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ABSTRACT

We study the reliability of quantum simulation on Noisy intermediate-scale quantum

(NISQ)-era devices in the presence of errors and imperfections, with a focus on ex-

ploring the relationship between the properties of the system being simulated and

the errors in the output of the simulator. We first consider simulation of the Lipkin-

Meshkov-Glick (LMG) model, which becomes chaotic in the presence of a background

time-dependent perturbation. Here we show that the quantities that depend on the

global structure of the phase space are robust, while other quantities that depend on

the local trajectories are fragile and cannot be reliably extracted from the simulator.

Next we analyze the effects of Trotterization on the simulation of p-spin models. We

show that even in the absence of chaos, Trotter errors proliferate in the “structural

instability regions”, where the effective Hamiltonian associated with the Trotterized

unitary becomes very different from the target p-spin Hamiltonian.
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1
Introduction

The world’s first documented “computer” dates back to circa 150 B.C. when An-

tikythera Mechanism device was used to predict astronomical phenomena [GG18].

It was a hand-held device consisting of interlocking mechanical gears, enclosed in a

wooden case, that would accurately predict the future location of planets. It was

about the size of a mantel clock with a knob on the side that would allow the device

to move forward or backward. As the knob was turned, the hands in the device would

display celestial time with at least seven hands, each one displaying the location of

sun, moon and other five planets that are visible to the naked eye [FHD+21]. This de-
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CHAPTER 1. INTRODUCTION

vice is an example of an analog “computer” that used the one-to-one correspondence

between the physical position of the astronomical bodies and the mechanical system

to simulate the location of the planets.

In the last century, there have been significant advancements in the field of classical

computing. To start with, there have been many developments on the theoretical side

such as Shannon’s idea of using Boolean algebra for describing electrical switches and

Alan Turing’s idea of Turing machine that eventually lead to the development of a

general-purpose computer [GG18]. The first digital, programmable, general purpose

computer, ENIAC was built in the year 1945 [McC99]. The ENIAC consumed about

2000 times the electricity of a modern computer and used 18, 000 vacuum tubes. With

the invention of transistors in the year 1947, which were smaller and consumed little

power compared to the vacuum tubes, the development of modern-day computers

was accelerated. The next breakthrough in integrated circuits in 1960s allowed the

computer size to be reduced significantly and the idea of personal computer soon

became a reality.

Noticing the significant improvement in the power of computer hardware after

the discovery of transistors, Robert Moore in the year 1975 made a prediction that

the number of transistors on a chip, which can be regarded as equivalent to the

computational power of the computer, would double every year beginning in 1975

[McC99]. This prediction has been proven correct and referred to as Moore’s law.

However, we are reaching the fundamental limitations on how small transistors can be

made, and Moore’s law cannot hold true for long time in future within the framework

of classical computing. A path forward that would further improve the power of

2



CHAPTER 1. INTRODUCTION

computing is to move to a different framework known as quantum computing.

1.1 Quantum Computing

In classical computers, information is stored and processed as bits, which can take

values 0 or 1. On the other hand, the fundamental unit of quantum computation

used by quantum computers is a quantum bit (qubit), which can be |0⟩, |1⟩ or in any

superposition of being both 0 and 1, α|0⟩+ β|1⟩. Qubits in superposition states can

lead to quantum interference and entanglement, which are the essential components

for speedup associated with quantum computers [NC02]. The speedup we obtain with

quantum computers is dependent on the choice of the problem. For instance, Shor’s

quantum algorithm provides exponential speedup with factoring integers compared

to the best known classical algorithm [Sho94], while Grover’s quantum algorithm

provides only quadratic speedup over the classical case [Gro96].

One of the most prominent application of quantum computer is simulation of quan-

tum systems. The idea of quantum simulation was first proposed by Feynman in 1982

[Fey82]. The fundamental equation that governs the dynamics of a state |ψ⟩ under a

Hamiltonian H(t) in quantum mechanics is given by Schrödinger equation

i
d

dt
|ψ⟩ = H(t)|ψ⟩, (1.1)

3



CHAPTER 1. INTRODUCTION

that has the solution |ψ(t)⟩ = U(t)|ψ(0)⟩ with the propagator formally given by

U(t) = T
(∫ t

0

dt′ exp
[
−iH(t′)

])
(1.2)

= 1 +
∞∑
n=1

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2...

∫ t

0

dtn T
[
H(t1)H(t2)...H(tn)

]
(1.3)

where T
(∫ t

0
dt′ exp

[
−iH(t′)

])
is referred to as the time-ordered exponential of the

Hamiltonian that is defined by the right hand side of Eq. (1.3). The operation

T
[
H(t1)H(t2)...H(tn)

]
produces the time-ordered product of operators, where the

factors are arranged in a manner such that the time arguments will decrease from left

to right.

Feynman pointed out that simulation of an arbitrary quantum system evolving

under Eq. (1.1) is intractable on a classical computer [Llo96]. That is, it requires

exponential amount of resources in space and time to keep track of the state as a

function of time. For instance, consider a system with N spin-1/2 particles, then

the description of the state itself requires parameters that grow exponentially in the

number of particles, 2N . In addition, calculation of the time-evolution requires a

number of operations that grow exponentially in the system size (2N × 2N). A way

to overcome this problem is to simulate quantum mechanical systems with a device

whose constituent parts also follow quantum mechanical laws. Note that, on the other

hand, for a classical system, the state space increases only linearly with the number

of particles in the system.

Quantum simulators have many applications in quantum chemistry [GAN14,

4
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AGDLHG05, BN09], high-energy physics [MMS+16, KDM+18], condensed-matter

physics [EWL+21, HQ18] and atomic physics [YN11]. As a specific example of a

problem for which quantum simulators could provide real-world advantage is un-

derstanding the mechanism of nitrogen fixation (process that converts atmospheric

nitrogen to ammonia under ambient conditions) by the enzyme nitrogenase. A key

process in the fertilizer production is manufacturing ammonia that is being produced,

at present, using Haber-Bosch process, which requires intense pressure and high tem-

perature. In fact, about 3% of the today’s world’s energy is spent on manufacturing

fertilizers. However, the enzyme nitrogenase converts atmospheric nitrogen into am-

monia at room temperature and standard pressure using significantly smaller amount

of energy compared to industrial process. To better understand the biological nitrogen

fixation and take advantage of this process to reduce our energy needs for manufac-

turing fertilizers, one needs to simulate the active site of nitrogenase with sufficient

accuracy. The nitrogenase active site has large number of strongly interacting (corre-

lated) electrons that makes the computation intractable for classical computers with

the existing methods [RWS+17]. Likewise, quantum simulation could help us with un-

derstanding high-temperature superconductivity that is not described by Fermi-liquid

model [ZLI+21].

1.2 Noisy Intermediate Scale Quantum Era

Since Feynman’s proposal of quantum simulation, rapid advancements in the field

brought us into the current era of Noisy Intermediate-Scale Quantum (NISQ) de-

vices [Pre18]. These devices are large enough such that they would be able to

5
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tackle problems that are intractable for classical computers but also noisy enough

that full-fault tolerant error correction cannot be performed [AAB+19, ZWD+20].

One of the main goals associated with these NISQ devices is to perform a com-

putation that is less demanding than required for universal quantum computation,

but that can still surpass the capabilities of the present-day classical computers re-

ferred to as having quantum advantage. There has been ongoing effort to achieve

quantum advantage in the NISQ devices along different avenues such as sampling

[AAB+19, ZWD+20], optimization problems [CAB+21, SKS+21] and quantum simu-

lation [EWL+21, SSW+21, ZPH+17, BSK+17, BDN12].

In a recent seminal experiment, Arute et al. have claimed quantum advantage based

on sampling from the output distribution of a pseudo-random circuit on a 53 qubit

system at Google [AAB+19]. This pseudo-random circuit was obtained by repeated

application of random single-qubit operations alternating with a two-qubit gate. They

were able to verify that their device indeed sampled from the intended probability

distribution, where the sampling from the distribution is classically hard, using linear

cross entropy benchmarking fidelity [AAB+19]. Another recent work by Zhong et al.

showed quantum advantage using boson sampling based on the theoretical proposal

by Aaranson and Arkhipov [ZWD+20, AA11]. Boson sampling involves sampling

from the probability distribution of the output modes after photons are allowed to

pass through a linear optical network consisting of beam splitters and phase shifters.

Due to interference among photons, this process can result in random outcomes from

a probability distribution that cannot be efficiently sampled on a classical computer

[AA11].

6
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Another application of NISQ-era devices is hybrid quantum-classical optimization

such as variational quantum eigensolver (VQE) [PMS+14] and quantum approximate

optimization algorithm (QAOA) [FGG14]. In these type of optimizers, a low depth

quantum circuit is executed on a quantum computer to prepare a state and the mea-

surement results are passed on to the classical computer. The classical computer then

sends instructions back to the quantum computer, based on classical optimization, to

prepare a new quantum state using a different set of parameters. This process is then

repeated until the associated cost function is minimized for the purpose of solving

some optimization problem. When this paradigm is used for solving classical combi-

natorial problems, it is referred to as QAOA. It is referred to as VQE when applied

to finding the low-energy states of a many-body system [Pre18].

One of the strongest contenders for achieving quantum supremacy in NISQ-era

devices is the task of quantum simulation. Even though quantum simulation on

quantum computers with fault-tolerant error correction in the future will lead to

transformative applications, it can also be a very useful application in the NISQ-

era devices. We expect a small error in the simulation such as flipping of a single-

spin in a large spin system to not affect the macroscopic observables describing the

phases of the system as opposed to Shor’s algorithm whose advantage depends on

finding the exact configuration of the final state [Deu20]. Quantum simulators can

solve problems involving many-body systems that cannot be simulated efficiently by

numerical methods on a classical computer or the problems that are not amenable to

analytic approximation [CZ12]. Such problems include obtaining the phase diagram

of high-temperature superconductor [GAN14] or the phase diagram of a dynamical

7



CHAPTER 1. INTRODUCTION

quantum phase transition [ABC+21, ZPH+17].

There have been many recent studies of equilibrium quantum phase transitions and

out-of-equilibrium dynamics on large quantum simulators (> 50 qubits) that have

been claimed to be intractable on classical computers [EWL+21, SSW+21, ZPH+17,

BSK+17]. However, it is questionable if these phenomena would be hard to simulate

classically even in the presence of decoherence resulting from control errors, inhomo-

geneities or environmental effects. This is because the decoherence would restrict the

ability of the system to generate coherence and entanglement, which can be regarded

as the reason why the system is intractable on the classical computer in the first place.

In general, how errors impact quantum simulation is not very well understood.

1.3 Methods of quantum simulation

Quantum simulation requires the ability to prepare an initial state of interest, then

evolve the initial state under the target time-evolution operator and the capability

to perform measurements on the final state. Here we will primarily focus on the

aspect of producing the targeted time evolution. Quantum simulation can be broadly

categorized into two different types: Hamiltonian based simulation (emulation) and

gate-based simulation.

1.3.1 Hamiltonian-based Simulation

The Hamiltonian-based simulation, also referred to as emulation, involves realizing

the target Hamiltonian or an analogous Hamiltonian, which has one-to-one correspon-

dence with the system of interest, in the lab. Then, by letting the system naturally

8



CHAPTER 1. INTRODUCTION

Figure 1.1: The above figure presents different types of the quantum simulation models. (a)
Emulation: the required time evolution is obtained by letting the system naturally evolve under
the native Hamiltonian constructed in the lab. (b) Gate-based simulation: the intended time
evolution is broken down into a sequence of gates.

evolve with time, one obtains the targeted time evolution as illustrated in Fig 1.1(a).

Depending on the experimental platform used for the emulation, some interactions

appear naturally and lead to realization of particular type of Hamiltonians. However,

as better control of the qubits used in the experimental platform is achieved, wider

classes of Hamiltonians can be implemented. The disadvantages of emulators is that

they cannot realize arbitrary Hamiltonian and cannot be made fault-tolerant through

the existing methods of error correction (see Sec. 1.4).

Consider the experiment using the ion-trap system where the authors claim

that they have simulated computationally intractable features associated with non-

equilibrium dynamics in a 53-qubit system [ZPH+17]. On this platform, the qubits

are encoded in the hyperfine clock states of the 171Yb+ ion. With the help of an exter-

nal magnetic field h and spin-dependent forces that arise from an applied laser field,

they were able to implement Ising-type Hamiltonian with long-range spin-spin inter-

actions. Typically, problems associated with non-equilibrium dynamics involve evo-

lution over exponential number of excited states accompanied by high entanglement,

9
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which makes it difficult to have a theoretical description. Moreover, the long-range

interactions lead to faster growth in entanglement restricting the efficient numerical

simulations using matrix product states to short-time dynamics. In the experiment,

Zhang et al. obtain information about the various aspects of the non-equilibrium phe-

nomena including long-time average of two-body spin correlations and higher-order

correlation observables in these long-range models in a 53 qubit system, which is

expected to be hard or impossible to compute classically.

1.3.2 Gate-based Simulation

In the paradigm of gate-based quantum simulation, the time evolution under a given

Hamiltonian is realized by breaking down the evolution into a sequence of fundamental

unitary maps or “gates”, which are assumed to be easier to implement, as shown in

Fig 1.1(b). Typically, in this framework, one has access to a “universal gate set”,

which then allows an arbitrary unitary operation to be efficiently approximated using

the gate set as stated by the Solovay-Kitaev theorem [NC02]. A digital simulator

of this type with a universal gate set can perform universal quantum computations.

Also, when the allowed gates are chosen from a finite set of maps, this simulation can

be made fault-tolerant.

One of the first algorithms that was proposed in this framework is the first-

order Trotter-Suzuki decomposition of the target unitary [Llo96]. Consider the time-

independent Hamiltonian given by

H =
K∑
j=1

Hj (1.4)

10
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Suppose the time evolution associated with each of the individual terms in the

summation can be implemented using a given gate set {e−iHj l} where l is a constant.

Then the time-evolution operator associated with the Hamiltonian of interest can be

realized approximately using the first-order Trotter-Suzuki decomposition given by

U
(1)
trot =

(
e−iH1

t
n e−iH2

t
n ... e−iHK

t
n

)n ≡ (Uδ(τ))
n (1.5)

= e−iHt +O
(
K2t2

n

)
(1.6)

with the Trotter-step size denoted by τ = t/n. In the limit n → ∞, the unitary

operator under Trotter decomposition becomes identical to target unitary Utar =

exp (−iHtart). In practice, n is a finite number and leads to an error in the overall

simulation according to

||U (1)
trot − Utar|| = O

(∑
i,j∥[Hi, Hj]∥t2

n

)
, (1.7)

where n = O
(∑

i,j∥[Hi, Hj]∥t2/ϵ
)

is chosen so that the simulation has an overall

accuracy ϵ [CST+21]. For Hamiltonians with local interactions, the number of terms

in the target Hamiltonian decomposition given by K in Eq. (1.4) grows polynomially

with the system size, allowing efficient simulation of the Hamiltonian through first-

order Trotterization [Llo96]. The second-order Trotter decomposition can also be

constructed so that error in the lower-order terms cancel as shown below.

U
(2)
trot =

(
e−iHK

t
2n ... e−iH1

t
2n e−iH1

t
2n ... e−iHK

t
2n

)n
= e−iHt +O

(
K3t3

n2

)
(1.8)

11
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Similarly, the high-order Trotter decompositions can be recursively constructed that

lead to lower error in the decomposition [CST+21]. All of these Trotter decomposition

formulas are collectively referred to as product formulas. Notice that even though

higher-order product formulas lead to low error, the length of the circuit required

to produce higher-order decomposition increases drastically with the order of the

decomposition and may not be practically useful [TLM+19].

More recently, a number of new algorithms such as simulation through trun-

cated Taylor series [BCC+15], quantum signal processing [LC17] and qubitization

[LC19] have been proposed that significantly improve the error bounds asymptoti-

cally [CMN+18]. These methods are referred to as the post-Trotter methods. Even

though many of these post-Trotter algorithms are known theoretically to have better

asymptotic performance in time or error precision compared to product formulas, it

was shown empirically in some cases that the product formulas perform better than

those other methods [CMN+18]. Moreover, product formulas do not need any addi-

tional overhead in terms of ancilla qubits making them a relevant choice for quantum

simulation in the NISQ era.

1.4 Digital vs. Analog Simulation

Quantum simulators can be also classified into analog and digital simulators. A digital

simulator accepts inputs and produces outputs that belong to a discrete state space

and implements circuits using a finite set of discrete unitary maps [Deu20]. Even

though the qubit state is defined on a continuum described by superposition states, we

can consider the input and output state space to be described by the discrete outcomes

12
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of a bit. The finite set of unitary maps are then typically chosen to be a universal

gate set in a digital quantum simulator. This discretization allows for quantum error

correction using a finite number of error syndrome measurements on digital simulators.

Quantum error correction works on the principle of redundantly encoding information

using an overhead that scales polynomially, but leads to exponential suppression of

errors [NC02]. As a result, the threshold theorem states that provided the error per

gate is below some threshold value, a digital quantum computer can then perform an

arbitrary quantum computation efficiently even in the presence of noise [NC02].

For an analog simulator, on the other hand, the system’s inputs, outputs and the

allowed set of unitary operations are all specified on a continuum [Deu20]. Typ-

ically, these analog simulators are emulators that are engineered to emulate the

dynamics of a quantum system. In addition, there are many simulators that are

not strictly digital or analog but rather a hybrid between them. For example, con-

sider the kind of simulator used in [HHZ19], where they simulate the time evolution

of the LMG Hamiltonian through approximation of Trotter-Suzuki decomposition,

ULMG ≡ ei(H1+H2)T ≈ (eiH1
T
n eiH1

T
n )n, with access to all the unitaries of the form{

eiτH1 , eiτH2
}

with τ ∈ R. Even though the input and the output in this simulation

can be encoded in discrete outcomes of a bit, the allowed unitary transformations are

defined on a continuum. These kind of simulators, either analog or hybrid simulators,

do not allow for error correction with finite resources, which limits their potential for

simulation.

All the NISQ-era devices are fundamentally analog or hybrid simulators that cannot

support error correction because they implement continuous time evolution or have
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a set of gates that are chosen from a continuum [Deu20], and the noise level is above

the threshold needed for fault-tolerant error correction [CTV17]. The absence of error

correction in these devices raises the question of whether we can trust the output of

these simulators in the presence of noise and imperfections [HCT+12, Deu20, SZZ17].

For instance, some imperfection in the device could lead to propagation of errors in

an uncontrolled manner [SOE+19, HHZ19], particularly in the simulation of chaotic

systems that are known to be hypersensitive to perturbations [SC93].

In this dissertation, I will present the work performed during my PhD that aims

to explore the relationship between how errors accumulate in the simulator and the

physical properties of the system. As mentioned before, a key goal for near-term ap-

plications of quantum information processing devices is to simulate complex quantum

systems, and in particular simulating various aspects of equilibrium quantum phase

transitions and non-equilibrium dynamics. In my first project, we have explored the

effects of chaos on the quantum simulation of various aspects of the ground-state

quantum phase transition and dynamical quantum phase transition present in the

Lipkin-Meshkov-Glick (LMG) model. For this, we consider an emulator simulating

the LMG model, which is an integrable system, in the presence of an oscillating

background field that makes the system chaotic.

In my second project, we study the behavior of errors that arise in the quantum

simulation of non-equilibrium phenomena associated with the p-spin models from the

approximation of the dynamics via the Trotter-Suzuki decomposition. By mapping

the simulated dynamics obtained from the Trotter-Suzuki decomposition to that of

a time-dependent periodic Hamiltonian, we have explored the connection between
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“structural instability” regions, characterized by multiple bifurcations on the asso-

ciated classical phase space, and the Trotter errors. In summary, we consider two

different physical properties (chaos and structural instabilities), and explore how these

properties would affect the reliability of a NISQ-era quantum simulator when simu-

lating various features of equilibrium and non-equilibrium phenomena.

1.5 Outline

The rest of this dissertation is organized as follows. In chapter 2, we provide a brief

introduction to the theory of equilibrium phase transitions and describe them using

Landau theory illustrated through the classical Ising model. We then introduce the

p-spin models, which are fully-connected Ising models. Followed by it, we analyze

the thermodynamic limit (mean-field limit/classical limit) of this Hamiltonian to

explain the presence of various phase transitions present in these models. The material

presented in this chapter provides the knowledge necessary to understand the work

presented in Chapters 3 and 4.

Chapter 3 is based on the publication [CPD21]. In this work, we have analyzed

the reliability of an analog quantum simulator that is targeted to simulate the ideal

Lipkin-Meshkov-Glick (LMG) model, which is integrable in the classical limit, but

ends up simulating a perturbed LMG model that is chaotic. We have shown here

certain quantities like the time-averaged magnetization, which depend on the local

structure of the associated classical phase space, are fragile. However, the quantities

like the critical point estimates of the phase transitions, which correspond to changes

in the global structure of the phase space, are robust to the perturbations.
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Chapter 4 is based on the publication [CMAPD21]. Here, we have identified a

new physical mechanism that leads to large errors when the simulation is performed

through Trotter-Suzuki decomposition of the time-evolution operator. We have char-

acterized these high-error regions through the use of unitary perturbation theory in

the p-spin models. Moreover, we were also able to construct an effective Hamiltonian

that describes the Trotter evolution in the high-error regions and therefore helps us

understand the origin of these errors.

Lastly, we summarize all of our work in Chapter 5 and suggest potential avenues

of research for future work.
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2
Equilibrium Phase Transitions and p-spin

Models

This chapter provides the necessary background material about equilibrium phase

transitions for the work to follow in the upcoming chapters. In the first half of this

chapter, we will provide a mean field description of the phase transitions present in the

nearest-neighbor classical Ising models followed by a brief discussion of the quantum

phase transition present in the quantum Ising model with transverse field. In the

later half of the chapter, we introduce the completely connected Ising models, where
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each spin interacts with every other spin in the system, and analyze the quantum

phase transitions present in these models.

2.1 Classical Phase Transitions

A phase transition can be defined as a qualitative change in the macroscopic properties

of the state of the system as a function of some external parameter [NO10]. The point

of phase transition is referred to as the critical point and the two types of equilibrium

states present on either side of the critical point correspond to two different “phases” of

the phase transition. Traditionally, the phase transitions are considered in equilibrium

thermodynamics. The equilibrium state of a given system is the state that minimizes

the Helmholtz free energy [NO10], which is defined as the Legendre transform of the

internal energy:

F (T, V ) ≡ U(S, V )− TS = −kBT log(Z) (2.1)

where U is the internal energy, T is the temperature, S is the entropy and Z is the

partition function. The change in qualitative properties at the phase transition is

then manifested in non analyticity in the free energy of the system as a function

of the external parameter. The phase transitions are traditionally categorized into

two types depending on the type of singularity. If the first-order derivative of the free

energy has a singularity, the phase transition is said to be discontinuous. On the other

hand, when the singularity appears in second or higher-order derivatives, the phase

transition is said to be continuous. Also, the phase transitions are commonly referred
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by the order of the free energy derivative that has singularity. A phase transition is

said to be of nth order when the free energy of the system has a singularity in the nth

derivative at the point of the phase transition.

One familiar example is the phase transition between ice and water. At low tem-

peratures, the free energy is dominated by the internal energy of the system resulting

in ice as the most stable phase. However, as the temperature is increased, the entropy

will have more significant contribution resulting in the liquid phase as the more stable

state. Suppose one starts with ice and provides heat to the system, then the tempera-

ture of the system will increase until the free energy of the solid phase becomes equal

to that of the liquid phase. Beyond this point, the two phases coexist and the heat

provided will be used by the system solely to convert the solid phase into the liquid

phase. This additional energy that is used to convert solid phase to liquid phase is

called the latent heat. Once the ice has been fully converted to water, the temper-

ature of the system will increase again as heat is added to the system. These type

of systems where the phase of the system changes suddenly as a function of external

parameter (temperature in this case) are indicative of a first-order phase transition.

These first-order phase transitions involve latent heat and the two phases can coexist

simultaneously at the critical point [Gol18].

On the other hand, in the continuous phase transitions, the phase of the system

changes continuously from one phase to the another. An example of this kind of phase

transition is the ferromagnetic-paramagnetic transition in the magnetic materials. If

a magnetic material like iron is heated to high temperatures, it loses it ferromagnetic

character continuously and becomes paramagnetic at temperatures higher than the
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“Curie temperature”. In these materials, the lowest energy state corresponds to the

configuration where all the spin states are aligned (either all spins pointing up or

down). At low temperatures, this is indeed the equilibrium state, which has ferro-

magnetic character with a net nonzero magnetization. However, as the temperature

is increased, the disordered states minimize the free energy as they correspond to

states with large entropy. The resulting equilibrium state at higher temperatures is

paramagnetic in nature with zero magnetization.

Phase transitions are typically characterized by an order parameter, a macroscopic

property that is zero in one phase (disordered phase) and nonzero in the other phase

(ordered phase). In a first-order phase transition, the order parameter realized in the

equilibrium state jumps discontinuously from zero to a nonzero value at the critical

point, whereas it changes smoothly in a second-order phase transition. Moreover,

in the case of continuous phase transitions, various thermodynamic quantities show

power-law behavior as a function of reduced temperature (t = T−Tc

Tc
where Tc is the

critical point of the phase transition) [Car96]. For instance, the correlation length

ξ, which is the characteristic length scale associated with the two-point correlation

function between constituent particles of the system, diverges as the system passes

through a phase transition in the following manner

ξ ∼ |t|−ν (2.2)

where ν is called the critical exponent. For a more detailed discussion on correlation

length and other critical exponents, refer [Gol18]. These critical exponents are have
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been found to be independent of the system details, but only depend on the symmetry

group of the Hamiltonian, its spatial dimensionality and type of interactions (short-

ranged or long-ranged), a phenomenon that is referred to as universality [Gol18].

2.1.1 Ising Model

Consider the classical Ising model with nearest-neighbor interactions described by the

following Hamiltonian

H = −h
N∑
i=1

σi − γ
∑
⟨i,j⟩

σiσj , (2.3)

where σi denotes the spin configuration of the ith classical spin, h and γ are the

external magnetic field and the interaction strength respectively. The notation
∑

⟨i,j⟩

is used to denote that the summation is performed only over the spins i and j that are

nearest neighbors. The spins are placed on a d-dimensional lattice containing N sites.

Here σi can take two values +1 or −1 depending on whether the spin is pointing up

or down respectively. The magnetization associated with a particular configuration is

then given by m = 1
N

∑
i σi. The partition function associated with the Ising model

can be written as

Z =
∑
{si}

e−βE({si}) (2.4)

Z =
∑
m

∑
{si}|m

e−βE({si}) ≡
∑
m

e−βFl(m) , (2.5)
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where E({si}) is the energy associated with a spin configuration {si} and β ≡ 1
kBT

.

The summation over all the spin configurations {si} in the partition function (Eq.

(2.4)) has been broken down into two summations (Eq. (2.5)). We first sum over

all the spin configurations that result in net magnetization m, denoted by {si}|m,

and then sum over all the allowed magnetization values. There are N + 1 allowed

magnetization values that lie in the range −1 ≤ m ≤ 1. Note that we have also

defined a new quantity Fl, which will be referred to as Landau free energy, using∑
{si}|m e

−βE({si}) ≡ e−βFl(m). In the large N limit, the allowed values of the magne-

tization form a continuum, and the partition function can be expressed through the

following integral

Z =
N

2

∫ 1

−1

dm e−βNfl(m) . (2.6)

where the quantity fl(m) is the Landau free energy density defined by fl(m) ≡

Fl(m)/N . The dominant contribution to the above integral comes from the mini-

mum value of the integrand fl(mmin) provided N is large (saddle-point approxima-

tion). The multiplicative factor here does contain an m dependent term, but it can

be ignored in the large N limit. Hence, we have the following expression for the

partition function

Z ≈ e−Nβfl(mmin) (2.7)
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However, we know from Eq. (2.1) that the partition function can also be expressed

in terms of free energy density as Z = e−Nβf . Therefore, we have

f =
F

N
≈ fl(mmin) (2.8)

As a result, one can obtain the equilibrium magnetization of the system by minimiz-

ing the Landau free energy density fl(m) with respect to m. The goal is then to

obtain Landau energy function. Here, we obtain this function using the mean-field

approximation as shown below

e−βFl(m) =
∑

{si}|m

e−βE({si}) (2.9)

≈ Ω(m)e−βE(m) , (2.10)

where Ω(m) is the number of spin configurations that result in magnetization m and

E(m) is the mean-field energy associated with all the configurations that have net

magnetization m. The mean-field energy is then obtained by replacing the effect of

neighboring spins in the Hamiltonian (Eq. (2.3)) by a mean-field spin m

E(m) = −hNm− q

2
Nγm2 , (2.11)

where q denotes the number of nearest-neighbors associated with each spin. The

number of nearest neighbors depend on the lattice arrangement and the spatial di-

mension of the system. For a square lattice in d dimensions, q = 2d. The number
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of spin configurations that have net magnetization m = 1
N
(N↑ − N↓) with N↑ spins

pointing up and N↓ (N↓ = N −N↑) spins pointing down is given by

Ω =
N !

N↑! (N −N↑)!
(2.12)

The function fl then evaluates to

e−Nβfl(m) =
∑

{si}|m

e−βE({si}) (2.13)

≈ Ω(m)eN(βhm+ qγβ
2

m2) (2.14)

fl(m) ≈ − 1

Nβ
log(Ω(m))− hm− qγ

2
m2 (2.15)

Using Stirling’s approximation, log(N !) = N log(N)−N , the first term in fl(m) (Eq.

(2.15)) can be written as

log(Ω(m))

N
= log(2)− m− 1

2
log(2) +

m+ 1

2
log(2) , (2.16)

resulting in

fl(m) ≈ −hm− qγ

2
m2 − 1

β

(
log(2) +

1−m
2

log(1−m)− m+ 1

2
log(m+ 1)

)
(2.17)

The equilibrium magnetization is then obtained by solving ∂fl
∂m

= 0, which leads to
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Figure 2.1: (a-c) The solution to the self-consistency equation m = tanh(β(h + Jqm)) can
be obtained by looking at the intersection of the black and the red-colored curves. As can be
seen above, these curves intersect at m = ±M (equilibrium solutions) and m = 0 (corresponds
to unstable point) for T < Jq while they intersect only at m = 0 (equilibrium solution) for
T > Jq indicative of a phase transition at T = Jq. (d-f) The above figure shows the Landau
free energy density (fl(m) = 1

2(T − Jq)m2 + 1
12Tm

4) plotted as a function of order parameter
m for different values of T . The equilibrium state, which corresponds to point of global minima,
changes continuously at the point of phase transitions T = Jq.

following self-consistency equation

m = tanh(β(h+ Jqm)) (2.18)

h = 0: Second-order phase transition

In the absence of the external magnetic field, the self-consistency equation for the

equilibrium magnetization reduces to m = tanh(βJqm). When βJq < 1 or equiv-

alently for kBT > Jq, as shown in Fig. 2.1(c), the self-consistency equation has a
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solution m0 = 0, which corresponds to the case where the system has zero equilib-

rium magnetization. On the other hand, when βJq > 1 or kBT < Jq , there are

three possible solutions for the equilibrium magnetization given by m = ±M and

m = 0 as shown in Fig. 2.1(a). The solution m = 0 corresponds to an unstable

point and not a point of global minima. Hence, the system has a nonzero equilibrium

magnetization given by m0 = ±M . Therefore, the system prefers a high entropy

(disordered) state with zero magnetization at high temperatures and an ordered state

with nonzero magnetization at low temperatures resulting in a phase transition. The

critical temperature associated with the phase transition is given by kBTc = Jq. This

can be further understood by plotting Landau free energy as a function of temper-

ature. For small values of m, the Landau free energy density in Eq. (2.17) can be

Taylor expanded, leading to the following expression

fl(m) ≈ 1

2
(T − Jq)m2 +

1

12
Tm4 , (2.19)

where the constant term −kBT log(2) has been ignored in the above expansion. This

free energy density function shown in Eq. (2.19) is plotted in Fig. 2.1 (d-f) as a

function of m for different values of the ratio T/Jq. As it can be noted, the function

fl changes from a double well with two global minimas at m0 ̸= 0 to a single well

with one global minima at m0 = 0 as T/Jq is varied from values smaller than one

to large than one. This means that the equilibrium state of the system changes from

a configuration that has equilibrium magnetization m0 = ±M for T/Jq < 1 to a

configuration that has magnetization zero for T/Jq > 1. The associated equilibrium
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states in the ferromagnetic phase (T/Jq < 1) correspond to the configurations that

have all the spins aligned. Here, the configuration with all the spins pointing up is as

equally favorable, as the state with all the spins pointing down because this system

is invariant under the spin flips, i.e. σi → −σi for all i = {1, ..., N}. However, an

arbitrarily small symmetry breaking perturbation from the environment will deter-

mine the ferromagnetic state that will be realized resulting in “spontaneous symmetry

breaking” [NO10].

Notice that the order parameter, which is the equilibrium magnetization, changes

continuously from zero to nonzero value as expected for a continuous phase transition.

An explicit expression for the order parameter around the critical point of the phase

transition can be obtained by minimizing Eq. (2.19)

m0 =


0 T > Tc

±

√
3

(
Tc−T
T

)
T < Tc ,

(2.20)

The equilibrium magnetization shown above is plotted in Fig 2.3(a). The Landau

free energy function can be used further to derive other mean-field critical exponents,

which describe the power-law behavior of various quantities around the critical point.

h ̸= 0: First-order phase transition

Analyzing the self-consistency equation (Eq. (2.18)) in this case, one finds that there

is no phase transition present in the model as a function of temperature when the

external field is held constant. However, when the magnetic field is varied from
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Figure 2.2: The above figure shows the Landau free energy density (fl(m) = −mh+ kB
2 (T −

T0)m
2 + kB

12 Tm
4) plotted as a function of order parameter m for (a) negative, (b) zero and (c)

positive values of h when T < T0. The equilibrium state, which corresponds to point of global
minima, changes discontinuously at h = 0 as the external field is varied from negative values to
the positive values.

negative to positive values, this model shows a first-order phase transition in the mean-

field limit for T < T0 ≡ Jq
kB

, a second-order phase transition for T = T0, and does

not have a phase transition for T > T0. We will focus here on the low-temperature

T < T0 case. The Landau free energy density obtained from Taylor expanding Eq.

(2.17) around m = 0 in the presence of external magnetic field is given by

fl(m) ≈ −mh+
kB
2
(T − T0)m2 +

kB
12
Tm4 , (2.21)

The function fl in this case has been plotted in Fig. 2.2(a-c) as a function of m

as the magnetic field is flipped from the negative values to the positive values. For

h < 0, the free energy has a global minima with net magnetization at m0 = −M as

shown in Fig. 2.2(a). Moreover, the system also has a metastable state characterized

by an additional local minima at some positive value of m. As the magnetic field is

changed from negative to positive values, the Landau free energy density associated

with the metastable state decreases. At h = 0, the energy of the metastable state
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Figure 2.3: The order parameters for the classical Ising model described in Eq. (2.3) are shown
above for the h = 0 case and h ̸= 0 case in (a) and (b) respectively. The order parameter
changes continuously from nonzero value to zero value in (a), while it changes discontinuously
in (b), indicative of continuous and discontinuous phase transitions correspondingly.

becomes equal to that of global minima (see Fig. 2.2(b)). As the magnetic field is

further increased, the global minima suddenly jumps from being at negative value

of m to positive value of m signifying a first-order phase transition as shown in Fig.

2.2(c). Note that the order parameter in this phase transition jumps discontinuously

as expected, shown in Fig. 2.3(b).

Finally, it should be noted that the one-dimensional d = 1 Ising model does not

have a thermal phase transition even though the mean-field theory predicts it. In fact,

the mean-field theory fails completely in one-dimensional Ising model, but it provides

correct estimates of critical exponents in higher dimensional systems d ≥ 4 [Gol18].

This results from the fact that the neglected fluctuations as a result of mean-field

approximation in computing the energy associated with various spin configurations

play an important role when the dimensionality of the system is reduced. These

fluctuations increase the disorder in the system lowering the critical temperature to

zero at the lower critical dimension of the system dl [Car96]. For d < dl, the system
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does not have a phase transition. On the other hand, for spatial dimension larger

than the “upper critical dimension” du, the mean-field theory is exact. This is the

case where each spin in the system has a large number of neighbors such that it

experiences the mean-field effect. For the nearest-neighbor Ising model, dl = 1 and

du = 4. It should also be mentioned that here we compute fl(m) using the mean-field

approximation. In general, the “Landau theory” postulates the form of Landau free

energy density only taking symmetries of the system into account besides assuming

that it is an analytic function in m and attempts to explain the universality. Further-

more, the “Landau-Ginzberg theory” then generalizes the Landau theory formalism

to inhomogeneous systems where the order parameter is allowed to vary in space.

2.1.2 Quantum Phase Transitions

Quantum phase transitions (QPTs) are the phase transitions that take place at zero

temperature, T = 0 [Sac11]. At T = 0, the free energy and the internal energy of the

system are equal (see Eq. (2.1)) indicating that the equilibrium state corresponds to

the state with the lowest energy. Similar to the case of classical phase transitions, the

QPTs are characterized by singularities in the free energy, which is equivalent to the

ground-state energy, as a function of the external parameter. The phase transitions

in this case are driven by competing terms in the Hamiltonian whose strengths are

changed by varying some external parameter like the magnetic field or pressure. Sup-

pose the external parameter that drives the phase transition is denoted by s, then the

energy gap associated with the lowest excited state in the case of continuous quantum
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phase transitions vanishes near the critical point sc in the following manner

∆ ∼ |s− sc|zν (2.22)

where z and ν are the critical exponents. The critical exponent ν is associated with

the divergence in the correlation length of the system around the critical point

ξ−1 ∼ |s− sc|ν (2.23)

Similar to the case of the classical phase transitions, these critical exponents are

universal meaning that they are independent of the microscopic details. Consider the

nearest neighbor quantum Ising model with transverse field, which is given by

H = −h
∑
i

σ
(z)
i − γ

∑
⟨i,j⟩

σ
(x)
i σ

(x)
j , (2.24)

where the σ(α)
i ’s are the Pauli operators, h and γ are the strengths of the external

magnetic field term and the interaction term respectively. This system describes N

spin-1/2 particles interacting with nearest-neighboring spins in the presence of an

external magnetic field along the transverse direction. This Hamiltonian is invari-

ant under the parity symmetry Π ≡ eiπ
∑

i σ
i
z , which rotates all the individual spins

by π around the z-axis. Here, we focus on the one-dimensional Ising model. When

the external field is zero (h/γ = 0), the ground state of the system is degenerate

and the degenerate states correspond to the configurations in which all the spins are
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either pointing up along the x-axis or pointing down along the x-axis, denoted by

|→→ ...→⟩ and |←← ...←⟩. Therefore, the system is in the ferromagnetic phase.

On the other hand, when the external field is very large (h/γ ≫ 1), the ground

state is given by the paramagnetic state |↑↑ ... ↑⟩, where all the spins are pointing up

along the field direction. As the ratio of h/γ is varied, the character of the ground-

state changes continuously from being paramagnetic (h/γ ≫ 1) to ferromagnetic

(h = 0) resulting in a second-order QPT at h/γ = 1. The order parameter associ-

ated with the phase transition is given by the longitudinal magnetization denoted by

⟨Jx⟩ ≡ 1
N

∑
i⟨ψgs|σ(i)

x |ψgs⟩. As expected, the order parameter is zero in the paramag-

netic phase and changes continuously to a nonzero value in the ferromagnetic phase.

This can be seen by noting that a paramagnetic ground state will respect the parity

symmetry and the longitudinal magnetization is odd under the action of the par-

ity operator. Hence, ⟨ψ(para)
gs |

∑
i σ

(i)
x |ψ(para)

gs ⟩ = ⟨ψ(para)
gs |Π†(Π∑

i σ
(i)
x Π†)Π|ψ(para)

gs ⟩ =

−⟨ψ(para)
gs |

∑
i σ

(i)
x |ψ(para)

gs ⟩ resulting in zero value for the order parameter in this phase.

However, spontaneous symmetry breaking favors one of the symmetry broken ferro-

magnetic states |ψ(ferro)
gs ⟩, which has a non-zero magnetization.

2.2 p-spin models

In this section, we consider the “p-spin models” where each spin in the previously

considered Ising model (Eq. 2.24) interacts with every other spin in the system as

opposed to interacting only with the nearest neighbor. Specifically, these models are
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described by the following Hamiltonian

H = −h
2

N∑
i=1

σ(i)
z −

γ

2pNp−1

N∑
i1,i2,...,ip=1

σ(i1)
x σ(i2)

x ...σ(ip)
x ,

= −hJz −
γ

pJp−1
Jp
x ,

(2.25)

where Jµ = 1
2

∑N
i=1 σ

(i)
µ with µ = x, y, z, are the collective spin operators with J being

the largest eigenvalue of any of the collective spin operators. These family of models

describe N spin-1/2 particles interacting through the p-body coupling along the lon-

gitudinal direction with coupling strength (γ) in the presence of an external magnetic

field (h) along the transverse direction. The p-spin models have been introduced in

the context of spin glasses [Kny16, BFK+13] and have been studied extensively in

quantum annealing problems [BS12, ONL18, JKK+10, MNV+17]. Quantum anneal-

ing aims to solve optimization problems using adiabatic quantum evolution. This

involves adiabatically evolving the ground state of a Hamiltonian, which can be eas-

ily obtained, to the ground state a problem Hamiltonian, which encodes the solution

to an optimization problem. In the case of p-spin models, the system is initialized

in the ground state of the external magnetic field term and the solution, which is

encoded in the ground state of the ferromagnetic interaction term, is obtained by

slowly decreasing the strength of the magnetic field term while simultaneously in-

creasing the strength of the ferromagnetic term. The hardness of the problem is then

determined by the ground-state spectral gap of the Hamiltonian at the intermediate

stages, where the Hamiltonian contains both the external field term and the ferromag-

netic interaction term. All the p-spin models show GSQPT (ground-state quantum
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phase transition) at these intermediary stages, where the spectral gap is smallest, and

therefore a bottleneck for adiabatic evolution. In this setting, these family of models

have been categorized into two classes based on the type of the GSQPT shown by

the model: (a) the p = 2 model has a second-order GSQPT, whose ground-state gap

closes polynomially with the number of spins in the system at the critical point, (b)

all other models with p > 2 have a first-order GSQPT, where the ground-state gap

closes exponentially with the number of spins in the system [JKK+10].

For the remaining part of the dissertation, we will consider a single-parameter ver-

sion of the p−spin Hamiltonian. To achieve this, we define a dimensionless parameter

s = γ/h and then normalize the coefficients of the Hamiltonian terms in Eq. (2.25)

such that they add to one resulting in the following Hamiltonian

H = −(1− s)Jz −
s

pJp−1
Jp
x , (2.26)

where the parameter s is restricted to be in the range 0 ≤ s ≤ 1, interpolating the

Hamiltonian between the external magnetic field term and the interaction term. Note

that the interaction term has been normalized with an extra factor of p, as it will

make the equations of motion have a universal form for all p-spin models in the mean-

field limit [MnADJP20]. The p-spin Hamiltonian commutes with the total angular

momentum [H, J2] = 0, so the dynamics of the system is constrained to the symmetric

subspace if the initial state is chosen in that subspace. The symmetric subspace is

spanned by the 2J + 1 Dicke states, given by
{
|J, J⟩, |J, J − 1⟩, ..., |J,−J⟩

}
, that are

symmetric under the exchange of any two qubits. This subspace is also spanned by
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Figure 2.4: (a): The spectrum of the LMG Hamiltonian is shown as a function of the control
parameter. The black thick lines label the positive parity eigenstates and the blue dotted lines
label the negative parity eigenstates. The red-colored vertical line is drawn at the critical point
of the GSQPT. (b): The second derivative of the ground-state energy is plotted as a function of
the control parameter for different system sizes. The discontinuity in the second-order derivative
can be seen in the thermodynamic limit at the critical point of the GSQPT.

a set of overcomplete spin-coherent states,
{
|θ, ϕ⟩

}
, which are the states that are

polarized along different directions on the generalized Bloch sphere, i.e. |θ, ϕ⟩ ≡

|↑⟩⊗N = e−iθ(Jx cosϕ−Jy sinϕ)|J, J⟩. In addition, the p-spin models also have parity

symmetry, [H, eiπJz ] = 0, for even p models. This can be seen from the fact that the

interaction term in the Hamiltonian is invariant under π rotation around the z-axis

as (Jx)
p → (−Jx)p for even values of p.

2.2.1 Equilibrium Quantum Phase Transitions in the p-spin Models

As mentioned before, the p-spin models undergo various quantum phase transitions

such as the ground-state quantum phase transitions (GSQPTs), excited state quantum

phase transitions (ESQPTs) and the dynamical quantum phase transitions (DQPTs).

In this chapter, we will focus on the equilibrium quantum phase transitions present

in the p-spin models with emphasis on the p = 2 case. The p-spin Hamiltonian in
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the p = 2 instance reduces to a special form of the well known Lipkin-Meshov-Glick

(LMG) model [LMG65, STPB16, CLPHLM06].

H = −(1− s)Jz −
s

2J
J2
x , (2.27)

The LMG Hamiltonian was originally introduced in nuclear physics, but was later

studied in many different contexts such as the dynamics of two-mode Bose Einstein

condensates for applications of quantum metrology [JDZO+12, SML+14, PSO+18],

quantum chaos [TMS+17, MAF+18] and the study of quantum phase transi-

tions [ZPH+17, XSL+20]. The spectrum of the Hamiltonian mentioned in Eq. (2.27)

is shown in Fig. 2.4(a), where the positive parity eigenstates are shown by the black-

colored thick lines and the negative parity eigenstates are labelled by the blue dashed

lines. In the thermodynamic limit, N →∞, this Hamiltonian undergoes a GSQPT at

s = 1/2, and the second derivative of ground-state energy with respect to the control

parameter, s, has a discontinuity at the critical point of the phase transition as shown

in Fig 2.4(b). Therefore, the ground-state character changes continuously from the

paramagnetic phase to the ferromagnetic phase as s is increased from 0 to 1. The

energy gap between the ground state and the first excited state, which has opposite

parity to that of the ground state, becomes zero for all s > 1/2 in the thermodynamic

limit. As a result of the spontaneous symmetry breaking, the ground-state collapses

into one of the degenerate ferromagnetic states. In Fig. 2.4(a), the gap starts to

close at s(gpt)
c (N) that is slightly larger 1/2 due to finite-size effects. In fact, this shift

in the finite-system size “critical point”, s(gpt)c (N), from the thermodynamic critical
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point, s(gpt)c , can be expressed through the following equation

s
(gpt)
c (N)− s(gpt)c

s
(gpt)
c

∝ N− 1
ν∗ (2.28)

where ν∗ = 3/2 is the critical exponent associated with the divergence of the coherence

number at the critical point [BJ83, KNG+08, WSH19]. The above equation is derived

in Appendix A, and we will discuss more about the finite-size critical point and its

scaling later in this chapter. In addition, as mentioned before, the spectral gap at

s = 1/2 closes polynomially with the number of spins as ∆ ∼ N−z where z =

1/3 is the dynamical critical exponent [CFS08]. On the other hand, the gap closes

exponentially with the number of spins ∆ ∼ e−aN for s > 1/2 [CFS08]. The order

parameter associated with this phase transition is the magnetization along the x-axis

⟨ψgs|Jx|ψgs⟩, which is zero in the paramagnetic phase and nonzero in the ferromagnetic

phase.

Similarly, the models with p > 2 also exhibit GSQPTs between the paramagnetic

phase and the ferromagnetic phase that correspond to the first-order phase transitions

[MnADJP20]

2.2.2 Large N Limit and Mapping to the Double-well Potential

In this subsection, we analyze the p-spin models in the large N limit to explain the

presence of equilibrium quantum phase transitions. Notice the similarity between the

spectrum of the LMG Hamiltonian and a single-particle system whose potential is

changing from a single-well for s ≲ 1/2 to a double well (s ≳ 1/2), whose barrier depth
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is increasing as s is increased further from around 1/2 to 1. This connection can be

made rigorous through the semi-classical expansion analysis performed in [JDZO+12].

This analysis was carried out through the use of Schwinger-boson representation for

the LMG model, but it can be extended to the all p-spin models in a straightforward

manner. The Schwinger-boson representation maps the spin angular momentum alge-

bra to that of two uncoupled harmonic oscillators, referred to as the “plus” type and

the “minus type” [SN14]. The Schwinger-boson representation (rotated with respect

to the standard representation) is shown below.

Jx → −
1

2
(a†+a+ − a

†
−a−) ≡ −

1

2
(n+ − n−) (2.29)

Jy →
1

2i
(a†+a− − a

†
−a+) (2.30)

Jz →
1

2
(a†+a− + a†−a+) (2.31)

The Dicke states
{
|J,m⟩

}
in this new representation are denoted by Fock basis{

|n+, n−⟩
}

where the number of particles of the plus type, n+, and the minus type, n−,

is the number of spins pointing up and down respectively. Using this representation,

one can rewrite the p-spin Hamiltonian obtained from Eq. (2.26) as follows:

H = −(1− s)
2

(a†+a− + a+a
†
−)−

s(−1)p

pJp−12p
(n+ − n−)

p (2.32)

and an arbitrary state can be written using the Fock basis (harmonic-oscillator basis)

|ψ⟩ =
N∑
k=0

Ck|k,N − k⟩ (2.33)
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The action of LMG Hamiltonian on an arbitrary state is given by

H|ψ⟩ =
N∑
k=0

−(1− s)
2N

(
ck
√
k(N − k + 1)|k − 1, N − k + 1⟩

+ ck
√

(k + 1)(N − k)|k + 1, N − k − 1⟩
)
− (−1)ps

2pNp
(N − 2k)p|k,N − k⟩ .

(2.34)

In the large N limit, the difference in the number of particles between the two modes

given by x = 2 k
N
−1 becomes a continuous variable in the range −1 ≤ x ≤ 1. Defining

ψ as a function associated with the coefficients in the Fock basis ψ(x = 2 k
N
− 1) =√

N
2
ck with h = 1

N
, one obtains the following Schrodinger equation

i
∂

∂t
⟨k,N − k|ψ(t)⟩ = ⟨k,N − k|H|ψ(t)⟩

ih
∂

∂t
ψ(x, t) = −(1− s)

2

(
ψ(x+ 2h)bh(x) + ψ(x− 2h)bh(−x)

)
− s

2p
xpψ(x) ,

(2.35)

where bh(x) =
√

1−x2

4

√
1 + 2h

1+x
. Expanding the terms on the right hand side of the

above equation to O(h2), one obtains the following equation

ih
∂

∂t
ψ(x, t) = −h2(1− s)( ∂

∂x

√
1− x2 ∂

∂x
)ψ(x, t)

− 1

4

(
2(1− s)

√
1− x2 + 2s

p
xp + (1− s)

(
2h√
1− x2

− h2 1 + x2

(1− x2)3/2

))
ψ(x, t).

(2.36)

Two important conclusions can be drawn from Eq. (2.36). First, the p-spin models

in the large N limit can be mapped to a system with a particle present in a potential
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given by

V (s, x) = −1

4

(
2(1− s)

√
1− x2 + 2s

p
xp − (1− s)

(
2h√
1− x2

− h2 1 + x2

(1− x2)3/2

))
(2.37)

Second, the energy density (E/N) of the system in the thermodynamic limit expressed

in terms of order parameter (x) is given by

E ≡ E

N
= −1

2
(1− s)

√
1− x2 − s

2p
xp (2.38)

Note the overall energy density could have also been obtained directly in the ther-

modynamic limit by computing the expectation value of the Hamiltonian in the spin-

coherent states and neglecting fluctuations:

⟨θ, ϕ|H|θ, ϕ⟩
N

= −1

2
(1− s) cos θ − s

2p
sinp θ (2.39)

Then, substituting x = ⟨Jx⟩
J

= cos θ in the above equation provides us with the energy

density given in Eq. (2.38).

In Fig 2.5(a)(iv-vi), the energy density of this system has been plotted for various

values of the control parameter with p = 2. Note that this energy density transitions

from a single well to a double well exactly at the critical point of the GSQPT in

accordance with the Landau theory. As a result of this transition from the single well

to the double well, the point of global minima changes from x = 0, which corresponds

to the paramagnetic ground state, for s < 1/2 to two other points x = ± x0 that
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correspond to the ferromagnetic ground states. The spontaneous symmetry breaking

then collapses the state into one of the wells (ferromagnetic states) resulting in non-

zero magnetization along the x-axis. As a result, the ground-state magnetization

changes continuously from zero to nonzero value at the critical point as expected for

continuous phase transitions.

For the case of p = 4, the energy density has been plotted in Fig. 2.5(b)(v-viii).

In this case, as predicted by the Landau theory, the energy first develops two local

minima at x = ± x0 with the global minimum present at x = 0 for s < sc as

the value of the control parameter is increased from zero. The value of the control

parameter at which these local minima first appear is referred to as the spinodal point,

s = sspino. These local minima eventually become global minima, which correspond

to the ferromagnetic states, for values of control parameter larger than the critical

point, s > s
(gpt)
c . Notice that in this case, the global minimum suddenly jumps from

zero to non-zero value at the critical point as expected from the first-order phase

transition.

Also note that the Eq. (2.37) provides us potential well with finite-size corrections.

We can use this equation to derive Eq. (2.28), which predicts the way in which

critical point of the GSQPT changes as a function of the system size in the LMG

model (p = 2). The main idea here is to identify the critical point of the GSQPT

with the value of s at which the zero-point energy (lowest energy state that is allowed)

of the potential equals the barrier height of the double-well. In the classical limit, the

zero point energy is the global minima of the potential, and it equals barrier height

at s = 1/2. However, as h = 1
N

is increased, the zero-point energy state appears
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at values larger than the global minima. As a result, the GSQPT happens at larger

values of s > 1/2, where the barrier height becomes large enough to become equal to

the zero point energy. For more details, refer to Appendix A.

2.2.3 Equations of motion in the mean-field limit (thermodynamic limit

or classical limit)

The mean-field limit in the p-spin models is same as the classical limit or the thermo-

dynamic limit [BS12]. The evolution of expectation value of an observable A under

a given Hamiltonian H is given by the following equation

d⟨A⟩
dt

= i⟨[H,A]⟩+ ⟨∂A
∂t
⟩ (2.40)

Substituting different collective spin operators in the above equation for the p-spin

models, we have the following equations of motion

d⟨Jx⟩
dt

= (1− s)⟨Jy⟩

d⟨Jy⟩
dt

= −(1− s)⟨Jx⟩+
s

pJp−1

p∑
i=1

⟨ Ci(J
p−1
x Jz) ⟩

d⟨Jy⟩
dt

= − s

pJp−1

p∑
i=1

⟨ Ci(J
p−1
x Jy) ⟩

(2.41)

where Ci(AB...C) produces the ith combinatorial arrangement associated with the

product of operators AB...C. The mean-field dynamics is then obtained by neglect-

ing the fluctuations ⟨AB⟩ ≈ ⟨A⟩⟨B⟩ in the Heisenberg equations of motion result-

ing in the following coupled differential equations for the p-spin models [MCWW97,
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Figure 2.5: (a)(i-iii) The phase-space trajectories corresponding to different values of the con-
trol parameter for the p = 2 case are shown here. The structure of the phase-space trajectories
changes at the critical point of the phase transition as a result of pitch-fork bifurcation. (a)(iv-
vi) The energy density of the LMG model transitions from a single well to a double well at the
critical point of the phase transition resulting in a continuous change in the order parameter from
zero to non-zero value as predicted by the Landau-Ginzberg theory. (b)(i-iv) The phase-space
trajectories for the p = 4 case are shown here. The structure of the phase-space trajectories
changes at s = sspino of the phase transition as a result of the saddle-node bifurcations. (b)(v-
viii) The energy density of the p = 4 model develops a local minima at s = sspino that become
global minima at the critical point of the phase transition resulting in a discontinuous change
in the order parameter at the critical point in accordance with the Landau-Ginzberg theory.
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MnADJP20]

dX

dt
= (1− s)Y,

dY

dt
= −(1− s)X + sXp−1Z,

dZ

dt
= −sXp−1Y.

(2.42)

with {X,Y, Z} = lim
J→∞

1
J
{⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩}, describing the motion of a classical “top”.

Note that the summation terms over the p combinatorial arrangements in Eq. (2.41)

such as
∑p

i=1⟨ Ci(J
p−1
x Jz) ⟩ yield the same non-linear term p times in the mean-field

limit,
∑p

i=1⟨ Ci(J
p−1
x Jz) ⟩ = p⟨Jx⟩p−1⟨Jz⟩. This is the reason for normalizing the

interaction term with an additional factor of p in Eq. (2.25), as it will ensure that we

have universal set of equations for all p-spin models with higher degree of nonlinearity

as p is increased without increasing the number of non-linear terms in the equations

of motion.

As a consequence of the conservation of angular momentum in the p-spin models,

the associated dynamics is constrained to a unit sphere X2 + Y 2 + Z2 = 1. The

fact that mean-field limit matches with the classical limit can be seen from the fact

that the equations of motion for the angular momentum obtained using the classical

Hamilton’s equations (q̇ = ∂H
∂pi

and ṗ = −∂H
∂qi

) will be same as the equations obtained

from mean-field limit, shown in Eq. (2.42).

Since the dynamics associated with Eq (2.42) is constrained to a unit sphere, the p-

spin models correspond to autonomous systems with one degree of freedom. Therefore,
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the p-spin models are integrable in the classical limit. All the essential features of the

dynamics in the classical limit can be understood by plotting different trajectories

associated with Eq (2.42), which correspond to different initial conditions, for various

values of s. These phase-space diagrams are shown in Fig 2.5 (a)(i-iii) and (b)(i-iv) for

p = 2 and p = 4 cases respectively. In the p = 2 case, the topology of the phase-space

trajectories changes at the s = 1/2, which is the critical point of the GSQPT. For

values of s smaller than 1/2, the phase trajectories correspond to precessions around

the z-axis with stable fixed points located at Z = ±1. At s = 1/2, the “pitchfork

bifurcation” of the stable fixed point located at Z = 1 into two other stable fixed

points results in two kinds of phase-space trajectories present for s > 1
2
: the ones

that precess around the stable fixed points, and the ones that revolve around the

whole sphere. These two kinds of trajectories are separated by two homoclinic orbits

(trajectories that join the saddle point to itself) referred to as separatrix trajectory,

which includes the unstable fixed point located at Z = 1. As the value of s is increased

from 1
2

to 1, these stable fixed points move farther away from the unstable fixed point

and the separatrix trajectory bounds more trajectories on the phase space.

For p = 4 case, the topology of the phase-space trajectories changes at s = sspino

as a consequence of two symmetric “saddle-node bifurcations” resulting in creation

of a pair of stable and unstable fixed points at (θ, ϕ) = (±θ0, 0) where θ and ϕ are

the usual spherical coordinates, θ = cos−1(Z) and ϕ = tan−1(Y/X). Due to this

bifurcation, the system develops three different kinds of trajectories for s > sspino, the

ones that precess about θ = ±θ0 bounded by two homoclinic orbits, the ones that

precess around θ = 0 bounded by two heteroclinic orbits (trajectories that join two
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different saddle points) and the ones that revolve around the whole sphere. As the

value of s is increased beyond sspino, the trajectories bounded by the homoclinic orbits

increase, while the trajectories bounded by the heteroclinic orbits decrease.

The analysis of p-spin models presented in this chapter will be essential in under-

standing the work shown in the upcoming chapters. For instance, in the next chapter,

the mean-field analysis of phase transitions will guide us in identifying a protocol to

probe quantum phase transitions in the LMG Hamiltonian on quantum simulators.

Moreover, the understanding of the phase-space trajectories will help us in studying

the emergence of chaos in the system when a background perturbation is added to the

LMG Hamiltonian. Also, the phase-space trajectory analysis will be an important

tool in understanding the results mentioned in Chapter 4. Finally, the mean-field

analysis will also be the starting point for the work shown in Appendix C.
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Effect of Chaos on Quantum Simulation

As mentioned in Chapter 1, all the NISQ-era devices are analog devices because they

operate with a set of unitary maps realized on a continuous set. The absence of

error correction, as a result of the lack of digitization, may therefore severely limit

the reliability of these devices. It is particularly interesting to explore the reliability

of quantum simulators in the context of quantum chaotic systems because chaotic

systems are characterized by their hypersensitivity to perturbations [Per84, SC93].

In fact, several works have explored the effects of chaos on various aspects of quan-

tum computation in the early 2000s [GS00, SS01, Fla00, Bra02]. For example, in
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[SS01], the effect of errors on the simulation of kicked rotor in the chaotic regime has

been studied in the presence of imperfections. They found that the resulting errors

in certain quantities grew exponentially with the number of qubits. On the other

hand, Georgeot et al. analyzed the effect of static imperfections such as inter-qubit

coupling and fluctuations in the energy spacings of the qubits and showed that the

quantum chaos destroys the register states of the system [GS00]. In more recent

works, Heyl et al. [HHZ19] and Sieberer et al. [SOE+19] studied errors in the con-

text of quantum simulation that arise from approximating the time evolution using

the first-order Trotter-Suzuki decomposition of integrable Ising-type Hamiltonians.

Using this approximation, the time evolution of these Hamiltonians can be realized

through the dynamics of a delta-kicked time-dependent Hamiltonians, which become

chaotic for certain range of parameter values. It was shown there that the magne-

tization errors resulting from approximating the time evolution through Trotter de-

composition increased sharply whenever the associated kicked Hamiltonians became

chaotic [HHZ19, SOE+19]. We will return to the issue of Trotter errors and their

relation to the nonlinear dynamics of the system in Chapter 4.

In this chapter, we will consider a situation where a background perturbation makes

the quantum simulator weakly chaotic and analyze the reliability of such simulator.

Specifically, we will explore the effects of chaos on the quantum simulation of various

aspects related to the quantum phase transitions, specifically ground state quan-

tum phase transition (GSQPT) and dynamical quantum phase transition (DQPT),

present in the LMG model. This is motivated by the fact that in models where

the thermodynamic limit is equivalent to the mean-field limit, such as the collective
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spin models studied here, the quantum phase transitions are associated with the be-

havior of the system in the vicinity of the separatrix trajectory. Interestingly, an

integrable system first develops chaos in the vicinity of separatrix trajectory when an

integrability-breaking perturbation is added to the system [Rei92]. Therefore, it is

natural to question the ability to reliably simulate the quantum phase transitions in

the presence of integrability breaking perturbations.

Furthermore, it should be noted that we are interested in exploring the reliabil-

ity of quantum simulation of the quantum phase transitions on a particular type

of quantum simulator that can execute unitary transformation on the state of in-

terest accompanied by measurement and data processing to derive the desired out-

put [ZPH+17, LKP+20]. On this simulator, we assume product states such as the

spin-coherent states can be prepared easily with high fidelity and the expectation

values of various observables can be obtained followed by evolution of the initial state

under a desired unitary operation. We keep this particular framework in mind and

propose protocols for extracting the critical points of the GSQPT and the DQPT

that only require an ability to access time-averaged expectation values of collective

spin observables obtained from the time evolution under the LMG Hamiltonian for

particular spin-coherent states.

3.1 Dynamical Quantum Phase Transitions

The LMG Hamiltonian has a dynamical quantum phase transition (DQPT), which

characterizes sharp changes in the non-equilibrium behavior of the system under the

action of a quenched Hamiltonian, in the thermodynamic limit [ZPH+17, ŽHKS18].
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Figure 3.1: (a) This figure shows the DQPT paradigm in the LMG model where the dynamics
associated with the ground state at sini = 1 is analyzed under the action of the quenched
Hamiltonian. The resulting dynamics has different behavior in different dynamical phases with
the critical point located at s

(dpt)
c = 2/3. (b-c) The associated rate function λ has non-

analyticities in one dynamical phase (b) and has a smooth behavior in other phase (c) as a
function of time.

More specifically, in this paradigm, the system is first initialized in one of the states

that corresponds to symmetry-broken ground-states of the Hamiltonian in the ther-

modynamic limit at some initial value of the control parameter, sini, and then the dy-

namics of the state is analyzed as a function of time under the action of the quenched

Hamiltonian at some other value of control parameter sfin. The resulting dynamics

then has different behavior in different “dynamical phases”. A particular quantity

of interest, which plays the analogous role of partition function in equilibrium phase

transitions in this paradigm [ŽHKS18], is the Loschmidt probability amplitude in

the degenerate subspace (subspace associated with the degenerate eigenstates in the

thermodynamic limit) given by

P (t) =
K∑
i=1

|⟨ψgs,i(sini)|e−H(sfin)t|ψgs,1(sini)⟩|2 (3.1)
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where |ψgs,1(sini)⟩ is one of the symmetry-broken ground states at s = sini and the

summation is taken over the degenerate ground-state subspace at s = sini containing

K states. The rate function, which serves the role analogous to free energy density,

is given by

λ(t) = − 1

N
log(P (t)) , (3.2)

where N is the number of spins (or constituent particles, in general) in the system.

This rate function is then either a smooth function or has non-analyticities as a

function of time, corresponding to different dynamical phases in the thermodynamic

limit.

Focusing on the LMG Hamiltonian, the initial value of the control parameter is

typically taken to be sini = 1, and the final value sfin is then varied between zero

and one. The symmetry-broken ground states of the LMG Hamiltonian at sini = 1

are the states with either all the spins either pointing up or down along the x-axis:

|+⟩ ≡ |→⟩⊗N and |−⟩ ≡ |←⟩⊗N . The dynamical critical point associated with this

particular setting (sini = 1) is at s(dpt)c = 2/3 (see Fig. 3.1(a)). The different dynamical

phases present in this Hamiltonian can be understood by analyzing the Loschmidt

amplitude, which can be expressed in this case as follows

P (t) = |⟨+|e−iH(sfin)t|+⟩|2 + |⟨−|e−iH(sfin)t|+⟩|2 (3.3)

≡ P+(sfin, t) + P−(sfin, t) (3.4)
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In the thermodynamic limit (classical limit), P±(sfin, t) = e−Nλ±(sfin,t) where

λ±(sfin, t) = − log
(1±n⃗(sfin,t).x⃗

2

)
since |⟨n1|n2⟩|2 =

(
1+n⃗1.n⃗2

2

)2J . Therefore,

P (t) ≈ e−Nλ(sfin,t) , (3.5)

where λ(sfin, t) = minimum(λ+(sfin, t), λ−(sfin, t)). For values of the control parame-

ter sfin > 2/3, as illustrated by the green trajectory in Fig. 3.2(c), the time-evolved

state given by e−iH(sfin)t|+⟩ will always have a positive projection along the x-axis

and therefore λ(t) = λ+(t) for all times. Hence, the rate function will be smooth as a

function of time as shown in Fig. 3.1(c). On the other hand, for the values of the con-

trol parameter sfin < 2/3, the time-evolved state, as shown by the green trajectories

in Fig. 3.2(a-b), will have a projection along the x-axis that will oscillate between

the positive and the negative values resulting in switching the rate function given by

λ(sfin, t) between λ+(t) and λ−(t) for every half-time period of the trajectory. Hence,

the effective rate function given by minimum{λ+(sfin, t), λ−(sfin, t)} will have kinks as

a function of time as illustrated in Fig. 3.1(b). The order parameter that identifies

this transition between the two dynamical phases is the time-averaged magnetization

along the x-axis given by

⟨Jx⟩ = lim
T→∞

1

T

∫ T

0

dt ⟨Jx⟩(t). (3.6)

The above quantity is zero in one dynamical phase and nonzero in the other dynamical

phase. This can be observed from the fact that for sfin > 2/3, the trajectory corre-
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sponding to the initial state |+⟩ will be constrained to the hemisphere with x > 0,

bounded by the homoclinic orbit, resulting in non-zero time-averaged magnetization

(see green trajectory in Fig. 3.2(c)). On the other hand, for sfin < 2/3, the correspond-

ing trajectory will precess around the whole sphere resulting in zero time-averaged

magnetization along the x-axis (see green trajectory in Fig. 3.2(a-b)). Hence, in the

LMG Hamiltonian, the trajectories that give rise to different dynamical behavior de-

termining whether the rate function is smooth or non-analytic is also responsible for

the zero-nonzero transition in the order parameter. However, it should be noted that,

in general, the change in non-equilibrium behavior could be manifested either only

in the order parameter or the rate function. In such cases, the DQPT is referred to

as DQPT I and DQPT II corresponding to the manifestation in the order parameter

and the rate function respectively [SSS20].

3.2 Protocols for the Extraction of Critical Points associated with QPTs

In this section, we discuss the connection between the dynamics of the system in

the classical limit and the quantum phase transitions. We then use this analysis to

propose protocols for obtaining the critical points of the GSQPT and the DQPT using

the time-averaged magnetization both in the case of thermodynamic limit and the

finite-sized systems.

3.2.1 Classical Bifurcation

As mentioned in Chapter 2, the classical LMG Hamiltonian undergoes a pitchfork

bifurcation (one stable fixed point becomes unstable and bifurcates into two other
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Figure 3.2: (a-c)The red and the green colored curves show the trajectories traced out by the
initial conditions used in the GSQPT and DQPT bifurcation protocols. Violet-colored trajectory
represents the homoclinic orbits (separatrix trajectory). The GSQPT/DQPT critical point is
the value of the control parameter when the associated initial condition is first bounded by
the homoclinic orbit. (d,e) The time-averaged magnetization as a function of the control
parameter for the GSQPT and DQPT initial conditions, represented by the red curve and the
green curve, respectively in the classical limit. Note that these bifurcation points coincide with
the critical points of the appropriate QPTs. (f,g) The time-averaged magnetization obtained
using a finite-sized system (J = 100) with the initial states being the spin-coherent states
centered approximately at the initial conditions used in (d) and (e) (see text for more details).
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stable fixed points) at the critical point of the GSQPT resulting in change in the

topology of the phase-space trajectories for s > 1/2. Suppose, we let a state located

slightly off the z-axis at (θ0 = ϵTL, ϕ0 = 0), where ϵTL is a small angle, evolve under

the LMG Hamiltonian. The state then undergoes very different dynamics in the

ferromagnetic phase (s > 1/2) (red-colored trajectories in Fig. 3.2(b-c)) compared

to the dynamics in the paramagnetic phase (s < 1/2) (red-colored trajectory in Fig.

3.2(a)). Hence, the resulting time-averaged magnetization along the x-axis, denoted

by X ≡ 1
T

∫ T

0
X(t)dt (T is the time period of the trajectory and X(t) is defined by the

solution to Eq. (2.41) with p = 2), as a function of the control parameter for this initial

condition will be zero in the paramagnetic phase and nonzero in the ferromagnetic

phase as shown in Fig. 3.2(d). This can be understood by the fact that the trajectory

in the paramagnetic phase precesses around the whole sphere resulting in X = 0,

but it is bounded by the homoclinic orbit (separatrix) on the hemisphere X > 0 in

the ferromagnetic phase resulting in X > 0. This implies that the time-averaged

magnetization can be used as a tool in identifying the critical point of the GSQPT

in the thermodynamic limit provided the initial state is located at (θ0 = ϵTL, ϕ = 0)

where ϵ is a small angle. Note that the time-averaged magnetization for the initial

condition at (θ0 = π/2, ϕ = 0) can be similarly used to detect the critical point of

DQPT, as shown in Fig. 3.2(e), because it corresponds to the order parameter of

this phase transition. That is, the point (θ0 = π/2, ϕ = 0) corresponds to the ground

state of the Hamiltonian at s = 1, and the bifurcation diagram constitutes the time-

averaged magnetization of this initial condition evolved under the LMG Hamiltonian

with different values of the control parameter. For values of s < 2/3, the initial
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conditions precesses around the whole sphere resulting in X = 0 (green trajectory in

Fig. 2.2(a-b)), and for s > 2/3, the initial condition is bounded by the separatrix

leading to X ̸= 0 (green trajectory in Fig. 2.2(c)). At the critical point s = 2/3, the

initial condition is located on the separatrix.

As a consequence of parity symmetry, the time-averaged magnetization of a state

initialized at (θ0 = π/2, ϕ = 0) will be negative of the X associated with the initial

state (θ0 = π/2, ϕ = π). Therefore, X resulting from both the initial conditions

(θ0 = π/2, ϕ = 0) and (θ0 = π/2, ϕ = π) plotted in the same figure as a function

of the control parameter will have time-averaged magnetization bifurcating at the

critical point of the DQPT. This also holds true for the GSQPT initial condition.

Hence, we will often refer to these figures as the bifurcation diagrams even though we

focus only on the positive branch of X to avoid being redundant.

We can also derive an analytic expression for these bifurcation diagrams in the

thermodynamic limit (N → ∞). Assuming that we have initial condition of the

form (θ0, ϕ0 = 0), the following relationship between the angular coordinates of the

trajectory, θ(t) and ϕ(t), as a function of time follows from the conservation of energy:

1

J
⟨θ, ϕ|H|θ, ϕ⟩

∣∣
(θ=θ0,ϕ=0)

=
1

J
⟨θ, ϕ|H|θ, ϕ⟩

∣∣
(θ=θ(t),ϕ=ϕ(t))

cos2 ϕ(t) =
2(1− s)(cos θ0 − cos θ(t)) + s sin2 θ0

s sin2 θ(t)
.

(3.7)

The solutions to θ(t) when ϕ(t) = 0 are given by

cos θ(t) = cos θ0 and cos θ(t) =
2(1− s)

s
− cos θ0 (3.8)
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The second solution will exist for initial conditions that have their trajectory bounded

by the separatrix. Therefore, the bifurcation point in the bifurcation diagram, where

the time-averaged magnetization changes from zero to nonzero value, can be identified

as the value of control parameter after which the second solution exists, which is given

by

sc(θ0) =
1

1 + cos2 θ0
2

(3.9)

The time-averaged magnetization along the x-axis can be evaluated by averaging X(t)

over one time period of the classical trajectory,

X =
1

T

∫ T

0

dtX(t) =
1

T

∫ T

0

dt sin
(
θ(t)

)
cos

(
ϕ(t)

)
, (3.10)

where θ(t) and ϕ(t) are the spherical coordinates of the associated trajectory. The

classical equations of motion associated with the LMG Hamiltonian obtained in Eq.

(2.39), expressed in terms of spherical coordinates, are given by

dθ

dt
=
s

2
sin(θ) sin(2ϕ) (3.11)

dϕ

dt
= −(1− s) + s cos(θ) cos2(ϕ) (3.12)

Using the above equations of motion and Eq. (3.7), the numerator in Eq. (3.10) can

be evaluated in a straightforward manner leading to

X = − π

sT
(3.13)

57



CHAPTER 3. EFFECT OF CHAOS ON QUANTUM SIMULATION

for all initial conditions of the form (θ = θ0, ϕ = 0). The denominator in Eq. (3.13),

which is the time period associated with the trajectories, can then be evaluated as

follows:

T = 2

∫ T/2

0

dt =
2

s

∫ θ(T/2)

θ0

dθ

sin(θ) cos(ϕ) sin(ϕ)
, (3.14)

T =
1

s

2i

sin θ0

[
F

(
π

2

∣∣∣∣1 + 2a

sin2 θ0
∆z

)
− F

(
sin−1

( 1√
1 + 2a

sin2 θ0
∆z

)∣∣∣∣1 + 2a

sin2 θ0
∆z

)]
.

(3.15)

where F is the incomplete elliptic integral of the first kind. The time-averaged mag-

netization is then given by

X = ∓π
2

sin θ0

i

[
F

(
π
2

∣∣∣∣λ(θ0, s))− F(sin−1
(

1√
λ(θ0,s)

)∣∣∣∣λ(θ0, s))] , (3.16)

where λ = 1+ 4(1−s)

s sin2 θ0

(
cos(θ0)− 1−s

s

)
. Note that the above expression in Eq. (3.16) is

valid only for initial conditions that have their trajectories bounded by the homoclinic

orbit because the limits of the integral were chosen assuming this condition holds true.

Using various identities, the above expression can be reexpressed as

X =
π

2

sin θ0

K
(
Λ(θ0, s)

) , (3.17)

where the function K is the complete elliptic integral of the first kind and Λ(θ0, s) =

− 4(1−s)

s sin2(θ0)

(
cos(θ0)− 1−s

s

)
. In summary, we have the following expression for the time-
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Figure 3.3: The above figure shows the bifurcation point plotted as a function of θ0. For initial
condition close to θ0 = 0, the bifurcation point is at s = 1/2, whereas the bifurcation point
is at s = 2/3 for θ0 = π/2. Notice that the black curve is flatter at θ0 = 0 showing that the
GSQPT protocol is robust to small variations in θ0.

averaged magnetization for an initial condition of the form (θ0, ϕ0 = 0)

X =


0 s < 1

1+cos2
(

θ0
2

)
π
2

sin θ0

K
(
Λ(θ0,s)

) s ≥ 1

1+cos2
(

θ0
2

) (3.18)

The above result provides us information about both the bifurcation points and the

bifurcation curves associated with the phase transition. As expected, for θ0 = ϵTL

(GSQPT) and θ0 = π
2

(DQPT), the critical points are given by (1+cos2( ϵTL

2
))−1 ≃ 0.5

and (1 + cos2(π
4
))−1 = 2

3
respectively. In addition, note that the GSQPT bifurcation

protocol is robust with respect to variations in the initial value of θ around zero

because of the absence of the first-order term in the Taylor expansion of (1+cos2( θ
2
))−1

around θ = 0. This is illustrated in Fig. (3.3). Finally, notice the above expression for

X can be shown to change continuously from zero to nonzero value at the bifurcation

point for both θ0 → 0 (GSQPT) and θ = π/2 (DQPT), as expected for continuous
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phase transitions.

3.2.2 Quantum Bifurcation

In this subsection, we show that the above-mentioned bifurcation protocols can be

adapted to the case of quantum (finite-sized) systems for estimating the finite-size

critical points, sc(N), provided that we start with the spin-coherent states that are

centered roughly at the initial conditions used for the classical bifurcation curves.

For the case of GSQPT, the initial state |ψ(0)⟩ is a spin-coherent state |θ0, ϕ = 0⟩ ≡

|↑⟩⊗N
θ0=ϵ(N),ϕ=0 centered at a point slightly off the z-axis, (θ0 = ϵ(N), ϕ0 = 0) with

ϵ(N) = ϵTL + 1√
N

.Here ϵ(N) takes the quantum uncertainty of the spin-coherent

state into account through the factor 1√
N

, which is the variance of the spin-coherent

state. Also, note that ϵ(N) approaches ϵTL in the thermodynamic limit. Consider

the time-averaged magnetization associated with this initial condition,

⟨Jx⟩(t) =
1

T

∫ T

0

dt⟨ψ(0)|eiHtJxe
−iHt|ψ(0)⟩ (3.19)

=
∑
n,m

c∗ncm⟨un|Jx|um⟩
1

T

∫ T

0

dt ei(En−Em)t (3.20)

where the initial state |ψ(0)⟩ in Eq. (3.19) has been expressed in the energy eigenbasis

of the LMG Hamiltonian {|ui⟩} in Eq. (3.20), |ψ(0)⟩ =
∑

i ci|ui⟩, and Ei is the energy

eigenvalue corresponding to energy eigenstate |ui⟩. For values of the control parameter

s in the paramagnetic phase, the energy eigenstates are non-degenerate. Therefore,

the time-averaging over the phases in Eq. (3.20) leads to Kronecker delta function

δn,m provided the averaging time is much larger compared to the inverse spectral gap
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associated with the energy eigenstates in the paramagnetic phase, T ≫ 2π
En−Em

. The

time-averaged magnetization can then be simplified to the following expression in this

regime

⟨Jx⟩(t) =
∑
n

|cn|2⟨un|Jx|un⟩ (3.21)

The above expression is identically zero because the operator Jx is odd under the

action of the parity operator (Π = eiπJz) and the energy eigenstates are the parity

eigenstates leading to ⟨un|Jx|un⟩ =
(
⟨un|Π†)(ΠJxΠ†)(Π|un⟩) = −⟨un|Jx|un⟩. For s

values larger than the critical point of the GSQPT, s > s
(gpt)
c (N), the energy gap

between the ground state and the first excited state, which have opposite parity, is

exponentially small in the system size. In the case when the averaging T is small

compared to the inverse gap in the ferromagnetic phase, the gap will not be resolved

and the energy levels look degenerate, in which case Eq. (3.21) will not be valid

leading to nonzero value of the time-averaged magnetization. Hence, using the aver-

aging time T that is larger compared to the typical inverse gap associated with the

eigenstates in the paramagnetic phase but smaller compared to the inverse gap in the

ferromagnetic phase, which is exponentially large in the system size, produces the

expected bifurcation curve as shown in Fig. 3.2(f).

Note that all the above mentioned details related to the choice of initial condition

and averaging time can be understood in a straightforward manner when this system

is thought in terms of the double-well potential picture, which is valid for even finite-

sized systems, introduced in Eq. (2.36). In this picture, the potential transitions from
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a single well with minima located at x = 0 to a double well with the barrier located

at x = 0 at the GSQPT critical point. The initial condition chosen in our protocol

for the GSQPT is a state that is slightly off the point x = 0. Therefore, the time-

averaged magnetization associated with this initial condition will be nonzero once

the potential transitions to a double-well, as the state is trapped on one side of the

double well provided that the averaging time T is smaller compared to the tunnelling

time between the wells, which is exponentially large in the system size. On the other

hand, we would like T to be large compared to time period of the oscillation, which

is inversely proportional to the spectral gap, in the paramagnetic phase, so that the

state samples the whole trajectory leading to X = 0 in this phase.

For the case of the DQPT, the ground state at s = 1, which is a spin-coherent state

centered at (θ = π
2
, ϕ0 = 0), is time-evolved under the action of the LMG Hamiltonian

for different values of s to obtain the the bifurcation diagram shown in Fig. 3.2(g).

Since the order parameter of the DQPT is being measured in this case, we expect

this protocol to give us a correct estimate of the finite-size critical point for all system

sizes. This can also be understood based on the double-well picture. At values of the

control parameter above the critical point of the DQPT s > s
(dpt)
c , the initial state

corresponding to DQPT will be trapped on one side of the double-well resulting in

⟨X⟩ > 0, whereas the initial state will have energy higher than the barrier height

and performs oscillations over both wells of the double well for s < s
(dpt)
c leading to

⟨X⟩ = 0.
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3.3 Chaos in the Quantum Simulation

A classically integrable system has a number of conserved quantities that are equal

to the number of degrees of the freedom associated with the system [Rei92]. The

classical LMG Hamiltonian is a system with one degree of freedom that has energy

conserved indicating that this system is integrable (see Sec 2.2). The integrability

can also seen by the regular periodic trajectories present on the phase space of the

Hamiltonian as shown in Fig. 3.2(a-c). The integrability, however, could be broken

through an external perturbation that does not respect the symmetries of the system.

For instance, the energy of the system is not conserved anymore in the presence

of a weak time-dependent perturbation, and therefore the dynamics of the LMG

Hamiltonian could potentially become chaotic in the presence of this perturbation.

Here, we study the effects of such integrability-breaking perturbation in the context

of quantum simulation of various quantities related to GSQPT and DQPT present in

the LMG model.

Particularly, we consider a perturbation in the form of a weak-oscillating magnetic

field along the y-axis resulting in the following Hamiltonian

H = −(1− s) Jz −
s

N
J2
x − ε0 cos(ωt)Jy. (3.22)

It was shown that the above Hamiltonian shows chaotic dynamics for a range of

values of the perturbation amplitude ε0, control parameter s and the perturbation

frequency ω [MAF+18]. When an integrability-breaking perturbation is added to an
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Figure 3.4: The Poincaré sections associated with the LMG Hamiltonian plotted as a function
of spherical coordinates for various values of the perturbation amplitudes. Note that chaos
originates in the vicinity of the homoclinic orbits through the mechanism of homoclinic tangle.

integrable system, the Kolmogorov–Arnold–Moser (KAM) theorem guarantees that

the regular trajectories remain stable and slowly deform into new trajectories pro-

vided that they either do not correspond to the resonant orbits or near-resonant

orbits [Rei92]. However, for the resonant and near-resonant orbits, it can be shown

through the Poincaré-Birkhoff theorem that the system develops chaotic dynamics

in the vicinity of these orbits. Therefore, a small integrability-breaking perturbation

leads to a mixed phase space containing both integrable and chaotic regions. The

primary mechanism underlying the emergence of chaos in the system is the so called

“homoclinic (heteroclinic) tangle” that takes place in the vicinity of the homoclinic

(heteroclinic) orbit on the classical phase. In the presence of an integrability-breaking

perturbation, the stable and the unstable manifolds associated with these orbits in-

tersect transversally at infinite number of points leading to exponential sensitivity of

the trajectories near the homoclinic/ heteroclinic orbits [Rei92].

We can characterize the emergence of the chaos in the system through Poincaré

sections. Note that the system described in Eq. (3.22) has one and half degree of

freedom due to time-dependence in the Hamiltonian leading to phase-space trajecto-
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ries in a three-dimensional phase space. This dynamics can then be represented on

a two-dimensional plane by identifying the points of intersection of the trajectories

in the three dimensions with a plane defined by setting one of the phase-space vari-

ables to be constant. These lower-dimensional phase space figures are referred to as

Poincaré sections. On these figures, the trajectories in the regular part of the phase

space are represented by the closed trajectories and the trajectories corresponding to

chaotic sea are identified by the seemingly random points on the phase space.

To obtain a Poincaré section for a time periodic system, it is natural to sample the

dynamics of the system every time period given by ωT = 2π. The Poincaré sections

obtained by sampling at every time period for the system in Eq. (3.22) are shown in

Fig. 3.4 for various perturbation amplitudes. In Fig. 3.4(a), the ideal phase space of

the LMG Hamiltonian is plotted as a function of the spherical coordinates. This is

equivalent to the phase space plotted on the sphere in Fig. 2.5(a)(iii). In Fig. 3.4(b),

for a very small perturbation amplitude, it can already be seen that a thin layer of

chaos is formed around the separatrix trajectory. As the perturbation strength is

increased, the width of the chaotic layer around the separatrix increases as shown in

Fig 3.4(c).

A common tool that is used to quantify the strength of the chaos in the system is

using the Lyapunov exponents. On the classical phase space, the distance between

two neighboring points present in the chaotic region increases exponentially with time,

and the exponent associated with this exponential growth is called the Lyapunov

exponent. Suppose the two neighboring points in the phase space at time t = 0 are

given by x⃗0 and y⃗0 = x⃗0 + ∆x⃗0, and the displacement between these two vectors

65



CHAPTER 3. EFFECT OF CHAOS ON QUANTUM SIMULATION

changes in time given by ∆x⃗(x⃗0, t) with the magnitude

d(x⃗0, t) = ||∆x⃗(x⃗0, t)|| (3.23)

The exponent associated with the exponential growth is then defined by

λ(x⃗0,∆x⃗0) = lim
t→∞

lim
d(x⃗0,0)→0

1

t
log

(
d(x⃗0, t)

d(x⃗0, 0)

)
(3.24)

If the phase space is M -dimensional, then there exists a M -dimensional basis given

by {e⃗i}. The Lyapunov exponents along M different directions are then given by

λi(x⃗0) = λ(x⃗0, e⃗i). If ∆x⃗0 is arbitrarily chosen, then the Eq. (3.24) will provide

us with the largest Lyapunov exponent since the contribution in ∆x⃗(x⃗0, t) will be

dominated by the displacement along the largest Lyapunov direction. Moreover, for

Hamiltonian flows, it has been shown that λi = −λM−i+1 where M = 2f with f being

the degrees of freedom associated with the system [LL13].

The perturbed LMG Hamiltonian is a system with three-dimensional phase space

with different directions corresponding to coordinates on the spherical phase space,

θ and ϕ, and time. Since it does not make sense to think about the Lyapunov

exponent in the time direction, we ignore this exponent, and we effectively have

only one other Lyapunov exponent, corresponding to θ and ϕ direction on the phase

space in the system, since λθ = −λϕ. Using this Lyapunov exponent, we identify

the fraction of phase space that shows chaotic dynamics as a function of control

parameter and frequency for a fixed perturbation amplitude (see Fig. 3.5). For this,
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we compute the Lyapunov exponent associated with 100 different initial conditions

chosen uniformly on the sphere and then identify the fraction of initial conditions

that have non-zero Lyapunov exponent. The data obtained in Fig. 3.5 is in excellent

agreement with the associated Poincare sections. An important observation that

follows from this heat map is that the system becomes chaotic only for s > 1/2. This

is related to the fact that the separatrix trajectory is present on the phase space only

for s > 1/2 where chaos first emerges through the mechanism of homoclinic tangle

[Rei92]. Moreover, we can also observe that the perturbed system does not show

chaos for very small or very large values of ω. This is due to the fact that when

the perturbation is oscillating at a very high frequency, the ideal system does not

have time to respond to the perturbation and experiences the average effect of the

perturbation, which is equivalent to turning off the perturbation in this case. On the

other hand, in the presence of low-frequency perturbation, the system does not even

notice the perturbation for the relevant time scales.

3.4 Sensitivity and robustness to perturbations in the simulation of QPTs

As discussed above, our dynamical quantum simulation protocol identifies the critical

points of the phase transition using the motion of the state in the vicinity of the

separatrix trajectory (homoclinic orbits), but as we have shown in the previous section,

chaos also originates in the neighborhood of the separatrix trajectory in the presence

of a small integrability-breaking perturbation. We now analyze the impact of the

integrability-breaking perturbation on the simulation of quantum phase transitions

in this section.
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Figure 3.5: The above heat map shows the fraction of phase space that is chaotic for the LMG
Hamiltonian in the presence of a perturbation (Eq.(3.22)) as a function of the control parameter
and the frequency of the perturbation for a fixed perturbation amplitude, ε0 = 0.05. The color
bar on the right associates different colors with the fraction of phase space that is chaotic.

The bifurcation curves for the GSQPT are shown in Fig. 3.6(a). It should be noted

from this figure that the bifurcation diagram obtained in the presence of perturbation,

shown by the red-colored curve, is significantly different from the ideal bifurcation

curve, shown by the black-colored curve, for s > s
(gpt)
c . This can be understood by

the fact that the initial condition corresponding to GSQPT will be subject to chaotic

dynamics only for s > s
(gpt)
c , as it is located in the vicinity of the separatrix trajectory

for these values of the control parameter. This can be seen in the Poincaré sections

shown in Fig. 3.6(d-f) where the GSQPT initial condition is labelled by the red

dot. We can further support this explanation by noting that the Lyapunov exponent

associated with this initial condition as a function of the control parameter is nonzero

only for s > s
(gpt)
c as shown by the red-colored curve in Fig. 3.6(c). The Lyapunov

exponents plotted in this curve have been computed using the method discussed in

[RHR98].
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Figure 3.6: (a-b) The bifurcation diagrams associated with the GSQPT and the DQPT in
the ideal case (black curve) and the perturbed case (red curve for GSQPT and green curve
for DQPT) are shown here. It can be seen that the perturbed curve in the GSQPT case has
been significantly altered in the presence of perturbation for s ≳ s

(gpt)
c (N) with respect to the

ideal case but only for s
(dpt)
c (N) ≲ s ≲ 0.8 in the DQPT case. (c) The Lyapunov exponents

associated with the GSQPT and the DQPT initial conditions are plotted as a function of the
control parameter as shown by the red and the green colored curves respectively. It can be seen
that there is a strong correspondence between the regions of the control parameter where the
bifurcation diagrams are appreciably affected by the perturbation and the presence of nonzero
Lyapunov exponents. (d-f) The Poincarè sections of the LMG Hamiltonian in the presence of the
perturbation (ε0 = 0.05) are plotted as a function of the spherical coordinates of the associated
classical phase space for various values of the control parameter, s = 0.3 (d), s = 0.65 (e) and
s = 0.8 (f). The red and the green dots show the initial conditions associated with the GSQPT
protocol and the DQPT protocol on the phase space.

Similarly, the bifurcation curves associated with DQPT are shown in Fig. 3.6(b),

where the ideal and the perturbed bifurcation curves are shown by the black curve

and the green curve respectively. Unlike the GSQPT case, the perturbed bifurcation

curve in this case is very different from the ideal curve only for intermediate values of

the control parameter corresponding to the shaded green region in Fig. 3.6(b). This

can again be attributed to the chaos present in the neighborhood of the separatrix

trajectory. Recall that, as the value of the control parameter is increased from 1/2

to 1, the homoclinic orbits increase in size bounding trajectories that are farther
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away from the unstable fixed point. The DQPT critical point is then the value of

s where the initial condition corresponding to DQPT is bounded by the homoclinic

orbit. This means that the initial state will be in the neighborhood of separatrix

trajectory (and in the chaotic region) only for these intermediate values of s around

the DQPT critical point as illustrated by the green dot in the Poincare sections shown

in Fig. 3.6(d-f). This is corroborated by noting the Lyapunov exponent for this initial

condition is nonzero for the values of the control parameter that correspond to this

intermediate region as shown in Fig. 3.6(c). Moreover, it should be noted that since

the depth of the associated double well potential increases with the control parameter,

the perturbation does not impact the wells for larger values of s, which can be seen

by the intact wells present in Fig. 3.6(f). Hence, the DQPT bifurcation diagram

becomes resilient to perturbations for larger values of the control parameter.

All the above analysis has been performed by fixing the perturbation amplitude

to ε0 = 0.05, but these results hold true for any perturbation amplitude. That is,

the error in time-averaged magnetization associated with the GSQPT and the DQPT

protocols is large whenever the corresponding initial conditions are in the vicinity

of the separatrix trajectory, which happens for the values of s around the respective

critical points of the quantum phase transitions as shown in Fig. 3.7(a-b). Hence, the

emergence of chaos in the system makes the system very sensitive to perturbations

around the critical regions.

However, there are many quantities that one might be interested in extracting

from a quantum simulation. So far, we have focused on the time-averaged magneti-

zations associated with different initial conditions. Instead, one might be interested
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Figure 3.7: (a-b) The error in time-averaged magnetization for the GSQPT (a) and DQPT
(b) protocols as function of perturbation amplitude is plotted for various values of the control
parameter. (c) The critical point estimates associated with the GSQPT and the DQPT are
plotted as a function of the perturbation amplitude. Here the critical points are identified as the
points where the time-averaged magnetization changes from zero to nonzero. Numerically, the
nonzero magnetization is assumed to be a number greater than δ given by δ = sin

(
ε/
√
2J

)
where ε = 0.125 and J = 100. It can be seen that these estimates in the presence of perturbation
are close to the ideal values labelled by the dashed (DQPT) and the dotted (GSQPT) lines.

in extracting the critical point associated with the quantum phase transition. This is

achieved by using the data from the bifurcation diagram and identifying the value of

the control parameter where the time-averaged magnetization becomes larger than a

small threshold value, Xth ≪ 1. The critical point estimates obtained in this manner

are shown in Fig. 3.7(c) for the GSQPT labelled by the red dots and the DQPT la-

belled by the green dots for various values of the perturbation amplitude. As can be

seen in the figure, the critical point estimates in the presence of perturbation are very

close to the ideal values marked by the dashed and the dotted line for the GSQPT and

the DQPT respectively even though the corresponding bifurcation curves undergo a
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Figure 3.8: The critical point estimates as a function of the threshold parameter δ for the
GSQPT (a) and the DQPT (b) protocols are shown here. It should be noted that, in the
presence of the perturbation, the critical-point estimates become sensitive to the value of the
threshold used in identifying the critical points.

drastic change in the presence of perturbation. This can be ascribed to the fact that

the system undergoes global changes on the phase space both in the absence and the

presence of the perturbation leading to changes in the time-averaged magnetization

from zero to nonzero at the ideal critical points. In the ideal case, these changes

happen due to the bifurcation of the fixed point, and in the presence of perturbation,

the system’s dynamics change from regular to chaotic for s ≳ sc.

Even though the critical point estimates are robust with respect to the perturbation,

these estimates indeed become sensitive to the exact value of the threshold δ =

sin( ε√
2J
) used in determining the critical points. Here the threshold value X th is

represented in terms of the average magnetization (⟨Jx⟩/J) associated with a spin-

coherent state located at a polar angle ε√
2J

. In Fig. 3.8(a) and 3.8(b), the critical

point estimates as a function of the threshold value are plotted for GSQPT and the

DQPT respectively for various values of the perturbation amplitude. It can be noted

from these figures that the curves associated with the critical point estimates in the

presence of perturbation, shown by the blue and the magenta colored curves, increase
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sharply with threshold as opposed to the estimates in the ideal case (shown by the

black-colored curves), especially for the GSQPT. This might become particularly

relevant in the experiments where the critical point estimates could become sensitive

to perturbations due to lack of resolution in the time-averaged magnetization.
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4
Trotter Errors from Structural Instabilities

4.1 Introduction

Recall that the first order Trotter-Suzuki decomposition allows the simulation of time

evolution of a Hamiltonian of the form H =
∑K

j=1Hj provided that we have access

to time evolution generated by each of the individual terms in the Hamiltonian (see

Sec. 1.3). In this chapter, we will focus on the simple case of H = H1 + H2. Then

the time evolution under Trotter decomposition Utrot is obtained by the repeated

applications of the unitary map given by Uδ(τ) ≡ e−iH1τe−iH2τ
(
Utrot = (Uδ(τ))

n
)
,

where τ is referred to as the Trotter-step size. The error in each Trotter step can
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then be obtained explicitly in a straightforward manner (as shown in [CST+21]) since

Uδ(τ) follows the differential equation

dUδ

dτ
= −iHUδ + i[H2, e

−iH1τ ]e−iH2τ , (4.1)

whose solution can be expressed as follows

Uδ(τ) = e−iHτ + i

∫ τ

0

dτ ′ e−i(τ−τ ′)H [H2, e
−iτ ′H1 ]e−iτ ′H2 . (4.2)

The above expression can be used for computing the error bound over one Trotter

step, which is given by

||Uδ(τ)− e−iHτ || ≤ τ 2

2
||[H1, H2]|| , (4.3)

where ||.|| refers to the spectral norm. Over the entire time evolution T consisting of

n Trotter steps (T = nτ), we have

||(Uδ(τ))
n − e−iTH || ≤ n||Uδ(τ)− e−iτH || = T 2

2n
||[H1, H2]|| . (4.4)

The above error bound shows that the error in simulation (also known as Trotter

errors) that arise from the difference between Utrot and the intended time evolution

Utar can be made as small as possible by increasing the number of Trotter steps

accordingly [Llo96, CST+21]. The error bound also shows how the efficiency of this

Trotter-Suzuki algorithm for simulation changes based on the commutator between

75



CHAPTER 4. TROTTER ERRORS FROM STRUCTURAL INSTABILITIES

the terms involved in the decomposition of the Hamiltonian.

Consider the simulation of the p-spin Hamiltonian H(s) = −(1 − s)Jz − s
pJp−1J

p
x

using Trotter decomposition. The ideal target evolution that one wants to implement

on the simulator to obtain some quantity of interest, say time-averaged magnetization,

is given by

Utar = e
i
(
(1−s)Jz+

s
pJp−1 J

p
x

)
nτ
, (4.5)

and the unitary map that is obtained under the Trotter-Suzuki decomposition is

shown below,

Utrot =
(
ei(1−s)τJze

i sτ
pJp−1 J

p
x
)n ≡ (

Uδ(τ)
)n
, (4.6)

where we refer to Utrot in the above equation as the Trotterized unitary.

The time evolution associated with one Trotter step size τ of the Trotterized uni-

tary can be seen as being generated from the time evolution of a time-dependent

Hamiltonian shown below

Hδ(τ) = −(1− s)Jz −
sτ

pJp−1

∞∑
n=−∞

δ(t− nτ)Jp
x , (4.7)

where the above sum over n is taken over all the integers. We refer to this class

of delta-kicked Hamiltonians as the kicked p-spin Hamiltonians [HKS87, MAPD21].

The Hamiltonian in Eq. (4.7) for p = 2 is referred to as the quantum kicked-top

(QKT) [HKS87]. The Trotterized unitary can then be seen as repeated application
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of the Floquet operator (time evolution operator for one time period of a periodic

Hamiltonian) Uδ(τ) associated with the above kicked Hamiltonian. It should be noted

that even though the target evolution (Eq. (4.5)) is generated by a time-independent

Hamiltonian, which is integrable in the classical limit, the Trotterized evolution (Eq.

(4.6)), generated by the kicked p-spin models, can be potentially chaotic in the classical

limit as the energy of the system is no longer conserved. That is, the number of degrees

of freedom in the kicked top models is more than the number of conserved quantities,

which allows the possibility of kicked p-spin models to be chaotic [HKS87, MAPD21].

Recently, Sieberer et al. have analyzed the behavior of Trotter errors in certain

local observables in a closely related version of the p = 2 Hamiltonian considered

here [SOE+19]. They found that the dynamics of the target Hamiltonian can be

accurately simulated for small Trotter step sizes. However, they also showed that

the Trotter errors in observables increase sharply for the Trotter-step sizes that make

the dynamics of the underlying kicked models chaotic. This nontrivial transition

in the behavior of Trotter errors, whose origin can be traced to difference between

the target unitary and the Trotterized unitary, cannot be identified by the worst-

case error bounds such as Eq. (4.4) as the error bounds are loose. In the regular

region, the error in quantum simulation of certain expectation values can be much

better than one might expect from the worst-case scenario [SOE+19]. This shows

that the physical properties of the system being simulated play an important role in

determining the behavior of simulation errors. It is thus desirable to identify whether

other physical mechanisms, beyond the regularity-to-chaos crossover, could lead to

such behavior.
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On the classical phase space, a quasiprobability distribution like the Husimi func-

tion ( |⟨θ, ϕ|ψ⟩|2) associated with the eigenstates of the unitary operator will overlap

with the corresponding classical trajectories of the unitary operator. This means that

the regions of large Trotter errors resulting from classical trajectories of the target

unitary being very different from those of the Trotterized unitary will be manifested

in the quantum regime as regions where eigenstates of the target unitary and the

Trotterized unitary are very different. Therefore, a way to recognize the high Trotter

error regions is to compute the inverse participation ratio (IPR) of the Floquet eigen-

states of Uδ

(
eigenstates of Uδ are same as the eigenstates of Utrot =

(
Uδ

)n) in the

eigenbasis of Utar. The IPR of a given state |ψ⟩ in a particular basis
{
|ϕi⟩

}
is defined

as

IPR =
d∑

i=1

|⟨ϕi|ψ⟩|4 , (4.8)

where d is the dimension of the Hilbert space. The above quantity ranges between

1/d for a fully delocalized state (state with equal superposition of all the basis

states) in the basis and one for a fully localized state (state equal to one of the

basis states). Moreover, one can define average IPR of one basis in other basis as

IPR ≡ 1
d

∑d
i,j=1 |⟨ϕi|ψj⟩|4. Using average IPR, we define a quantity, referred to as

average dissimilarity, which is given by

D(Utar,Uδ) =
1− IPR

1− IPRCOE
, (4.9)
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Figure 4.1: (a,c): The average dissimilarity of the Floquet eigenstates in the target Hamiltonian
eigenstates is plotted as a function of the control parameter and the Trotter step size for p = 2
and p = 4 respectively, and J = 64 (N = 128). The large dissimilarity is shown by the green-
colored regions on the heat maps. The black-colored dashed and dotted lines correspond to
the curves π

1−s and π
2(1−s) . (b,d): The global Lyapunov exponents obtained from the classical

dynamics of the kicked p-spin models with p = 2 and p = 4 are shown here.

where IPRCOE is the average IPR associated with circular orthogonal ensemble (COE),

whose predictions match with the fully chaotic kicked p-spin models [MAPD21, Haa91].

Up to normalization, the dissimilarity ranges between 0 for identical basis sets and

1− 1
d

for very dissimilar basis sets.

In Fig. 4.1(a), the average dissimilarity between the eigenbasis of Utar and Uδ is

plotted as a function of the Trotter step size and the control parameter for the p = 2

case. The unitaries Utar and Uδ generate the dynamics associated with the LMG

model and the QKT respectively. Note that in Fig. 4.2(a), there are two parameter

regions where the dissimilarity between the two eigenbasis sets is high (green-colored
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regions). For values of s ≳ 0.5, the large dissimilarity region can be attributed to

the presence of chaotic dynamics in the kicked model as shown in Fig 4.1(b), where

the classical global Lyapunov exponents are plotted as a function of the Trotter step

size and the control parameter. On the other hand, for values of s ≲ 0.5, the QKT

model does not show chaotic dynamics, and therefore the large dissimilarity present

around the black dashed line in Fig. 4.1(a) arises from a different physical mechanism

present in the kicked model. Later in this chapter, we will see that these dissimilarity

regions give rise to large errors in various observables.

Moreover, repeating this analysis for the p = 4 Hamiltonian, one finds that the

underlying kicked model also show chaotic dynamics for large values of the control

parameter (see Fig. 4.1(d)), which then explains the presence of large dissimilarity

region for these values of the control parameter shown in Fig. 4.1(c). However, in

this case, there are also two additional regions of large dissimilarity (green-colored

regions around black dashed and dotted lines in Fig. 4.1(c)), as opposed to one

region for p = 2, and for small values of the control parameter where the associated

kicked model does not show chaotic dynamics. In the next section, we will explore

the physical mechanism behind these large dissimilarity regions, which is not related

to the chaotic dynamics in contrast to the work of [SOE+19]. We characterize the

dissimilar regions through the use of unitary perturbation theory and use this to

explain the large simulation errors in these regions.
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4.2 Structural instability regions

In order to understand the dissimilarity regions that cannot be attributed to chaos,

we will now analyze the eigenstates of the Trotterized unitary associated with the

p-spin models using unitary perturbation theory [Per06]. For this, we focus on the

region with small values of the control parameter. The target unitary for the p-spin

models is given by Utar = e
i
(
(1−s)Jz+

s
pJp−1 J

p
x

)
τ and the Trotterized unitary given by

Uδ(τ) = ei(1−s)τJze
i sτ
pJp−1 J

p
x ≡ U (0)U

′
. (4.10)

For s ≪ 1, the above Floquet map is dominated by U (0), which generates preces-

sions of the mean spin around the z axis; the term U
′ can be seen as perturbation.

Hence, the eigenstates of the Uδ are expected to be close to those of U (0) with small

corrections.

The eigenstates of U (0) are same as those of Jz eigenstates,

U (0)| − J +m⟩ = ei(1−s)τ(−J+m)| − J +m⟩ ≡ e−iϕ
(0)
m | − J +m⟩ , (4.11)

where m = {0, 1, ..., 2J}, the eigenphases and eigenstates are denoted by ϕ
(0)
m =

−(1 − s)τ(−J + m) and | − J + m⟩ ≡ |J,mz = −J + m⟩ respectively. The first

order correction to the eigenstates of Uδ is then obtained by analyzing the following
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equation,

Uδ

(
| − J +m⟩+ s|ϕ(1)

m ⟩
)

= e−iϕ
(0)
m (1− isϕ(1)

m )

(
| − J +m⟩+ s|ϕ(1)

m ⟩
)

= e−i(1−s)τ(−J+m)(1− isϕ(1)
m )

(
| − J +m⟩+ s|ϕ(1)

m ⟩
)

(4.12)

where s is the perturbation parameter, ϕ(1)
m and |ϕ(1)

m ⟩ are the first order corrections

to the eigenphases and the eigenstates respectively. Taking inner product with the

Jz basis elements in the above equation, we obtain

⟨−J +m′|ϕ(1)
m ⟩ = (1− δm′,m)

iτ

pJp−1

(
Jp
x

)
m′,m

ei(1−s)τ(m−m′) − 1
, (4.13)

where
(
Jp
x

)
m′,m

≡ ⟨−J + m′|Jp
x | − J + m⟩ and m,m′ = {0, 1, ..., 2J}. The above

expression for the first-order correction to the eigenstate is not valid in the immediate

vicinity of the degenerate points given by τ = r 2π
(1−s)(m−m′)

for some positive nonzero

integer, r. However, in the regions around the immediate vicinity of the degenerate

points, the above expression predicts a big correction to the unperturbed eigenstates

whenever
(
Jp
x

)
m′,m

̸= 0 for m ̸= m′. Since the operator Jp
x , when expressed in the

eigenbasis of Jz, has nonzero matrix elements only in alternating diagonal bands up to

offset p, the matrix element
(
Jp
x

)
m′,m

is nonzero when m−m′ ≡ q = {p, p−2, ..., 0(1)}

for even (odd) p-spin models. Hence, the regions with large eigenvector correction for

82



CHAPTER 4. TROTTER ERRORS FROM STRUCTURAL INSTABILITIES

a given p-spin model can be identified as the neighborhood of

τ ∗p,q ≡ r
2π

(1− s)q
, (4.14)

where q = {p, p− 2, ..., 2(1)} for even (odd) p-spin models and r is a positive integer.

The eigenstate structure in the region around τ ∗p,q changes rapidly with the Trotter-

step size, and hence we refer to them as the structural instability regions of the Floquet

operator. These instability regions are centered at τ ∗p,q with some width w. Note that

the number of structural instability regions predicted by Eq. (4.15) increase with p

value since q has more possibilities for higher values of p.

Consider the p = 2 case, which has only one structural instability region that is

centered at τ ∗2,2 = π
1−s

∗. The Floquet operator at τ ∗2,2, which is the center of the

instability region, is given by

Uδ(τ = τ ∗2,2) = eiπJzei
sπ

(1−s)
1
2J

J2
x . (4.15)

The two terms in the above shown Floquet operator commute, as (Jx)
2 → (−Jx)2

under the action of the parity operator eiπJz , which implements a π rotation around

the z-axis. Therefore, one can find a common set of eigenvectors for both operators

eiπJz and ei
sπ

(1−s)
1
2J

J2
x , which are given by the parity respecting eigenstates of J2

x . That

is, the eigenstates of Uδ(τ = τ ∗2,2) are given by 1√
2

(
|J,mx⟩ ± |J,−mx⟩

)
. Hence, as

the Trotter-step size is varied across from τ ∼ τ ∗2,2 − w
2
, the eigenstates of Uδ change

∗There are instability regions in the vicinity of integer multiples of τ∗2,2, but these appear at large
Trotter step sizes.
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rapidly from those that have structure similar to the Jz eigenstates to those that have

their structure resembling the J2
x eigenstates. As τ is increased further from τ = τ ∗2,2

to τ ∼ τ ∗2,2 +
w
2
, the eigenstate structure changes from being similar to J2

x eigenstates

back to those of Jz eigenstates. It can be seen from Eq. (4.15) that all even p-spin

models have a structural instability region centered at τ = τ ∗p,q=2 = r π
1−s

. In fact,

τ ∗p,q=2 is the black dashed curve that is plotted in Fig. 4.1 (a and c) and overlaps with

the high dissimilarity region. Also, for a general even p-spin model, the structure of

the eigenstates change from being similar to Jz eigenstates to those of J2
x eigenstates

and then back to Jz eigenstates, identical to the p = 2 case, as Trotter-step size is

varied from τ ∼ τ ∗p,q=2 − w
2

to τ ∼ τ ∗p,q=2 +
w
2
.

Since the eigenstates of the Trotterized unitary Uδ change significantly and rapidly

in the structural instability regions, the unitary map Uδ becomes very different from

the target unitary map Utar. As a result, one would expect large simulation errors

associated with various observables when the Trotter-step size is chosen to be in the

instability region. We will focus here on analyzing errors in non-equilibrium quantities

such as long-time averages in magnetization. The long-time average of an observable

Ji is given by

⟨Ji⟩ = lim
n→∞

1

n

n∑
l=1

⟨ψ0|(Un)†JiU
n|ψ0⟩, (4.16)

where U is the unitary map that generates the time evolution under the respective

Hamiltonian for one Trotter-step size, |ψ0⟩ is the initial state and i = {x, y, z}. For

concreteness, we focus on the simulation error in long-time average of Jz, which is
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Figure 4.2: The error in the long-time averaged magnetization Ez obtained numerically for an
initial condition |Θ0 = π

2 ,Φ0 = 0⟩ is shown as a function of the Trotter-step size for p = 2, 3
and 4 by the blue, red and green colored curves respectively. The curve shown by the dotted
line refers to the analytic expression mentioned in Eq. (4.20), and the vertical dashed lines refer
to the center points of the various instability region.

defined as

E∞z (τ) =
1

J

∣∣∣∣⟨Jz⟩tar − ⟨Jz⟩trot∣∣∣∣ , (4.17)

where ⟨Jz⟩tar and ⟨Jz⟩trot are the time averages obtained under the action of the

unitary maps Utar and Uδ respectively. The simulation error in ⟨Jz⟩ for an initial

spin-coherent state |ψ0⟩ = |Θ0 = π
2
,Φ0 = 0⟩ obtained from numerical calculation is

shown in Fig. 4.2(a-c) for p = 2, p = 3 and p = 4 respectively. As anticipated, the

error in ⟨Jz⟩ increases sharply in the neighborhood of the instability regions given by

τ ∗2,2 =
π

1−s
for p = 2, τ ∗3,1 = 2π

1−s
, τ ∗3,3 = 2π

3(1−s)
for p = 3 and τ ∗4,2 =

π
1−s

, τ ∗4,4 = 2π
4(1−s)

for
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p = 4 (the center points of these instability region are shown by the vertical dashed

lines in Fig. 4.2). It can be seen in all these cases, the error first increases sharply, then

decreases in the immediate neighborhood of the instability region before increasing

again leading to two separate error peaks, both of which belong to the same instability

region. The particular shape of error curve in the instability region is dependent on

the initial state used and the observable being measured.

Note that number of high error regions increase with the value of p, as the instability

regions also increase with p value. Moreover, these high error regions start to develop

at smaller values of the Trotter-step size as the value of p is increased since τ ∗p,q = 2π
q(1−s)

becomes smaller as q is allowed to have larger values for larger p-spin model. However,

the high error regions that appear at smaller values of the Trotter-step size have

narrower width. We can understand this by analyzing the rate at which the spectrum

becomes degenerate in a particular instability region as τ is varied. For this, we

Taylor expand the spectral gap (shown in Eq. (4.14)) around the central point of the

structural instability region as follows,

1

ei(1−s)qτ − 1
≈ e−i(1−s)qτ − 1

q2(1− s)2(τ − τ ∗)2
. (4.18)

The width of the instability region is inversely proportional to the rate at which the

system becomes degenerate, which is given by 1
q2(1−s)2

. This explains the fact the

error regions that appear at smaller values of the Trotter-step size, which correspond

to larger values of q, are narrower compared to the error regions centered at larger

Trotter-step sizes.
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We can also find an analytic expression for the error in the long-time averaged

magnetization to first order in s. The expression for E∞z (τ), when the initial state is

chosen to be a spin-coherent state |Ψ(0)⟩ = |Θ,Φ⟩, is given by

E∞z (τ) =

∣∣∣∣ ∑
q={p,p−2,...,2(1)}

sq

pJp−1

[
cos(qΦ)

(
2

q(1− s)
− τ cot

(q(1− s)
2

τ
))

+ τ sin(qΦ)

]
2J−q∑
m=0

|ρ(0)m+q,m(Θ)| (Jp
x)m,m+q

∣∣∣∣,
(4.19)

where Ar1,r2 = ⟨−J + r1|A| − J + r2⟩ for an operator A. For more details on the

derivation of the above expression, and the more general expression for simulation

error of an arbitrary observable with an arbitrary initial condition, refer to Appendix

B. The above expression is shown by black dotted curve for the initial condition

|ψ0⟩ = |Θ0 = π
2
,Φ0 = 0⟩ in Fig. 4.2(a-c). As can be seen, it agrees well with the

numerically obtained curves for simulation error besides the region in the immediate

vicinity of the degenerate points (τ ∗p,q), where the error curves have inverted-triangular

shape (the analytic expressions are not shown in these regions in Fig. 4.2 because they

diverge here). Beyond the immediate vicinity of the degenerate points, the expression

shown in Eq. (4.20) predicts large error at every value of q present in the summation,

which correspond to all the instability regions present in a given p-spin model. The

cotangent term, which is the dominant term in the Eq. (4.20) around the high-error

region, captures the shape of the peak outside the immediate vicinity of the instability

region.
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4.3 Effective Hamiltonian

We have seen in the previous section that the structure of the eigenvectors associated

with the Floquet operator changes significantly from those of the target unitary oper-

ator in the instability regions, which result in large simulation errors. In this section,

we will perform further analysis of the instability region that clarifies the connection

with large simulation errors. We do this by constructing an effective Hamiltonian

associated with Uδ(τ) for the Trotter-step sizes in the instability region and with this,

examine the classical limit of the associated effective Hamiltonian.

For small values of the control parameter s ≪ 1, recall that the target unitary

operator associated with all the p-spin models for one Trotter step is given by Utar(t =

τ) ∼ ei(1−s)τJz . This unitary operator essentially generates precessions of the mean

spin around the z-axis. The dynamics of the Trotterized unitary operator Utrot =

Uδ(τ)
n closely resembles the action of the target unitary operator when the Trotter-

step size is not in the instability regions. In the instability regions, as we will see,

the classical phase-space structure associated with Uδ undergoes major structural

changes associated with bifurcations of fixed points, leading to trajectories that are

very different from the target dynamics.

We will start our analysis by considering the LMG Hamiltonian, whose target evo-

lution and the Trotterized evolution are shown in Eq. (4.5) and Eq. (4.6) respectively

with p = 2. To better understand the Trotterized dynamics in the instability regions,
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we analyze U2
δ as shown below,

(
Uδ(τ

∗
2,2 +∆τ)

)2
=

(
eiπJzei(1−s)∆τJzei

s
2J

(τ∗2,2+∆τ)J2
x
)2

= ei2πJz
(
ei(1−s)∆τJzei

s
2J

(τ∗2,2+∆τ)J2
x
)2
.

(4.20)

For s, ∆τ
τ∗2,2+∆τ

≪ 1, the unitary map can be written as
(
Uδ(τ

∗
2,2 + ∆τ)

)2
=

± e−i2(τ∗2,2+∆τ)H
(2,2)
eff with

H
(2,2)
eff = −(1− s) ∆τ

τ ∗2,2 +∆τ
Jz −

s

2J
J2
x . (4.21)

Hence, the Trotterized dynamics of the system every alternate step in the instability

region can be described by this effective Hamiltonian. For ∆τ > 0, this Hamiltonian

is also the target LMG Hamiltonian that we want to simulate but with an effective

control parameter seff given by

seff =
1

1 + 1−s
s

∆τ
τ∗2,2+∆τ

, (4.22)

which is always greater than 1/2 when ∆τ is chosen in the structural instability

region. More specifically, the effective control parameter increases from 1/2 to 1 as

∆τ is decreased from π
1−s

( s
1−2s

) to 0. Therefore, the Trotterized unitary every other

step implements the dynamics associated with the ferromagnetic phase of the LMG

Hamiltonian even though the goal was to simulate paramagnetic dynamics (s ≪ 1),

which corresponds to precessions about the external field.

We can further substantiate this result by investigating the associated classical
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Figure 4.3: (a,e) The classical phase space trajectories associated with the target Hamiltonian
at s = 0.1 for p = 2 and p = 4 are shown in (a) and (e) respectively. (b-d): The phase-space
trajectories traced out by the Trotter dynamics in the instability region around τ∗2,2 are shown
here. The change in the phase space structure in this case is accomodated by a one to two
bifurcation. (f-h): The phase-space trajectories under Trotter evolution in the instability region
around τ∗4,4. The changes on the phase space are facilitated by various one to four bifurcations.
(i,j): Identical to the phase-space trajectories shown in (c) and (g), but plotted as a function of
the spherical coordinates θ and ϕ. The trajectories that are bounded by the various homoclinic/
heteroclinic orbits are plotted in different colors. For p = 2 (shown in (i)), an initial condition
that starts in one of the lobes goes back and forth between the two lobes tracing out the effective
Hamiltonian dynamics every second step. For p = 4 (shown in (j)), an initial condition that
starts in one of the lobes jumps through all the four different lobes leading to the dynamics of
the effective Hamiltonian only every fourth step.
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phase space trajectories. In Fig. 4.3 (a), we show the classical phase space associated

with Utar for s = 0.1, which effectively consists of precessions around the z-axis as

expected. The phase space associated with Utrot in the neighborhood of τ ∗2,2 = π
1−s
≈

3.49 is shown in Fig. 4.3 (b-d), where the precessions around the z-axis change to

precessions around the x-axis as τ is decreased from ∼ (τ ∗2,2 +
π

1−s
( s
1−2s

)) to τ ∗2,2 (seen

left to right in the figure) in a manner identical to the transition that occurs in the

ideal LMG Hamiltonian as s is increased from 1/2 to 1. Note that even though the

phase space associated with the Trotter dynamics looks identical to the phase space for

the LMG Hamiltonian with seff given in Eq. (4.23), the individual trajectories on the

associated Trotterized phase-space trace out the LMG Hamiltonian trajectories only

when one considers every alternate step of the Trotterized evolution. This process

is facilitated by a period-doubling bifurcation, where a stable fixed point located at

Z = 1 becomes unstable at τ = τ ∗2,2 +
π

1−s
( s
1−2s

) and breaks into two other stable

fixed points as τ is decreased towards τ ∗2,2. As a result of this bifurcation, an orbit

of period two is created, which constitutes the two fixed points (period 2) on the

hemisphere Z ≥ 0 shown in Fig. 4.3 (b-d). A initial condition located on one of the

fixed points inside a particular homoclinic orbit goes back and forth with the second

fixed point located inside the other homoclinic orbit. Likewise, an initial condition

located in the neighborhood of these fixed points but inside the homoclinic orbits also

jump between the two lobes (purple and red lobes in Fig. 4.3 (i) where the phase

space trajectories are plotted as a function of spherical coordinates θ and ϕ) present

on either side of the Y Z plane tracing out the corresponding LMG Hamiltonian

trajectories only when odd/even steps are considered. On the other hand, for initial
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conditions located outside the homoclinic orbits, the Trotter dynamics trace out the

actual LMG Hamiltonian trajectories every single step (black-colored curves in Fig.

4.3 (i)). Repeating the above analysis for negative values of ∆τ , one finds that all

the processes described above, including period-doubling bifurcation for ∆τ > 0 now

take place on the hemisphere Z < 0.

A similar investigation of the structural instability regions present around τ ∗p,2 = π
1−s

for a general even p-spin model shows that the Trotter dynamics in these cases is also

described by the ferromagnetic phase of the corresponding p-spin Hamiltonian (or the

Hamiltonian with a relative negative sign for ∆τ < 0) for small values of s although

the target evolution always corresponds to executing paramagnetic-phase dynamics.

The dynamics in the other instability regions is even more different from the target

dynamics. For instance, consider the instability region around τ ∗4,4 = π
2(1−s)

in the

p = 4 case. Analyzing
(
Uδ(τ

∗
4,4+∆τ)

)4 in this case, one finds the effective Hamiltonian

that describes the dynamics every fourth step, which is given by

H
(4,4)
eff = −(1− s) ∆τ

∆τ + τ ∗4,4
Jz −

s

8J3
(J4

x + J4
y ). (4.23)

The phase space trajectories associated with the Trotter dynamics in the neighbor-

hood of τ ∗4,4 are shown in Fig. 4.3 (f-h). In this case, the initial conditions that are

bound by the various heteroclinic orbits trace out the trajectories associated with

H
(4,4)
eff only every fourth step. In the intermediate steps, the Trotterized dynamics

involves jumping between the different lobes present on the phase space. This is il-

lustrated using Fig 4.3 (j) where the red, purple, blue and green colored trajectories
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represent every first, second, third and fourth step respectively. The change in the

structure of the phase-space trajectories in this case is accommodated by two different

1-to-4 bifurcations.

In the general case, the Trotter dynamics in the neighborhood of τ ∗p,q = r 2π
q(1−s)

can

be understood by analyzing
(
Uδ(τ +∆τ)

)q as shown below

(Uδ(τ +∆τ))q =
(
ei

2π
q
Jzei(1−s)∆τJze

i s
pJp−1 (τ

∗
p,q+∆τ)Jp

x
)q

= ±W (2q−2)π
q

...W 4π
q
W 2π

q
W,

(4.24)

where

W ≡ ei(1−s)∆τJze
i s
pJp−1 (τ

∗
p,q+∆τ)Jp

x , (4.25)

and

Wθ ≡ e−iθJzWeiθJz

= ei(1−s)∆τJze
i s
pJp−1 (τ

∗
p,q+∆τ)(Jx cos θ+Jy sin θ)p

.

(4.26)

When s, ∆τ
τ∗+∆τ

≈ ∆τ
τ∗
≪ 1, the Trotterized evolution every qth step can be described

using an effective Hamiltonian defined by
(
Uδ(τ + ∆τ)

)q
= e−iq(τ∗p,q+∆τ)H

(p,q)
eff , where

H
(p,q)
eff is given by

H
(p,q)
eff = −(1− s) ∆τ

τ ∗ +∆τ
Jz

− s

pqJp−1

q∑
m=1

(
Jx cos

[
2π(m− 1)

q

]
+ Jy sin

[
2π(m− 1)

q

])p

.

(4.27)
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The above expression for the effective Hamiltonian can be simplified for the even p-

spin models, which have additional parity symmetry. In that case, the ( q
2
+ k)th term

in the summation becomes identical to the kth term, and the number of terms in the

summation decrease by half. On the classical phase space, the Trotterized dynamics

undergoes a 1 to q bifurcation at the edges of the instability region resulting in creation

of period q orbits, and thus q different lobes. As expected, the Trotter evolution

realizes the trajectories of H(p,q)
eff only every qth step and leads to jumping between q

different lobes in the intermediate steps. The presence of these lobes can also be seen

by the presence of an emergent symmetry † that appears in the structural instability

region. The emergent symmetry is the invariance of the effective Hamiltonian shown

in Eq. (4.28) under 2π
q

rotation around the z-axis: [H
(p,q)
eff , ei

2π
q
Jz ] = 0. Therefore, the

associated classical phase space is also invariant under such rotation.

In conclusion, the construction of the effective Hamiltonian provides a physical

picture of the connection between the instability regions and large errors in the simu-

lation. We showed that for the Trotter step sizes chosen in the instability region, the

Trotterized unitary leads to time evolution of the system under an effective Hamil-

tonian that is very different from the target Hamiltonian. Based on classical phase

space analysis, we showed that these structural changes in the instability region are

assisted by various bifurcations that lead to creation of periodic orbits and hyper-

bolic points that are not present on the phase space associated with the ideal, target
†This symmetry is called emergent symmetry because it arises due to the drive and is absent in

the undriven system. These symmetries can be approximate meaning that only the first few terms
in the convergent expansion of the effective Hamiltonian respect these symmetries, and they have
important consequences such as non-trivial steady states in the long-time limit of a Floquet system
[LDM14], etc. For more details on the study of emergent symmetries, refer to [HD21, HSMD21].
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Hamiltonian.
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5
Summary and Outlook

The idea of quantum simulation was introduced by Feynman in 1982. Since then,

significant developments in the field have led us to the NISQ era, where we have

devices of moderate size that have the capability, in the absence of imperfections, to

simulate systems that cannot be simulated on a classical computer. One of the main

goals associated with these NISQ-era simulators, which are faulty due to lack of error

correction, is to extract a quantity reliably from the quantum simulation of a system

that cannot be efficiently simulated on a state-of-the-art classical computer. In the

work presented in this dissertation, we have analyzed the role played by the physical
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properties of the system being simulated in determining the output error of an analog

quantum simulator. Specifically, in Chapter 3 and 4, we have presented our results on

the reliability of quantum simulation in the absence of error correction corresponding

to two different paradigms.

In Chapter 3, we have considered the setting where an external perturbation causes

the simulation of an integrable system (LMG model) to become chaotic. We then

have analyzed the reliability of the simulator in extracting quantities such as the

time-averaged magnetization and the critical point estimates. For this, we have first

proposed protocols to extract the critical points of the ground-state quantum phase

transition (GSQPT) and the dynamical quantum phase transition (DQPT) inspired

by the semi-classical description of the LMG model. Followed by this, we have char-

acterized the emergence of chaos in the system as a function of the perturbation

strength. Finally, we have showed that the critical point estimates are robust to per-

turbations because they correspond to global changes in the structure of the phase

space and does not require knowledge about the whole quantum state. On the other

hand, the time-averaged magnetizations associated with the initial conditions of the

GSQPT and the DQPT protocols are affected significantly as the quantity depends

on the state of the system.

Here, we have only studied the reliability of quantum simulation in extracting

information about the GSQPT and the DQPT. It would be interesting to extend

this study to investigate the excited-state quantum phase transitions (ESQPTs) in

the presence of chaos-inducing perturbation. Since the ESQPTs in the mean-field

limit are associated with the states localized in the vicinity of the unstable fixed
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point, it is reasonable to expect that the various signatures of the ESQPTs become

fragile in the presence of chaos for values of the control parameter around the critical

point [STPB16]. Furthermore, beyond the collective spin systems with one degree

of freedom, it is interesting to explore the effects of many-body chaos in many-body

models.

In Chapter 4, we have considered the framework where the time evolution associated

with the Hamiltonian of interest is simulated through the Trotter-Suzuki decompo-

sition (Trotterization). The accuracy of the simulation increases as the Trotter-step

size is decreased. We have shown that the simulation errors associated with magneti-

zation in the p-spin models increase sharply around certain values of the Trotter-step

sizes, referred to as the structural instability regions. We have analytically obtained

the location of these regions among other characteristics through the use of the uni-

tary perturbation theory. Moreover, we showed that the number of such high-error

regions increase with the value of p. Also, the high-error regions that are associated

with higher values of p appear at smaller values of the Trotter-step sizes making them

relevant for the NISQ-era devices. Finally, we were able to explain the presence of

large simulation errors in instability regions through the explicit construction of an

effective Hamiltonian, which models the Trotter evolution accurately for all the p-spin

models in the instability regions. In the mean-field limit, these instability regions are

characterized by multiple bifurcations leading to rapid changes in the structure of the

phase space.

We have also found that the delta kicked p-spin Hamiltonian (Eq. (4.7)), which gen-

erates the time-evolution under the Trotter-Suzuki decomposition of the p-spin Hamil-
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tonian, shows interesting non-equilibrium behavior. In particular, the delta-kicked p-

spin Hamiltonian develops a subharmonic response with periodicity nT where n ≥ 2

even though the kicked Hamiltonian is periodic with period T provided the parameter

regimes correspond to instability regions. A system showing such behavior is said to

be in a Floquet time crystal phase. An exhaustive study of the Floquet time crystal

behavior in the kicked p-spin models is presented in the preprint [MnACP22].

In summary, the results shown in this dissertation suggest that the output of a

quantum simulator cannot be fully trusted in the absence of error correction. For

this, we have made an extensive use of the p-spin models, which are mean-field models.

The mean-field nature of the p-spin models allowed us to perform explicit calculations

and obtain important important insights into various aspects of our work. We want

to point out that the results presented in this dissertation are likely to apply to other

many-body systems that are not mean-field models. This intuition follows from the

fact that all-to-all interaction graphs are often seen to provide correct behavior of the

systems described by the Hamiltonian H = BJz +
∑

i,j
J0

|i−j|ασ
(i)
x σ

(j)
x for α ≲ 2. For

instance, Zunkovic et al. use the intuition gained from the mean-field analysis of the

LMG model (α = 0) to understand the various aspects of the dynamical quantum

phase transitions in the models with small, nonzero values of α [ŽHKS18]. Similarly,

Zhang et al. also use the mean-field analysis (α = 0) to understand the DQPT

behavior for α ∼ 1 [ZPH+17]. Finally, in Ref. [SOE+19], Sieberer et al. also first

exhibit the relationship between large Trotter errors and chaos using the mean-field

LMG model, and then extend their analysis numerically to non-zero values of α. The

above-mentioned works hint that our results obtained from the mean-field models
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generalize to other finite-range models with nonzero values of α. We will leave it as

future work to extend our results to many-body systems and explore other properties

that affect reliability of the simulator.

100



A
Finite-size Scaling of GSQPT Critical Point

In this appendix, we derive the critical point scaling with the system size of the

GSQPT. The goal is to obtain the barrier height and the zero-point energy of the

system using the potential shown in Eq. (2.36) and then obtain the value of the

control parameter s when this occurs. The expression for the barrier height can be

obtained from the effective potential V (s, x) by subtracting potential at the global

minima from the barrier height (barrier is located at x = 0)

V (s, x = 0)− V
(
s, x = x0

)
=

(
s− 1 +

1

4s

)
+

1

N

(
s− 1

2

)
+O

(
1

N2

)
, (A.1)
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where x0 =
√
2s−1
s
− s√

2s−1
h +O(h3/2) is the point of global minima. The zero-point

energy can then be computed by noting that the potential energy expression in Eq.

(2.36) will be of the form V (s, x) = V (s, x0) +
1
2
mω2(x− x0)2 when Taylor expanded

around x = x0 with mω2 = ∂2V (s,x)
∂x2

∣∣∣∣
x=x0

. Therefore, the zero-point energy is given by

E0 = h
ω

2
where h =

1

N

= h

√
s(2s− 1)

(s− 1)
+O(h2) .

(A.2)

Recall that the system has position-dependent mass, but we approximate the mass

in the above equation by its value at the point of the global minimum. Setting the

barrier equal to the zero-point energy, one obtains

s(gpt)c (N) =
1

2
+
N− 2

3

2
1
3

+O
(

1

N

)
, (A.3)

which can be rewritten as

s
(gpt)
c (N)− s(gpt)c

s
(gpt)
c

∝ N− 2
3 . (A.4)
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B
Perturbation theory expression

The long-time average of an operator A, assuming the time-evolution operator corre-

sponding to one time-step has nondegenerate eigenphases, is given by

⟨A⟩∞ =
d∑

r=1

⟨ϕr|ρ(0)|ϕr⟩⟨ϕr|A|ϕr⟩ (B.1)

where ρ(0) is the initial state and |ϕr⟩ is the rth eigenstate of the system. The error

in this observable due to Trotterization is given by

E∞A (τ) =
1

J
|⟨A⟩∞,id − ⟨A⟩∞,τ | (B.2)
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where ⟨A⟩∞,id is the long-time average of A under the ideal Hamiltonian evolution,

and ⟨A⟩∞,τ is the long-time average under Trotterized evolution. Assuming that the

eigenstates of the system change under a perturbation |ϕr⟩ → |ϕ(0)
r ⟩ + λ|ϕ(1)

r ⟩, the

expression for the long-time average to the first order is given by

⟨A⟩∞,λ =
2J∑

m=0

ρ(0)m,mAm,m + 2λ
2J∑

m,n ̸=m

Re
((
Am,m ρ(0)n,m + ρ(0)m,m An,m

)
⟨ϕ(1)

m |ϕ(0)
n ⟩

)
(B.3)

The above expression can be evaluated for ideal Hamiltonian evolution to obtain

⟨A⟩∞,id up to first order in s using Hamiltonian perturbation theory with H0 = −(1−

s)Jz being the unperturbed Hamiltonian and H1 = − s
pJp−1J

p
x being the perturbed

Hamiltonian

⟨A⟩∞,id =
2J∑

m=0

ρ(0)m,mAm,m +
2s

pJp−1(1− s)

2J∑
m,n ̸=m

Re
((
Am,m ρ(0)n,m + ρ(0)m,m An,m

)(Jp
x)m,n

m− n

)
(B.4)

Likewise, Eq. (B.1) can be evaluated to obtain ⟨A⟩∞,τ up to first order in s us-

ing unitary perturbation theory with unperturbed unitary, U0 = ei(1−s)τJy , and the

perturbed unitary Up = e
isτ

J
p
z

pJp−1

⟨A⟩∞,τ =
2J∑

m=0

ρ(0)m,mAm,m

+
2sτ

pJp−1

2J∑
m,n ̸=m

Re
((
ρ(0)n,mAm,m + An,mρ

(0)
m,m

) −i(Jp
x)m,n

e−i(1−s)τ(m−n) − 1

) (B.5)
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The error is then given by

E∞A (τ) =
2s

pJp−1

∣∣∣∣ 2J∑
m,n ̸=m

Re
((
Am,mρ

(0)
n,m + ρ(0)m,m An,m

)
(Jp

x)m,n

(
1

(1− s)(m− n)
+

iτ

e−i(1−s)τ(m−n) − 1

))∣∣∣∣
(B.6)

The above expression can be further simplified by expanding the summation

in n and noticing the matrix elements of (Jp
x)m,n are nonzero for n =

m± p,m± p− 2, ...,m± 0(1). Focusing on two particular terms with n = m± p− q

we obtain

E∞A (τ)
∣∣
n=m±q

=
2s

pJp−1

2J−(p−q)∑
m=0

Re
[(
ρ
(0)
m+p−q,mAm,m + Am+p−q,mρ

(0)
m,m

)
(Jp

x)m,m+p−q(
iτ

ei(p−q)(1−s)τ − 1
− 1

(p− q)(1− s)

)]
+

2s

pJp−1

2J∑
m=p−q

Re
[(
ρ
(0)
m−(p−q),mAm,m + Am−(p−q),mρ

(0)
m,m

)
(Jp

x)m,m−(p−q)(
iτ

e−i(p−q)(1−s)τ − 1
+

1

(p− q)(1− s)

)]
(B.7)

Manipulating the second term in above expression by first shifting the index of the

second term in the above equation, m→ m− (p− q), and then setting Re[z] = Re[z∗]
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in the second term results in the following expression for the error

E∞A (τ) =
2s

pJp−1

∑
q={0,2,...,p−1(p)}

2J−(p−q)∑
m=0

Re
[(
ρ
(0)
m+p−q,m

(
Am+p−q,m+p−q − Am,m

)
+

Am+p−q,m

(
ρ
(0)
m+p−q,m+p−q − ρ(0)m,m

))
(Jp

x)m,m+p−q

(
1

(p− q)(1− s)
− iτ

ei(p−q)(1−s)τ − 1

)]
(B.8)

Focusing on the error in Jz, the above expression further simplifies to the following

E∞z (τ) =
2s

pJp−1

∑
q={0,2,...,p−1(p)}

2J−(p−q)∑
m=0

Re
[(
p− q

)
ρ
(0)
m+p−q,m(J

p
x)m,m+p−q

(
1

(p− q)(1− s)
− iτ

ei(p−q)(1−s)τ − 1

)]
(B.9)

Relabelling the index q → p− q results in the final expression,

E∞z (τ) =
2s

pJp−1

∑
q={p,p−2,...,0(1)}

2J−q∑
m=0

Re
[
qρ

(0)
m+q,m(J

p
x)m,m+q

(
1

q(1− s)

− iτ

eiq(1−s)τ − 1

)] (B.10)
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C
Beyond Mean Field Limit

In Chapter 2, we have considered the p-spin models in the mean-field limit. Specifi-

cally, we obtained the Heisenberg equations of motion (Eq. (2.41)) for the collective

angular momentum operators and then ignored the mean-field fluctuations by set-

ting ⟨O1O2⟩ = ⟨O1⟩⟨O2⟩. Without resorting to such approximation, the equations

of motion for the angular momentum operators
(
⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩

)
couple to expec-

tation values of second-order polynomials in angular momentum operators, which

in turn couple to higher-order polynomials resulting in a hierarchy of coupled dif-

ferential equations. In the mean-field limit, we ignore the correlations between the
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operators by setting the second order cumulant, ⟨⟨O1O2⟩⟩ ≡ ⟨O1O2⟩ − ⟨O1⟩⟨O2⟩, to

zero. This limit is useful in the p-spin model as it describes the thermodynamic

limit (N → ∞) or the classical limit. A known technique to study larger dimen-

sional systems (N ≫ 1, but N ̸= ∞) without solving for the equations associated

with the full quantum system is to approximate the third correlations in terms of

lower-order correlations and ignore the role played by higher-order correlations in

the equations of motion. This is achieved by setting all the third-order cumulants,

⟨⟨O1O2O3⟩⟩ ≡ ⟨O1O2O3⟩−⟨O1O2⟩⟨O3⟩−⟨O1⟩⟨O2O3⟩−⟨O1O3⟩⟨O2⟩+2⟨O1⟩⟨O2⟩⟨O3⟩,

to zero. As a result, one could learn about the behavior of large N collective-spin

systems by just solving 8 coupled differential equations instead of N + 1 differential

equations resulting from the Schrodinger equation. This limit has been studied in the

LMG model in Ref. [VA00].

A question then arises: can one study systems that are too large to be analyzed

by solving N + 1 differential equations but small enough such that the higher-order

correlation functions play an important role? A straightforward way to analyze such

systems is the cumulant expansion method, whereby one sets nth-order cumulant

to zero, which will result in ignoring (n + 1)th- order and higher order correlations,

and then numerically solves the closed set of coupled differential equations involving

operators that contain product of at most n − 1 operators. The nth order cumulant

of product of n operators is defined as

⟨⟨O1O2...On⟩⟩ ≡
n−1∑
l=0

(−1)l l! Cl(O1O2, ..., On) , (C.1)
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where Cl(O1, O2, ..., On) requires identifying all the l partitions of the product

O1O2...On while preserving the order of the operators and replacing the resulting

l + 1 subsets with their expectation values. Cl(O1, O2, ..., On) is then obtained

by summing over all such possible terms for a given p. For instance, for n = 3,

C0(O1O2O3) = ⟨O1O2O3⟩, C1(O1O2O3) = ⟨O1O2⟩⟨O3⟩ + ⟨O1⟩⟨O2O3⟩ + ⟨O1O3⟩⟨O2⟩

and C2(O1O2O3) = ⟨O1⟩⟨O2⟩⟨O3⟩. For more details on cumulants, refer to [G+85]. In

fact, this algorithm has been recently implemented in Julia programming language

to build equations of motion in quantum optical systems [PHR22]. In this appendix,

we attempt to construct analytic expressions for the coupled differential equations in

the LMG model using spherical tensors. We will first provide a brief introduction to

the spherical tensors in the next section, and then use them in the following section

to construct equations of motion analytically.

C.1 Spherical Tensors

A spherical tensor of rank k is defined as an operator that transforms under rotations

in the manner similar to spherical harmonics as shown below

D(R) T (k)
q (J) D†(R) =

k∑
q′=−k

⟨k, q′|D(R)|k, q⟩ T (k)
q′ (J) , (C.2)

where D(R) = e−iγ J⃗.n⃗ is the rotation operator with rotation specified by the angle

γ and rotation axis n⃗ [SN14]. Equivalently, they can be defined using the following
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commutator relationships [SN14],

[Jz, T
(k)
q (J)] = qT (k)

q (J) (C.3)

[J±, T
(k)
q (J)] =

√
k(k + 1)− q(q ± 1)T

(k)
q±1(J) (C.4)

Unlike Cartesian tensors, spherical tensors are irreducible, so they cannot be further

decomposed into components that behave differently under the action of rotation

operators. The spherical tensors can be explicitly expressed in terms of angular

momentum eigenstates as

T (k)
q (J) =

√
2k + 1

2J + 1

J∑
m,m′=−J

CJ m′

J m;k q|J,m′⟩⟨J,m| (C.5)

where Jz|J,m⟩ = m|J,m⟩, k and q are both integers with 0 ≤ k ≤ 2J and −k ≤ q ≤ k

[KR08]. In the remainder of the Appendix, we will implicitly assume the dependence

of J in spherical tensor operators and denote the tensors by just T (k)
q . The above set

of operators form an orthonormal basis for

Tr
(
(T (k1)

q1
)†T (k2)

q2

)
= δk1,k2δq1,q2 (C.6)

Similar to spherical harmonics, they also have the following property

(
T (k)
q )† = (−1)qT (k)

q (C.7)
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From Eq. (C.5), the rank 0 tensor can be trivially identified as an identity operator,

T
(0)
0 =

1√
2J + 1

I . (C.8)

All the spherical tensors can be explicitly constructed in terms of collective angular

momentum operator. For this, notice that the kth component of a rank k tensor can

be identified in a straightforward manner as

T
(k)
k (J) = (−1)k 2k

π1/4

√
(2k + 1)(k − 1/2)! (2J − k)!

k! (2J + k + 1)!
Jk
+ (C.9)

since the Clebsch Gordon coefficient CJ −k+m
J m; k −k is known analytically. The remaining

spherical tensors in terms of the collective angular momentum operators can be ob-

tained in a manner analogous to deriving the eigenstates of Jz from the stretched

state using the lowering operator. Following Eq. (C.4), one can construct (k − p)th

component of a rank k tensor using p commutators as shown below

T
(k)
k−p = (−1)k 2k

π1/4

√
(2k + 1)(k − 1/2)! (2J − k)!

k! (2J + k + 1)!

√
(2k − p)!
(p)!(2k)!

[J−, [J−, ..., [J−, J
k
+]...]].

(C.10)

111



APPENDIX C. BEYOND MEAN FIELD LIMIT

Replacing J− → xJ− in the above expression so that the algebraic power of x keeps

track of the number of commutators involved, we have

T
(k)
k−p = (−1)k 2k

π1/4

√
(2k + 1)(k − 1/2)! (2J − k)!

k! (2J + k + 1)!

√
(2k − p)! p!

(2k)!
(C.11)

(
ex adJ−T

(k)
k

)∣∣∣∣
xpcomponent

(C.12)

where adJ−O ≡ [J−, O] for an operator O. Using the Baker-Hausdorff lemma [SN14]

in the above equation, we obtain

T
(k)
−k+p = (−1)kγ(J, k, p)

(
ex J−Jk

+e
−x J−

)∣∣∣∣
xpcomponent

= (−1)kγ(J, k, p)
(
ex J−J+e

−x J−
)k∣∣∣∣

xpcomponent
,

(C.13)

where γ(J, k, p) = 2k
√

(2k+1)(k−1/2)!(2J−k)!√
πk!(2J+k+1)!

√
(2k−p)!(p)!

(2k)!
. Simplifying the above expres-

sion further, we have

T
(k)
k−p = γ(J, k, p)

(
−J+ + 2xJz + x2J−

)k∣∣∣∣
xpcomponent

(C.14)

The above formula allows us to obtain arbitrary spherical tensor in terms of col-

lective spin operators from the expansion of
(
−J+ + 2xJz + x2J−

)k. For instance,

the following code in Mathematica software will produce all the spherical tensors

mentioned in Table (C.1) using Eq. (C.13).

Clear["Global`*"]

Needs["Quantum`Notation`"];
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SetQuantumAliases[];

SetQuantumObject[SubPlus[J], SubMinus[J], Subscript[J, z]];

a=(2 k +1) (k - 1/2)! (2 j - k)!;

b=Sqrt[\Pi] k! (2 j + k + 1)!;

\[Gamma][j_, k_, p_] := 2^{k} Sqrt[a/b] Sqrt[((2 k - p)! p!)/(2 k)!];

t[j_, k_, q_] := FunctionExpand[\[Gamma][j, k, k - q]] Coefficient[

(-SubPlus[J] + 2 x Subscript[J, z] + x^2 SubMinus[J])^k,x, k - q];

Do[Do[ Print["T(k=", k, ",q=", q, ")=", t[j, k, q]], {q, k, -k, -1}],

{k, 1, 3}]

C.2 Beyond Mean-Field Limit Using Spherical Tensor Formalism

Consider the rotated version of the LMG Hamiltonian mentioned in Eq.(2.27), which

is given by

H = −(1− s)Jx −
s

2J
J2
z = −(1− s)

2
(J+ + J−)−

s

2J
J2
z (C.15)

The Heisenberg equations of motion associated with the LMG Hamiltonian for an

arbitrary spherical tensor is given by

d

dt
⟨T (k)

q ⟩ = −i
1− s
2

(〈
[J+, T

k
q ]
〉
+
〈
[J−, T

k
q ]
〉)
− i s

2J

〈
[J2

z , T
k
q ]
〉

(C.16)

The commutator relation in Eq. (C.3) allows the simplification of the first two

terms in the above equation. Using Eq. (C.2), the third term can be rewritten
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T
(1)
0 =

√
3 1√

J(J+1)(2J+1)
Jz

T
(1)
1 = −

√
3
2

1√
J(J+1)(2J+1)

J+

T
(1)
−1 =

√
3
2

1√
J(J+1)(2J+1)

J−

T
(2)
0 =

√
5
2

1√
J(J+1)(2J+1)(2J−1)(2J+3)

(4J2
z − J+J− − J−J+)

T
(2)
1 = −

√
15
2

1√
J(J+1)(2J+1)(2J−1)(2J+3)

(JzJ+ + J+Jz)

T
(2)
−1 =

√
15
2

1√
J(J+1)(2J+1)(2J−1)(2J+3)

(JzJ− + J−Jz)

T
(2)
2 =

√
15
2

1√
J(J+1)(2J+1)(2J−1)(2J+3)

J2
+

T
(2)
−2 =

√
15
2

1√
J(J+1)(2J+1)(2J−1)(2J+3)

J2
−

T
(3)
0 =

√
7
4

1√
J(J+1)(2J+1)(2J−1)(2J+3)(J+2)(J−1)

(4J3
z−JzJ+J−−J+JzJ−−JzJ−J+−

J−JzJ+ − J+J−Jz − J−J+Jz)

T
(3)
1 = 1

2

√
7
3

1√
J(J+1)(2J+1)(2J−1)(2J+3)(J+2)(J−1)

(J2
+J−+J−J

2
++J+J−J+−4J2

zJ+−

4J+J
2
z − 4JzJ+Jz)

T
(3)
−1 = −1

2

√
7
3

1√
J(J+1)(2J+1)(2J−1)(2J+3)(J+2)(J−1)

(J2
−J+ + J+J

2
− + J−J+J− −

4J2
zJ− − 4J−J

2
z − 4JzJ−Jz)

T
(3)
2 =

√
35
6

1√
J(J+1)(2J+1)(2J−1)(2J+3)(J+2)(J−1)

(J2
+Jz + JzJ

2
+ + J+JzJ+)

T
(3)
−2 =

√
35
6

1√
J(J+1)(2J+1)(2J−1)(2J+3)(J+2)(J−1)

(J2
−Jz + JzJ

2
− + J−JzJ−)

T
(3)
3 = −

√
35
4

1√
J(J+1)(2J+1)(2J−1)(2J+3)(J+2)(J−1)

J3
+

T
(3)
−3 =

√
35
4

1√
J(J+1)(2J+1)(2J−1)(2J+3)(J+2)(J−1)

J3
−

Table C.1: The above table contains the spherical tensor operators of rank 1, 2 and 3 obtained
from Eq. (C.13) 114
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as [J2
z , T

k
q ] = q

{
Jz, T

k
q

}
= qα

(1)
0

{
T

(1)
0 , T

(k)
q

}
. The anticommutator can be evaluated

using the following formula

{T (k1)
q1 , T

(k2)
q2 } = (−1)2J

√
(2k1 + 1)(2k2 + 1)

k1+k2∑
λ=|k1−k2|

⟨k1q1, k2q2|λ, q1 + q2⟩

(
(−1)k1+k2 + (−1)λ

){k1 k2 λ

J J J

}
T

(λ)
q1+q2 ,

(C.17)

Hence, Eq. (C.15) can be written as

d

dt
⟨T (k)

q ⟩ = −i
1− s
2

(√
k(k + 1)− q(q + 1)

〈
T k
q+1

〉
+
√
k(k + 1)− q(q − 1)

〈
T k
q−1

〉)
− i qs

2J
(−1)2J

(
ck+1,q

〈
T k+1
q

〉
+ ck,q

〈
T k−1
q

〉)
(C.18)

where ck,q =
√

(k2−q2)(2J+k+1)(2J−k+1)
(2k+1)(2k−1)

. Evaluating the above expression for rank-1

tensors, one obtains the equations of motion for the collective angular spin momentum

operators (Jx, Jy, Jz). As expected, these equations will be coupled to rank-2 tensor

operators, which are second-degree polynomials in collective spin operators, and the

equations for rank-2 tensor operators will be coupled to higher rank tensor operators.

Notice that Eq. (C.17) provides an explicit expression for all the equations of motion

required to study the system. The final step in the cumulant expansion method

involves ignoring higher-order correlations by setting appropriate cumulants to zero.

We study this issue by explicitly analyzing two special cases.
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C.2.1 Mean-field Limit

Writing out the equations of motion for rank-1 tensor operators using Eq. (C.17), we

obtain

d

dt
⟨T (1)

1 ⟩ = −i
1− s√

2
⟨T (1)

0 ⟩ − i
s

2J

√
(2J + 3)(2J − 1)

5
⟨T (2)

1 ⟩

d

dt
⟨T (1)

0 ⟩ = −i
1− s√

2

(
⟨T (1)

0 ⟩+ ⟨T
(1)
−1 ⟩

)
d

dt
⟨T (1)

−1 ⟩ = −i
1− s√

2
⟨T (1)

0 ⟩+ i
s

2J

√
(2J + 3)(2J − 1)

5
⟨T (2)

−1 ⟩

(C.19)

The above set of equations are equivalent to equations of motion shown in Eq.

(2.42). However, note the variables
(
⟨T (1)

1 ⟩, ⟨T
(1)
−1 ⟩

)
in the above equations are com-

plex. Therefore, the equation associated with ⟨T (1)
−1 ⟩ can be obtained by taking

complex conjugate of the equation associated with ⟨T (1)
1 ⟩ and using the property

⟨T (k)
q ⟩∗ = (−1)q⟨T (k)

−q ⟩. Therefore, we will ignore all the equations associated with

tensor operators that have negative values of q. Now, focusing on T
(2)
1 , which is

the relevant operator in Eq (C.18), and setting the second-order cumulant to zero

(⟨AB⟩ = ⟨A⟩⟨B⟩), we have

⟨T (2)
1 ⟩ = −

√
20

3

√
J(J + 1)(2J + 1)

(2J − 1)(2J + 3)
⟨T (1)

0 ⟩⟨T
(1)
1 ⟩ (C.20)
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Hence, we have the following closed set of equations in the mean-field limit (equivalent

to Eq. (2.41))

d

dt
⟨T (1)

1 ⟩ = −i
1− s√

2
⟨T (1)

0 ⟩+ is

√
(J + 1)(2J + 1)

3J
⟨T (1)

0 ⟩⟨T
(1)
1 ⟩

d

dt
⟨T (1)

0 ⟩ = −i
1− s√

2

(
⟨T (1)

1 ⟩+ ⟨T
(1)
−1 ⟩

) (C.21)

C.2.2 Gaussian Limit

In this case, we set third-order cumulants to zero, which leads to approximating third-

order correlations in terms of lower-order correlation functions, and ignoring fourth

and higher order correlations. The equations of motion now include five (rank-2 tensor

operators) additional equations as shown below

d

dt
⟨T (2)

2 ⟩ = −i(1− s)⟨T
(2)
1 ⟩ − i

s

J

√
2(2J + 4)(2J − 2)

7
⟨T (3)

2 ⟩

d

dt
⟨T (2)

1 ⟩ = −i
(1− s)

2

(√
6⟨T (2)

0 ⟩+ 2⟨T (2)
2 ⟩

)
− i s

2J

(√
2(2J + 3)(2J − 1)

5
⟨T (1)

1 ⟩+
√

16(2J + 4)(2J − 2)

35
⟨T (3)

1 ⟩
)

d

dt
⟨T (2)

0 ⟩ = −i
(1− s)

2

√
6

(
⟨T (2)

1 ⟩+ ⟨T
(2)
−1 ⟩

)
d

dt
⟨T (1)

1 ⟩ = −i
1− s√

2
⟨T (1)

0 ⟩ − i
s

2J

√
(2J + 3)(2J − 1)

5
⟨T (2)

1 ⟩

d

dt
⟨T (1)

0 ⟩ = −i
1− s√

2

(
⟨T (1)

0 ⟩+ ⟨T
(1)
−1 ⟩

)

(C.22)

By setting third order cumulants to 0, we will have a closed set of equations containing

8 differential equations. This results in the following approximations for 3rd-rank
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tensor operators,

⟨T (3)
2 ⟩ =

α
(3)
2

α
(2)
2 α

(2)
0

3⟨T (2)
2 ⟩⟨T

(1)
0 ⟩ −

α
(3)
2

α
(1)
1 α

(2)
1

3⟨T (2)
1 ⟩⟨T

(1)
1 ⟩ −

α
(3)
2

α
(1)
0 (α

(1)
1 )2

6⟨T (1)
0 ⟩

(
⟨T (1)

1 ⟩
)2

⟨T (3)
1 ⟩ =

α
(3)
1

α
(1)
−1α

(2)
2

3⟨T (2)
2 ⟩⟨T

(1)
−1 ⟩ −

α
(3)
1

α
(2)
0 α

(2)
1

3⟨T (2)
0 ⟩⟨T

(1)
1 ⟩ −

α
(3)
1

α
(1)
0 α

(2)
1

12⟨T (1)
0 ⟩⟨T

(2)
1 ⟩

− α
(3)
1

α
(1)
−1

(
α
(1)
1

)26⟨T (1)
−1 ⟩

(
⟨T (1)

1 ⟩
)2

+
α
(3)
1

α
(1)
1

(
α
(0)
1

)224⟨T (1)
1 ⟩

(
⟨T (1)

0 ⟩
)2

(C.23)

where α(k)
q is the appropriate normalization constant for the spherical tensor T (k)

q .

Notice that in this cumulant expansion method, where we approximate a higher

rank tensor operator (associated with higher-order correlations) in terms of lower

rank tensor operators (lower-order correlations), a particular pattern emerges. The

terms in the approximation of ⟨T (k)
q ⟩ include sum over all the terms, where each

term has product of expectation values of lower-rank tensors such that sum of ranks

(superscripts) and sum of the components (subscripts) involved in the product equal k

and q respectively. For instance, approximating ⟨T (k)
q ⟩ by setting kth-order cumulants

to zero leads to an approximation that allows ⟨T (k)
q ⟩ to be written as

⟨T (k)
q ⟩ =

∑
k1+k2+...+kl=k
q1+q2+...+ql=q

α(k1,...,kl)
q1,...,ql

⟨T (k1)
q1
⟩⟨T (k2)

q2
⟩...⟨T (kl)

ql
⟩ (C.24)

where each term in the above summation satisfies the conditions k1+ k2+ ...+ kl = k

and q1+ q2+ ...+ ql = q. Moreover, preliminary analysis suggests that the coefficients

α
(k1,...,kl)
q1,...,ql also be predicted using combinatorics. All of this analysis suggests that a

closed-form expression can be written for approximating higher-order correlation func-
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tions in terms of lower-order correlation functions using the cumulant approximation

method when the spherical-tensor framework is used.

In summary, cumulant approximation method involves two important steps. The

first step is to write down all the differential equations that couple lower-order mo-

ments to higher-order moments. The second step involves approximating higher-order

correlations, say kth-order correlations, in terms of lower-order correlation functions

after deciding that kth and higher-order correlations will be ignored. In this Ap-

pendix, we have shown that a closed-form expression can be written for all the equa-

tions of motion in a straightforward manner, provided they are expressed in terms

of spherical tensors. Moreover, we have also derived an expression for the generating

function of spherical tensors in terms of the collective spin operators. Then, we have

also suggested, based on our preliminary analysis, that approximating higher-order

correlation functions in terms of lower-order correlation functions has a closed-form

expression. This makes the spherical-tensor framework more amenable to theoretical

analysis.

Finally, it needs to be pointed out that the closed set of differential equations

obtained from this approximation method might not necessarily be stable. Therefore,

even if one obtains the closed set of differential equations using cumulant expansion

method, the solution might be unstable in the long-time limit. Hence, it is interesting

in future to explore and identify if there exists any relationship between the kind of

Hamiltonians that leads to stable differential equations and the physical properties

of such Hamiltonians.
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