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Figure 6.4: A) structure of a 3× 3 single core-sensing chip with readout circuit B) 

Integration of data from a typical 4-core ISFET chip in Analog domain 

Using proper synchronization signal, we can readout the sensing signal from 

the four cores and add them together to pass through single channel to the external 

image grabber, shown in Figure 6.4. 

The column select and row select for each core has its own reset signal and 

can be reset as of our requirement to synchronize the readout scheme. The timing 

diagram of different signals for the readout circuit and synchronization is shown in 

Figure 6.5. We can see that, there are four data output signal, two clock signal, and 

eight reset signal. Four of the reset signals are used to reset four row select registers 

and the other four reset signals are used to reset four column select registers during 

readout and synchronization. The clock frequency for row select block is faster than 

that of the column select block. If we want to read 20 frames in each second by the 

image grabber, then for the chip with 4 cores of 90×95 pixels (each) should have row 

select clock frequency and column select clock frequency as below.  

Sample Calculation: Frequency calculation for row select, Clock 1: As time 

available for 1 frame = 1/20   sec. Therefore, time available for each pixel= 

1/20/(90*4*95) sec =1/684000 sec.  

So frequency of the clock 1 (row select) is: 0.684 MHZ 
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Similarly, Frequency calculation for column select, Clock 2 and Clock 3: Time 

available to read one row of core 1 and core 2 =1*90*90/684000 sec =9/760 sec 

So the frequency of clock 2 and clock 3 (column select) = 84.4 Hz 

As shown in Figure 6.4, the data signals differentiated in time domain with 

clock1-row, LSYNC and FSYNC are fed to the image grabber. The image of the 

sensing cell responses are then displayed at external window. As we are reading 20 

frame in each second from the chip, the image at display shows the real time response 

of the pH interaction with ISFET sensor. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Timing diagram of the readout circuit for the ISFET chip [13]. 
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Figure 6.6: DC offset Cancellation in ISFET chip by forcing null current [18] 

 

6.3 DC offset Cancellation Principles 

We introduce a dc offset cancellation process to the readout technique to 

increase the resolution from the ISFET sensor. The technique is based on forcing a 

nulling current with a particular reference point, in our case it is pH=7. In section 6.2, 

we see that the output is not proportional to the sensing current; also, the signal needs 

to overcome a large offset to provide a significant change in output. The unique 

circuit technique for noise cancellation is shown in Figure 6.6. The value of required 

null current is dependent on the bias voltage and feedback resistance, which is given 

by [18]: 

                            .                                          (6.2) 

             3.RIV OutOut    3/ RVI BiasNull   .                                     (6.3) 

 

The null current decreases as the value of feedback resistance in trans-conductance 

amplifier increases, given that the bias voltage is constant for a particular setup. 

 

33 .. RIRIVV OutNullBiasout 
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Figure 6.7: Different block for test Setup of A-ISFET sensing wire bonded chip: top 

mounted bio-chemical processing system, waveform generator, bias voltage 

generator and data processing system with image grabber [13] 

6.4 Test Setup and Hardware 

A cubic shaped, specially milled structure is used to inlet and outlet the bio-

chemical on the gate of ISFET sensors in chip as shown in figure 6.7.  The flow of 

bio-chemical with different pH from different reservoir is controlled by time-

controlled valve by the bio-chemical processing system. We can also see from the 

Figure 6.7, that the mounting arrangement of the bio-chemical processing system is 

used to release sensing materials on top of the ISFET sensing chip. Digilent waveform 

generator can be used to synchronize the readout of the pH sensing data from the chip. 

In section 6.2, we have seen the different waveforms that are needed for the readout 

of the chip and for its synchronization with the external image grabber.  

In addition, the bias voltage for the chip to generate pH to current signal for 

the readout circuit is also required. The readout circuit generates data signal - D1, D2, 

D3 and D4 from four different core of the chip. We then use an adder to add the four 

time multiplexed data signal and pass it through a single channel to the image 

grabber. The image grabber processes the sensing data, which are read by readout 
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circuit, for the external display, through the LSYNC, FSYNC and row clock signal 

(clk row). Figure 6.8, shows the actual setup that we use in lab for testing of the chip. 

 

6.5 Experimental Results 

In this section, we will present the result from the different experiment that we 

have done in the lab using this A-ISFET sensing chip. We find the chip to be fully 

functional and working as expected to operate. We test the chip both in normal region 

using nominal voltage for the CMOS process and in avalanche region with bias 

voltage near the breakdown region of the CMOS process.  

 

 

Figure 6.8: Actual lab setup for the testing of the ISFET sensing chip [13] 
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Figure 6.9: Actual test setup and wiring - implemented in lab with biochemical 

system's inlet and outlet [13] 

Based on the experimental results, it was observed that the response of the 

four different cores were in the normal operational region. The response from four 

different cores is different as the sensitivity of the unit cell in each core is of different 

dimensions and parameters. However, the good thing is that the ISFET’s are showing 

variation in response in each core and the response is in real-time as of our 

expectation and planning. Figure 6.9, shows the typical response that we have 

obtained from the ISFET chip, when operated in normal region with application of 

nominal voltage for the CMOS process. 

Figure 6.10 shows the time domain transient response of a unit cell in ISFET 

chip. We can see that the response is very quick and the response reaches its peak 

value within 1-2 seconds. Hence, the DNA sequencing can be made possible through 

this technique in real-time. 

 



88 

 

 

Figure 6.10: Transient response of a unit cell of the ISFET chip 

 

We also test the chip in the avalanche region and the output is readout through 

the trans-impedance amplifier discussed earlier for noise cancellation null-based 

reading. We then convert the output signal through a 12-bit ADC.  An example of the 

extracted image, where each pixel represents the A-ISFET signal value, is also shown 

in Figure 6.11. The center of the image is a drop of a test sample. In addition, each 

section of the image is associated to the specified core.  

The values of n-type and p-type ISFETs for various pH were measured at 

normal (VDS=2.5V) and avalanche mode (VDS=5.0V). The results are illustrated in 

Figure 6.12. As shown earlier, the avalanche multiplication significantly improves the 

sensitivity of the ISFETs. 
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Figure 6.11: The test chip in the package and with fluidics caps. We can also see a 

sample image generated by A-ISFET chip. [18]. 

 

Figure 6.12: The digital output of an ISFET as a function of pH during normal 

operation and avalanche mode of operation [18]. 
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To demonstrate the sensitivity of ISFET in avalanche mode versus its normal 

operation, one of the fabricated N-type ISFET devices with W=6μm and L=0.25μm is 

chosen among the devices in the test structure. The measured transconductance in 

normal operation as a function of VGS for various VDS is shown in Figure 6.13. The 

measured data in Figure 6.13 agrees well with the simulation data presented in [13]. 

As illustrated in Figure 6.13, the trans-conductance of ISFET in normal operation is 

maximized at 1.75mA/V when VGS=1.75V and VDS=2.5V. 

Figure 6.14 illustrates the measured trans-conductance of the same ISFET in 

Figure 6.13 but operating in avalanche mode, where the VDS are set beyond the 2.5V 

nominal voltage. This figure clearly shows the benefit of avalanche mode of operation 

to enhance the ISFET sensitivity. It also illustrates that the maximum multiplication 

gain can be achieved when VGS=0.9V. For VDS=6V the peak trans-conductance is 

10.4mA/V (multiplication gain of about 6.0), which is consistent with the SPICE 

simulation results shown in chapter 2. 

 

Figure 6.13: The measured ISFET trans-conductance under nominal voltages 

showing the maximum gm of 1.76mA/V [18]. 
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Figure 6.14: The measured ISFET trans-conductance of the same device, but 

under avalanche voltages, showing the maximum gm of 10.4 mA/V [18]. 

Although the test result shows a high multiplication gain of 6 using an ISFET 

in a standard CMOS process, with fabrication process optimization (similar to an 

APD) the multiplication gain can be further increased. 

The noise analysis will also guide us significantly in optimizing noise 

behavior of A-ISFET and help us to find an operating point that gives maximum 

signal to noise ratio (SNR). 

 

Figure 6.15: Proposed DNA sequencing system using A-ISFET chip 
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APPENDIX A 
NOISE MODEL FOR SNR SENSITIVITY OF A-ISFET 
 

clc; 
clear all; 
close all; 
  
for M=1:1:100 
  
% Multiplication factor M 
% k Boltzmann constant 
% excess noise factor F 
% keff is a function of Electric field -- E  
 
keff=0.5; 
F(M)=keff*M+(1-keff)*(2-1/M); 
  
k=1.38064852*10^(-23); %% in SI unit joule/kelvin 
T=300; 
load=10000;  
% it shapes the SNR curve by impacting overall noise . 
 
q=1.6*10^-19; 
f=20*10^6; 
Idc=0.25*1*10^(-6);  
%use for noise calculation...0.25uA current. Signal part from DC will get blocked 
gm=1.76*10^(-3);  
%at avalanche operation region.....use for noise calculation  
gamma=2/3; 
Isig=gm*18*10^(-6);  
% 18uV signal 
  
% thermal noise at Channel of ISFET 
i_t_2(M)=4*k*T*gm*gamma*f; 
  
% thermal noise from Resistance 
i_2_t_2(M)=4*k*T*f/load; 
  
% Flicker noise kf device parameter for flicker noise kf,NMOS = %2.0·10-29 AF    
  
kf=2*10^(-29); 
cox=5.3*10^(-16)/(1*10^(-6))^2; 
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W=5*10^(-6); 
L=1*10^(-6); 
  
i_1_f_2(M)=kf*f*gm^2/((cox)*W*L*f);  
  
% BW should be multiplied 
  
Ishot_2(M)=2*q*f*Idc*1*(M-1).^2*F(M);  
% SHOT noise is the limiting factor - so DC bias to a very minimum DC %current 
value %a MUST 
% Dark Current Calculation -- all dark current through pn and gets multiplied  
 
isat=15*10^(-9); 
i_d_c_2(M)=2*q*f*isat*(keff*M+(1-keff)*(2-1/M))*M.^2; 
 
signal(M)=M.^2*Isig^2;  
% noise calculation 
noise(M)=Ishot_2(M)+i_t_2(M)+i_1_f_2(M)+i_2_t_2(M)+i_d_c_2(M); 
 
figure (1); 
subplot(2,2,1), loglog(1:1:M, signal(:),'r'); 
hold on; 
subplot(2,2,1),loglog (1:1:M, noise(:),'b'); 
%figure (2); 
subplot(2,2,2),loglog (1:1:M, i_t_2(:),'r'); 
hold on; 
subplot(2,2,2), loglog (1:1:M, i_1_f_2(:),'b'); 
hold on; 
subplot(2,2,2),loglog (1:1:M, Ishot_2(:),'c*'); 
hold on; 
subplot(2,2,2),loglog (1:1:M, i_2_t_2(:),'r+'); 
hold on; 
subplot(2,2,2),loglog (1:1:M, i_d_c_2(:),'r*'); 
hold on; 
subplot(2,2,2), loglog(1:1:M, signal(:),'k*'); 
SNR(M)=signal(M)/noise(M); 
%figure (3); 
subplot(2,2,3),loglog (1:1:M, SNR(:)) 
%figure (5); 
subplot(2,2,4),plot (1:1:M, F(:)); 
  
end 
SNR' 
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APPENDIX B 
DRAIN CURRENT MODEL OF A-ISFET AT AVALANCHE 

 

close all; 
clear all; 
clc; 
  
%oxide thickness  
tox=0.10*10^-2;  
xj=0.06*10^-2; 
 
ld=0.22*(tox^1/3)*(xj^1/2);    
 
E_zero=4.1*10^5;  
 
A=42*10^5; B=12*10^5;  
alpha_zero=(A/B)*ld*E_zero*exp(-B/E_zero);  
taw=1.1;  
r_B=100; 
gamma_b=0.5;  
alpha=5e-10; 
vdsat=2.5; 
vbrek=vdsat+(ld*E_zero*(alpha_zero)^(-1/taw)); 
 
vds=2.5:0.05:5.00;  
A2=640;   
B2=0.95;   
C2=1.85;     
 
nn=length(vds); 
vgs=0.5:0.5:3; 
kk=length(vgs); 
 
for yy=1:1:kk 
     
mob(yy)=A2/[1+((vgs(yy)+0.35)/B2).^C2];  
bIds(yy)=(880e-6)*1/400*mob(yy)*(vgs(yy)-0.35)^2; 
 
    for n=1:1:nn 
        M(n)=(1-alpha_zero*(((vds(n)-vdsat)/(ld*E_zero))^taw))^-1; 
        mm(n)=alpha_zero*(((vds(n)-vdsat)/(ld*E_zero))^taw); 
        pp(n)=(vds(n)-vdsat)/(ld*E_zero); 
        bb(n)=(pp(n))^taw; 
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        cc(n)=alpha_zero*bb(n);   
        bI(yy,n)=bIds(yy)/(1-cc(n)*(1+bIds(yy)*alpha*gamma_b*r_B));  
        n=n+1 
    end 
yy=yy+1 ;  
   
end 
plot(vds(:),bI(1,:),'b') 
hold on; 
plot(vds(:),bI(2,:),'r') 
hold on; 
plot(vds(:),bI(3,:),'c') 
hold on; 
plot(vds(:),bI(4,:),'g') 
hold on; 
plot(vds(:),bI(5,:),'v') 
 

 

MOBILITY DEGRADATION MODEL 

% Mobility degradation 
A2=640;   
B2=0.95;  
C2=1.85;     
 
vgs=-0.35:0.05:3; 
kk=length(vgs); 
 
for yy=1:1:kk     
    mob(yy)=A2/[1+((vgs(yy)+0.35)/B2).^C2];         
end 
 
plot(vgs(:),mob(:)) 
 

 

 

 

 

 

 

 


