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semigroup under the operations of V. Suppose T ⊆ S, a proper 
subset of S and T is also a semigroup under the same operations 
of S; i.e., T a subsemigroup of S, then we call P to be a pseudo 
subsemigroup subvector space over T if P is a semigroup vector 
space over T.  
 
We illustrate this situation by the following examples. 
 
Example 2.4.53: Let  
 

V = 1 2 3 4
i

5 6 7 8

a a a a
a Z {0};1 i 8

a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the semigroup under matrix addition. Let S = Z+ ∪ {0} a 
semigroup under addition. V is a semigroup linear algebra over 
S. Take P  
 

1 1
1 2 1 2

2 2

a 0 0 0 0 0 c 0
, a ,a ,c ,c Z {0} V

a 0 0 0 0 0 c 0
+

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈ ∪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
P is just a subset of V and P is not closed under matrix addition. 
Take T = 2Z+ ∪ {0}, T is a subsemigroup of S. Clearly P is a 
semigroup vector space over T, hence P is a subsemigroup 
pseudo subvector space over T.  
 
Example 2.4.54: Let V5 = {(Z+ ∪ {0}) [x], i.e., set of all 
polynomials of degree less than or equal to 5 with coefficients 
from the semigroup S = Z+ ∪ {0}}.  V5 is a semigroup linear 
algebra over the semigroup S. Take P5 = {ax2 + bx + c, px3 + d, 
qx4 + e/ a, b, c, p, d, q and e ∈ Z+ ∪ {0}}.  Clearly P5 is only a 
proper subset of V5. P5 is not closed under the polynomial 
addition, so P5 is not a semigroup. Take T = 3Z+ ∪ {0} ⊆ S = 
{Z+ ∪ {0}}.  T is a semigroup under addition. Thus P5 is a 
semigroup vector space over the semigroup T. P5 is the pseudo 
subsemigroup vector subspace of V5. 
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An important natural question would be that will every 
semigroup linear algebra have a pseudo subsemigroup vector 
subspace. The answer is no. We prove this by the following 
example. 
 
Example 2.4.55: Consider the semigroup Z2 [x] of all 
polynomials with coefficients from the field Z2 under 
polynomial addition. Z2 [x] is a semigroup linear algebra over 
the semigroup Z2.  

Take P = {all polynomials x3 + 1, x5 + 1,…, xn + 1, n ∈ Z+}, 
P is only a proper subset of Z2[x]. P is not a closed set under 
polynomial addition. P is in fact a pseudo semigroup subvector 
space of Z2 [x]. Now Z2 has no proper subsemigroups other than 
the trivial {0} semigroup. So P is not a pseudo subsemigroup 
subvector space of Z2[x].  

Thus we see every semigroup linear algebra need not 
contain a pseudo subsemigroup vector subspace.  
 
In fact we have a class of such semigroup linear algebras which 
we state in the form of theorem.  
 
THEOREM 2.4.1: Let Zp [x] be the collection of all polynomials 
with coefficient from the prime field Zp of characteristic p. Zp[x] 
is a semigroup under polynomial addition. Further Zp is also a 
semigroup under addition modulo p. Zp [x] is a semigroup 
linear algebra over Zp. In fact Zp [x] has no subsemigroup 
linear subalgebras and Zp [x] has no pseudo subsemigroup 
subvector spaces. 
 
Proof: Given Zp [x] is a semigroup linear algebra over the 
semigroup Zp = {0, 1, …, p – 1}. Clearly Zp has no 
subsemigroups other than {0} and itself. So Zp [x] cannot have 
any non trivial subsemigroup linear subalgebras or pseudo 
subsemigroup vector subspaces. It can have only the {0} to be 
both these structure over {0}. 
 
Now in view of this we define two new algebraic structures.  
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DEFINITION 2.4.13: Let V be a semigroup linear algebra over 
the semigroup S. If V has no subsemigroup linear algebras over 
subsemigroups of S then we call V to be a simple semigroup 
linear algebra.  
 
 We have non trivial classes of simple semigroup linear 
algebras given by the example.  
  
Example 2.4.56: Let  
 

Mn × m = 
11 1m

ij p

n1 nm

a a
a Z ;1 i n ; i j m

a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

"
# #

"
 . 

 
This is a simple semigroup linear algebra. (m=n) can also occur. 
We see Mn×m is taken only as a semigroup under matrix 
addition.  
 
Example 2.4.57: Let V = Zp × … × Zp = {(x1, …, xn) / xi ∈ Ζp / 
1 ≤ i ≤ n}, V is a semigroup under addition. V is also a 
semigroup linear algebra which is a simple semigroup linear 
algebra.  
 
In fact both these semigroup linear algebras do not contain any 
proper pseudo subsemigroup subvector spaces. In view of all 
these we can have the following theorem before which, we just 
recall the definition of a simple semigroup. A semigroup S is S-
simple if S has no proper subsemigroups. The only trivial 
subsemigroups of S being {0} or φ and S itself.  
 
THEOREM 2.4.2: Let V be a semigroup. S a semigroup such that 
it is S-simple. If V is a semigroup linear algebra over S then V is 
a simple semigroup linear algebra over S.  
 
Proof: Given V is a semigroup linear algebra over the 
semigroup S. Also it is given the semigroup S has no proper 
subsemigroups i.e., {0} and S are the only subsemigroups of S 
which are trivial. So if W ⊆ V; W cannot be a subsemigroup 
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linear subalgebra over any T ⊆ S, T a subsemigroup of S. Hence 
the claim. 
 
Now we proceed on to define the new notion of pseudo simple 
semigroup linear algebra. 
 
DEFINITION 2.4.14: Let V be a semigroup under addition and S 
a semigroup such that V is a semigroup linear algebra over the 
semigroup S. If V has no proper subset P (⊆V) such that V is a 
pseudo subsemigroup vector subspace over a subsemigroup, T 
of S then we call V to be a pseudo simple semigroup linear 
algebra. 
 
We illustrate this situation by the following examples. 
 
Example 2.4.58: Let V = Z5 [x] be the collection of all 
polynomials with coefficients from Z5, Z5 a semigroup under 
addition modulo 5. V is semigroup linear algebra over the 
semigroup Z5. Z5 has no proper subsemigroups. Hence for any 
subset P of V; P cannot be a pseudo subsemigroup vector 
subspace. Hence V is a pseudo simple semigroup linear algebra. 
 
Example 2.4.59: Let  

V = M3×5 = ( ){ }ij ij 7a a Z ; 1 i 3;1 j 5∈ ≤ ≤ ≤ ≤  

 
be a semigroup under matrix addition modulo 7, with entries 
from Z7. S = Z7 be the semigroup under addition modulo 7. V is 
a semigroup linear algebra over Z7. Z7 has no proper 
subsemigroup. So for any subset P of V, P is not a pseudo 
subsemigroup vector subspace of V. So V is a pseudo simple 
semigroup linear algebra over Z7. 
 
We prove the following interesting theorem. 
 
THEOREM 2.4.3: Let V be a semigroup, S a S-simple semigroup 
i.e. S has no subsemigroups other than {0} or φ  or S. V be the 
semigroup linear algebra over S. V is a pseudo simple 
semigroup linear algebra over S. 
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Proof: Given V is a semigroup linear algebra over the 
semigroup S, where S is a S-simple semigroup, i.e., S has no 
proper subsemigroups. So for any subset P of V, P cannot be a 
subsemigroup algebraic structure. In particular P cannot be 
subsemigroup subvector space of V. So V is a pseudo simple 
semigroup linear algebra over S. 
 
Now we proceed onto define the notion of linear transformation 
of semigroup linear algebras defined over the same semigroup 
S. As in case of linear algebra transformation where both the 
linear algebras must be defined over the same field we see in 
case of semigroup linear algebras to have a linear 
transformation both of them must be defined over the same 
semigroup S. 
 
DEFINITION 2.4.15: Let V and W be any two semigroup linear 
algebras defined over the same semigroup, S we say T from V to 
W is a semigroup linear transformation if T(cα + β) = cT (α) + 
T (β) for all c ∈ S and α, β ∈ V.  
 
It is left, as an exercise to the reader to prove the set of all 
semigroup linear transformations from V to W is a semigroup 
linear algebra over S with composition of maps as the operation. 
 
Now we give few examples of semigroup linear algebras 
defined over the same semigroup S.  
 
Example 2.4.60: Let  
 

V = 1 2
i

3 4

a a
a Z {0};1 i 4

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the semigroup under addition of matrices. S = Z+ ∪ {0} is a 
semigroup under addition. V is a semigroup linear algebra over 
S = Z+ ∪ {0}. Let W = {P × P / P = Z+ ∪ {0}}, W is a 
semigroup under component-wise addition. W is a semigroup 
linear algebra over S. Define T from V into W by  
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T ( )1 2
1 2 3 4

3 4

a a
a a ,a a

a a
⎛ ⎞⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 
T is a semigroup linear transformation of V to W. 
 
Example 2.4.61: Let V and W be as in example 2.4.60. Define 
T1 from W into V by  
 

T1 (x, y) =
x y
y x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
for all (x, y) ∈ P × P.  

Prove T is a semigroup linear transformation from W into 
V.  
 
Now we proceed onto define a new notion of semigroup linear 
operators. 
 
DEFINITIONS 2.4.16: Let V be a semigroup linear algebra over 
the semigroup S. A map T from V to V is said to be a semigroup 
linear operator on V if T (cu + v) = cT (u) + T (v) for every c ∈ 
S and u, v ∈ V.  
 
The reader is left with the task of proving the collection of all 
semigroup linear operators on V is again a semigroup linear 
algebra over S.  
 
We now illustrate this situation by the following examples. 
 
Example 2.4.62: Let V = {set of all 2 × 3 matrices with entries 
from S}, be a semigroup under matrix addition. V is a 
semigroup linear algebra on the semigroup S = Z+ ∪ {0}.  
 
Define T: V → V by  
 

T 1 2 3

4 5 6

a a a
a a a

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
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= 1 2
1 2 4 5 6

4 5 6

0 a a 0
a ,a ,a ,a ,a Z {0}

a 0 a a
+

⎡ ⎤+⎛ ⎞
∈ ∪⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

.  

 
T is a semigroup linear operator on V. 
 
Example 2.4.63: Let V = P × P × P × P where P = Z+ ∪ {0} be 
a semigroup linear algebra over the semigroup S = Z+ ∪ {0}. 
Define T (x, y, z, w) = (x + y, y + z, z – w, x – w) for every 
v = (x, y, z, w) ∈ V. T is a semigroup linear operator on V. 
 
Example 2.4.64: Let V = P × P × P be a semigroup linear 
algebra over the semigroup S = 2Z+ ∪ {0}, where P = Z+ 
∪ {0}. Define T: V → V by T (x, y, z) = (y, z, x). Prove T is a 
semigroup linear operator which is one to one and invertible. 
 
Example 2.4.65: Let V = {all polynomials of degree less than or 
equal to 7 with coefficients from the semigroup S = Z+ 
∪ {0}}.  V is a semigroup under polynomial addition. V is a 
semigroup linear algebra over S. Define T : V → V by T (x) = 
x2, T (x2) = x3 , …, T (x6) = x ; i.e., T(xn) = xn+1 if 1 ≤ n ≤ 5 and 
T(x6) = x. Is T a 1 – 1 invertible semigroup linear operator on 
V?.  

 
Now we define yet another new type of semigroup linear 
operator on a semigroup linear algebra V over the semigroups. 
 
DEFINITION 2.4.17: Let V be a semigroup linear algebra over 
the semigroup S. Let W ⊆ V be a subsemigroup linear algebra 
over the semigroup P, P a proper subsemigroup of S. Let T : V 
→ W be a map such that T (αv + u) = T(α)  T(v) + T(u) for all 
u, v ∈ V and T (α) ∈ P. We call T a pseudo semigroup linear 
operator on V. 
 
We first illustrate this situation by the following example. 
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Example 2.4.66: Let V = P ×  P × P where P = Z+ ∪ {0} be a 
semigroup linear algebra over the semigroup S = Z+ ∪ {0}. Let 
W = 2Z+ ∪ {0} × {2Z+ ∪ {0}} × {2Z+ ∪ {0}} be a subset of V 
and W be a subsemigroup linear subalgebra over the 
subsemigroup L = 2Z+ ∪ {0}. Let T: V → W be defined by 
T(αu + v) = 2α (2u) + 2v, T is a pseudo linear operator on V. 

We call this map T to be a pseudo projection.  
 
We just give the definition of semigroup projection of a linear 
algebra. 
 
DEFINITION 2.4.18: Let V be a semigroup linear algebra over 
the semigroup S. Let W be a semigroup linear subalgebra of V 
over S. Let T be a linear operator on V. T is said to be a 
semigroup linear projection on W if  
 

T(v) = w, w ∈ W  
and  

T (αu + v) = αT (u) + T (v) 
T (v) and T (u) ∈ W  

 
for all α ∈ S and u, v ∈ V.  

 
We illustrate this situation by the following example.  

 
Example 2.4.67: Let V = P × P × P × P where P = Z+ ∪ {0}, V 
a semigroup linear algebra over the semigroup P = Z+ ∪ {0}.  
Let W = 2Z+ ∪ {0} × {2Z+ ∪ {0}} × {0} × {0} ⊆ V be a 
semigroup linear subalgebra of V over P. Define T : V → V by 
T (x, y, z, w) = (2x, 2y, 0, 0). Clearly T is a semigroup linear 
projection of V onto W.  
 
Example 2.4.68: Let  
 

V = 1 2 3 4
i

5 6 7 8

a a a a
a Z {0};1 i 8

a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a semigroup linear algebra over the semigroup S = Z+ 
∪ {0}.   

Let  

W = 1 2 3 4
i

a a a a
a 2Z {0};1 i 4

0 0 0 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V; 

 
W is a semigroup linear subalgebra of V. Define T : V →  V by  
 

T 1 2 3 4 1 2 3 4

5 6 7 8

a a a a 2a 2a 2a 2a
a a a a 0 0 0 0

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
. 

 
Clearly T is a semigroup linear operator on V which is a 
semigroup linear projection of V into W.  
 
Example 2.4.69: Let V = P[x] where P = Z+ ∪ {0}, i.e., all 
polynomials in the variable x with coefficients from P. V is a 
semigroup linear algebra over P.  

Let W = {all polynomials of even degree with coefficients 
from P} ⊆ V; W is a semigroup linear subalgebra over P. 
Define a map  

T : V → W 
by  

T (α1x) = α1(x2) , 
T (α2x2) = α2x4, ...., 

T (αnxn) = αn x2n 
; 1 ≤ n ≤ ∞.  

Τ is clearly a semigroup linear operator which is a 
semigroup linear projection of V into W. 

 
Now having defined the notion of semigroup linear projection 
we proceed on to define semigroup projection of semigroup 
vector spaces. 
 
DEFINITION 2.4.19: Let V be a semigroup vector space over the 
semigroup S. Let W⊆ V be a semigroup vector subspace of V. A 
linear operator on V is said to be a semigroup projection of V 
into W if T: V → W i.e., T (v) = w for every v ∈ V and w ∈ W. 
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We illustrate this situation by the following example.  
 
Example 2.4.70: Let 
 

V = 1 2 5 i j

1 2 5

0 0 0a a a a ,b Z {0};
,

b b b0 0 0 1 i, j 5

+⎧ ⎫⎛ ⎞ ∈ ∪⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟⎜ ⎟ ≤ ≤⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

""
""

 

 
be a semigroup vector space over the semigroup S = Z+ ∪ {0}. 
Let  
 

W = 1 2 5
i

a a a
a 2Z {0};1 i 5

0 0 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

"
"

 ⊆ V 

 
be a semigroup subvector space of V. Let T: V → V defined by  

 

T = 1 5 1 5a a a a
0 0 0 0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

" "
" "

 

and 

T 
1 2 5

0 0 0 0 0 0
b b b 0 0 0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

" "
" "

; 

 
then T is a semigroup projection of V on W. 
 
We give yet another example of the semigroup projection of the 
semigroup vector spaces. 
 
Example 2.4.71: Let V = {0, 1, 3, 5, 7, …, (2n + 1)} be a 
semigroup vector space over the semigroup S = {0, 1} where 1 
+ 1 = 1. Let W = {0, 3, 32, …} ⊆ V, W is a semigroup vector 
subspace of V. Let T be a semigroup linear operator on V 
defined by T(x) = x if x is of the form 3n. T(x) = 0 otherwise. T 
is a semigroup linear operator on V, which is a semigroup linear 
projection of V on W. 
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Now we proceed onto define direct union of semigroup vector 
subspaces of a semigroup vector space. 
 
DEFINITION 2.4.20: Let V be a semigroup vector space over the 
semigroup S. Let W1, …, Wn be semigroup vector subspaces of V 
if V = ∪Wi and Wi ∩ Wj = φ or {0}, if i ≠ j then we say V is the 
direct union of the semigroup vector subspaces of the 
semigroup vector space V over S. 

 
We illustrate this situation by some examples. 

 
Example 2.4.72: Let  
 

V = 1 2 3
i j

1 2 3

0 0 0a a a
, a ,b Z {0};1 i 3

b b b0 0 0
+

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a semigroup vector space over the semigroup S = Z+ ∪ {0}. 
Take  
 

W1 = 1 2 3
i

a a a
a Z {0};1 i 3

0 0 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

W2 = i
1 2 3

0 0 0
b Z {0};1 i 3

b b b
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be semigroup vector subspaces of V over the semigroup S. 
Clearly V = W1 ∪ W2 and  
 

W1 ∩ W2 = 
0 0 0
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus V is the direct union of vector subspaces over the 
semigroups. 
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Example 2.4.73: Let  
 

1 4
1 2 3 i

2 5
4 5 6

3 6

a a
a a aa b a,b,c,d,a Z {0};

V , , a a
a a ac d 1 i 3

a a

+
⎧ ⎫⎛ ⎞

⎛ ⎞ ∈ ∪⎛ ⎞⎪ ⎪⎜ ⎟= ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ≤ ≤⎝ ⎠ ⎝ ⎠⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

; 

 
V is a semigroup vector space over the semigroup S = {Z+ ∪ 
{0}}. Take  
 

W1 = 
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
W1 is a semigroup vector subspace of V.  
 

W2 = 1 2 3
i

4 5 6

a a a
a Z {0};1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
is a semigroup vector subspace of V over S.  
 

W3 = 
1 4

2 5 i

3 6

a a
a a a Z {0};1 i 6
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
is a semigroup vector subspace of V over the semigroup S. Thus 
V = W1 ∪ W2 ∪ W3 with Wi ∩ Wj = φ if i ≠ j, 1 ≤ i, j ≤ 3. 
Hence V is a direct union of vector subspaces of the semigroup 
vector space V.  
 
Example 2.4.74: Let V = {3Z+ ∪ {0}, 2Z+ ∪ {0}, 5Z+ ∪ {0}, 
…, nZ+ ∪ {0} / 2 ≤ n ≤ ∞} be a semigroup vector space over the 
semigroup S = Z+ ∪ {0} . Let W1 = 2Z+ ∪ {0}, W2 = (3Z+ ∪ 
{0}}, …, Wn = (n + 1) Z+ ∪ {0}. 2 ≤ n ≤ ∞ be a semigroup 
vector subspaces of V or S. 
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Clearly V = i
i 1

W
∞

=
∪  but Wi ∩ Wj ≠ φ or {0} so V is not a 

direct union of semigroup vector subspaces of V.  
 

In view of this we define yet another new notion called 
pseudo direct union of semigroup vector subspaces of a 
semigroup vector space. 

 
DEFINITION 2.4.21: Let V be a semigroup vector space over the 
semigroup S. Let W1, …, Wn be a semigroup subvector spaces of 

V over the semigroup S. If V = 
1=
∪
n

i
i

W  but Wi ∩ Wj ≠ φ or {0} if i 

≠ j then we call V to be the pseudo direct union of semigroup 
vector spaces of V over the semigroup S. 

 
We illustrate this situation by the following example. 
 
Example 2.4.75: Let 

 

V = 1 2 1 2 1 2

3 4 3 4 3 4

a a b b c c
, ,

a a b b c c
⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

, 

 
1 2 1 2 1 2

3 4 3 4 3 4

d d y y x x
, and

d d y y x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
where a1, a2, a3, a4 ∈ 2Z+ ∪ {0}, b1, b2, b3, b4 ∈ 3Z+ ∪ {0}, c1, 
c2, c3, c4 ∈ 5Z+  ∪ {0}, d1, d2, d3, d4 ∈ 7Z+  ∪ {0}, y1, y2, y3, y4 
∈ 11Z+ ∪ {0} and x1, x2, x3, x4 ∈ 19Z+ ∪ {0}} be the 
semigroup vector space over the semigroup S = Z+ ∪ {0}.  
 
Let  

W1 = 1 2
i

3 4

a a
a 2Z {0};1 i 4

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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W2 = 1 2
i

3 4

b b
b 3Z {0};1 i 4

b b
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

W3 = 1 2
j

3 4

c c
c 5Z {0}; 1 j 4

c c
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

W4 = 1 2
j

3 4

d d
d 7Z {0};1 j 4

d d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

W5 = 1 2
k

3 4

y y
y 11Z {0}

y y
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and 

W6 = 1 2
i

3 4

x x
x 19Z {0};1 i 4

x x
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be semigroup vector subspaces of V over the semigroup S = Z+ 
∪ {0}.  

Clearly V = 
6

i
i 1

W
=
∪  we see Wi ∩ Wj ≠ φ or {0}, i ≠ j, 1 < i, j 

< 6. So V is the pseudo direct union of semigroup subvector 
spaces over S.  
 
Now we proceed onto define the new notion of direct sum of 
semigroup linear subalgebras of a semigroup linear algebra over 
a semigroup S. 
 
DEFINITION 2.4.22: Let V be a semigroup linear algebra over 
the semigroup S.  We say V is a direct sum of semigroup linear 
subalgebras W1, …, Wn of V if   
 

1. V  = W1 + … + Wn 
2. Wi ∩ Wj  =  {0} or φ if i ≠ j  (1 ≤ i, j ≤ n). 

 
We first illustrate this situation by the following example. 
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Example 2.4.76: Let V = P × P × P × P be a semigroup linear 
algebra over P = {0} ∪ Z+. Let W1 = P × {0} × {0} × {0}, W2 = 
{0} × P × {0} × {0}, W3 = {0} × {0} × P × {0} and W4 = {0} × 
{0} × {0} × P be the semigroup linear subalgebras of V. Clearly 
V = W1 + W2 + W3 + W4 and Wi ∩ Wj = {0} if i ≠ j.  

We see this way of representation in general is not unique. 
For if we take W1' = {0} × P × {0} × {P} and W2' = {P} × {0} × 
P × {0} we get V = W1' + W2' and W1' ∩W2' ={0} thus V is also 
a direct sum of W1' and W2'. Thus the direct sum in general is 
not unique.  
 
We give yet another example. 
 
Example 2.4.77: Let  
 

V = 
1 2 3

4 5 6 i

7 8 9

a a a
a a a a Z {0} and 1 i 9
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a semigroup linear algebra over the semigroup S = Z+ ∪ {0}. 
Let  

W1 = 
1

5 i 5 9

9

a 0 0
0 a 0 a ,a and a Z {0} V
0 0 a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ⊆⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a semigroup linear subalgebra of V. Take  
 

W2 = 
2 3

6 2 3 6

0 a a
0 0 a a ,a ,a Z {0}
0 0 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ⊆ V, 

 
W2 is also a semigroup linear subalgebra of V. Suppose  
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W3 = 4 4 7 8

7 8

0 0 0
a 0 0 a ,a ,a Z {0}
a a 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

⊆V; 

 
W3 a semigroup linear subalgebra of V. Then we see V = W1 + 
W2 + W3 with  

 

Wi ∩ Wj = 
0 0 0
0 0 0
0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 if i ≠ j. 

 
Thus V is a direct sum of W1, W2, W3 of V. We see this is not 
the only way of representing V. For take  
 

P1 = 
1

1 9

9

a 0 0
0 0 0 a , a Z {0} V
0 0 a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ⊆⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
is a semigroup linear subalgebra of V.  

 

P2 = 
2

4 6 2 4 6

0 a 0
a 0 a a , a , a Z {0}
0 0 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
is a semigroup linear subalgebra of V over S = Z+ ∪ {0}.  
Take  

P3 = 
3

5 3 5

0 0 a
0 a 0 a , a Z {0}
0 0 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ⊆ V 

 
is a semigroup linear subalgebra of V. 
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P4 = 7 8

7 8

0 0 0
0 0 0 a , a Z {0}
a a 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ⊆ V 

 
is a semigroup linear subalgebra of V. We see V = P1 + P2 + P3 
+ P4 with  

 

Pi ∩ Pj = 
0 0 0
0 0 0 i j 1 i, j 4
0 0 0

⎛ ⎞
⎜ ⎟ ≠ ≤ ≤⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
Thus V is a direct sum of semigroup linear subalgebras over the 
semigroup Z+ ∪ {0}. 
 Thus we see there exists more than one way of writing the 
semigroup linear algebra as the direct sum of semigroup linear 
subalgebras. 
 A semigroup linear algebra is said to be strongly simple if it 
cannot be written as a direct sum of semigroup linear 
subalgebras and has no proper semigroup linear subalgebra. 
Clearly the class of semigroup linear algebras V = Zp = {0, 1, 
…, p – 1}; p a prime over S = Zp = V are strong simple for in 
the first place they do have any semigroup linear subalgebras 
and it cannot be written as direct sum . All simple semigroup 
linear algebras are strongly simple however it is left as an open 
problem for the reader to find whether strongly simple implies 
simple. 
 
 
2.5 Group Linear Algebras  
 
Next we proceed onto define yet another new special class of 
linear algebras called group linear algebras and their 
generalizations group vector spaces. In this section we also 
enumerate a few of its properties.  
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DEFINITION 2.5.1: Let V be a set with zero, which is non empty. 
Let G be a group under addition. We call V to be a group vector 
space over G if the following condition are true. 
 

1. For every v ∈ V and g ∈ G gv and vg ∈ V. 
2. 0.v = 0 for every v ∈ V, 0 the additive identify of G.  

 
We illustrate this by the following examples. 
 
Example 2.5.1: Let V = {0, 1, 2, …, 15} integers modulo 15. G 
= {0, 5, 10} group under addition modulo 15. Clearly V is a 
group vector space over G, for gv ≡ v1 (mod 15), for g ∈ G and 
v, v1 ∈ V.  
 
Example 2.5.2: Let V = {0, 2, 4, …, 10} integers 12. Take G = 
{0, 6}, G is a group under addition modulo 12. V is a group 
vector space over G, for gv ≡ v1 (mod 12) for g ∈ G and v, v1 ∈ 
V. 
 
Example 2.5.3: Let  
 

M2 × 3 = 1 2 3
i

4 5 6

a a a
a { ,..., 4, 2,0,2,4,..., }

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ −∞ − − ∞⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 . 

 
Take G = Z be the group under addition. M2 × 3 is a group vector 
space over G = Z.  
 
Example 2.5.4: Let V = Z × Z × Z = {(a, b, c) / a, b, c ∈ Z}. V 
is a group vector space over Z. 
 
Example 2.5.5: Let V = {0, 1} be the set. Take G = {0, 1} the 
group under addition modulo two. V is a group vector space 
over G. 
 
Example 2.5.6: Let  
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V = 
0 1 1 1 1 0

, , ,
0 0 0 0 1 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

0 1 1 0 0 0
, ,

1 0 0 1 1 0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  

0 0 0 0
,

0 1 0 0
⎫⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠⎭

 

 
be set. Take G = {0, 1} group under addition modulo 2. V is a 
group vector space over G. 
 
Example 2.5.7: Let  
 

V = 1 2 na a ... a 0 0 ... 0
, ,

0 0 ... 0 0 0 ... 0
⎧⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠⎩

 

i i
1 2 n

0 0 ... 0
a ,b Z; 1 i n

b b ... b
⎫⎛ ⎞ ⎪∈ ≤ ≤ ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
 

 
be the non empty set. Take G = Z the group of integers under 
addition. V is the group vector space over Z. 
 
Example 2.5.8: Let  
 

V = 1 1

2 2

a 0 ... 0 0 b 0 ... 00 0 ... 0
, ,

a 0 ... 0 0 b 0 ... 00 0 ... 0
⎧⎛ ⎞ ⎛ ⎞⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟⎜ ⎟
⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩

 , 

…, 1
i i i

2

0 0 ... t
a , b ,..., t Z; 1 i 2

0 0 ... t
⎫⎛ ⎞ ⎪∈ ≤ ≤ ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
 

 
be the set of 2 × n matrices of this special form. Let G = Z be 
the group of integers under addition. V is a group vector space 
over Z. 
 
Example 2.5.9: Let  
 

V = 1 2

3

0 0a 0 0 a
, ,

a 00 0 0 0
⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪
⎨ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

,  
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1 2 3 4
4

0 00 0
, a ,a ,a ,a Z

0 a0 0
⎫⎛ ⎞⎛ ⎞ ⎪∈ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎪⎭
 

 
be the set. Z = G the group of integers V is a group vector space 
over Z.  

Now having seen examples of group vector spaces which 
are only set defined over an additive group. 
 
Example 2.5.10: Let V = {(0 1 0 0), (1 1 1), (0 0 0), (0 0 0 0),  
(1 1 0 0), (0 0 0 0 0), (1 1 0 0 1), (1 0 1 1 0)} be the set. Take Z2 
= G = {0, 1} group under addition modulo 2. V is a group 
vector space over Z2.  
 
Example 2.5.11: Let  
 

V = 
1 2 2 1 1

1
2 2

2
3 3

a a a b 0 0 0 c 0
0 0 a '

0 0 0 , b 0 0 , 0 c 0 , ,
0 0 a '

0 0 0 b 0 0 0 c 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎛ ⎞⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎨ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 

i i i 1 2

0 0 0
0 0 0

0 0 0 , a b c Z; a ' ,a ' Z;1 i 3
0 0 0

0 0 0

⎫⎛ ⎞
⎛ ⎞ ⎪⎜ ⎟ ∈ ∈ ≤ ≤ ⎬⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎪⎜ ⎟

⎝ ⎠ ⎭

 

 
be the set, Z = G the group under addition. V is just a set but V 
is a group vector space over Z. 

It is important and interesting to note that this group vector 
spaces will be finding their applications in coding theory. 
 
Now we proceed onto define the notion of substructures of 
group vector spaces. 
 
DEFINITION 2.5.2: Let V be the set which is a group vector 
space over the group G. Let P ⊆ V be a proper subset of V. We 
say P is a group vector subspace of V if P is itself a group 
vector space over G. 
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Example 2.5.12: Let  
 

V = 1 2 1 2
1 2

1 2

0 00 0 a a a 0 0 a
, , , , a ,a Z

a a0 0 0 0 0 0 0 0
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the set. V is a group vector space over the group G = Z the 
group of integers under addition. Take  
 

P = 1 2
1 2

1 2

0 00 0 a a
, , a ,a Z V

a a0 0 0 0
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
P is a group vector subspace of V over Z. It is important and 
interesting to note that every proper subset of V need not be a 
group vector subspace of V. Take  
 

T = 1 2

1

0 0a a
, V

a 00 0
⎛ ⎞⎛ ⎞⎛ ⎞

⊆⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
T is not a group vector subspace of V it is only a set and has no 
additional properties. 
 
Example 2.5.13: Let V = {(1 1 0 0 1), (0 0 0 0 0), (1 0 0 1 0),  
(0 0 0), (1 1 1), (1 1 1 1), (0 0 0 0), (1 1 0 0), (1 0 0 1)} be a 
proper set. Take G = {0, 1} be a group under addition modulo 2. 
V is a group vector space over G. P = {(1 1 0 01), (0 0 0 0 0)} ⊆ 
V; P is a group vector subspace of V over G. 

P1 = {(0 0 0), (1 1 1)} ⊂ V, 
P1 is also a group vector subspace of V over G. 

T = {(1 1 1), (1 1 0 0)} ⊂ V, 
T is not a group vector subspace of V over G. 
 
Example 2.5.14: Let  
 

V = 1 2
i

3 4

a a
a Z; 1 i 4

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a group vector space over the group G = Z. Let  
 

P = 1 2
i

3 4

b b
b 2Z; 1 i 4 V

b b
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
P is a group vector subspace over G.  
 
We now define the notion of linearly independent subset of a 
group vector space. 
 
DEFINITION 2.5.3: Let V be a group vector space over the 
group G. We say a proper subset P of V to be a linearly 
dependent subset of V if for any p1, p2 ∈ P, (p1 ≠ p2) p1 = ap2 or 
p2 = a'p1 for some a, a' ∈ G. If for no distinct pair of elements 
p1, p2 ∈ P we have a, a1 ∈ G such that p1 = ap2 or p2 = a1p1 
then we say the set P is a linearly independent set.  
 
We now illustrate this situation by some examples. 
 
Example 2.5.15: Let  
 

V = 1 2
1 2

1 2

0 0a a 0 0
, , a ,a Z

a a0 0 0 0
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group vector space over the group of integers Z. Take  

 

P = 
2 4 1 2 6 12 5 10

, , , V
0 0 0 0 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

; 

 
P is a linearly dependent subset in V over Z. Take  
 

T = 
1 1 0 0

,
0 0 1 1

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

. 
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T is a linearly independent subset of V over Z. 
 

T1 = 
1 1 4 6 2 3

, , V
0 0 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

. 

 
T1 is a linearly dependent set over Z.  

 

T2 = 
1 1 4 6

, V
0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

, 

 
T is a linearly independent set over Z.  
 
An observation which is important and interesting is that both T 
and T2 are linearly independent subsets of V but both of them 
are distinctly different in their behaviour. To this end we 
proceed onto define the notion of a generating subset of a group 
vector space V over the group G. 
 
DEFINITION 2.5.4: Let V be a group vector space over the 
group G. Suppose T is a subset of V which is linearly 
independent and if T generates V i.e., using t ∈ T and g ∈ V we 
get every v ∈ V as v = gt for some g ∈ G then we call T to be 
the generating subset of V over G. The number of elements in V 
gives the dimension of V. If T is of finite cardinality V is said to 
be finite dimensional otherwise V is said to be of infinite 
dimension. 
 
 We illustrate this situation by the following example. 
 
Example 2.5.16: Let V = P = {(1 1 0 0), (0 0 0 0), (0 0 0 1), (1 1 
1), (0 1 1), (0 1 0), (0 0 0)} be the given set. V is a group vector 
space over the group G = Z2 = {0, 1} addition modulo 2. Take T 
= {(1 1 0 0), (0 0 0 1), (1 1 1), (0 1 1), (0 1 0) ⊆ V; V is linearly 
independent set and dimension of V is 5 as T generates V.  

It is important to note that no proper subset of T will 
generate V. Thus T is the only generating set of V and 
dimension of V is 5. 
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Example 2.5.17: Let  
 

V = 1 1
1

1 1

0 0 a a
, a Z

a a 0 0
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
 

 
V is a group vector space over the group Z.  
 

T = 
1 1 0 0

, ,
0 0 1 1

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
is the generating set of V and no other set can generate V. Thus 
the group vector space V is of dimension two over Z. Clearly T 
is a linearly independent set. 
 
Example 2.5.18: Let  
 

V = 1 2
1 2

1 2

0 0a a
, a ,a Z

a a0 0
⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 . 

 
V is a group vector space over the group Z. Take  
 

T = 
1 0 0 1 0 0 0 0

, , , V
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

; 

 
T is a linearly independent subset of V but T is not a generating 
subset of V. Take  
 

T1 = 
1 1 0 0 1 0 0 1 0 0 0 0

, , , , , V
0 0 1 1 0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭  

   
T1 is a linearly independent subset of V but T is not the 
generating subset of V over Z. In fact V cannot be generated 
over Z by any finite subset of V. Thus dimension of V over Z is 
infinite. 

Take  
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P =  
0 0 0 0 1 7 2 5

, , ,
1 2 5 7 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

, 

 
2 2 7 0 5 0

, , V
0 0 0 0 0 0

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⊆⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

. 

 
P is a linearly independent subset of V but not a generating 
subset of V over Z. 
 Take  
 

S = 
0 0 0 0 7 0 1 0

, , , V
1 2 3 6 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
S is not a linearly independent subset of V over Z. 
 
Example 2.5.19: Let V = Z × Z × Z = {(x1 x2 x3) | xi ∈ Z; 1 ≤ i ≤ 
3}, V is a group vector space over Z. V is of infinite dimension 
over Z. Take T = {(1 1 0), (1 1 0), (0 0 1), (1 0 0), (0 1 0), (0 1 
1)} ⊆ V is a linearly independent subset of V but T cannot 
generate V over Z. Take T1 = {(1 1 1), (5 7 8), (7 8 1), (0 0 1)} 
⊆ V. T1 is again a linearly independent subset of V but not a 
generating subset of V over Z. Take W = Z × {0} × {0} ⊂ V to 
be the group vector subspace of V over Z. If T = {(1 0 0)} ⊂ W 
is the generating subset of W over Z and dimension of W over Z 
is 1. Suppose U = Z × Z × {0} ⊆ V; U is a group vector 
subspace of V over Z. 

T1 = {(1 1 0), (0 1 0), (1 0 0)} ⊂ V is a linearly independent 
subset of U but T1 cannot generate U. In fact no finite subset of 
U can generate U. Thus the group vector subspace U of V is of 
infinite dimension over Z. Thus the group vector space V over Z 
has both group vector subspaces of finite and infinite dimension 
over Z. 

 
Example 2.5.20: Let V = {(a a a a) | a ∈ Z} be a group vector 
space over the group Z. Take T = {(1 1 1 1)} ⊆ V. T is the 
generating subset of V. In fact dimension of V over Z is one. 



 

 

 

95

Further if we take W = {〈(5 5 5 5)〉} ⊆ V. W is a proper 
subset of V and W is a proper group vector subspace of V 
generated by the set 〈(5 5 5 5)〉 and dimension of W is also one. 
Thus V is a group vector space over Z of dimension one. W = 
{(x, x, x, x) | x ∈ 5Z} ⊆ V is also of dimension one over Z but 
W is a proper group vector subspace of V.  

It is still interesting to note that V has infinite number of 
proper group vector subspaces of dimension one. Take S = {(x x 
x x), (y y y y) | x ∈ 2Z and y ∈ 3Z} ⊆ V. S is a subset of V, V is 
of dimension one over Z. But S is a proper group vector 
subspace of V over Z and dimension of S over Z is two. The 
generating proper subset of S which generates S is given by T1 
= {(2 2 2 2), (3 3 3 3)} ⊆ S. T1 is a linearly independent subset 
of S and generates S over Z.  

Thus it is still interesting and important to note that a one 
dimensional group vector space over the group has proper group 
vector subspaces of dimension greater than one. This sort of 
situations can occur only in case of group vector spaces. 

This looks as if one cannot algebraically comprehend but 
concrete examples confirm the statement and establish it. In fact 
this one dimensional group vector space has proper group vector 
subspaces of infinite dimension also. 
 
For take S1 = {(xn, xn, xn, xn) | xn a prime} ⊆ V. Thus  

 
S1 = {〈(2 2 2 2)〉, 〈(3 3 3 3)〉, 〈(5 5 5 5)〉 , … } ⊆ V.  

 
Thus S1 is generated by  
 
T = {(2 2 2 2), (3 3 3 3), (5 5 5 5), …, (p p p p), … p, a prime}.  

 
Clearly, cardinality of T is infinite. Thus V = {(x x x x) | x ∈ Z} 
is of dimension one as it is generated by {(1 1 1 1)} but it has a 
proper group vector subspace S1 which is of infinite dimension 
as number of primes in Z is infinite.  
 
Now having seen such types of group vector spaces we proceed 
onto give more examples of infinite dimensional group vector 
spaces. 
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Example 2.5.21: Let V = {R × R × R, R reals} be a group 
vector space over the group Z. V is infinite dimensional. Let W 
= {(x x x) | x ∈ Z} ⊆ V be a proper subset of V, W is a finite 
dimensional group vector subspace of V. In fact T = {(1 1 1)} is 
the generator of W and W is of dimension one over Z. 
 Thus we see an infinite dimension group vector space can 
have as group vector subspaces of dimension one. This is a case 
just opposite to the case given in the earlier example where a 
one dimensional group vector space can have infinite 
dimensional group vector subspaces. 
 
Now we proceed onto define yet another new type of 
substructures in a group vector space called the subgroup vector 
subspaces and illustrate them with examples. 
 
DEFINITION 2.5.5: Let V be a group vector space over the 
group G. Let W ⊆ V be a proper subset of V. H ⊂ G be a proper 
subgroup of G. If W is a group vector space over H and not 
over G then we call W to be a subgroup vector subspace of V. 
 
Example 2.5.22: Let V = Z6 × Z6 × Z6 be a group vector space 
over Z6. W = {(2 2 2), (0 0 0), (1 1 1), (4 4 4)} ⊆ V. W is a 
subgroup vector subspace over the subgroup {0, 2, 4} = H ⊆ Z6. 
Clearly W is not a vector subspace over Z6 as 3 (1 1 1) = (3 3 3) 
∉ W.  
 
We give yet another example of subgroup vector subspace over 
a subgroup of the group over which it is defined. 
 
Example 2.5.23: Let V = Z12 × Z12 × Z12 be a group vector 
space over the group G = Z12. Take H = {0, 6}. Let W = {(1 1 
1), (2 2 2), (6 6 6), (0 0 0), (3 3 3), (4 4 4)} ⊆ V. W is a 
subgroup vector subspace over the subgroup H. Clearly W is 
not a group vector subspace over Z12. 
 
Now it may so happen that a subset W may be a group vector 
subspace as well as subgroup vector subspace. We call in this 
situation W to be a duo subgroup vector subspace. 
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DEFINITION 2.5.6: Let V be a group vector space over the 
group G. Let W ⊆ V. If W is a subgroup vector subspace over a 
proper subgroup, H of G as well as W is a group vector 
subspace of V over G then we call W to be the duo subgroup 
vector subspace of V. 
 
We illustrate this with some examples before we proceed onto 
describe a few of its properties. 
 
Example 2.5.24: Let V = Z12 × Z12 × Z12 be the group vector 
space over the group G = {0, 2, 4, 6, 8, 10}. Let W = {0} × Z12 
× {0} ⊆ V. W is a group vector subspace of V. Clearly W is 
also a subgroup vector subspace over H = {0, 6} a subgroup of 
G. Suppose S = {(0 0 0), (1 1 1), (6 6 6)} ⊂ V. S is a subgroup 
vector subspace over H = {0, 6}. Clearly S is not a group vector 
subspace over G.  
 
In view of this we prove the following theorem. 
 
THEOREM 2.5.1: Let V be a group vector space over the group 
G. If W is a group vector subspace of V then W need not be a 
subgroup vector subspace of V for some subgroup H of G. 
 
Proof: We illustrate this situation by examples. Let V = Z12 × 
Z12 × Z12 × Z12 be a group vector space over the group G = Z12. 
W = Z12 × {0} × {0} × Z12 ⊂ V, W is a group vector subspace of 
V. W is also a subgroup vector subspace of V for every 
subgroup H of G. V = Z11 × Z11 is a group vector space over the 
group Z11. W = Z11 × {0}, W is only a group vector subspace of 
V and not a subgroup vector subspace of V as Z11 has no proper 
subgroups. Thus V has no subgroup vector subspaces. 
 Conversely we have the following theorem. 
 
THEOREM 2.5.2: Let V be a group vector space over a group G. 
Suppose S ⊂ V is a subgroup vector subspace of V then S need 
not in general be a group vector subspace of V. 
 
Proof: We prove this theorem only by a counter example. Let V 
= Z10 × Z10 × Z10 × Z10 be a group vector space over the group 
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Z10. Take S = {(1 1 1 1), (0 0 0 0), (5 5 5 5)} ⊆ V. S is a 
subgroup vector subspace of V over the subgroup H = {0, 5} ⊂ 
Z10. Clearly S is not a group vector subspace of V over Z10 as 
for 3 ∈ Z10, 3 (1 1 1 1) = (3 3 3 3) ∉ S. Hence the claim.  

Thus a subgroup vector subspace of a group vector space V 
in general need not be a group vector subspace of V.  
 
THEOREM 2.5.3: Let V be a group vector space over the group 
G if W ⊂ V is a duo subgroup vector subspace of V then W is 
both a group vector subspace of V as well as W is a subgroup 
vector subspace of V. 
 
Proof: The proof follows from the very definition of duo 
subgroup vector subspaces. 

It may so happen we may find group vector spaces which 
has no subgroup vector subspaces over a proper subgroup. We 
define them in the following. 
 
DEFINITION 2.5.7: Let V be a group vector space over the 
group G. Suppose V has no subgroup vector subspaces then we 
call V to be a simple group vector space.  
 
We first illustrate this situation by the following examples. 
 
Example 2.5.25: Let V = Z7 × Z7 × Z7 be a group vector space 
over the group Z7. Since Z7 has no proper subgroups under 
addition; V cannot have any subgroup vector subspaces. Thus V 
is a simple group vector space over Z7. 
 
Example 2.5.26: Let V = Z5 × Z5 be a group vector space over 
the group G = Z5. V is a simple group vector space over Z5. 
 
Example 2.5.27: Let V = {(1 1 1 1), (0 0 0 0), (1 0 1 1 0), (0 0 0 
0 0), (1 1 0 0 1), (1 1 1), (0 0 0), (1 0 0), (0 1 1)}; V is a group 
vector space over the group Z2 = {0, 1}. Clearly V has no 
proper subset which can be subgroup vector subspace of V i.e., 
V is a simple group vector space.  
 
In view of the above examples we have the following theorem. 
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THEOREM 2.5.4: Let V be a group vector space over a group G 
which has no proper subgroups then V is a simple group vector 
space over G. 
 
Proof: Obvious from the fact that the group G has no proper 
subgroup for a proper subset W to be a subgroup vector 
subspace; we need a proper subgroup in G over which W is a 
group vector space. 

If G has no proper subgroup the existence of subgroup 
vector subspace is impossible. 
 
Now we show we have a large class of simple group vector 
spaces. 
 
THEOREM 2.5.5: Let  

V = ...
−

× ×p p

n times

Z Z  

be a group vector space over the group Zp where p is a prime 
i.e., Zp is a group under addition modulo p. V is a simple group 
vector space. 
 
Proof: Clear from the fact that Zp has no proper subgroups. 
Hence the claim. 
 
Next we proceed on to define the notion of semigroup vector 
subspace of the group vector space V over G. 
 
DEFINITION 2.5.8: Let V be a group vector space over the 
group G. Let W ⊂ V and S ⊂ G where S is a semigroup under 
‘+’. If W is a semigroup vector subspace over S then we call W 
to be pseudo semigroup vector subspace of V.  
 
We illustrate this by some examples. 
 
Example 2.5.28: Let V = Z × Z × Z be a group vector space 
over Z. W = Z+ ∪ {0} × Z+ ∪ {0} × {0} ⊂ V. W is a semigroup 
vector space over the semigroup S = Z+ ∪ {0} ⊆ Z. Thus W is a 
pseudo semigroup vector subspace of V. 
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Example 2.5.29: Let  

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group vector space over the group Z.  
 

W = 
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
is a subset of V and W is a semigroup vector subspace over S = 
Z+ ∪ {0}. Thus W is a pseudo semigroup vector subspace of V. 
 
Example 2.5.30: Let V = {(1 1 0), (0 0 0), (0 1 1), (1 0 1), (0 0 
1)} be a group vector space over the group Z2 = {0, 1}. Clearly 
V has no pseudo semigroup vector subspace. 
 
Example 2.5.31: Let V = Z5 × Z5 × Z5 × Z5 be a group vector 
space over Z5; V has no pseudo semigroup vector subspace. 
 
Now we define yet another type of subspace viz. pseudo set 
vector subspace of a group vector space V. 
 
DEFINITION 2.5.9: Let V be a group vector space over the 
group G. Suppose W ⊂ V is a subset of V. Let S be a subset of 
G. If W is a set vector space over S then we call W to be a 
pseudo set vector subspace of the group vector space. 
 
We now give some illustrations. 

 
Example 2.5.32: Let V = {(1 1 1 0), (0 0 0 0), (1 1 0 0), (0 0 1 
0)} be a group vector space over the group Z2 = {0, 1}. Take W 
= {(1 1 1 0), (0 0 1 0)} ⊂ V be a subset of V W is a pseudo set 
vector space over the set S = {1} ⊆ Z2. 
 
Example 2.5.33: Let P = Z × Z × Z × Z be a group vector space 
over the group Z.  
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Take W = {(1 1 1 1), (0 0 0 0), (1 2 0 1), (3 3 5 1), (7 1 2 3), 
(1 0 0 1)} a proper subset of P. W is a pseudo set vector 
subspace over the set S = {0, 1} ⊆ Z. 

 
Example 2.5.34: Let V = Z3 × Z3 × Z3 × Z3 be a group vector 
space over Z3. Take W = {(1 1 1), (2 2 2), (0 0 0), (1 0 1), (2 0 
2)} ⊂ V. Let S = {1, 2} a proper subset of Z3 W is a set vector 
space over S. Thus W is a pseudo vector subspace of V. 
 
It is an open problem whether there exists a group vector space, 
which has no pseudo, set vector subspaces. 
 
Now we proceed onto define the notion of transformations of 
group vector spaces, which will be known as group linear 
transformations. 
 
DEFINITION 2.5.10: Let V and W be two group vector spaces 
defined over the same group G. A map T from V to W will be 
called as the group linear transformation if 

T (αv) = αT (v) 
for all α ∈ G and for all v ∈ V.  
 
We illustrate this by the following examples. 
 
Example 2.5.35: Let V = Z × Z × Z and W = Q × Q × Q × Q be 
two group vector spaces over the group Z. Let T : V → W be 
defined by T (x y z) = (z y x y). Clearly T is a group linear 
transformation of V into W. 
 
Example 2.5.36: Let V = {(0 0 0), (1 1 1), (0 1 0), (1 1 1 1), 
(0 0 0 0), (1 1 0 1), (0 1 1 1)} and  

 

W = 
1 1 0 0 0 0 1 1

, , , ,
0 1 1 1 0 0 1 1

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 1 1 1 0 0 1 0 1 0

, , , ,
0 0 1 0 1 1 0 1 0 0

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭
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be the group vector space over the group G = Z2 = (0, 1). 
 

T (x y z) = 
x y
z 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

and   

T (x y z w) = 
x y
z w

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
for (x y, z) and (x y z w) ∈ V 

T (0 0 0) = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (1 1 1) = 
1 1
1 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (0 1 0) = 
0 1
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (1 1 1 1) = 
1 1
1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (0 0 0 0) = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (1 1 0 1) = 
1 1
0 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (0 1 1 1) = 
0 1
1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
T is a group linear transformation of V to W. 
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We have for a group linear transformation T, T–1 to exist 
provided the inverse mapping from W to V exists, otherwise we 
may not have T–1 to exist for the T. Thus for a given T, T–1 may 
or may not exist. 
 
Example 2.5.37: Let V = {(a a a a)| a ∈ Z} and  
 

W = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be two group vector spaces over the group Z. A map  
 

T {(a a a a)} = 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
for every (a a a a) ∈ V is both one to one and on to for define 
 

T–1 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

= (a a a a). 

T–1 exists.  
 

T–1 o T (a a a a)   =   T–1 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  =   (a a a a) 
and   

T o T–1 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

  =   T(a a a a) 

       =   
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus T o T–1 is identity map on W and T–1 o T is the identity 
map on V. We call the group linear transformation T to be an 
invertible one. 
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Example 2.5.38: Let V = Z12 × Z12 × Z12 × Z12 and  
 

W = 12

a b
a,b,c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be two group vector spaces over the group Z12. T be a map such 
that  

T(a, b, c, d) = 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

for every a, b, c, d ∈ Z12.  
 
T is a group linear transformation of V into W, in fact T is one 
to one and onto T–1 exists. 
 
Next we proceed onto define the notion of group linear 
operations on V, V a group vector space over the group G. 
 
DEFINITION 2.5.11: Let V be a group vector space over the 
group G. Let T from V to V be a group linear transformation 
then we call T to be a group linear operator on V.  
 
We now illustrate group linear operator on V by some 
examples. 
 
Example 2.5.39: Let V = {(a b c d) | a, b, c, d ∈ Z} be a group 
vector space over Z. Define T from V to V by T {(a b c d)} = (d 
c b a) for every (a, b, c, d) ∈ V. Clearly T is a group linear 
operator on V.  

In fact it can further be verified T–1 exists and T–1 o T = T o 
T–1 = identity group linear operator on V for 
 
 T–1 o T {(a b c d)}  =   T–1 {(d c b a)} 
    =   (a b c d); 
i.e., T–1 o T is identity on V. Now  
 
 T o T–1 {(a b c d)}  =  T {(d c b a)} 
    =  (a b c d). 



 

 

 

105

 
T o T–1 is also the group linear operator which is the identity 
map in this case. 
 
All identity maps on V are identity group linear operator on V. 
 
Example 2.5.40: Let  

V = 10

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
 

 
be the group vector space over the group Z10. Define a map T 
from V to V by  

T 
a b a b
c d 0 0

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
for every a, b, c, d ∈ V. T is a group linear operator on V, but T 
is clearly not an invertible group linear operator on V. 
 
The reader is left with the task of finding  
 

1. The algebraic structure given by the set of all group 
linear operators from the group vector space V to the 
group vector space W both V and W defined over the 
same group.  

2. The algebraic structure of the set of all group linear 
operators from V into V, V the group vector space 
defined over the group G.  

 
We denote the set of all group linear transformations from V to 
W defined over the group G by MG (V,W) and that the set of all 
group linear operators of V by MG (V, V). 
 

1. What is the algebraic structure of MG (V,W) ? 
2. What is the algebraic structure of MG (V,V)? 

 
Now we proceed on to define the notion of group linear algebra 
over a group. 
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DEFINITION 2.5.12: Let V be a group vector space over the 
group G. If V is again a group under addition then we call V to 
be a group linear algebra over G.  
 
It is clear from the very definition every group linear algebra 
defined over a group G is a group vector space over the group G 
but a group vector space is never a group linear algebra i.e., α1 
(v1 + v2) = α1 v1 + α1 v2 for all α1 ∈ G and v1, v2 ∈ V may not be 
always true in V. 
 
Example 2.5.41: Let  

V = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a group linear algebra over Z with matrix addition on V. 
 
Example 2.5.42: Let V = {(0 0 0), (1 1 0), (0 0 1), (1 1 1), (0 0 0 
0), (0 0 1 0), (0 0 1 1)} be a group vector space over Z2 = {0, 1}. 
V is not closed under any additive operation so V is not a group 
linear algebra over G = Z2.  
 
Thus we see in general all group vector spaces are not group 
linear algebras. 
 
Example 2.5.43: Let V = {(aij)m × n | aij ∈ Z12} be the collection 
of all m × n matrices with entries from Z12. V is a group under 
matrix addition. V is a group linear algebra over Z12. 
 
Example 2.5.44: Let V = {(0 0 0 0), (1 0 0 0), (0 1 0 0), (0 0 1 
0), (0 0 0 1), (0 0 1 1), (0 1 0 1), (1 1 0 0), (0 1 1 0), (1 1 1 0), (0 
1 1 1), (1 1 0 1), (1 0 1 1), (1 1 1 1), (1 0 0 1), (1 0 1 0)} with 
entries from Z2 = {0, 1}. V is a group linear algebra over the 
group Z2 = {0, 1}. 
 
Example 2.5.45: Let V = {(a b c) | a, b, c ∈ Z}, V under 
component wise addition is a group; V is a group linear algebra 
over Z. 
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Example 2.5.46: Let V = {Z10 × Z10 × Z10 × Z10 × Z10 = (a1, a2, 
…, a5) | ai ∈ Z10; 1 ≤ i ≤ 5} be a group under component wise 
addition, V is a group linear algebra over Z10.  
 
In case of group linear algebras the linear independence and the 
dimension are little different from that of the group vector 
spaces. 
 
DEFINITION 2.5.13: Let V be a group linear algebra over the 
group G. Let X ⊂ V be a proper subset of V, we say X is a 
linearly independent subset of V if X = {x1, …, xn} and for some 
αi ∈ G, 1 ≤ i ≤ n, α1x1 + … + αn xn = 0 if and only if each αi = 
0. 

A linearly independent subset X of V is said to generate V if 

every element of v ∈ V can be represented as v = 
n

i i
i 1

x
=

α∑ , αi ∈ 

G (1 ≤ i ≤ n).  
 
We illustrate this situation by the following examples. 
 
Example 2.5.47: Let V = {(0 0 0), (1 0 0), (0 0 1), (0 1 0), (1 1 
0), (1 0 1), (0 1 1), (1 1 1)} be the group linear algebra over the 
group Z2 = {0, 1}. V is generated by the set X = {(1 0 0), (0 1 
0), (0 0 1)}. Clearly X is also a linearly independent subset of V 
over Z2 = {0, 1}. 
 
Thus dimension of V is 3. Hence as in case of usual vector 
spaces we say the dimension of a group linear algebra is also the 
cardinality of the linearly independent subset X of V which 
generates V. 

 
Example 2.5.48: Let  
 

V = 1 2 3
i

4 5 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be the group linear algebra over the group Z. Let  
 

X = 
1 0 0 0 1 0 0 0 1

, , ,
0 0 0 0 0 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 0 0 0 0 0 0 0 0

, ,
1 0 0 0 1 0 0 0 1

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

⊆ V 

 
be the generating subset of V which is also linearly independent. 
Thus the dimension of the group linear algebra V is 6. 
 
Example 2.5.49: Let  
 

V = 6

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a group linear algebra over the group Z6. The set  
 

X = 
0 1 1 0 0 0 0 0

V
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
is the linearly independent subset of V which generates V. 
Clearly dimension of V is four. 
 
Example 2.5.50: Let V = Z6 × Z6 × Z6 × Z6 be the group linear 
algebra over the group Z6. Now X = {(1 0 0 0), (0 0 0 1), (0 1 0 
0), (0 0 1 0)} is the generating set of V. The dimension of V is 
four over Z6. 
 
Example 2.5.51: Let V = Z6 × Z6 × Z6 × Z6 × Z6 be the group 
linear algebra over the group Z6. For this group linear algebra 
also X = { (1 0 0 0 0), (0 1 0 0 0), (0 0 1 0 0), (0 0 0 1 0), (0 0 0 
0 1)} is the linearly independent subset which generates V and 
dimension is 5. 
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 Now we proceed onto define the notion of group linear 
subalgebra of a group linear algebra. 
 
DEFINITION 2.5.14: Let V be a group linear algebra over the 
group G. Let W ⊆ V be a proper subset of V. We say W is a 
group linear subalgebra of V over G if W is itself a group linear 
algebra over G. 
 
 We illustrate this situation by the following examples. 
 
Example 2.5.52: Let  
 

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
V is a group linear algebra over the group Z. Take  
 

W = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

; 

 
W ⊆ V and W is a group linear subalgebra of V over Z. 
 
Example 2.5.53: Let V = {(1 0 0), (0 0 0), (0 1 0), (0 0 1), (1 1 
1), (0 1 1), (1 1 0), (1 0 1)} be the group linear algebra over the 
group Z2 = {0, 1}. Take W = {(0 0 0), (1 1 1)} ⊆ V, W is a 
group linear subalgebra of V. 
 
Example 2.5.54: Let V = Z9 × Z9 × Z9 be the group linear 
algebra over Z9. Let W = Z9 × {0} × Z9 ⊆ V; W is the group 
linear subalgebra of V over Z9. 
 
Example 2.5.55: Let V = Z8 × Z8 be the group linear algebra 
over the group G = {0, 2, 4, 6} addition modulo 8. Let W = {0, 
2, 4, 6} × {0, 2, 4, 6} ⊆ V; W is a group linear subalgebra of V. 
 
 Now having seen several examples of group linear 
subalgebras over the group linear algebra we proceed onto 
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define the notion of direct sum of group linear subalgebras of a 
group linear algebra.  
 
DEFINITION 2.5.15: Let V be a group linear algebra over the 
group G. Let W1, …, Wn be group linear subalgebras of V over 
G. 

We say V is a direct sum of the group linear subalgebras 
W1, W2, …, Wn if 
 

1. V = W1 +  … + Wn 
2. Wi ∩ Wj = {0} if i ≠ j; 1 ≤ i , j ≤ n. 

 
Now we illustrate this situation by the following examples. 

 
Example 2.5.56: Let V be Z14 × Z14 × Z14 be the group linear 
algebra over the group Z14, the group under addition modulo 14. 
Let W1 = Z14 × {0} × {0}, W2 = {0} × Z14 × {0} and W3 = {0} × 
{0} × Z14 be the group linear subalgebras of V. We see V = W1 
+ W2 + W3 and Wi ∩ Wj = {0} if i ≠ j; 1 ≤ i, j ≤ 3. 
 
Example 2.5.57: Let  

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group linear algebra over Z. Let  

 

W1 = 
a 0

a Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W2 = 
0 b

b Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W3 = 
0 0

c Z
c 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  
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W4 = 
0 0

d Z
0 d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group linear subalgebras of V. Clearly W1 + W2 + W3 + 
W4 = V and  
 

Wi ∩ Wj = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 if i ≠ j ; 1 ≤ i, j ≤ 4. 

 
Thus V is the direct sum of group linear subalgebras over Z. 
Now take  

S1 = 
a 0

a,b Z
b 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

S2 = 
0 a

a Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

S3 = 
0 0

b Z
0 b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be group linear subalgebras of V. We see V = S1 + S2 + S3 and  
 

Si ∩ Sj = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, if i ≠ j (1 ≤ i, j ≤ 3). 

Suppose  

T1 = 
a 0

a,b Z
0 b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

and  

T2 = 
0 c

c,d Z
d 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be group linear subalgebras of V then we see V = T1 + T2 and  
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T1 ∩ T2 = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus V is the direct sum of group linear subalgebras. From this 
example it is evident that we have many ways of writing V as a 
direct sum of group linear subalgebras of V. 
Further suppose  

R1 = 
a b

a,b Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

R2 = 
a 0

a,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

R3 = 
a 0

a,b Z
0 b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be three group linear subalgebras of V over Z we see  
 

V ≠ R1 + R2 + R3 but Ri ∩ Rj ≠ 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 1 ≤ i, j ≤ 3. 

 
Thus we see any set of group subalgebra need not lead to the 
direct sum. Also if  

V1 = 
0 0

a Z
a 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V2 = 
a b

a,b Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be two group subalgebras of V still V ≠ V1 + V2 though  
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V1 ∩ V2 ≠ 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

Thus we see in this case 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 with d ≠ 0 cannot find its place 

in V1 + V2. Hence V = V1 + V2 is not a direct sum of V.  
 
Now we proceed onto give yet another example of direct sum of 
group linear subalgebras. 
 
Example 2.5.58: Let V = {(1 0 0 0), (0 1 0 0), (0 0 1 0), (1 1 1 
1), (0 0 0 1), (0 0 1 1), (1 1 0 0), (1 0 0 1), (0 1 1 0), (1 0 1 0), (0 
0 0 0), (0 1 0 1), (1 1 1 0), (0 1 1 1), (1 0 1 1), (1 1 0 1)} be the 
group linear algebra over the group Z2 = {0, 1}. Write V as a 
direct sum of group linear subalgebras. Can we represent V in 
more than one way as a direct sum? 
 
Now we proceed onto define the notion of pseudo direct sum of 
a group linear algebra as a sum of group linear subalgebras. 
 
DEFINITION 2.5.16: Let V be a group linear algebra over the 
group G. Suppose W1, W2, …, Wn are distinct group linear 
subalgebras of V. We say V is a pseudo direct sum if 
 

1. W1 + …+ Wn = V 
2. Wi ∩ Wj ≠ {0}, even if i ≠ j 
3. We need Wi’s to be distinct i.e., Wi ∩ Wj ≠ Wi or 

Wj if i ≠ j. 
 

We now illustrate this situation by the following example. 
 

Example 2.5.59: Let 
 

V = 1 2 3
i

4 5 6

a a a
a Z, 1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group linear algebra over Z. Take  
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W1 = 1 2
1 3 2

3

a a 0
a ,a ,a Z

a 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W2 = 2 3
1 3

0 a a
a ,a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W3 = 1 3
1 3 4 6

4 6

a 0 a
a ,a ,a ,a Z

a 0 a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and 

W4 = 1 4
1 4 5 6

5 6

a a 0
a ,a ,a ,a Z

0 a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
 Clearly W1, W2, W3 and W4 are group linear subalgebras of V. 
We see  

Wi ∩ Wj ≠ 
0 0 0
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, for 1 ≤ i, j ≤ 4 i ≠ j. 

 
Further Wi ∩ Wj ≠ Wi or Wi ∩ Wj ≠ Wj if i ≠ j. Finally V = 

W1 + W2 + W3 + W4, so we say V is the pseudo direct sum of 
group linear subalgebras of V.  
 
We give yet another example before we proceed on to describe 
further properties about group linear algebras. 

 
Example 2.5.60: Let V = {Z18 × Z18 × Z18} be a group linear 
algebra over Z18.  

Take W1 = Z18 × Z18 × {0}, W2 = Z18 × {0} × Z18, W3 = {0 
2 4 6 8 10 12 14 16} × Z18 × Z18 be three group linear 
subalgebras of V. Then V = W1 + W2 + W3 and Wi ∩ Wj ≠ {0}; 
i ≠ j; 1 ≤ i, j ≤ 3 so V is the pseudo direct sum of group linear 
subalgebras.  

 
It is important to note that a group linear algebra can both have 
a pseudo direct sum as well as direct sum. We see we do not 
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have any relation among them. It can so happen a group linear 
algebra can have both way of decomposition. 
 
Now we proceed onto define yet another new algebraic structure 
of a group linear algebra. 
 
DEFINITION 2.5.17: Let V be a group linear algebra over the 
group G. Let W ⊆ V be a proper subgroup of V. Suppose H ⊂ G 
be a semigroup in G. If W is a semigroup linear algebra over H 
then we call W to be a pseudo semigroup linear subalgebra of 
the group linear algebra V. 
 
We illustrate this situation by the following example. 
 
Example 2.5.61: Let  

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group linear algebra over the group Z. Let Z+ ∪{0} = H ⊂ 
Z be the proper semigroup of Z under addition.  

 

W = 
a a

a Z V
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
W is a semigroup linear algebra over H. We call W to be the 
pseudo semigroup linear subalgebra of the group linear algebra 
V.  
 
We give yet another example. 
 
Example 2.5.62: Let V = {Z × Z × Z} be the group linear 
algebra over the group Z. Let P = Z+ ∪ {0} be the semigroup 
contained in Z. Let W = 2Z × 2Z × 2Z ⊂ V; W is a pseudo 
semigroup linear subalgebra over P. 
 
Example 2.5.63: Let V = Z2 × Z2 × Z2 be the group linear 
algebra over Z2. Z2 has no proper subset which is a semigroup, 
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so V cannot have pseudo semigroup linear subalgebra. In fact 
we have a class of group linear algebras which has no pseudo 
semigroup linear subalgebras. 
 Let V = Zp × … × Zp, Zp the set of primes {0, 1, …, p – 1 } 
under addition modulo p. V is a group linear algebra over Zp. 
But Zp has no proper subset P which is a semigroup. Thus V has 
no pseudo semigroup linear subalgebras. Thus we have a class 
of group linear algebras which has no pseudo semigroup linear 
subalgebras.  
 
Suppose we consider  
 

( ){ }ij ij pm n
V a a Z ; p a prime, 1 i m and 1 i n

×
= ∈ ≤ ≤ ≤ ≤ . 

 
V is a group linear algebra over Zp. This has no pseudo 
semigroup linear subalgebras. 
 For varying primes p we get different classes of group linear 
algebras which has no pseudo semigroup linear subalgebras. We 
have yet another class of group linear algebras which has no 
pseudo semigroup linear subalgebras.  

Consider Zp [x] = {all polynomials in the variable x with 
coefficients from Zp; p a prime}; Zp [x] is a group linear algebra 
over Zp. Clearly Zp has no proper subset which is a semigroup 
under addition modulo p. So Zp [x] has no pseudo semigroup 
linear subalgebras. 
 
In fact we can have yet another substructure in group linear 
algebras which will be known as group vector subspaces of the 
group linear algebras. 

 
DEFINITION 2.5.18: Let V be a group linear algebra over the 
group G. Let P be a proper subset of V. P is just a set and it is 
not a closed structure. If P is a group vector space over G we 
call P to be the pseudo group vector subspace of V. 
 
We illustrate this by the following examples. 
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Example 2.5.64: Let  
 
V  = {(1 0 0), (0 0 1), (0 1 0), (0 0 0), (1 1 0), (0 1 1), (1 0 1), 
  (1 1 1)}  
 
be the group linear algebra over the group Z2 = {0, 1}.  
Take  
 
P  = {(0 0 0), (1 1 0), (0 0 1), (0 1 0)}  

⊆  V.  
 
P is a group vector subspace of V. Thus P is a pseudo group 
vector subspace of V.  
 
Example 2.5.65: Let  
 

V = 3

a b
a, b, c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group linear algebra over Z3.  
Take  
 

P = 
1 0 0 2 0 0 2 0 0 1

, , , ,
0 1 0 1 0 0 0 2 0 2

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ⊂ V; 

 
P is the pseudo group vector subspace of V over Z3.  
Take  
 

X = 
0 0 0 0 0 0 1 1 2 2

, , , ,
0 0 1 1 2 2 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ⊂ V. 

 
X is also a pseudo group vector subspace of V over Z3. 
However every proper subset of V is not a pseudo group vector 
subspace of V.  
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For instance 
 

T = 
1 0 1 1 0 0

, ,
0 0 1 1 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ⊂ V 

 
is not a pseudo group vector subspace of V as  
 

1 0 2 0
2 T

0 0 0 0
⎛ ⎞ ⎛ ⎞

= ∉⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

or  
1 1 2 2

2 T
1 1 2 2
⎛ ⎞ ⎛ ⎞

= ∉⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
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Chapter Three 
 
 
 
 
 

SET FUZZY LINEAR ALGEBRAS  
AND THEIR PROPERTIES  
 
 
 
 
In this chapter we define the new notion of set fuzzy linear 
algebra analogous to set vector space; for these algebraic set up 
will be of immense use in application to fuzzy models or in any 
other models for in these set vector spaces and set fuzzy vector 
spaces we can induct any wanted elements without affecting the 
system and the structure. We now just recall the definition of 
fuzzy vector spaces before we proceed on to define set fuzzy 
vector spaces. 
 
DEFINITION 3.1: A fuzzy vector space (V, η) or ηV is an 
ordinary vector space V with a map η : V → [0, 1] satisfying 
the following conditions; 
 

1. η (a + b) > min {η (a), η (b)} 
2. η (– a) = η (a) 
3. η (0) = 1 
4. η (ra) > η (a)  

 
for all a, b, ∈ V and r ∈ F where F is the field.  
 
We now define the notion of set fuzzy vector space or Vη or Vη 
or ηV. 
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DEFINITION 3.2: Let V be a set vector space over the set S. We 
say V with the map η is a fuzzy set vector space or set fuzzy 
vector space if η: V → [0, 1] and η (ra) ≥ η(a) for all a ∈V and 
r ∈ S. We call Vη  or Vη or ηV to be the fuzzy set vector space 
over the set S.  
 
We now illustrate this situation by the following example. 
 
Example 3.1: Let V = {(1 3 5), (1 1 1), (5 5 5), (7 7 7), (3 3 3), 
(5 15 25), (1 2 3)} be set which is a set vector space over the set 
S = {0, 1}.  

Define a map η: V → [0, 1] by  
 

η(x, y, z) = [ ]x y z 0,1
50

+ +⎛ ⎞ ∈⎜ ⎟
⎝ ⎠

 

 
for (x, y, z) ∈ V. Vη is a fuzzy set vector space. 
 
Example 3.2: Let V = Z+ the set of integers. S = 2Z+ be the set. 
V is a set vector space over S. Define η: V → [0, 1] by, for 

every v ∈ V; η(v) = 1
v

 . ηV is a set fuzzy vector space or fuzzy 

set vector space.  
 
Example 3.3: Let V ={(aij) | aij ∈ Z+; 1 ≤ i, j ≤ n} be the set of 
all n × n matrices with entries from Z+.  
 
Take S = 3Z+ to be the set. V is a fuzzy set vector space where 
η: V → [0, 1] is defined by  
 

η(A = (aij)) = 
1 if | A | 0

5 | A |
1 if | A | 0.

⎧ ≠⎪
⎨
⎪ =⎩

 

 
Vη is the fuzzy set vector space.  
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The main advantage of defining set vector spaces and fuzzy 
set vector spaces is that we can include elements x in the set 
vector spaces V provided for all s ∈ S, sx ∈V this cannot be 
easily done in usual vector spaces. Thus we can work with the 
minimum number of elements as per our need and work with 
them by saving both time and money.  

 
We give yet some more examples. 
 
Example 3.4: Let V = 2Z+ × 5Z+ × 7Z+ be a set vector space 
over the set Z+; with η: V → [0, 1] defined by  
 

η((x, y, z)) = 1
x y z+ +

 

 
makes, ηV a fuzzy set vector space. 
 
Now we define the notion of set fuzzy linear algebra. 
 
DEFINITION 3.3: A set fuzzy linear algebra (or fuzzy set linear 
algebra) (V, η) or ηV is an ordinary set linear algebra V with a 
map such η: V → [0, 1] such that η(a + b) ≥ min (η(a), η(b)) 
for a, b ∈ V. 

Since we know in the set vector space V we merely take V to 
be a set but in case of the set linear algebra V we assume V is 
closed with respect to some operation usually denoted as ‘+’ so 
the additional condition η(a + b) ≥ min (η(a), η(b)) is essential 
for every a, b ∈ V. 
 
 We illustrate this situation by the following examples. 
 
Example 3.5: Let V = Z+[x] be a set linear algebra over the set 
S = Z+; η: V → [0, 1].  
 

η(p(x)) = 
1

deg(p(x))
1 if p(x) is a constant.

⎧
⎪
⎨
⎪⎩
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Clearly Vη is a set fuzzy linear algebra.  
 
Example 3.6: Let  
 

V = 
a b

a,b,d,c Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be set linear algebra over 2Z+ = S. Define  
 

η
a b
c d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
1 if ad  bc

| ad bc |
0 if ad bc

⎧ ≠⎪ −⎨
⎪ =⎩

 

 
for every a, b, c, d ∈ Z+. Clearly Vη is a fuzzy set linear 
algebra.  
 
Example 3.7: Let V = Z+ be a set linear algebra over Z+. Define 

η : V → [0, 1] as η(a) = 1
a

. Vη is a fuzzy set linear algebra. 

 
Now we proceed onto define the notion of fuzzy set vector 
subspace and fuzzy set linear subalgebra. 
 
DEFINITION 3.4: Let V be a set vector space over the set S. Let 
W ⊂ V be the set vector subspace of V defined over S. If η: W → 
[0, 1] then Wη is called the fuzzy set vector subspace of V.  
 
We illustrate this by the following example.  
 
Example 3.8: Let V = {(1 1 1), (1 0 1), (0 1 1), (0 0 0), (1 0 0)} 
be a set vector space defined over the set {0, 1}. Define η : V → 
[0, 1] by  
 

η(x y z) = (x y z) (mod 2)
9

+ + . 

So that  
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η (0 0 0) = 0 

η (1 1 1) = 1
9

 

η (1 0 1) = 0 

η (1 0 0) = 1
9

 

η (0 1 1) = 0 
 
Vη is a set fuzzy vector space. Take W = {(1 1 1), (0 0 0), (0 1 
1)} ⊂ V. W is a set vector subspace of V. η: W → [0, 1].  
 

η (0 0 0) = 0 

η (111) = 1
9

 

η (011) = 0. 
  
Wη is the fuzzy set vector subspace of V.  
 
Example 3.9: Let V = {(111), (1011), (11110), (101), (000), 
(0000), (0000000), (00000), (1111111), (11101), (01010), 
(1101101)} be a set vector space over the set S = {0,1}. 

Let W = {(1111111), (0000000), (000), (00000), (11101), 
(01010) (101)} ⊂ V. Define η: W → [0, 1] by  

η(x1, x2, …, xr) = 1
12

. 

ηW is a fuzzy set vector subspace.  
 
We now proceed on to define the notion of fuzzy set linear 
subalgebra. 
 
DEFINITION 3.5: Let V be a set linear algebra over the set S. 
Suppose W is a set linear subalgebra of V over S. Let η : W → 
[0, 1], ηW is called the fuzzy set linear subalgebra if η (a + b) 
> min {η (a), η (b)} for a, b, ∈ W.  
 
We give some examples before we define some more new 
concepts. 
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Example 3.10: Let V = Z+ × Z+ × Z+ be a set linear algebra over 
the set S = 2Z+. W = Z+ × 2Z+ × 4Z+ is a set linear subalgebra 
over the set S = 2Z+. Define η: W → [0, 1] 
 

η (a b c) = 11
a b c

−
+ +

. 

 
Clearly η (x, y) > min {η (x), η (y)} where x = (x1, x2, x3) and y 
= (y1, y2, y3); x, y ∈ W. Wη is a fuzzy set linear subalgebra.  
 
Example 3.11: Let  
 

V = 
a b

a,b,c,d, Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a set linear algebra over the set S = {1, 3, 5, 7} ⊆ Z+. Let  
 

W = 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the set linear subalgebra of V. Define η: W → [0, 1] by  
 

η
a a 11
a a a

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

 
Wη or Wη is a set fuzzy linear subalgebra. 
 
Now we proceed on to define fuzzy semigroup vector spaces. 
 
DEFINITION 3.6: A semigroup fuzzy vector space or a fuzzy 
semigroup vector space (V, η) or Vη where V is an ordinary 
semigroup vector space over the semigroup S; with a map η : V 
→ [0, 1] satisfying the following condition;  
 η (ra) > η (a) for all a ∈ V and r ∈ S. 
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Let us illustrate this structure by some examples. 
 
Example 3.12: Let V = {(1000), (1011), (1110), (0111), (0100), 
(0000), (0001)} be the semigroup vector space over the 
semigroup S = Z2 = {0, 1}. Define η : V → [0, 1] as 
 

η (a b c d) = (a b c d) (mod 2)
6

+ + + . 

Clearly Vη is the semigroup fuzzy vector space. 
 
We give yet another example. 
  
Example 3.13: Let V = Z3 × Z3 × Z3 be the semigroup vector 
space over the semigroup Z3. Define η : V → [0, 1] as  
 

η (x y z) = (x y z) (mod3)
7

+ + . 

 
Vη is a semigroup fuzzy vector space.  

In fact given a semigroup vector space V, we can get many 
semigroup fuzzy vector spaces. 
 For define η1: V → [0, 1] as  
 

η1 (x, y, z) = 
1 if x y z 0 (mod3)

(x y z)(mod3)
0 if x y z 0(mod3)

⎧ + + ≡/⎪ + +⎨
⎪ + + ≡⎩

. 

 
Vη1 is a semigroup fuzzy vector space different from Vη. 
Define η3 : V → [0, 1] as  
 

η3 (x, y, z) = 

1 if x y z 0 (mod3)
2
1 if x y z 1(mod3)
4
1 if x y z 2 (mod3)
6

⎧ + + ≡⎪
⎪
⎪ + + ≡⎨
⎪
⎪

+ + ≡⎪⎩
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Vη3 is a semigroup fuzzy vector space. 

Thus study of semigroup fuzzy vector spaces gives us more 
freedom for it solely depends on η which is defined from V to 
[0, 1].  
 
Next we define semigroup fuzzy vector subspaces of a 
semigroup vector space V.  
 
DEFINITION 3.7: Let V be a semigroup vector space over the 
semigroup S. Let W ⊂ V be a semigroup vector subspace of V 
over S. We say Wη is a semigroup fuzzy vector subspace if η : 
W → [0, 1], such that  
 
 (i) η (x, y) > min (η (x), η (y)) 
 (ii) η (rx) > η (x) for all r ∈ S and x, y ∈ W.  
 
We illustrate this by the following example. 
 
Example 3.14: Let V = Z7 × Z7 × Z7 × Z7 be a semigroup vector 
space over the semigroup S = Z7. Let W = Z7 × {0} × Z7 × {0} 
be the semigroup vector subspace of V. Define the map η : W 
→ [0, 1] by  
 

η (x 0 y 0) = 

1 if x y 1(mod7)
4
1 if x y 2 or 4 (mod 7)
3
1 if x y 3 or 5 (mod7)
8
1 if x y 6 or 0 (mod7).
6

⎧ + ≡⎪
⎪
⎪ + ≡⎪
⎨
⎪ + ≡
⎪
⎪
⎪ + ≡
⎩

 

 
ηW is the semigroup fuzzy vector subspace of V.  
 
Here also using one semigroup vector subspace W we can 

define several semigroup fuzzy vector subspaces.  
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Define η1 : W → [0, 1] 
 

by η1 (x 0 y 0) = 
0 if x y 0 (mod7)
1 if x y 0 (mod7).

+ ≡⎧
⎨ + ≡⎩

 

  
Wη1 is a semigroup fuzzy vector subspace.  

 
We see the definition of fuzzy semigroup vector space is not in 
any way different from the fuzzy set vector space. So this will 
enable one to go from one type of space to another using fuzzy 
concepts defined on them. 

 
So one can easily transfer a study from semigroup vector 

space to set vector space by defining the corresponding fuzzy 
set vector space and the semigroup fuzzy vector space as the 
map η and hence ηV does not give different structures but same 
type of structures. 

 
Now we see even in case of semigroup linear algebra and 

set linear algebra the fuzzy structures are identical. 
 
DEFINITION 3.8: Let V be a semigroup linear algebra defined 
over the semigroup S. We say ηV is a semigroup fuzzy linear 
algebra if η : V → [0, 1] such that η (x + y) > min (η (x), η(y)); 
η (rx)≥ η (x) for every r ∈ S and x ∈ V. 
 
Now we illustrate this situation by the following examples. 
  
Example 3.15: Let V = Z7 × Z7 × Z7 × Z7 be the semigroup 
linear algebra defined over the semigroup S = Z7. Define η : V 
→ [0, 1] by 
 

 η (x y z ω) = 
1 if x y z 0 (mod7)
0 otherwise.

+ + ≡⎧
⎨
⎩

 

 
Vη is a semigroup fuzzy linear algebra. 
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Example 3.16: Let  
 

V = 1 2 3
i

4 5 6

a a a
a Z ;1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the semigroup linear algebra over the semigroup S = Z+. 
Define η: V → [0, 1] as  
 

η 1 2 3

4 5 6 1 4

a a a 11
a a a (a a )

⎧⎛ ⎞
= −⎨⎜ ⎟ +⎝ ⎠ ⎩

 

 
Vη is a semigroup fuzzy linear algebra. 
 
Example 3.17: Let V = Z+ [x] be the polynomials with 
coefficient from Z+ in the variable x; V under addition is a 
semigroup. V is a semigroup linear algebra over Z+.  
 
Define η : V → [0, 1] as  

η(p (x)) = 
1

deg p(x)
1 if deg p(x) 0

⎧
⎪
⎨
⎪ =⎩

. 

 
η is the semigroup fuzzy linear algebra.  
 
Define η1 : V → [0, 1] as  

η1(p(x)) = 
1

deg p(x)
0 if deg p(x) 0

⎧
⎪
⎨
⎪ =⎩

 

 
then also Vη1 is a semigroup fuzzy linear algebra.  

 
 We see as in case of fuzzy set vector spaces and semigroup 
fuzzy vector spaces the notion of fuzzy set linear algebra and 
semigroup fuzzy linear algebra are also identical. This sort of 
making them identical using fuzzy tool will find its use in 
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certain applications. We shall define such structures as fuzzy 
equivalent structures. 
 We see fuzzy set vector spaces and semigroup fuzzy vector 
spaces are fuzzy equivalent structures though set vector spaces 
are distinctly different from semigroup vector spaces. Like wise 
set linear algebras and semigroup linear algebras are fuzzy 
equivalent although set linear algebras are different from 
semigroup linear algebras.  
 
Now we proceed on to define group fuzzy vector spaces and 
group fuzzy linear algebras. 
 
DEFINITION 3.9: Let V be a group linear algebra over the 
group G. Let η : V → [0, 1] such that  
 
 η (a + b)  ≥  min (η (a), η (b)) 
 η (– a)   =  η (a) 
 η (0)  = 1 
 η (ra)  ≥  η (a) for all a, b ∈ V and r ∈ G. 
 
We call Vη the group fuzzy linear algebra. 
 
We illustrate this by an example. 
 
Example 3.18: Let V = Z × Z × Z be the group linear algebra. 
 
Define η : V → [0, 1] by  

η (a)  = 11
| a |

−  

for every a ∈ Z 
η (0) = 1. 

 
η V is the group fuzzy linear algebra. 
 
It is pertinent to mention here that we have not so far defined 
group fuzzy vector spaces. We first mention group vector 
spaces are fuzzy equivalent with set vector spaces and 
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semigroup vector spaces. However for the sake of completeness 
we just define group fuzzy vector spaces. 
 
DEFINITION 3.10: Let V be a group vector space over the group 
G. η : V → [0, 1] is such that η(ra) ≥ η(a) for all r ∈ G and a 
∈ V. We call Vη or ηV to be the group fuzzy vector space.  
 
We see from the very definition the group vector spaces are 
fuzzy equivalent with set vector spaces. 
 
Now we give an example of this concept. 
 
Example 3.19: Let V = Z [x] be a group vector space over the 
group G. Define η : V → [0, 1] by  
 

η(p(x)) = 1
deg p(x)

 

and  
η (constant) = 0. 

Vη is a group fuzzy vector space. 
 
In the same example if we view Z [x] to be a group under 
addition. Clearly Z [x] = V can be viewed as a group linear 
algebra over the group Z. η defined above is such that ηV is a 
group fuzzy linear algebra. 
 
DEFINITION 3.11: Let V be a group linear algebra over the 
group G. Let W ⊂ V, where W is a subgroup of V and W is a 
group linear subalgebra over the group G. η : W → [0, 1] such 
that  
 
 η (a + b)  >  min (η (a), η (b)) 
 η (a)   =  η (–a) 
 (0)   =  1 
 η (ra)   >  rη (a) 
 
for all a, b ∈W and r ∈ G; we call Wη or ηW to be the group 
fuzzy group linear subalgebra.  
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We illustrate this by the following. 
 
Example 3.20: Let V = Z × Z × Z × Z × Z be a group linear 
algebra over the group G = Z. W = 3Z × {0} × 5Z × {0} ×{0} 
be the group linear subalgebra over Z.  
Define η: W → [0, 1] by 
 

 η(x, y, z, ω, t) = 
0 if x y z t 0

1 if x y z t 0
x y z t

+ + + ω + =⎧
⎪
⎨ + + + ω + ≠⎪ + + + ω +⎩

; 

 
ηW is a fuzzy group linear subalgebra.  
 
The importance of this structure is that we do not demand for a 
field or any other perfect nice structure to work with. Even a set 
will do the work for we ultimately see when we define fuzzy 
vector spaces the field does not play any prominent role. Also 
we see the group linear algebra is the same as ordinary vector 
space, when they are made into respective fuzzy structures. In 
fact these two structures are basically fuzzy equivalent. Any one 
will like to work with least algebraic operations only. So as we 
have already mentioned set vector spaces happens to be the 
most generalized concept of ordinary vector spaces and it is 
easy to work with them.  

Another advantage of working with these special vector 
spaces is we see most of them happen to be fuzzy equivalent 
with some other special space or the ordinary vector space. In 
certain models or study we may have meaning for the solution 
only when they are positive. In such circumstances we need not 
define the vector spaces over a field instead we can define it 
over the set S which is a subset of Z+ ∪  {0} or over the 
semigroup Z+ ∪  {0} or even just Z. 
 
Further as our transformation to a fuzzy set up always demands 
only values from the positive unit interval [0, 1] these 
semigroup vector spaces or set vector spaces would be more 
appropriate than the ordinary vector spaces. 
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Further we see even in case of Markov process or Markov chain 
the transition probability matrix is a square matrix with entries 
which are non negative and the column sum adding up to one. 
So in such cases one can use set vector space where 
 

V = ( ) [ ]
n

ij ij iknxn
i 1

a a 0,1 with a 1for 1 k n
=

⎧ ⎫
∈ = ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
is a set vector space over the set [0, 1]. So these new notions not 
only comes handy but involve lesser complication and lesser 
algebraic operations. 
 



 
 
 
Chapter Four 
 
 
 
 
 

SET BIVECTOR SPACES AND THEIR 
GENERALIZATION  
 
 
 
 
 

In this chapter for the first time we define the notion of set 
bivector spaces and generalize them to set n vector spaces. We 
enumerate some of the properties. In fact these set n-vector 
spaces happens to be the most generalized form of n-vector 
spaces. They are useful in mathematical models which do not 
seek much abstract algebraic concepts. 
 
DEFINITION 4.1: Let V = V1 ∪ V2 where V1 and V2 are two 
distinct set vector spaces defined over the same set S. That is V1 
⊄ V2 and V2 ⊄V1 we may have V1 ∩ V2 = φ or non empty. Then 
we call V to be a set bivector space over S.  
 
We illustrate this by the following examples.  
 
Example 4.1: Let V = V1 ∪ V2 where V1 = Z5 × Z5 and  
 

V2 = 5

a b
a,b,c,d, Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
are set vector spaces over the set S = {0, 1}. V is a set bivector 
space over the set {0, 1} = S. 
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Example 4.2: Let V = V1 ∪ V2 where V1 = {(1 1 1), (0 0 0), (1 
1 0), (1 1 1 1 1), (0 0 0 0 0), (1 1 0 1 1), (1 1 0 0 0), (1 0 0)} and 
V2 = {(0 1), (1 0), (0 0), (1 1 1 1), (0 0 0 0), (0 1 1 1), (1 1 1 1 1 
1), (0 0 0 0 0 0), (1 0 0 0), (0 0 0 1)} be set vector spaces over 
the set S = {0, 1}. V = V1 ∪ V2 is a set bivector space over the 
set S. 
 
Example 4.3: Let V = V1 ∪ V2 where  
 

V1 = 12

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and 

V2 =  12

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be two set vector spaces over the set S = {0, 1}. V is a set 
bivector space over the set S. 
 
Now we have seen that how a set bivector space is constructed 
from these examples. 
 
Example 4.4: Let  

V1 = 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V2 = 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be set vector spaces over the set S = {0, 1}. Clearly V = V1 
∪ V2 is not a set bivector space over S as V2 ⊆ V1. Thus we 
cannot say the union of two set vector spaces defined over the 
same set gives a set bivector space. 
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Now we proceed on to define the notion of set bivector 
bisubspaces of a set bivector space. 
 
DEFINITION 4.2: Let V = V1 ∪ V2 be a set bivector space 
defined over the set S. A proper biset W = W1 ∪ W2 (W1 ⊂ V1 
and W2 ⊂ V2) such that W1 and W2 are distinct and contained in 
V is said to be a set bivector bisubspace of V (or set bivector 
subspace) if W is a set bivector space defined over S.  
  
We now illustrate situation by the following examples. 
 
Example 4.5: Let V = V1 ∪ V2  

 

= 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a b c d) | a, b, c, d ∈ Z12}  

 
be a set bivector space over the set S = {0, 1}.  
Let W = W1 ∪ W2  
 

= 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a) |a ∈ Z12} 

 
⊆ V1 ∪ V2 = V. W is a set bivector space over S = {0,1}. 
  
 Thus W is a set bivector subspace of V over S. 
 
Example 4.6: Let  
 

V1 = 1 2 3
i 14

4 5 6

a a a
a {0,2,6,8,10,12} Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V2 = a 14

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 
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V = V1 ∪ V2 is a set bivector space over S = {0,1}. Clearly  
V1 ∩ V2 ≠ φ but V1 and V2 are distinct. Take  
 

W1 = 
a a 0

a (0,2,6,8,10,12)
a a 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V1 

and  

W2 = 14

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊂ V2 . 

 
W = W1 ∪ W2 is a set bivector subspace (or set bivector 
subbispace) of V. 
 Suppose  
 

P1 = 14

a b c
a,b,c (0,2,...,12) Z

a a 0
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V1 

and  

P2 = 14

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V2 

 
then also P = P1 ∪ P2 is a set bivector bisubspace of V. Thus we 
can have several such set bivector subspaces of a given set 
bivector space V.  
 
Now we define the bidimension and the generating biset of a set 
bivector space V = V1 ∪ V2. 
 
DEFINITION 4.3: Let V = V1 ∪ V2 be a set bivector space 
defined over the set S. Let X = X1 ∪ X2 ⊂ V1 ∪ V2, we say X is a 
bigenerating subset of V if X1 is the generating set of the set 
vector space V1 over S and X2 is the generating set of the set 
vector space V2 over S. 
 
The number of elements in X = X1 ∪ X2 is the bidimension of V 
and is denoted by (|X1|; |X2|) or |X1| ∪ |X2|. 
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 We shall illustrate this definition by some examples. 
 
Example 4.7: Let V = V1 ∪ V2 = {(111), (000), (100), (010), 
(001)} ∪ {(1111), (0000), (1110), (1000)} be the set bivector 
space over the set S = {0,1}. Take X = {(111), (100), (010), 
(001)} ∪ {(1111), (1110), (1000)} ⊆  V1 ∪ V2 is the generating 
bisubset of V over the set S. Clearly dim V = (4, 3) or (4 ∪ 3).  
 
Example 4.8: Let  
 

V = V1 ∪ V2 = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z × Z × Z}  

 
be the set bivector space defined over the set S = Z.  
 

X = 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(111), (100), (010), (001), (110), (a b c) …}  

   =  X1 ∪ X2  
 
where X2 is an infinite subset of V2, this alone can generate V so 
bidimension of V is infinite i.e., bidimension of V = {1 ∪ ∞} or 
(1, ∞). 
 
Example 4.9: Let V = V1 ∪ V2 = {Z10 × Z10 × Z10} ∪ {(a a a a 
a) | a ∈ {0, 2, 4, 6, 8} a proper subset of Z10}. V is a set bivector 
space over Z10. Prove bidimension of V is finite over Z10.  
 
Now we proceed onto define the notion of set bilinear algebra or 
equivalently we can call it as set linear bialgebra. 
 
DEFINITION 4.4: Let V = V1 ∪ V2 be such that V1 is a set linear 
algebra over the set S and V2 is also a set linear algebra over S. 
Further V1 ≠ V2, V1 ⊄ V2 or V2 ⊄ V1. Then V = V1 ∪ V2 is 
defined to be the set linear bialgebra over the set S.  
 
We now illustrate this situation by some examples. 
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Example 4.10: Let  
 

V = V1 ∪ V2 = 16

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z16 × Z16} 

 
be the set linear bialgebra over the set Z16. 
 
Example 4.11: Let  
 
V  =  {(000), (010), (100), (001), (110), (011), (101), (111)} 

 ∪  2

a b
a,b,c,d Z {0,1}

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

= V1 ∪ V2 .  
 
V is a set linear bialgebra over the set S = {0 1}. 
 
Example 4.12: Let  

V  = V1 ∪ V2  
=  {Z} ∪ {Z+ × Z+ × Z+}  
 

be the set linear bialgebra over the set S = 2Z+, here V1 and V2 
are set linear algebras over S = 2Z+. 
 
Example 4.13: Let  
V  = V1 ∪ V2  

=  {(a b) / a, b ∈ {0 1}} ∪ {1110}, {0000}, (0011)};  
 
V is not a set linear bialgebra over the set S = {0, 1}. V is only a 
set bivector space over the set S because V2 is not closed under 
the operation ‘+’. 
 
In view of this we have the following result which is left for the 
reader to prove. 
 
Result: Every set linear bialgebra is a set bivector space but all 
set bivector spaces need not in general be a set linear bialgebras. 

The example 4.13 is one such algebraic structure. 



 139

 
Now we proceed on to define the notion of set linear 
subbialgebra or equivalently the notion of set bilinear 
subalgebra. 
 
DEFINITION 4.5: Let V = V1 ∪ V2 be a set linear bialgebra over 
the set S. If W ⊂ V i.e., W = W1 ∪ W2 ⊂ V1 ∪ V2 (Wi ⊂ Vi, i = 1, 
2) is a set linear bialgebra over the set S then we call W to be 
the set linear subbialgebra of V. 
 
We now illustrate this by some examples. 
 
Example 4.14: Let  
 

V  =  V1 ∪ V2  

=  
a a a a a a

a Z a Z
a a a a a a

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

; 

 
V is a set linear bialgebra over Z. Take  
 

W = W1 ∪ W2  

= 
a a a 0 a 0

a Z a Z
0 0 a 0 a 0

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

  

 
⊆ V1 ∪ V2 = V, W is a set linear subalgebra of V over S. 
 
Example 4.15: Let V = V1 ∪ V2 = Z[x] ∪ Q be a set linear 
bialgebra over the set S = 2Z. Suppose W = W1 ∪ W2 = {all 
polynomial of even degree with coefficient from 2Z} ∪ {5Z} ⊆ 
V1 ∪ V2 = V. Clearly W is a set linear bisubalgebra over the set 
S = 2Z. 
 
Example 4.16: Let  V = V1 ∪ V2  

 

 = 12 12

x 0 x y z
x Z x, y,z Z

0 x 0 y 0
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

.  
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V is a set linear bialgebra over S = Z12. Take  
 

W  =  W1 ∪ W2  

= 12 12

x 0 x x x
x Z x Z

0 0 0 0 0
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

  

 
⊆ V1 ∪ V2 = V.  
 
W is a set linear bisubalgebra of V over the set S = Z12. 
 
DEFINITION 4.6: Let V = V1 ∪ V2 be a set linear bialgebra over 
the set S. Let X = X1 ∪ X2 ⊂ V1 ∪ V2 = V, if X1 is a generating 
set of V1 and X2 is a generating set of V2 then X = X1 ∪ X2 is the 
generating subset of V. The bidimension of V is the cardinality 
of (|X1|, |X2|).  
 
We illustrate this situation by some examples. 
 
Example 4.17: Let V = V1 ∪ V2 = {Z} ∪ {(a a a) | a ∈ Z} be a 
set linear bialgebra over the set S = Z. Let X = X1 ∪ X2 = {1} ∪ 
{1 1 1} ⊆ V1 ∪ V2. X is the generating biset of V. The 
bidimension of V is (1, 1). 
 
Example 4.18: Let  
 

V =  V1 ∪ V2  

=  
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a b c)| a, b, c ∈ Z}  

 
be the set linear bialgebra over the set S = Z. Let  
 

X =  
1 1
1 1

⎛ ⎞
∪⎜ ⎟

⎝ ⎠
 {(100), {010), (001)}  

= X1 ∪ X2 ⊂ V1 ∪ V2  
=  V.  
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The bidimension of V is {1} ∪ {3} or (1, 3). 
 
Example 4.19: Let V = V1 ∪ V2 = Z[x] ∪ Z × Z × Z be a set 
linear bialgebra over the set Z. Let X = {1, x, x2, …, xn, …} ∪ 
{(100), (010), (001)} generates V and the bidimension of V is 
{∞} ∪ {3} = (∞, 3). 
 
Example 4.20: V = V1 ∪ V2 = Z[x] ∪ Z × Z × Z as a set 
bivector space over the set Z is of bidimension (∞,∞). 
 
This is the marked difference between the set linear bialgebras 
and set bivector spaces.  
 
Now we proceed onto define the notion of semigroup bivector 
spaces, biset bivector spaces and bisemigroup bivector spaces 
and illustrate them by examples. 
 
DEFINITION 4.7: Let V = V1 ∪ V2 be such that V1 is a set vector 
space over the set S1 and V2 be a set vector space over the set 
S2. S1 ≠ S2; S1 ⊆ S2 and S2 ⊆  S1 we define V = V1 ∪ V2 to be 
the biset bivector space over the biset S1 ∪  S2.  
 
Now we will illustrate this definition by some examples. 
 
Example 4.21: Let V = V1 ∪ V2 = Z × Z × Z ∪ Z12 × Z12 × Z12 
× Z12 be a biset bivector space over the biset S = Z ∪ Z12. 
 
Example 4.22: Suppose  
 

V =  V1 ∪ V2  

= Z12 [x] ∪ 10

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

;  

 
take the biset S = Z12 ∪ Z10; then V is the biset bivector space 
over the biset S = Z12 ∪ Z10. i.e., V1 is a set vector space over 
the set Z12 and V2 is a set vector space over the set Z10.  
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It is interesting as well as important to observe that set bivector 
spaces and biset bivector spaces are two different and distinct 
notions. They will find their applications in different sets of 
mathematical models. 
 
Example 4.23: Let  
 

V = V1 ∪ V2  
 

=  {(111), (000), (11111), (00000), (110), (100), (001), 
  (10100), (0000), (1100), (1010)} 

 

 ∪ 5

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.   

 
V1 is a set vector space over the set S1 = Z2 = {0, 1} and V2 is a 
set vector space over the set S2 = Z5. Thus V = V1 ∪ V2 is a 
biset bivector space over the biset S = S1 ∪ S2 = Z2 ∪ Z5. 
 
Example 4.24: Let  
 

V = V1 ∪ V2  
= {(1111), (0011), (0000), (1000), (11), (01), (00)} 

   

∪ 3

a a a
a,b Z

b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a biset bivector space over the biset S = S1 ∪ S2 = Z2 ∪ Z3. 
 
Now we define the notion of biset bivector subspaces. 
 
DEFINITION 4.8: Let V = V1 ∪ V2 be a biset bivector space over 
the biset S = S1 ∪ S2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2; if W is a 
biset bivector space over S then we call W to be the biset 
bivector subspace of V over the biset S = S1 ∪ S2. 
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Example 4.25: Let V = V1 ∪ V2  
= {(000000), (111000), (110110), (111), (000), (100), 

  (011)}  

 ∪ 4

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the biset bivector space over the biset S = S1 ∪ S2 = {0, 1} ∪ 
Z4.   
Let  
 

W = W1 ∪ W2  

= {(000000) (111000)} ∪ 4

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V1 ∪ V2,  
 
W is a biset bivector subspace of V over the biset S = S1 ∪ S2. 
 
Example 4.26: Let  
 

V = V1 ∪ V2 = 4

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z5[x]}; 

 
{Z5[x] i.e., all polynomial in the variable x with coefficients 
from Z5} be the biset bivector space over the biset S = S1 ∪ S2 = 
Z4 ∪ Z5 . Let  
 

W =  W1 ∪ W2  

= 4

a 0
a Z

0 a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

{all polynomials of degree 1 with coefficient from Z5}  
⊆  V1 ∪ V2  
=  V;  

 
W is a biset bivector subspace of V over the biset S = Z4 ∪ Z5 . 
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Example 4.27: Let  
 

V  =  V1 ∪ V2  

= {Z6 × Z6} ∪ 7

a b c
a,b,c,d,e,f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

   

 
be the biset bivector space over the biset S = S1 ∪ S2 = {0 2 4} 
∪ Z7. Take  
 

W = W1 ∪ W2  

= {{0, 3} × Z6} ∪ 7

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

⊂ V1 ∪ V2 ;  
 
W is the biset bivector subspace over the biset S = S1 ∪ S2 .  
 
DEFINITION 4.9: Let V = V1 ∪ V2 be a biset bivector space over 
the biset S = S1 ∪ S2. If X = X1 ∪ X2 ⊂ V1 ∪ V2 is such that X1 
generates V1 as a set vector space over the set S1 and V2 is 
generated by the set X2 over the set S2 then we say the biset X1 
∪ X2 is the bigenerator of the biset bivector space V = V1 ∪ V2 
over the biset S = S1 ∪ S2. The bicardinality of X = X1 ∪ X2 
denoted by (|X1|, |X2|) gives the bidimension of V over S.  
 
We illustrate this by the following examples. 
 
Example 4.28: Let V = V1 ∪ V2 be a biset bivector space over 
the biset S = S1 ∪ S2 where V1 = Z5 × Z5 × Z5 with S1 = Z5 and  
 

V2 = 2

a b c
a,b,c,d,e,f Z {0,1}

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
and S2 = Z2. Take  
 

X =  X1 ∪ X2  
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= {(a, b) / a, b ∈ Z5)  

∪  
1 1 1 1 1 1 1 1 1

, ,
1 1 1 1 1 0 0 0 1

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

  
1 1 1 1 1 1 1 1 1

, , ,
1 0 1 0 1 1 0 1 0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

1 1 1 1 1 1 0 0 0
, , ,...

1 0 0 0 0 0 1 1 1
⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎭

 

 
 X is finite biset and bidimension of V = {24 ∪ 63} = (24, 63). 
 
Example 4.29: Let  
 

V  = V1 ∪ V2  

= 
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z3 × Z3}  

 
be a biset bivector space over the biset S = S1 ∪ S2 = Z ∪ Z3 . 
Take  
 

X  =  
1 1 1
1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(11), (12), (10), (01)}  

 =  X1 ∪ X2 ,  
 
X is the bigenerating biset of the biset bivector space V. The 
bidimension of V is {1} ∪ {4}. 
 
Example 4.30: Let = V1 ∪ V2 = {Z5 × Z5} ∪ (Z × Z) be the 
biset bivector space over the biset S = S1 ∪ S2 = Z5 ∪ Z. Take X 
= X1 ∪ X2 = {(11), (10), (01), (12), (13), (14)} ∪ {(a, b) / a b 
∈ Z} bigenerates V. Clearly |X1| = 6 and |X2| = ∞ so the 
bidimension of V is (6, ∞ ). 
 
Thus even if one of the set vector spaces in the biset bivector 
space V is of infinite dimension we say the biset bivector space 
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to be of bidimension infinity. Only if both V1 and V2 are of 
finite dimension we say V, the biset bivector space V is of finite 
bidimension.  
 
Now we proceed on to define the notion of biset bilinear algebra 
or equivalently biset linear bialgebra. 
 
DEFINITION 4.10: Let V = V1 ∪ V2, if V1 is a set linear algebra 
over the set S1 and V2 a different set linear algebra on the set S2 
(S1 ≠ S2, S1 ⊄ S2, S2 ⊄ S1) (V1 ≠ V2, V1 ⊄ V2 or V2 ⊄ V1) then we 
call V = V1 ∪ V2 to be the biset bilinear algebra over the biset S 
= S1 ∪ S2 .  
 
We illustrate this definition by examples. 
 
Examples 4.31: Let  
 

V = V1 ∪ V2 = Z[x] ∪ 5

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the biset bilinear algebra over the biset S = Z ∪ Z5. Clearly 
Z[x] is the set linear algebra over Z and  
 

5

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
is the set linear algebra over the set Z5. 
 
Example 4.32: Let V = V1 ∪ V2 ={Z7 × Z7} ∪ {(a a a a) / a ∈ 
Z6}; V1 is a set linear algebra over the set Z7 and V2 is a set 
linear algebra over the set Z6. Thus V = V1 ∪ V2 is the biset 
bilinear algebra over the biset S = Z7 ∪ Z6. 
 
Example 4.33: Let V = V1 ∪ V2 = {(a, b) / a, b ∈ Z} ∪ {Z9[x] = 
all polynomials in the variable x with coefficients from the set 
Z9}. Take S = Z ∪ Ζ9 = S1 ∪ S2. Now V is the biset bilinear 
algebra over the biset S = S1 ∪ S2. 
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Example 4.34: Let  
 

V = V1 ∪ V2  

= {Z5 × Z5 × Z5} ∪ 2

a a a
a,b Z

b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
Take the biset S = = S1 ∪ S2 = Z5 ∪ Z2. Clearly V is a biset 
bilinear algebra over the biset S = Z5 ∪ Z2.  
 
Now we proceed on to define the bidimension of a biset bilinear 
algebra over the biset S = S1 ∪ S2. 
 
DEFINITION 4.11: Let V = V1 ∪ V2 be a biset linear bialgebra 
over the biset S = S1 ∪ S2. Let W = W1 ∪ W2 ⊂ V1 ∪ V2, if W is 
a biset bilinear algebra over the biset S = S1 ∪ S2 then we call 
W to be the biset bilinear subalgebra of V over the biset S = S1 
∪ S2.  
 
We illustrate this by some simple examples. 
 
Example 4.35: Let  
 

V =  V1 ∪ V2  

=  5

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z4 × Z4}  

 
be the biset bilinear algebra over the biset S = S1 ∪ S2 = Z5 
∪ Z4. Let  
 

W  = W1 ∪ W2  

=  5

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {{0,2} × {0,2}}  

⊆  V1 ∪ V2;  
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W is a biset bilinear subalgebra of V over the biset S = S1 ∪ S2 . 
 
Example 4.36: Let V = V1 ∪ V2 = Z7[x] ∪{(000), (111), (100), 
(001), (010), (110), (101), (011)} be the biset bilinear algebra 
over the biset S = Z7 ∪ Z2 . Take W = W1 ∪ W2 = {all 
polynomials of degree 2 with coefficient from Z7} ∪ {000), 
(111)} ⊂ V1 ∪ V2; W is a biset bilinear subalgebra of V over 
the biset S = Z7 ∪ Z2. 
 
Example 4.37: Let  
 

V  =  V1 ∪ V2  

=  {Z2 × Z2 × Z2 × Z2} ∪ 3

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V is a biset bilinear algebra over the biset Z2 ∪ Z3. 
Take  

W  = W1 ∪ W2  
⊆ V1 ∪ V2  

where  
W1 = Z2 × {0} × Z2 × {0} 

and  

W2 = 3

a 0
a,d Z

0 d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
W is the biset bilinear subalgebra of V over the set Z2 ∪ Z3.  
 
Now having defined the substructure we now proceed on to 
define the notion of the bigenerating set and bidimension of the 
biset bilinear algebra. 
 
DEFINITION 4.12: Let V = V1 ∪ V2 be a biset bilinear algebra 
defined over the biset S = S1 ∪ S2. Let X = X1 ∪ X2 ⊂ V1 ∪ V2 
where X1 generates V1 as a set linear algebra over S1 and X2 
generates V2 as a set linear algebra over S2. Clearly X = X1 
∪ X2 bigenerates V and the bidimension of V is (|X1|; |X2|). 
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We give some examples to illustrate this concept. 
 
Example 4.38: Let  
 

V =  V1 ∪ V2  

=  
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ Z2 × Z2 × Z2 

 
be the biset bilinear algebra over the biset S = Z ∪ Z2 = S1 ∪ S2.  
 
Let 

X =  X1 ∪ X2  

=  
1 1 1
1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

{(001), (000), (100), (010)}  

⊆ V1 ∪ V2,  
 
we see X bigenerates V and bidimension of V is {1} ∪ {3} or 
{1, 3}. 
 
Example 4.39: Let  
 

V  =  V1 ∪ V2  

=  12

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z6 × Z6}  

 
be a biset bilinear algebra over the biset S = Z12 ∪ Z6 . Take  
 

X  = X1 ∪ X2  

= 
1 1 1
1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(11), (10)}  

 
is the bigenerator of V. The bidimension of V is {1} ∪ {2} or 
{1, 2}.  
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Now having seen the bidimension we wish to mention that for 
the same set V treated as a biset bilinear algebra and as a biset 
bivector space over the same biset S = S1 ∪ S2, their 
bidimensions are distinct and not the same.  

Thus in certain cases it is advantageous to work with biset 
bilinear algebra for it will make the cardinality of the 
bidimension relatively small when compared with the biset 
bivector space.  

In spaces where it is possible we can make use of biset 
bilinear algebra instead of biset bivector spaces.  
 
Now we proceed on to define the notion of semigroup bivector 
spaces. 
 
DEFINITION 4.13: Let V = V1 ∪ V2 where V1 is a semigroup 
vector space over the semigroup S.  

If V2 is also a semigroup vector space over the same S and 
if V1 and V2 are distinct (V1 ≠ V2, V1 ⊆  V2 and V2 ⊆  V1) then 
we say V = V1 ∪ V2 to be the semigroup bivector space over the 
semigroup S.  
 
We illustrate this by the following examples. 
 
Example 4.40: Let  
 

V =  V1 ∪ V2  

= {Z+ × Z+ × 2Z+} ∪
a b c

a,b,c,d,e,f 2Z
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup bivector space over the semigroup S = 2Z+, we 
see V1 is a semigroup vector space over the semigroup 2Z+ = S 
and V2 is also a semigroup vector space over the same 
semigroup S = 2Z+.  
 
Example 4.41: Let V = {(111), (000), (100), (001)} ∪ {(a, b) / 
a, b ∈ Z2 = {0, 1}} = V1 ∪ V2. V is a semigroup bivector space 
over the semigroup Z2 = {0, 1} = S.  
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Example 4.42: Let  

V  = {(a, b, c)| a, b, c ∈ Z+} ∪ 
a c

a,c 2Z
0 a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

=  V1 ∪ V2 .  
 
V = V1 ∪ V2 is a semigroup bivector space over the semigroup 
S = Z+. 
 
Example 4.43: Let  
 

V =  {(000), (00), (01), (111), (001), (011)} ∪ {(1111), 
(0000), (0101), (1101), (000), (111), (11111), 
(00000), (10101)}  

=  V1 ∪ V2 .  
 
V is a semigroup bivector space over the semigroup Z2 = {0,1} 
under addition modulo 2. V1 ∩ V2 = {(000), (111)} ≠ φ. But V1 
⊄ V2 and V2 ⊄ V1.  
 
Now we proceed on to define the new notion of semigroup 
bivector subspace of a semigroup bivector space V. 
 
DEFINITION 4.14: Let V = V1 ∪ V2 be a semigroup bivector 
space over the semigroup S. Let W = W1 ∪ W2 ⊂ V1 ∪ V2 = V 
be a proper biset of V, if W is a semigroup bivector space over S 
then we call W to be the semigroup bivector subspace of V over 
the semigroup S. Clearly W1 ≠ W2 and W1 ⊄ W2 and W2 ⊄ W1 
with W1 ⊆ V1 and W2 ⊆ V2.  
 
We now illustrate this definition by some examples.  
 
Example 4.44: Let V = V1 ∪ V2 be a semigroup bivector space 
over the semigroup S = Z+. Let  
 

V1 = 
a a a

a Z {0}
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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and  
V2 = {3Z+ × 5Z+}. 

 
V1 is a semigroup vector space over the semigroup S = Z+ and 
V2 is a semigroup vector space over the semigroup S = Z+.  

Thus V is a semigroup bivector space over the semigroup S 
= Z+.  

Take  

W1 = 
a a a

a 3Z {0}
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆  V1  

and 
W2 = 3Z+ ×{0} ⊆ V2. 

 
W = W1 ∪ W2 is a semigroup bivector space over the semigroup 
S = Z+. W is a semigroup bivector subspace of V = V1 ∪ V2 
over the semigroup S = Z+. 
 
Example 4.45: Let V = {(1110), (0000), (1010), (1000), (00), 
(11), (10)} ∪ {(11111), (00000), (000), (111), (11011), (101)} = 
V1 ∪ V2 be the semigroup bivector space over the semigroup S 
= Z2. W = {(0000), (1111)} ∪ {(000), (101)} ⊆ V1 ∪ V2 is a 
semigroup bivector subspace of V over S = Z2.  
 
Now we proceed on to define the bidimension and bigenerator 
of the semigroup bivector space. 
 
DEFINITION 4.15: Let V = V1 ∪ V2 be a semigroup bivector 
space over the semigroup S.  

Let X = X1 ∪ X2 ⊆ V1 ∪ V2, if X1 generates the semigroup 
vector space V1 over the semigroup S and X2 generates the 
semigroup vector space V2 over the semigroup S then, X = X1 
∪ X2 is the bigenerator of the semigroup bivector space V over 
the semigroup S.  

The bidimension of V is |X1| ∪ |X2| or (|X1|, |X2|) over the 
semigroup S. If even one of |X1| or |X2| is infinite we say the 
bidimension of V is infinite. 
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Example 4.46: Let V = V1 ∪ V2 = {(000), (111), (010), (001), 
(00), (01)} ∪ {(a a a a) / a ∈ Z2 = {0, 1}} be the semigroup 
bivector space over the semigroup S = Z2 = {0,1}. X = {(111), 
(010), (001), (01)} ∪ ((1111)}; bigenerates V over S = Z2 = 
{0,1} so the bidimension of V is (4,1) or {4} ∪ {1) over S. 
 
Example 4.47: Let V = {(a b c) / a, b, c ∈ Z+} ∪ {(a a a a a) / a 
∈ Z+} be the semigroup bivector space over the semigroup S = 
Z+. Take X = {(a b c) / a, b, c ∈ Z+} ∪ {(11111)} ⊆ V1 ∪ V2 , X 
is a bigenerator of V and the bidimension of V over S is {∞} 
∪ {1} = {∞, 1}. Thus V is an infinite bidimensional semigroup 
bivector space over S = Z+.  
 
Now we proceed on to define the notion of semigroup bilinear 
algebra over the semigroup. 
 
DEFINITION 4.16: Let V = V1 ∪ V2 be such that V1 is a 
semigroup linear algebra over the semigroup S and V2 is a 
semigroup linear algebra over the semigroup S. with V1 ≠ V2 , 
V1 ⊄ V2 and V2 ⊄ V1.  

Then we call V to be the semigroup bilinear algebra over 
the semigroup S. 
 
 We illustrate this by few examples. 
 
Example 4.48: Let  
 

V  = V1 ∪ V2  
=  {(111), (000), (110), (101), (100), (010), (001),  

  (011)} ∪ 2

a a
a Z {0,1}

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V is a semigroup bilinear algebra over the semigroup S = Z2 = 
{0,1}. 
 
Example 4.49: Let V = V1 ∪ V2 = {Z5 [x]} ∪ {Z5 × Z5 × Z5}. V 
is a semigroup bilinear algebra over the semigroup Z5. 
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Example 4.50: Let  

V = V1 ∪ V2 = {Z+ × Z+ × Z+} ∪ 
a a a

a 2Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a semigroup bilinear algebra over the semigroup S = Z+. 
 We see all semigroup bilinear algebras defined over the 
semigroup are semigroup bivector spaces but a semigroup 
bivector space in general is not a semigroup bilinear algebra.  
 
To this end we give an example. 
 
Example 4.51: Let V = V1 ∪ V2 = {(111), (000), (11), (00)} ∪ 
{(0000), (1111), (1101), (0110)}. V is a semigroup bivector 
space over the semigroup S = Z2 = {0,1}.  

Clearly V is not a semigroup bilinear algebra over Z2 = 
{0,1} as V1 is not a semigroup under addition and V2 is also not 
a semigroup under addition. Hence the claim. 
 
 It may so happen in V = V1 ∪ V2 we may have V1 to be a 
semigroup linear algebra over the semigroup S and V2 is only a 
semigroup vector space, in such cases we define a new algebraic 
structure. 
 
DEFINITION 4.17: Let V = V1 ∪ V2 be such that V1 is a 
semigroup linear algebra over the semigroup S and V2 is only a 
semigroup vector space over S with V1, ≠ V2, V1 ⊆  V2 and V2 
⊆  V1. Then we call V = V1 ∪ V2 to be a quasi semigroup 

bilinear algebra over S. 
 
 We illustrate this by the following examples. 
 
Example 4.52: Let  
 

V  = V1 ∪ V2  
= {(000), (111), (01), (10), (11), (00), (100)} 

  ∪ 2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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V1 is only a semigroup vector space over the semigroup S = Z2 
= {0,1}. V2 is a semigroup linear algebra over the semigroup S 
= Z2 = {0, 1}; V1 ≠ V2. So V is a quasi semigroup bilinear 
algebra over the semigroup S = Z2 = {0,1}. 
 
It is interesting to note that all semigroup bilinear algebras are 
quasi semigroup bilinear algebras but converse is never true. 
Also all quasi semigroup bilinear algebras are semigroup 
bivector spaces but the converse is not true. 
 
Example 4.53: Let  

V  =  2

a a b b b
, a,b Z

a a b b b
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

∪  {(110), (0000), (00000), (11111), (1101), (000)}  
=  V1 ∪ V2 .  

 
V is a semigroup bivector space over the semigroup S = Z2 = 
{0, 1}. V1 is only a semigroup vector space also V2 is only a 
semigroup vector space over Z2. So V = V1 ∪ V2 is only a 
semigroup bivector space over Z2 and never a quasi semigroup 
bilinear algebra over S = Z2 = {0,1}. 
 
Example 4.54: Let  
 

V  = V1 ∪ V2  
=  {(000), (111), (110), (111111), (000000), (111000), 

  (101010)}  

 ∪ 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V1 is only a semigroup vector space over the semigroup S = Z2 
= {0, 1}. V2 is a semigroup linear algebra over the semigroup S 
= Z2 = {0, 1}. Thus V = = V1 ∪ V2 is only a quasi semigroup 
bilinear algebra over Z2 = {0, 1}.  
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Thus a quasi semigroup bilinear algebra can have quasi 
semigroup bilinear subalgebra as well as quasi semigroup 
bivector subspaces. 
 
DEFINITION 4.17: Let V = V1 ∪ V2 be a quasi semigroup 
bilinear algebra over the semigroup S. Here V1 is a semigroup 
linear algebra over S and V2 is a semigroup vector space over 
S.  

Let W = W1 ∪ W2 ⊂ V1 ∪ V2 where W1 is a semigroup 
linear subalgebra of V1 and W2 is only a semigroup vector 
subspace of V2. Then W = W1 ∪ W2 is the quasi semigroup 
bilinear subalgebra of V.  
 
 If P = P1 ∪ P2 ⊂ V1 ∪ V2 is such that P1 is only a semigroup 
vector subspace of the semigroup linear algebra V1 over S and 
P2 is a semigroup vector subspace of the semigroup vector space 
V2 then we call P = P1 ∪ P2 to be the quasi semigroup bivector 
subspace of V = V1 ∪ V2 over the semigroup S. 
 
Example 4.55: Let  
 

V  =  V1 ∪ V2  
=  {(000), (111), (100), (010), (001), (110), (011),  

  (101)} ∪ 2

a a b b b a 0
, , a,b Z

a a b b b a 0
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 . 

 
V is a quasi semigroup bilinear algebra over the semigroup S = 
Z2 = {0,1}. Take  
 

W  = W1 ∪ W2  

=  {(000), (100), (010)} ∪ 2

a a a 0
, a Z

a a a 0
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V1 ∪ V2. 
 

W is only a semigroup bivector space over the semigroup S 
= Z2 = {0, 1}. So W is a quasi semigroup bivector subspace of 
V over Z2 = {0, 1}. Let  
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P = P1 ∪ P2  

=  {(000), (111)} ∪ 2

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

⊆  V = V1 ∪ V2. 
  

P is a quasi semigroup bilinear subalgebra over the 
semigroup S = Z2 = {0,1}. 
 
Now have seen the substructures of a quasi semigroup bilinear 
algebra we proceed on to define bidimension and bigenerating 
subset of the quasi semigroup bilinear algebra. 
 
DEFINITION 4.18: Let V = V1 ∪ V2 be a quasi semigroup 
bilinear algebra over the semigroup S.  Let X = X1 ∪ X2 ⊆ V1 ∪ 
V2 where X1 generates the semigroup linear algebra V1 and X2 
generates the semigroup vector space V2 over S.   

Then X = X1 ∪ X2 is called the bigenerator of V and the 
bidimension of V is (|X1|, |X2|) or (|X1| ∪ |X2|. 
 
We illustrate this situation by some examples. 
 
Example 4.56: Let V = V1 ∪ V2 = {(a, a, a) | a ∈ Z2} ∪ {(1 1 
1), (0 0 0), (1 1 0), (1 1 1 0), (0 0 0 0), (1 1 0 0), (1 1 0 1), (1 1 0 
0 1),  (0 0 0 0 0), (1 1 1 0 1)} be a quasi semigroup linear 
algebra over Z2.  Let X = {(1 1 1)} ∪ {(1 1 1), (1 1 0), (1 1 1 0), 
(1 1 0 0), (1 1 0 1), (1 1 0 0 1), (1 1 1 0 1)} ⊂ V1 ∪ V2, X is a 
bisubset of V which bigenerates V.  The bidimension of X is 
{1} ∪ {7} = (1, 7). 
 
Example 4.57: Let V  = V1 ∪ V2 = {(1 1), (1 0), (0 0), (1 1 1),  
(0 0 0), (1 1 1 1 1), (0 0 0 0 0), (1 1 0 0 0),  (0 1 1 ), (1 0 1 0 1)}  

 

∪ 2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a quasi semigroup linear algebra over the semigroup Z2 = {0, 
1}.   
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X  =  {(1 1), (1 0), (1 1 1), (1 1 1 1 1), (1 1 0 0 0),  

    (0 1 1), (1 0 1 01 )} ∪ 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

   

is the bigenerator of V. The bidimension of V is {7} ∪ {1} =  
(7, 1).  

We see from these examples the dimension of the 
semigroup linear algebra V is less than the dimension of 
semigroup vector space V. Same V for which ‘+’ is taken and 
for the other ‘+’ operation is not taken. 

We illustrate this situation by an example. 
 
Example 4.58: Let V = {(1 1 1), (1 0 0), (0 1 0), (0 0 1), (1 1 0), 
(1 0 1), (0 1 1), (0 0 0)} be a semigroup linear algebra over the 
semigroup Z2 = {0, 1}. Suppose V = {(1 1 1), (1 0 0), (0 1 0), (0 
0 1), (1 1 0), (1 0 1), (0 1 1), (0 0 0)} be a semigroup vector 
space over Z2 = {0,1}, the semigroup under addition. Dimension 
of V as a semigroup linear algebra is three given by the 
generating set X = {(1 0 0), (0 1 0), (0 0 1)}. The dimension of 
V as a semigroup vector space is 7 given by the generating set X 
= {(1 1 1), (1 0 0), (0 0 1) (0 1 0), (1 1 0), (0 1 1), (1 0 1)}. Thus 
we see dimension varies or the dimension is small when the 
structure is a semigroup linear algebra V and the dimension is 
large for the same V when it is a semigroup vector space.  
 
Now we proceed onto define the new notion of group bivector 
spaces and group bilinear algebras. 
 
DEFINITION 4.19: Let V = V1 ∪ V2 be such that V1 ≠ V2, V1 
⊆/ V2 and V2 ⊆/  V1, V1 and V2 group vector spaces over the same 
group G, then we call V to be a group bivector space defined 
over the group G.  
 
We illustrate this by the following examples. 
 
Example 4.59: Let V = V1 ∪ V2 where  

V1 = 3

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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and  
V2 = {(a a a a a) | a ∈ Z3}. 

V is a group bivector space over the group Z3 = {0, 1, 2} 
addition modulo 3. 
 
Example 4.60: Let  
 

V = V1 ∪ V2  
=  {(0 0), (1 1), (1 1 1 1 1), (0 1), (0 0 0 0 0)} ∪  

2

a a a a a
, a Z {0,1}

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V is a group bivector space over the group G = Z2 = {0, 1} 
addition modulo 2. 
 
Example 4.61: Let V = V1 ∪ V2 = {Z[x]} ∪ { (Z × Z × Z)} be a 
group bivector space over the group G = Z, group under 
addition. 
 
We now define some interesting substructures of group bivector 
spaces. 
 
DEFINITION 4.20: Let V = V1 ∪ V2 be a group bivector space 
over the group G. W = W1 ∪ W2 ⊆ V1 ∪ V2 is said to be a group 
bivector subspace of V over G if W itself is a group bivector 
space over G. 
 
We illustrate this by some examples. 
 
Example 4.62: Let  
 
V  =  V1 ∪ V2  

= {(0 0 0), (1 1 1), (0 0 0 0), (1 1 1 1), (1 1 0 0), (0 0 1 1)}  

∪ 2

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
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be the group bivector space over the group G = Z2 = {0, 1} 
under addition. Take  
 

W =  W1 ∪ W2  
=  {(0 0 0), (1 1 1), (0 0 0 0), (1 1 1 1)} ∪ 

 2 1 2

a a a
a Z V V

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

;  

 
Clearly W is a group bivector subspace of V over G = Z2. 
 
Example 4.63: Let  
 
V  =  V1 ∪ V2  

= 2

a b a a a
, a,b,c,d Z

c d a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(1 1 1 0 1 1),  

  (0 0 0 0 0 0), (1 1 1 0 0 0), (1 1), (0 0), (1 0)}  
 
be a group bivector space over Z2 = {0, 1}. Take  
 

W = 2

a b
a, b, c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪{(0 0 0 0 0 0), (1 1 1 0 0 0)}  

⊂  V1 ∪ V2,  
 
W is a group bivector subspace of V over Z2 = {0, 1}. 
 
Example 4.64: Let  
 
V =  V1 ∪ V2  

= {Z[x] } ∪ 
a b a b c

, a,b,c,d,e,f Z
c d d e f

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a group bivector space of V over Z. Take  
W = W1 ∪ W2  
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= {2Z[x]} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⊂ V1 ∪ V2;  

 
W is a group bivector subspace of V over Z.  
 
Now we define the notion of pseudo semigroup bivector 
subspace. 
 
DEFINITION 4.21: Let V = V1 ∪ V2 be a group bivector space 
over the group G. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 and H ⊆ G be a 
semigroup of the group G. If W is a semigroup bivector space 
over the semigroup H then we call W to be a pseudo semigroup 
bivector subspace of V. 
 
Example 4.65: Let V = V1 ∪ V2 = {Z[x]} ∪ { (a, b, c) | a, b, c, 
∈ Z} be a group bivector space over the group Z. Take W = W1 
∪ W2 = {Z+ [x]} ∪ {a, b, c) | a, b, c ∈ Z+} ⊂ V1 ∪ V2; W is a 
semigroup bivector space. W is a pseudo semigroup bivector 
subspace of V over the semigroup Z+ ⊆ Z. 
 
Example 4.66: Let  
 

V  =  V1 ∪ V2  

=  
a b c

a,b,c,d,e,f Z
c d b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪  

{(a, b c d) | a, b, c, d ∈ Z}  
 
be a group bivector space over the group Z. Take  
 

W  =  W1 ∪ W2  

=  
a b c

a,b,c,d,e,f Z {0}
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 {(a, b, c, d) | a, b, c, d ∈ 2Z+ ∪ {0}} ⊆ V1 ∪ V2;  
 
W is a pseudo semigroup bivector subspace of V over the 
semigroup 2Z+ ∪ {0}. 
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Example 4.67: Let  
 

V  =  V1 ∪ V2  
=  {(a b c d) | a, b, c, d ∈ Z} ∪  

a b a a a
, a,b,c,d Z

c d a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a group bivector space over the group Z. Take  
 

W = W1 ∪ W2  
=  {(a 0 b 0) | a, b ∈ Z+ ∪ {0}} ∪   

1 2

a b
a,b,c,d Z {0} V V

c d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ⊆ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
W is a pseudo semigroup bivector subspace of V over the 
semigroup Z+ ∪ {0}.  
 
Now we proceed onto define the substructure pseudo set 
bivector subspace of a group bivector space. 

 
DEFINITION 4.22: Let V = V1 ∪ V2 be a group bivector space 
over the group G. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 = V, take S a 
proper subset of G. If W is a set vector space over the set S then 
we call W to be the pseudo set bivector subspace of V over the 
set S. 
 
We now illustrate this by the following example. 
 
Example 4.68: Let V = V1 ∪ V2 be a group bivector space over 
the group G = Z; where  

V1 = {(a, b, c, d) | a, b, c, d ∈ 2Z} 
and  

V2 = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

Take  
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W = W1 ∪ W2  
= {(a b c d) | a, b, c, d ∈ 2Z+ ∪ {0}} ∪  

a b
a,b,c,d 2Z {0}

c d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 ⊆  V1 ∪ V2 = V,  
 
W is a pseudo set bivector subspace over the set S = {0, 2, 22, 
24, 28, …, 22n | n ∈ N}. 
 
Next we proceed onto define the notion of bisemigroup bivector 
group space. 
 
DEFINITION 4.23: Let V = V1 ∪ V2, where V1 is a semigroup 
vector space over the semigroup S1 and V2 is a semigroup 
vector space over the semigroup S2, (S1 ≠ S2, S1 ⊆/  S2 and S2 ⊆/  
S1). Also V1 ≠ V2, V1 ⊆/  V2 and V2 ⊆/  V1. We call V to be the 
bisemigroup bivector space over the bisemigroup S = S1 ∪ S2.  

 
We illustrate this by the following examples. 

 
Example 4.69: Let V = V1 ∪ V2 where  

V1 = {(a, a, a) | (a ∈ Z6} 
and  

V2 = 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

; 

 
V is a bisemigroup bivector space over the bisemigroup  
S = Z6 ∪ Z+. 
 
Example 4.70: Let V= V1 ∪ V2 = {Z+ [x]} ∪ {Q+ × Q+}, V is a 
bisemigroup bivector space over the bisemigroup 3Z+ ∪ 5Z+. 
 
Example 4.71: Let V = V1 ∪ V2 where  

V1 = 
a a

a 2Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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is a semigroup vector space over the semigroup 2Z+ and V2 = 
{a, a, a} | a ∈ 3Z+} is the semigroup vector space over the 
semigroup 3Z+. V is a bisemigroup bivector space over the 
bisemigroup S = 2Z+ ∪ 3Z+. 
 
Example 4.72: Let V = V1 ∪ V2 where  

V1 = {Z+ × Z+ × Z+} 
and  

V2 = 
a b

a, b, c, d 3Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is bisemigroup bivector space over the bisemigroup S = 2Z+ 
∪ 3Z+. 
 
The notion of bisemigroup bivector subspace can be defined as 
in case of other bivector spaces.  

Next we proceed onto define the notion of bisemigroup 
bilinear algebra defined over the bisemigroup S = S1 ∪ S2. 
 
DEFINITION 4.24: Let V = V1 ∪ V2 where V1 is a semigroup 
linear algebra over the semigroup S1 and V2 is a semigroup 
linear algebra over the semigroup S2 (V1 ≠ V2, V1 ⊆/  V2; V2 ⊆/  
V1) (S1 ≠ S2; S1 ⊆/  S2 and S2 ⊆/  S1). Then we call V to be the 
bisemigroup bilinear algebra over the bisemigroup S = S1 ∪ S2.  

 
We illustrate this by the following examples. 
 
Example 4.73: Let V= V1 ∪ V2 =  
 

V1 = 
a a

a 2Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  
V2 = (a b c d) | a, b, c, d ∈ 3Z+} 

be the bisemigroup bilinear algebra over the bisemigroup S = 
2Z+ ∪ 3Z+. 
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Example 4.74: Let V = V1 ∪ V2 = {(1 1), (0 0), (0 0 0), (1 1 1)} 
∪ {(a b c d) | a, b, c, d ∈ Z+ be the bisemigroup bivector space 
over the bisemigroup S = Z2 ∪ Z+. Clearly V is not a 
bisemigroup bilinear algebra over S. 
 
In view of this we have the following. 

Every bisemigroup bilinear algebra is a bisemigroup 
bivector space but in general a bisemigroup bivector space is 
not a bisemigroup bilinear algebra. The above example is a 
semigroup bivector space which is not a bisemigroup bilinear 
algebra. 
 
We now proceed onto define the notion of bisemigroup bilinear 
subalgebra. 

 
DEFINITION 4.25: Let V = V1 ∪ V2 be a semigroup bilinear 
algebra over the bisemigroup S = S1 ∪ S2. Let W = W1 ∪ W2 ⊂ 
V1 ∪ V2 if (W1 ≠ W2 W1 ⊆/  W2 and W2 ⊆/ W1)and W is itself a 
bisemigroup bilinear algebra over S then we call W to be a 
bisemigroup bilinear subalgebra over the bisemigroup S = S1 ∪ 
S2.  
 
We illustrate this by the following example. 
 
Example 4.75: Let V = V1 ∪ V2 = {Z+ [x]} ∪ Z+ × Z+ × Z+} be 
the bisemigroup bilinear algebra over the bisemigroup S = 3Z+ 
∪ 5Z+. Take W = W1 ∪ W2 = {3Z+ [x]} ∪ {Z+ × {0} × Z+} ⊆ 
V1 ∪ V2, W is a bisemigroup bilinear subalgebra of V over the 
bisemigroup S.  
 
Example 4.76: Let  
 

V  =  V1 ∪ V2  
=  {(a, b) such that a, b ∈ Z10} ∪ 

 
a b

a, b, c,d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a bisemigroup bilinear algebra over the bisemigroup S = Z10 
∪ Z+. Take  
 

W  =  W1 ∪ W2  

 = {(a, a) | a ∈ Z10} ∪ = 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,  

 ⊆  V1 ∪ V2 
 
W is a bisemigroup bilinear subalgebra of V over the 
bisemigroup S = Z10 ∪ Z+. 
 
Example 4.77: Let  
 

V  = V1 ∪ V2  

=  {(a, a) | a ∈ 5Z+} ∪ 
a a
a a a 7Z
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a bisemigroup bilinear algebra over the bisemigroup S = 5Z+ 
∪ 7Z+. Take  

 
W  = W1 ∪ W2  

=  {(a, a) | a ∈ 15 Z+} ∪ 
a a
a a a 14Z
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆ V1 ∪ V2;  
 
W is a bisemigroup bilinear subalgebra of V over the 
bisemigroup S = 5Z+ ∪ 7Z+. 
 
Example 4.78: Let V = V1 ∪ V2 = {7Z+ [x]} ∪ {5Z+ × 5Z+ × 
5Z+} be a bisemigroup bilinear algebra over the bisemigroup S 
= 7Z+ ∪ 5Z+. Take W = W1 ∪ W2 = {14Z+ [x]} ∪ {5Z+ × φ × 



 167

5Z+} ⊆ V1 ∪ V2, W is a bisemigroup bilinear subalgebra over 
the bisemigroup S = 7Z+ ∪ 5Z+.  
 
Now having seen the definition of semigroup bilinear 
subalgebra we now proceed on to define the notion of 
bidimension of the bisemigroup bilinear algebra over the 
bisemigroup. 
 
DEFINITION 4.26: Let V = V1 ∪ V2 be the bisemigroup bilinear 
algebra over the bisemigroup S = S1 ∪ S2. Take X = X1 ∪ X2 ⊆ 
V1 ∪ V2; if X1 generates V1 and X2 generates V2 then we say X 
bigenerates V over the bisemigroup S = S1 ∪ S2. 

The cardinality of X1 ∪ X2 is given by |X1| ∪ |X2| or (|X1|, 
|X2|), called the bidimension of the bisemigroup bilinear 
algebra V = V1 ∪ V2. If even one of X1 or X2 is of infinite 
dimension then we say the bidimension of V is infinite, only 
when both X1 and X2 are of finite cardinality we say V is of 
finite bidimension over the bisemigroup S. 

 
Example 4.79: Let V = V1 ∪ V2 = {(1 0), (0 1), (0 0), (1 1 1),  
(0 0 0), (1 0 1)} ∪ {(1 1 1), (3 3 3), (2 2 2), (0 0 0), (1 0 0),  
(2 0 0), (3 0 0)} be the bisemigroup bivector space over the 
bisemigroup S = Z2 ∪ Z4. Let X = {(1 0), (0 1), (1 1 1), (1 0 1)} 
∪ {(1 1 1), (1 0 0)} = X1 ∪ X2 be the bigenerator of V. The 
bidimension of V is (4, 2). 
 
Example 4.80: Let V = V1 ∪ V2 = {Z2 [x} ∪ {(a a a) | a ∈ Z5} 
be the bisemigroup bilinear bialgebra over the bisemigroup S = 
Z2 ∪ Z5. Let X = {1, x, …, x∞ } ∪ {(1 1 1)} = X1 ∪ X2 ⊆ V1 ∪ 
V2 be the bigenerator of V. Clearly bidimension of V is (∞, 1) 
or ∞ ∪ {1} so V is of infinite bidimension over S. 
 
Example 4.81: Suppose V = V1 ∪ V2 = {(1 1 1), (1 1 1 1), (0 0 
1), (0 0 0), (1 0 0), (1 1 0 0), (0 0 0 0)} ∪ {Z3 × Z3 × Z3} be the 
bisemigroup bivector space over the bisemigroup S = Z2 ∪ Z3. 
Let X = {(1 1 1), (1 1 1 1), (0 0 1), (1 0 0), (1 1 0 0)} ∪  
{(1 0 0), (0 1 0) (0 0 1), (1 1 0), (0 1 1), (1 0 1), (1 2 0), (1 1 1), 
(1 0 2), (0 1 2), (1 2 2), (2 1 2), (2 2 1) etc} = X1 ∪ X2 which is 
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the bigenerator of the bisemigroup bivector space over the 
bisemigroup. The bidimension of V over S is (5 ∪ 26). 
 
Example 4.82: Let  

V  =  V1 ∪ V2  

= {2Z+ [x]} ∪ 
a b

a, b, c, d 3Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,  

 
be a bisemigroup bivector space over the bisemigroup S = 2Z+ 
∪ 3Z+. Clearly the bidimension of V is infinite.  
 
Now we proceed onto define the notion of bigroup bivector 
space over the bigroup. 
 
DEFINITION 4.27: Let V = V1 ∪ V2, such that V1 ≠ V2, V1 ⊆/  V2, 
V2 ⊆/  V1. If V1 is a group vector space over the group G1 and V2 
is a group vector space over the group G2 (G1 ≠ G2 , G1 ⊆/  G2 

and G2 ⊆/  G1) then we say V = V1 ∪ V2 is a bigroup bivector 
space over the bigroup G = G1 ∪ G2. Clearly if V1 and V2 are 
just set it is sufficient to define bigroup bivector space over a 
bigroup. 
 
Example 4.83: Let V = V1 ∪ V2 be a bigroup bivector space 
over the bigroup G = Z3 ∪ Q where V1 = Z3[x] and V2 = Q × Q. 
 
Example 4.84: Let V = V1 ∪ V2 = {(1 1), (0 0 ), (0 1), (1 1 1 0), 
(0 0 0 0), (0 1 0 0), (1 1 1 0 0), (0 0 0 0 0), (0 0 0 1 0)} ∪  

a a a a a
and a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the bigroup bivector space over the bigroup G = G1 ∪ G2 = 
Z2 ∪ Z. Clearly both V1 and V2 are just sets. 
 
Example 4.85: Let V = V1 ∪ V2 = {Z5 × Z5 × Z5} ∪ {Z7[x]} be 
the bigroup bivector space over the bigroup G = Z5 ∪ Z7. 
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Example 4.86: Let V = V1 ∪ V2 = {〈(1 1 1), (2 0 0), (2 2 0), (0 
0 0)〉} ∪ {〈(1 5 7 2), (0 1 0 0), (0 0 0 0), (3 5 4 1), (1 2 3 4), (5 6 
7 0)〉} be the bigroup bivector space over the bigroup G = Z3 ∪ 
Z8. (〈, 〉; denotes generated over the related groups). 
 
Example 4.87: Let  
 

V  =  V1 ∪ V2  

=  6

a b c
a,b,c,d,e,f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

10

x x
x, y Z

y y
⎧ ⎫⎛ ⎞⎪ ⎪∪ ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,  

 
be a bigroup bivector space over the bigroup bivector space 
over the bigroup space over the bigroup G = G1 ∪ G2 = Z6 ∪ 
Z10.  
 
Now we proceed onto define the notion of substructures in 
bigroup bivector spaces.  
 
DEFINITION 4.28: Let V = V1 ∪ V2 be a bivector bispace over 
the bigroup G = G1 ∪ G2. Let W = W1 ∪ W2 ⊂ V1 ∪ V2 = V be 
such that W1 ≠ W2. W1 ⊆/  W2 or W2 ⊆/  W1 if W itself is a 
bigroup bivector space over the bigroup G = G1 ∪ G2 then we 
say W is a bigroup bivector subspace of V over the bigroup G = 
G1 ∪ G2. 
 
We now illustrate this situation by the following examples. 
 
Example 4.88: Let  
 

V  =  V1 ∪ V2  

=  {(a, a, a)| a ∈ Z6} ∪ 8

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

 



 170

be the bigroup bivector space over the bigroup G = Z6 ∪ Z8. Let  
 

W  =  {(a, a, a) | a ∈ {0, 3}} 8

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

=  W1 ∪ W2.  
 
W is the bigroup bivector subspace of V over the bigroup G = 
Z6 ∪ Z8. 
 
Example 4.89: Let  
 
V  =  V1 ∪ V2  

= {(a a a), (a a), (a a a a)| a ∈ Z} ∪ 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the bigroup bivector space over the bigroup G = Z ∪ Z2.  
 

W  = {(a, a, a) | a ∈ Z} ∪ 2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

=  W1 ∪ W2 ⊆ V1 ∪ V2  
 

is the bigroup bivector subspace of V over the bigroup G = Z ∪ 
Z2. 
 
Example 4.90: Let V = V1 ∪ V2 = {(a a a), (a a a a a), (a a), (a a 
a a a a a)| a ∈ Z5} ∪ Z2 [x] be the bigroup bivector space over 
the bigroup Z5 ∪ Z2.  

Take W = W1 ∪ W2 = {(a a a), (a, a, a, a, a, a, a) | a ∈ Z5} ∪ 
{all polynomial of even degree with coefficients from Z2} ⊆ V1 
∪ V2 is a bigroup bivector subspace of V over the bigroup G = 
Z5 ∪ Z2.  
 
Next we define pseudo bisemigroup bivector subspace of a 
bigroup bivector space V. 
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DEFINITION 4.29: Let V = V1 ∪ V2 be a bigroup bivector space 
over the bigroup G = G1 ∪ G2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 
(such that W1 ≠ W2, W1 ⊆/  W2, W2 ⊆/  W1) where W1 is a 
semigroup vector space over the semigroup H1 contained in G1 
and W2 is a semigroup vector space over the semigroup H2 
contained in G2 H1 ⊆/  H2, H2 ⊆/  H1, H1 ≠ H2.  

Then we call W = W1 ∪ W2 to be the pseudo bisemigroup 
bivector subspace of the bigroup bivector space V over  
H = H1 ∪ H2 ⊆ G1 ∪ G2, H the bisemigroup contained in the 
bigroup. 
 
We illustrate thus by the following examples. 
 
Example 4.91: Let  
 

V  =  V1 ∪ V2  

     =    {(a a a a), (a a a) |a ∈ Z} ∪ 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the bigroup bivector space over the bigroup G = Z ∪ Z12. 
 Take  
 

W  = W1 ∪ W2  
=  {(a a a a), | a ∈ Z } ∪  

 
a b

a, b, d {0, 2, 4, 6, 8, 10}
0 d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
  ⊆  V1 ∪ V2.  
 
W is the pseudo bisemigroup bivector subspace over the 
bisemigroup  

Z+ ∪ {0, 6} = H = H1 ∪ H2. 
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Example 4.92: Let  
 

V =   V1 ∪ V2  
 

  =  
a a a

a a
a a a a Z

a a
a a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 ∪ 

 
{(a a a a), (a a), (a a a) | a ∈ 2Z}  

 
be the bigroup bivector space over the bigroup 3Z ∪ 2Z.  
Take  
 

W  =  W1 ∪ W2  
 

=  
a a

a 3Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a) | a ∈ 2Z},  

 
W is the pseudo bisemigroup bivector subspace of V over the 
bisemigroup H = 3Z+ ∪ 2Z+ ⊆ 3Z ∪ 2Z. 
 
Example 4.93: Let  

 
V  = V1 ∪ V2  

= {Z[x]} ∪ {(a a a a), (a a) | a ∈ 2Z}  
 
be the bigroup bivector space over the bigroup G = 3Z ∪ 2Z. 
Let  

W  =  {Z+[x]}∪ {(a a) | a ∈ 2Z}  
 
⊆  V1 ∪ V2  

 
be the pseudo bisemigroup bivector subspace over the 
bisemigroup H = 3Z+ ∪ 2Z+. 
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Now we define yet a new mixed structure which we call as 
quasi bigroup bivector space. 
 
DEFINITION 4.30: Let V = V1 ∪ V2 where V1 is a semigroup 
vector space over the semigroup S1 and V2 is the group vector 
space over the group G1. Then we call V = V1 ∪ V2 to be the 
pseudo bigroup bivector space over the pseudo bigroup  
G = S1 ∪ G1.  
 
We illustrate this situation by the following example. 
 
Example 4.94: Let  

 
V  =  V1 ∪ V2  

=  {Z5 [x]} ∪ {Z+ × Z+ × Z+}  
 
be the pseudo bigroup bivector space over the pseudo bigroup G 
= Z5 ∪ Z+. 
 
Example 4.95: Let  
 

V  =  V1 ∪ V2  
 

=  Z+[x] ∪ 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the pseudo bigroup bivector space over the pseudo bigroup G 
= Z+ ∪ Z12 where Z+ is the semigroup and Z12 is the group under 
addition modulo 12. 
 
Example 4.96: Let  
 

V  =  V1 ∪ V2  
 

=  
a a

a, b 3Z
b b

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z20 [x]}  
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be the pseudo bigroup bivector space over the pseudo bigroup G 
= 3Z+ ∪ Z20. 
 
The author leaves it as an exercise for the reader to define 
various substructures of this structure and bigenerator and 
bidimension.  
 
Now we proceed onto generalize this to n-set n-vector spaces 
set n-vector spaces n ≥ 3, in the following chapter. 
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Chapter Five  
 
 
 
 
 

SET n-VECTOR SPACES AND THEIR 
GENERALIZATIONS  
 
 
 
 
 
In this chapter we for the first time introduce the notion of set n-
vector spaces, semigroup n-vector spaces and group n-vector 
spaces (n ≥ 3) when n = 2 we get set bivector spaces, semigroup 
bivector spaces and so on. 
 
DEFINITION 5.1: Let V = V1 ∪ … ∪ Vn, each Vi is a distinct set 
with Vi ⊆/  Vj or Vj ⊆/  Vi if i ≠ j; 1 ≤ i, j ≤ n. Let each Vi be a set 
vector space over the set S, i = 1, 2, …, n, then we call V = V1 ∪ 
V2 ∪ … ∪ Vn to be the set n-vector space over the set S. 
 
We illustrate this by the following examples. 
 
Example 5.1: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {(1 1 1), (0 0 0), (1 0 0), (0 1 0), (1 1), (0 0),  (1 1 1 1), 
 (1 0 0 0), (0 0 0)} ∪ 

2 2

a a a a a a
a Z a Z {0, 1}

a a a a a a
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈ =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

 ∪ {Z2 [x]}.  
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V is a set 4 vector space over the set S = {0, 1}. 
 
Example 5.2: Let  
 

V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  

= 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z+ × Z+ × Z+} ∪ {(a, a, a), 

  (a, a, a, a, a) | a ∈ Z+} ∪ 

a
a

a Z
a
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {Z+[x]} 

  ∪ 1 2 3
i

4 5 6

a a a
a Z ;1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

   

 
be the set 6-vector space over the set S = Z+. 
 
Example 5.3: Let  
 
V =  V1 ∪ V2 ∪ V3  

= {Z6 [x]} ∪ {Z6 × Z6 × Z6} ∪ 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the set 3 vector space over the set S = {0, 2, 4}. We call this 
also as set trivector space over the set S. Thus when n = 3 we 
call the set n vector space as set trivector space. 
 
We define set n-vector subspace of a set n-vector space V. 
 
DEFINITION 5.2: Let V = V1 ∪ … ∪ Vn be a set n-vector space 
over the set S. If W = W1 ∪ … ∪ Wn with Wi ≠ Wj; i ≠ j, Wi ⊆/  
Wj and Wj ⊆/  Wi, 1 ≤ i, j ≤ n and W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 
∪ V2 ∪ … ∪ Vn and W itself is a set n-vector space over the set 
S then we call W to be the set n vector subspace of V over the 
set S. 
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We illustrate this by a simple example. 
 
Example 5.4: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

= {(a, a, a), (a, a) | a ∈ Z+} ∪ 
a a

a, b Z
b b

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  {Z+[x]} ∪ 
a
a a Z
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

, 

 
V is a set 4-vector space over the set S = Z+. Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4  

= {(a, a, a) | a ∈ Z+} ∪ 
a a

a Z
0 0

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 {all polynomial of even degree} ∪ 
a
a a 2Z
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪ V3 ∪ V4  =  V,  
 
is a set 4-vector subspace of V over the set S = Z+.  

We can find several set 4-vector subspaces of V.  
 
Now we proceed on to define the n-generating set of a set n-
vector space over the set S. 
 
DEFINITION 5.3: Let V = V1 ∪ … ∪ Vn be a set n-vector space 
over set S. Let X = X1 ∪ … ∪ Xn ⊂ V1 ∪ V2 ∪ … ∪ Vn = V. If 
each set Xi generates Vi over the set S, i = 1, 2, …, n then we say 
the set n vector space V = V1 ∪ … ∪ Vn is generated by the n-
set X = X1 ∪ X2 ∪ … ∪ Xn and X is called the n-generator of V. 
If each of Xi is of cardinality ni, i = 1, 2, …, n then we say the n-
cardinality of the set n vector space V is given by |X1| ∪ … ∪ 
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|Xn| = {|X1|, |X2|, …, |Xn|} = {(n1, n2, …, nn)}. If even one of the 
Xi is of infinite cardinality we say the n-cardinality of V is 
infinite. Thus if all the sets X1, …, Xn have finite cardinality then 
we say the n-cardinality of V is finite. 
 
We now illustrate this by the following examples. 
 
Example 5.5: Let  
 
V  = V1 ∪ V2 ∪ … ∪ V5  

=  {(a, a, a) | a ∈ {0, 1}} ∪ 
a a

a {0, 1}
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
a a a

a {0, 1}
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, a, a, a)} a ∈ {0, 1}} ∪  

 
a b

a ,b {0, 1},a b
a b

⎧ ⎫⎛ ⎞⎪ ⎪∈ ≠⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a set 5-vector space over the set S = {0, 1}.  
Choose  
 

X  = {(1 1 1)} ∪ 
1 1 1 1 1
1 1 1 1 1

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∪⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

 ∪ {(1 1 1 1)} ∪ 

  
1 0 0 1

,
1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ … ∪ V5 = V.  
 
It is easily verified each Xi generates Vi, i = 1, 2, …, 5. Thus X 
= X1 ∪ X2 ∪ … ∪ X5 is the 5-generator set of the set 5-vector 
space over the set S. In fact each set Xi is of finite cardinality, so 
V is a set 5-vector space of finite 5-dimension. In fact the 5 
dimension of V is {1, 1, 1, 1, 2}. 
 
One of the important and interesting factor to observe about 
these set n-vector spaces over the set S, is at times they can have 
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one and only one generating set. The example 5.5 is one such 
case.  

Now we proceed onto give yet another example of a set n-
vector space V over a set S. 

 
Example 5.6: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {(a, a, a) | a ∈ Z+} ∪ {Q+ × Q+} ∪ {Z+ [x]} ∪ 
a b

a, b, c, d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
a a a a

a Q
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a set 5-sector space over the set S = Z+. Take  
 
X  = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5  

=  {(1 1 1)} ∪ {an infinite set of pairs including (1, 1)} ∪ 

  {1, x, …, xn and an infinite set} ∪ 
1 1
1 1

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 with an 

  infinite set of 2 × 2 matrices} ∪ 
1 1 1 1
1 1 1 1

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 together  

  with an infinite set 
a a a a

a Q
a a a a

+
⎫⎛ ⎞ ⎪∈ ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
.  

 
X is a 5-generating set. In fact X is an infinite 5-generating 
subset of V = V1 ∪ … ∪ V5. 
 
Example 5.7: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

=  {Z+} ∪ {(a a a) | a ∈ Z+} ∪ 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
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{k1 (1 + x2 + x), k2x, k3x3, k4(x7 + 1), k5 (x8+1),  
k6(x13 + 1 + 2x); ki ∈ Z+; 1 ≤ i ≤ 6} ∪ 

a a a a a
a a a a a a Z
a a a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a 5 set vector space over the set S = Z+.  
Take  
 

X  = {1} ∪ {(1 1 1)} ∪ 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {1 + x2 + x, x, x3,  

  x7 + 1, x8 + 1, x13 + 2x + 1} ∪ 
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5.  
 
Clearly X, 5-generates V i.e., X is the unique 5-generator of V. 
Further V is 5-finitely generated and 5-dimension of V is {1 ∪ 1 
∪ 1 ∪ 6 ∪ 1} = (1, 1, 1, 6, 1).  
 

We now proceed onto define the n-set basis of the n-set 
vector space V over S. 

 
DEFINITION 5.4: Let V = V1 ∪ V2 ∪ … ∪ Vn be a set n-vector 
space over the set S. Suppose X = X1 ∪ … ∪ Xn is a n-set 
generating subset of V = V1 ∪ … ∪ Vn then we call X to be the 
n-set basis of V. If X = ( |X1|, |X2|, …, |Xn| ) in which each |Xi| < 
∞, 1 ≤ i ≤ n, then we say V is finitely n set generated by the n-set 
X and is of n-dimension (|X1|, |X2|, …, |Xn|). Even if one of |Xi| = 
∞ we say V is infinitely n-set generated by X. 
 
Now we will give one or two examples of n-set basis before we 
proceed onto define other interesting notions about n-set vector 
spaces. 
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Example 5.8: Let  

V  = {(a, a, a) | a ∈ Z+ ∪ {0}} ∪ 
a a

a Z {0}
0 a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

  {a1(x2 + 1 + 3x), a2(x + 1), a4x7 a3 (x6 + x2 + x3 + x4 + 1), 
  a5x, a6x2, a7(x8 + 5x2 + 1) | ai ∈ Z+ ∪ {0}; 1 ≤ i ≤ 7 } ∪ 

  
a a a a

a Z {0}
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

= V1 ∪ V2 ∪ V3 ∪ V4  
 
be a 4-set vector space over the set S = Z+ ∪ {0}. Now take  
 
X  =  X1 ∪ X2 ∪ X3 ∪ X4  

= {(1 1 1)} ∪ 
1 1
0 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(x3 + 3x+1), x+1, x7, x6 + x2 

  + x3 + x4 + 1, x, x2, x8 + 5x2 + 1} ∪ 
1 1 1 1
1 1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V3.  
 
Clearly V is 4 set generated by X and the basis 4-set of V is X 
and the n-dimension of the n-set X is (1, 1, 7, 1), (n = 4).  
 
We give yet another example. 

 
Example 5.9: Let  
 
V  =  V1 ∪ V2 ∪ … ∪ V5  

=  {(0 0 0 1 1 1), (0 0 1 1 1 1), (0 1 1 1 1 1), (0 0 0 0 0 0), 
  (1 1 1), (0 1 0), (1 1 0), (0 0 0)} ∪ {(1 1 1 1 1 1 1 1 1), 

  (0 0 0 0 0 0 0 0 0)} ∪ 2

a a
a Z {0,1}

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ = ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

  
a a a a
a a a a

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

,
1 1 1 1 1
1 1 0 1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

,
a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

,  



 

 

 

182

         
1 1 1 1
0 0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

,
0 0 0 0 0
0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 2

0 0 0
a Z {0,1}

0 0 0
⎫⎛ ⎞ ⎪∈ = ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
 

 ∪ {1 + x2, 0, x + x2 +1, x3 + 1}  
 

be a 5-set vector space over the set Z2 = {0, 1}.  
 
X  = X1 ∪ … ∪ X5  

=  {(0 0 0 1 1 1), (0 0 1 1 1 1), (0 1 1 1 1 1), (1 1 1),  

  (0 1 0), (1 1 0)} ∪ {(1 1 1 1 1 1 1 1 1)} ∪ 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

  

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , ,
1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 

  {1 + x2, x2 + x + 1, x3 + 1}  
⊆  V1 ∪ V2 ∪ …∪ V5  

 
be the 5 set which 5-generates V. Thus X is a 5-set- 5-basis of V 
of 5-dimension (6, 1, 1, 4, 3).  
 
Now we proceed on to define n-set linear algebra over the S. 
 
DEFINITION 5.5: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n set vector 
space over the set S. If each Vi is closed under addition then we 
call V to be a n-set linear algebra over S; 1 ≤ i ≤ n.  
 
Now we illustrate this by the following examples. 
 
Example 5.10: Let  
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

=  
a a a a

a Z {0}
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z+ ∪ {0} × Z+ ∪ 

  {0} × Z+ ∪ {0}} ∪ {all polynomials of degree less than 
  or equal to 5 with coefficients from Z+ ∪ {0}} ∪ 

   
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a 4-set vector space over the set S = Z+ ∪ {0}. Clearly V is a 
4-set linear algebra over S. The basis of V as a 4 set linear 
algebra over S is only finite whereas V as a 4-set vector space 
over S is infinite. 
 A 4-set which generates V is given by  
 

X  =  
1 1 1 1
1 1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(1 0 0), (0 1 0), (0 0 1)} ∪ {1, x, 

   x2, x3, x4, x5} ∪ 
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4.  
 
Clearly the 4-dimension of V is (1, 3, 6, 4). 
 
Note:  It is interesting to observe that V is a 4-set vector space 
over S = Z+ ∪ {0} is not finitely generated. The given X in the 
example 5.10 does not 4-generate V as a 4-set vector space over 
S = Z+ ∪ {0}. 
 
Example 5.11: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {(1 1 1 1), (1 0 0 0), (1 1 0 0), (0 0 1 1), (0 0 0 1),  
  (0 0 1 0), (0 1 0 0), (0 1 1 0), (1 0 0 1), (1 0 1 0),  
  (0 1 0 1), (1 1 1 0), (1 0 1 1) (0 1 1 1), (1 1 0 1),  

  (0 0 0 0)} ∪  2

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  1 2 3
i 2

4 5 5

a a a
a Z {0, 1}, 1 i 5

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ = ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z2 [x] |  

  x an indeterminate of degree less than 4} ∪  
  {(1 1 1 1 1), (0 0 0 0 0)}  
 
be a 5-set vector space over Z2 = {0, 1}. Clearly V is a 5-set 
linear algebra over Z2 = {0, 1}. Take  
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X  = {(1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1) ∪    

  
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 
1 0 0

,
0 0 0

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 

  
0 1 0
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
0 0 1

,
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0 0 0

,
1 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0 0 0

,
0 1 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  
0 0 0
0 1 0

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 ∪ {1, x, x2, x3} ∪ {(1 1 1 1 1)}  

= X1 ∪ X2 ∪ … ∪ X5  
⊆  V1 ∪ V2 ∪ … ∪ V5  
=  V. 

 
Now the 5-dimension of V as a 5-linear algebra is (4, 4, 6, 4, 1). 
Whereas if we consider V as a 5-set vector space over the set 
Z2, X is not the 5-generator of V then  
 
Y  = Y1 ∪ Y2 ∪ … ∪ Y5  

= {(1 1 1 1), (1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1),  
  (1 1 0 0), (1 0 1 0), (1 0 0 1), (0 1 1 0), (0 1 0 1),  
  (0 0 1 1), (1 1 1 0), (1 0 1 1) (0 1 1 1), (1 1 0 1)} ∪  
  {A set with 15 elements) ∪ {A set with 63 elements} ∪ 
  {A set with 15 elements} ∪ {(1 1 1 1 1)},  
 
5 generates V as a 5 set vector space over {0, 1}. Now the 5-
dimension of V is given by (15, 15, 63, 15, 1).  

Thus we see by making when ever possible or feasible a n-
set vector space into a n-set linear algebra, we can minimize the 
number of elements in the generating n-set.  
 
Now we proceed on to define the notion of n-set linear 
transformation of n-set linear algebras. 

 
DEFINITION 5.6: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set linear 
algebra over the set S. Let W = W1 ∪ W2 ∪ … ∪ Wn be a n-set 
linear algebra over the same set S. Suppose T is a map from V 
to W such that T = T1 ∪ T2 ∪ … ∪ Tn : V1 ∪ V2 ∪ … ∪ Vn → 
W1 ∪ W2 ∪ … ∪ Wn where Ti : Vi → Wi is a set linear algebra 
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transformation i.e., Ti (αx + y) = Ti (αx) + Ti(y); 1 ≤ i ≤ n. Then 
we call T to be a n-set linear transformation from V to W.  
 
We illustrate this by the following example. 
 
Example 5.12: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {(a a a) | a ∈ Z2 = {0, 1}} ∪ 2a a
a Z {0,1}

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

  {(0 0 0 0), (1 1 1 1), (1 1 0 0), (0 0 1 1)} ∪ {Z2 × Z2}  
 
be a 4-set linear algebra over Z2 = {0, 1} and  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4  

=  {Z2 × Z2 × Z2} ∪ 2

a b
a Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

2

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {(1 1 1 1 1), (0 0 0 0 0),  

(1 1 0 0 0), (0 0 1 1 1)} 
 
is also a 4-set linear algebra over the set Z2. Define T: V → W 
by T = T1 ∪ T2 ∪ T3 ∪ T4: V1 ∪ V2 ∪ V3 ∪ V4 → (W1 ∪ W2 ∪ 
W3 ∪ W4) with Ti : Vi → Wi ; 1 ≤ i ≤ 4. T1 : V1 → W1 is given 
by  
  
 T1 ((a a a)) = (a a a). 
 

T2: V2 → W2 is given by 
 

T2 
a a
a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

 T3 : V3 → W3 is defined by 
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T3 (0 0 0 0)  = 
0 0 0 0
0 0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; 

 

T3 (1 1 1 1) = 
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; a = 0 

 

T3 (1 1 0 0) = 
1 1 1 1
1 1 1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and 

T3 (0 0 1 1) =  
1 1 1 1
1 1 1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 . 

T4 : V4 → W4 is given by  
 
 T4 (x, y) = (1 1 1 1 1) x ≠ 0 
 T4 (0, 0) = (0 0 0 0 0) y ≠ 0 
 T4 (1, 0) = (0 0 1 1 1) 
and  

T4 (0, 1) = (1 1 0 0 0). 
 
It is easily verified that T = T1 ∪ T2 ∪ T3 ∪ T4 is a 4-set linear 
transformation from V to W.  
 
Now we proceed onto define n-set linear operator on a n-set 
linear algebra. 

 
DEFINITION 5.7: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set linear 
algebra over the set S. A map T = T1 ∪ T2 ∪ … ∪ Tn from V to 
V is said to be a n-set linear operator if Ti : Vi → Vi is such that 
Ti (αx + y) = αTi(x) + Ti(y) for x, y ∪ Vi; α ∈ S; 1 ≤ i ≤ n.  
 
We will illustrate this situation by the following example. 
 
Example 5.13: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  
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= {Z+ × Z+} ∪ 
a b

a, b, c, d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z+[x]} ∪ 

  
a b c g

a,b,c,d,e,f ,g,h Z
d e f h

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a 4-set linear algebra over the set Z+. A map T = T1 ∪ T2 ∪ 
T3 ∪ T4 : V → V; such that  
 

T1(x, y) = (y, x); 
 

T2 
a b a b
c d c c

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
T3 (p(x) = p0 + p1x + … + pnxn) = pnxn 

and  

T4 
a b c g a a a a
d e f h d d d d

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

 
It is easily verified that T is a 4-set linear operator on V.  
 
Now in case of n-set linear algebra we can define a notion 
called n-set quasi linear operator on V. 
 
DEFINITION 5.8: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set linear 
algebra over the set S. An map T = T1 ∪ T2 ∪ … ∪ Tn from V = 
V1 ∪ V2 ∪ … ∪ Vn to V = V1 ∪ V2 ∪ … ∪ Vn such that Ti : Vi → 
Vj; i ≠ j, 1 ≤ i, j ≤ n such that Ti (αu +v) = αTi(u) + Ti(v) for u, v 
∈ Vi and α ∈ S for each i, 1 ≤ i ≤ n is called the n-set quasi 
linear operator on V. 
 If on the other hand T = T1 ∪ T2 ∪ … ∪ Tn is such that Ti : 
Vi → Vj for some j ≠ i and Tk : Vk → Vk for some 1 ≤ k ≤ n then 
we call T to be a n-set semiquasi linear operator on V. 
 
We cannot get any interrelation between n-set linear operator, n-
set linear semiquasi operator and n-set linear quasi operator. 
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The reader can substantiate these definitions with examples. 
However problems based on these definitions are given in the 
last chapter of this book. Interested reader can refer to them. 
 Now we proceed on to define the notion of semigroup n-set 
vector space.  
 
DEFINITION 5.9: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set vector 
space over the set S. If S is an additive semigroup then we call V 
to be a semigroup n-set vector space over the semigroup S. 
 
We illustrate this situation by some examples. 
 
Example 5.14: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 4-
set vector space over the semigroup S = Z2 = {0, 1} under 
addition modulo 2, where  
 

V1 = 2

a b
a,b,c,d Z ,

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
V2 = {Z2 × Z2 × Z2}, 

 
V3 = {(1 1 0 1), (0 1 0 0), (0 0 0 0), (1 1 1), (0 0 0), (1 0 0)} 

and  

V4 = 2

a a a a a a
, a Z

a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a semigroup 4-set vector space over the semigroup S = Z2 = 
{0,1}. 
 
Example 5.15: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  

= {Z+ × Z+ × Z+} ∪ 
a b c

a, b, c, d, e, f Z
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

  {(a, b, c, d), (a, a, a, a, b, c) | a, b, c, d ∈ Z+} ∪ {(a, b), 
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  (a, a, a, a, a) | a, b ∈ Z+} ∪ {Z+[x]| x an indeterminate} 
  ∪ {3Z+ × 2Z+ × 5Z+× 7Z+}  
is a semigroup n-vector space over the semigroup Z+. 
 
Example 5.16: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

=  3

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z3 × Z3 × Z3} ∪ 

 3 3

a 0 0
a, b, c, d Z Z [x]

b c d
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 3

a b c d
0 c f g

a, b,c,d,e,f ,g,i, j,k Z
0 0 i j
0 0 0 k

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ∈⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

  

 
be a semigroup 5-set vector space over Z3.  
 
We now prove that all semigroup n-set vector spaces are n-set 
vector spaces but a n-set vector space in general is not a 
semigroup n-vector space. 
 
THEOREM 5.1: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup n set 
vector space over the semigroup S, then V = V1 ∪ V2 ∪ … ∪ Vn 
is the n-set vector space over S. Conversely if V = V1 ∪ V2 ∪ … 
∪ Vn is a n-set vector space over S; then V in general is not a 
semigroup n-set vector space over the set S.  
 
Proof: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup n-set vector 
space over the semigroup S. Now every semigroup is a set S. So 
V is a n-set vector space over the set S. To prove a n-set vector 
space over the set in general is not a semigroup n-set vector 
space. Suppose  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  
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=  {(0 0 0 0), (1 1 1 1), (2 2 2 2), …, (2n 2n 2n 2n)} ∪   

 
2n 2n

n Z
2n 2n

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
2n
2n n Z
2n

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ {2Z+ [x]}  

 
is a 4-set vector space over the set S = {1, 2}. Clearly S is not a 
semigroup under addition. Hence the claim. 
 
Now we proceed onto define some substructures on semigroup 
n-set vector spaces and illustrate them by examples. 
 
DEFINITION 5.10: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set vector space over the semigroup S. Suppose W = W1 ∪ W2 
∪ … ∪ Wn ⊆ V = V1 ∪ V2 ∪ … ∪ Vn and each Wi ⊆ Vi is a 
semigroup set vector space over the semigroup S then we call W 
to be semigroup n-set vector subspace of V over the semigroup 
S, (1 ≤ i ≤ n). 
 
Example 5.17: Let  
 
V =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

=  4

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪{Z4 × Z4} ∪ 4

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 ∪ {(0 0 0 0), (2 2 2 2), (0 0 0), (2 2 2), (0 0 0 0 0),  

 (2 2 2 2 2)} ∪ 4

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 5-set vector space over the semigroup H = {0, 
2} ⊆ Z4 = {0, 1, 2, 3} under addition modulo 4. Take  
W  =  W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 

= 
0 0 0 2 2 2

,
0 0 0 2 2 2

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(0 0), (2 2)} ∪  
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0 0 2 2
0 0 , 2 2
0 0 2 2

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(0 0 0 0), (2 2 2 2)} ∪  

 
0 0 2 2

,
0 0 2 2

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  
=  V,  

 
is a semigroup 5-set vector subspace over the semigroup  
S = {0, 2} under addition modulo 4. 
 
Example 5.18: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {Z5 × Z5 × Z5} ∪ 5

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪    

  5 5

a a a
a a a a Z {Z [x]}
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a semigroup 4-set vector space over the semigroup S = Z5, 
the semigroup under addition modulo 5.  
Let  
 
W  =  W1 ∪ W2 ∪ W3 ∪ W4  

= {(0 0 0), (1 1 1)} ∪
1 1 1 2 2 2 0 0 0

, ,
1 1 1 2 2 2 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

  ∪ 
0 0 0 3 3 3
0 0 0 , 3 3 3
0 0 0 3 3 3

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ∪⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

{a+ax+…+ axn | a ∈ Z5}.  

 
W is not a semigroup 4-set vector subspace over the semigroup 
Z5. 
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Example 5.19: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= 6 6 6 6

a a a
a Z {Z Z Z }

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ × × ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

{Z6[x]} ∪ 

6 6

a (0)
a

a a b
, a a Z a,b,c,d Z

a a c
a

(0) d

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞ ⎪ ⎪⎜ ⎟⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠⎩ ⎭ ⎪ ⎪⎝ ⎠⎩ ⎭
 

be a semigroup 5-set vector space over the semigroup S = {0, 3} 
under addition modulo 6.  
 
W  = W1 ∪ W2 ∪ … ∪ W5  

= 
1 1 1 0 0 0 2 2 2 3 3 3

, , ,
1 1 1 0 0 0 2 2 2 3 3 3

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(1 1 1), 

  (0 0 0), (2 2 2), (3 3 3)} ∪ {a + ax + ax2 + … + axn | a ∈ 

  Z6} ∪ 6 6

a (0)
a a a

a Z a Z
a a a

(0) a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

⊆ V1 ∪ V2 ∪ … ∪ V5  
=  V 

 
is a semigroup 5-set subvector space over the semigroup S = {0, 
3}. 
 
Example 5.20: Let  
V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  

= {Z2 × Z2} ∪ {Z2[x]} ∪ 2

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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2

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∪ 2

a (0)
a

a Z
a

(0) a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

∪ {(a a a a a a), (a a a) | a ∈ Z2}  
 
is a semigroup set 6-vector space over the semigroup S = Z2 
under addition modulo 2. Let  
 
W  =  W1 ∪ W2 ∪ … ∪ W6  

= {(0 0), (1 1)} ∪ {a + ax + … + axn | a ∈ Z2} ∪   

  2

1 1 0 0
a a a

1 1 , 0 0 a Z
a a a

1 1 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎪ ⎪⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎩ ⎭⎝ ⎠ ⎝ ⎠⎩ ⎭

  

∪ 

0 0 0 0 0
0 0 0 0 0

,0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎧⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟⎪⎜ ⎟⎨
⎜ ⎟⎪
⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎩

 

1 (0)

(0) 1

⎫⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟⎬⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎭

  

∪ {(a a a) |a ∈ Z2}  
 
is a semigroup 6-set subvector space over S = {1, 0} ⊆ Z2.  
 
Now we proceed on to define the new type of substructure in 
semigroup n-set vector space. 
 
DEFINITION 5.11: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set vector space over the semigroup S. Let W = W1 ∪ W2 ∪ … 
∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn, where W is a n-set vector space 
over the set P then W is a pseudo n-set vector space over the 
subset P ⊆ S. 
 
We illustrate them by some examples. 
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Example 5.21: Let  
 
V  = V1 ∪ V2 ∪ … ∪ V5  
 

=  12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 12

a a a a a a a a
, a Z

a a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

  

1

2

3 1 2 5 12

4

5

a 0
a

a a , a , ..., a Z
a

0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪{Z12[x]} 

  ∪ {(a a a a a), (a a a), (a a a a) | a ∈ Z12}  
 
be a semigroup 5-set vector space over the semigroup S = Z12, a 
semigroup under addition modulo 12. Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  
 

= 12

1 1 0 0 6 6 a a a
, , a Z

1 1 0 0 6 6 a a a

⎧ ⎫⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪⎪ ⎪ ⎪ ⎪∪ ∈⎨⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩⎪ ⎪⎩ ⎭

 ∪ 

12

a 0 0 0 0
0 a 0 0 0

a Z0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {a + ax + … + axn | a 

∈ Z12} ∪ {(a a a a a) | a ∈ Z12 }  
⊆  V1 ∪ V2 ∪ … ∪ V5;  

 
W is a pseudo 5-set vector subspace of V over the set S = {0, 1, 
6} ⊆ Z12. 
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Example 5.22: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {Z+ [x]} ∪ {Z+ × Z+ × Z+} ∪
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

 

 
a a a

a a a a
, a a a a Z

a a a a
a a a

+

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 ;  

 
be a semigroup 4-set vector space over the semigroup S = Z+, 
semigroup under addition.  
 
W  =  W1 ∪ W2 ∪ W3 ∪ W4  

= {a + ax + … + axn | a ∈ Z+} ∪ {(a a a) | a ∈ Z+} ∪  
  

 
2n 2n

n Z
2n 2n

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 
a a a
a a a a Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4,  
 
is a pseudo 4-set vector subspace of V over the subset {0, 2, 4, 
3, 7} ⊆ Z+. 
 
Now we proceed on to define the notion of semigroup n-set 
linear algebra over the semigroup. 
 
DEFINITION 5.12: Let V = V1 ∪ … ∪ Vn be a semigroup n-set 
vector space over the semigroup S. If each Vi is a semigroup 
under addition, 1 ≤ i ≤ n; then we call V to be the semigroup n 
set linear algebra over the semigroup S.  
 
We now illustrate this definition by some examples. 
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Example 5.23: Let  
 
V  =  V1 ∪ V2 ∪ … ∪ V5   

= 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

{(a a a a) | a ∈ Z+} ∪ {Z2[x]} ∪  

a b c d
a,b,c,d,e,f ,g,h Z

e f g h
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

a b c
d e f a, b, c, d, e, f , g, h, i Z
g h i

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 

 
be the semigroup 5-set linear algebra over the semigroup Z+. 
 
Example 5.24: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

=  2

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ {Z2 [x]} ∪ {Z2 × Z2 × Z2 × Z2} 

  ∪ 2

a a a a a
a Z

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 4-set linear algebra over the semigroup Z2.  
 
Example 5.25: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {Z3[x]} ∪ {Z3 × Z3 × Z3} ∪ 3

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
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{(a a a a a a) | a ∈ Z3} ∪ 3

a a a a
a a a a a Z
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

be a semigroup 5-set linear algebra over Z3. 
 
Example 5.26:  Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

= { }7 7 7 7

a a a
a a a a Z Z Z Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ × × ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

{Z7[x]} ∪ 

  7

a a a a
a, b Z

b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 4-set linear algebra over the semigroup Z7. 
 
DEFINITION 5.13: Let V = V1 ∪ V2 ∪ V3 ∪ … ∪ Vn be a 
semigroup n-set linear algebra over the semigroup S. Let W = 
W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn = V be a n-subset of 
V such that W is a semigroup n-set linear algebra over the 
semigroup S, then we call W to be the semigroup n-set linear 
subalgebra of V over S.  
 
We illustrate this by the following example. 
 
Example 5.27: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {Z6 × Z6 × Z6} ∪ {Z6[x]} ∪ 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

6

a b
c d a,b,c,d,e,f Z
e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  
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6

a b c
d e f a,b,c,d,e,f ,g,h,i Z
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a semigroup 5-set linear algebra over the semigroup Z6, Z6 a 
semigroup under addition modulo 6. Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  

=  {Z6 × Z6 × {0}} ∪ {a + ax + … + axn | a ∈ Z} ∪  

a a a
a {0,2,4}

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

6

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ 

6

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
is a semigroup 5-set linear subalgebra over the semigroup Z6. 
 
Example 5.28: Let  
 
V  = V1 ∪ V2 ∪ … ∪ V6  

=  {Z+ × Z+ × Z+} ∪ 
a a a

a Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z+[x]} ∪ 

  
a a a a

a Z
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

  
a a a
a b b a, b,c Z
c c c

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a semigroup 6 set linear algebra over the semigroup Z+ under 
addition. 
 Take  
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W = {3Z+ × 3Z+ × 3Z+} ∪ 
a a a

a 2Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {a + ax 

 + … + ax6| a ∈ 5Z+} ∪ 
a a a a

a 3Z
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
a a a

a a
a 2Z a a a a 3Z

a a
a a a

+ +

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞ ⎪ ⎪⎪ ⎪ ⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎜ ⎟⎩ ⎭ ⎝ ⎠⎩ ⎭

  

= W1 ∪ … ∪ W6  
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  
=  V.  

 
W is a semigroup 6-set linear subalgebra of V over the 
semigroup Z+. We call W to be a semigroup 6 – set linear 
subalgebra over the semigroup Z+. 
 
Example 5.29: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4   

=   {Z8 × Z8} ∪ {Z8 [x] | Z8 [x] contains all polynomials of 
  degree less than or equal to 7} ∪  

8

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 8

a a
a a a

, a a a Z
a a a

a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

  

 
be a semigroup 4-set vector space over Z8.  This can never be 
made into a semigroup 4-set linear algebra over Z8. 
 Thus all semigroup n-set vector spaces are not in general 
semigroup n-set linear algebras.  
 
Now we define yet another new subalgebraic structure of 
semigroup n-set vector spaces and semigroup n-set linear 
algebras. 
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DEFINITION 5.14: Let V = V1 ∪ …∪ Vn be a semigroup n – set 
vector space over the semigroup S. If W = W1 ∪ W2 ∪ … ∪ Wn 
⊆ V1 ∪ V2 ∪ ... ∪ Vn = V is a proper subset of V and W is a 
semigroup n-set vector space over a proper subsemigroup P of 
S then we call W to be the subsemigroup n set vector subspace 
of V over the subsemigroup of the semigroup S. 
  
 Suppose V1 ∪ V2 ∪ ... ∪ Vn is a semigroup n – linear 
algebra over the semigroup S and W = W1 ∪ W2 ∪ ...  ∪ Wn be 
a proper subset of V such that Wi ⊆ Vi and Wi is a 
subsemigroup of Vi for each i, 1 < i < n and if P ⊆ S is a proper 
subsemigroup of the semigroup S and if W is a semigroup n-
linear algebra over the semigroup P ⊂ S then we call W to be 
the subsemigroup n-linear subalgebra of V over the 
subsemigroup P of the semigroup S.  
 
Now we illustrate this situation by a few examples. 
 
Example 5.30: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {(1000), (0000), (0011), (1100)} ∪ {Z2 × Z2 × Z2} ∪ 
  {(111), (001), (000), (11100), (00011), (100),   

  (00000)} ∪ 2

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 4 set vector space over the semigroup Z2 = 
{0,1}. Clearly V has no subsemigroup 4-set vector space as Z2 
has no proper subsemigroup.  
 
Example 5.31: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

= 4

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, a, a, a) / a ∈ Z4} ∪ {Z4 

  × Z4 × Z4}∪ {(Z4 [x]}  
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be a semigroup 4-set vector space over the semigroup Z4. Take  
 

W  = 4

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪{(0000), (2222)}∪ {(a a a)| a ∈ Z4} 

  ∪ {a1 + a2x2 + a3x4 + a4x6 + a5x8 | a1, a2, a3, a4, a5 ∈ Z4}  
 
is a subsemigroup 4-set vector subspace of V over the 
subsemigroup S = {0, 2} addition modulo 4.  
 
On similar lines we can define the notion of subsemigroup n set 
linear subalgebra of V as follows. 
 
DEFINITION 5.15: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set linear algebra over the semigroup S. If W = W1 ∪ W2 ∪ … 
∪ Wn be a proper subset of V and if P is any proper 
subsemigroup of the semigroup S. We call W to be the 
subsemigroup n-set linear subalgebra of V over the 
subsemigroup P of the semigroup of S; if W is a semigroup n-set 
linear algebra over P. 
 
Example 5.32: Let  
V  = V1 ∪ V2 ∪ … ∪ V5  

=  {Z16 × Z16 × Z16} ∪ {Z16[x]; all polynomials of degree 

  less than or equal to 5} ∪ 16

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  16

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 16

a a a a
0 a a a

a Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a semigroup 5-set linear algebra over the semigroup S = Z16. 
Take  
 
W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  

= {S × S × S | S = {0,4,8}} ∪ {a + ax + ax2 + ax3 + ax4 +  
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 ax5 | a∈Z16} ∪ 
a a a

a {0,2,4,6,8,10,12,14}
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

      
a a

a {0,8}
a a

⎧ ⎫⎛ ⎞⎪ ⎪∪ ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

a a a a
0 a a a

a {0,4,8,12}
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
is a subsemigroup 4-set linear subalgebra over the 
subsemigroup S = {0, 4, 8, 12} ⊆ Z16. 
 Not all semigroup n-set linear algebras have subsemigroup 
n-set linear subalgebras. We give classes of semigroup n-set 
vector spaces and semigroup n-set linear algebras which do not 
contain this type of substructures. 
 
THEOREM 5.2: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup n-set 
vector space over the semigroup Zp (p a prime) under addition 
modulo p. V does not contain any proper subsemigroup n-set 
semigroup vector subspaces. 
 
Proof: Given V = V1 ∪  … ∪ Vn is a semigroup n-set vector 
space over the semigroup Zp, p a prime. Clearly Zp has no 
proper subsemigroup. So even if W = W1 ∪  … ∪ Wn ⊆ V1 
∪ V2 ∪ … ∪ Vn = V a proper subset of V then also W is not a 
subsemigroup n-set vector subspace of V as Zp has no proper 
subsemigroups under addition modulo p. Hence the claim. 
 
 Thus in view of this theorem we give the following 
interesting definition. 
 
DEFINITION 5.16: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set vector 
space over a semigroup S. If S has no proper subsemigroup n-
set vector subspace then we call V to be a pseudo simple 
semigroup n-set vector space.  

 
Now we will also prove we have a class of semigroup n-set 
vector spaces which are pseudo simple. 
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THEOREM 5.3: Let V = V1 ∪  … ∪ Vn be a semigroup n-set 
linear algebra over the semigroup Zp,  p a prime. Then V has no 
proper subsemigroup n-set linear subalgebra. 
 
Proof: Given V = V1 ∪  … ∪ Vn is a semigroup n-set linear 
algebra over the semigroup Zp. Clearly Zp has no proper 
subsemigroup as p is a prime so even if W is a proper subset of 
V with each Wi ⊂ Vi a subsemigroup of Vi for each i; 1 ≤ i ≤ n 
still V has no proper subsemigroup n-set linear subalgebra as Zp 
has no proper subsemigroups. Thus V has no subsemigroup n-
set linear subalgebra.  
 
Hence we can define such V’s described in this theorem as 
pseudo simple semigroup n-set linear algebras. 
 
THEOREM 5.4: Let V = V1 ∪  … ∪ Vn be a semigroup n-set 
vector space over the semigroup S= Z+ or Zn, n a composite 
number for appropriate V’s we can have in V subsemigroup n-
set vector subspaces. 
 
Proof: When  V = V1 ∪  … ∪ Vn has a proper subset W = W1 
∪ … ∪ Wn such that for some proper subsemigroups S of Z+ or 
Zn (n-composite number) W is a semigroup n-set vector space 
of V over S then W is the subsemigroup n-set vector subspace 
of V. Hence the claim.  
 
Now we give some examples of them. 
 
Example 5.33: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

=  {Z10 × Z10} ∪ {Z10 [x]} ∪ 10

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  10

a a a a a a a a
, a Z

a a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
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be a semigroup 4-set vector space over the semigroup S = Z10. 
Take  
 
W  = {(a, a) | a ∈ Z10} ∪ {All polynomials of even degree in 

  x with coefficients from Z10} ∪ 10

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

  10

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

= W1 ∪ W2 ∪  W3 ∪ W4 ⊆ V ;  
W is a subsemigroup 4 vector subspace over the subsemigroup 
S = {0, 5} ⊆ Z10. In fact W is also a subsemigroup 4-set vector 
subspace over the subsemigroup P = {0, 2, 4, 6, 8} ⊆ Z10. Thus 
we see W is a subsemigroup 4 set vector subspace over all the 
subsemigroups of Z10.  
 
Now we proceed on to define yet another type of substructure of 
these semigroup n-set vector spaces and semigroup n-set linear 
algebras. 
 
DEFINITION 5.17: Let V = V1 ∪ V2 ∪  … ∪ Vn be a semigroup 
n-set vector space over the semigroup S. If P1, …,  Pn is the 
complete set of subsemigroups of S (n can also be infinite). 
Suppose W = W1 ∪ W2 ∪ ... ∪ Wn ⊆ V1 ∪ V2 ∪  ... ∪ Vn is a 
proper subset of V and W is a subsemigroup n – set vector 
subspace of V for every subsemigroup Pi of S for i = 1, 2, …, n 
then we call W to be the strong subsemigroup n set vector 
subspace of V. 
 
(All subsemigroup n-set vector subspaces of V need not be a 
strong subsemigroup n-set vector subspaces of V). Similarly if 
V = V1 ∪ V2 ∪  … ∪ Vn is a semigroup n set linear algebra 
over the semigroup S and if P1, P2, … Pn is the set of all 
subsemigroups of S and if W = W1 ∪ W2 ∪  … ∪ Wn ⊆ V1 
∪ V2 ∪  … ∪ Vn is such that W is the subsemigroup n-set linear 
subalgebra of V over every subsemigroup Pi, for i = 1, 2, …, n 
then we call W to be the strong subsemigroup n-set linear 
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subalgebra of V. As in case of semigroup n set vector spaces we 
see in case of semigroup n-set linear algebras all subsemigroup 
n-set linear algebras need not always be strong subsemigroup n-
set linear subalgebras of V. 
 
We now illustrate this situation by a simple example. 
 
Example 5.34: Let  
 
V  = V1 ∪ V2 ∪  … ∪ V5   

= {Z6 × Z6 × Z6} ∪ 6

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z6[x]; all  

  polynomials of degree less than or equal to 5 with 

   coefficients from Z6} ∪ 6

a b c
a,b,c,d,e,f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  ∪ 6

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a semigroup 5-set linear algebra over the semigroup Z. The 
subsemigroups of Z6 are P1 = {0, 3} and P2 = {0, 2, 4}.  
Take  

W  = {(a, a, a) / a ∈ Z6} ∪ 
a a

a {0,2,4}
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {All 

  polynomial of the form a + ax + ax2 + ax3 + ax4 + ax5 | a 

  ∈ Z6}∪ 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
a a a
a a a a {0, 3}
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆ V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  
 
is a strong subsemigroup 5-set linear subalgebra as W is a 
subsemigroup 5 set linear subalgebra over both the 
subsemigroups P1 and P2.  
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Now we proceed on to define the notion of group n-set vector 
spaces and group n-set linear algebras. 
 
DEFINITION 5.18: Let V = V1 ∪ V2 ∪  … ∪ Vn, V is said to be a 
group n-set vector space over the group G where Vi are sets 
such that g vi ∈ Vi for all vi ∈ Vi and g ∈ G, 1 ≤ i ≤ n. Here G is 
just an additive abelian group.  
 
We now illustrate this definition by some examples. 
 
Example 5.35: Let  
 
V = V1 ∪ V2 ∪  V3 ∪ V4  

= 7

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z7[x]} ∪ {Z7 × Z7 × Z7} ∪  

   7

a a a a a a a
a a a

, a a a , a a a a a Z
a a a

a a a a a a a

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

,  

 
V is a group 4-set vector space over the group Z7 under addition 
modulo 7. 
 
Example 5.36: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

=  {Z × Z × Z} ∪ {Z [x]} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

  ∪ 
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪

a a a a
0 a a a

a Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a group n-set vector space (n = 5) over the group Z under 
addition. 
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Example 5.37: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {(0000), (1100), (0011)} ∪ {(000), (010), (00), (10)} ∪ 

  2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {Z2 [x]}  

 
be a group n set vector space over the group Z2 = {0, 1}, a 
group under addition modulo 2.  
 
Now we proceed on to define the notion of group n-set linear 
algebra over a group and illustrate them by some examples. 
 
DEFINITION 5.18: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n-set 
vector space over the additive group G. If each Vi is an additive 
group then we call V to be a group n-set linear algebra over G 
for 1 ≤  i ≤  n. 
 
Example 5.38: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

=  {Z × Z × Z} ∪ {Z [x]} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

a a a
a 2Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {(a a a a a) / a ∈ Z}  

 
be a group 5-set linear algebra over the additive group Z. 
 
Example 5.39: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {(000), (111), (100), (001), (010), (110), (011), (101)} 
  ∪ {Z2 [x]} ∪ {(1111), (0000), (1100), (0011)}   

  ∪ 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a group 4 set linear algebra over the additive group Z2 
modulo 2. 
 
Example 5.40: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4  

= 10

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 10

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

Z10[x] ∪ {Z10 × Z10 × Z10 × Z10};  
 
V is a group 4 set linear algebra over the group Z10, group under 
addition modulo 10. 

 
Now we define a few substructures of these two concepts. 
 
DEFINITION 5.19: Let V = V1 ∪ ... ∪ Vn be a group n set vector 
space over the group G. If W = W1 ∪ W2 ∪  … ∪ Wn is a proper 
subset of V and W is a group n set vector space over the group 
G then we call W to be a group n-set vector subspace of V over 
G.  

 
We illustrate this by some examples. 
 
Example 5.41: Let  
 
V =  V1 ∪ V2 ∪  V3 ∪ V4  

=  {Z6 × Z6} ∪ 6

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

∪ 6

a a a a a a a
, a Z

a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ Z6[x]  

 
all polynomials of degree less than or equal to 4}, V is a group 
4-set vector space over the group Z6, group under addition 
modulo 6. Take  
W  = W1 ∪ W2 ∪  W3 ∪ W4  
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= {(a, a) / a ∈ Z6} ∪  6

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪     

  6

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {all polynomials of the form 

  a + ax + ax2 + ax3 + ax4 / a ∈ Z6}  
⊆  V1 ∪ V2 ∪  V3 ∪ V4  
=  V,  

 
W is a group 4-set vector subspace of V over the group Z6. 
 
Example 5.42: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z} ∪ {Z [x]} ∪  
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪       

  

a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j Z
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a group 5-set vector space over the additive group Z. Take  
 
W = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

= {(a, a) | a ∈ Z} ∪ {a + ax + … + axn | a ∈ Z}  

∪ 
a a a

a 2Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪  
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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∪  

a a a a
0 a a a

a 2Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  
=  V.  

 
W is clearly a group 5 set vector subspace of V over the group 
G. 
 
We now prove the following interesting result. 
 
THEOREM 5.6: Every group n-set linear algebra V = V1 ∪ ... ∪ 
Vn over the group G is a group n-set vector space over the 
group G but a group n set vector space over the group G in 
general need not be a group n-set linear algebra over G. 

 
Proof: Let V = V1 ∪ V2 ∪ … ∪ Vn be a group n set linear 
algebra over the additive group G. Clearly V is a group n-set 
vector space over the additive group G for every n-group is a n-
set. 
 To prove a group n set vector space V over a group G is not 
in general a group n-set linear algebra over the group G. We 
give a counter example. Consider the group 5 set vector space  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {(111), (000), (100), (00), (11), (01), (10)} ∪  

 2

a b a a a
, a,b,c,d Z {0,1}

c d a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

2

a a
a a a

a a
0 a a , a Z {0,1}

a a
0 0 a

a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟

⎪ ⎪⎜ ⎟ ⎜ ⎟ ∈ =⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {Z2 [x]} ∪  

{Z2 × Z2 × Z2 × Z2}  
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over the additive group Z2 = {0, 1}. Clearly V1, V2 and V3 are 
not groups under addition so V is not a group 5-set linear 
algebra over the group Z2 = {0, 1} under addition modulo 2. 
Hence the claim. 
 
Now we define group n set linear subalgebra over the group G. 
 
DEFINITION 5.21: Let V = V1 ∪ V2 ∪  … ∪ Vn be the group n-
set linear algebra over the additive group G, where each Vi is a 
group under addition, i = 1, 2, …, n. Take W = W1 ∪ W2 ∪  … 
∪ Wn, a subset of V such that W the group n set linear algebra 
over the same group G i.e., each Wi ⊆ Vi is a proper subgroup 
of Vi, i = 1, 2, …, n. We call W = W1 ∪ W2 ∪  … ∪ Wn to be a 
group n-set linear subalgebra of V over the additive group G.  

 
Now in case of group n set linear algebra V; we can define the 
notion of pseudo group n-set vector subspaces of V which is 
given below. 
 
DEFINITION 5.22: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n set 
linear algebra over the group G. If W = W1 ∪ W2 ∪  … ∪ Wn be 
a proper n-subset, where at least one of the Wi’s is not a 
subgroup of the group Vi and if W is a group n-set vector space 
over G then we call W = W1 ∪ W2 ∪  … ∪ Wn to be the pseudo 
group n-set vector subspace of V;(1 ≤  i ≤ n). 

 
Now we illustrate these definitions by the following examples. 
 
Example 5.43: Let  
 
V = V1 ∪ V2 ∪  V3 ∪ V4  

=  12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z12 [x]} ∪ {Z12 × Z12 × Z12} ∪  

 
1 2 3

4 5 6 i 12

7 8 9

a a a
a a a a Z ; 1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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be a group 4 set linear algebra over the group Z12, addition 
modulo 12.  
Let  

W  = 
6 6 0 0

,
6 6 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(ax2 + ax + a, ax7 + ax3 + a, 

  a + ax7 + ax5 + ax2 | a ∈ Z12} ∪ {(a a 0), (0 a a),  
  (a 0 a) | a ∈ Z12} ∪   

12

a a a 0 0 0 0 0 0
0 0 0 , a a a , 0 0 0 a Z
0 0 0 0 0 0 a a a

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

  

 
= W1 ∪ W2 ∪  W3 ∪ W4  
⊆  V1 ∪ V2 ∪  V3 ∪ V4 = V.  

 
Clearly W2, W3 and W4 are not even closed under addition. So 
W is verified easily to be a pseudo group 4 set vector subspace 
of V over Z12. 
 
We further say all proper subsets of V need to be pseudo group 
4 set vector subspaces of V over the group Z12. For take  
 

W  = 
1 1 5 5

,
1 1 5 5

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {3x + 2x2 + 1, 5x3 + 1} ∪ {(321), 

  (123)} ∪ 
3 7 2
1 2 0
5 1 4

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

=  W1 ∪ W2 ∪  W3 ∪ W4  
⊆   V1 ∪ V2 ∪  V3 ∪ V4.  

 
Clearly for W1 we take  

1

1 1
W

1 1
⎛ ⎞

∈⎜ ⎟
⎝ ⎠

 

and  
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6 ∈ Z12 , 6 
1 1 6 6
1 1 6 6

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∉ W1. 

Likewise 3x + 2x2 + 1 ∈ W2 and 7 ∈ Z12; 7 (3x + 2x2 + 1) = 9x 
+ 2x2 + 7 ∉ W2, (3, 2, 1) is in W3 and 5 ∈ Z12, 5(3, 2, 1) = (3, 
10, 5) ∉ W3.  
Finally  

4

3 7 2
1 2 0 W
5 1 4

⎛ ⎞
⎜ ⎟∈⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and 0 ∈ Z12.  

0. 4

3 7 2 0 0 0
1 2 0 0 0 0 W
5 1 4 0 0 0

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ∉⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

So W = W1 ∪ W2 ∪  W3 ∪ W4 ⊆ V is just a 4-subset of V, but 
is not a pseudo group 4 set vector subspace of V over the group 
Z12. Thus the 4-subsets of V are not pseudo group 4 set vector 
subspace of V. 

 
Now we proceed on to define the notion of subgroup n-set linear 
subalgebra of a group n set linear subalgebra of a group n-set 
linear algebra over the group G.  
 
DEFINITION 5.23: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n set 
linear algebra over the group G. Let W = W1 ∪ ... ∪ Wn be a 
proper subset of G ie. Wi ⊆ Vi and Wi is a subgroup of Vi, 1 < i 
< n. Let H be a proper subgroup of G. If W is a group n-set 
linear algebra over the group H, then we call W to be the 
subgroup n-set linear subalgebra of V over the subgroup H of 
the group G.  
 
Example 5.44: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {Z6[x]} ∪ {Z6 × Z6 × Z6} ∪ 6

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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∪ 6

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group 4-set linear algebra over the group Z6 under 
addition modulo 6. Let  
 
W  =  W1 ∪ W2 ∪  W3 ∪ W4  

= {a + ax + ax2 + … axn / a∈ Z6} ∪ {(a, a, a) / a ∈ Z6} 

 ∪ 6

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 6

a a a a
a {0,3} Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊂⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the group 4 set linear subalgebra of V over the group Z6. 
 
Example 5.45: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4   

 
= {Z × Z × Z} ∪ {Z [x]} ∪   

 
a a a
0 a a a Z
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z; 1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a group 4 set linear algebra over the group G = Z. Take  
 
W  = W1 ∪ W2 ∪  W3 ∪ W4   

=  {(a a a) | a ∈ Z} ∪ {all polynomials of even degree with  
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coefficients from Z} ∪ 
2n 2n 2n
0 2n 2n n Z
0 0 2n

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

∪ 

a 0 0 0
a a 0 0

a Z
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆   V1 ∪ V2 ∪  V3 ∪ V4 = V.  

 
It is easily verified W is a group 4 set linear subalgebra of V 
over the group G = Z.  
 
Example 5.46: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {Z14 × Z14 × Z14 × Z14} ∪ {Z14 [x]} ∪ 14

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

∪ 14

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group 4 set linear algebra over the group Z14. Take  
 
W  = W1 ∪ W2 ∪  W3 ∪ W4  

= {(a, a, a, a) | a ∪ Z14} ∪ {a + ax + … + axn | a ∈ Z14} 

  ∪ 
a a
a a a {0,7}
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  14

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4 = V.  
 
W is clearly a subgroup 4-set linear subalgebra over the 
subgroup {0,7} ⊆ Z14.  
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Example 5.47: Let  
 
V = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z × Z × Z} ∪ 
a a a a

a Z
a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 

a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j Z
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {Z[x]}  ∪ 

 
1 2 3

4 5 6 i

7 8 9

a a a
a a a a Z; 1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a group 5-set linear algebra over the additive group Z. Take  
 
W  = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

= {(2Z × 3Z × 4Z × 5Z)} ∪ 
a a a a

a 2Z
a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

a a a a
0 a a a

a Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪ {(a + ax + ax2 +… + axn |  

a ∈ Z} ∪ 
a a a
a a a a 2Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  
= V.  

 
W is a subgroup 5-set linear subalgebra of V over the subgroup 
2Z ⊆ Z. 
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Let us define the n-generating subset of a group n-set vector 
space and group n-set linear algebra over the group G. 
 
DEFINITION 5.23: Let V = V1 ∪ V2 ∪ … ∪ Vn be a group n-set 
vector space over the group G. Suppose W = W1 ∪ W2 ∪ … ∪ 
Wn is a proper subset of V and if W is a semigroup n-set vector 
space over some proper subset H of G where H is a semigroup, 
then we call W to be the pseudo semigroup n-set vector 
subspace of V over the semigroup H of G.  
 
We illustrate it by the following examples. 

 
Example 5.48: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z × Z} ∪ {Z [x]} ∪
a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a group 5-set vector space over the additive group Z.   
 
W  = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

=  {Z+ × Z+ × Z+} ∪ {Z+ [x]} ∪ 
a a a
a a a a Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  
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a a
a Z

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z ;1 i 10
a a a 0
a a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  
=  V 

 
is a pseudo semigroup 5-set vector subspace of V over the 
semigroup Z+ of Z.  
 
Example 5.49: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4  

=  
a a a
a a a a 2Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  
a a a a

a 3Z
a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 {Z × Z × Z × 3Z} ∪ 
a a
a a a 5Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a group n-set vector space over the group Z. Take  
 
W  =  W1 ∪ W2 ∪  W3 ∪ W4  

=  
a a a
a a a a 2Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
a a a a

a 3Z
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

  {Z+ × Z+ × Z+ × 3Z+} ∪ 
a a
a a a 5Z
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4    
=  V 
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is easily verified to be a pseudo semigroup n-set vector 
subspace over the semigroup Z+ ⊆ Z. 
 
Now we proceed to define n-generating set and n-basis. 
 
DEFINITION 5.24: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n-set 
vector space over the group G. If we have a n-set X = X1 ∪ X2 
∪ … ∪ Xn ⊆ V1 ∪ V2 ∪  … ∪ Vn = V such that each Xi 
generates Vi over the group G, for i = 1, 2, …, n, then we call X 
to be the n-set generator of V. If the cardinality of each Xi is 
finite we say V is generated finitely and the n-dimension of V is 
(|X1|, |X2| , …, |Xn|). If even one of the Xi of X happens to have 
infinite cardinality then we say n-dimension of V is infinite. We 
call the n-generating n-subset of V to be the n-basis of V over 
the group G.  
 
We illustrate this by the following examples. 
 
Example 5.50: Let V = V1 ∪ V2 ∪  V3 ∪ V4 be a group 4-set 
vector space over the group Z2 = {0,1} where V1 = {(1100), 
(0011), (1111), (0000), (111), (101), (000)}, V2 = {Z2 [x] / 
every polynomial is of degree less than or equal to 2},  
 

V3 = 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V4 = 2

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

Take  
 
X  = {(1111), (1100), (0011), (111), (101)} ∪ {1, x, x2 1 + x, 

 1+x2 , x+x2 , 1+x+x2} ∪  

  
0 1 1 0 0 0 0 0 1 1

, , , ,
0 0 0 0 1 0 0 1 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

,  

 


