoreline. 

 

These bedding sets may also be the result of retreating alluvial surfaces which 

reveal the internal layering of a fan. The uniform periodicity of these potential alluvial 

layers could record seasonal (Kite, 2013) precipitation and/or melting of ice/snowpack in 

the watershed producing sheetflood-like flows. This explanation is less probable due to the 

lateral extent of the individual layers. A single layer can be traced multiple kilometers and 

the sets have uniform periodicity similar to terrestrial, lacustrine shoreline deposits. The 

layering is also observed up to 100 m above the current alluvial surface.  
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Figure 28. Top (from: Chan, 2011): Paleo-shorelines recorded in Lake Bonneville deposits. 

Bottom: ChemCam RMI shoreline context image and inset zoom-in within Gale crater.  

 

Nature of the BF fan unit: 

In the left-lateral sector of the medial-distal fan deposits, the BF fan displays relict 

alluvial deposits with laterally continuous, outcropping beds. These beds are observed to 

continue for 100s of meters and stratigraphically correspond to beds 1000s of meters away. 

These forms are likely distal inverted channel deposits but may also represent overbank 
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deposits with the channel deposits eroded out (Davidson, 2013). Where the BF fan is not 

obscured by the AF fan unit in the central and right-lateral sectors of the fan, it is shown to 

outcrop in laterally continuous beds perpendicular to fan flow direction (Fig. 29). This 

suggest a more well-preserved BF fan under the AF fan deposits.  

 

Figure 29. Top: outcrops on the of the BF unit observed in ChemCam long-distance RMI 

sequence CCAM03271. Bottom: threshold adjusted product from CCAM03271 

accentuating the lateral continuity of the outcrops. 

 

The BF fan unit underlies the AF fan unit on the east side of the proximal and 

medial fan deposits. The AF unit shielded the BF unit from aeolian and fluvial erosion in 

this area since the ~1.6 Ga (Grant, 2018) AF unit formation. Figure 22 shows the structure 

of the BF fan to resemble the DFS model with a type 1 braded and bifurcating depositional 

pattern. 

 

 

 

Outcrops 
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Nature of the AF fan unit: 

The AF unit does not represent deposition by a DFS but rather a late-stage (Grant, 

2018) sheetflow fan surface. This deposit is a fine grained, undulating surface with little 

observable structure mantling the underlying BF unit topography (Fig. 30). There is no 

significant lateral continuation of layers or observable outcrops of this material. 

 

Figure 30. Threshold adjusted image of ChemCam long distance RMI sequence 

CCAM02011 which shows the undulating, discontinuous surface of the AF fan unit in the 

middle and the outcropping, semi-continuous BF fan unit at the bottom. 

 

 

Groundwater sapping channels: 

One of the most intriguing findings to come from analysis of the RMI images is the 

confirmation of proposed groundwater sapping channels on the Peace Vallis fan (Scuderi, 

2019). The western scarp of the sapping channel is observed in RMI sequence 

CCAM04981 (Fig. 31). It is a sharp, continuous feature not heavily eroded or dissected. 

This preservation state adds to the evidence for a ~1.6 Ga channel formation. The RMI also 

observes the wide, flat-bottomed nature of these channel features with steep parabolic 

sides, confirming the groundwater sapping origin. The right side of the channel is obscured 
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by an inverted channel which bounds the eastern side of the sapping channel. The inverted 

channel is irregular and eroded confirming an older origin.   

 

Figure 31. Top, bottom-left (inset): groundwater sapping channel observed by the 

ChemCam RMI sequence CCAM041981. Bottom-right (from: Scuderi, 2019): HiRISE 

DTM hillshade product. 

 

 

MSL stratigraphic column comparison: 

The MSL rover acquires detailed, frequent measurements of the areas surrounding 

the rover along the traverse utilizing its analytical instruments and cameras. This has 

produced a stratigraphic column for a ~380 m section within Gale crater (Fig. 32). 

Comparisons of the MSL stratigraphic column and the Peace Vallis fan system provide 

insight into the deposition of the units along the rover traverse.  

 

The lowest elevation deposits recorded by the rover were at the Yellowknife Bay 

waypoint. This area contained successions of conglomerates (Williams, 2013), sandstones, 
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and mudstone and has been labeled a fluvio-lacustrine environment (Grotzinger, 2014). 

This study finds it probable that these units represent a progradational DFS distal deposits 

from the crater rim with ephemeral lacustrine mudstones interbedded. The profile from the 

apex of the Peace Vallis perched fan to the Clay unit (Fig. 21b) illustrates a complete 

alluvial surface with the Yellowknife Bay units representing the distal alluvial/fluvial 

deposits from the Peace Vallis alluvial system.  

 

The rover entered the Clay bearing unit after Sol 2300 when it descended the Vera 

Rubin Ridge at -4143 m elevation. This unit signifies a lacustrine depositional 

environment. This is ~100 m elevation above the Peace Vallis DFS apex. The elevation of 

the highest clay/sulfate signatures is -3600 m elevation. The Peace Vallis perched fan has 

an apex elevation of -3810 m. This stratigraphic relationship gives indication of a 

subaqueous deposition of the Peace Vallis perched fan. Evidence exists for primarily 

hyperpycnal flow from the Peace Vallis river including a 13 m section of thinly-laminated 

mudstone and lake salinity predictions (Stack, 2018). The clay unit represents hypopycnal 

flow of wash load and suspended load sediments from the crater rim transported to the 

southern lake shore by dominant wind currents and local atmospheric turbulence within 

the crater.     
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Figure 32. Left: Stratigraphic column for the traverse of the Mars Science Laboratory. 

Right: Vertically exaggerated profile of the Peace Vallis alluvial system aligned by 

elevation with the rover stratigraphic column to show correlation to the materials observed 

along the traverse 
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Gale crater wall bajada: 

The relative timing of the bajada which covers sections of the interior wall of Gale 

crater can be interpreted by mapping crosscutting relationships and superposition of the 

fan deposits (Fig. 33). The fan surfaces and inverted channel features are seen overlapping 

and abutting adjoining fans. A fan surface covered by other fan deposits is older than the 

overlying fan. In some cases, inverted channel deposits are seen crosscutting other inverted 

features from another fan. An entire fan sector or a single fluvial channel may become 

inactive while the remaining fan surface is active. This is the only caveat for these timeline 

approximations.  

 

The Peace Vallis bajada system displays evidence for no less than three individual 

fan structures. The first fan formed was the fuchsia colored fan observed through its 

inverted channel features continuing below the yellow colored fan and overlapping of the 

beige fan onto the surface. The Beige fan is incised by the Peace Vallis fan trench 

suggesting that the yellow fan is younger, though they may also be concurrent. 

 

The bajada fan system in northeast Gale consists of at least seven individual 

overlapping fan systems sourced from individual channels dissecting the crater wall. The 

youngest possible fans by stratigraphic relationships are the green, orange, and violet fan 

surfaces which are not overlain by other fan deposits. Nothing can be inferred regarding 

their relative ages to one another because there are no observed relationships between these 

youngest fans. The next oldest possible fans are the red and royal blue fan surfaces. These 

fans are overlapped by the orange and violet fans making them stratigraphically older. The 
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next possible age is the light blue fan surface which is overlapped by the royal blue fan. 

The oldest fan observed in this system is the dark purple fan surface which is not observed 

overlying any other fan deposits. The navy blue and burgundy fans are isolated with no 

contact to other fan features and therefore can only be mapped.  

 

 

 

 
Figure 33. Top: a section of the Gale crater alluvial bajada in the north-east quadrant of the 

crater. Bottom: a map of the temporal evolution of the bajada in this area. 
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Conclusions: 

Detailed analysis of the Peace Vallis alluvial system reveals a more complex history 

of deposition and modification than previously determined. This new understanding 

represents multiple stages of evolution through multiple climatic environments in Mars’ 

history (Fig. 34).  

 

• Initial crater modification after impact produced the bowl-shaped surface of Gale 

crater with a deep-sourced central peak. This is thought to occur during the Late 

Noachian to Early Hesperian era. Previous work suggests the lower section of the 

central mound, Aeolis Mons, was emplaced before the crater was breached by 

fluvial activity (Irwin, 2013). 

 

• Deposition of early alluvial fans on the Aeolis Palus surface was likely 

groundwater-sourced through the crater rim. These deposits are likely eroded 

beyond recognition or covered by subsequent alluvial features.   

 

• The Gale crater bajada lies on the crater modification mass-wasting slopes. The 

bajada contains fan systems that are relatively small and simple, likely due to small 

crater rim alcove watersheds. A succession of westward younging within the Peace 

Vallis alcove bajada system is observed in crosscutting relationships and 

superposition of the fans. A preliminary timeline is also understood for the DFS 

activity in the north-east Gale crater wall bajada.  
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• The Peace Vallis fan system consists of the BF and AF geologic units. The 

underlying BF fan unit is the oldest visible deposit in the Peace Vallis fan. The unit 

is rugged and irregular. It comprises an eroded network of inverted channel features 

deposited by the DFS transporting sediments down-fan. This unit was later 

modified by lacustrine, fluvial, and aeolian erosion. The BF unit floor continues 

downslope after the disappearance of the inverted channels. The floor is 

unconformibly topped by Aeolis Palus deposits on the west side of the fan system 

but can be observed on the right-lateral sector extending to the Yellowknife Bay 

alluvial formation observed in-situ by the MSL rover. 

 

• The Peace Vallis fan system was then modified over the next ~1.5 Ga by mostly 

dry climate, aeolian erosion and modification in the Late Hesperian and Early 

Amazonian.  

 

• Around ~1.6 Ga (Grant, 2018) a punctuated climate event reactivated the Peace 

Vallis system with a deposit of fine-grained, mantling AF unit fan material. From 

rover view the unit appears undulating with no continuous layering. This unit is 

sourced from the accumulation of windblown dust and other unconsolidated 

sediments within the watershed. Well preserved strandlines are observed in several 

ChemCam RMI mosaics suggesting a late stage lacustrine environment at this time. 

As the climate event subsided, the flow of sediment rich surface water was reduced 

to groundwater flow. This led to the formation of the groundwater sapping channels 

at the fan springline (Scuderi, 2019). 
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• The newly discovered perched fan above the Peace Vallis fan represents either a 

high-water level, subaqueous fan depositing fine sediments from the watershed into 

Gale Lake or an avulsion of the Peace Vallis channel during deposition of the AF 

fan. Evidence for the former comes from stratigraphic comparison with the 

lacustrine deposits on the MSL traverse route. Evidence for the latter is the channel 

plug observed in the Peace Vallis channel above the new fan apex. Crater count 

statistics are necessary to determine the age of this fan.  

 

• The Peace Vallis fan system was then modified by dry-climate, aeolian erosion and 

modification producing the present-day form. 
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Figure 34 (modified after: Thompson, 2013). Geologic timescale of Mars annotated with 

important events within Gale crater.  
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Appendices 

 

Appendix A: Observations and products from the Peace Vallis campaign 1. 

Included for each RMI observation in this section are: 

• High-level description of the ChemCam RMI image  

• Regional RMI context image  

• RMI context image  

• RMI image 

• Threshold adjusted RMI image to accentuate key features 

• Stereo anaglyph RMI product   

 

 

Appendix B: Observations and products from the Peace Vallis campaign 2. 

Included for each RMI observation in this section are: 

• High-level description of the ChemCam RMI image  

• Regional RMI context image  

• RMI context image  

• RMI image 

• Threshold adjusted RMI image to accentuate key features 

• Stereo anaglyph RMI product   
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Appendix A: Observations and products from the Peace Vallis campaign 1. 

 

Sol 1241 

A six-frame mosaic was acquired on Sol 1241 in the ChemCam sequence CCAM02241. 

The left-most frame is taken from the Sol 1237 test image as this mosaic was a continuation 

of that observation. This mosaic captures an area in the distal, west-lateral edge of the fan. 

Several prominent outcrops of the same stratigraphic elevation can be seen protruding 

above the surrounding surface across the center of the image. These outcrops represent 

deposits associated with the BF fan unit. 
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Sol 1251 

A seven-frame mosaic was acquired on Sol 1251 in the ChemCam long-distance RMI 

sequence CCAM05251. The mosaic captures an area on the medial, east-lateral edge of the 

fan. The upper part of the mosaic contains an inverted channel structure skirting the base 

of a group of mass wasting produced hills. The middle part of the mosaic shows the bright, 

alluvial surface associated with the inverted channel while the lower part of the mosaic 

shows the contact of the bajada fan with the Peace Vallis fan proper. 
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Sol 1257 

A ten-frame mosaic was acquired on Sol 1257 in the ChemCam long-distance RMI 

sequence CCAM01257. Outcropping BF unit fan material can be seen, as well as the 

distinct contact between the fan and the bounding Aeolis Palus units. 
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Another ten-frame mosaic was acquired on Sol 1257 in ChemCam long-distance RMI 

sequence CCAM02257. The top left side of the mosaic contains a prominent inverted 

channel feature coming across the fan surface toward the southeast and then down the 

central section of the fan. Outcrops of BF fan material are exposed in the middle of the 

image. 
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Sol 1262 

A ten-frame mosaic was acquired on Sol 1262 in the ChemCam long-distance RMI 

sequence CCAM03262. This image captures a series of foothills of the slope of the crater 

wall. Laterally continuous beds are observed abutting the hills in the mosaic. 
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Another ten-frame mosaic was acquired on Sol 1262 in the ChemCam long-distance RMI 

sequence CCAM04262. This observation targeted a chain of prominent foothills to the east 

of the Peace Vallis fan apex on the crater wall slope. These hills are mantled with alluvium 

and show little to no internal structure with the exception of possible horizontal layering 

near the bottom middle of the left-most hill. The base of this hill is also lined with a 

resistant, inverted channel feature that follows the slope of the underlying surface. Below 

the inverted channel is another alluvial surface in the Peace Vallis DFS area. 
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Sol 1271 

A ten-frame mosaic was acquired on Sol 1271 in the ChemCam long-distance RMI 

sequence CCAM03271. This observation targeted the distal deposits on the right-lateral 

sector of the fan. Outcrops of BF unit are seen above the fan surface. 
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Another ten-frame mosaic was acquired on Sol 1271 in the ChemCam long distance RMI 

sequence CCAM04271. This observation captures a prominent foothill on the right with 

inverted channel deposit skirting the side. Other fan surfaces are seen sloping up to the 

foothills against the crater wall.   
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Sol 1293 

A five-frame mosaic was acquired on Sol 1293 in the ChemCam long-distance RMI 

sequence CCAM03293. This observation targets the distal deposits on the left-lateral sector 

of the fan. It shows highly eroded BF unit outcrops.  
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Sol 1296 

A ten-frame mosaic was acquired on Sol 1296 during the ChemCam long-distance RMI 

sequence CCAM04296. This observation shows a series of foothills on the lower crater 

wall. Alluvial flows can be seen flowing through the hills. The same horizontal beds can 

be observed over 2 km suggesting laterally continuous layers.    
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Sol 1300 

A ten-frame mosaic was acquired on Sol 1300 in the ChemCam long-distance RMI 

sequence CCAM04300. This observation was targeting the Peace Vallis fan trench and 

surrounding areas. Other tributaries to the Peace Vallis system can be seen in the bright 

deposits coming down from the crater rim in the top right section of the image. Another 

bright tributary on an alluvial surface above the Peace Vallis trench is observer  
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Sol 1309 

A five-frame mosaic was acquired on Sol 1309 in the ChemCam long-distance RMI 

sequence CCAM01309. This observation targeted the very distal deposits on the left-lateral 

sector of the fan. Outcrops of BF fan unit are seen standing above other fan deposits. The 

~3.5 km impact crater dubbed “ellipse edge crater” is seen in the top right section of the 

image. 
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Sol 1311 

A ten-frame mosaic was acquired on Sol 1311 in the ChemCam long-distance RMI 

sequence CCAM05311. This observation targeted proximal fan deposits in the left-lateral 

sector of the fan apron. Older fan surfaces are also seen in the top left portion of the image. 
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Appendix B: Observations and products from the Peace Vallis campaign 2. 

 

Sol 1980 

A twenty-frame mosaic was acquired on Sol 1980 in the ChemCam long-distance RMI 

sequence CCAM04980. This observation was targeted at the left-lateral sector of the 

medial fan surface. An impact crater is seen in the middle right section of the image. An 

inverted channel feature runs just below the crater. 
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Sol 1981 

A twenty-frame mosaic was capture on Sol 1981 in the ChemCam long-distance RMI 

sequence CCAM04981. This observation targeted medial fan deposits on the central sector 

of the fan. The .75 km impact crater on the fan is seen in the top right corner of the image. 
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Sol 1984 

A twenty-frame mosaic was acquired on Sol 1984 in the ChemCam long-distance RMI 

sequence CCAM02984. This observation targeted distal deposits on the central sector of 

the fan surface. A contact between the fan surface and crater floor deposits is observed as 

a continuous contrast across the bottom of the mosaic. 
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Sol 1991 

A four-frame mosaic was acquired on Sol 1991 in the ChemCam long distance RMI 

sequence CCAM05991. The observation targeted distal deposits of the mantling, 

discontinuous AF fan unit on the east-lateral sector of the fan apron. This sequence 

experienced a rover anomaly due to the ChemCam “hardstop” and was cut short of the 

intended 10x2 raster. 
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Sol 1998 

A twenty-frame mosaic was acquired on Sol 1998 in the ChemCam long-distance RMI 

sequence CCAM03998. This observation targeted proximal deposits near the apex of the 

Peace Vallis DFS. A prominent inverted channel feature can be seen running from the top-

central part of the image to the left middle of the image.  
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Sol 2011 

A ten-frame mosaic was acquired on Sol 2011 in the ChemCam long-distance RMI 

sequence CCAM01011. This was a horizontal mosaic targeted on the Peace Vallis channel 

while the rover was at a high tilt. The channel contains fluvial fill and boulders eroded from 

the channel wall. A series of flat-lying outcrops can be seen perched above the west side 

of the channel at the left-center of the mosaic. 
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A twenty-frame mosaic was acquired on Sol 2011 in the ChemCam long-distance RMI 

sequence CCAM02011. This observation targeted the medial deposits of the fan on the 

left-lateral sector of the fan. A large, .75 km crater is seen on the left side of the top raster. 

The AF fan surface is observed over most of the middle of the mosaic. The lower section 

of the bottom raster is lined with BF unit outcrops. The older fan surfaces in the Peace 

Vallis system are observed at the top of the image. 
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Sol 2012 

A twenty-frame mosaic was acquired on Sol 2012 in the ChemCam long-distance RMI 

sequence CCAM02012. This observation targeted the distal deposits on the central sector 

of the apron. An impact crater is seen on the left side of the mosaic. 
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