University of New Mexico

UNM Digital Repository

Mathematics and Statistics Faculty and Staff

Publications Academic Department Resources

2008

SET LINEAR ALGEBRA AND SET FUZZY LINEAR ALGEBRA

Florentin Smarandache
University of New Mexico, smarand@unm.edu

W.B. Vasantha Kandasamy

K. llanthenral

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp

b Part of the Graphics and Human Computer Interfaces Commons, Information Security Commons,
Mathematics Commons, Other Computer Sciences Commons, and the Programming Languages and
Compilers Commons

Recommended Citation

Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. llanthenral. "SET LINEAR ALGEBRA AND SET
FUZZY LINEAR ALGEBRA." (2008). https://digitalrepository.unm.edu/math_fsp/213

This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital
Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an
authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu,
Isloane@salud.unm.edu, sarahrk@unm.edu.



semigroup under the operations of V. Suppose T S, a proper
subset of S and T is also a semigroup under the same operations
of S; i.e., T a subsemigroup of S, then we call P to be a pseudo
subsemigroup subvector space over T if P is a semigroup vector
space over T.

We illustrate this situation by the following examples.

Example 2.4.53: Let

Ve a, a, a, a,
a, a, a, ag
be the semigroup under matrix addition. Let S = Z" U {0} a

semigroup under addition. V is a semigroup linear algebra over
S. Take P

a, 0 0 0)(0 O ¢, O

a, 00 0)l0 0 ¢, O
P is just a subset of V and P is not closed under matrix addition.
Take T = 2Z" U {0}, T is a subsemigroup of S. Clearly P is a

semigroup vector space over T, hence P is a subsemigroup
pseudo subvector space over T.

aieZ+u{0};1Si£8}

a,,a,,c,,c, €z’ U{O}}g V.

Example 2.4.54: Let Vs = {(Z" U {0}) [x], ie., set of all
polynomials of degree less than or equal to 5 with coefficients
from the semigroup S = Z" U {0}}. Vs is a semigroup linear
algebra over the semigroup S. Take Ps = {ax’ + bx + ¢, px’ + d,
qx*+e/a,b,c,p,d, gande € Z" U {0}}. Clearly Ps is only a
proper subset of Vs. Ps is not closed under the polynomial
addition, so Ps is not a semigroup. Take T =3Z" U {0} =S =
{Z" U {0}}. T is a semigroup under addition. Thus Ps is a
semigroup vector space over the semigroup T. Ps is the pseudo
subsemigroup vector subspace of Vs.
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An important natural question would be that will every
semigroup linear algebra have a pseudo subsemigroup vector
subspace. The answer is no. We prove this by the following
example.

Example 2.4.55: Consider the semigroup Z, [x] of all
polynomials with coefficients from the field Z, under
polynomial addition. Z, [x] is a semigroup linear algebra over
the semigroup Z,.

Take P = {all polynomials X+1,x+1,..,x"+1,ne A
P is only a proper subset of Z,[x]. P is not a closed set under
polynomial addition. P is in fact a pseudo semigroup subvector
space of Z, [x]. Now Z, has no proper subsemigroups other than
the trivial {0} semigroup. So P is not a pseudo subsemigroup
subvector space of Z,[x].

Thus we see every semigroup linear algebra need not
contain a pseudo subsemigroup vector subspace.

In fact we have a class of such semigroup linear algebras which
we state in the form of theorem.

THEOREM 2.4.1: Let Z, [x] be the collection of all polynomials
with coefficient from the prime field Z, of characteristic p. Z,[x]
is a semigroup under polynomial addition. Further Z, is also a
semigroup under addition modulo p. Z, [x] is a semigroup
linear algebra over Z, In fact Z, [x] has no subsemigroup
linear subalgebras and Z, [x] has no pseudo subsemigroup
subvector spaces.

Proof: Given Z, [x] is a semigroup linear algebra over the
semigroup Z, = {0, 1, ..., p — 1}. Clearly Z, has no
subsemigroups other than {0} and itself. So Z, [x] cannot have
any non trivial subsemigroup linear subalgebras or pseudo
subsemigroup vector subspaces. It can have only the {0} to be
both these structure over {0}.

Now in view of this we define two new algebraic structures.
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DEFINITION 2.4.13: Let V be a semigroup linear algebra over
the semigroup S. If 'V has no subsemigroup linear algebras over
subsemigroups of S then we call V to be a simple semigroup
linear algebra.

We have non trivial classes of simple semigroup linear
algebras given by the example.

Example 2.4.56: Let

ay Ay
Mixm= 4] : o la;€Z,1<i<n;i<j<m

nl nm

This is a simple semigroup linear algebra. (m=n) can also occur.
We see M., is taken only as a semigroup under matrix
addition.

Example 2.4.57: Let V=7,x ... x Z, = {(X1, ..., Xn) / Xi € Z, /
1 <1< n}, Vis a semigroup under addition. V is also a
semigroup linear algebra which is a simple semigroup linear
algebra.

In fact both these semigroup linear algebras do not contain any
proper pseudo subsemigroup subvector spaces. In view of all
these we can have the following theorem before which, we just
recall the definition of a simple semigroup. A semigroup S is S-
simple if S has no proper subsemigroups. The only trivial
subsemigroups of S being {0} or ¢ and S itself.

THEOREM 2.4.2: Let V be a semigroup. S a semigroup such that
it is S-simple. If V is a semigroup linear algebra over S then V is
a simple semigroup linear algebra over S.

Proof: Given V is a semigroup linear algebra over the
semigroup S. Also it is given the semigroup S has no proper
subsemigroups i.e., {0} and S are the only subsemigroups of S
which are trivial. So if W < V; W cannot be a subsemigroup
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linear subalgebra over any T < S, T a subsemigroup of S. Hence
the claim.

Now we proceed on to define the new notion of pseudo simple
semigroup linear algebra.

DEFINITION 2.4.14: Let V be a semigroup under addition and S
a semigroup such that V is a semigroup linear algebra over the
semigroup S. If V has no proper subset P (ZV) such that V is a
pseudo subsemigroup vector subspace over a subsemigroup, T
of S then we call V to be a pseudo simple semigroup linear
algebra.

We illustrate this situation by the following examples.

Example 2.4.58: Let V = Zs [x] be the collection of all
polynomials with coefficients from Zs, Zs a semigroup under
addition modulo 5. V is semigroup linear algebra over the
semigroup Zs. Zs has no proper subsemigroups. Hence for any
subset P of V; P cannot be a pseudo subsemigroup vector
subspace. Hence V is a pseudo simple semigroup linear algebra.

Example 2.4.59: Let
V=M = {(au)

a,eZ;; 1Si§3;1£j£5}

be a semigroup under matrix addition modulo 7, with entries
from Z;. S = Z; be the semigroup under addition modulo 7. V is
a semigroup linear algebra over Z,;. Z; has no proper
subsemigroup. So for any subset P of V, P is not a pseudo
subsemigroup vector subspace of V. So V is a pseudo simple
semigroup linear algebra over Z;.

We prove the following interesting theorem.
THEOREM 2.4.3: Let V be a semigroup, S a S-simple semigroup
i.e. S has no subsemigroups other than {0} or ¢ or S. V be the

semigroup linear algebra over S. V is a pseudo simple
semigroup linear algebra over S.

73



Proof: Given V 1is a semigroup linear algebra over the
semigroup S, where S is a S-simple semigroup, i.e., S has no
proper subsemigroups. So for any subset P of V, P cannot be a
subsemigroup algebraic structure. In particular P cannot be
subsemigroup subvector space of V. So V is a pseudo simple
semigroup linear algebra over S.

Now we proceed onto define the notion of linear transformation
of semigroup linear algebras defined over the same semigroup
S. As in case of linear algebra transformation where both the
linear algebras must be defined over the same field we see in
case of semigroup linear algebras to have a linear
transformation both of them must be defined over the same
semigroup S.

DEFINITION 2.4.15: Let V and W be any two semigroup linear
algebras defined over the same semigroup, S we say T from V to
W is a semigroup linear transformation if T(ca + f) = cT () +
TP forallc eSand o, V.

It is left, as an exercise to the reader to prove the set of all
semigroup linear transformations from V to W is a semigroup
linear algebra over S with composition of maps as the operation.

Now we give few examples of semigroup linear algebras
defined over the same semigroup S.

Example 2.4.60: Let

v {[al az)
a, a,
be the semigroup under addition of matrices. S =Z" U {0} is a
semigroup under addition. V is a semigroup linear algebra over
S=Z" U {0}.Let W={PxP/P=2 U {0}}, Wisa
semigroup under component-wise addition. W is a semigroup
linear algebra over S. Define T from V into W by

a, eZ*u{O};lSiS4}
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a, a
T([ ! 2sz(al+a2,a3-l—a4).
a, a,

T is a semigroup linear transformation of V to W.

Example 2.4.61: Let V and W be as in example 2.4.60. Define
T, from W into V by

Ty (x, y)=(x y)
y X

for all (x,y) € P xP.
Prove T is a semigroup linear transformation from W into
V.

Now we proceed onto define a new notion of semigroup linear
operators.

DEFINITIONS 2.4.16: Let V be a semigroup linear algebra over
the semigroup S. A map T from V to V is said to be a semigroup
linear operator on Vif T (cu +v) =cT (u) + T (v) for every ¢ €
Sandu, v eV.

The reader is left with the task of proving the collection of all
semigroup linear operators on V is again a semigroup linear
algebra over S.

We now illustrate this situation by the following examples.
Example 2.4.62: Let V = {set of all 2 x 3 matrices with entries

from S}, be a semigroup under matrix addition. V is a
semigroup linear algebra on the semigroup S =Z" U {0}.

Define T: V—> V by
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N
a,,a,,a,,a5,a, €2 U{0} |.

1[0 a +a, 0
a, 0 as +ag

T is a semigroup linear operator on V.

Example 2.4.63: Let V=P x P x P x P where P=Z" U {0} be
a semigroup linear algebra over the semigroup S = Z* U {0}.
Define T (x,y,z, W) =X +y,y+2z z—w,x—w) for every
v=(X,y,2 w) € V. Tis a semigroup linear operator on V.

Example 2.4.64: Let V = P x P x P be a semigroup linear
algebra over the semigroup S = 2Z" U {0}, where P = Z*
U {0}. Define T: V> Vby T (XY, z) =(y, z, X). Prove Tis a
semigroup linear operator which is one to one and invertible.

Example 2.4.65: Let V = {all polynomials of degree less than or
equal to 7 with coefficients from the semigroup S = Z°
w {0}}. V is a semigroup under polynomial addition. V is a
semigroup linear algebra over S. Define T: V> Vby T (x) =
A TE)=x,..,TE)=x;ie, Tx")=x""if1<n<5and
T(x®) =x.Is T a 1 — 1 invertible semigroup linear operator on
V7.

Now we define yet another new type of semigroup linear
operator on a semigroup linear algebra V over the semigroups.

DEFINITION 2.4.17: Let V be a semigroup linear algebra over
the semigroup S. Let W < V be a subsemigroup linear algebra
over the semigroup P, P a proper subsemigroup of S. Let T : V
— W be a map such that T (av + u) = T(a) T(v) + T(u) for all
u,veVand T (o) € P. We call T a pseudo semigroup linear
operator on V.

We first illustrate this situation by the following example.
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Example 2.4.66: Let V=P x P x P where P=Z" U {0} be a

semigroup linear algebra over the semigroup S = Z" U {0}. Let

W =2Z"U {0} x {2Z" U {0}} x {2Z" U {0}} be a subset of V

and W be a subsemigroup linear subalgebra over the

subsemigroup L = 2Z" U {0}. Let T: V — W be defined by

T(ow + v) =20 (2u) + 2v, T is a pseudo linear operator on V.
We call this map T to be a pseudo projection.

We just give the definition of semigroup projection of a linear
algebra.

DEFINITION 2.4.18: Let V be a semigroup linear algebra over
the semigroup S. Let W be a semigroup linear subalgebra of V
over S. Let T be a linear operator on V. T is said to be a
semigroup linear projection on W if

Tv)=w,weW

and
T(ou+v)=al () +TW
TOv)andT ) ¢ W

foralla e Sandu, v € V.
We illustrate this situation by the following example.

Example 2.4.67: Let V=P x P x P x Pwhere P=Z7" U {0}, V
a semigroup linear algebra over the semigroup P = Z* U {0}.
Let W =2Z" U {0} x {2Z" U {0}} x {0} x {0} <V be a
semigroup linear subalgebra of V over P. Define T: V —» V by
T (x, v, z, w) = (2%, 2y, 0, 0). Clearly T is a semigroup linear
projection of V onto W.

Example 2.4.68: Let

a, a, a; a
AV 1 2 3 4
a; a, a, a

aieZ+u{0};1SiS8}
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be a semigroup linear algebra over the semigroup S = Z*

v {0}.
Let

W — a1 a2 a3 a4
0 0 0 O
W is a semigroup linear subalgebra of V. Define T: V — V by
o[[2 3 & &) 2a, 2a, 2a, 2a,
a; a; a, ag Lo o0 0 0 )

Clearly T is a semigroup linear operator on V which is a
semigroup linear projection of V into W.

a, e2Z+u{0};1SiS4} cV;

Example 2.4.69: Let V = P[x] where P = Z" U {0}, i.e., all
polynomials in the variable x with coefficients from P. V is a
semigroup linear algebra over P.

Let W = {all polynomials of even degree with coefficients
from P} < V; W is a semigroup linear subalgebra over P.
Define a map

T:Vo>oW
by
T (oux) = a(x%)
T (azxz) = oczx4, veens
T (0,X") = 0ty X
;1<n<o0.

Tis clearly a semigroup linear operator which is a
semigroup linear projection of V into W.

Now having defined the notion of semigroup linear projection
we proceed on to define semigroup projection of semigroup
vector spaces.

DEFINITION 2.4.19: Let V be a semigroup vector space over the
semigroup S. Let W V be a semigroup vector subspace of V. A
linear operator on V is said to be a semigroup projection of V
intoWifT: V—>Wie., T(v)=wforeveryv e Vandw € W.
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We illustrate this situation by the following example.

Example 2.4.70: Let

a, a, - a,)(0 0 - 0
V= 5

0 0 - 0)\b b, - b
be a semigroup vector space over the semigroup S = Z" U {0}.
Let

W= a, a, - a

be a semigroup subvector space of V. Let T: V — V defined by

T: al e as _ a] e as
0 -~ 0 0 - 0

TO 0 -+ 0) (0 0 - 0)
b, b, - b)) (0 0 - 0)

then T is a semigroup projection of V on W.

a;,b, e Z" U {0};
1<i,j<5

ai622+u{0};lﬁi§5} cV

and

We give yet another example of the semigroup projection of the
semigroup vector spaces.

Example 2.4.71: Let V= {0, 1,3, 5,7, ..., 2n + 1)} be a
semigroup vector space over the semigroup S = {0, 1} where 1
+1=1.Let W= {0, 3, 3% ...} €V, Wis a semigroup vector
subspace of V. Let T be a semigroup linear operator on V
defined by T(x) = x if x is of the form 3". T(x) = 0 otherwise. T
is a semigroup linear operator on V, which is a semigroup linear
projection of V. on W.
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Now we proceed onto define direct union of semigroup vector
subspaces of a semigroup vector space.

DEFINITION 2.4.20: Let V be a semigroup vector space over the
semigroup S. Let Wi, ..., W, be semigroup vector subspaces of V
ifV=uUW,and W; " W; = gor {0}, if i #j then we say V is the
direct union of the semigroup vector subspaces of the
semigroup vector space V over S.

We illustrate this situation by some examples.

Example 2.4.72: Let

a, a, a;\(0 0 O
V= ,
0 0 0)(b b, b

be a semigroup vector space over the semigroup S = Z" U {0}.
Take
W1 — al a2 a3
0 0 O
(0 0 OJ
W2 =
b b, b,

be semigroup vector subspaces of V over the semigroup S.
Clearly V=W, U W, and

0 00
Wi NnW,= .
0 0O

a;,b;eZ’ u{O};lSiS3}

aieZ+u{0};1SiS3}

and

bieZ+u{O};1Si§3}

Thus V is the direct union of vector subspaces over the
semigroups.
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Example 2.4.73: Let

a, a,
a b)(a, a, a, a,b,c,d,a, e Z" U {0};
V= , .| a, ag ;
c d)\a, a; a 1<i<3
a3 a6

V is a semigroup vector space over the semigroup S = {Z" U

{0}}. Take
W = a b
lle d

W, is a semigroup vector subspace of V.

a, a, a

W 1 2 3
o ( J

a, a; ag

a,b,c,deZ" U {0}} ,

aieZ*u{O};léiS6}

a, a,
Wi=1la, a,|la,eZ"U{0};1<i<6
a3 a6

is a semigroup vector subspace of V over the semigroup S. Thus
V=W, UW, UW; WithWiﬂWj:(i)ifiij, 1 SI,J < 3.
Hence V is a direct union of vector subspaces of the semigroup
vector space V.

Example 2.4.74: Let V = {3Z" U {0}, 2Z" U {0}, 5Z" U {0},
...,nZ"U {0} /2 <n < o} be a semigroup vector space over the
semigroup S = Z" U {0} . Let W, = 2Z" U {0}, W, = (3Z" U
{0}}, .., Wy=(+1)Z" U {0}. 2 < n < oo be a semigroup
vector subspaces of V or S.
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Clearly V = GWi but W; N W; # ¢ or {0} so V is not a
i=1

direct union of semigroup vector subspaces of V.

In view of this we define yet another new notion called
pseudo direct union of semigroup vector subspaces of a
semigroup vector space.

DEFINITION 2.4.21: Let V be a semigroup vector space over the
semigroup S. Let W, ..., W, be a semigroup subvector spaces of

V over the semigroup S. If V = LWJWI but W, nW; # ¢ or {0} if i
i=1

#J then we call V to be the pseudo direct union of semigroup
vector spaces of V over the semigroup S.

We illustrate this situation by the following example.

Example 2.4.75: Let
V= a, a, , b, b, ’ ¢ G ’
a, a,)(b;, b,)\c; ¢,
{dl dzj [Y1 Y2] (Xl Xz)
, and
d, d,)\y; v, Xy Xy

where aj, a5, a3, a3 € 2Z" U {0}, by, by, by, by € 3Z" U {0}, ¢y,
¢, €3, ¢4 € SZ° U {0}, dy, do, ds, dy € 7Z" U {0}, y1, y2, V3, Y4

e 11Z° U {0} and x;, X5, X3, X4 € 19Z" U {0}} be the
semigroup vector space over the semigroup S =Z" U {0}.

le{(al azj
a, a,

Let

a,€27" U{O};léis4}
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{bl sz
W2 =

b, b,
W {(01 CZJ
c, ¢,

d d
ot
d, d,
W, = (}ﬁ Y2J

Ys Va4
e
X; X,

be semigroup vector subspaces of V over the semigroup S = Z"
v {0}.

6
Clearly V= UW, we see W, W;=¢or {0},i#], 1<i,]
i=l1

b, €3Z" u{O};lSi£4}

cJ.ESZ+u{O};1SjS4}

d,e7Z" u{O};lsjg4}

y, €l1Z7 U {O}}

and

X, €19Z" u{O};lgis4}

< 6. So V is the pseudo direct union of semigroup subvector
spaces over S.

Now we proceed onto define the new notion of direct sum of
semigroup linear subalgebras of a semigroup linear algebra over
a semigroup S.

DEFINITION 2.4.22: Let V be a semigroup linear algebra over
the semigroup S. We say V is a direct sum of semigroup linear

subalgebras W, ..., W, of Vif

L V=W+.+W,
2. WinW;, = {0} or pifi=j (I <i,j<n).

We first illustrate this situation by the following example.
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Example 2.4.76: Let V=P x P x P x P be a semigroup linear
algebra over P= {0} U Z". Let W, =P x {0} x {0} x {0}, W, =
{0} x P x {0} x {0}, W3={0} x {0} x P x {0} and W, = {0} x
{0} x {0} x P be the semigroup linear subalgebras of V. Clearly
V=W, +W,+W;+W,and W; " W; = {0} ifi#].

We see this way of representation in general is not unique.
For if we take W{'= {0} x P x {0} x {P} and W,' = {P} x {0} x
P x {0} we get V=W;"+ W, and W' "W,' ={0} thus V is also
a direct sum of W,' and W,'. Thus the direct sum in general is
not unique.

We give yet another example.

Example 2.4.77: Let

al aZ a3
— + :
V=<la, a; alla,eZ u{lfand1<i<9
a, ag a,

be a semigroup linear algebra over the semigroup S =Z" U {0}.
Let

a, 0 O
W, =<:0 a, O ||a,a;anda,eZ" U{0} cV
0 0 a,

be a semigroup linear subalgebra of V. Take

0 a, a,
W,=40 0 a,l|la,,a,,a,€Z" U{0}; CV,
0

W, is also a semigroup linear subalgebra of V. Suppose
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0 0 O
Wi;=4la, 0 O0]la,,a,,a,eZ" U{0}; CV;

a, a; O

W; a semigroup linear subalgebra of V. Then we see V=W, +
Wz + W3 with

0 00
WinW;=10 0 0]ifi=].
0 00

Thus V is a direct sum of W;, W5, W3 of V. We see this is not
the only way of representing V. For take

a, 0 0
P=4/0 0 0 |la,a,eZ U{0}cV
0 0 a,

is a semigroup linear subalgebra of V.

0 a, O
P,=<:a, 0 a,l|la,,a,,a, Z U{0}
0 0 O

is a semigroup linear subalgebra of V over S=Z" U {0}.
Take

0 0 a,
P;=410 a; 0 ||a,,a;€eZ"U{0}; cV
0 0 O

is a semigroup linear subalgebra of V.
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0 0 O
P,=4/0 0 0}la,,a,eZ" {0} } cV

a, a; 0

is a semigroup linear subalgebra of V. We see V=P, + P, + P;
+ P4 with

000
P.AP=|0 0 0|izjl<ij<4.
000

Thus V is a direct sum of semigroup linear subalgebras over the
semigroup Z" U {0}.

Thus we see there exists more than one way of writing the
semigroup linear algebra as the direct sum of semigroup linear
subalgebras.

A semigroup linear algebra is said to be strongly simple if it
cannot be written as a direct sum of semigroup linear
subalgebras and has no proper semigroup linear subalgebra.
Clearly the class of semigroup linear algebras V = Z, = {0, 1,
....,p—1}; paprime over S = Z, =V are strong simple for in
the first place they do have any semigroup linear subalgebras
and it cannot be written as direct sum . All simple semigroup
linear algebras are strongly simple however it is left as an open
problem for the reader to find whether strongly simple implies
simple.

2.5 Group Linear Algebras
Next we proceed onto define yet another new special class of
linear algebras called group linear algebras and their

generalizations group vector spaces. In this section we also
enumerate a few of its properties.
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DEFINITION 2.5.1: Let V be a set with zero, which is non empty.
Let G be a group under addition. We call V to be a group vector
space over G if the following condition are true.

1. Foreveryv eVandg € Ggvandvg €V.
2. 0.v=_0foreveryv eV, 0 the additive identify of G.

We illustrate this by the following examples.

Example 2.5.1: Let V = {0, 1, 2, ..., 15} integers modulo 15. G
= {0, 5, 10} group under addition modulo 15. Clearly V is a
group vector space over G, for gv = v, (mod 15), for g € G and
v,v; € V.

Example 2.5.2: Let V = {0, 2, 4, ..., 10} integers 12. Take G =
{0, 6}, G is a group under addition modulo 12. V is a group

vector space over G, for gv=v,; (mod 12) forg e Gand v, v, €
V.

Example 2.5.3: Let

a a a
1 2 3

M, 3= ( J
a, a; ag

Take G = Z be the group under addition. M, , 5 is a group vector
space over G = Z.

a, e {-mo,..,—4, —2,0,2,4,...,00}} .

Example 2.5.4: LetV=7Zx7ZxZ={(a,b,c)/a,b,ceZ}.V
is a group vector space over Z.

Example 2.5.5: Let V = {0, 1} be the set. Take G = {0, 1} the
group under addition modulo two. V is a group vector space

over G.

Example 2.5.6: Let
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v={o oo o6 o} (1 oo 1} o
(o o o

be set. Take G = {0, 1} group under addition modulo 2. V is a
group vector space over G.

Example 2.5.7: Let
a, a, .. a (0 0 .. O

V: b b

0 0 .. 0){0 0 .. O

0 0 .. 0

b, b, .. b,

be the non empty set. Take G = Z the group of integers under
addition. V is the group vector space over Z.

ai,bieZ;ISiSn}

Example 2.5.8: Let
V_310-~-0 00 .. 0) (O b 0O .. 0
a, 0 .. 010 0 .. 00 b, 0 .. 0)°
0 0 ... ¢t
7looo oty
be the set of 2 x n matrices of this special form. Let G = Z be

the group of integers under addition. V is a group vector space
over Z.

1

a,b,.,t.eZ 1<i< 2}

Example 2.5.9: Let
V= a, 0)(0 a, 0 0
0 0)lo 0)\a, 0)
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0 0) (0 O 7
, a;,a,,a,,a, €
0 0 0 a4 1 2 3>%4
be the set. Z = G the group of integers V is a group vector space
over Z.

Now having seen examples of group vector spaces which
are only set defined over an additive group.

Example 2.5.10: Let V= {(0100),(111),(000),(0000),
(1100),(00000),(11001),(10110)} be the set. Take Z,
= G = {0, 1} group under addition modulo 2. V is a group
vector space over Z,.

Example 2.5.11: Let
a, a, a b, 0 0) (0 ¢ O
1 2 2 1 1 0 0 ayl
V= 0 O0f|b, 0 0[,]0O c, O], ,
0 0 a,
0 0 b, 0 0)l0 ¢, O

0

0 00 .
0, a,bc,eZ; a',a,eZ;1<i<3
0

be the set, Z = G the group under addition. V is just a set but V
is a group vector space over Z.

It is important and interesting to note that this group vector
spaces will be finding their applications in coding theory.

Now we proceed onto define the notion of substructures of
group vector spaces.

DEFINITION 2.5.2: Let V be the set which is a group vector
space over the group G. Let P < V be a proper subset of V. We
say P is a group vector subspace of V if P is itself a group
vector space over G.
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Example 2.5.12: Let

0 O0)(a, a,)(a, 0)(0 a,}(0O O
V= , , , , a,a,e€’”Z
0 0){0 0){0 0)\0 O0)\a a,
be the set. V is a group vector space over the group G = Z the
group of integers under addition. Take

0 0)(a, a,)(0 O
P=
0 0)L0 0)\a a,
P is a group vector subspace of V over Z. It is important and

interesting to note that every proper subset of V need not be a
group vector subspace of V. Take

(MRS

T is not a group vector subspace of V it is only a set and has no
additional properties.

a,a, eZ}gV .

Example 2.5.13: Let V={11001),00000),(10010),

000),(111),1111),0000),(1100),(1001)} bea

proper set. Take G = {0, 1} be a group under addition modulo 2.

V is a group vector space over G. P={(11001),(00000)} c

V; P is a group vector subspace of V over G.
Pi={000),(111)}cV,

P, is also a group vector subspace of V over G.
T={111),(1100)} cV,

T is not a group vector subspace of V over G.

Example 2.5.14: Let

aieZ;ISiS4}
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be a group vector space over the group G = Z. Let

P — bl b2
b, b,

P is a group vector subspace over G.

b, € 2Z; 1Si£4}gv.

We now define the notion of linearly independent subset of a
group vector space.

DEFINITION 2.5.3: Let V be a group vector space over the
group G. We say a proper subset P of V to be a linearly

dependent subset of V if for any p;, p» € P, (p; #p3) p; = ap; or
p2 = a'p; for some a, a' € G. If for no distinct pair of elements
P P2 € Pwe have a, a; € G such that p; = ap, or p; = ap;
then we say the set P is a linearly independent set.

We now illustrate this situation by some examples.
Example 2.5.15: Let

a, a,) (0 0)(0 0
V = 5 s al’aZ € Z
0 0)\a, a,)\0 O

be the group vector space over the group of integers Z. Take

{6 e D)6 T

P is a linearly dependent subset in V over Z. Take

o o0 )
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T is a linearly independent subset of V over Z.

SR [

T, is a linearly dependent set over Z.

el 3 e

T is a linearly independent set over Z.

An observation which is important and interesting is that both T
and T, are linearly independent subsets of V but both of them
are distinctly different in their behaviour. To this end we
proceed onto define the notion of a generating subset of a group
vector space V over the group G.

DEFINITION 2.5.4: Let V be a group vector space over the
group G. Suppose T is a subset of V which is linearly
independent and if T generates Vi.e., usingt € Tand g € V we
get every v € Vas v = gt for some g € G then we call T to be
the generating subset of V over G. The number of elements in V
gives the dimension of V. If T is of finite cardinality V is said to
be finite dimensional otherwise V is said to be of infinite
dimension.

We illustrate this situation by the following example.

Example 2.5.16: Let V=P={(1100),(0000),(0001),(11
1),(011),(010),(000)} be the given set. V is a group vector
space over the group G =7, = {0, 1} addition modulo 2. Take T
={(1100),0001),(111),(011),(010) < V; Vis linearly
independent set and dimension of V is 5 as T generates V.

It is important to note that no proper subset of T will
generate V. Thus T is the only generating set of V and
dimension of V is 5.

92



Example 2.5.17: Let

{[ 0 OJ (al al) }
V= , a, e’
a, a 0 0

V is a group vector space over the group Z.

11 00
T = 2 b
00 1 1
is the generating set of V and no other set can generate V. Thus
the group vector space V is of dimension two over Z. Clearly T
Example 2.5.18: Let

is a linearly independent set.
a, a, 0 0
V= , a,a,e’l;.
0 0)\a a,

V is a group vector space over the group Z. Take

1o oo ot o}lo v

T is a linearly independent subset of V but T is not a generating
subset of V. Take

n={lo o M6 oblo o0 oM D)=

T, is a linearly independent subset of V but T is not the
generating subset of V over Z. In fact V cannot be generated
over Z by any finite subset of V. Thus dimension of V over Z is
infinite.

Take
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=0 C D6 G2
A B

P is a linearly independent subset of V but not a generating

subset of V over Z.
Take

{0 6 6 ablo o

S is not a linearly independent subset of V over Z.

Example 2.5.19: Let V=72 xZ xZ={(x1 X2 X3) |xi € Z; | £i<
3}, V is a group vector space over Z. V is of infinite dimension
over Z. Take T={(110),(110),(001),(100),(010),(01
1)} < V is a linearly independent subset of V but T cannot
generate V over Z. Take T; = {(1 1 1), (57 8), (78 1), (00 1)}
c V. T, is again a linearly independent subset of V but not a
generating subset of V over Z. Take W =7 x {0} x {0} < V to
be the group vector subspace of Vover Z If T= {(100)} c W
is the generating subset of W over Z and dimension of W over Z
is 1. Suppose U = Z x Z x {0} < V; U is a group vector
subspace of V over Z.

T,={(110),(010),(100)} <V is a linearly independent
subset of U but T, cannot generate U. In fact no finite subset of
U can generate U. Thus the group vector subspace U of V is of
infinite dimension over Z. Thus the group vector space V over Z
has both group vector subspaces of finite and infinite dimension
over Z.

Example 2.5.20: Let V= {(aaaa)|ae Z} be agroup vector

space over the group Z. Take T = {(1 1 1 1)} < V. T is the
generating subset of V. In fact dimension of V over Z is one.
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Further if we take W = {{((5§ 5 5 5))} < V. W is a proper
subset of V and W is a proper group vector subspace of V
generated by the set ((5 5 5 5)) and dimension of W is also one.
Thus V is a group vector space over Z of dimension one. W =
{(x, X, X, X) | x € 5Z} < V is also of dimension one over Z but
W is a proper group vector subspace of V.

It is still interesting to note that V has infinite number of
proper group vector subspaces of dimension one. Take S = {(x x
XX),(yyyy)|xe2Zandy € 3Z} c V. Sisasubset of V, V is
of dimension one over Z. But S is a proper group vector
subspace of V over Z and dimension of S over Z is two. The
generating proper subset of S which generates S is given by T,
={(2222),(3333)} < S.T,is a linearly independent subset
of S and generates S over Z.

Thus it is still interesting and important to note that a one
dimensional group vector space over the group has proper group
vector subspaces of dimension greater than one. This sort of
situations can occur only in case of group vector spaces.

This looks as if one cannot algebraically comprehend but
concrete examples confirm the statement and establish it. In fact
this one dimensional group vector space has proper group vector
subspaces of infinite dimension also.

For take S| = {(Xpn, Xn» Xn, Xn) | Xy @ prime} < V. Thus
$1={(2222)),(B3333)),((5555)),... } V.

Thus S; is generated by

T={2222),3333),(5555),....,pppPDP)--- P> aprime}.

Clearly, cardinality of T is infinite. Thus V= {(x x x x) | x € Z}

is of dimension one as it is generated by {(1 1 1 1)} but it has a

proper group vector subspace S; which is of infinite dimension

as number of primes in Z is infinite.

Now having seen such types of group vector spaces we proceed

onto give more examples of infinite dimensional group vector
spaces.
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Example 2.5.21: Let V= {R x R x R, R reals} be a group
vector space over the group Z. V is infinite dimensional. Let W
={(xxX)|x € Z} < V be a proper subset of V, W is a finite
dimensional group vector subspace of V. In fact T= {(1 1 1)} is
the generator of W and W is of dimension one over Z.

Thus we see an infinite dimension group vector space can
have as group vector subspaces of dimension one. This is a case
just opposite to the case given in the earlier example where a
one dimensional group vector space can have infinite
dimensional group vector subspaces.

Now we proceed onto define yet another new type of
substructures in a group vector space called the subgroup vector
subspaces and illustrate them with examples.

DEFINITION 2.5.5: Let V be a group vector space over the
group G. Let W <V be a proper subset of V. H c G be a proper
subgroup of G. If W is a group vector space over H and not
over G then we call W to be a subgroup vector subspace of V.

Example 2.5.22: Let V = Z¢ x Zs x Z¢ be a group vector space
over Ze. W={222),000),(111),444)}cV. Wisa
subgroup vector subspace over the subgroup {0, 2,4} = H < Zs.
Clearly W is not a vector subspace over Zgas 3 (1 11)=(3 3 3)
¢ W.

We give yet another example of subgroup vector subspace over
a subgroup of the group over which it is defined.

Example 2.5.23: Let V = Zj, x Z1, x Z1; be a group vector
space over the group G = Z,. Take H = {0, 6}. Let W = {(1 1
1),(222),(0666),000),3B333),444)}cV.Wisa
subgroup vector subspace over the subgroup H. Clearly W is
not a group vector subspace over Z;;.

Now it may so happen that a subset W may be a group vector

subspace as well as subgroup vector subspace. We call in this
situation W to be a duo subgroup vector subspace.
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DEFINITION 2.5.6: Let V be a group vector space over the
group G. Let W c V. If W is a subgroup vector subspace over a
proper subgroup, H of G as well as W is a group vector
subspace of V over G then we call W to be the duo subgroup
vector subspace of V.

We illustrate this with some examples before we proceed onto
describe a few of its properties.

Example 2.5.24: Let V = Z1, x Z15 x Z;, be the group vector
space over the group G = {0, 2, 4, 6, 8, 10}. Let W = {0} x Z;,
x {0} < V. W is a group vector subspace of V. Clearly W is
also a subgroup vector subspace over H = {0, 6} a subgroup of
G. Suppose S={(000),(111),(666)} V.S is asubgroup
vector subspace over H = {0, 6}. Clearly S is not a group vector
subspace over G.

In view of this we prove the following theorem.

THEOREM 2.5.1: Let V be a group vector space over the group
G. If W is a group vector subspace of V then W need not be a
subgroup vector subspace of V for some subgroup H of G.

Proof: We illustrate this situation by examples. Let V = Z;, x
Z1y x Z15 x Z1, be a group vector space over the group G = Z,.
W=7, x {0} x {0} xZ;, =V, W is a group vector subspace of
V. W is also a subgroup vector subspace of V for every
subgroup H of G. V =Z;, x Z,; is a group vector space over the
group Z;. W = Zy; x {0}, W is only a group vector subspace of
V and not a subgroup vector subspace of V as Z;; has no proper
subgroups. Thus V has no subgroup vector subspaces.
Conversely we have the following theorem.

THEOREM 2.5.2: Let V be a group vector space over a group G.
Suppose S <V is a subgroup vector subspace of V then S need
not in general be a group vector subspace of V.

Proof: We prove this theorem only by a counter example. Let V

=710 X Zyo X Z1p x Zyp be a group vector space over the group
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Zyp. Take S={1111),0000), (5555} c<cV.Sisa
subgroup vector subspace of V over the subgroup H = {0, 5}
Zyo. Clearly S is not a group vector subspace of V over Zj, as
for3e€Z,,3(1111)=(3333) ¢ S. Hence the claim.

Thus a subgroup vector subspace of a group vector space V
in general need not be a group vector subspace of V.

THEOREM 2.5.3: Let V be a group vector space over the group
G if W c Vis a duo subgroup vector subspace of V then W is
both a group vector subspace of V as well as W is a subgroup
vector subspace of V.

Proof: The proof follows from the very definition of duo
subgroup vector subspaces.

It may so happen we may find group vector spaces which
has no subgroup vector subspaces over a proper subgroup. We
define them in the following.

DEFINITION 2.5.7: Let V be a group vector space over the
group G. Suppose V has no subgroup vector subspaces then we
call V to be a simple group vector space.

We first illustrate this situation by the following examples.

Example 2.5.25: Let V =7, x Z, x Z, be a group vector space
over the group Z;. Since Z; has no proper subgroups under
addition; V cannot have any subgroup vector subspaces. Thus V
is a simple group vector space over Zs.

Example 2.5.26: Let V = Zs x Zs be a group vector space over
the group G = Zs. V is a simple group vector space over Zs.

Example 2.5.27: Let V={(1111),(0000),(10110),000
00),(11001),(111),(000),(100),(01 1)};V isa group
vector space over the group Z, = {0, 1}. Clearly V has no
proper subset which can be subgroup vector subspace of V i.e.,
V is a simple group vector space.

In view of the above examples we have the following theorem.
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THEOREM 2.5.4: Let V be a group vector space over a group G
which has no proper subgroups then V is a simple group vector
space over G.

Proof: Obvious from the fact that the group G has no proper
subgroup for a proper subset W to be a subgroup vector
subspace; we need a proper subgroup in G over which W is a
group vector space.

If G has no proper subgroup the existence of subgroup
vector subspace is impossible.

Now we show we have a large class of simple group vector
spaces.

THEOREM 2.5.5: Let
V=27 x.xZ
n—times
be a group vector space over the group Z, where p is a prime
i.e., Z, is a group under addition modulo p. V is a simple group
vector space.

Proof: Clear from the fact that Z, has no proper subgroups.
Hence the claim.

Next we proceed on to define the notion of semigroup vector
subspace of the group vector space V over G.

DEFINITION 2.5.8: Let V be a group vector space over the
group G. Let W <V and S < G where S is a semigroup under
+° If Wis a semigroup vector subspace over S then we call W
to be pseudo semigroup vector subspace of V.

We illustrate this by some examples.
Example 2.5.28: Let V=7 x Z x Z be a group vector space
over ZZ W=2Z"U {0} x Z" U {0} x {0} = V. W is a semigroup

vector space over the semigroup S=Z" U {0} — Z. Thus W is a
pseudo semigroup vector subspace of V.
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Example 2.5.29: Let
{[a bJ
V E
c d
be a group vector space over the group Z.
{a bj
W =
c d

is a subset of V and W is a semigroup vector subspace over S =
Z" U {0}. Thus W is a pseudo semigroup vector subspace of V.

a,b,c,d e Z}

a,b,c,de Z* u{O}}

Example 2.5.30: Let V= {(110),(000),(011),(101),(00
1)} be a group vector space over the group Z, = {0, 1}. Clearly
V has no pseudo semigroup vector subspace.

Example 2.5.31: Let V = Zs5 x Zs x Zs x Zs be a group vector
space over Zs; V has no pseudo semigroup vector subspace.

Now we define yet another type of subspace viz. pseudo set
vector subspace of a group vector space V.

DEFINITION 2.5.9: Let V be a group vector space over the
group G. Suppose W  V is a subset of V. Let S be a subset of
G. If W is a set vector space over S then we call W to be a
pseudo set vector subspace of the group vector space.

We now give some illustrations.

Example 2.5.32: Let V={(1110),(0000),(1100),(001
0)} be a group vector space over the group Z, = {0, 1}. Take W
={(1110),(0010)} <V beasubset of VW is a pseudo set
vector space over the set S = {1} < Z,.

Example 2.5.33: Let P =7 x Z x Z x Z be a group vector space
over the group Z.

100



Take W={(1111),(0000),(1201),(3351),(7123),
(1 0 0 1)} a proper subset of P. W is a pseudo set vector
subspace over the set S = {0, 1} < Z.

Example 2.5.34: Let V = 73 x Z3 x Z3 x Z3 be a group vector
space over Z;. Take W= {(111),(222),(000),(101),(20
2)} < V. Let S = {1, 2} a proper subset of Z; W is a set vector
space over S. Thus W is a pseudo vector subspace of V.

It is an open problem whether there exists a group vector space,
which has no pseudo, set vector subspaces.

Now we proceed onto define the notion of transformations of
group vector spaces, which will be known as group linear
transformations.

DEFINITION 2.5.10: Let V and W be two group vector spaces
defined over the same group G. A map T from V to W will be
called as the group linear transformation if

T(aw) =al (v)
forall o € Gand forallv eV.

We illustrate this by the following examples.

Example 2.5.35: Let V=7 xZxZand W=Q xQ x Q x Qbe
two group vector spaces over the group Z. Let T : V. > W be
defined by T (x y z) = (zy x y). Clearly T is a group linear

transformation of V into W.

Example 2.5.36: Let V.= {(000), (1 11),(010),(1111),
(0000),(1101),(0111)}and

i i
o o}t o} 6 Mo ol
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be the group vector space over the group G =7, = (0, 1).

T(xyz){’z‘ gj

T(xyzw)=(X yj
z

and

w

for(xy,z)and xyzw) e V

T(000) = 8 gj
T(111) = 1 (1))
T(010) = 8 (1)]
TA111) = 1 D
T@O000) = gj
T(1101) = [(1) D
TOI111) = G U

T is a group linear transformation of V to W.
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We have for a group linear transformation T, T to exist
provided the inverse mapping from W to V exists, otherwise we
may not have T to exist for the T. Thus for a given T, T"' may
or may not exist.

Example 2.5.37: LetV={(aaaa)laec Z}and

vo{e ke

be two group vector spaces over the group Z. A map

a a
T {(aaaa)} = (a aj

for every (aaaa) € V is both one to one and on to for define

T =(aaaa).
a a

T exists.
—1 1 a a
T oT(aaaa) = T
a a
= (aaaa)
and
L, (a a
ToT = T(aaaa)
a a

Il
7 N\
o
o
~—

Thus T o T is identity map on W and T o T is the identity
map on V. We call the group linear transformation T to be an
invertible one.
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Example 2.5.38: Let V =7, x Z1, X Z15 x Z1, and

{0

be two group vector spaces over the group Z;,. T be a map such

that
a b
T(a’ b) C’ d) = [ j
c d

foreverya,b,c,d € Z,.

a,b,c,d e le}

T is a group linear transformation of V into W, in fact T is one
to one and onto T™' exists.

Next we proceed onto define the notion of group linear
operations on V, V a group vector space over the group G.

DEFINITION 2.5.11: Let V be a group vector space over the
group G. Let T from V to V be a group linear transformation
then we call T to be a group linear operator on V.

We now illustrate group linear operator on V by some
examples.

Example 2.5.39: Let V= {(abcd)|a,b,c,d € Z} be a group
vector space over Z. Define T from Vto Vby T {(abcd)} =(d
c b a) for every (a, b, ¢, d) € V. Clearly T is a group linear
operator on V.

In fact it can further be verified T existsand T'o T=T o
T = identity group linear operator on V for

T'oT{(abcd)} = T' {(dcba)}
= (abcd);
ie., T ' o T is identity on V. Now
ToT'{(abcd} = T{dcba)
= (abcd).
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T o T is also the group linear operator which is the identity
map in this case.

All identity maps on V are identity group linear operator on V.

Example 2.5.40: Let
{ [a bj
V=
c d

be the group vector space over the group Z,o. Define a map T

from V to V by
a b a b
T =
c d 0 0

for every a, b, c, d € V. T is a group linear operator on V, but T
is clearly not an invertible group linear operator on V.

a,b,c,de Zm}

The reader is left with the task of finding

1. The algebraic structure given by the set of all group
linear operators from the group vector space V to the
group vector space W both V and W defined over the
same group.

2. The algebraic structure of the set of all group linear
operators from V into V, V the group vector space
defined over the group G.

We denote the set of all group linear transformations from V to
W defined over the group G by Mg (V,W) and that the set of all
group linear operators of V by Mg (V, V).

1. What is the algebraic structure of Mg (V,W) ?
2. What is the algebraic structure of Mg (V,V)?

Now we proceed on to define the notion of group linear algebra
over a group.
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DEFINITION 2.5.12: Let V be a group vector space over the
group G. If V is again a group under addition then we call V to
be a group linear algebra over G.

It is clear from the very definition every group linear algebra
defined over a group G is a group vector space over the group G

but a group vector space is never a group linear algebra i.e., o,
(vitvy))=a; vi+a; vyforall a; € G and vy, v, € V may not be
Example 2.5.41: Let

always true in V.
a a
V= { ] ae Z} .
a a

V is a group linear algebra over Z with matrix addition on V.

Example 2.5.42: Let V={000),(110),(001),(111),(000
0),(0010),(001 1)} be a group vector space over Z, = {0, 1}.
V is not closed under any additive operation so V is not a group
linear algebra over G = Zo.

Thus we see in general all group vector spaces are not group
linear algebras.

Example 2.5.43: Let V = {(ai)m xn | @ € Z12} be the collection
of all m x n matrices with entries from Z;,. V is a group under
matrix addition. V is a group linear algebra over Z,.

Example 2.5.44: Let V={(0000),(1000),(0100),001
0),(0001),0011),(0101),(1100),(0110),(1110),(0
111),(1101),(1011),(1111),(100T1),(1010)} with
entries from Z, = {0, 1}. V is a group linear algebra over the
group Z, = {0, 1}.

Example 2.5.45: Let V= {(abc)|a b, c € Z}, V under

component wise addition is a group; V is a group linear algebra
over Z.
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Example 2.5.46: Let V = {Z,g x Z1g x Z19 X Z1o x Z19 = (a1, 2y,
..., 85) | @ € Z1g; 1 £1 <5} be a group under component wise
addition, V is a group linear algebra over Z.

In case of group linear algebras the linear independence and the
dimension are little different from that of the group vector
spaces.

DEFINITION 2.5.13: Let V be a group linear algebra over the
group G. Let X < V be a proper subset of V, we say X is a
linearly independent subset of V if X = {x,, ..., x,,} and for some
o €G 1 <i<n ax + ..+ ax,=0ifand only if each o; =
0.

A linearly independent subset X of V is said to generate V if

n
every element of v € V can be represented as v = Z(xixi , 0 €
i=1

G (1 £i <n).
We illustrate this situation by the following examples.

Example 2.5.47: Let V= {(000),(100),(001),(010), (11
0),(101),(011),(111)} be the group linear algebra over the
group Z, = {0, 1}. V is generated by the set X = {(1 0 0), (0 1
0), (00 1)}. Clearly X is also a linearly independent subset of V
over Z, = {0, 1}.

Thus dimension of V is 3. Hence as in case of usual vector
spaces we say the dimension of a group linear algebra is also the
cardinality of the linearly independent subset X of V which
generates V.

Example 2.5.48: Let
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be the group linear algebra over the group Z. Let
<= I 0 0)(O 1 O)Y(O O 1
00 0){0 0000 0)
0 0 0y(O O O0)(O O O
) ) cV
1 0 0){0 1 0)10 0 1

be the generating subset of V which is also linearly independent.
Thus the dimension of the group linear algebra V is 6.

Example 2.5.49: Let
a b
V =
{(c d}
V is a group linear algebra over the group Z¢. The set
0 1Y(1 0Y(0 0)(0 O
X= cV

is the linearly independent subset of V which generates V.
Clearly dimension of V is four.

a,b,c,deZ }

Example 2.5.50: Let V = Zs x Zg X Zs x Zg be the group linear
algebra over the group Z¢. Now X ={(1000),(0001),(010
0), (0 0 1 0)} is the generating set of V. The dimension of V is
four over Zs.

Example 2.5.51: Let V = Zs x Zs x Zs x Zs X Zg be the group
linear algebra over the group Zs. For this group linear algebra
also X={(10000),(01000),(00100),(00010),(000
0 1)} is the linearly independent subset which generates V and
dimension is 5.
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Now we proceed onto define the notion of group linear
subalgebra of a group linear algebra.

DEFINITION 2.5.14: Let V be a group linear algebra over the
group G. Let W < V be a proper subset of V. We say W is a
group linear subalgebra of V over G if W is itself a group linear
algebra over G.

We illustrate this situation by the following examples.

Example 2.5.52: Let

e

V is a group linear algebra over the group Z. Take

WZ{C ) aez};

W < V and W is a group linear subalgebra of V over Z.

a,b,c,deZ},

Example 2.5.53: Let V= {(100),(000),(010),001),(11
1), (011),(110),(101)} be the group linear algebra over the
group Z, = {0, 1}. Take W= {(000), (11 1)} cV,Wisa
group linear subalgebra of V.

Example 2.5.54: Let V = Zyg x Zo x Zy be the group linear
algebra over Zy. Let W = Zg x {0} x Zg < V; W is the group
linear subalgebra of V over Z.

Example 2.5.55: Let V = Zg x Zg be the group linear algebra
over the group G = {0, 2, 4, 6} addition modulo 8. Let W = {0,
2,4,6} x {0,2,4,6} < V; W is a group linear subalgebra of V.

Now having seen several examples of group linear
subalgebras over the group linear algebra we proceed onto
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define the notion of direct sum of group linear subalgebras of a
group linear algebra.

DEFINITION 2.5.15: Let V be a group linear algebra over the
group G. Let W,, ..., W, be group linear subalgebras of V over
G.

We say V is a direct sum of the group linear subalgebras
Wi, W, ..., W, if

1. V=W, + ..+ W,
2 W, AW, = {0} ifi =j: 1 <i,j<n.

Now we illustrate this situation by the following examples.
Example 2.5.56: Let V be Z4 x Z14 X Z14 be the group linear
algebra over the group Z,4, the group under addition modulo 14.
Let Wy =Z14 x {0} x {0}, W, = {0} x Z;4 x {0} and W3 = {0} x
{0} x Z,4 be the group linear subalgebras of V. We see V =W,
+ W, +Wsand Win W= {0} ifi#j; 1 <i,j<3.

Example 2.5.57: Let

e

be the group linear algebra over Z. Let

an},

a,b,c,de Z}

and
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ool

be the group linear subalgebras of V. Clearly W; + W, + W3 +
W4 =V and

00
mej=(0 oj ifizj;1<ij<4

Thus V is the direct sum of group linear subalgebras over Z.

Now take
a 0
S| = a,beZ
b 0
0 a
S, = aeZ
00
0 0
S3: beZ
0 b

be group linear subalgebras of V. We see V=S, + S, + S; and

and

00
simsj:{o Oj,ifi;tj(lsi,jSB).

R
ool e

be group linear subalgebras of V then we see V =T, + T, and

Suppose

and
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0 0
Tlr\T2= .
0 0

Thus V is the direct sum of group linear subalgebras. From this
example it is evident that we have many ways of writing V as a
direct sum of group linear subalgebras of V.

Further suppose
a b
R, = a,beZ;,
00

a 0

R, = a,c,de Z
c d
a 0

R; = a,beZ
0 b

be three group linear subalgebras of V over Z we see

and

0 0
V¢R1+R2+R3bUtRiij¢£0 O),lﬁi,jﬁ&

Thus we see any set of group subalgebra need not lead to the

direct sum. Also if
00
V] = {( J ae Z}
a 0

o fo o]

be two group subalgebras of V still V # V| + V, though

and
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0 0
ViNnV,z .
0 0

. . a
Thus we see in this case [

b
j with d # 0 cannot find its place
c

in V; +V,. Hence V=V, + V, is not a direct sum of V.

Now we proceed onto give yet another example of direct sum of
group linear subalgebras.

Example 2.5.58: Let V={(1000),(0100),(0010),(111
1),(0001),(0011),(1100),(1001),(0110),(1010),(0
000),0101),(1110),(0111),(1011),(110 1)} be the
group linear algebra over the group Z, = {0, 1}. Write V as a
direct sum of group linear subalgebras. Can we represent V in
more than one way as a direct sum?

Now we proceed onto define the notion of pseudo direct sum of
a group linear algebra as a sum of group linear subalgebras.

DEFINITION 2.5.16: Let V be a group linear algebra over the
group G. Suppose W, W, ..., W, are distinct group linear
subalgebras of V. We say V is a pseudo direct sum if

1. W+ ..+ W, =V

2. Wi W; #{0}, even if i #j

3. We need W;’s to be distinct i.e., W; " W; # W; or
W,ifi ).

We now illustrate this situation by the following example.

Example 2.5.59: Let

a,€Z,1<i< 6}
be a group linear algebra over Z. Take
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0 a, a,
W, = a,a, e’Z;,
0 0 O
a, 0 a,
W; = a,,a,,a,,a,€”Z
a, 0 a
a, a, O
W, = a,,a,,as,a,€Z;.
0 a, ag

Clearly W, W,, W3 and W, are group linear subalgebras of V.
We see

and

0 0

WiﬂWji[
0

0
Oj,forlsi,j£4i¢j.

Further W; N W; # W; or Wy n W; = W;if i # ). Finally V =
W, + W, + W; + Wy, so we say V is the pseudo direct sum of
group linear subalgebras of V.

We give yet another example before we proceed on to describe
further properties about group linear algebras.

Example 2.5.60: Let V = {Z;3 x Zi3 x Zi3} be a group linear
algebra over Zis.

Take Wy =Zg x Z1g x {0}, Wy =7Z;5 x {0} x Z13, W3 = {0
2468 10 12 14 16} x Z;g x Zig be three group linear
subalgebras of V. Then V=W, + W, + W3 and W; N W; = {0};
i#];1<1,j<3s0 V is the pseudo direct sum of group linear
subalgebras.

It is important to note that a group linear algebra can both have
a pseudo direct sum as well as direct sum. We see we do not

114



have any relation among them. It can so happen a group linear
algebra can have both way of decomposition.

Now we proceed onto define yet another new algebraic structure
of a group linear algebra.

DEFINITION 2.5.17: Let V be a group linear algebra over the
group G. Let W <V be a proper subgroup of V. Suppose H c G
be a semigroup in G. If W is a semigroup linear algebra over H
then we call W to be a pseudo semigroup linear subalgebra of
the group linear algebra V.

We illustrate this situation by the following example.
Example 2.5.61: Let
{[a bj
V=
c d
be a group linear algebra over the group Z. Let Z" U{0} =H
Z be the proper semigroup of Z under addition.

a a
a a
W is a semigroup linear algebra over H. We call W to be the

pseudo semigroup linear subalgebra of the group linear algebra
V.

a,b,c,deZ}

an}gV.

We give yet another example.

Example 2.5.62: Let V = {Z x Z x Z} be the group linear
algebra over the group Z. Let P = Z" U {0} be the semigroup
contained in Z. Let W = 2Z x 2Z x 2Z < V; W is a pseudo
semigroup linear subalgebra over P.

Example 2.5.63: Let V = Z, x Z, x Z, be the group linear
algebra over Z,. Z, has no proper subset which is a semigroup,
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so V cannot have pseudo semigroup linear subalgebra. In fact
we have a class of group linear algebras which has no pseudo
semigroup linear subalgebras.

LetV=2,x ... xZ,, Z, the set of primes {0, 1, ...,p—1}
under addition modulo p. V is a group linear algebra over Z,.
But Z, has no proper subset P which is a semigroup. Thus V has
no pseudo semigroup linear subalgebras. Thus we have a class
of group linear algebras which has no pseudo semigroup linear
subalgebras.

Suppose we consider

{V = (au‘ )n

V is a group linear algebra over Z, This has no pseudo
semigroup linear subalgebras.

For varying primes p we get different classes of group linear
algebras which has no pseudo semigroup linear subalgebras. We
have yet another class of group linear algebras which has no
pseudo semigroup linear subalgebras.

Consider Z, [x] = {all polynomials in the variable x with
coefficients from Z,; p a prime}; Z, [X] is a group linear algebra
over Z,. Clearly Z, has no proper subset which is a semigroup
under addition modulo p. So Z, [x] has no pseudo semigroup
linear subalgebras.

aijeZp;paprime,ISiSmandlsiSH}.

In fact we can have yet another substructure in group linear
algebras which will be known as group vector subspaces of the
group linear algebras.

DEFINITION 2.5.18: Let V be a group linear algebra over the
group G. Let P be a proper subset of V. P is just a set and it is
not a closed structure. If P is a group vector space over G we

call P to be the pseudo group vector subspace of V.

We illustrate this by the following examples.
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Example 2.5.64: Let

V = {(100),(001),(010),(000),(110),(011),(101),
(11 1))

be the group linear algebra over the group Z, = {0, 1}.
Take

P = {000),(110),(001),(010)}
c V.

P is a group vector subspace of V. Thus P is a pseudo group
vector subspace of V.

Example 2.5.65: Let

{a bj
V =

c d
be the group linear algebra over Z;.
Take

TR R T T R

P is the pseudo group vector subspace of V over Zs.
Take

0 0) (O O) (O O)(1 1) (2 2
X= , , , , c V.
0 0)(1 1 2 2)10 0)10 O
X is also a pseudo group vector subspace of V over Zj.

However every proper subset of V is not a pseudo group vector
subspace of V.

a,b,c,de 23}
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For instance

= {5 36 G

is not a pseudo group vector subspace of V as
1 0 2 0
2 = T
0 0 0 0
11 2 2
2 = gT.
11 2 2

or
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Chapter Three

SET FUZZY LINEAR ALGEBRAS
AND THEIR PROPERTIES

In this chapter we define the new notion of set fuzzy linear
algebra analogous to set vector space; for these algebraic set up
will be of immense use in application to fuzzy models or in any
other models for in these set vector spaces and set fuzzy vector
spaces we can induct any wanted elements without affecting the
system and the structure. We now just recall the definition of
fuzzy vector spaces before we proceed on to define set fuzzy
vector spaces.

DEFINITION 3.1: A fuzzy vector space (V, n) or nV is an
ordinary vector space V with a map n: V — [0, 1] satisfying
the following conditions;

n(a+b)>min {n(a), n(b)}
n-a =n

n) =1

n(ra) > n(a)

N~

foralla, b, € Vandr € F where F is the field.

We now define the notion of set fuzzy vector space or V,, or Vn
ornV.
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DEFINITION 3.2: Let V be a set vector space over the set S. We
say V with the map nis a fuzzy set vector space or set fuzzy
vector space if n: V. — [0, 1] and 1 (ra) > n(a) for all a €V and
r €S. Wecall V, or Vi or nV to be the fuzzy set vector space
over the set S.

We now illustrate this situation by the following example.

Example 3.1: Let V={(135),(111),(555),(777),(333),
(5 15 25), (1 2 3)} be set which is a set vector space over the set
S=1{0, 1}.

Define amap n: V — [0, 1] by

nx,y,z)= (%) € [0, 1]

for (x,y, z) € V. V,, is a fuzzy set vector space.

Example 3.2: Let V = Z the set of integers. S = 27" be the set.
V is a set vector space over S. Define n: V — [0, 1] by, for

1 .

every v € V; n(v) = — . nV is a set fuzzy vector space or fuzzy
v

set vector space.

Example 3.3: Let V ={(a;) | a € Z"; 1 <i,j <n} be the set of
all n x n matrices with entries from Z".

Take S = 3Z" to be the set. V is a fuzzy set vector space where
n: V — [0, 1] is defined by

L ifjal=0
(A =(ay) = {5/ A
1 if|A]=0.

Vn is the fuzzy set vector space.
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The main advantage of defining set vector spaces and fuzzy
set vector spaces is that we can include elements x in the set
vector spaces V provided for all s € S, sx €V this cannot be
easily done in usual vector spaces. Thus we can work with the
minimum number of elements as per our need and work with
them by saving both time and money.

We give yet some more examples.

Example 3.4: Let V = 27" x5Z" x 7Z" be a set vector space
over the set Z"; with n: V — [0, 1] defined by

1
n(x,y,2) =
X+y+z

makes, NV a fuzzy set vector space.
Now we define the notion of set fuzzy linear algebra.

DEFINITION 3.3: A4 set fuzzy linear algebra (or fuzzy set linear
algebra) (V, n) or nVis an ordinary set linear algebra V with a
map such n: V — [0, 1] such that n(a + b) > min (n(a), n(b))
fora, b evV.

Since we know in the set vector space V we merely take V to
be a set but in case of the set linear algebra V we assume V is
closed with respect to some operation usually denoted as ‘+’ so
the additional condition n(a + b) >min (n(a), n(b)) is essential
foreverya, b eV.

We illustrate this situation by the following examples.

Example 3.5: Let V = Z'[x] be a set linear algebra over the set
S=Z"n:V->]0,1].

1

n(p(x)) = 1 deg(p(x))
1 if p(x) is a constant.
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Clearly Vn is a set fuzzy linear algebra.

Example 3.6: Let

a2

be set linear algebra over 2Z" = S. Define

a,b,d,ce Z*}

a b ; if ad # bc
n q = <|ad—bc|
¢ 0 if ad = be

for every a, b, ¢, d € Z". Clearly Vn is a fuzzy set linear
algebra.

Example 3.7: Let V = Z" be a set linear algebra over Z". Define

n:V-—-[0,1]asn(a)= 1 . Vn is a fuzzy set linear algebra.
a

Now we proceed onto define the notion of fuzzy set vector
subspace and fuzzy set linear subalgebra.

DEFINITION 3.4: Let V be a set vector space over the set S. Let
W c V be the set vector subspace of V defined over S. If n: W —
[0, 1] then W, is called the fuzzy set vector subspace of V.

We illustrate this by the following example.

Example 3.8: LetV={(111),(101),(011),(000),(100)}
be a set vector space defined over the set {0, 1}. Definen : V —
[0, 1] by

(x+y+2)

nxyz)= (mod?2).

So that
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Vn is a set fuzzy vector space. Take W= {(111),(000), (01
1)} < V. Wiis a set vector subspace of V.1: W — [0, 1].

n(000)=0

_1
N =g
n(011)=0.

W, is the fuzzy set vector subspace of V.

Example 3.9: Let V = {(111), (1011), (11110), (101), (000),
(0000), (0000000), (00000), (1111111), (11101), (01010),
(1101101)} be a set vector space over the set S = {0,1}.

Let W = {(1111111), (0000000), (000), (00000), (11101),
(01010) (101)} < V. Define n: W — [0, 1] by

(x1, X X;) = !
NXi, X2, ooy Xy 12

nW is a fuzzy set vector subspace.

We now proceed on to define the notion of fuzzy set linear
subalgebra.

DEFINITION 3.5: Let V be a set linear algebra over the set S.
Suppose W is a set linear subalgebra of 'V over S. Let n: W —
[0, 1], nW is called the fuzzy set linear subalgebra if n (a + b)

>min {n (a), n(b)} fora, b, e W.

We give some examples before we define some more new
concepts.
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Example 3.10: Let V=Z7"x Z" x Z" be a set linear algebra over
the set S=27". W =2Z"x2Z" x 4Z" is a set linear subalgebra
over the set S =2Z". Define : W — [0, 1]

1

n@be)y=1-———.
a+b+c

Clearly n (%, y) > min {n (x), n (y)} where x = (xy, X», X3) and y
=(y1, Y2 ¥3); X,y € W. Wn is a fuzzy set linear subalgebra.

Example 3.11: Let

e {e)

V is a set linear algebra over the set S= {1,3,5,7} = Z". Let

w:{@ ]z}

be the set linear subalgebra of V. Define n: W — [0, 1] by

n =1—-—.
a a a

W,, or Wn is a set fuzzy linear subalgebra.

a,b,c,d,eZ*}.

Now we proceed on to define fuzzy semigroup vector spaces.

DEFINITION 3.6: A semigroup fuzzy vector space or a fuzzy
semigroup vector space (V, n) or Vn where V is an ordinary
semigroup vector space over the semigroup S; with a map n:V
— [0, 1] satisfying the following condition,

n(ra) > n(a)foralla e Vandr €8S.

124



Let us illustrate this structure by some examples.

Example 3.12: Let V = {(1000), (1011), (1110), (0111), (0100),
(0000), (0001)} be the semigroup vector space over the
semigroup S =7, = {0, 1}. Definen : V— [0, 1] as

(a+b+c+d)

nabcd)= (mod?2).

Clearly Vn is the semigroup fuzzy vector space.
We give yet another example.

Example 3.13: Let V = Z; x Z3 x Z3 be the semigroup vector
space over the semigroup Z;. Definen : V— [0, 1] as

(x+y+2)

nixyz)= (mod3).

Vn is a semigroup fuzzy vector space.

In fact given a semigroup vector space V, we can get many
semigroup fuzzy vector spaces.

For definen;: V— [0, 1] as

1

m(x,y,2) =< (X+y+z)(mod3)
0 if x+y+2z=0(mod3)

if x+y+2z#0(mod3)
Vn; is a semigroup fuzzy vector space different from V.
Definen; : V— [0, 1] as

%ifx+y+250(mod3)

N (X,9,2)= iifx+y+zzl(m0d3)

éifx+y+252(mod3)
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Vn; is a semigroup fuzzy vector space.

Thus study of semigroup fuzzy vector spaces gives us more
freedom for it solely depends on 1 which is defined from V to
[0, 1].

Next we define semigroup fuzzy vector subspaces of a
semigroup vector space V.

DEFINITION 3.7: Let V be a semigroup vector space over the
semigroup S. Let W cV be a semigroup vector subspace of V
over S. We say Wn is a semigroup fuzzy vector subspace if 1 :
W — [0, 1], such that

(i) n(x, y) > min (17 (x), 7 ()
(i) n(rx) > n(x) forallr e Sandx, y € W.

We illustrate this by the following example.

Example 3.14: Let V = Z; x Z; x Z, x Z; be a semigroup vector
space over the semigroup S = Z;. Let W = Z; x {0} x Z; x {0}
be the semigroup vector subspace of V. Define the map n: W
— [0, 1] by

%if x+y=1(mod7)

%ifx+yz2or4(mod7)
nx0y0)= |
gifx+yz3or5(mod7)

%if x+y=6o0r0(mod7).
NW is the semigroup fuzzy vector subspace of V.

Here also using one semigroup vector subspace W we can
define several semigroup fuzzy vector subspaces.
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Definen, : W — [0, 1]

0 if x+y=0(mod7)
byni (x0y0)= )
1 if x+y=0(mod7).

Wn); is a semigroup fuzzy vector subspace.

We see the definition of fuzzy semigroup vector space is not in
any way different from the fuzzy set vector space. So this will
enable one to go from one type of space to another using fuzzy
concepts defined on them.

So one can easily transfer a study from semigroup vector
space to set vector space by defining the corresponding fuzzy
set vector space and the semigroup fuzzy vector space as the
map 1 and hence NV does not give different structures but same
type of structures.

Now we see even in case of semigroup linear algebra and
set linear algebra the fuzzy structures are identical.

DEFINITION 3.8: Let V be a semigroup linear algebra defined
over the semigroup S. We say nV is a semigroup fuzzy linear

algebra if n: vV — [0, 1] such that nn (x +y) > min (1 (x), n(y)),
n(rx)=n (x) foreveryr e Sandx V.

Now we illustrate this situation by the following examples.

Example 3.15: Let V = Z7 x Z; xZ7 x Z, be the semigroup
linear algebra defined over the semigroup S = Z;. Define n: V
— [0, 1] by

1 ifx+y+z=0(mod7)
nxyzw)=

0 otherwise.

Vn is a semigroup fuzzy linear algebra.
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Example 3.16: Let

V — a'1 a2 aS
a, a; ag
be the semigroup linear algebra over the semigroup S = Z'.
Definen: V— [0, 1] as

a, eZ*;lSiS6}

Vn is a semigroup fuzzy linear algebra.

Example 3.17: Let V = Z' [x] be the polynomials with
coefficient from Z' in the variable x; V under addition is a
semigroup. V is a semigroup linear algebra over Z".

Definen: V— [0, 1] as
1

n(p (x)) = §deg p(x)
1 ifdegp(x)=0

7 is the semigroup fuzzy linear algebra.

Definen; : V> [0, 1] as
1
Mi(p(x)) = 1 deg p(x)
0if degp(x)=0

then also V1) is a semigroup fuzzy linear algebra.

We see as in case of fuzzy set vector spaces and semigroup
fuzzy vector spaces the notion of fuzzy set linear algebra and
semigroup fuzzy linear algebra are also identical. This sort of
making them identical using fuzzy tool will find its use in
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certain applications. We shall define such structures as fuzzy
equivalent structures.

We see fuzzy set vector spaces and semigroup fuzzy vector
spaces are fuzzy equivalent structures though set vector spaces
are distinctly different from semigroup vector spaces. Like wise
set linear algebras and semigroup linear algebras are fuzzy
equivalent although set linear algebras are different from
semigroup linear algebras.

Now we proceed on to define group fuzzy vector spaces and
group fuzzy linear algebras.

DEFINITION 3.9: Let V be a group linear algebra over the
group G. Let n: V — [0, 1] such that

n(@+b) 2 min(n(a), nb)

n-a = n(

17 (0) = 1

n (ra) > n(a)foralla, b €Vandr €G.

We call Vn the group fuzzy linear algebra.
We illustrate this by an example.
Example 3.18: Let V =7 x Z x Z be the group linear algebra.

Definen: V — [0, 1] by
1
n@ =I-—
|a|
foreverya e Z

n©0 =1
1 V is the group fuzzy linear algebra.
It is pertinent to mention here that we have not so far defined

group fuzzy vector spaces. We first mention group vector
spaces are fuzzy equivalent with set vector spaces and
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semigroup vector spaces. However for the sake of completeness
we just define group fuzzy vector spaces.

DEFINITION 3.10: Let V be a group vector space over the group
G. n:V = [0, 1] is such that n(ra) > n(a) for all r € G and a
€ V. We call Vnor nV to be the group fuzzy vector space.

We see from the very definition the group vector spaces are
fuzzy equivalent with set vector spaces.

Now we give an example of this concept.

Example 3.19: Let V = Z [x] be a group vector space over the
group G. Definen : V — [0, 1] by

_ 1
n(p(x)) = degp(0)

and
1 (constant) = 0.
Vn is a group fuzzy vector space.

In the same example if we view Z [x] to be a group under
addition. Clearly Z [x] = V can be viewed as a group linear
algebra over the group Z. n defined above is such that nV is a
group fuzzy linear algebra.

DEFINITION 3.11: Let V be a group linear algebra over the
group G. Let W c V, where W is a subgroup of V and W is a
group linear subalgebra over the group G. n: W — [0, 1] such
that

n(+b) > min(n(a), nb)
n(a) = n(a

(0) = ]

n(ra) > rn(a)

forall a, b eW and r € G; we call Wn or nW to be the group
fuzzy group linear subalgebra.
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We illustrate this by the following.

Example 3.20: Let V =7 x Z x Z x Z x Z be a group linear
algebra over the group G =Z. W = 3Z x {0} x 5Z x {0} x{0}
be the group linear subalgebra over Z.

Define n: W — [0, 1] by

0 if x+y+z+ow+t=0

nxy,z o t)= 1

— if X+y+z+o+t20’
X+y+z+o+t

NW is a fuzzy group linear subalgebra.

The importance of this structure is that we do not demand for a
field or any other perfect nice structure to work with. Even a set
will do the work for we ultimately see when we define fuzzy
vector spaces the field does not play any prominent role. Also
we see the group linear algebra is the same as ordinary vector
space, when they are made into respective fuzzy structures. In
fact these two structures are basically fuzzy equivalent. Any one
will like to work with least algebraic operations only. So as we
have already mentioned set vector spaces happens to be the
most generalized concept of ordinary vector spaces and it is
easy to work with them.

Another advantage of working with these special vector
spaces is we see most of them happen to be fuzzy equivalent
with some other special space or the ordinary vector space. In
certain models or study we may have meaning for the solution
only when they are positive. In such circumstances we need not
define the vector spaces over a field instead we can define it
over the set S which is a subset of Z" U {0} or over the
semigroup Z" U {0} or even just Z.

Further as our transformation to a fuzzy set up always demands
only values from the positive unit interval [0, 1] these
semigroup vector spaces or set vector spaces would be more
appropriate than the ordinary vector spaces.
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Further we see even in case of Markov process or Markov chain
the transition probability matrix is a square matrix with entries
which are non negative and the column sum adding up to one.
So in such cases one can use set vector space where

V= {(aij)m/aij €[0,1] with Zn:aik =1for1£k£n}
i=l1

is a set vector space over the set [0, 1]. So these new notions not
only comes handy but involve lesser complication and lesser
algebraic operations.
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Chapter Four

SET BIVECTOR SPACES AND THEIR
GENERALIZATION

In this chapter for the first time we define the notion of set
bivector spaces and generalize them to set n vector spaces. We
enumerate some of the properties. In fact these set n-vector
spaces happens to be the most generalized form of n-vector
spaces. They are useful in mathematical models which do not
seek much abstract algebraic concepts.

DEFINITION 4.1: Let V = V; UV, where V; and V, are two
distinct set vector spaces defined over the same set S. That is V),
zVyand Vy gV we may have V; NV, = ¢ or non empty. Then
we call V to be a set bivector space over S.

We illustrate this by the following examples.

Example 4.1: Let V=V, U V, where V| =Zs x Zs and

e {0

are set vector spaces over the set S = {0, 1}. V is a set bivector
space over the set {0, 1} =S.

a,b,c,d,e ZS}



Example 4.2: Let V=V, UV, where V= {(111),(000), (1
10),(11111),(00000),(11011),(11000),(100)} and
V,={01),(10),00),(1111),0000),0111),(11111
1),(000000),(1000), (000 1)} be set vector spaces over
the set S= {0, 1}. V =V, U V, is a set bivector space over the
set S.

Example 4.3: Let V=V, U V, where

a a a
V]Z{[ J anlz}
a a a

and
a a
V,= 4Jla al|laeZ,
a a

be two set vector spaces over the set S = {0, 1}. V is a set
bivector space over the set S.

Now we have seen that how a set bivector space is constructed
from these examples.

Example 4.4: Let

a b
V= a,b,c,deZ,
c d
a a
sz {[ j aEle}
a a

be set vector spaces over the set S = {0, 1}. Clearly V =V,
U V, is not a set bivector space over S as V, < V. Thus we
cannot say the union of two set vector spaces defined over the
same set gives a set bivector space.

and
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Now we proceed on to define the notion of set bivector
bisubspaces of a set bivector space.

DEFINITION 4.2: Let V = V; UV, be a set bivector space
defined over the set S. A proper biset W =W, W, (W, cV;
and W, c V) such that W; and W, are distinct and contained in
V' is said to be a set bivector bisubspace of V (or set bivector
subspace) if W is a set bivector space defined over S.

We now illustrate situation by the following examples.

Example 4.5: Let V=V, UV,

_|fa b
c d
be a set bivector space over the set S = {0, 1}.
Let W= W1 U W2

{2

c VU V,=V. W isa set bivector space over S = {0,1}.

a,b,c,deZm} U {(abcd)|ab,c,deZpn

anlz} U{(aaaa)laeZp}

Thus W is a set bivector subspace of V over S.

Example 4.6: Let
V, = a, a, 4
a, a; a
a a a
a a a

a, €{0,2,6,8,10,12} ZM}

aanM}.

and
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V =V, UV, is a set bivector space over S = {0,1}. Clearly
Vi NV, % ¢ but V| and V, are distinct. Take

melen
o

W = W, UW, is a set bivector subspace (or set bivector

subbispace) of V.
Suppose

{[a b cj
P1 =
a a 0
a a a
Pz =
{(0 0 OJ
then also P = P, U P, is a set bivector bisubspace of V. Thus we

can have several such set bivector subspaces of a given set
bivector space V.

a e(0,2,6,8,10,12)} cV,

and

anM} cV,.

a,b,ce(0,2,...,12) c ZM} Vi

and

36214} =V,

Now we define the bidimension and the generating biset of a set
bivector space V=V, U V,.

DEFINITION 4.3: Let V = V; UV, be a set bivector space
defined over the set S. Let X =X; UX, cV; UV, wesay Xis a
bigenerating subset of V if X; is the generating set of the set
vector space V; over S and X, is the generating set of the set
vector space V; over S.

The number of elements in X = X; U X, is the bidimension of V
and is denoted by (|X;; |Xz|) or [X;i| U |Xy].
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We shall illustrate this definition by some examples.

Example 4.7: Let V =V, UV, = {(111), (000), (100), (010),
(001)} w {(1111), (0000), (1110), (1000)} be the set bivector
space over the set S = {0,1}. Take X = {(111), (100), (010),
(001)} v {(1111), (1110), (1000)} = V; U V, is the generating
bisubset of V over the set S. Clearly dim V = (4, 3) or (4 U 3).

Example 4.8: Let

a a
V:V1UV2:{( J
a a

be the set bivector space defined over the set S = Z.

an}u{ZxeZ}

x= {G D} U {(111), (100), (010), (001), (110), (abc) ...}
= XjuX,

where X, is an infinite subset of V,, this alone can generate V so
bidimension of V is infinite i.e., bidimension of V = {1 U o} or

(1, o).

Example 4.9: Let V=V, UV, ={Ziox ZioxZio} W {(aaaa
a)|ae {0, 2,4, 6,8} aproper subset of Zo}. V is a set bivector
space over Zo. Prove bidimension of V is finite over Z,.

Now we proceed onto define the notion of set bilinear algebra or
equivalently we can call it as set linear bialgebra.

DEFINITION 4.4: Let V =V; UV, be such that V; is a set linear
algebra over the set S and V, is also a set linear algebra over S.
Further V; 2V, Vi ¢ Vyor Vy, ¢V, Then V=V, UV, is
defined to be the set linear bialgebra over the set S.

We now illustrate this situation by some examples.
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Example 4.10: Let

a a a
V_V1UV2:{( ]
a a a

be the set linear bialgebra over the set Z;s.

ae Zlé} U {Z]ﬁ X Z]()}

Example 4.11: Let

v

{(000), (010), (100), (001), (110), (011), (101), (111)}

Aty

= V,uUV,.

a,b,c,deZ, ={0, 1}}

V is a set linear bialgebra over the set S = {0 1}.

Example 4.12: Let
V = V,uV,
= {(ZYU{Z'xZ xZ"

be the set linear bialgebra over the set S = 27", here V, and V,
are set linear algebras over S =2Z".

Example 4.13: Let
vV = Vl U Vz
{(ab)/a,be {01}} v {1110}, {0000}, (0011)};

V is not a set linear bialgebra over the set S= {0, 1}. V is only a
set bivector space over the set S because V; is not closed under
the operation ‘+’.

In view of this we have the following result which is left for the
reader to prove.

Result: Every set linear bialgebra is a set bivector space but all

set bivector spaces need not in general be a set linear bialgebras.
The example 4.13 is one such algebraic structure.
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Now we proceed on to define the notion of set linear
subbialgebra or equivalently the notion of set bilinear
subalgebra.

DEFINITION 4.5: Let V =V; UV, be a set linear bialgebra over
theset S.If W cVie, W=W, UW,cV, UV, (W, cV,i=1,
2) is a set linear bialgebra over the set S then we call W to be
the set linear subbialgebra of V.

We now illustrate this by some examples.

Example 4.14: Let

v

V1UV2
a a a a a a
a a a a a a

ae Z} ;
V is a set linear bialgebra over Z. Take
W, U W,

o oerlols 0 e 0)eed

c ViU V,=V, Wis a set linear subalgebra of V over S.

A

Example 4.15: Let V =V, UV, = Z[x] U Q be a set linear
bialgebra over the set S = 2Z. Suppose W = W; U W, = {all
polynomial of even degree with coefficient from 27} U {57} <

ViU V,=V.Clearly W is a set linear bisubalgebra over the set
S =27.

Example 4.16: Let V = VUV,
0
= * XeZ, Y
0 x 0y O
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V is a set linear bialgebra over S = Z;,. Take

W = W1UW2
x 0 X X X
= Xxel, Y xeZ,
0 0 0 0 O
cViuV,=V.

W is a set linear bisubalgebra of V over the set S = Z,.

DEFINITION 4.6: Let V =V; UV, be a set linear bialgebra over
the set S. Let X = X; VX, cV, oV, =V, if X; is a generating
set of V; and X, is a generating set of V, then X = X; U X, is the
generating subset of V. The bidimension of V is the cardinality
of (1X1], |Xa]).

We illustrate this situation by some examples.

Example 4.17: Let V=V, UV, ={Z} U {(aaa)|acZ}bea
set linear bialgebra overthe set S=Z. Let X=X, U X, = {1} U
{1 11} <V, UV, X is the generating biset of V. The
bidimension of V is (1, 1).

Example 4.18: Let

v

V1UV2
a a
a a

be the set linear bialgebra over the set S = Z. Let

an} U {(abc)la,b,ceZ}

X

G D U {(100), {010), (001)}

X1UX2CV1UV2
V.
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The bidimension of V is {1} U {3} or (1, 3).

Example 4.19: Let V=V, UV, =Z[x] UZ x Z x Z be a set
linear bialgebra over the set Z. Let X = {1, x, X% X B AV
{(100), (010), (001)} generates V and the bidimension of V is

{oo} U {3} = (0, 3).

Example 4.20: V =V, UV, = Z[x] U Z x Z x Z as a set
bivector space over the set Z is of bidimension (c0,0).

This is the marked difference between the set linear bialgebras
and set bivector spaces.

Now we proceed onto define the notion of semigroup bivector
spaces, biset bivector spaces and bisemigroup bivector spaces
and illustrate them by examples.

DEFINITION 4.7: Let V = V; UV, be such that V; is a set vector
space over the set S; and V, be a set vector space over the set
Sz. S] ¢S2,’ S] \g\Sz and SZ ‘g\ S] we deﬁne V=V ul,;to be

the biset bivector space over the biset S; U S,.
Now we will illustrate this definition by some examples.

Example 4.21: Let V=V, UV, =Z X Z xZ U2 xZipy X Zy,
x Z1, be a biset bivector space over the biset S =7 U Z,.
V1 U Vz

le[X]U{(a : aj aezlo};
a a a

take the biset S = Z1, U Z;¢; then V is the biset bivector space
over the biset S = Z;, U Zp. i.e., V| is a set vector space over
the set Zy, and V, is a set vector space over the set Z.

Example 4.22: Suppose

\Y
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It is interesting as well as important to observe that set bivector
spaces and biset bivector spaces are two different and distinct
notions. They will find their applications in different sets of
mathematical models.

Example 4.23: Let

VvV = V1UV2

£(111), (000), (11111), (00000), (110), (100), (001),
(10100), (0000), (1100), (1010)}

{[a b]
U

c d
V| is a set vector space over the set S; =Z,= {0, 1} and V, is a

set vector space over the set S, = Zs. Thus V=V, UV, is a
biset bivector space over the biset S =S, U S, =7, U Zs.

a,b,c,deZS}.

Example 4.24: Let

vV = V,uV,
((1111), (0011), (0000), (1000), (11), (01), (00)}

a a a
U a,beZ,
b b b

be a biset bivector space over the biset S =S, U S, =7, U Z;.

Now we define the notion of biset bivector subspaces.

DEFINITION 4.8: Let V = V; UV, be a biset bivector space over
the biset S = S; US,. Let W =W, UW, cV;, UVy if Wis a
biset bivector space over S then we call W to be the biset
bivector subspace of V over the biset S = S; U.S,.
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Example 4.25: Let V=V, UV,
= {(000000), (111000), (110110), (111), (000), (100),

(011)}
a a a
U {( ] ae 24}
a a a
be the biset bivector space over the biset S=S; U S, = {0, 1} U

Zs.
Let

W = W1UW2

{(000000)(111000)}u{[a 2 aj
00 0

3624}

W is a biset bivector subspace of V over the biset S=S; U S.

c ViuV,,

Example 4.26: Let

a a
V:V1UV2:{( J
a a

{Zs[x] i.e., all polynomial in the variable x with coefficients
from Zs} be the biset bivector space over the biset S=S; U S, =
24U Zs . Let

ae Z4}U {Zs[x]};

A

W, u W,

(o 2=

{all polynomials of degree 1 with coefficient from Zs}
c ViuV,

W is a biset bivector subspace of V over the biset S=7, U Zs .
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Example 4.27: Let

v

V]UVz

{zéxzé}u{(a b C)
d e f

be the biset bivector space over the biset S =S; U S, = {0 2 4}

U Z;. Take
ae 27}

W is the biset bivector subspace over the biset S=S; U S, .

a,b,c,d,e,er7}

W W, uW,

{{0,3}xzé}u{[a a a]
00 0

CV1UV2;

DEFINITION 4.9: Let V = V; U V; be a biset bivector space over
the biset S = §; US,. If X =X, X, cV; UV, is such that X;
generates V; as a set vector space over the set S; and V, is
generated by the set X, over the set S, then we say the biset X,
U X, is the bigenerator of the biset bivector space V =V, UV,
over the biset S = S; U S, The bicardinality of X = X; UX,
denoted by (1X)|, |X>|) gives the bidimension of V over S.

We illustrate this by the following examples.

Example 4.28: Let V =V, U V, be a biset bivector space over
the biset S=S; U S, where V| =75 x Zs x Z5s with S| = Zs and

wfi )

and S, = Z,. Take

a,b,c,d,e,feZ, = {0,1}}

X = X1UX2
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= {(a,b)/a,be Zs)
I 1T 1) (1 1 13)(1 1 1
- {(1 1 1}[1 1 0}(0 0 J
I 1T Ih)(1 1 1)y(1 1 1
(1 0 1]’(0 1 J’(o 1 OJ’
1 1T 1y(1 1 1)(0 O O
(1 0 oj’(o 0 Oj’(l 1 J}
X is finite biset and bidimension of V = {24 U 63} = (24, 63).

Example 4.29: Let

VvV = V;uV,
a a a
a a a

be a biset bivector space over the biset S=S, US, =Z U Z; .
Take

an}u {75 x 73}

1 11
= X1UX2,

)
X = v {(11), (12), (10), (01)}

X is the bigenerating biset of the biset bivector space V. The
bidimension of Vis {1} U {4}.

Example 4.30: Let =V, UV, = {Zs x Zs} U (Z x Z) be the
biset bivector space over the biset S= S, U S, =Zs U Z. Take X
=X, uX; = {(11), (10), (01), (12), (13), (14)} U {(a,b)/ab
€ Z} bigenerates V. Clearly [X;|] = 6 and |X;| = oo so the
bidimension of V is (6, © ).

Thus even if one of the set vector spaces in the biset bivector
space V is of infinite dimension we say the biset bivector space
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to be of bidimension infinity. Only if both V; and V, are of
finite dimension we say V, the biset bivector space V is of finite
bidimension.

Now we proceed on to define the notion of biset bilinear algebra
or equivalently biset linear bialgebra.

DEFINITION 4.10: Let V =V, UV,, if V; is a set linear algebra
over the set S; and V, a different set linear algebra on the set S,
(S] EAYIY, QSZ, S, gS]) (V] ZVy V; ng or Vng1) then we
call V="V, UV, to be the biset bilinear algebra over the biset S
=5, US,.

We illustrate this definition by examples.

Examples 4.31: Let

V=V,UV,=Z7[x] U {(a a) anS}
a a

be the biset bilinear algebra over the biset S = Z U Zs. Clearly
Z[x] is the set linear algebra over Z and

(2 2]

is the set linear algebra over the set Zs.

Example 4.32: Let V=V, UV, ={Z;xZ;} U {(aaaa)/ace
Zs}; Vi is a set linear algebra over the set Z; and V, is a set
linear algebra over the set Z¢. Thus V = V| U V, is the biset
bilinear algebra over the biset S = Z; U Zs.

Example 4.33: Let V=V, U V,={(a,b)/a,b € Z} U {Zy[x] =
all polynomials in the variable x with coefficients from the set
Zo}. Take S =Z U Zy = S; US,. Now V is the biset bilinear
algebra over the biset S= S, U S,.
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Example 4.34: Let

A\ V1UV2

{25x25x25}u{£2 z Ej a,beZz}.

Take the biset S = =S, U S, = Zs U Z,. Clearly V is a biset
bilinear algebra over the biset S = Zs U Z.

Now we proceed on to define the bidimension of a biset bilinear
algebra over the biset S=S; U S,.

DEFINITION 4.11: Let V = V; UV, be a biset linear bialgebra
over the biset S =S; US,. Let W=W, UW, cV; UV, if Wis
a biset bilinear algebra over the biset S = S; U S, then we call
W to be the biset bilinear subalgebra of V over the biset S = S,
USZ.

We illustrate this by some simple examples.
Example 4.35: Let

v

V1UV2
a a a
a a a

be the biset bilinear algebra over the biset S = S; U S, = Z;s
Y Z4. Let

aEZS}U {Z4><Z4}

W = W1UW2

- et

c ViuVy

an5} U {{0,2} x {0,2}}
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W is a biset bilinear subalgebra of V over the biset S=S, U S, .

Example 4.36: Let V =V, U V, = Z;[x] U{(000), (111), (100),
(001), (010), (110), (101), (011)} be the biset bilinear algebra
over the biset S = Z; UZ, . Take W = W; U W, = {all
polynomials of degree 2 with coefficient from Z;} w {000),
(111)} <V, U V,; W is a biset bilinear subalgebra of V over
the biset S =7, U Z,.

Example 4.37: Let

v

V]UVz

b
= {ZzXZZXZZXZQ}U{[a J
c d

V is a biset bilinear algebra over the biset Z, U Zs.
Take

a,b,c,deZ3}.

W = WuUW,
c ViuV,
where
Wi =27, x {0} x Z, x {0}
and

a 0
W, = a,deZ, .
0 d

W is the biset bilinear subalgebra of V over the set Z, U Z.

Now having defined the substructure we now proceed on to
define the notion of the bigenerating set and bidimension of the
biset bilinear algebra.

DEFINITION 4.12: Let V = V; UV, be a biset bilinear algebra
defined over the biset S = S; US,. Let X =X; vXo cV; UV,
where X; generates V; as a set linear algebra over S; and X,
generates V, as a set linear algebra over S, Clearly X = X;
U X, bigenerates V and the bidimension of Vis (1X;]; | X;|).
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We give some examples to illustrate this concept.
Example 4.38: Let
vV = ViuV,
a a a
a a a

be the biset bilinear algebra over the biset S=Z U Z, =S, U S,.

an} UZy X2y X7y

Let
X = XjuX,

i {G i D}U{(001%(000)’000)5(010)}
c ViUV,

we see X bigenerates V and bidimension of V is {1} U {3} or

{1, 3}.
Example 4.39: Let

A%

ViuV,
a a a
a a a

be a biset bilinear algebra over the biset S =Z,, U Zs . Take

anlz} |\ {Zﬁ X Z()}

X = XuX,

b 11), (10
111} 4, (10)}

is the bigenerator of V. The bidimension of V is {1} U {2} or
{1, 2}.
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Now having seen the bidimension we wish to mention that for
the same set V treated as a biset bilinear algebra and as a biset
bivector space over the same biset S = S; US,, their
bidimensions are distinct and not the same.

Thus in certain cases it is advantageous to work with biset
bilinear algebra for it will make the cardinality of the
bidimension relatively small when compared with the biset
bivector space.

In spaces where it is possible we can make use of biset
bilinear algebra instead of biset bivector spaces.

Now we proceed on to define the notion of semigroup bivector
spaces.

DEFINITION 4.13: Let V = V; UV, where V; is a semigroup
vector space over the semigroup S.

If 'V, is also a semigroup vector space over the same S and
lfV] and V, are distinct (V] zV, V) \g V, and v, \g V]) then

we say V ="V, UV, to be the semigroup bivector space over the
semigroup S.

We illustrate this by the following examples.
Example 4.40: Let

A%

V]UV2
b
VAR ARD 2 01 | R
d e f

be a semigroup bivector space over the semigroup S = 2Z", we
see V is a semigroup vector space over the semigroup 2Z" = S
and V, is also a semigroup vector space over the same
semigroup S =2Z".

a,b,c,d,e,f e ZZ*}

Example 4.41: Let V = {(111), (000), (100), (001)} v {(a, b) /
a,be Z,=1{0,1}} =V, UV, Vis asemigroup bivector space
over the semigroup Z, = {0, 1} =S.
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Example 4.42: Let
{@b.olabeeZ}u {“ °]
0 a

ViuV,.

v

a,c e2Z+}

V =V, UV, is a semigroup bivector space over the semigroup
S=7".

Example 4.43: Let

\% £(000), (00), (01), (111), (001), (011)} U {(1111),
(0000), (0101), (1101), (000), (111), (11111),
(00000), (10101)}

ViuV,.

V is a semigroup bivector space over the semigroup Z, = {0,1}
under addition modulo 2. V; NV, = {(000), (111)} # ¢. But V,
< Vs, and V, ng

Now we proceed on to define the new notion of semigroup
bivector subspace of a semigroup bivector space V.

DEFINITION 4.14: Let V = V; UV, be a semigroup bivector
space over the semigroup S. Let W =W, UW, cV, UV, =V
be a proper biset of V, if W is a semigroup bivector space over S
then we call W to be the semigroup bivector subspace of V over
the semigroup S. Clearly W; #W, and W, ¢ W, and W, ¢ W,
with W, cV,and W, c V.

We now illustrate this definition by some examples.

Example 4.44: Let V=V, U V, be a semigroup bivector space
over the semigroup S =Z". Let

108 (N
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and
V,={3Z"x5Z"}.

V| is a semigroup vector space over the semigroup S = Z" and
V, is a semigroup vector space over the semigroup S=Z".
Thus V is a semigroup bivector space over the semigroup S

=7
W= a a a
: a a a

Take
W,=3Z" x{0} c V,.

ae3zZ' U{O}} c V,

and

W =W, U W, is a semigroup bivector space over the semigroup
S =Z". W is a semigroup bivector subspace of V=V, UV,
over the semigroup S=Z".

Example 4.45: Let V = {(1110), (0000), (1010), (1000), (00),
(11), (10)} w {(11111), (00000), (000), (111), (11011), (101)} =
Vi UV, be the semigroup bivector space over the semigroup S
= Z,. W = {(0000), (1111)} v {(000), (101)} c V; UV, is a
semigroup bivector subspace of V over S = Z,.

Now we proceed on to define the bidimension and bigenerator
of the semigroup bivector space.

DEFINITION 4.15: Let V = V; UV, be a semigroup bivector
space over the semigroup S.

Let X = X; X, <V, UV, if X; generates the semigroup
vector space V; over the semigroup S and X, generates the
semigroup vector space V, over the semigroup S then, X = X;
U X is the bigenerator of the semigroup bivector space V over
the semigroup S.

The bidimension of V is |X;| U |Xa| or (X1, |X3|) over the
semigroup S. If even one of |X;| or |X;| is infinite we say the
bidimension of V is infinite.
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Example 4.46: Let V.=V UV, = {(000), (111), (010), (001),
(00), O1)} U {(aaaa)/ae Z,= {0, 1}} be the semigroup
bivector space over the semigroup S = Z, = {0,1}. X = {(111),
(010), (001), (01)} W ((1111)}; bigenerates V over S = Z, =
{0,1} so the bidimension of V is (4,1) or {4} U {1) over S.

Example 4.47: Let V= {(abc)/a,b,ce Z'} U {(aaaaa)/a
€ Z"} be the semigroup bivector space over the semigroup S =
Z'.Take X={(abc)/a,b,ce Z} U {(11111)} cV, U V,, X
is a bigenerator of V and the bidimension of V over S is {0}
U {1} = {oo, 1}. Thus V is an infinite bidimensional semigroup
bivector space over S=Z".

Now we proceed on to define the notion of semigroup bilinear
algebra over the semigroup.

DEFINITION 4.16: Let V = V; UV, be such that V; is a
semigroup linear algebra over the semigroup S and V; is a
semigroup linear algebra over the semigroup S. with V; =V, ,
VigV, and V, zV,.

Then we call V to be the semigroup bilinear algebra over
the semigroup S.

We illustrate this by few examples.
Example 4.48: Let

V = ViuV,
{(111), (000), (110), (101), (100), (010), (001),

011)} U {(a aj acZ, = {0,1}}.
a a

V is a semigroup bilinear algebra over the semigroup S = Z, =
{0,1}.

Example 4.49: Let V=V, UV, ={Zs [X]} U {Zs x Zsx Zs5}. V
is a semigroup bilinear algebra over the semigroup Zs.
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Example 4.50: Let

V=V,UVa={Z xZ'xZ"} U {a : a]
a a a

ae2Z+}.

V is a semigroup bilinear algebra over the semigroup S = Z".
We see all semigroup bilinear algebras defined over the

semigroup are semigroup bivector spaces but a semigroup

bivector space in general is not a semigroup bilinear algebra.

To this end we give an example.

Example 4.51: Let V=V, UV, = {(111), (000), (11), (00)} v
{(0000), (1111), (1101), (0110)}. V is a semigroup bivector
space over the semigroup S =7, = {0,1}.

Clearly V is not a semigroup bilinear algebra over Z, =
{0,1} as V, is not a semigroup under addition and V, is also not
a semigroup under addition. Hence the claim.

It may so happen in V = V; UV, we may have V, to be a
semigroup linear algebra over the semigroup S and V; is only a
semigroup vector space, in such cases we define a new algebraic
structure.

DEFINITION 4.17: Let V = V; UV, be such that V; is a
semigroup linear algebra over the semigroup S and V; is only a
semigroup vector space over S with V;, #V,, V; . V, and V,

< V5. Then we call V- =V; UV, to be a quasi semigroup
bilinear algebra over S.

We illustrate this by the following examples.
Example 4.52: Let

vV = V1UV2
{(000), (111), (01), (10), (11), (00), (100)}

u{@ ]z}
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V, is only a semigroup vector space over the semigroup S = Z,
= {0,1}. V, is a semigroup linear algebra over the semigroup S
=7, = {0, 1}; V; #V,. So V is a quasi semigroup bilinear
algebra over the semigroup S = Z, = {0,1}.

It is interesting to note that all semigroup bilinear algebras are
quasi semigroup bilinear algebras but converse is never true.
Also all quasi semigroup bilinear algebras are semigroup
bivector spaces but the converse is not true.

Example 4.53: Let

a al(b b b
VvV = , a,beZ,
a a/\b b b

U {(110), (0000), (00000), (11111), (1101), (000)}
ViuV,.

V is a semigroup bivector space over the semigroup S = Z, =
{0, 1}. V, is only a semigroup vector space also V, is only a
semigroup vector space over Z,. So V = V; UV, is only a
semigroup bivector space over Z, and never a quasi semigroup
bilinear algebra over S =Z, = {0,1}.

Example 4.54: Let

V = ViuV,
= {(000), (111), (110), (111111), (000000), (111000),
(101010)}

a b
v
c d
V, is only a semigroup vector space over the semigroup S = Z,
= {0, 1}. V, is a semigroup linear algebra over the semigroup S

=7,=1{0,1}. Thus V==V, UV, is only a quasi semigroup
bilinear algebra over Z, = {0, 1}.

a,b,c,deZz}.
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Thus a quasi semigroup bilinear algebra can have quasi
semigroup bilinear subalgebra as well as quasi semigroup
bivector subspaces.

DEFINITION 4.17: Let V =V, UV, be a quasi semigroup
bilinear algebra over the semigroup S. Here V; is a semigroup
linear algebra over S and V, is a semigroup vector space over
S.

Let W =W, UW, cV;, UV, where W, is a semigroup
linear subalgebra of V; and W, is only a semigroup vector
subspace of Vy. Then W = W; UW, is the quasi semigroup
bilinear subalgebra of V.

If P =P, UP,c VU V,issuch that P, is only a semigroup
vector subspace of the semigroup linear algebra V; over S and
P, is a semigroup vector subspace of the semigroup vector space
V, then we call P = P, U P, to be the quasi semigroup bivector
subspace of V =V, U V, over the semigroup S.

Example 4.55: Let

vV = VyuV,
{(000), (111), (100), (010), (001), (110), (011),

101 aabbbaObZ
(103 v aa’bbb’aOa’ez'

V is a quasi semigroup bilinear algebra over the semigroup S =
Z,=1{0,1}. Take
ae Zz}

W is only a semigroup bivector space over the semigroup S
=7, = {0, 1}. So W is a quasi semigroup bivector subspace of
VoverZ, = {0, 1}. Let

W

W, uW,

{(000), (100), (010)} U {(a a],[a 0]
a a)la O

c Vl UVz.
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P = P1UP2

{(OOO),(lll)}u{(a a aj,(a aj
a a a a a

c V=V,uV,

anz}

P is a quasi semigroup bilinear subalgebra over the
semigroup S =7, = {0,1}.

Now have seen the substructures of a quasi semigroup bilinear
algebra we proceed on to define bidimension and bigenerating
subset of the quasi semigroup bilinear algebra.

DEFINITION 4.18: Let V = V; U V, be a quasi semigroup
bilinear algebra over the semigroup S. Let X =X; VX, cV; v
V, where X; generates the semigroup linear algebra V; and X,
generates the semigroup vector space V; over S.

Then X = X; U X5 is called the bigenerator of V and the
bidimension of V'is (1X,], |Xz|) or (1Xi| v |X5].

We illustrate this situation by some examples.

Example 4.56: Let V=V, U V,={(a,a,a)|ae Z,} U {11
1),(000),(110),(1110),(0000),(1100),(1101),(110
01), 00000), (1 110 1)} bea quasi semigroup linear
algebraover Z,. Let X={(11 1D} u {(111),(110),(1110),
1100),(1101),A1001),(11101H)}cV,UV,,Xisa
bisubset of V which bigenerates V. The bidimension of X is

{1y {7y =, 7).

Example 4.57: LetV =V, UV, ={(11),(10),(00),(111),
000),(11111),(00000),(11000), (011),(10101)}

u{(z ' z}

be a quasi semigroup linear algebra over the semigroup Z, = {0,

1}.
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X = {11),10,(111),11111),(11000),

(011),(10101)} U {G D}

is the bigenerator of V. The bidimension of V is {7} U {1} =
(7, ).

We see from these examples the dimension of the
semigroup linear algebra V is less than the dimension of
semigroup vector space V. Same V for which ‘+’ is taken and
for the other ‘+’ operation is not taken.

We illustrate this situation by an example.

Example 4.58: Let V={(111),(100),(010),(001),(110),
(101),(011),(000)} be a semigroup linear algebra over the
semigroup Z, = {0, 1}. Suppose V={(111),(100),(010), (0
01),(110),101),01T1),(000)} beasemigroup vector
space over Z, = {0,1}, the semigroup under addition. Dimension
of V as a semigroup linear algebra is three given by the
generating set X = {(1 0 0), (0 1 0), (0 0 1)}. The dimension of
V as a semigroup vector space is 7 given by the generating set X
={(111),(100),(001)(010),(110),(011),(101)}. Thus
we see dimension varies or the dimension is small when the
structure is a semigroup linear algebra V and the dimension is
large for the same V when it is a semigroup vector space.

Now we proceed onto define the new notion of group bivector
spaces and group bilinear algebras.

DEFINITION 4.19: Let V = V; U V, be such that V; zV,, V;
& Vyand Vy, &V, Vi and V, group vector spaces over the same

group G, then we call V to be a group bivector space defined
over the group G.

We illustrate this by the following examples.

Example 4.59: Let V =V, U V, where

wof e
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and

Vy={(aaaaa)|ae Zs}.
V is a group bivector space over the group Z; = {0, 1, 2}
addition modulo 3.

Example 4.60: Let

V = V,uV,
= {00),11),11111),(01),(00000)} v

a a) (a a a
{[ j ( ] aezf{o,l}}.
a a)la a a

V is a group bivector space over the group G = Z, = {0, 1}
addition modulo 2.

Example 4.61: Let V=V, U V,={Z[x]} V{(ZxZ xZ)} bea
group bivector space over the group G = Z, group under
addition.

We now define some interesting substructures of group bivector
spaces.

DEFINITION 4.20: Let V = V; U V; be a group bivector space
over the group G. W =W, UW, cV; UV, is said to be a group
bivector subspace of V over G if W itself is a group bivector
space over G.

We illustrate this by some examples.
Example 4.62: Let

V = ViuV,
={000),(111),(0000),(1111),(1100),(0011)}

o (991G R
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be the group bivector space over the group G = Z, = {0, 1}
under addition. Take

W = W1UW2
{000),(111),(0000),(1111)} U

)

Clearly W is a group bivector subspace of V over G = Z,.

anz}g V,uV,;

Example 4.63: Let

A%

Vi,uV,

o

(000000),(111000),(11),(00),(10)}

a,b,c,d eZz} U{(l11011),
be a group bivector space over Z, = {0, 1}. Take

w- e

(e V1 U Vz,

a, b,c,dezz}u{(OOOOOO),(l 11000)}

W is a group bivector subspace of V over Z, = {0, 1}.
Example 4.64: Let

vV = Vi,uV,

{Z[x]}u{(a b]’(a b CJ
c d)ld e f

be a group bivector space of V over Z. Take
W=W,uUW,

a,b,c,d,e,er}
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- {2Z[X]}U{[a bJ
c d

W is a group bivector subspace of V over Z.

a,b,c,d e Z} cViuVy

Now we define the notion of pseudo semigroup bivector
subspace.

DEFINITION 4.21: Let V = V; UV, be a group bivector space
over the group G. Let W =W, oW, cV, UV,and H c G be a
semigroup of the group G. If W is a semigroup bivector space
over the semigroup H then we call W to be a pseudo semigroup
bivector subspace of V.

Example 4.65: Let V=V, U V,={Z[x]} U {(a,b,c) | a, b,c,
€ Z} be a group bivector space over the group Z. Take W = W,
UW,={Z [x]}u{abc)|abceZlcViuVy;Wisa
semigroup bivector space. W is a pseudo semigroup bivector
subspace of V over the semigroup Z" < Z.

Example 4.66: Let
vV = V1UV2

B a b ¢

c d b

{(a,bcd)|a,b,c,d e Z}

a,b,c,d,e,f e Z}u

be a group bivector space over the group Z. Take

"

W1UW2

e

{(a,b,c,d)|a,b,c,d e 2Z" U {0}} =V, U Vy;

a,b,c,d,e,f eZ* U {O}} U

W is a pseudo semigroup bivector subspace of V over the
semigroup 2Z" U {0}.
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Example 4.67: Let

V = V1UV2
{(abcd)|a,b,c,de Z} L

e

be a group bivector space over the group Z. Take

a,b,c,deZ}

W = W1UW2
{@0b0)|abeZ U {0} U

[

W is a pseudo semigroup bivector subspace of V over the
semigroup Z" U {0}.

a,b,c,de Z" U {O}} c V,uUV,.

Now we proceed onto define the substructure pseudo set
bivector subspace of a group bivector space.

DEFINITION 4.22: Let V = V; UV, be a group bivector space
over the group G. Let W =W, UW, cV, UV, =V, take S a
proper subset of G. If W is a set vector space over the set S then
we call W to be the pseudo set bivector subspace of V over the
set S.

We now illustrate this by the following example.
Example 4.68: Let V =V, U V, be a group bivector space over

the group G = Z; where
Vi={(a,b,c,d)|a,b,c,d e 2Z}

o
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Take



W = W1UW2
{(abcd)|a,b,c,de2Z U {0}} U

[

c ViuV,=V,

a,b,c,de2Z" U {O}}

W is a pseudo set bivector subspace over the set S = {0, 2, 22,
2428 ...,2™|neN}.

Next we proceed onto define the notion of bisemigroup bivector
group space.

DEFINITION 4.23: Let V = V; U V,, where V; is a semigroup
vector space over the semigroup S; and V, is a semigroup
vector space over the semigroup S, (S; #S,, S; & S, and S; ¢

S). Also V; =V, Vi & Voand Vy & V. We call V to be the

bisemigroup bivector space over the bisemigroup S = S; U S,.
We illustrate this by the following examples.

Example 4.69: Let V =V, U V, where
Vl = {(a’ a, a) | (a € Zf)}

V{[ ) aez};

V is a bisemigroup bivector space over the bisemigroup
S=ZsUZ'.

and

Example 4.70: Let V=V, U V, = {Z'[x]} U {Q" xQ"}, Visa
bisemigroup bivector space over the bisemigroup 32" U 5Z".

Example 4.71: Let V=V, U V, where

e ]
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is a semigroup vector space over the semigroup 2Z" and V, =
{a, a, a} | a € 3Z"} is the semigroup vector space over the
semigroup 3Z'. V is a bisemigroup bivector space over the
bisemigroup S =27Z" U 3Z".

Example 4.72: Let V =V, U V, where
Vi={Z"xZ xZ"}

o

V is bisemigroup bivector space over the bisemigroup S = 27"
U3z

and

a, b, c,de3Z+}.

The notion of bisemigroup bivector subspace can be defined as
in case of other bivector spaces.

Next we proceed onto define the notion of bisemigroup
bilinear algebra defined over the bisemigroup S =S, U S,.

DEFINITION 4.24: Let V = V; U V, where V; is a semigroup
linear algebra over the semigroup S; and V, is a semigroup
linear algebra over the semigroup S, (V; #Vo, Vi & Vi, Vo &

Vi) (S; #8581 & Sy and S; & S;). Then we call V to be the

bisemigroup bilinear algebra over the bisemigroup S = S; U S..

We illustrate this by the following examples.
Example 4.73: Let V=V, U V, =

we{ D]

V,=(abcd)|a,b,c,de3Z}
be the bisemigroup bilinear algebra over the bisemigroup S =
277037

and
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Example 4.74: Let V=V, U V,={(11),(00),(000), (111)}
U {(abcd)|ab,c,de Z be the bisemigroup bivector space
over the bisemigroup S = Z, U Z'. Clearly V is not a
bisemigroup bilinear algebra over S.

In view of this we have the following.

Every bisemigroup bilinear algebra is a bisemigroup
bivector space but in general a bisemigroup bivector space is
not a bisemigroup bilinear algebra. The above example is a
semigroup bivector space which is not a bisemigroup bilinear
algebra.

We now proceed onto define the notion of bisemigroup bilinear
subalgebra.

DEFINITION 4.25: Let V = V; U V, be a semigroup bilinear
algebra over the bisemigroup S =S; US,. Let W =W, UW,
VioVoif (W =W, Wy & Wyand Wy, & Wi)and W is itself a
bisemigroup bilinear algebra over S then we call W to be a

bisemigroup bilinear subalgebra over the bisemigroup S = S; U
S.

We illustrate this by the following example.

Example 4.75: Let V=V, UV, ={Z" [x]} UZ ' x Z" x Z"} be
the bisemigroup bilinear algebra over the bisemigroup S = 3Z"
U S5Z". Take W=W, UW,={3Z" [x]} U {Z"x {0} x Z'}
Vi U V,, W is a bisemigroup bilinear subalgebra of V over the
bisemigroup S.

Example 4.76: Let

vV = V,uV,
{(a,b) such thata, b € Z;o} U

o)

a,b,cde Z+}
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be a bisemigroup bilinear algebra over the bisemigroup S = Z

U Z". Take
a eZ*},

W is a bisemigroup bilinear subalgebra of V over the
bisemigroup S=Z,0 U Z".

W = WuWw,

- {(a,a>|aezm}u={[a a]
a a

c ViuV,

Example 4.77: Let

vV = V,uV,
a a
= {(a,a)|aes5Z}uila allaeTZ"
a a

be a bisemigroup bilinear algebra over the bisemigroup S = 52"
U 7Z". Take

W= WuWw,
a a
= {(@a)|]ael5ZVuila al|lacldZ’
a a
c ViU Vy

W is a bisemigroup bilinear subalgebra of V over the
bisemigroup S =52 U 7Z".

Example 4.78: Let V=V, U V, = {7Z" [x]} U {5Z" x 5Z" x

57"} be a bisemigroup bilinear algebra over the bisemigroup S
=7Z" U 5Z". Take W =W, U W, = {14Z" [x]} U {5Z" x ¢ x
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5Z"% = Vi, U V,, W is a bisemigroup bilinear subalgebra over
the bisemigroup S =7Z" U 5Z".

Now having seen the definition of semigroup bilinear
subalgebra we now proceed on to define the notion of
bidimension of the bisemigroup bilinear algebra over the
bisemigroup.

DEFINITION 4.26: Let V = V; UV, be the bisemigroup bilinear
algebra over the bisemigroup S =S; U S,. Take X = X; X5 <
Vi, OV, if X; generates V; and X, generates V, then we say X
bigenerates V over the bisemigroup S = S; US,.

The cardinality of X; U X, is given by |X;| U |X5| or (X1,
|X>]), called the bidimension of the bisemigroup bilinear
algebra V =V, U V,. If even one of X; or X5 is of infinite
dimension then we say the bidimension of V is infinite, only
when both X; and X, are of finite cardinality we say V is of
finite bidimension over the bisemigroup S.

Example 4.79: Let V=V, U V,={(10),(01),(00),(111),
000, (T0DH}uU{(111),(333),(222),(000),(100),
(2 00), (300)} be the bisemigroup bivector space over the
bisemigroup S =7, U Zy. Let X={(1 0), (0 1), (1 1 1), (10 1)}
u{(111),000)} =X, U X, be the bigenerator of V. The
bidimension of V is (4, 2).

Example 4.80: Let V=V, U V,={Z,[x} U {(aaa)|aeZs}
be the bisemigroup bilinear bialgebra over the bisemigroup S =
7, U Zs Let X = {I,X, ...,XOO } v {(1 1 1)} =XiuXcViu
V, be the bigenerator of V. Clearly bidimension of V is (e, 1)
oroo U {1} so V is of infinite bidimension over S.

Example 4.81: Suppose V=V, U V,={(111),(1111),00
1),(000),(100),(1100),(0000)} v {Z3 x Z3 x Z3} be the
bisemigroup bivector space over the bisemigroup S = Z, U Z;.
Let X={111,1111),001),(100), (1100} v
{100),(010)(001),(110),(011),(101),(120),(111),
(102),(012),(122),(212),(221)etc} =X; U X, which is
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the bigenerator of the bisemigroup bivector space over the
bisemigroup. The bidimension of V over S is (5 U 26).

Example 4.82: Let
vV = ViuV,

= {22*[x]}u{(a b]
c d

be a bisemigroup bivector space over the bisemigroup S = 2Z"
U 3Z". Clearly the bidimension of V is infinite.

a,b,c, de3Z*},

Now we proceed onto define the notion of bigroup bivector
space over the bigroup.

DEFINITION 4.27: Let V=V, UV,, such that V; =V, V; & V>,
V, & V; If Vyis a group vector space over the group G; and V,
is a group vector space over the group G, (G; #G,, G; & G;
and G, & Gy) then we say V =V; UV, is a bigroup bivector

space over the bigroup G = G; U G,. Clearly if V; and V, are
Just set it is sufficient to define bigroup bivector space over a
bigroup.

Example 4.83: Let V = V| U V, be a bigroup bivector space
over the bigroup G =Z; U Q where V| =Z3[x] and V, =Q x Q.

Example 4.84: Let V=V, U V,={(11),(00), (0 1), (1 1 10),
(0000),(0100),(11100),(00000),(00010)} U

M

be the bigroup bivector space over the bigroup G = G; U G; =
Z, U Z. Clearly both V; and V; are just sets.

Example 4.85: Let V=V, U V= {Zs x Z5 x Zs} U {Z;][x]} be
the bigroup bivector space over the bigroup G = Zs U Z,.
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Example 4.86: Let V=V, U V,={{(111),(200),(220), (0
00)}u{((1572),(0100),(0000),(3541),(1234),(56
7 0))} be the bigroup bivector space over the bigroup G = Z; U
Zs. ({, ); denotes generated over the related groups).

Example 4.87: Let

vV = VlUV2

- v

a,b,c,d,e,erG}

x,yeZw},

be a bigroup bivector space over the bigroup bivector space
over the bigroup space over the bigroup G = G; U G, = Z¢ U
Zyo.

Now we proceed onto define the notion of substructures in
bigroup bivector spaces.

DEFINITION 4.28: Let V = V; UV, be a bivector bispace over
the bigroup G =G, UGy Let W=W, oUW, cV, vV, =V be
such that W; = Wy W, & Wy or Wy & W; if W itself is a

bigroup bivector space over the bigroup G = G; U G, then we
say W is a bigroup bivector subspace of V over the bigroup G =
G[ UGZ.

We now illustrate this situation by the following examples.

Example 4.88: Let

vV = ViuV,

= {(a,a,a)|aezé}u{(a a a]’[a a]
a a aj)l\a a

anS}
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be the bigroup bivector space over the bigroup G = Zg U Zs. Let

aezg}

W is the bigroup bivector subspace of V over the bigroup G =
Z6 U Zg.

a a
W = {(a,a,a)|ae {0,3}} {[a a]

= W;uUW,.

Example 4.89: Let
vV = V1 U Vz

={(aaa),(aa),(aaaa)aeZ}u {(a b]
c d

a,b,c,dezz}

be the bigroup bivector space over the bigroup G =7 U Z,.

{(a,a,a)|an}u{(a aj 3622}
a a

W, uW,cV,uV,
is the bigroup bivector subspace of V over the bigroup G =Z U
2.

W

Example 4.90: Let V=V, U V,={(aaa),(aaaaa),(aa),(aa
aaaaa)lae Zs} U Z,[x] be the bigroup bivector space over
the bigroup Zs U Z,.

Take W=W, U W,={(aaa),(a,a,a,a,aa,a)|aecZs} U
{all polynomial of even degree with coefficients from Z,} < V;
U V, is a bigroup bivector subspace of V over the bigroup G =
Z5 o Zz.

Next we define pseudo bisemigroup bivector subspace of a
bigroup bivector space V.
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DEFINITION 4.29: Let V = V; UV, be a bigroup bivector space
over the bigroup G = G; UGy Let W=W, W, cV, UV,
(such that W; = W, W, & W, W, & W,;) where W; is a
semigroup vector space over the semigroup H; contained in G,
and W, is a semigroup vector space over the semigroup H,
contained in G, H, ¢ H,, H, ¢ H;,, H; #H.,.

Then we call W = W; U W, to be the pseudo bisemigroup
bivector subspace of the bigroup bivector space V over
H =H, UH, c G; U G, H the bisemigroup contained in the
bigroup.

We illustrate thus by the following examples.
Example 4.91: Let
vV = V,uV,

= {(aaaa),(aaa)|an}u{[a bJ
c d

a,b,c,d e le}
be the bigroup bivector space over the bigroup G =7 U Z,.
Take

W = W uW,
= {(aaaa),|laeZ}uyu

2

C Viu V,.

a,b,de{0,2,4, 6,8, 10}}

W is the pseudo bisemigroup bivector subspace over the
bisemigroup
Z"U{0,6} =H=H, UH,.
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Example 4.92: Let

vV = V]UVz
a a a
a a
= a a allaeZ; v
a a
a a a

{(aaaa),(aa),(aaa)|ac2”Z}

be the bigroup bivector space over the bigroup 37 U 2Z.
Take

A\

W, uW,

a a

a a
W is the pseudo bisemigroup bivector subspace of V over the
bisemigroup H=3Z" U 2Z" c 3Z U 2Z.

ae3Z} U {(aaaa)|ae2Z},

Example 4.93: Let

V = V;uV,
{Z|x]} v {(aaaa),(aa)|ac2Z}

be the bigroup bivector space over the bigroup G = 3Z U 2Z.
Let
W = {Z'[x]}u {(aa)|ae2Z}
c ViuV,

be the pseudo bisemigroup bivector subspace over the
bisemigroup H=3Z" U 27",
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Now we define yet a new mixed structure which we call as
quasi bigroup bivector space.

DEFINITION 4.30: Let V =V, UV, where V; is a semigroup
vector space over the semigroup S; and V, is the group vector
space over the group G,. Then we call V. =V, UV, to be the
pseudo bigroup bivector space over the pseudo bigroup
G = S] UG].

We illustrate this situation by the following example.
Example 4.94: Let

vV = V] U V2
{Zs[X]} W{Z" xZ'x 7}

be the pseudo bigroup bivector space over the pseudo bigroup G
=ZsUZ'.

Example 4.95: Let

A/ ViuV,

a a
= Z'x]u {[ j ae le}
a a

be the pseudo bigroup bivector space over the pseudo bigroup G
=Z" U Zj, where Z" is the semigroup and Z,, is the group under
addition modulo 12.

Example 4.96: Let

vV = ViuV,

)

a, be 3Z+} |\ {ZZO [X]}
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be the pseudo bigroup bivector space over the pseudo bigroup G
= 3Z+ U Zzo.

The author leaves it as an exercise for the reader to define
various substructures of this structure and bigenerator and

bidimension.

Now we proceed onto generalize this to n-set n-vector spaces
set n-vector spaces n > 3, in the following chapter.
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Chapter Five

SET n-VECTOR SPACES AND THEIR
GENERALIZATIONS

In this chapter we for the first time introduce the notion of set n-
vector spaces, semigroup n-vector spaces and group n-vector
spaces (n > 3) when n = 2 we get set bivector spaces, semigroup
bivector spaces and so on.

DEFINITION 5.1: Let V=V, v ... UV, each V;is a distinct set
with Vi & Vior V; ¢ Viifi #j; 1 <i,j <n. Let each V; be a set
vector space over the set S, i =1, 2, ..., n, thenwe call V=V; U
V, U... UV, to be the set n-vector space over the set S.

We illustrate this by the following examples.
Example 5.1: Let
vV = ViuV,uV;uV,

{(111),(000),(100),(010),(11),00),(1 11 1),
(1000),(000)} U

9| EEEA 2 R

U {Z; [x]}.

aeZ, =10, 1}}
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V is a set 4 vector space over the set S = {0, 1}.
Example 5.2: Let

v

V1UV2UV3UV4UV5UV6
a a
a a
(a,a,a,a,a)|aecZ} U

a, a, a
1 2 3

U [ J
a, a; ag

be the set 6-vector space over the set S =Z".

ace Z*} U{Z"'xZ" xZ" U {(a, a, a),

aeZ  U{Z'x]}

[

a, eZ*;lSiS6}

Example 5.3: Let
vV = V1 Y V2 |\ V3

_ {zé[x]}u{z6xz6xz6}u{a a a}
a a a

aezé}

be the set 3 vector space over the set S = {0, 2, 4}. We call this
also as set trivector space over the set S. Thus when n = 3 we
call the set n vector space as set trivector space.

We define set n-vector subspace of a set n-vector space V.

DEFINITION 5.2: Let V =V; U ... UV, be a set n-vector space
over the set S. If W =W, U ... UW, with W; #W; i #j, W; €

Wiand W, ¢ W, 1 <i,j<nand W=W, VW, .. UW,cV,

UV .. UV, and W itself is a set n-vector space over the set
S then we call W to be the set n vector subspace of V over the
set S.
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We illustrate this by a simple example.
Example 5.4: Let

vV = VlUVQUV3UV4

- {@aa),@a)|aecZu {; EJ a,bez+} U
a
{(Z'[x]} uila||laeZ ¢,
a

V is a set 4-vector space over the set S =Z". Take
W = W,uW,uW;uUW,

= {(a,a,a)|an+}u{

ae2Z'

ae Z+} )
a
{all polynomial of even degree} U 1| a
a

c V1UV2UV3UV4 = V,

is a set 4-vector subspace of V over the set S =Z".
We can find several set 4-vector subspaces of V.

Now we proceed on to define the n-generating set of a set n-
vector space over the set S.

DEFINITION 5.3: Let V =V, U ... UV, be a set n-vector space
oversetS. Let X=X, v..uvuX,cV,vbV,u..uV,=V.If
each set X; generates V; over the set S, i = 1, 2, ..., n then we say
the set n vector space V ="V, U ... UV, is generated by the n-
set X =X, UX; U... UX, and X is called the n-generator of V.
If each of X; is of cardinality n;, i = 1, 2, ..., n then we say the n-
cardinality of the set n vector space V is given by |X;| U ... U
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| Xa| = {1Xil, | Xol, oons |XGl} = {1, 1o, ..., 0y} If even one of the
X; is of infinite cardinality we say the n-cardinality of V is
infinite. Thus if all the sets X, ..., X, have finite cardinality then
we say the n-cardinality of V is finite.

We now illustrate this by the following examples.

Example 5.5: Let

V = ViuV,u...uUV;s

{( a a) |ae {0, 1]} U {(a a]
a a

a a a
(a a aj
a b
-

be a set 5-vector space over the set S = {0, 1}.
Choose

= anmoff ol o
26 )

c ViuV,u...uVs=V.

ae{O,l}} U

a e {0, 1}} U {(a,a,a,a)}aec {0,1}} v

a,be{0,1},a ¢b}

It is easily verified each X; generates V,1=1, 2, ..., 5. Thus X
=X; U X, U ... U Xs is the 5-generator set of the set 5-vector
space over the set S. In fact each set X; is of finite cardinality, so
V is a set 5-vector space of finite 5-dimension. In fact the 5
dimension of Vis {1, 1, 1, 1, 2}.

One of the important and interesting factor to observe about
these set n-vector spaces over the set S, is at times they can have
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one and only one generating set. The example 5.5 is one such
case.

Now we proceed onto give yet another example of a set n-
vector space V over a set S.

Example 5.6: Let

vV = V1UV2UV3UV4UV5
{@ a3 acZ}u{Q xQ}u{Z [xI} U

{(a b} +} {(a a a aj +}
a,b,c,deZ" ; LU aeQ
c d a a a a

be a set 5-sector space over the set S =Z". Take

X = XIUXZUX3UX4UX5
= {(11 1)} U {an infinite set of pairs including (1, 1)} U

11
{1, x, ..., X" and an infinite set} U {[1 J with an

11
11

1
aeQ*}.

X is a 5-generating set. In fact X is an infinite 5-generating
subsetof V=V, U ... U Vs.

1
infinite set of 2 x 2 matrices} W {[ J together

. . . a a a a
with an infinite set
a a a a

Example 5.7: Let

A%

V1UV2UV3UV4UV5

(Z'V U {(aaa)|aeZ'} U {[a a]
a a

an*}u
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(ki (1 + x> + %), kox, ksx®, ky(x’ + 1), ks (x*+1),
kex” + 1 + 2x); ks € Z5 1 < i < 6} U
a a a a a
a a a a allaeZ'

a a a a a

be a 5 set vector space over the set S=Z".
Take

11
X = {l}u{(lll)}u{(l J}u{1+x2+x,x,x3,

11111
X AL+ LxP+2x+1bud|l 1111
11111

c ViuV,uV;uV,u Vs,

Clearly X, 5-generates V i.e., X is the unique 5-generator of V.
Further V is 5-finitely generated and 5-dimension of Vis {1 U 1
vlueuli=(,1,1,6,1).

We now proceed onto define the n-set basis of the n-set
vector space V over S.

DEFINITION 5.4: Let V=V, UV, U ... UV, be a set n-vector
space over the set S. Suppose X = X; U ... U X, is a n-set
generating subset of V.=V; U ... UV, then we call X to be the
n-set basis of V. If X = (| Xi|, |X5|, ..., |Xu| ) in which each |X;| <
oo, 1 <i <n, then we say V is finitely n set generated by the n-set
X and is of n-dimension (1X;|, |X5|, ..., |X,|). Even if one of | X;| =
cowe say V is infinitely n-set generated by X.

Now we will give one or two examples of n-set basis before we

proceed onto define other interesting notions about n-set vector
spaces.
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Example 5.8: Let
N a a
V = {(@aa|laeZ u{l}}u {[0 ]
a

{a (x> + 1 +3x), a)(x + 1), agx’ a3 (X + x>+ xX° +x* + 1),
asx, agxs, a7(x* + 5x* + 1) |a e Z" U {0}; 1 <i<T7} U

a a a a
{[ Jan*u{O}}
a a a a

= V]UVZUV3UV4

ae Z+U{O}} )

be a 4-set vector space over the set S =Z" U {0}. Now take
X = X1UX2UX3UX4

= {111} u {[(1) D} U {(x* + 3x+1), x+1, x/, x° + x°

1 111
+X3+X4+1,X,X2,X8+5X2+1}U{[1 {1 1]}

< V1UV2UV3UV3.

Clearly V is 4 set generated by X and the basis 4-set of V is X
and the n-dimension of the n-set X is (1, 1, 7, 1), (n =4).

We give yet another example.

Example 5.9: Let

vV = V1UV2U...UV5
{000111),001111),(011111),(000000),
(111),010),(110),000)}u{(111111111),

(000000000)}u{(a a] anzz{O,l}}u
a a

a a a a)(l 1 1 1 1\(a a a
a a a a/\l 101 1)\a a a)
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1111(0000O0)(0O00O0
0000/00000)1000

u{1+x2,0,x+x2+1,x3+1}

aeZ,= {0,1}}

be a 5-set vector space over the set Z, = {0, 1}.

X = Xju...UX;s
= {(000111),001111,0O01111T1),(111),

(010),(110)}U{(111111111)}U{G D}u

111 1Y(1 11111 1\(11111 O
111111 1)loooo)l1t1011
{(I+x5x2+x+1,x°+1}

c ViuV,u ..U Vs

be the 5 set which 5-generates V. Thus X is a 5-set- 5-basis of V
of 5-dimension (6, 1, 1, 4, 3).

Now we proceed on to define n-set linear algebra over the S.

DEFINITION 5.5: Let V=V, vV, U .. UV, be a n set vector
space over the set S. If each V; is closed under addition then we
call V to be a n-set linear algebra over S; 1 <i <n.

Now we illustrate this by the following examples.

Example 5.10: Let
V = VyuV,uV;uV,

%

{0} x Z" U {0}} w {all polynomials of degree less than
or equal to 5 with coefficients from Z"~ U {0}} U

[

an*u{O}} U {Z" U {0} xZ'u

a,b,c,deZ" U {0}}
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be a 4-set vector space over the set S =Z" U {0}. Clearly Vis a
4-set linear algebra over S. The basis of V as a 4 set linear
algebra over S is only finite whereas V as a 4-set vector space
over S is infinite.

A 4-set which generates V is given by

1111
X = {{1 O J}u{(100),(010),(001)}u{1,x,

s 3 4 s 1 0)(0 1)(0 O0)(0 O
X b x 2 X b X } U 2 2 b
0 0){0 0){1 0)0 1
c Vl UVQUV3UV4.

Clearly the 4-dimension of V is (1, 3, 6, 4).
Note: It is interesting to observe that V is a 4-set vector space
over S =Z" U {0} is not finitely generated. The given X in the
example 5.10 does not 4-generate V as a 4-set vector space over
S=Z7Z"u {0}.
Example 5.11: Let

vV = VIUVQUV3UV4UV5

= {(1111),(1000),(1100),0011),(©000T1),
(0010),0100),(©0110),(1001),(010),
O0101,(1110,0011)@O111),(10T1),

a b

O 0 0 0} v {[ j

c d

a, a4, 4

a, a5 a,

x an indeterminate of degree less than 4} U
{11111),(00000)}

a,b,c,dezz} U

aieZZ={0,1},1§i£5} U {Z, [x] |

be a 5-set vector space over Z, = {0, 1}. Clearly V is a 5-set
linear algebra over Z, = {0, 1}. Take
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X = {(1000),(0100),(0010),(0001)uU
1 0) (0 1)(0 0)(0 0 1 00

o oh o} oo o o o o)
0 0y (00 1) (0 0 0y (0O 0 O
(0 0 ’(0 0 o]’ (1 0 OJ’ [o 1 oj’
(O O}u{l,x,xz,x3}u{(11111)}
0 0
XjuX,u...uUXs

ViuVo,u...uUV;s
V.

—_— 0 O ==

1N

Now the 5-dimension of V as a 5-linear algebra is (4, 4, 6, 4, 1).
Whereas if we consider V as a 5-set vector space over the set
Z,, X is not the 5-generator of V then

Y = YyuY,Uu...UYs
= {(1111),01000),(0100),(0010),(0OO00T1),
(1100),(1010),(1001),(0110),(@O101),
0011),1110,1011HO111),01010DH}v
{A set with 15 elements) U {A set with 63 elements} U
{A set with 15 elements} U {(1 111 1)},

5 generates V as a 5 set vector space over {0, 1}. Now the 5-
dimension of V is given by (15, 15, 63, 15, 1).

Thus we see by making when ever possible or feasible a n-
set vector space into a n-set linear algebra, we can minimize the
number of elements in the generating n-set.

Now we proceed on to define the notion of n-set linear
transformation of n-set linear algebras.

DEFINITION 5.6: Let V=V, vV, ... UV, be a n-set linear
algebra over the set S. Let W = W; U W, U ... UW, be a n-set
linear algebra over the same set S. Suppose T is a map from V
to Wsuchthat T=T, vT, .. uUT,:V;ubV,u.. vV, >
W, oW, u... UW,where T; : V; = W, is a set linear algebra
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transformation i.e., T; (cx +y) = T; (ax) + Ty(y); 1 <i <n. Then
we call T to be a n-set linear transformation from V to W.

We illustrate this by the following example.
Example 5.12: Let
V = VuV,uV;uUVy
a a
- {(aaa)|aezz={o,1}}u{[ j
a a

{0000),(1111),(1100),(001 1)} U {Z xZ,}

a EZZ} )/

anz}u {(11111),(00000),

ae Zzz{O,l}} U

be a 4-set linear algebra over Z, = {0, 1} and

W = W1UW2UW3UW4

= {Zz X Zz X Zz} |\ {[a bj
c d
a a a a
a a a a

(11000),(00111)}

is also a 4-set linear algebra over the set Z,. Define T: V> W
byT:T1UT2UT3UT4:VIUV2UV3UV4—)(W1UW2U
W5 U W) withT;: Vi> W;; 1<1<4. T, : V; > W, is given
by

T ((aaa)) = (aaa).

T,: V, > W, is given by

T;: V; > Wsis defined by

185



0

a
R011D=[
a

[a——

nu1om=€

and

T;(0011) = G

T4: V4> W,is given by

T,(x,y) = (Q1111) x#0
T,4(0,0) = (00000) y=#0
T,(1,0) = (00111

and
T40,1) = (11000).

It is easily verified that T =T, U T, U T3 U Ty is a 4-set linear

transformation from V to W.

Now we proceed onto define n-set linear operator on a n-set

linear algebra.

DEFINITION 5.7: Let V=V, UV, U ...

algebra over the set S. Amap T = T,
V is said to be a n-set linear operator
T (ax +y) = ali(x) + Ty(y) forx, y v

We will illustrate this situation by the

Example 5.13: Let

V = ViuV,uV;uVy

186

o
o ®
N
o
Il
S

111
11 1)

following example.

vV, be a n-set linear
T, u.. UT, fromVito
if T; : Vi = Vi is such that
Viix €8; 1 <i<n.



= {Z'xZV U {(a bJ
c d

a b c g

d e f h

be a 4-set linear algebra over the set 7" A map T=T, U T, U
T3 U T4 : V — V; such that

a, b, c,deZ*} U {Z'[x]} U

a,b,c,d,e,f,g,he Z*}

Ti(x, y) = (¥, %);

Rl )60

T3 (p(X) =po T pix + ... + PpX") = ppx”

a b c g a a a a
T4 e .
d e f h d d dd

It is easily verified that T is a 4-set linear operator on V.

and

Now in case of n-set linear algebra we can define a notion
called n-set quasi linear operator on V.

DEFINITION 5.8: Let V=V, UV, v ... UV, be a n-set linear
algebra over the set S. Anmap T =T, T, U ... U T, from V =
V,ov,ou..ouV,toV=V,uV,u... UV,suchthat T;: V; -
Viii#j, 1 <i, j <nsuch that T; (cu +v) = aly(u) + Ty(v) for u, v
€ Viand a € S for each i, 1 <i <n is called the n-set quasi
linear operator on V.

If on the other hand T =T, v T, U ... U T, is such that T; :
Vi =V, for some j #i and Ty : Vi —= Vi for some 1 <k <n then
we call T to be a n-set semiquasi linear operator on V.

We cannot get any interrelation between n-set linear operator, n-
set linear semiquasi operator and n-set linear quasi operator.
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The reader can substantiate these definitions with examples.
However problems based on these definitions are given in the
last chapter of this book. Interested reader can refer to them.

Now we proceed on to define the notion of semigroup n-set
vector space.

DEFINITION 5.9: Let V=V, UV, U ... UV, be a n-set vector
space over the set S. If S is an additive semigroup then we call V
to be a semigroup n-set vector space over the semigroup S.

We illustrate this situation by some examples.

Example 5.14: Let V=V, U V, U ... UV, be a semigroup 4-

set vector space over the semigroup S = Z, = {0, 1} under
addition modulo 2, where

e[

V2 = {Zz X Zz X Zz},

a,b,c,deZz},

V;={1101),(0100),(0000),(111),(000),(100)}

and
a a)(a a a a
w:{( N J z}
a aJ\la a a a
V is a semigroup 4-set vector space over the semigroup S =7, =
{0,1}.

Example 5.15: Let

Vv V1UV2UV3UV4UV5UV5

b
{(Z"xZ"xZ" U a ©
d e f

{(a,b,c,d),(aaaab,c)lab.cdeZ} U{ab),

a,b,c,d,e,fez*} U
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(a,a, a,a,a)|abeZ} U {Z[x] x an indeterminate}
U {3Z" x2Z" x 5Z'x 77"}
is a semigroup n-vector space over the semigroup Z".

Example 5.16: Let

A%

V1UV2UV3UV4UV5

i)

a,b,c,deZ3} U {Zy x Z3 x Z3} U

a 0 0
b oo d a,b,c,deZ,; U Z[x]U
[a b d
0 c f g .

. a,bac9daeyfagala_]akez3
0 0 i j
0 0 0 k

be a semigroup 5-set vector space over Zs.

We now prove that all semigroup n-set vector spaces are n-set
vector spaces but a n-set vector space in general is not a
semigroup n-vector space.

THEOREM 5.1: Let V=V, UV, U... UV, be a semigroup n set
vector space over the semigroup S, then V=V, UV, U ... UV,
is the n-set vector space over S. Conversely if V=V, UV, U ...
UV, is a n-set vector space over S; then V in general is not a
semigroup n-set vector space over the set S.

Proof: Let V=V, U V, U ... UV, be a semigroup n-set vector
space over the semigroup S. Now every semigroup is a set S. So
V is a n-set vector space over the set S. To prove a n-set vector
space over the set in general is not a semigroup n-set vector
space. Suppose

V = VquV,uV;uUVy
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= {0000),(1111),(2222),...,(2n2n2n2n)} U
2n
2n 2n
{(2n 2nj

neZ+} ull2nl||lnezZ"} U2Z [x]}
2n

is a 4-set vector space over the set S = {1, 2}. Clearly S is not a

semigroup under addition. Hence the claim.

Now we proceed onto define some substructures on semigroup
n-set vector spaces and illustrate them by examples.

DEFINITION 5.10: Let V=V, vV, U ... UV, be a semigroup
n-set vector space over the semigroup S. Suppose W =W; U W,
v.uW,cV=V,uV,u.. UV,and each W; c V;is a
semigroup set vector space over the semigroup S then we call W
to be semigroup n-set vector subspace of V over the semigroup

S, (1 <i<n).

Example 5.17: Let

V = VuV,uV;uU VU Vs
a a
a a a
= {( Jan4}u{Z4><Z4}u a a||laeZ,
a a a
a a

U{0000),(2222),(000),(222),(00000),

22222)} U {(a aJ 3624}
a a

be a semigroup 5-set vector space over the semigroup H = {0,
2y < Z4=1{0, 1, 2, 3} under addition modulo 4. Take
W = W, uW,uW;uUW,u W;s

(o 0 0)(2 2 2 00 (22
o o ofl2 2 o) i@OCDFY
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2
2

2
2 2
2 2

UVQUV3UV4UV5

U {0000, (2222} U

S O o o O
S O o o O
[NSI NSRS

N

Vi
Vv,
is a semigroup 5-set vector subspace over the semigroup
S = {0, 2} under addition modulo 4.

Example 5.18: Let

A%

V1UV2UV3UV4

{ZSX25XZS}U{(a a aj aEZS} &
a a a
a a a

a a allaeZ,y Ui{ZJx]}
a a a

be a semigroup 4-set vector space over the semigroup S = Zs,
the semigroup under addition modulo 5.
Let

W

W, uW,uW; U W,
1 2 2 2)Y(0 0 O
wonarnrofy G336 0 o)
3
3
3

0 0 0)(3 3
udlo 0 0,3 3L U{atax+...+ax"|a e Z°}.
00 0/(3 3

W is not a semigroup 4-set vector subspace over the semigroup
Zs.
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Example 5.19: Let

\Y ViuV,uV;uU VU Vs

)

aezﬁ}u{zéx ZyxZy O{Ze[x]} L

a (0)
a
aa b
JallaeZ a,b,c,de Z
aa c
a
(0) d

be a semigroup 5-set vector space over the semigroup S = {0, 3}
under addition modulo 6.

W = WuW,u...uUWs

{[1 1 1](0 0 0](2 2 2]{3 3 3)}
= , , , {111,
111000222333

(000),(222),333)} U{atax+ax’+...+ax"|ae

a 0)
a a
a a

a
aezé}u aeZ
ViuV,u...uU Vs

v

(0) a

1N

is a semigroup 5-set subvector space over the semigroup S = {0,
3}.

Example 5.20: Let

vV = V1UV2UV3UV4UV5UV6
a a
={Z,x L)} {Z[x]} U i{|la a||laecZ,
a a
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Loess)

U{(aaaaaa),(aaa)|ac”Zy}

anz}u aeZ,

(0) a

is a semigroup set 6-vector space over the semigroup S = Z,
under addition modulo 2. Let

W = W1UW2U...UW6
{(OO) ¢ 1)}v{a+ax+...+axn|aezz}u

aaa
] jaezz}
a a a
0
0
0
0

1 (0)

S O O O
S o o O

(0) 1

C
o o o o o
© o o o o

0 00

U {(aaa)laeZy}
is a semigroup 6-set subvector space over S = {1, 0} < Z,.

Now we proceed on to define the new type of substructure in
semigroup n-set vector space.

DEFINITION 5.11: Let V =V, UV, U ... UV, be a semigroup
n-set vector space over the semigroup S. Let W =W, UW, v
uw,cV, vV, u.. UV, where W is a n-set vector space
over the set P then W is a pseudo n-set vector space over the
subset P = S.

We illustrate them by some examples.
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Example 5.21: Let

v

ViuV,u...uU Vs
a a
{ ] ann} )
a a
a a a a a a a a
{ M j anlz} ¥
a a a a a a a a

a, a,8,,.., a5 € Z, r U{Zy[x]}

U{(aaaaa),(aaa),(aaaa)|aecZy}

be a semigroup 5-set vector space over the semigroup S = Zi,, a
semigroup under addition modulo 12. Take

W

W, uW,,u W30 WU Ws

1 1 0 0\(6 6 a a a
= R R U ael,r Y
1 1710 0){6 6 a a a
a 00 0O
0a 0 00O
0 0 a 00| aeZ,ufatax+..+ax"|a
0 0 0 a O
0 0 0 0 a

€eZpU{(aaaaa)|aecZy}
C V1UV2U...UV5;

W is a pseudo 5-set vector subspace of V over the set S = {0, 1,
6} cZp.
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Example 5.22: Let

A%

V1UV2UV3UV4

(Z XU AZ X Z X Z1) u{(a aj
a a

an*}u

be a semigroup 4-set vector space over the semigroup S = Z°,
semigroup under addition.

W = W1UW2UW3UW4
= f{atax+..+ax"|aeZ}uU {(aaa)laeZ} U

G

c ViuV,uVi;u 'V,

a a a
+ +
neZ" ;U a a allae”Z

a a a

is a pseudo 4-set vector subspace of V over the subset {0, 2, 4,
3,7V cZ".

Now we proceed on to define the notion of semigroup n-set
linear algebra over the semigroup.

DEFINITION 5.12: Let V =V; U ... UV, be a semigroup n-set
vector space over the semigroup S. If each V; is a semigroup
under addition, 1 <i <n; then we call V to be the semigroup n

set linear algebra over the semigroup S.

We now illustrate this definition by some examples.

195



Example 5.23: Let

V = ViuV,u...uV;s
_ a a

a a

a b ¢ d

e g h

c
f|| ab,cdef ghieZ

an*}u {(aaaa)|aeZ} U {Z[x]} U

a,b,c,d,e,f,g.h e Z*} U

be the semigroup 5-set linear algebra over the semigroup Z".

Example 5.24: Let

vV = ViuV,u VU Vy
a a a
= a a aflae’Z, V{Z[X]} U{ZyxZyx 7y x Ly}
a a a

a a a a a
u{( j anz}
a a a a a

be a semigroup 4-set linear algebra over the semigroup Z,.

Example 5.25: Let
VvV = ViuV,uV;uV,u Vs

= (ZX]} U {Zs x Zy x Zs} U {[a aj
a a

an3} )
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a a a a
{(aaaaaa)jaeZ;fUqla a a allaeZ,
a a a a

be a semigroup 5-set linear algebra over Zs.

Example 5.26: Let

\Y% V1UV2UV3UV4
a a a

a a a|laeZ, U{ZxZ,xZ, }U{Z][x]} U

a a a
a,beZ7}

a a a a
b b b

be a semigroup 4-set linear algebra over the semigroup Z.

on

DEFINITION 5.13: Let V =V, vV, o V; v ... UV, be a
semigroup n-set linear algebra over the semigroup S. Let W =
wyow,u.. oW, cV,uV,u... vV, =V bea n-subset of
V such that W is a semigroup n-set linear algebra over the
semigroup S, then we call W to be the semigroup n-set linear
subalgebra of V over S.

We illustrate this by the following example.
Example 5.27: Let
vV = V1UV2UV3UV4UV5

(Zs x Z x Zg} U {Ze[x]} U {[a a aj
a a a

aezﬁ}u

a b
¢ df|ab,ycdefeZ ;U
e f
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c
f||a,b,c,d,ef,ghiecZ,

a
d
g 1

5 o o

be a semigroup 5-set linear algebra over the semigroup Zg, Z¢ a
semigroup under addition modulo 6. Take

W = W1UW2UW3UW4UW5
{ZexZsx {0}y U {atax+...tax"|ae Z} U

a a
a a a
ac{0,2,4,:U q|la al|laeZ, U
a a a
a a
a a a
a a a|laeZ
a a a

is a semigroup S-set linear subalgebra over the semigroup Z.

Example 5.28: Let

v

V1UV2U...UV6

{Z+><Z+><Z+}u{(al a aJ

a a a

{[a a a aJ +} {a aJ
ae/Z ;U

a a a a a

ae Z+} U {Z'x]} v

an*}u

a

a a a

a b bl|labceZ
c ¢ ¢

be a semigroup 6 set linear algebra over the semigroup Z* under
addition.

Take
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W = {3z*x3z*xsz*}u{(a ? aj
a a a

ae2Z+} U {a+ax

6 . a a a a .
+...+ax|aeS5Z} v ae3Z" ;U
a a a a
a a a
a a
{ ]anZ*}u a a allae3Z"
a a
a a a
= Wyu...uU W
c ViuV,uV;uV,u Vsu Vg
= V.

W is a semigroup 6-set linear subalgebra of V over the
semigroup Z'. We call W to be a semigroup 6 — set linear
subalgebra over the semigroup Z".

Example 5.29: Let

V = VuV,uV;uVy
{Zs x Zg} U {Zg [X] | Zg [x] contains all polynomials of
degree less than or equal to 7} L

[

be a semigroup 4-set vector space over Zg. This can never be
made into a semigroup 4-set linear algebra over Zg.

Thus all semigroup n-set vector spaces are not in general
semigroup n-set linear algebras.

a a
a a a
a,b,c,deZS}u [ J, a allaeZ

a a a

a a

Now we define yet another new subalgebraic structure of
semigroup n-set vector spaces and semigroup n-set linear
algebras.
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DEFINITION 5.14: Let V = V; U ...V, be a semigroup n — set
vector space over the semigroup S. If W =W, oW, U ... UW,
cV, oV, u... vV, =V is a proper subset of V and W is a
semigroup n-set vector space over a proper subsemigroup P of
S then we call W to be the subsemigroup n set vector subspace
of V over the subsemigroup of the semigroup S.

Suppose V; UV, U..UV, is a semigroup n — linear
algebra over the semigroup S and W =W, U W, U ... U W,be
a proper subset of V such that W; <V, and W; is a
subsemigroup of V; for each i, 1 <i<nand if P < S is a proper
subsemigroup of the semigroup S and if W is a semigroup n-
linear algebra over the semigroup P — S then we call W to be
the subsemigroup n-linear subalgebra of V over the
subsemigroup P of the semigroup S.

Now we illustrate this situation by a few examples.
Example 5.30: Let

vV = V1UV2UV3UV4
{(1000), (0000), (0011), (1100)} U {Z> x Z» x Zy} U
((111), (001), (000), (11100), (00011), (100),

(00000} U {a e a] ac zz}
a a a

be a semigroup 4 set vector space over the semigroup Z, =
{0,1}. Clearly V has no subsemigroup 4-set vector space as Z,
has no proper subsemigroup.

Example 5.31: Let

A%

VlUV2UV3UV4

[

x Zy x Z4}U {(Z4 [x}

a,b,c,deZ4} U{(a,a,a,a)/aeZs Ui
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be a semigroup 4-set vector space over the semigroup Z4. Take

we o)

U {a; +ax’ + asx’ + ax’ + asx’ | ay, ay, a3, ag, as € Zy}

ae 24} w{(0000), (2222)}U {(aaa)|a € Z4}

is a subsemigroup 4-set vector subspace of V over the
subsemigroup S = {0, 2} addition modulo 4.

On similar lines we can define the notion of subsemigroup n set
linear subalgebra of V as follows.

DEFINITION 5.15: Let V =V, UV, U ... UV, be a semigroup
n-set linear algebra over the semigroup S. If W =W, U W, v
UW, be a proper subset of V and if P is any proper
subsemigroup of the semigroup S. We call W to be the
subsemigroup n-set linear subalgebra of V over the
subsemigroup P of the semigroup of S; if W is a semigroup n-set
linear algebra over P.

Example 5.32: Let
V = ViuV,u...uUV;s
= {Zis x Zis X Z16} W {Z16[X]; all polynomlals of degree

anm} )

aeZg

less than or equal to 5} U {

[

be a semigroup 5-set linear algebra over the semigroup S = Zig.
Take

a a a

a,b,c,de Zm} )

o o o W
S o &
o o &
o o oo

W = W1UW2UW3UW4UW5
= {SxSxS|S={04,8} U {atax+ax’+ax +ax'+
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ae{0,2,4,6,8,10,12,14}}

5 a a a
ax | anlﬁ} U
a a a

a a a a
a a 0 a
U ae{0,8} v ae{0,4,8,12}
a a 0 0 a a
0 0 a

is a subsemigroup 4-set linear subalgebra over the
subsemigroup S = {0, 4, 8, 12} < Zs.

Not all semigroup n-set linear algebras have subsemigroup
n-set linear subalgebras. We give classes of semigroup n-set
vector spaces and semigroup n-set linear algebras which do not
contain this type of substructures.

THEOREM 5.2: Let V=V, UV, U... UV, be a semigroup n-set
vector space over the semigroup Z, (p a prime) under addition
modulo p. V does not contain any proper subsemigroup n-set
semigroup vector subspaces.

Proof: Given V=V, U ... UV, is a semigroup n-set vector
space over the semigroup Z,, p a prime. Clearly Z, has no
proper subsemigroup. So even if W =W, u ... UW, c V,
UV, U ... UV, =V aproper subset of V then also W is not a
subsemigroup n-set vector subspace of V as Z, has no proper
subsemigroups under addition modulo p. Hence the claim.

Thus in view of this theorem we give the following
interesting definition.

DEFINITION 5.16: Let V=V, UV, U ... UV, be a n-set vector
space over a semigroup S. If' S has no proper subsemigroup n-
set vector subspace then we call V to be a pseudo simple
semigroup n-set vector space.

Now we will also prove we have a class of semigroup n-set
vector spaces which are pseudo simple.
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THEOREM 5.3: Let V = V; v ... UV, be a semigroup n-set
linear algebra over the semigroup Z,, p a prime. Then V has no
proper subsemigroup n-set linear subalgebra.

Proof: Given V =V, U ... UV, is a semigroup n-set linear
algebra over the semigroup Z, Clearly Z, has no proper
subsemigroup as p is a prime so even if W is a proper subset of
V with each W; c V; a subsemigroup of V; for eachi; 1 <i<n
still V has no proper subsemigroup n-set linear subalgebra as Z,
has no proper subsemigroups. Thus V has no subsemigroup n-
set linear subalgebra.

Hence we can define such V’s described in this theorem as
pseudo simple semigroup n-set linear algebras.

THEOREM 54: Let V =V, U ... UV, be a semigroup n-set
vector space over the semigroup S= Z orZ,na composite
number for appropriate V’s we can have in V subsemigroup n-
set vector subspaces.

Proof: When V=V, U ... UV, has a proper subset W = W,
U ... U W, such that for some proper subsemigroups S of Z" or
Z, (n-composite number) W is a semigroup n-set vector space
of V over S then W is the subsemigroup n-set vector subspace
of V. Hence the claim.

Now we give some examples of them.

Example 5.33: Let

VvV = VyuV,u V3UV4

b
= {ZIO X Zl()} |\ {ZIO [X]} v {(a J
c d
a a a a a a a a 7
a a a ’ a a a a a %€ %10
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be a semigroup 4-set vector space over the semigroup S = Z,.
Take

W

{(a, a) | a € Zyo} W {All polynomials of even degree in

a a
x with coefficients from Z;o} U {[ J ae ZIO} )
a a

[c2 Jes)

W]UW2U W3UW4§V,

W is a subsemigroup 4 vector subspace over the subsemigroup
S = {0, 5} < Zj. In fact W is also a subsemigroup 4-set vector
subspace over the subsemigroup P = {0, 2, 4, 6, 8} < Zo. Thus
we see W is a subsemigroup 4 set vector subspace over all the
subsemigroups of Z.

Now we proceed on to define yet another type of substructure of
these semigroup n-set vector spaces and semigroup n-set linear
algebras.

DEFINITION 5.17: Let V =V, UV, U ... UV, be a semigroup
n-set vector space over the semigroup S. If P;, ..., P, is the
complete set of subsemigroups of S (n can also be infinite).
Suppose W =W, oW, v... UW, cV, vV, U ..UV, is a
proper subset of V and W is a subsemigroup n — set vector
subspace of V for every subsemigroup P;of Sfori =1, 2, ..., n
then we call W to be the strong subsemigroup n set vector
subspace of V.

(All subsemigroup n-set vector subspaces of V need not be a
strong subsemigroup n-set vector subspaces of V). Similarly if
V=V,uV,uU ... U V,is a semigroup n set linear algebra
over the semigroup S and if P, P,, ... P, is the set of all
subsemigroups of S and if W = W, UW, U ... U W, Cc V|
U V, U ... U V,is such that W is the subsemigroup n-set linear
subalgebra of V over every subsemigroup P;, fori=1,2, ...,n
then we call W to be the strong subsemigroup n-set linear
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subalgebra of V. As in case of semigroup n set vector spaces we
see in case of semigroup n-set linear algebras all subsemigroup
n-set linear algebras need not always be strong subsemigroup n-
set linear subalgebras of V.

We now illustrate this situation by a simple example.

Example 5.34: Let

V = VuVL,u ...UV;s

= {Zéxzéxzé}u{(a a]
a a

polynomials of degree less than or equal to 5 with

aezé} U {Zg[x]; all

. a b ¢
coefficients from Z¢} U
d e f

a,b,c,d,e,fezé}

a a a
Usla a allaeZ

a a a

be a semigroup 5-set linear algebra over the semigroup Z. The
subsemigroups of Zs are P; = {0, 3} and P, = {0, 2, 4}.
Take

a a

W = {(a, a, a)/aezé}u{
a

ae{0,2,4}} U {All
a

polynomial of the form a + ax + ax” + ax’ + ax* + ax’ | a

{(a a aj
€ Z6}kJ
a a a

c \/::\H L)\/zk)‘/3LJ‘/4LJ\/5

a a a
aezé}u a a alae{0,3}
a a a

is a strong subsemigroup 5-set linear subalgebra as W is a
subsemigroup 5 set linear subalgebra over both the
subsemigroups P, and P».
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Now we proceed on to define the notion of group n-set vector
spaces and group n-set linear algebras.

DEFINITION 5.18: Let V=V, UV, U ... UV, Vissaid to be a
group n-set vector space over the group G where V; are sets
such that g v; € Vifor allvi e Viand g € G, 1 <i <n. Here G is
Jjust an additive abelian group.

We now illustrate this definition by some examples.

Example 5.35: Let

VvV = VyuV,u V3UV4

a a
a a
a a ajfa a a a

a a a
,Ja a al,ja a a allaeZ, ¢,

an7} UA{Z[X]} U{Zy xZ7x Z7} U

a a a
a a ajl\a a a a

V is a group 4-set vector space over the group Z; under addition
modulo 7.

Example 5.36: Let

V = V1UV2U V3UV4UV5

b
- {Z><Z><Z}u{Z[x]}u{a dja,b,c,dez}
C
a a a a
a a a 0 a a a
U ae/ U ae”Z

{(a a a] } 0 0 a a

0 0 0 a

be a group n-set vector space (n = 5) over the group Z under
addition.
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Example 5.37: Let

V = VyuV,u V3uV,
£(0000), (1100), (0011)} U {(000), (010), (00), (10)} L

a a
{( jaezz}u (Z [X]}
a a

be a group n set vector space over the group Z, = {0, 1}, a
group under addition modulo 2.

Now we proceed on to define the notion of group n-set linear
algebra over a group and illustrate them by some examples.

DEFINITION 5.18: Let V=V, UV, U ... UV, be a group n-set
vector space over the additive group G. If each V; is an additive
group then we call V to be a group n-set linear algebra over G
forl <i<n.

Example 5.38: Let

vV = V1UV2U V3UV4UV5

{ZxeZ}u{Z[x]}u{[a bj
c d

)

be a group 5-set linear algebra over the additive group Z.

a,b,c,de Z} U

ae2Z}u{(aaaaa)/an}

Example 5.39: Let

vV = V1UV2U V3UV4
= {(000), (111), (100), (001), (010), (110), (011), (101)}
U {Z, [x]} U {(1111), (0000), (1100), (0011)}

o)

a,b,c,de Zz}
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be a group 4 set linear algebra over the additive group Z,
modulo 2.

Example 5.40: Let
V = ViuV,u VUV,

a b a a a a
{[ ]a,b,c,dezm}u {( ]
c d a a a a

Zlo[X] |\ {ZIO X ZIO X ZlO X ZIO};

anlO} U

V is a group 4 set linear algebra over the group Z,o, group under
addition modulo 10.

Now we define a few substructures of these two concepts.
DEFINITION 5.19: Let V =V; U ... UV, be a group n set vector
space over the group G. If W =W, oUW, U ... U W, is a proper

subset of V and W is a group n set vector space over the group

G then we call W to be a group n-set vector subspace of V over
G.

We illustrate this by some examples.
Example 5.41: Let

A%

ViuV,,u V3UV4

a b
{Z() X Z()} o {( J
c d
a a a a)fa a a

u b
a a a aj/la a a
all polynomials of degree less than or equal to 4}, V is a group
4-set vector space over the group Zs group under addition

modulo 6. Take
W = W]UW2U W3UW4

a,b,c,dezé}

ae zé} U Z[x]
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= {(aa)/aeZd U {(a aJ
a a

a a a a

a a a a

a+ax+ax2+ax3+ax4/aezé}

V1UV2U V3UV4
Vv,

aezé} )

ae 26} v {all polynomials of the form

N

W is a group 4-set vector subspace of V over the group Z.

a
an} U
a

(ZxZ} U {Z [x]} U {[a ? j
a a

Example 5.42: Let

A%

ViuV,u V;uV,suU Vs

a b
{ Ja,b,c,dez} ]

c d

a b c d

0 e f g ..

a,b,c,d,e,f,g,h,i,jeZ

0 0 h i

0 0 0 j

be a group 5-set vector space over the additive group Z. Take

W = W1UW2U W3UW4UW5
{(a,a)|laeZ}u{atax+.. +ax"|aeZ}

At Db {0 Db
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ae2Z

C
© o o

a a a
a a a
0 a a
0 0 a

uV,u V

3UV4UV5

1N

Vi
V.

W is clearly a group 5 set vector subspace of V over the group
G.

We now prove the following interesting result.

THEOREM 5.6: Every group n-set linear algebra V=V, U... U
V, over the group G is a group n-set vector space over the
group G but a group n set vector space over the group G in
general need not be a group n-set linear algebra over G.

Proof: Let V=V, UV, U... UV, be a group n set linear
algebra over the additive group G. Clearly V is a group n-set
vector space over the additive group G for every n-group is a n-
set.

To prove a group n set vector space V over a group G is not
in general a group n-set linear algebra over the group G. We
give a counter example. Consider the group 5 set vector space

VvV = V1UV2U V3UV4UV5
{(111), (000), (100), (00), (11), (01), (10)} v

a b)(a a a
¢c d)\la a a

a,b,c,deZ, = {0,1}} U

o
o
o

aeZ,={0,1}; U {Z, [x]} v

[
[

& ® [S I )

& ® [SSR -]

{Zz XZZ XZZ XZz}
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over the additive group Z, = {0, 1}. Clearly V,, V, and V; are
not groups under addition so V is not a group 5-set linear
algebra over the group Z, = {0, 1} under addition modulo 2.
Hence the claim.

Now we define group n set linear subalgebra over the group G.

DEFINITION 5.21: Let V =V, UV, U ... UV, be the group n-
set linear algebra over the additive group G, where each V; is a
group under addition, i = 1, 2, ..., n. Take W =W, UW, U ...
U W, a subset of V such that W the group n set linear algebra
over the same group G i.e., each W; cV; is a proper subgroup
of Vi i=1, 2, ...n Wecal W=W, oUW, U ... UW, to be a
group n-set linear subalgebra of V over the additive group G.

Now in case of group n set linear algebra V; we can define the
notion of pseudo group n-set vector subspaces of V which is
given below.

DEFINITION 5.22: Let V=V, UV, U ... UV, be a group n set
linear algebra over the group G. If W =W, UW, U ... UW, be
a proper n-subset, where at least one of the W;'s is not a
subgroup of the group V; and if W is a group n-set vector space
over G then we call W =W; UW, U ... UW, to be the pseudo
group n-set vector subspace of V;(1 < i <n).

Now we illustrate these definitions by the following examples.
Example 5.43: Let

A%

ViuV,y,u V3UV4
a a
a a

a, a; a,|la,e”Z,; 1<1<9

ae le} UAZp [X]} U A{Zi x Zin x Zin} U

a3

a; a4
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be a group 4 set linear algebra over the group Z,,, addition
modulo 12.
Let

6 6)(0 0 5 ; ;
W = , U {(ax”"+ax t a,ax’ +ax’ + a,
6 610 0

atax +ax’+ax’|aeZp U {(aal),(0aa),
(ala)laeZpt v

a a a\(0 0 0Y(0O O O
0 0 O,Ja a af,0 0 OljlaeZ,
0 0 0){O O O/la a a

= W]UW2U W3UW4
c ViuV,u V;uV,=V.

Clearly W,, W3 and W, are not even closed under addition. So
W is verified easily to be a pseudo group 4 set vector subspace
of V over Z,.

We further say all proper subsets of V need to be pseudo group
4 set vector subspaces of V over the group Z,,. For take

1 1\(5 5 , X
W = : U 3x +2x°+ 1, 550 + 1} U {(321),
1 115 5
37 2
(123U {1 2 0
51 4

= W, uW,u Wy U W,
c V1UV2U V3UV4.

Clearly for W, we take

and
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6czn.6ll =[® Clew
e”Zp, = .
22711 1) e 6 !

Likewise 3x +2x*+ 1 e Woand 7 € Z15; 7 3x + 2x* + 1) = 9x
+2x°+7 ¢ W,, (3,2, 1)isin Wy and 5 € Zy5, 5(3,2, 1) = (3,

10,5) ¢ Ws.
Finally
37 2
1 2 0]eWw,
51 4
and 0 € Zy,.

37 2 0 00
0.1 2 0|=|0 0 0|eW,.
51 4 0 00

SoW=W,uUW,uU W;uU W, c V is just a 4-subset of V, but
is not a pseudo group 4 set vector subspace of V over the group
Z15. Thus the 4-subsets of V are not pseudo group 4 set vector
subspace of V.

Now we proceed on to define the notion of subgroup n-set linear
subalgebra of a group n set linear subalgebra of a group n-set
linear algebra over the group G.

DEFINITION 5.23: Let V=V, UV, U ... UV, be a group n set
linear algebra over the group G. Let W = W, U... U W, be a
proper subset of G ie. W; < V; and W; is a subgroup of V;, 1 <i
< n. Let H be a proper subgroup of G. If W is a group n-set
linear algebra over the group H, then we call W to be the
subgroup n-set linear subalgebra of V over the subgroup H of
the group G.

Example 5.44: Let

A%

ViuV,u VUV,

(Z6IX]} U {Z6 x Zo X Zo} U {a b]
c d

a,b,c,dezé}
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a a a a
U {[ j ae Zé}

a a a a
be the group 4-set linear algebra over the group Z¢ under
addition modulo 6. Let

W = WuW,u WU W,
= f{atax+ax’+..ax"/ac Z¢ U {(a a,a)/acZ

a a a a a a
u{( )an%u{( Jae{O,S}czé}
a a a a a a

be the group 4 set linear subalgebra of V over the group Z.

Example 5.45: Let

V = ViuV,u VU Vy

{ZxZxZ} U {Z[x]} v

a a a

0 a allaeZ; U

0 0 a

a, 0

aZ a3 .
a,eZ; 1<i<10

a, a, ag

a7 aS a9 alO

be a group 4 set linear algebra over the group G = Z. Take

W = W]Uqu W3UW4
{(aaa)|a e Z} v {all polynomials of even degree with
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2n 2n 2n
coefficients from Z} U 0 2n 2n||lneZ
0 0 2n

[SC R < T <V o
O v O
S I =)
S ==

c ViuV,u V;uV,=V,

It is easily verified W is a group 4 set linear subalgebra of V
over the group G = Z.

Example 5.46: Let

A%

Vl U Vz U V3 U V4
a a
{214 X Lia X Lya X Z]4} ) {Z]4 [X]} U a afae Zl4

o) -

be a group 4 set linear algebra over the group Z4. Take

a,b,c,deZM}

W = WuW,u W;UW,
= {(a,a,a,a)|auZy Ufatax+..+ax"|aeZy}

anM}

W is clearly a subgroup 4-set linear subalgebra over the
subgroup {0,7} < Z4.

a a

U4la alaef{0,7}; v {[a a]
a a

a a

c V1UV2U V3UV4:V.
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Example 5.47: Let

A\ ViuVo,u V;uV,U Vs

{ZxeZxZ}u{aaaaj
a a a a

an} U

a b c d

0 ¢ b el pedefghijezt U Zx]} U
0 0 h i

000 j

a4, a, a,

a, a; a,|la,eZ; 1<i<9

a, a, a,

be a group 5-set linear algebra over the additive group Z. Take

W = WuW,u W;UW,;UWs

a a a a
= {(2Z x3Z x4Zx52)}u{ ]ae2Z}u
a a a a
a a a a
0 a a a 5 n
aeZyu{(atax+tax +... +ax"|
0 0 a a
0 0 0 a
a a a
aeZlu4la a allae2Z
a a a
V1UV2U V3UV4UV5

1N

V.

W is a subgroup 5-set linear subalgebra of V over the subgroup
2Z c Z.
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Let us define the n-generating subset of a group n-set vector
space and group n-set linear algebra over the group G.

DEFINITION 5.23: Let V =V, UV, U ... UV, be a group n-set
vector space over the group G. Suppose W =W, W, U ... U
W, is a proper subset of V and if W is a semigroup n-set vector
space over some proper subset H of G where H is a semigroup,
then we call W to be the pseudo semigroup n-set vector
subspace of 'V over the semigroup H of G.

We illustrate it by the following examples.
Example 5.48: Let

V = VuV,u V;uV,U Vs
a a a
{ZxZxZ}U{Z[x]} Uijla a allaeZ; U

a a a
a b

{ J a,b,c,dez}u
c d
a, 0 0 O
a, a
2 a, €Z;1<i<10
a, a; ag

a7 aS a‘) a10

be a group 5-set vector space over the additive group Z.

W = WuW,u W;uUW,U W;
a a a
= {Z'xZ'xZWU{Z' [x]}uila a al|laeZ" |} U
a a a
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a,eZ";1<i<10

is a pseudo semigroup 5-set vector subspace of V over the
semigroup Z" of Z.

Example 5.49: Let

vV = ViuV,u VUV,
a a a
a a a a
= a a alflae2Z; U { jae3Z}u
a a a a
a a a
a a
{ZxZxZx3Z} U {|a allaes5Z
a a

be a group n-set vector space over the group Z. Take

W = W, uW,u W;uUW,
a a a
a a a a
= a a allae2Z" u{ jae3z+}u
a a a a
a a a
a a
(Z"xZ " xZ x3ZYudla a| fae5Z"
a a
ViuV,y,u V3UV4

1N

v
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is easily verified to be a pseudo semigroup n-set vector
subspace over the semigroup Z' < Z.

Now we proceed to define n-generating set and n-basis.

DEFINITION 5.24: Let V =V; UV, U ... UV, be a group n-set
vector space over the group G. If we have a n-set X = X; U X,
vU.. UX, cV, vV, v ... UV, =V such that each X;
generates V;over the group G, fori =1, 2, ..., n, then we call X
to be the n-set generator of V. If the cardinality of each X; is
finite we say V is generated finitely and the n-dimension of V is
(X1, 1Xo|, ..., |Xul). If even one of the X; of X happens to have
infinite cardinality then we say n-dimension of V is infinite. We
call the n-generating n-subset of V to be the n-basis of V over
the group G.

We illustrate this by the following examples.
Example 5.50: Let V=V, UV, U V3 U V,be a group 4-set
vector space over the group Z, = {0,1} where V; = {(1100),

(0011), (1111), (0000), (111), (101), (000)}, V, = {Z, [x] /
every polynomial is of degree less than or equal to 2},

a b

Vi;= a,b,c,deZ,
c d
a a a a

V4: {( ]aezz}.
a a a a

X = {(111),(1100), (0011), (111), (101)} L {1, x, X2 1 +x,
1+x%, x+x2, 1+x+x2} U

(s oo )00 )G )

and

Take
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