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Observed and Projected Snowmelt Runoff in the Rio Grande 

Headwaters in a Changing Climate 

 

by Nels Bjarke 

 

B.S., Earth and Planetary Science, University of New Mexico, 2014 

 

ABSTRACT 

As climate has warmed over the past half century, the strength of the covariance between 

interannual snowpack and streamflow anomalies in the Rio Grande headwaters has decreased. 

This change has caused an amplification of errors in seasonal streamflow forecasts using 

traditional statistical forecasting methods, based on the diminishing correlation between peak 

snow water equivalent (SWE) and subsequent snowmelt runoff. Therefore, at a time when water 

resources in south-western North America are becoming scarcer, water supply forecasters need to 

develop prediction schemes that account for the dynamic nature of the relationship between 

precipitation, temperature, snowpack and streamflow. We quantify temporal changes in statistical 

predictive models of streamflow in the upper Rio Grande basin using observed data, and interpret 

the results in terms of processes that control runoff season discharge. We then compare these 

observed changes to corresponding statistics in downscaled global climate models (GCMs), to 

gain insight into which GCMs most appropriately replicate the dynamics of interannual 

streamflow variability represented by the hydro-climate parameters in the headwaters of the Rio 

Grande. We quantify how the correlations among temperature, precipitation, SWE, and 
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streamflow have changed over the last half century within the local climatic and hydrological 

system. We then assess different long-term GCM-based streamflow projections by their ability to 

reproduce observed relationships between climate and streamflow, and thereby better constrain 

projections of future flows as climate warms in the 21st century. In the Rio Grande system, we 

find that spring season precipitation increasingly contributes to the variability of runoff generation 

as the contribution of snowpack declines.
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1. Introduction 1 

Regional climate trends in southwestern North America are observed and projected to follow the 2 

global trend of warming temperatures, which will have a significant impact on the hydrological 3 

system that supplies water to millions who live along the Rio Grande and beyond. As the climate 4 

warms, snowpack extent and volume across western North America are projected to decrease in 5 

magnitude (Mote et al., 2006), which has been shown in the observed record (Chavarria & 6 

Gutzler, 2018) in conjunction with a shift towards earlier maximum snowmelt runoff (Cayan et 7 

al., 2001; Stewart, 2009). In addition to these effects, warmer temperatures necessarily imply that 8 

more of the annual precipitation in the southwest will fall as rain rather than snow (Knowles, 9 

2006; Barnett et al., 2008). This shift can be problematic for water supply forecasters and water 10 

managers, as historically, snow volume has been highly correlated with streamflow while liquid 11 

precipitation only offers a moderate correlation (Chavarria & Gutzler, 2018). Within the context 12 

of the Rio Grande watershed, a decrease in long-term seasonal forecast certainty and water 13 

availability, combined with increasing water demands, could have serious economic consequences 14 

for those who depend on the annual water supply. 15 

 16 

Despite the projected decrease in snowmelt derived runoff, a significant long-term decrease in the 17 

overall streamflow of the Rio Grande has not been observed in recent decades. This is primarily 18 

due to a masking effect from an increase in the input from spring precipitation as snowpack 19 

declines (Chavarria & Gutzler, 2018). Unfortunately for water managers, as spring precipitation 20 

becomes more important to streamflow forecasting, predictions of runoff volumes become less 21 

certain due to the high variability and low predictability of the precipitation input. Compounding 22 
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this uncertainty is the uncertain role that temperature will play as a predictor of streamflow 23 

(Lehner et al., 2017b). 24 

 25 

Though the short observational record introduces significant analysis uncertainty associated with 26 

interannual variability (Deser et al., 2012), there are physical processes that support the 27 

conclusion that snowpack has more variable contribution to streamflow under regional warming 28 

conditions. Earlier peak snowpack timing (Mote et al., 2006), shorter ablation season (Hurd & 29 

Coonrod, 2012), and increased sublimation off the snowpack are possible contributors to the 30 

reduction of the natural snowpack reservoir in the Rio Grande headwaters. Dust on snow 31 

processes have also been attributed to the decline in the duration of snowpack in the southwest 32 

US (Painter et al., 2007; Livneh et al., 2015). All of these physical processes are captured 33 

implicitly in statistical streamflow forecast methods, so it is not the aim of this study to directly 34 

address the specific driver(s) of the decline in the strength of the snowpack-runoff relationship. 35 

Instead, we seek to form a broader assessment of the impact that an observed warming trend is 36 

having on the seasonal predictability of the Rio Grande snowmelt driven runoff system within the 37 

observed record and compare that assessment to published model projections. 38 

 39 

Previous studies on the snowmelt driven river systems in the southwest have applied temperature 40 

as both a direct predictive tool for seasonal streamflow forecasts (Lehner et al., 2017b) and a 41 

first-order predictor for projected trends in streamflow decline through the 21st century (Udall & 42 

Overpeck, 2017). This study critically examines the direct application of temperature as a seasonal 43 

predictor of streamflow by using calculations of the evolving correlations between streamflow, 44 

snowpack, spring precipitation and temperature in the Rio Grande headwater region within the 45 
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last half-century. In particular, we anchor out analysis of runoff using snowpack, which is known 46 

from previous work to be the first-order generator of streamflow in the major rivers of southwest 47 

North America (Garen, 1992). We test the efficacy of temperature, snowpack, and spring 48 

precipitation as prediction parameters for seasonal streamflow using a statistical framework to 49 

show how the hydrological system is changing within the context of a warming climate. 50 

 51 

Our goal is to constrain uncertainty in projections of future flows as climate warms in the 21st 52 

century. We document the multidecadal changes in covariate relationships between interannual 53 

fluctuations of climate variables and streamflow in historical observations. We then assess model 54 

performance based on the ability of individual models to reproduce trends in changing correlations 55 

between snowpack, temperature, spring precipitation, and streamflow observed in the historical 56 

data. Observationally consistent models are defined from this assessment. The subset of model 57 

projections that are defined as observationally consistent is shown to exhibit less spread in 58 

projected streamflow through the 21st century than the full ensemble of model projections that we 59 

consider. 60 

 61 

We also interpret our results to assess the changing contribution of climate parameters to runoff 62 

season streamflow within in the context of temperature and precipitation in the Rio Grande 63 

headwater region. This allows us to determine the cause of deficiencies in seasonal water supply 64 

outlooks that rely on stationary relationships between climate parameters and streamflow. 65 

 66 

2. Data Sources 67 

2.1 Historical Data 68 
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2.1.1 Snowpack. Snowpack is quantified as snow water equivalent (SWE) taken from the 69 

National Resources Conservation Service (NRCS) snow course dataset (https : 70 

//wcc.sc.egov.usda.gov/nwcc/rgrpt?report = snowcourse). April 1st SWE (SWEA) values are used 71 

in this study to represent maximum snowpack depth in the Rio Grande headwaters, which has 72 

been shown to be the case historically (Chavarria & Gutzler, 2018). 73 

 74 

The earliest continuous record of SWE from the snow course data begins in 1951, hence the 75 

period of record for this analysis begins in 1951. The extended length of the snow-course data set 76 

relative to SNOTEL is preferable here for its usefulness in understanding the longer-term 77 

dynamics of the hydrological system within the context of anthropogenic climate change. It should 78 

be noted that SWE values obtained from snow-course data are lower in magnitude than SWE 79 

values obtained from SNOTEL datasets due to lower elevation of snow-course measurement sites 80 

(Chavarria & Gutzler, 2018). However, because SNOTEL and snow-course data show similar 81 

interannual variability, and this study relies on methods that examine covariate relationships of 82 

climate parameters, this discrepancy in snow magnitude should not be not be problematic unless 83 

decline in snowcourse SWEA is unrepresentative of higher elevation snowpack.  84 

 85 

As regional temperatures increase, it could prove effective to implement a more dynamic 86 

approach to classification of maximum snowpack by considering March SWE as maximum snow 87 

depth for later time periods in order to capture the shift towards earlier snowmelt timing (Cayan 88 

et al., 2001; Stewart, 2009). However, in this study we found that accounting for the possible 89 

shift towards earlier maximum snowpack yielded no significantly different results than considering 90 

April SWE as maximum snowpack for the whole observed record within the framework of this 91 
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analysis. We therefore use 1 April SWE (SWEA) exclusively in the analysis, and interpret SWEA 92 

as the annual metric of peak snowpack in the Rio Grande headwaters basin.  93 

 94 

2.1.2 Streamflow. Daily mean discharge rates measured at the Del Norte streamgauge were taken 95 

from the National Water Information System (NWIS) run by the United States Geological Survey 96 

(USGS) (https//waterdata.usgs.gov/nwis/inventory/?site no = 08220000). The Del Norte 97 

streamgauge was chosen in this study due to its location upstream from major population centers 98 

or agricultural diversions, which allows us to ignore the anthropogenic effects of water 99 

withdrawal or diversion from the Rio Grande (Mix et al., 2012; Chavarria & Gutzler, 2018; 100 

Blythe & Schmidt, 2018). Average daily discharge rates from 1951-2015 were converted into 101 

total monthly discharge values by first converting the daily mean flow rate to a total volume of 102 

water for each day. Then, total volume for each day of a month is added to arrive at a total sum 103 

for monthly water volume discharge. This allows us to relate the depth of snow and liquid 104 

precipitation to the volume of discharge that flows past the Del Norte gauge. 105 

 106 

Monthly total values of discharge are summed into annual runoff season values. The runoff season 107 

in this study is defined as April-June, so the total monthly discharges for these months are added 108 

together to create a data set of total annual runoff season discharge (QRO) from 1951-2015. Other 109 

classifications of the runoff season were considered such as March-June and April-July, however 110 

March 1st snowpack did not fully capture the extent of the maximum annual snowpack and 111 

monsoonal rains in mid-late July confounded interpretation of QRO as derived from snowmelt. 112 
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2.1.3 Temperature and Precipitation. In order to capture the temperature and precipitation 113 

across the entire Rio Grande Headwater region (Figure 1b), values were obtained from Oregon 114 

State's WestMap PRISM dataset over the area of study. PRISM data are particularly useful for 115 

this study due to their spatial interpolation of precipitation and temperature using observed point 116 

measurements across a high elevation region where a comprehensive data coverage is not readily 117 

available (Daly, 2008). Monthly average max temperature and monthly total precipitation are 118 

obtained from PRISM and are converted into seasonal values. Winter season is denoted here as 119 

December-March (TWI,PWI) and the spring season is denoted as April-June (TSP,PSP), such that 120 

SWEA represents snowpack following the winter season and prior to the spring season. The spring 121 

season is particularly useful for this study as it allows us to observe the increasingly impactful 122 

runoff season precipitation (Chavarria & Gutzler, 2018) and the usefulness of temperature as a 123 

seasonal predictor for discharge (Lehner et al., 2018). 124 

https : //cefa.dri.edu/Westmap/Westmap home.php?page = timeseries.php 125 

2.2 Climate Model Output. 126 

2.2.1 Historical and Projected GCM Output. Simulated climate data are obtained from the 127 

Bureau of Reclamation (BOR) published bias-corrected spatially-disaggregated (BCSD) CMIP5 128 

model ensemble output (Reclamation, 2013). This global climate model (GCM) output set is 129 

produced by using statistical spatial disaggregation methods to increase the spatial resolution of 130 

output from the CMIP5 ensemble to 1/8th degree square grid cells. Precipitation and temperature 131 

output from individual GCMs are bias-corrected in order to allow for comparison to historical 132 

values (Reclamation, 2013). Access to this publicly available dataset and explanation of methods 133 
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used in its generation can be found at: https : //gdo − dcp.ucllnl.org/downscaled cmip 134 

projections/dcpInterface.html 135 

Spatial extent of the GCM output is chosen by selecting the location of Del Norte streamgauge as 136 

the pour point for streamflow, and all grid cells in which precipitation falls into the upstream 137 

watershed and thereby contributes to streamflow at Del Norte are considered here. Streamflow is 138 

produced in the BOR projections by feeding the precipitation and temperature output from each 139 

individual GCM into the Variable Infiltration Capacity (VIC) land-surface model (Reclamation, 140 

2014). Monthly values of projected climate parameters are aggregated into annual values of total 141 

seasonal discharge, total seasonal precipitation, and mean seasonal temperature for purposes of 142 

comparing historical observations to climate model projection data. April 1st SWE is also used to 143 

represent maximum snowpack for the model projections for comparison of the retrospective 144 

model simulations to the historical observations. 145 

 146 

3. Methods 147 

3.1 Historical Observation Analysis  148 

3.1.1 Correlations. The initial step for understanding how streamflow is modulated by the 149 

different climate parameters is to systematically calculate the covariate relationships between 150 

interannual fluctuations of SWE, precipitation, temperature, and streamflow. We identify two 151 

different time periods for this approach: an early time period (1951-1983) which represents 152 

climate minimally impacted by anthropogenic climate change and a late time period (1983-2015) 153 

which represents climate more significantly impacted by anthropogenic climate change (Chavarria 154 

& Gutzler, 2018). We generate a correlation table for each time period by calculating the Pearson 155 
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correlation between interannual fluctuations of each pair of parameters for a given period. This 156 

allows us to quantify covariation between individual parameters and, by comparing the results 157 

from the two time periods, understand how those covariate relationships have changed between 158 

early and late periods in the observed record. 159 

 160 

3.1.2 Step-Wise Linear Regression Models. We implement statistical models for the two 161 

different time periods using a step-wise approach for the purpose of assessing the predictive utility 162 

of individual parameters to account for interannual variability of streamflow, and to clarify mutual 163 

correlation effects on the interannual variability of streamflow. SWEA is used as the first order 164 

predictor for all cases in this method, as it is shown to have the highest direct correlation with 165 

runoff season discharge for all observational times periods (Garen, 1992) and is directly physically 166 

related to the subsequent QRO. Second and third order predictors are added to the models in 167 

varied sequences in order to understand how much interannual streamflow variability can be 168 

attributed to parameters individually, after the contribution of snowpack has been accounted for. 169 

This method is performed as follows: 170 

1. Each model is trained on total runoff season discharge for each year in the given time 171 

period using a linear regression with SWEA for each year to produce derived linear coefficients. 172 

2. SWEA values for each year are multiplied by the linear regression coefficients derived in 173 

step 1 to produce a linear hindcast of QRO based only on SWEA values. 174 

3. A vector of residuals is produced by subtracting the hindcasted streamflow produced in 175 

step 2 from the observed QRO for each year. 176 
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4. The next set of linear models is trained on the vector of residuals produced in step 3 using 177 

a linear regression with either PSP or TSP. 178 

5. Either PSP or TSP values (whichever is used in step 4) is multiplied by the linear coefficients 179 

derived in step 4 to produce a linear hindcast of the residuals based on whichever climate 180 

parameter was used in this step. 181 

6. Steps 3-5 are repeated for the parameter not selected for use in steps 4 & 5. 182 

A schematic summary of the order of the steps of the regression models is shown below. The 183 

third column only shows two steps as a bivariate approach to the addition of spring precipitation 184 

and temperature is applied here. The bivariate method is used to observe how the results would 185 

change if no order preference is given to either precipitation or temperature. The results of the 186 

step-wise linear regression models give us insight into the contribution of predictive climate 187 

parameters to QRO for all time periods considered. We are able to understand the contribution of 188 

correlated climate parameters to QRO by adding parameters to the regression models in different 189 

orders and comparing the results of the prediction skill associated with different ordered models. 190 

 191 

We assess the overall performance of each statistical model and the increase in predictive skill 192 

associated with the addition of each parameter. The entire timespan (1951-2015) will be evaluated 193 

using all model formats, in addition to regression based only on the early (1951-1983) and late 194 

(1983-2015) time periods. We also examine several overlapping 30-year periods that progress 195 

1. Step1: Q = aSWE A + b Q = aSWE A + b Q = aSWE A + b 

2. Step2: Q 1 1 = cT SP + d Q 1 2 = cP SP + d Q 1 3 = cP SP + dT SP + e 

3. Step3: Q 2 1 = eP SP + f Q 2 2 = eT SP + f 
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from the early to late time period to compare how the predictive skill associated with the addition 196 

of each parameter progresses through the entire observational time period. 197 

 198 

The models described above allow us to determine the skill attributable to individual predictive 199 

parameters in seasonal streamflow hindcasts for a given (dependent) time period, but do not allow 200 

us to assess how well the models will perform when applied to different (independent) time 201 

periods. To examine how well the models perform when applied to independent time periods, we 202 

will apply the derived parameter coefficients from one time period to the data from the alternate 203 

time period and compare the results of the linear prediction of QRO to the observed historical data. 204 

This will allow us to determine biases that are present from derived parameters in the statistical 205 

models and allow us to observe shifts in parameter behavior through time. 206 

 207 

We use several metrics to analyze model skill. Root-mean-square error (RMSE) diagnoses the 208 

average annual error in streamflow prediction and the absolute error reduced with the addition of 209 

each parameter in each step. We calculate the RMSE reduction associated with the addition of 210 

each parameter after the initial SWE regression in order to compare the error reduction across all 211 

statistical models.  212 

 213 

3.2 BOR BCSD GCM Output Analysis. 214 

3.2.1 Model Projections. We first examine the BCSD output of the all GCM projections in order 215 

to observe ensemble trends and model spread. We subdivide the output into the four 216 

representative concentration pathways (RCPs) used in the CMIP5 model ensemble. Winter (Dec-217 
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Mar) and spring (Apr-Jun) temperature and precipitation, April 1st SWE, and total runoff season 218 

(Apr-Jun) discharge are all examined for each RCP. A moving-window 30-year average for each 219 

parameter is applied to all members of each RCP ensemble to observe trends in mean climatology 220 

(IPCC, 2013). We use the ensemble mean change in each parameter from the observational time 221 

period (1960-1989) to the late 21st century (2050-2079) as metric to determine long-term 222 

changes within the entire ensemble for each RCP forcing. 223 

 224 

The bias-correction applied to each GCM simulation fits the cumulative distribution function 225 

(CDF) of each parameter for each month produced by the simulation to the CDF of the same 226 

parameter in an observational dataset for each month (Reclamation, 2013). The bias correction is 227 

applied to both the retrospective simulation period (1950-1999) and the projected simulation 228 

period (2000-2099). Therefore, the spread in the projections within each RCP ensemble is 229 

associated with model spread and not a significant change in the interannual variability. 230 

 231 

3.2.2 Step-Wise Linear Regression Models. The same step-wise regression techniques 232 

developed for historical observations are applied to the BCSD CMIP5 model outputs for four 30-233 

year time periods through the end of the 21st century (1960-1989,1990-2019,2020-2049,2050-234 

2079). We compare the results of regression models applied to each member of the BCSD 235 

CMIP5 ensemble to results of regression models applied to historical observations by comparing 236 

the fraction of interannual streamflow variability associated with each climatological parameter in 237 

both historical and future epochs. 238 
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4. Changing Snowpack-Streamflow Relationships 239 

4.1 Parameter Correlations. Pearson correlations between parameters (Table 1) reveal, as 240 

expected, a significant linear relationship between SWEA and QRO in both early and late time 241 

periods analyzed. However, there is a dramatic decline in the strength of this correlation between 242 

these two periods coincident with the onset of significant warming trends over the region (Figure 243 

2). SWEA accounts for 79% of the interannual variability of runoff season discharge for years 244 

1951-1983, which decreases to 45% for the years 1983-2015. Despite this significant decrease in 245 

correlation and a downward trend in headwater snowpack over the same time period, there is no 246 

significant downward trend in total runoff season discharge in the historical observations at Del 247 

Norte (Chavarria & Gutzler, 2018). 248 

 249 

Conversely, the strength of the correlation between annual anomalies of PSP and QRO increases 250 

through the span of 1951-2015. Early time period observations show that PSP accounts for 11% of 251 

the interannual variability of QRO, which doubles to 22% for the late time period. Earlier work has 252 

noted this observed trend in the Rio Grande headwaters (Chavarria & Gutzler, 2018). We 253 

investigate further the significance of spring precipitation in the hydrological system and its 254 

relationship with spring temperature, a parameter that has been given significant attention in 255 

previous endeavors to understand climate change impacts on streamflow (Vano et al., 2014; Udall 256 

& Overpeck, 2017; Lehner et al., 2017b). 257 

 258 

A well understood feature of regional climatology, shown in Table 1, is the strong (negative) 259 

correlation between fluctuations of precipitation and temperature. We observe this relationship in 260 

the Rio Grande headwater region, which complicates the interpretation of either individual 261 
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parameter as the cause of streamflow variability within a single linear regression. The structure of 262 

the step-wise regression models used in this study allows us to understand the contribution of PSP 263 

and TSP individually to the interannual variability of QRO in the observed record. 264 

4.2 Regression Results. The significant changes in the direct contribution of predictive 265 

parameters to the interannual variability of QRO are coincident with the onset of observable 266 

warming trends in the Rio Grande headwater region (Figure 2). In the early period of the 267 

historical record (1951-1983), we observe that SWEA accounts for a large fraction (79%) of the 268 

interannual variability of streamflow at the Del Norte stream gauge (Table 2d). The addition of 269 

PSP and/or TSP in subsequent steps of the step-wise regression yields minimal and non-significant 270 

error reduction in all three of the statistical model structures. Neither PSP or TSP is significantly 271 

contributing directly to total runoff season discharge variability independent of SWEA for this time 272 

period. 273 

In the later time period, SWEA has much less predictive power. Less than half (45%) of the 274 

interannual variability of QRO can be accounted for with only SWEA as a predictor in the linear 275 

regression (Table 2e). When added as a second predictor in the step-wise structure, both PSP and 276 

TSP terms significantly reduce the error of the regression model (Step 2 in Table 2e, middle and 277 

right columns). PSP added to the model structure as a third order predictor, after SWEA and TSP, 278 

still reduces the error of the model significantly (Step 3 in Table 2e, middle column). However, 279 

when spring temperature is added as a third order predictor, after SWEA and PSP, there is no 280 

significant error reduction in the model (Step 3 in Table 2e, right column). 281 
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For both time periods, a third model structure that applies a bivariate approach to the addition of 282 

spring precipitation and temperature (not shown) yields nearly identical results to the model 283 

structure that adds predictive parameters in the stepwise order SWEA → PSP → TSP. The bivariate 284 

approach gives no priority to the weight of either PSP or TSP in the regression scheme. Nearly 285 

identical results of the bivariate approach and the SWEA → PSP → TSP ordered regression is 286 

consistent with the results of the three step regressions that imply an increasingly important role 287 

of PSP on the interannual variability of QRO, more so than the addition of TSP. 288 

4.3 Full Ensemble BCSD GCM Projections. We examine the climatic changes and uncertainty 289 

of all climate parameters considered in the historical observations in the Rio Grande headwaters 290 

basin associated with each ensemble of CMIP5 simulation, separately for each emission scenarios. 291 

We identify the climatic changes by examining the difference in the ensemble mean for each 292 

parameter between 30-year periods in the latter half of the 21st century (2050-2079), and an 293 

earlier epoch during the historical time period (1960-1989). We begin the analysis of the BCSD 294 

GCM simulations in 1960 to avoid any model spin-up effects. 295 

 296 

When examining the ensemble mean of the entire ensemble for each emission scenario of the 297 

BCSD GCM output, we see that there is significant dependence on emission scenario through the 298 

end of the 21st century (Table 3a). For simplification of discussion, we will specifically examine 299 

the results for the lowest emission scenario (RCP2.6) and the highest emission scenario (RCP8.5) 300 

as the two end members of this analysis, with the two middle emission scenarios (RCP4.5 and 301 

RCP6.0) producing ensemble means that lie between the end member ensemble means. 302 
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We note that the 30-year means of all climate variables, with the exception of temperature, show 303 

significant sampling uncertainty when considering each entire emission scenario ensemble due to 304 

natural variability. The following is a summary of the results of Table 3a for the differences in the 305 

high and low emission scenarios: 306 

1. SWEA decreases slightly for the RCP2.6 ensemble means, and declines significantly for the 307 

RCP8.5 ensemble means. 308 

2. The RCP2.6 ensemble mean PSP increases slightly, but will be considered as no significant 309 

change due to the uncertainty associated with the mean shift (∆ = 0.14cm & σ = 0.35cm). The 310 

RCP8.5 ensemble mean PSP decreases significantly (∼ 5%) through the end of the 21st century. 311 

3. The TSP RCP2.6 and RCP8.5 ensemble means increase by ∼ 1°C and ∼ 2°C respectively 312 

by the latter half of the 21st century. 313 

4. The RCP2.6 ensemble mean QRO increases slightly and the RCP8.5 ensemble mean QRO 314 

decreases slightly. However, significant uncertainty associated with all of the emission scenario 315 

ensembles reduces our confidence to assert significant change in QRO for any emission scenario. 316 

 317 

We examine the dependence of a mean shift in QRO on changes in mean PSP, SWEA, and TSP from 318 

the retrospective simulation period (1960-1989) to the late 21st century (2050-2079) for each 319 

simulation in the entire ensemble (Figures 4a-4c). Consistent with the contribution of climate 320 

parameters to QRO variability in the observational data, mean changes in simulated QRO are highly 321 

correlated with changes in mean PSP and SWEA, but have no significant correlation with TSP for the 322 
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entire ensemble. There is emission scenario dependence on the location of the centroid of each 323 

subset of simulations, but the linear dependence of changes in mean QRO on changes in mean 324 

SWEA and PSP is consistent for all RCP subsets. Equally, none of the RCP subsets reveal any linear 325 

dependence of mean changes QRO on mean changes of TSP. 326 

5. Selection of Observationally Consistent Models 327 

5.1 Selection Metrics. The comparison of parameter contribution to QRO in the BCSD models 328 

within the observational time period allows us to determine which models are effectively 329 

reproducing the trends in parameter contribution to QRO in observational data over the historical 330 

period. 331 

 332 

In order to select Observationally Consistent Models (OCMs), models that most effectively 333 

simulate the evolving climate-hydrology relationship with reference to observations, we generate 334 

metrics based on results from the step-wise linear regression models applied to the observational 335 

data. By selecting models that are consistent with observational trends in parameter contribution 336 

to streamflow variability in the historical time period, we are potentially able to reduce uncertainty 337 

in projections of streamflow through the end of the 21st century that arises from significant model 338 

spread in the entire ensemble. 339 

 340 

The selection of OCMs is based on a set of criteria derived from observed trends in parameter 341 

skill that result from the step-wise regression models applied to the historical data. We define the 342 

criteria for the selection of OCMs as follows: 343 

 344 
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Criterion 1: Is a majority of the interannual variability of QRO attributed to SWEA during 345 

the early period (1960-1989) of the retrospective simulation? A fraction of the interannual 346 

variability of QRO attributed to SWEA (r
2 > 0.6) determined by r2(QRO,SWEA) resultant from the 347 

first step of the step-wise regression models during the early time period (1960-1989) of the 348 

retrospective simulation. 349 

Historical r2(QRO,SWEA) = 0.79 350 

Criterion 2: Does the fraction of interannual variability of QRO attributed to SWEA decrease 351 

between the two periods of the retrospective simulation? A decrease of (r2 > 0.1) in the 352 

fraction of interannual variability of QRO attributed to SWEA in the historical time period of the 353 

model projections determined by the ∆r2(QRO,SWEA) resultant from the first step of the step-wise 354 

regression models between the early time period (1960-1989) to the later time period (1990-355 

2019). 356 

Historical ∆r2(QRO,SWEA) = −0.34 357 

Criterion 3: Does PSP contribute a significant fraction to the interannual variability of QRO 358 

during the late period (1990-2019) of the retrospective simulation? A fraction of the 359 

interannual variability of QRO attributed to PSP(r2 > 0.1) determined by r2(Q1
RO,PSP) resultant from 360 

the second step of the step-wise regression models during the later time period (1990-2019) 361 

during the historical time period.  362 

Historical r2(Q1
RO,PSP) = 0.21 363 

 364 
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Criterion 4: Does the seasonal predictability of QRO decrease between the two periods of the 365 

retrospective simulation? A decrease of (r2 > 0) in the fraction of the interannual variability of 366 

QRO attributed to all three parameters using the bivariate approach to the addition of PSP and TSP 367 

from the early period (1960-1989) to the late period (1990-2019) of the retrospective simulations. 368 

Historical ∆r2(QRO,(SWEA,(PSP,TSP))) = −0.13 369 

We note that the selection of OCMs is based on the result of applying the step-wise regression 370 

models to individual BCSD simulations, not ensemble averages. We select individual GCM 371 

simulations as observationally consistent, and therefore there is no discrimination between 372 

different RCPs or GCMs when identifying a simulation as an OCM. 373 

 374 

Simulations from the same GCM might be observationally consistent for just a subset of the 375 

multiple RCPs for which that GCM was run due to natural variability. Equally, a subset of 376 

simulations from multiple GCMs for the same RCP can be classified as observationally consistent, 377 

while the same subset of simulations will not necessarily be classified as observationally consistent 378 

for a different RCP. 379 

Figures 3a and 3b, along with Table 4, show the results of selecting GCM simulations as OCMs 380 

based on the criteria based on the results of step-wise regression models applied to the historical 381 

observations. From the entire ensemble of 97 simulations, 14 simulations are selected as 382 

observationally consistent based on the criteria proposed. Not all of the realizations from a single 383 

GCM are selected as observationally consistent, due to the simulation of natural variability in the 384 

GCM compared to the natural variability in the observational data. Simulations that pass most, 385 
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but not all, of the criteria are highlighted in yellow in Table 4. These simulations are not 386 

considered as OCMs in the analysis that compares the OCM subset to the non-OCM subset, but 387 

are noted as a recognition of the somewhat arbitrary nature of setting a threshold to determine 388 

OCMs. 389 

5.2 Observationally Consistent Models. To examine the ability of each BCSD GCM simulation 390 

to reproduce the climatic shifts observed in the historical observations, we apply the same step-391 

wise regression methodology applied to the observational data to all simulations. Models are 392 

selected to be OCMs based on the four criteria proposed in section 5.1. 393 

 394 

We examine the OCM subset of the entire ensemble of BCSD GCMs to the models not classified 395 

as OCMs to determine differences in ensemble means and variance. Due to the small population 396 

(and associated sampling uncertainty) of OCMs within each emission scenario, it is useful to 397 

compare the OCMs for all emission scenarios to the non-OCM subset for all emission scenarios. 398 

In order to make this comparison, we compare the two subsets of GCMs using the mid-century 399 

(2020-2049) projections and retrospective simulations of the historical period (1960-1989) which 400 

will allow us to avoid the differences in diverging GCM projections (shown in Table 3a) that arise 401 

from differing emission scenarios in later decades (IPCC, 2013). 402 

 403 

The following is a summary of the results of Table 3c and Figure 5, the differences in the OCM 404 

and non-OCM subsets from the entire BCSD GCM ensemble through the mid-century: 405 

 406 
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1. Both the OCM subset (14 simulations) and the non-OCM subset (83 simulations) show 407 

similar width of distributions for the mean changes in all climate parameters except QRO, as 408 

represented by the standard deviation (σ) of the ensemble mean for each subset. 409 

2. Both the OCM and non-OCM subsets simulate decreased ensemble mean SWEA and PSP 410 

through the mid-century. However, the simulated decrease in the ensemble mean for the OCM 411 

subset is greater in magnitude for both parameters. 412 

3. The OCM subset simulates slightly less ensemble mean temperature increase through the 413 

mid-century compared to the non-OCM ensemble mean. 414 

4. The OCM subset simulates a significant decrease in QRO for the ensemble mean through 415 

the midcentury, with a significantly smaller distribution than the non-OCM subset, which projects 416 

an ensemble mean increase in QRO through the mid-century. 417 

For reference, we also compare the OCM subset of each emission scenario to their respective 418 

emission scenario ensemble with the acknowledgement that sampling uncertainty of the OCM 419 

subset is large compared to each emission scenario ensemble (Table 3b). For this comparison, we 420 

use the latter half of the 21st century (2050-2079) and the retrospective simulations of the 421 

historical period (1960-1989) because we individually consider the diverging emission scenario 422 

ensembles. 423 

 424 

The change in each climate parameter within the OCMs through the latter half of the 21st century 425 

is dependent on the emission scenario ensemble, as expected from the same analysis applied to the 426 

entire emission ensemble (Table 3b). Compared to each entire emission scenario ensemble, the 427 

OCM ensemble means indicate significant decreases in QRO, PSP and SWEA through the end of the 428 
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21st century. The simulations have much larger distributions due to the sampling uncertainty 429 

associated with small sample sizes of the OCM subsets for each emission scenario. 430 

 431 

We note that the comparison of changes in 30-year means of climate parameters (PSP, SWEA, and 432 

TSP) and QRO through the end of the twenty-first century in Fig. 4 is not a product of step-wise 433 

regression analysis. The linear relationships between PSP/SWEA and QRO are consistent for both 434 

the OCM-subset ensemble of simulations and the entire ensemble for each RCP. However, despite 435 

there being no significant linear relationship between changes in TSP and QRO based on all 436 

simulations for any of the RCPs, there is a significant, but weak, negative correlation between TSP 437 

and QRO for the OCM-subset of simulations (Fig. 4c). This result is consistent with the analysis of 438 

hydroclimate observations that shows a strong negative correlation between regional spring 439 

temperature and precipitation anomalies (Table 1). The linear relationship between changes in TSP 440 

and QRO for the OCM-subset through the end of the 21st century is a result of the same negative 441 

correlation between TSP and PSP and strong linear relationship between changes in PSP and QRO for 442 

the same time period. 443 

 444 

6. Discussion  445 

6.1 Trends in the Historical Observations 446 

6.1.1 SWE. The result of the decreased skill of SWEA as a first-order predictor for QRO for the Rio 447 

Grande headwaters within the observational record supports previous results that indicate the 448 

inappropriateness of the stationarity assumption in historical regression techniques used for 449 

seasonal streamflow prediction, within the context of a regional warming trend (Garen, 1992; 450 

Milly et al., 2008.; Lehner et al., 2017a). This result alone has significant implications for 451 
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operational streamflow forecasters that still primarily rely on regression techniques for the 452 

prediction of seasonal runoff (Garen, 1992). The decline in seasonal forecast skill associated with 453 

snowpack measurements will likely reduce the ability of regional water managers in the southwest 454 

to effectively plan for water management in snowmelt-dominated rivers (Chavarria & Gutzler, 455 

2018). 456 

6.1.2 Spring Precipitation and Temperature. The independent contribution of PSP and TSP to 457 

the interannual variability of streamflow in the early time period (1951-1983) of this analysis is 458 

essentially zero. During that 33-year period, SWEA is such a dominant contributor to streamflow, 459 

that there is little error to reduce in the prediction scheme with the addition of PSP and TSP. With 460 

the onset of regional warming trends and the reduction of the contribution of SWEA to the 461 

interannual variability of streamflow, we observe the increase in the independent predictive power 462 

of PSP for QRO. We also observe an increase in the predictive power of TSP as a second-order 463 

predictor of QRO, but the addition of both PSP and TSP as third-order predictors yields results that 464 

clarifies the effect of the strong negative correlation between the two parameters. 465 

The error reduction of the statistical model with the addition of PSP as both a second order and 466 

third order predictor is significant in the later time period. The addition of TSP as a second order 467 

predictor of QRO is significant during the same time period but is not significant as a third order 468 

predictor of QRO. This reveals that when PSP is accounted for in the statistical model fit to 469 

observations, TSP yields no additional predictive power, but when TSP is added to the model first, 470 

PSP is still able to offer predictive power for a significant fraction of the interannual variability of 471 

QRO. 472 
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 473 

We interpret these results to show the increasing importance of spring precipitation as a 474 

contributor to the interannual variability of runoff season discharge, within the context of 475 

significant regional snowpack decline. There is little evidence of direct contribution of springtime 476 

temperatures on QRO through evapotranspiration processes, independent of precipitation 477 

variability. For small-scale, small-magnitude climate change, separating the effects of precipitation 478 

and temperature on streamflow can inform interpretation of climate model output (Vano et al., 479 

2014). However, our results indicate that for larger, basin-scale climate change, precipitation and 480 

temperature cannot be treated as independent variables affecting streamflow separately (Lehner et 481 

al., 2017b; Udall & Overpeck, 2017). 482 

The minimal contribution of temperature to QRO shown in this study challenges recent studies that 483 

have attributed declines in future streamflow in the southwestern US to direct temperature effects 484 

(Udall & Overpeck, 2017.; Lehner et al., 2017b). Applying temperature directly as a linear 485 

predictor for decline in streamflow ignores the strong negative correlation between temperature 486 

and precipitation in the region. Though there is likely skill associated with the addition of 487 

temperature as a predictor of streamflow without the addition of precipitation within a seasonal 488 

forecast framework, our results suggest that the skill associated with temperature is primarily due 489 

to snowpack decline, with residual apparent temperature effects due to the interannual correlation 490 

between temperature and precipitation.  491 

Future seasonal forecasts that would apply temperature as direct predictor for streamflow would 492 

also rely on the stationarity of the relationship between temperature and precipitation. Our 493 
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analysis find no empirical evidence that ∆QRO scales linearly with the ∆TSP in the Rio Grande 494 

headwaters as implied by previous studies of the impacts of regional warming on water resources 495 

in the southwest US. 496 

6.1.3 Seasonal Predictability. The observed decrease in seasonal forecast skill of runoff-season 497 

streamflow associated with snowpack and the increasingly important contribution of spring 498 

precipitation presents a serious problem for water managers. Methods that would increase 499 

seasonal predictability of precipitation, particularly in the spring/summer seasons, will play a 500 

critical role in the future of seasonal streamflow forecasting. There is a significant body of work 501 

that has focused on the predictability of winter precipitation in North America, primarily using El 502 

Nino Southern-Oscillation signals (Ropelewski & Halpert, 1986; Gershunov & Barnett, 1998; 503 

Deser et al., 2018), but there have not been significant advances in prediction skill for 504 

spring/summer precipitation for southwestern North America. The application of soil moisture 505 

patterns for the monthly-seasonal scale forecasts of precipitation shows some promise (Liu 2003), 506 

but there has been limited realization of increased prediction skill using soil moisture for 507 

operational use. 508 

6.2 GCM Projections 509 

6.2.1 Temperature. Projections of temperature through the end of the 21st century contain the 510 

least amount of uncertainty of all climate parameters that are considered in this study (IPCC, 511 

2013; Udall & Overpeck, 2017). Ensemble means of temperatures show steady increase through 512 

the first half of the 21st century for all emission scenarios for both spring and winter temperatures. 513 

The ensemble means of different emission scenarios begin to diverge from one another at the mid-514 

century mark, a result that is consistent with the different carbon emission goals (RCPs) diverging 515 
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at the same time (IPCC, 2013). The ’business as usual’ RCP8.5 emission scenario is closest to the 516 

path of current global emissions. The RCP8.5 emission scenario ensemble shows the most 517 

significant changes in the ensemble mean of other climate model parameters by the end of the 21st 518 

century and yields the most significant change in the hydrological system. 519 

6.2.2 Winter Precipitation and SWE. Winter precipitation shows a slight to moderate increase 520 

through the end of the 21st century for the ensemble mean of all emission scenarios in these 521 

CMIP5 simulations, while SWEA shows nearly no change in the ensemble mean for the RCP2.6 522 

emission scenario and a decrease for the RCP8.5 emission scenario. The combination of 523 

significantly warmer TWI in combination with increased PWI for RCP2.6 emission scenario yields a 524 

similar mean value of SWEA, with a smaller fraction of the total winter precipitation falling as 525 

snow. For the RCP8.5 emission scenario, the ensemble mean reduction of SWEA would indicate 526 

that an even smaller fraction of the winter precipitation is falling as snow despite the input of 527 

increased PWI. This effect, in conjunction with the previously stated physical drivers for the change 528 

in the timing and duration of the snowpack, will likely complicate further the future application of 529 

statistically driven seasonal streamflow forecasts. 530 

 531 

6.2.3 Spring Precipitation. Consistent with observations of PSP in the observational record, 532 

spring precipitation shows high interannual variability for all model projections through the 21st 533 

century. Only the RCP8.5 ensemble mean shows a significant downward trend in PSP through the 534 

end of the 21st century (Table 3a), with all other emission scenario ensembles showing no 535 

significant trend. With the shift towards an increased significance of the contribution of PSP to the 536 

interannual variability of QRO within the context of warming trends in the observed record, trends 537 
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in the projection of mean PSP significantly impact trends of projected mean QRO through the 21st 538 

century. 539 

6.2.4 Runoff. The ensemble mean projections of QRO through the end of the 21st century are 540 

consistent with the trends of the correlation of QRO with the climate parameters in the observed 541 

record. The dominant driver of changes in ensemble mean QRO is significant trends in mean PSP for 542 

each emission scenario. RCP8.5 is the only emission scenario that shows a significant downward 543 

trend in mean QRO, which coincides with a negative trend in PSP and SWEA through end of the 21st 544 

century. While snowpack is the primary physical driver of QRO, we observe a stronger positive 545 

correlation between changes in mean PSP and QRO, than SWEA and QRO. Consistent with the results 546 

of this analysis applied to the observational data, there is no significant evidence that the increase 547 

in mean TSP will directly contribute to loss of streamflow through physical processes such as 548 

evapotranspiration through the 21st century. 549 

 550 

6.3 Observationally Consistent Models. 551 

The statistically driven framework for selecting OCMs relies on metrics that are susceptible to the 552 

uncertainty associated with natural variability. However, the large spread of projections motivates 553 

a procedure to select models that best reproduce historical trends in the regional hydroclimate 554 

relationships. We propose a procedure here based on strong trends in SWEA-QRO covariance, in 555 

addition to trends in trends in the contribution of PSP to interannual QRO variability. We interpret 556 

these trends as a forced climate signal that models should reproduce if we are to have high 557 

confidence in future streamflow projections.  558 

 559 
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There is no expectation that the retrospective simulations considered here will match the natural 560 

variability in the observed record, but the BCSD models have been shown to effectively simulate 561 

climate interactions on both annual and seasonal scales (Wood et al., 2004). Though there is 562 

uncertainty associated with the downscaling method used to convert from GCM scale projections 563 

to projections useful for regional analysis, there is no expectation that any downscaling method 564 

should impact the interannual variability of projections averaged seasonally and over a large area 565 

(Gutmann et al., 2014). 566 

 567 

The downscaling technique used could significantly impact the expression of extreme events (ie. 568 

droughts, flooding) (Timmermans et al., 2018), but the spatial and temporal averaging applied to 569 

the observational data and projected model output used in this study should alleviate the problems 570 

associated with simulating extreme short-term weather. 571 

The statistical method applied here proposes a tool for assessing confidence in model-projected 572 

QRO trends. We evaluate each simulations ability to simulate historical impacts of regional 573 

warming on climate-hydrology interaction. Identifying models that successfully reproduce trends 574 

in the contribution of climate parameters to streamflow in the retrospective simulation allows for 575 

the reduction of uncertainty associated with significant model spread in future years. The OCMs 576 

selected in this application reduce the spread of models for the entire ensemble and each emission 577 

scenario. 578 

 579 

Of notable interest is the elimination of a majority of the model projections that produce increased 580 

mean streamflow through the end of the 21st century compared to the observational time period. 581 
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Reduction of confidence in the BCSD GCM projections that simulate increased mean streamflow 582 

through the end of the 21st century is of great value for long-term water management policy in 583 

the southwest. 584 

 585 

7. Conclusion 586 

7.1 Historical Observations Increase in runoff season streamflow forecast uncertainty due to the 587 

decrease in skill associated with snowpack during the last half-century poses a significant problem 588 

for the management of water resources. Furthermore, we have shown that a larger fraction of the 589 

variability of modern runoff season discharge in the Rio Grande is attributed to fluctuations in 590 

spring precipitation. It will be increasingly important for operational forecasters to develop 591 

methods for strengthening spring seasonal precipitation forecasts, both for the intrinsic 592 

importance of precipitation and as a component of surface water supply outlooks. 593 

 594 

Previous endeavors to implement seasonal temperature directly into seasonal streamflow 595 

forecasting in the southwest rely on the stationarity of the correlation between temperature and 596 

precipitation, and do not address precipitation as the direct physical contributor to streamflow 597 

variability. In addition, long-term forecasting of streamflow decline in the southwest that relies on 598 

linear scaling of streamflow with temperature ignores the strength of the regional scale correlation 599 

between temperature and precipitation. Our results suggest that long-term trends in streamflow 600 

are closely tied to trends in precipitation. The contribution of precipitation to interannual and 601 

longer fluctuations in streamflow cannot be disregarded or parameterized in terms of temperature. 602 

Regional analysis of the contribution of precipitation or temperature to the variability of 603 
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streamflow in the southwest must not ignore the strength of the relationship between the two 604 

parameters contained in the observational record. 605 

7.2 GCM Projections The ensemble of BCSD GCM projections of streamflow and precipitation 606 

for the Rio Grande headwater region contains significant uncertainty through the end of the 21st 607 

century, primarily due to the spread of simulations. We have proposed here a method of selecting 608 

observationally consistent models that simulate the observed shift in hydro-climate parameter 609 

correlations derived from the observational record during the retrospective simulation period. By 610 

selecting OCMs, we are able to reduce uncertainty associated with model spread through the mid-611 

21st century. Specifically, we find reduced confidence in simulations that produce increased mean 612 

runoff season discharge through mid-century. 613 

 614 

The ensemble mean of the subset of OCMs differentiated by emission scenario produce 615 

significantly less runoff season discharge than the entire ensemble mean for the each emission 616 

scenario through the end of the 21st century. However, small sample sizes of the OCM subsets 617 

considered here limits the reduction in uncertainty associated with simulation spread that we can 618 

realize. Further development of selecting observationally consistent models to reduce late-21st 619 

century uncertainty in streamflow projections would require a larger set of streamflow simulations 620 

derived from GCMs. 621 

622 
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