
University of New Mexico University of New Mexico

UNM Digital Repository UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

Fall 11-14-2023

Effect of Fiber Proximity on the Pullout Response: A Finite Effect of Fiber Proximity on the Pullout Response: A Finite

Element Study Element Study

Tyler Mitchell
University of New Mexico - Main Campus

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Mitchell, Tyler. "Effect of Fiber Proximity on the Pullout Response: A Finite Element Study." (2023).
https://digitalrepository.unm.edu/me_etds/242

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has
been accepted for inclusion in Mechanical Engineering ETDs by an authorized administrator of UNM Digital
Repository. For more information, please contact disc@unm.edu.

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/me_etds
https://digitalrepository.unm.edu/eng_etds
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalrepository.unm.edu%2Fme_etds%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/242?utm_source=digitalrepository.unm.edu%2Fme_etds%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Tyler Grant Mitchell

Mechanical Engineering

Dr. Yu-Lin Shen

Dr. Heng Zuo

Mr. Niccoli Scalice

i

Effect of Fiber Proximity on the Pullout
Response: A Finite Element Study

by

Tyler Grant Mitchell

B.S., University of New Mexico, 2022

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2023

Dedication

To my parents and sister for their unwavering belief in me.

iii

Acknowledgments

I would like to thank my advisor, Dr. Yu-Lin Shen, for his guidance and expertise.
I would also like to thank my other committee members Dr. Heng Zuo and Mr.
Niccoli Scalice for their time.

iv

Effect of Fiber Proximity on the Pullout
Response: A Finite Element Study

by

Tyler Grant Mitchell

B.S., University of New Mexico, 2022

M.S., Mechanical Engineering, University of New Mexico, 2023

Abstract

With the advancement of computational capabilities, there is growing interest in

developing intricate models for composite materials. This has been historically chal-

lenging due to the multifaceted interactions and failure mechanisms of these materi-

als. Multiscale modeling holds promise for predicting the intricate dynamics of such

materials. A foundational understanding of their microscale behaviors is critical, par-

ticularly the interfacial interactions between the fiber and matrix. This study delves

into the influence of fiber volume fraction (FVF) on fiber pull-out tests, focusing

on the impact of neighboring fibers across different geometries and the underlying

cohesive properties.

v

Contents

List of Figures ix

List of Tables xiii

Glossary xiv

1 Introduction 1

2 Review of Related Literature 4

2.1 Observable State Variable Theories 5

2.1.1 Long Fiber Models . 5

2.1.2 Short Fiber Models . 6

2.1.3 Non-ISV Failure Theories . 8

2.2 Internal State Variable Theories . 9

3 Methodology 12

3.1 Materials . 12

vi

Contents

3.1.1 Matrix . 13

3.1.2 Fiber . 14

3.1.3 Cohesive elements . 15

3.1.4 Viscosity . 18

3.2 Model Setup . 19

3.2.1 Boundary Conditions . 19

3.2.2 Mesh Generation . 21

3.2.3 Solver Configuration . 21

4 Results 23

4.1 Rule of Mixtures (ROM) . 23

4.1.1 Without cohesion . 25

4.1.2 With cohesion . 26

4.2 Fiber Analysis . 26

4.2.1 Single fiber . 27

4.2.2 Single vs Double . 31

4.2.3 Single vs Double vs Double without Cohesion 35

4.3 Cohesive Properties . 35

4.3.1 Maximum Displacement . 36

4.3.2 Maximum Traction . 37

4.3.3 Thickness . 41

vii

Contents

4.4 Embedded Fiber . 41

5 Conclusions 46

5.1 Limitations of the Study . 47

5.2 Implications for Future Research . 47

Appendices 48

A S13 Contour Plots 49

B Parametric Python Code 54

B.1 Parametric code for varying FVF . 54

B.2 Module Code . 67

References 98

viii

List of Figures

2.1 Material directions as resulting from orthotropic assumption[13] . . 5

2.2 Tiled concentric cylinders as seen in the shear lag model 7

2.3 Single fiber pull-out testing methods (a) SFPO Type 1, (b) SFPO

Type 2, single fiber fragmentation tests (SFFT)[20] 10

2.4 Typical load-displacement curve for pullout test[4] 11

3.1 Materials arrangement in the model 13

3.2 Matrix part . 14

3.3 Fiber part . 15

3.4 Cohesive part . 16

3.5 Traction separation law graphical representation [14] 17

3.6 Different model instances . 19

3.7 Model boundary conditions . 20

4.1 Displacement of rule of mixtures models 25

4.2 Setup for single fiber case . 28

ix

List of Figures

4.3 Reaction force of single fiber case with different FVF 28

4.4 10% FVF at peak stress . 29

4.5 60% FVF at peak stress . 29

4.6 Single fiber contour plots for s33 - Peak Stress 29

4.7 10% FVF at failure . 30

4.8 60% FVF at failure . 30

4.9 Single fiber contour plots for s33 - Failure 30

4.10 Reaction force of double fiber case with different FVF 31

4.11 Double fiber vs single fiber for different FVF 32

4.12 Double fiber contour plots for s33 at peak stress 33

4.13 Double fiber contour plots for s33 at failure 34

4.14 Setup for double fiber with single cohesive zone 35

4.15 Reaction force of single fiber, double fiber, and double fiber without

the second cohesive zone case . 36

4.16 Change in load response for different FVF and different max dis-

placements. 38

4.17 Change in load response for 10% and 60% FVF for different max

traction values. 39

4.18 Change in load response for 10% and 60% FVF. 40

4.19 Reaction force of double fiber with varying cohesive zone thickness . 41

x

List of Figures

4.20 Model setup for embedded fiber case. Matrix material is shown in

red, cohesive in cream, and fiber in green. 42

4.21 Comparison of single fiber case and embedded fiber case 43

4.22 10% FVF at peak stress . 44

4.23 60% FVF at peak stress . 44

4.24 Embedded fiber contour plots for s33 at peak stress 44

4.25 10% FVF at failure . 45

4.26 60% FVF at failure . 45

4.27 Embedded fiber contour plots for s33 at failure 45

A.1 10% FVF at peak stress . 50

A.2 60% FVF at peak stress . 50

A.3 Single fiber contour plots for s13 at peak stress 50

A.4 10% FVF at failure . 51

A.5 60% FVF at failure . 51

A.6 Single fiber contour plots for s13 at failure 51

A.7 10% FVF at peak stress . 52

A.8 60% FVF at peak stress . 52

A.9 Double fiber contour plots for s13 at peak stress 52

A.10 10% FVF at failure . 53

A.11 60% FVF at failure . 53

xi

List of Figures

A.12 Double fiber contour plots for s13 at failure 53

xii

List of Tables

3.1 Material Color Table . 13

3.2 Matrix Material Properties [5] . 14

3.3 Carbon Material Properties [5] . 14

3.4 Cohesive Material Properties [5] . 15

3.5 Instance Table . 20

3.6 Boundary Conditions . 21

3.7 Step Data . 22

xiii

Glossary

FVF Fiber Volume Fraction

ROM Rule of Mixtures

ISV Internal State Variable

OSV Observable State Variable

SFPO Single Fiber Pull-out

CDM Continuum Damage Mechanics

RVE Representative Volume Element

xiv

Chapter 1

Introduction

Composites are hybrid materials formed by combining two or more distinct con-

stituents, often with contrasting properties, to produce a material with enhanced

characteristics. The classic examples include the combination of steel rebar and con-

crete or the integration of natural rocky aggregates with a cement matrix, as seen in

Roman concrete. However, the focus of this work is on continuous fiber composites

where the reinforcing fibers generally span the entire length of the material. These

continuous fibers, often made of glass or carbon, are enveloped by a matrix material

like a thermoset resin (e.g., epoxy) to create composites with tailored mechanical

properties.

In a continuous fiber composite, the matrix serves as a binder that transfers loads

between fibers, thereby augmenting the composite’s overall strength and stiffness.

Unlike metals, whose grains interact directly, fibers in composites don’t inherently

bond, thus necessitating the role of the matrix. The interaction between fibers and

the matrix creates an ”interface zone” where mechanical properties can be differ-

ent from those of the individual components. This interface can be modeled using

traction-separation laws that describe how the interfacial layer carries load before

1

Chapter 1. Introduction

eventually experiencing inelastic deformation and fracture.

Modeling the behavior of composites presents unique challenges due to their het-

erogeneous nature. Traditional approaches such as the Rule of Mixtures (ROM)

model provide simple, albeit often inaccurate, estimations by averaging the proper-

ties of the constituents. These models fall short of capturing complex phenomena like

interfacial stress or micromechanical fracture. Micromechanical models aim to ad-

dress these limitations by explicitly considering interfacial properties, fiber fractures,

and matrix cracking at a microscopic scale.

However, microscale models are not computationally feasible for analyzing entire

laminated composites or composite parts. This dilemma necessitates the transla-

tion of microscale properties to mesoscale models that describe laminates (stacked

layers of composites with varying fiber orientations). Classical Laminate Theory is

frequently employed at the mesoscale, relying on assumptions that may not hold

in all applications[13]. The transition from micro to mesoscale is even more criti-

cal in high-strain applications, for example, with deployable space structures, where

standard assumptions can lead to inaccurate predictions.

Recent advances suggest that multiscale modeling and integrating accurate mod-

els at each scale can offer a more robust solution, especially for high-strain appli-

cations. This method allows for the detailed study of interface behavior at the

microscale, which can then be used to inform mesoscale models that account for

delamination and other complex phenomena in laminates.

The present work aims to investigate one critical element of multiscale modeling:

the role of how the fiber volume fraction-the percentage of fiber in the total volume of

the composite, and thus the fiber proximity-influences the interfacial behavior and,

consequently, the composite’s mechanical properties. This focus helps to bridge the

gap between microscale and mesoscale models, thereby providing a more accurate

2

Chapter 1. Introduction

representation of composites under various loading conditions.

3

Chapter 2

Review of Related Literature

Many mechanical and failure models have been proposed in the study of compos-

ite materials. Generally, these theories are either Internal state variable (ISV) or

observable state variable (OSV) theories (also called non-ISV theories)[9]. Non-ISV

theories are interested in describing the general response of the composite under

loading. They require a large amount of empirical data to support them and are

interested in the macro-scale phenomena of the material without concern for the

internal state of the system. Internal state variable theories are interested in model-

ing the evolution of a material temporally. They do this by tracking the history of

the material with differential equations to help predict the behavior of the material

in the future[12]. Thus previous loading effects (damage, age, phase transforma-

tions, etc.) affect the material’s subsequent behavior. Because ISV models are more

closely linked to the physics of the system they require less empirical data. However,

non-ISV models are generally simpler than ISV models and can be applied to many

different situations with a reasonable amount of accuracy.

4

2.1. OBSERVABLE STATE VARIABLE THEORIES

2.1 Observable State Variable Theories

2.1.1 Long Fiber Models

One of the first theories developed to understand the mechanical characteristics of

composites focused on long fiber models. These models operate on the assumption

that the fibers are sufficiently long, making the behavior at the fiber ends negligible.

Long fiber models describe composites in terms of two primary directions: the matrix

direction (perpendicular to the fiber orientation) and the fiber direction (parallel to

the fiber orientation). This characterization results in an orthotropic material (Fig.

2.1).

Figure 2.1: Material directions as resulting from orthotropic assumption[13]

Two prominent long fiber models are the iso-strain (Voigt) and iso-stress (Reuss)

models. These are commonly referred to as ”rule of mixture models” as they derive

the composite’s properties based on the weighted average of the individual compo-

nents’ properties. Voigt’s model proposes that strains remain constant under loading,

leading to identical displacements for both the matrix and the fiber. In contrast,

5

2.1. OBSERVABLE STATE VARIABLE THEORIES

Reuss proposed that stresses are uniform throughout the composite material[10].

Both the Voigt and Reuss models assume seamless load transfer between the ma-

trix and the fiber, without accounting for the interfacial properties of the composite.

The Voigt model, typically applicable under axial loading, offers a theoretical upper

bound on the composite’s elastic properties. Meanwhile, the Reuss model is more

pertinent under transverse loading and provides a lower bound[11]. By synthesizing

insights from both models, it’s feasible to estimate the Young’s modulus in the lon-

gitudinal (E11) and transverse (E22) directions, as well as the shear modulus (G12)

and the Poisson’s ratio (V12)[10]. However, these models’ accuracy wanes due to

stress concentrations, especially near the fiber tips. Such discrepancies cause the

iso-stress and iso-strain assumptions to falter, paving the way for the development

of short fiber models.

2.1.2 Short Fiber Models

Compared to long fiber models, which primarily focused on the individual properties

of the matrix and the fiber, short fiber models began to examine the effect of the in-

terface. One of the initial models for short fibers depicted the composite as concentric

cylinders, where the inner cylinder represented the fiber and the surrounding outer

cylinder embodied the matrix. To account for the fiber volume fraction, these cylin-

drical representations were uniformly distributed or ”tiled” across the designated

area (see Fig. 2.2), maintaining a consistent ratio between the fiber and matrix

radii[13].

Termed the ”shear lag model”, this approach aimed to depict the delay or ”lag”

in load transfer between the matrix and the fiber. Contrary to the instantaneous

load-sharing presumed in long fiber models, the shear lag model illustrates the grad-

ual distribution of stress, particularly evident at the matrix-fiber interface. Central

to the development of this model, Cox proposed that while the matrix predominantly

6

2.1. OBSERVABLE STATE VARIABLE THEORIES

Figure 2.2: Tiled concentric cylinders as seen in the shear lag model

showcases homogeneous strain, discrepancies arise at the fiber interfaces. Here, the

strain distribution isn’t uniform, leading to the characteristic shear lag[3]. A pivotal,

albeit simplifying, assumption of this model is the equivalence of transverse prop-

erties between the fiber and matrix, despite their differing axial properties. This

presumption has implications for the model’s accuracy and applicability, especially

in scenarios where the transverse behaviors of the materials vary significantly.

Other approaches to the shear lag model include the Eshelby inclusion model,

which models an analytical solution of an ellipsoidal inclusion in an infinite ma-

trix [7], the Mori and Tanaka model, which expands on the Eshelby model with

a mean-field theory to account for interactions among multiple inclusions[16]], the

7

2.1. OBSERVABLE STATE VARIABLE THEORIES

work of Benveniste, which helps account for interphase zones between inclusions and

the matrix[1], and work by Chou, who investigated the effects of biased fibers and

the debonding at fiber ends on composite behavior [2]. With the advancements in

computational power, simulating the microstructure response numerically to obtain

material properties has become more accessible. For instance, finite element analyses

of square and hexagonally arranged fibers can reveal how material properties change

based on direction[13]. These computational advances have also paved the way for

the development of intricate models that monitor the internal state of the system, a

topic discussed in the subsequent section.

2.1.3 Non-ISV Failure Theories

Once material properties have been estimated, it is crucial to understand the po-

tential failure mechanisms of the material. The initial and most straightforward

approach is to use non-interactive criteria, wherein axial and shear stresses are con-

sidered independent of each other. Such failure criteria resemble yield theories in

metals and often describe failure as the point when a maximum stress or strain

threshold is reached [9].

On the other hand, interactive criteria take into account in-plane shear stress and

strain to determine failure. A prominent example is the Tsai-Wu criterion, repre-

sented in Eq. 2.1[22]. This equation proposes that failure does not occur as long as

the left side remains below unity, effectively weighing different contributions from

shear and axial stresses. However, this model may not be suitable for materials ex-

hibiting brittle fracture, such as carbon fiber/epoxy composites[8]. Moreover, since

the coefficients of the Tsai-Wu criterion must be determined experimentally, it ne-

cessitates a significant amount of empirical data. To mitigate the need for extensive

experimental data, Internal State Variable (ISV) models have been proposed.

8

2.2. INTERNAL STATE VARIABLE THEORIES

F1σ1 + F2σ2 + F6τ12 + F11σ
2
1 + F22σ

2
2 + F66τ

2
12 + 2F12σ1σ2 ≤ 1 (2.1)

Where:

• σ1, σ2 are the normal stresses.

• τ12 is the in-plane shear stress.

• F1, F2, F6, F11, F22, F66 and F12 are the Tsai-Wu material coefficients, deter-

mined through experimental testing.

2.2 Internal State Variable Theories

Given the limitations of non-physically based models, ISV (Internal State Variable)

models have emerged. These models delve deeper into the interactions between

materials and the underlying physics, striving to better understand both material

properties and failure mechanisms. Instead of focusing on an averaged approximation

of material behavior, ISV models consider the history of the material. This ensures

that the preceding steps in the modeling process influence subsequent ones. A signifi-

cant development in this field is through continuum damage mechanics (CDM), with

pioneering work on composites being attributed to Talreja[21]. His model employs a

vectorial approach to estimate microcracks within a representative volume element

(RVE). This method doesn’t merely quantify the extent of damage but also its direc-

tion. This directional insight is particularly beneficial for composite materials due

to their anisotropic nature.

With the advancement in computational capabilities, more intricate numerical

approaches have become feasible. Internal State Variable models can now be devel-

oped using computer simulations of RVEs. One critical point of potential failure at

9

2.2. INTERNAL STATE VARIABLE THEORIES

the microscale of a composite isn’t the matrix or fiber breakage, but the debonding

of the interface between the matrix and the fiber. To investigate further the physi-

cal properties of this transition zone, Single Fiber Pull-Out (SFPO) tests have been

conducted[4, 19, 18]. A diagram of what these tests look like can be seen in Fig. 2.3

as well as a common load-displacement curve found from these tests in Fig. 2.4.

Figure 2.3: Single fiber pull-out testing methods (a) SFPO Type 1, (b) SFPO Type
2, single fiber fragmentation tests (SFFT)[20]

Although extensive testing exists in this domain, simulation results remain lim-

ited in scope. B.D. Ellis[6] explored the impact of varying fiber morphologies on

pullout tests, while Jia[15] investigated the effects of thermal stresses during com-

posite curing on pullout behavior. Notably, both these simulations and the majority

of experimental tests focus on the extraction of a solitary fiber from its matrix, ne-

glecting the influence of adjacent fibers. This study aims to shed light on the effects

of adjacent fibers on pullout behavior. Should neighboring fibers significantly alter

the pullout response, then conclusions drawn from SFPO tests might be inaccurate

Moreover, without a comprehensive understanding of the interplay between neigh-

10

2.2. INTERNAL STATE VARIABLE THEORIES

Figure 2.4: Typical load-displacement curve for pullout test[4]

boring fibers, interface zones, and pullout behavior, intricate multi-scale models risk

relying on foundational assumptions that could skew their results.

11

Chapter 3

Methodology

To investigate the influence of neighboring fibers on pullout behavior, a series of

models were created and analyzed using Abaqus standard. The primary objective

of these studies was to understand the effect of fiber volume fraction (FVF) on

the reaction force response of the pulled-out fiber. To achieve this, a representative

volume element (RVE) was created employing a symmetric boundary condition. This

chapter will detail the material properties and the specific setup of the model.

3.1 Materials

Composite materials, by their very nature, derive their mechanical properties from

the properties of the different components, each contributing unique and vital prop-

erties to the final assembly. The behavior of such composites depends not only on

the individual constituents but also on their interactions, interfaces, and orienta-

tions. Understanding the fundamental behavior of individual components, therefore,

becomes important before undertaking any comprehensive analysis of the composite

itself.

12

3.1. MATERIALS

This section aims to describe the intrinsic properties of each material incorporated

into the analysis. For each material, its characteristics are described. Furthermore, it

will illustrate how each material is used and integrated into the composite structure.

The arrangement and relationship of these components within the composite are

visually depicted in Fig. 3.1.

Figure 3.1: Materials arrangement in the model

Table 3.1: Material Color Table

Material Color
COHESIVE

CARBON FIBER
MATRIX

3.1.1 Matrix

The matrix binds the fibers together and transfers stresses between them. The

matrix in this case was modeled as purely elastic for the simplicity of the study. The

properties can be found in Table 3.2. The material consists of two cylindrical cutouts

where the fibers and cohesive zones are connected (Fig. 3.2).

13

3.1. MATERIALS

Table 3.2: Matrix Material Properties [5]

Property Value
E (Elastic Modulus) 3 GPa

Poisson’s Ratio 0.3

Figure 3.2: Matrix part

3.1.2 Fiber

Fibers provide the primary strength in composite materials. In this analysis, the

fiber was modeled as carbon although a similar analysis could be done using glass

or ceramic fibers. Since the focus of this study was on the interface zone, the fiber

was modeled as purely elastic. The material properties of the fiber can be seen in

table 3.3 and the geometry of the fiber can be seen in Fig. 3.3. It should be noted

that the radius of the fiber is dependent on the fiber Volume fraction (FVF) of the

model.

Table 3.3: Carbon Material Properties [5]

Property Value
E (Elastic Modulus) 227 GPa

Poisson’s Ratio 0.4

14

3.1. MATERIALS

Figure 3.3: Fiber part

3.1.3 Cohesive elements

Cohesive elements are special traction-based elements in Abaqus. The elements were

used to model the interface between the fiber and the matrix. The cohesive zone

was modeled as a thin layer of elements between the matrix and the fiber (Fig. 3.4).

Cohesive elements are useful in modeling this interface because they are allowed to fail

(be deleted by the program) after a certain load and displacement is achieved. This

causes the interface zone to weaken throughout loading and for crack propagation to

occur.

Table 3.4: Cohesive Material Properties [5]

Property Value
NS (Peak Traction) 10 MPa

Ecoh 1× 1011 N/mm3

G1ess 1× 1011 N/mm3

G2ett 1× 1011 N/mm3

Max Displacement 1
Viscosity 0.01

15

3.1. MATERIALS

Figure 3.4: Cohesive part

Traction-Separation Law

Traction-separation laws play a pivotal role in characterizing the behavior of the in-

terface zone between the matrix and fibers in composites, especially during debond-

ing. This study employs such laws to model the cohesive elements representing the

interface zone. The damage law, as represented graphically in Fig. 3.5, shows that

no damage occurs until peak traction is reached at δ0, after which damage progresses

until δsep, signifying complete material failure.

For simplicity in this study a linear traction separation model was used as seen in

Eq. 3.1 [14]. The equation has two inputs: a normal traction term and a shear term.

The max function is used to ensure whichever of the terms holding a greater value

is taken into account. Each of these terms is normalized by their critical stress value

ensuring that when either reaches unity, damage starts to occur. The version used

here contains a Macaulay bracket around the traction term to ensure no compressive

stresses are accounted for.

16

3.1. MATERIALS

Figure 3.5: Traction separation law graphical representation [14]

max

{
⟨tn⟩
t0n

,
ts
t0s

}
= 1 (3.1)

• tn is the normal traction.

• t0n is the critical tensile stress.

• ts is the shear stress.

• t0s is the critical shear stress.

An effective displacement can be equated using

δm =
√

⟨δn⟩2 + δ2s (3.2)

Where ⟨δn⟩ is the tensile normal separation displacement and δs is the shear

displacement. Given that, a damage variable can be computed by

17

3.1. MATERIALS

D =
δfm (δmax

m − δ0m)

δmax
m

(
δfm − δ0m

) (3.3)

Where:

• δfm is the effective displacement at complete failure.

• δ0m is the effective displacement at damage initiation.

• δmax
m is the maximum value of the effective displacement attained.

When D achieves unity the material has completely failed. In the case of cohesive

elements in Abaqus, this means the element is deleted. The traction separation model

is particularly useful for capturing the gradual degradation of interface properties

up to the point of complete failure. However, it may not adequately describe the

interface behavior under cyclic loading or when significant plasticity is involved at

the interface.

3.1.4 Viscosity

It has been found that adding a viscosity parameter to the cohesive model reduces

the likelihood of divergence during calculation. To help with convergence, a viscosity

value of µ = 0.01 was used for this work [5].

18

3.2. MODEL SETUP

3.2 Model Setup

3.2.1 Boundary Conditions

There are 5 instances in the model. Two fiber instances, two cohesive, and one

matrix. These instances are arranged in the model as a representative volume element

(RVE) as shown in Fig. 3.6 and Table 3.5. Tie constraints were applied on four

surfaces of the model. These surfaces are:

• The surface between the bottom fiber and its neighboring cohesive zone

• The surface between the bottom cohesive zone and the matrix

• The surface between the top cohesive zone and the matrix

• The surface between the top fiber and its neighboring cohesive zone

Figure 3.6: Different model instances

The boundary conditions of the model are presented in Table 3.7 and Fig. 3.7.

The constraints were chosen to ensure the symmetry of the model remained intact

19

3.2. MODEL SETUP

Table 3.5: Instance Table

Instance Name Color # Elements # Nodes Element type (#
elements)

FIBER-2 9120 10736 C3D8R : (9120)
FIBER-1 9120 10736 C3D8R : (9120)
COH-1 2494 5220 COH3D8 : (2494)
COH-2 2494 5220 COH3D8 : (2494)
MATRIX-1 27720 31537 C3D8R : (27720)

while allowing for Poisson’s effects to take place. One may notice that the bottom

fiber of the model is unconstrained. This is to allow for the pullout behavior to be

studied.

(a) Iso view
(b) Front view

(c) Back view (d) Displacement view

Figure 3.7: Model boundary conditions

20

3.2. MODEL SETUP

Table 3.6: Boundary Conditions

Side Description
Left Can extend along the yz-plane but no movement in the z

direction.
Bottom Can extend in the xz-plane but no movement in the y

direction.
Back Can extend in the xy-plane but no movement in the z

direction.
Top Constrained to not rotate around the x, y, or z axis but can

move laterally in any direction.
Right Constrained to not rotate around the x, y, or z axis but can

move laterally in any direction.
Displacement Set displacement to pull the fiber out of the matrix.

3.2.2 Mesh Generation

Meshes were generated for each part individually. For the fiber and matrix parts,

C3D8R elements were used whereas for the cohesive zones, a COH3D8 element was

used (see Table 3.5). Although seeds and element sizes varied depending on the

thickness of the cohesive elements, generally a seed of 0.35 was used for the cohesive

layers and a seed of 0.5 was used for all other parts. This was found to give an

accurate model without increasing runtime by too much.

3.2.3 Solver Configuration

A standard abaqus solver was used in the study. However, non-linear geometry was

turned on to help with the convergence of the cohesive elements. A single step after

the initial was used in the study. More information can be found in Table 3.7.

21

3.2. MODEL SETUP

Table 3.7: Step Data

Step Value
Increments completed 15

Minimum time increment 1e-05
Step time completed 1.0

Analysis type Standard
Maximum time increment 1.0
Initial time increment 0.01

Matrix solver DIRECT SOLVER
Time Period 1.0

Maximum number of increments 100000

22

Chapter 4

Results

4.1 Rule of Mixtures (ROM)

A preliminary rule of mixtures model was created to validate the cohesive model.

Initially, the model was run without any cohesive elements to verify the behavior of

the fiber and matrix materials. Subsequently, cohesive elements were introduced to

assess the effect of the cohesive material on the ROM calculation.

The Rule of Mixtures provides an estimate for the modulus of elasticity of a

composite material, considering the contributions from its constituents, the fibers

and the matrix. The modulus of elasticity of the composite, Ec, is given by:

Ec = f · Ef + (1− f) · Em (4.1)

Where:

• Ef denotes the modulus of elasticity of the fibers.

23

4.1. RULE OF MIXTURES (ROM)

• Em represents the modulus of elasticity of the matrix.

• f is the volume fraction of the fibers.

Given:

Ef = 227× 1015 µPa

Em = 3× 1015 µPa

f = 0.3

Substituting into the ROM equation yields:

Ec = 0.3 · 227× 1015 µPa+ (1− 0.3) · 3× 1015 µPa

Ec = 7.02× 1016 µPa

For the models, a strain ϵ = 0.001%, was applied, chosen to ensure the model

operates in a low-strain regime. Given the model length of 30µm, the required

displacement to induce this strain is:

d = 0.001%× 100× 30 = 0.003µm (4.2)

All the same boundary conditions were used as in other models except that the

entire front face is displaced and the entire back face’s plane is fixed in the axial

direction (Fig. 4.1). For ease of modeling, the tie constraints between the cohesive

layer and the other parts are used, but for the no cohesive case, the material is

changed to matrix.

24

4.1. RULE OF MIXTURES (ROM)

Figure 4.1: Displacement of rule of mixtures models

4.1.1 Without cohesion

For the case without cohesion, the maximum force was measured as Fmax = 1.57803×

1015 µN. To verify the model, the ratio of the force to the total cross-sectional area

gives the stress:

Stress =
Fmax

Area
=

1.57803× 1015 µN

225 µm2
= 7.013× 1012 µPa (4.3)

Further, using stress and strain, we can compute the modulus of elasticity E:

Ecal =
Stress

Strain
=

7.013× 1013 µPa

0.0001
= 7.013× 1016 µPa (4.4)

Compared to the calculation the percent error is 0.1%. Thus the model does

show verified results without the cohesive layer.

25

4.2. FIBER ANALYSIS

4.1.2 With cohesion

For the case with cohesion, the maximum force was measured as Fmax, cohesive =

1.57474× 1015 µN. Going through a similar calculation as before:

Stress =
Fmax, cohesive

Area
=

1.57474× 1015 µN

225 µm2
= 6.999× 1012 µPa (4.5)

Further, using stress and strain, we can compute the modulus of elasticity E:

Ecal, cohesive =
Stress

Strain
=

6.999× 1012 µPa

0.0001
= 6.999× 1016 µPa (4.6)

Compared to the calculation, the cohesive model shows a percent error of 0.3%.

This shows that even with cohesive elements the model acts according to theory.

However, one point of interest is the Ecal, cohesive does show a lower value than both

cases. This checks with intuition since the cohesive elements create a weaker zone in

the composite model.

4.2 Fiber Analysis

A parametric study was executed to explore the influence of varying fiber volume

fraction (FVF) during a pullout test. The study involved generating models with

distinct geometric attributes and assigning appropriate material properties. After

defining geometric conditions, simulations were run using Python scripts, examples

of which can be found in appendix B.1. Initially, the study focused on a matrix

containing a single fiber. This was followed by a scenario with two fibers embedded

in the matrix. To probe the impact of the cohesive zone, a dual-fiber setup was

analyzed without the second cohesive layer.

26

4.2. FIBER ANALYSIS

The load-displacement graphs for all cases were obtained by summing up the

reaction forces in the pulling direction (RF3) on the face of the pulled-out fiber. This

gives the load-displacement curve that theoretically would be obtained by experiment

(the amount of load needed to be applied on the fiber to pull it from the matrix).

4.2.1 Single fiber

The single fiber case consisted of just one fiber, cohesive zone, and matrix. This

case was used as the control for the study since most pullout tests are done with no

influence from neighboring fibers. If a difference was found between the single and

double fiber cases, then the influence of FVF could be shown1. Figure 4.3 shows the

results for these tests. As seen, the peak stress increases as the FVF increases due

to an increase in load capability given from the greater area of the fiber. Contour

plots for the single fiber cases for peak stress and failure are shown in Figs. 4.6 and

4.9, respectively.

1FVF are calculated for the double fiber case and listed here for comparison. True FVF
for the single cases is half of what is shown although the fiber radii are the same between
cases

27

4.2. FIBER ANALYSIS

Figure 4.2: Setup for single fiber case

Figure 4.3: Reaction force of single fiber case with different FVF

28

4.2. FIBER ANALYSIS

Figure 4.4: 10% FVF at peak stress

Figure 4.5: 60% FVF at peak stress

Figure 4.6: Single fiber contour plots for s33 - Peak Stress

29

4.2. FIBER ANALYSIS

Figure 4.7: 10% FVF at failure

Figure 4.8: 60% FVF at failure

Figure 4.9: Single fiber contour plots for s33 - Failure

30

4.2. FIBER ANALYSIS

4.2.2 Single vs Double

The results from the double fiber case are shown in Fig. 4.10. As seen, the results

are similar to the single case where the increase in FVF results in a higher peak

reaction force. However, when graphed on the same chart as the single fiber cases

differences emerge (Fig. 4.11). For the 10% FVF case, very little changes between

the single and double fiber case are observed. However, as the FVF increases the

difference becomes noticeable. Specifically, this difference becomes very apparent at

60% FVF where the single fiber case takes less load to be pulled out. This suggests

that with high FVF cases, the pullout behavior does get affected by neighboring

fibers, although it seems unaffected by low FVF. This finding casts doubt on how

a SFPO measurement can accurately characterize the interfacial behavior in actual

composite materials, where fibers are normally densely distributed. Contour plots

for the double fiber cases for peak stress and failure are shown in Figs. 4.12 and

4.13, respectively.

Figure 4.10: Reaction force of double fiber case with different FVF

31

4.2. FIBER ANALYSIS

(a) 10% FVF (b) 20% FVF

(c) 30% FVF (d) 40% FVF

(e) 50% FVF (f) 60% FVF

Figure 4.11: Double fiber vs single fiber for different FVF

32

4.2. FIBER ANALYSIS

(a) 10% FVF at peak stress

(b) 60% FVF at peak stress

Figure 4.12: Double fiber contour plots for s33 at peak stress

33

4.2. FIBER ANALYSIS

(a) 10% FVF at failure

(b) 60% FVF at failure

Figure 4.13: Double fiber contour plots for s33 at failure

34

4.3. COHESIVE PROPERTIES

4.2.3 Single vs Double vs Double without Cohesion

To test and see if the cohesive layer plays a part in the behavior of the pullout

test with double fibers, a test with two fibers but only one cohesive zone was per-

formed(Fig. 4.14). The results shown in Fig. 4.15 are surprising. The double fiber

without the second cohesive zone shows a lower peak reaction force than even the

single fiber case. This shows that the cohesive zone along with the extra fiber plays

a role in the load transfer. However, as of the point of this writing, no physical

explanation could be found. This seems to be a point of interest for further research

and should be kept in mind in the future for similar cohesive zone models.

Figure 4.14: Setup for double fiber with single cohesive zone

4.3 Cohesive Properties

To test the effect, if any, of the cohesive material properties on the influence of

FVF on the pullout behavior, several parametric studies were performed. The first

entailed varying the maximum displacement parameter, the second looked at the

max traction value, and the third investigated varying the cohesive thickness.

35

4.3. COHESIVE PROPERTIES

Figure 4.15: Reaction force of single fiber, double fiber, and double fiber without the
second cohesive zone case

4.3.1 Maximum Displacement

The max displacement value at failure was varied from 1µm to 6µm. The maximum

applied pulling displacement on the fiber was held at a constant 2µm. As seen in Fig.

4.16, the different FVF values had little effect on the shape of the force-displacement

curve although it did vary the stress-carrying behavior after the initiation of interfa-

cial damage. However, it does seem like the decreasing slope of the curve is greater

in the 60% FVF case rather than the 10% FVF case. This makes sense given that

the max load reached is higher so to get to the same displacement value the curve

would have to be steeper.

36

4.3. COHESIVE PROPERTIES

4.3.2 Maximum Traction

The max traction value was varied from 1× 1012µPa to 6× 1012µPa. This is based

on various experimental values with the first providing a low-end estimate and the

second providing a high-end estimate [17, 5]. The failure displacement values were

kept constant at 1µm. The results are shown in Fig. 4.17. It can be seen that the

shape of the graphs is greatly affected by the max traction value. However, there

isn’t much difference besides the height of the graph between the 10% and 60% FVF

cases. As shown in Fig. 4.18, by increasing the max traction value the curve starts

to ”lag”. This lag is more prominent with the 10% FVF case than the 60% FVF

case.

37

4.3. COHESIVE PROPERTIES

(a) Displacement 1µm (b) Displacement 2µm

(c) Displacement 3µm (d) Displacement 4µm

(e) Displacement 5µm (f) Displacement 6µm

Figure 4.16: Change in load response for different FVF and different max displace-
ments.

38

4.3. COHESIVE PROPERTIES

(a) Tmax = 1× 1012µPa (b) Tmax = 2× 1012µPa

(c) Tmax = 3× 1012µPa (d) Tmax = 4× 1012µPa

(e) Tmax = 5× 1012µPa (f) Tmax = 6× 1012µPa

Figure 4.17: Change in load response for 10% and 60% FVF for different max traction
values.

39

4.3. COHESIVE PROPERTIES

(a) 10% FVF

(b) 60% FVF

Figure 4.18: Change in load response for 10% and 60% FVF.

40

4.4. EMBEDDED FIBER

4.3.3 Thickness

The thickness of the cohesive layer varied from 0.1µm to 1.0µm as seen in Fig. 4.19.

Varying the cohesive thickness had relatively little effect on the fiber response. This

implies that, in modeling the interfacial behavior using the cohesive layer approach,

the choice of the cohesive layer thickness generally does not play a critical role.

Figure 4.19: Reaction force of double fiber with varying cohesive zone thickness

4.4 Embedded Fiber

To gain a deeper understanding of how the placement of the first fiber influences the

pullout behavior, an embedded fiber case was investigated as shown in Fig. 4.20.

The first fiber was embedded within the matrix material, with half of it being fiber

material and the remaining part matrix. A cohesive layer was sandwiched between

each material. The entire back face was restrained from moving in the z-direction.

41

4.4. EMBEDDED FIBER

(a) Side View (b) Parametric View

Figure 4.20: Model setup for embedded fiber case. Matrix material is shown in red,
cohesive in cream, and fiber in green.

The embedded fiber case demonstrates two main distinctions when juxtaposed

with the double fiber case (Fig. 4.21). Firstly, the peak traction in both the 10%

and 60% FVF cases differ from their double fiber counterparts. This discrepancy

can likely be attributed to the reduced number of cohesive elements interacting with

the embedded fiber compared to the double fiber scenario. Secondly, the gradient

leading to the peak traction in the embedded fiber cases is less pronounced than in the

double fiber cases. This observation could also stem from the reduced involvement of

cohesive elements. Interestingly, for the 60% FVF case, all the axial elements at the

back were removed by the end of the simulation. In contrast, these elements remained

intact in the 10% FVF scenario, as illustrated in Fig. 4.25. This pattern suggests

a more pronounced load transfer to the axial elements in the high FVF scenario. A

potential area of exploration could be to adjust the peak shear and axial traction

values. While these were kept consistent in the current study, varying them might

lead to distinct behaviors in axial versus radial elements. Modifying the positioning

of the second fiber to create a skew-symmetric scenario (with half of the second

fiber extending in the z-direction and the other half forming the matrix) could offer

42

4.4. EMBEDDED FIBER

insights into different load-bearing capacities and provide a closer representation of

a chopped fiber scenario.

(a) 10% FVF

(b) 60% FVF

Figure 4.21: Comparison of single fiber case and embedded fiber case

43

4.4. EMBEDDED FIBER

Figure 4.22: 10% FVF at peak stress

Figure 4.23: 60% FVF at peak stress

Figure 4.24: Embedded fiber contour plots for s33 at peak stress

44

4.4. EMBEDDED FIBER

Figure 4.25: 10% FVF at failure

Figure 4.26: 60% FVF at failure

Figure 4.27: Embedded fiber contour plots for s33 at failure

45

Chapter 5

Conclusions

A fiber pull-out test was simulated using the Abaqus finite element analysis software.

The test was focused on how different fiber volume fractions (FVF) influenced the

pullout behavior. It was shown that on low FVF numbers (10%) the influence of

the second fiber was minimal. However, with high FVF (60%) the results show that

the second fiber has a substantial effect. This suggests that for composite materials

with high FVF, pull-out test behavior is changed and needs to be taken into account.

This could suggest that the results of interface properties on the pullout behavior

could be inaccurate for these materials.

It was also shown that the addition of a second cohesive layer in the double

fiber case does play a significant role in the pullout response. The addition of the

cohesive layer seems to allow for more load-carrying ability. Perhaps the addition of

the second layer causes the model to behave slightly ductile although further tests

to understand this phenomenon would need to be performed.

Cohesive material properties were varied to understand how each property influ-

enced the pullout behavior. It was shown that the maximum displacement influenced

the model as expected with no real influence by different FVF. However, the max

46

5.1. LIMITATIONS OF THE STUDY

traction parameter did seem to influence the behavior between FVF although not

drastically. The thickness didn’t seem to have an effect on the model. Thus, the co-

hesive properties although having an influence on the behavior of the model, are not

influenced by different FVFs. This means that further tests can keep the cohesive

properties constant and focus on changes in geometry.

5.1 Limitations of the Study

Both the fiber and matrix were modeled as elastic materials. Thus no plastic defor-

mation was possible. The symmetric boundary conditions also assumed an array of

fibers being pulled rather than a single fiber. A non-symmetric case would provide

useful insight into a true single-fiber pullout behavior with neighboring fibers.

5.2 Implications for Future Research

Future work could aim to better characterize why the second cohesive layer helps

strengthen the fiber’s bond in the matrix. It would also be useful to understand

how symmetry in the model influences the pullout behavior. Further look into the

embedded fiber case including a skew-symmetric and varying cohesive material prop-

erties would be of interest to better understand how offset fibers affect the behavior.

Material testing could also be explored to confirm numerical results. A better com-

parison between material test data and modeling data could show the limitation of

a modeling approach, something critical in understanding a multi-scale approach.

47

Appendices

A. S13 Contour Plots 49

B. Parametric Python Code 54

48

Appendix A

S13 Contour Plots

49

Appendix A. S13 Contour Plots

Figure A.1: 10% FVF at peak stress

Figure A.2: 60% FVF at peak stress

Figure A.3: Single fiber contour plots for s13 at peak stress

50

Appendix A. S13 Contour Plots

Figure A.4: 10% FVF at failure

Figure A.5: 60% FVF at failure

Figure A.6: Single fiber contour plots for s13 at failure

51

Appendix A. S13 Contour Plots

Figure A.7: 10% FVF at peak stress

Figure A.8: 60% FVF at peak stress

Figure A.9: Double fiber contour plots for s13 at peak stress

52

Appendix A. S13 Contour Plots

Figure A.10: 10% FVF at failure

Figure A.11: 60% FVF at failure

Figure A.12: Double fiber contour plots for s13 at failure

53

Appendix B

Parametric Python Code

B.1 Parametric code for varying FVF

from math import sqrt , pi

from my_module import *

import sys

sys.path.append(’path_to_files ’)

def compute_radius_from_fvf(fvf , edge_length):

return sqrt(2 * fvf * edge_length **2 / pi)

def main():

Constants and Parameters

EDGE_LENGTH = 15

COH_THICKNESS = 0.5

MODEL_LENGTH = 30

54

B.1. PARAMETRIC CODE FOR VARYING FVF

BASE_MODEL_NAME = ’Model -’

JOB_BASE_NAME = ’Job -’

Varying the FVF

fvfs = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

fvfs = [0.1]

for index , fvf in enumerate(fvfs , 1):

Compute the fiber radius based on the current FVF

FIBER_RADIUS = compute_radius_from_fvf(fvf ,

EDGE_LENGTH)

Update the model name based on the current FVF index

MODEL_NAME = BASE_MODEL_NAME + str(index)

Model Creation

create_new_model(MODEL_NAME)

create_model_geometry(MODEL_NAME , FIBER_RADIUS ,

COH_THICKNESS ,

EDGE_LENGTH , MODEL_LENGTH)

create_material_properties(MODEL_NAME)

assign_sections(MODEL_NAME)

define_steps(MODEL_NAME)

create_instances_and_apply_transformations(MODEL_NAME ,

EDGE_LENGTH

,

FIBER_RADIUS

,

COH_THICKNESS

)

55

B.1. PARAMETRIC CODE FOR VARYING FVF

define_interactions(MODEL_NAME)

combine_face_sets(MODEL_NAME)

define_boundary_conditions(MODEL_NAME)

mesh_creation(MODEL_NAME , FIBER_RADIUS , COH_THICKNESS ,

coh_seed_fine =0.35 , coh_seed_course=

COH_THICKNESS , fiber_seed =0.5)

Submitting a job with an updated name

JOB_NAME = JOB_BASE_NAME + str(index)

job_submission(MODEL_NAME , JOB_NAME)

def create_model_geometry(model_name , fiber_radius ,

coh_thickness , edge_length , model_length):

Create Fiber

create_fiber_model(fiber_radius , model_length , model_name)

Create Coh

create_coh_model(fiber_radius , coh_thickness , model_length

, model_name)

Create Matrix

create_matrix_model(fiber_radius , coh_thickness ,

edge_length , model_length , model_name)

create_planes(’coh’, model_name=model_name)

create_planes(’matrix ’, model_name=model_name)

create_planes(’fiber ’, model_name=model_name)

create_datum(’coh’, model_name=model_name)

56

B.1. PARAMETRIC CODE FOR VARYING FVF

create_datum(’matrix ’, model_name=model_name)

create_datum(’fiber’, model_name=model_name)

Surfaces for interface and each model component

create_model_surfaces(model_name , fiber_radius ,

coh_thickness ,

edge_length , model_length)

def create_fiber_model(fiber_radius , model_length , model_name)

:

x1 = fiber_radius

y1 = x1

create_fiber(x1 , y1 , model_length , model_name=model_name)

def create_coh_model(fiber_radius , coh_thickness , model_length

, model_name):

x1 = fiber_radius

y1 = x1

x2 = x1 + coh_thickness

y2 = x2

create_coh(x1, y1, x2, y2, coh_thickness ,

model_length , model_name=model_name)

def create_matrix_model(fiber_radius , coh_thickness ,

edge_length , model_length , model_name):

x2 = fiber_radius + coh_thickness

y2 = x2

57

B.1. PARAMETRIC CODE FOR VARYING FVF

x3 = edge_length

y3 = edge_length

create_matrix(x2, y2, x3, y3, model_length , model_name=

model_name)

def create_model_surfaces(model_name , fiber_radius ,

coh_thickness , edge_length , model_length):

Surfaces for coh and fiber interface

x1 = fiber_radius

y1 = x1

surface_x1 , surface_y1 = diagonal_scale(x1, y1)

create_surface_at_coordinate(surface_x1 , surface_y1 ,

model_length /2,

model_name , ’coh’, ’

face_set_coh_fiber ’, ’

coh_fiber_face ’)

create_surface_at_coordinate(surface_x1 , surface_y1 ,

model_length /2, model_name ,

’fiber ’, ’face_set_fiber_coh ’

, ’fiber_coh_face ’)

Surfaces for fiber

fiber_x , fiber_y = x1/2, y1/2

create_surface_at_coordinate(fiber_x , 0, model_length /2,

model_name ,

’fiber ’, ’face_set_xz_fiber ’,

’fiber_xz_face ’)

58

B.1. PARAMETRIC CODE FOR VARYING FVF

create_surface_at_coordinate (0, fiber_y , model_length /2,

model_name ,

’fiber ’, ’face_set_yz_fiber ’,

’fiber_yz_face ’)

back_x , back_y = diagonal_scale(fiber_x , fiber_y)

create_surface_at_coordinate(back_x , back_y , 0, model_name

, ’fiber ’,

’face_set_xy_back_fiber ’, ’

fiber_xy_back_face ’)

create_surface_at_coordinate(back_x , back_y , model_length ,

model_name , ’fiber ’,

’face_set_xy_front_fiber ’, ’

fiber_xy_front_face ’)

Surfaces for coh

coh_x , coh_y = x1 + coh_thickness /2, y1 + coh_thickness /2

create_surface_at_coordinate(coh_x , 0, model_length /2,

model_name ,

’coh’, ’face_set_xz_coh ’, ’

coh_xz_face ’)

create_surface_at_coordinate (0, coh_y , model_length /2,

model_name ,

’coh’, ’face_set_yz_coh ’, ’

coh_yz_face ’)

back_coh_x , back_coh_y = diagonal_scale(coh_x , coh_y)

create_surface_at_coordinate(back_coh_x , back_coh_y , 0,

model_name , ’coh’,

’face_set_xy_back_coh ’, ’

coh_xy_back_face ’)

create_surface_at_coordinate(back_coh_x , back_coh_y ,

59

B.1. PARAMETRIC CODE FOR VARYING FVF

model_length , model_name ,

’coh’, ’face_set_xy_front_coh

’, ’coh_xy_front_face ’)

Surfaces for matrix

matrix_x , matrix_y = edge_length -0.01, edge_length -0.01

create_surfaces(matrix_x , 0, model_length /2, model_name , ’

matrix ’,

’face_set_xz_bottom_matrix ’, ’

matrix_xz_bottom_face ’)

create_surfaces (0, matrix_y , model_length /2, model_name , ’

matrix ’,

’face_set_yz_left_matrix ’, ’

matrix_yz_left_face ’)

create_surfaces(edge_length -matrix_x , edge_length ,

model_length /2, model_name ,

’matrix ’, ’face_set_xz_top_matrix ’, ’

matrix_xz_top_face ’)

create_surfaces(edge_length , edge_length -matrix_y ,

model_length /2, model_name ,

’matrix ’, ’face_set_yz_right_matrix ’, ’

matrix_yz_right_face ’)

create_surfaces(matrix_x , edge_length -matrix_y , 0,

model_name , ’matrix ’,

’face_set_xy_back_matrix ’, ’

matrix_xy_back_face ’)

create_surfaces(matrix_x , edge_length -matrix_y ,

model_length , model_name ,

’matrix ’, ’face_set_xy_front_matrix ’, ’

matrix_xy_front_face ’)

60

B.1. PARAMETRIC CODE FOR VARYING FVF

Surfaces for coh and matrix interface

x2 = x1 + coh_thickness

y2 = x2

surface_x2 , surface_y2 = diagonal_scale(x2, y2)

create_surfaces(surface_x2 , surface_y2 , model_length /2,

model_name ,

’coh’, ’face_set_coh_matrix ’, ’

coh_matrix_face ’)

create_surfaces(surface_x2 , surface_y2 , model_length /2,

model_name ,

’matrix ’, ’face_set_bottom_matrix_coh ’, ’

bottom_matrix_coh_face ’)

x3 = edge_length

y3 = edge_length

diagonal_length = sqrt(x3**2 + y3**2)

surface_x3 , surface_y3 = diagonal_scale(

diagonal_length - x2, diagonal_length - y2)

create_surfaces(surface_x3 , surface_y3 , model_length /2,

model_name ,

’matrix ’, ’face_set_top_matrix_coh ’, ’

top_matrix_coh_face ’)

def create_material_properties(model_name):

E_CARBON = 2.27e+17

POISSON_RATIO_CARBON = 0.4

material_carbon(E_CARBON , POISSON_RATIO_CARBON , model_name

=model_name)

61

B.1. PARAMETRIC CODE FOR VARYING FVF

NS_NORMAL_ONLY = 10000000000000

E_COH = 1E+015

G1_ESS = 1E+015

G2_ETT = 1E+015

MAX_DISPLACEMENT = 1

VISCOSITY = 0.01

material_coh(NS_NORMAL_ONLY , NS_NORMAL_ONLY ,

NS_NORMAL_ONLY ,

MAX_DISPLACEMENT , VISCOSITY , E_COH , G1_ESS ,

G2_ETT , model_name=model_name)

E_MATRIX = 3e+15

POISSON_RATIO_MATRIX = 0.3

material_matrix(E_MATRIX , POISSON_RATIO_MATRIX , model_name

=model_name)

def assign_sections(model_name):

create_and_assign_section(model_name , ’coh’, ’coh’, ’coh’)

create_and_assign_section(model_name , ’matrix ’, ’matrix ’,

’matrix ’)

create_and_assign_section(model_name , ’fiber’, ’

carbon_fiber ’, ’fiber’)

def define_steps(model_name):

create_step(initial_increment =0.01, model_name=model_name)

variables = (’S’, ’PE’, ’PEEQ’, ’PEMAG ’, ’LE’, ’U’,

’RF’, ’CF’, ’CSTRESS ’, ’CDISP’, ’STATUS ’)

62

B.1. PARAMETRIC CODE FOR VARYING FVF

set_field_output_requests(model_name , ’F-Output -1’,

variables)

def create_instances_and_apply_transformations(model_name ,

edge_length , fiber_radius , coh_thickness):

Creating instances

instance_matrix(model_name=model_name)

instance_coh(model_name=model_name)

instance_fiber(model_name=model_name)

instance_coh(model_name=model_name , instance_name=’coh -2’)

instance_fiber(model_name=model_name , instance_name=’fiber

-2’)

Set Positions for Translation and Rotation

x1 = fiber_radius

x2 = x1 + coh_thickness

y1 = 0.0

y2 = edge_length

z1 = 0.0

z2 = 0.0

Instance Translations and Rotations for Coh and Fiber

translate_instance(’coh -1’, 0.0, y1, z1, model_name=

model_name)

translate_instance(’fiber -1’, 0.0, y1, z1, model_name=

model_name)

translate_instance(’coh -2’, edge_length - 2*x2,

y2 , z2 , model_name=model_name)

rotate_instance(’coh -2’, -180.0, 0, 0, -1, edge_length -

63

B.1. PARAMETRIC CODE FOR VARYING FVF

x2 , y2 , z2 , model_name=model_name)

translate_instance(’fiber -2’, edge_length - 2*x1,

y2 , z2 , model_name=model_name)

rotate_instance(’fiber -2’, -180.0, 0, 0, -1, edge_length -

x1 , y2 , z2 , model_name=model_name)

Function calls for the given surfaces

create_tie(’fiber -1’, ’fiber_coh_face ’, ’coh -1’,

’coh_fiber_face ’, model_name=model_name)

create_tie(’matrix -1’, ’bottom_matrix_coh_face ’,

’coh -1’, ’coh_matrix_face ’, model_name=

model_name)

create_tie(’fiber -2’, ’fiber_coh_face ’, ’coh -2’,

’coh_fiber_face ’, model_name=model_name)

create_tie(’matrix -1’, ’top_matrix_coh_face ’, ’coh -2’,

’coh_matrix_face ’, model_name=model_name)

def define_interactions(model_name):

create_tie(’fiber -1’, ’fiber_coh_face ’, ’coh -1’,

’coh_fiber_face ’, model_name=model_name)

create_tie(’matrix -1’, ’bottom_matrix_coh_face ’,

’coh -1’, ’coh_matrix_face ’, model_name=

model_name)

create_tie(’fiber -2’, ’fiber_coh_face ’, ’coh -2’,

’coh_fiber_face ’, model_name=model_name)

create_tie(’matrix -1’, ’top_matrix_coh_face ’, ’coh -2’,

’coh_matrix_face ’, model_name=model_name)

64

B.1. PARAMETRIC CODE FOR VARYING FVF

def combine_face_sets(model_name):

Right Face Set

combine_sets(model_name , ’right_combined_face ’,

(’fiber -2’, ’face_set_yz_fiber ’),

(’matrix -1’, ’face_set_yz_right_matrix ’))

Top Face Set

combine_sets(model_name , ’top_combined_face ’,

(’fiber -2’, ’face_set_xz_fiber ’),

(’matrix -1’, ’face_set_xz_top_matrix ’))

Left Face Set

combine_sets(model_name , ’left_combined_face ’,

(’fiber -1’, ’face_set_yz_fiber ’),

(’matrix -1’, ’face_set_yz_left_matrix ’))

Bottom Face Set

combine_sets(model_name , ’bottom_combined_face ’,

(’fiber -1’, ’face_set_xz_fiber ’),

(’matrix -1’, ’face_set_xz_bottom_matrix ’))

Back Face Set

combine_sets(model_name , ’back_combined_face ’,

(’fiber -2’, ’face_set_xy_back_fiber ’),

(’coh -2’, ’face_set_xy_back_coh ’),

(’matrix -1’, ’face_set_xy_back_matrix ’))

def define_boundary_conditions(model_name):

create_ysymm_bc(model_name , ’Step -1’, ’Bottom_face ’,

65

B.1. PARAMETRIC CODE FOR VARYING FVF

’bottom_combined_face ’)

create_xsymm_bc(model_name , ’Step -1’, ’Left_face ’, ’

left_combined_face ’)

create_no_rotate_bc(model_name , ’Step -1’, ’top_face ’, ’

top_combined_face ’)

create_no_rotate_bc(model_name , ’Step -1’,

’right_face ’, ’right_combined_face ’)

Function call:

zsymm_bc(model_name , ’Step -1’, ’back_ZsymmBC ’, ’

back_combined_face ’)

create_no_rotate_bc(model_name , ’Step -1’, ’displacement ’,

’fiber -1. face_set_xy_front_fiber ’)

Function call:

apply_displacement_bc(model_name , ’Step -1’, ’displacement ’

,

’fiber -1’, ’face_set_xy_front_fiber ’

, u3 =2.0)

def mesh_creation(model_name , fiber_radius , coh_thickness ,

coh_seed_fine , coh_seed_course , fiber_seed):

matrix_seed = fiber_seed

create_mesh(model_name , ’fiber ’, ’fiber ’, fiber_seed)

create_mesh(model_name , ’matrix ’, ’matrix ’, matrix_seed)

66

B.2. MODULE CODE

create_mesh(model_name , ’coh’, ’coh’, coh_seed_fine)

surface_names = (’coh_matrix_face ’, ’coh_fiber_face ’)

create_coh_mesh(model_name , "coh", coh_seed_fine ,

surface_names , [" coh_xz_face", "coh_yz_face "],

coh_seed_course)

def job_submission(model_name , name_of_run):

create_job(model_name , job_name=name_of_run)

submit_job(model_name , name_of_run)

if __name__ == ’__main__ ’:

main()

B.2 Module Code

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

from optimization import *

from job import *

from sketch import *

67

B.2. MODULE CODE

from visualization import *

from connectorBehavior import *

from math import *

import mesh

from abaqusConstants import *

def create_new_model(model_name):

Check if model already exists

if model_name in mdb.models.keys():

return

Create a new model

mdb.Model(modelType=STANDARD_EXPLICIT , name=model_name)

def create_fiber(x1 , y1 , model_length , model_name=’Model -1’,

part_name=’fiber’):

mdb.models[model_name]. ConstrainedSketch(

name=’__profile__ ’, sheetSize =200.0)

mdb.models[model_name]. sketches[’__profile__ ’].

ArcByCenterEnds(center =(

0.0, 0.0), direction=COUNTERCLOCKWISE , point1 =(x1 ,

0.0), point2 =(0.0, y1))

mdb.models[model_name]. sketches[’__profile__ ’].Line(point1

=(0.0, 0.0), point2 =(

x1 , 0.0))

mdb.models[model_name]. sketches[’__profile__ ’].

HorizontalConstraint(

addUndoState=False , entity=mdb.models[model_name].

68

B.2. MODULE CODE

sketches[’__profile__ ’]. geometry [3])

mdb.models[model_name]. sketches[’__profile__ ’].Line(point1

=(0.0, y1), point2 =(

0.0, 0.0))

mdb.models[model_name]. sketches[’__profile__ ’].

VerticalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [4])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [2], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

[4])

mdb.models[model_name].Part(dimensionality=THREE_D ,

name=part_name , type=

DEFORMABLE_BODY)

mdb.models[model_name]. parts[part_name]. BaseSolidExtrude(

depth=model_length , sketch=mdb.models[model_name].

sketches[’__profile__ ’])

del mdb.models[model_name]. sketches[’__profile__ ’]

def create_coh(x1 , y1 , x2 , y2 , coh_thickness , model_length ,

model_name=’Model -1’, part_name=’coh’):

mdb.models[model_name]. ConstrainedSketch(

name=’__profile__ ’, sheetSize =200.0)

mdb.models[model_name]. sketches[’__profile__ ’].

ArcByCenterEnds(center =(

0.0, 0.0), direction=COUNTERCLOCKWISE , point1 =(x1 ,

69

B.2. MODULE CODE

0.0), point2 =(0.0, y1))

mdb.models[model_name]. sketches[’__profile__ ’].Line(point1

=(x1 , 0.0), point2 =(

x2 , 0.0))

mdb.models[model_name]. sketches[’__profile__ ’].

HorizontalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [3])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [2], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

[3])

mdb.models[model_name]. sketches[’__profile__ ’].

ArcByCenterEnds(center =(

0.0, 0.0), direction=COUNTERCLOCKWISE , point1 =(x2 ,

0.0), point2 =(0.0, y2))

mdb.models[model_name]. sketches[’__profile__ ’].Line(point1

=(0.0, y1), point2 =(

0.0, y2))

mdb.models[model_name]. sketches[’__profile__ ’].

VerticalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [5])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [2], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

70

B.2. MODULE CODE

[5])

mdb.models[model_name].Part(dimensionality=THREE_D ,

name=part_name , type=

DEFORMABLE_BODY)

mdb.models[model_name]. parts[part_name]. BaseSolidExtrude(

depth=model_length , sketch=mdb.models[model_name].

sketches[’__profile__ ’])

del mdb.models[model_name]. sketches[’__profile__ ’]

def create_matrix(x2 , y2 , x3 , y3 , model_length , model_name=’

Model -1’, part_name=’matrix ’):

mdb.models[model_name]. ConstrainedSketch(

name=’__profile__ ’, sheetSize =200.0)

mdb.models[model_name]. sketches[’__profile__ ’].

ArcByCenterEnds(center =(

0.0, 0.0), direction=COUNTERCLOCKWISE , point1 =(x2 ,

0.0), point2 =(0.0, y2))

mdb.models[model_name]. sketches[’__profile__ ’].Line(point1

=(x2 , 0.0), point2 =(

x3 , 0.0))

mdb.models[model_name]. sketches[’__profile__ ’].

HorizontalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [3])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [2], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

71

B.2. MODULE CODE

[3])

mdb.models[model_name]. sketches[’__profile__ ’].Line(point1

=(0.0, y2), point2 =(

0.0, y3))

mdb.models[model_name]. sketches[’__profile__ ’].

VerticalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [4])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [2], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

[4])

mdb.models[model_name]. sketches[’__profile__ ’].

ConstructionLine(point1 =(x3 ,

0.0)

,

point2

=(0.0,

y3

)

)

mdb.models[model_name]. sketches[’__profile__ ’].

CoincidentConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. vertices [3], entity2=mdb.

72

B.2. MODULE CODE

models[model_name]. sketches[’__profile__ ’]. geometry

[5])

mdb.models[model_name]. sketches[’__profile__ ’].

CoincidentConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. vertices [4], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

[5])

mdb.models[model_name]. sketches[’__profile__ ’]. copyMirror(

mirrorLine=mdb.models[model_name]. sketches[’__profile__

’]. geometry [5], objectList =(

mdb.models[model_name]. sketches[’__profile__ ’].

geometry [2],

mdb.models[model_name]. sketches[’__profile__ ’].

geometry [3],

mdb.models[model_name]. sketches[’__profile__ ’].

geometry [4],

mdb.models[model_name]. sketches[’__profile__ ’].

geometry [5]))

mdb.models[model_name].Part(dimensionality=THREE_D ,

name=part_name , type=

DEFORMABLE_BODY)

mdb.models[model_name]. parts[part_name]. BaseSolidExtrude(

depth=model_length , sketch=mdb.models[model_name].

sketches[’__profile__ ’])

del mdb.models[model_name]. sketches[’__profile__ ’]

def create_matrix_with_corner(x2 , y2 , x3 , y3 , y4 , model_length

, model_name=’Model -1’, part_name=’matrix ’):

73

B.2. MODULE CODE

mdb.models[model_name]. ConstrainedSketch(

name=’__profile__ ’, sheetSize =200.0)

mdb.models[model_name]. sketches[’__profile__ ’].

ArcByCenterEnds(

center =(0.0, 0.0), direction=COUNTERCLOCKWISE , point1

=(x2 , 0.0), point2 =(0.0, y2))

Horizontal line from the end of the arc to x3

mdb.models[model_name]. sketches[’__profile__ ’].Line(

point1 =(x2 , 0.0), point2 =(x3 , 0.0))

mdb.models[model_name]. sketches[’__profile__ ’].

HorizontalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [3])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [2], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

[3])

Vertical line from x3 to y3

mdb.models[model_name]. sketches[’__profile__ ’].Line(

point1 =(x3 , 0.0), point2 =(x3 , y3))

mdb.models[model_name]. sketches[’__profile__ ’].

VerticalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [4])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

74

B.2. MODULE CODE

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [3], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

[4])

Horizontal line from y3 to y4

mdb.models[model_name]. sketches[’__profile__ ’].Line(

point1 =(x3 , y3), point2 =(0.0, y3))

mdb.models[model_name]. sketches[’__profile__ ’].

HorizontalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [5])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [4], entity2=mdb.

models[model_name]. sketches[’__profile__ ’]. geometry

[5])

Vertical line to complete the shape

mdb.models[model_name]. sketches[’__profile__ ’].Line(

point1 =(0.0, y3), point2 =(0.0, y2))

mdb.models[model_name]. sketches[’__profile__ ’].

VerticalConstraint(

addUndoState=False , entity=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [6])

mdb.models[model_name]. sketches[’__profile__ ’].

PerpendicularConstraint(

addUndoState=False , entity1=mdb.models[model_name].

sketches[’__profile__ ’]. geometry [5], entity2=mdb.

75

B.2. MODULE CODE

models[model_name]. sketches[’__profile__ ’]. geometry

[6])

Create the part

mdb.models[model_name].Part(

dimensionality=THREE_D , name=part_name , type=

DEFORMABLE_BODY)

mdb.models[model_name]. parts[part_name]. BaseSolidExtrude(

depth=model_length , sketch=mdb.models[model_name].

sketches[’__profile__ ’])

Delete the sketch

del mdb.models[model_name]. sketches[’__profile__ ’]

def create_planes(part_name , model_name=’Model -1’):

mdb.models[model_name]. parts[part_name].

DatumPlaneByPrincipalPlane(offset =0.0,

principalPlane

=

XZPLANE

)

mdb.models[model_name]. parts[part_name].

DatumPlaneByPrincipalPlane(offset =0.0,

principalPlane

=

XYPLANE

)

76

B.2. MODULE CODE

mdb.models[model_name]. parts[part_name].

DatumPlaneByPrincipalPlane(offset =0.0,

principalPlane

=

YZPLANE

)

def create_datum(part_name , model_name=’Model -1’):

mdb.models[model_name]. parts[part_name].

DatumCsysByThreePoints(coordSysType=CARTESIAN , line1 =(

1.0, 0.0, 0.0), line2 =(0.0, 1.0, 0.0), name=’Datum

csys -1’, origin =(0.0, 0.0, 0.0))

def create_surface_at_coordinate(x, y, z, model , part ,

set_name , surface_name):

"""

Finds a face at specified (x, y, z) coordinate in a given

model and part in Abaqus ,

then creates a surface using that face.

Parameters:

- x, y, z: coordinates to find the face

- model: name of the model

- part: name of the part

- surface_name: name for the created surface

"""

77

B.2. MODULE CODE

Access the specified part in the model

p = mdb.models[model].parts[part]

f = p.faces

myFace = f.findAt ((x, y, z),)

face_tuple = (f[myFace.index:myFace.index +1],)

Create a set using the found face

p.Set(faces=face_tuple , name=set_name)

Create a surface using the face from the set

p.Surface(name=surface_name , side1Faces=face_tuple)

def create_surfaces(x, y, z, model , material , set_name ,

face_name):

create_surface_at_coordinate(x, y, z, model , material ,

set_name , face_name)

def diagonal_scale(value1 , value2):

return 0.707106781187 * value1 , 0.707106781187 * value2

def material_carbon(E, Poisson_ratio , model_name=’Model -1’):

mdb.models[model_name]. Material(name=’carbon_fiber ’)

mdb.models[model_name]. materials[’carbon_fiber ’]. Elastic(

table =((E, Poisson_ratio) ,))

78

B.2. MODULE CODE

def material_coh(NS_normal_only , NS_first_direction ,

NS_second_direction , max_displacement , viscosity , E_Enn ,

G1_Ess , G2_Ett , model_name=’Model -1’):

mdb.models[model_name]. Material(name=’coh’)

mdb.models[model_name]. materials[’coh’].

QuadsDamageInitiation(table =((NS_normal_only ,

NS_first_direction

,

NS_second_direction

)

,

)

)

mdb.models[model_name]. materials[’coh’].

quadsDamageInitiation.DamageEvolution(

table =((max_displacement ,),), type=DISPLACEMENT)

mdb.models[model_name]. materials[’coh’].

quadsDamageInitiation.DamageStabilizationCohesive(

cohesiveCoeff=viscosity)

mdb.models[model_name]. materials[’coh’]. Elastic(

table =((E_Enn , G1_Ess , G2_Ett) ,), type=TRACTION)

def material_matrix(E, Poisson_ratio , model_name=’Model -1’):

mdb.models[model_name]. Material(name=’matrix ’)

mdb.models[model_name]. materials[’matrix ’]. Elastic(

79

B.2. MODULE CODE

table =((E, Poisson_ratio),))

def create_and_assign_section(model_name , part_name ,

material_name , section_name):

"""

Create a section in the model and assign it to the

specified part.

Parameters:

- model_name: Name of the model.

- part_name: Name of the part to assign the section.

- material_name: Name of the material used in the section.

- section_name: Name of the section.

"""

p = mdb.models[model_name].parts[part_name]

if material_name == ’coh’:

mdb.models[model_name]. CohesiveSection(material=

material_name , name=section_name ,

outOfPlaneThickness

=None ,

response=

TRACTION_SEPARATION

)

else:

mdb.models[model_name]. HomogeneousSolidSection(

material=material_name , name=section_name ,

thickness=None)

80

B.2. MODULE CODE

cells = p.cells [:]

pickedRegions = (cells ,)

p.Set(cells=cells , name=’Set -{}’.format(part_name))

p.SectionAssignment(offset =0.0, offsetField=’’, offsetType

=MIDDLE_SURFACE ,

region=p.sets[’Set -{}’.format(

part_name)

], sectionName=

section_name ,

thicknessAssignment=FROM_SECTION)

def instance_matrix(instance_name=’matrix -1’, model_name=’

Model -1’):

mdb.models[model_name]. rootAssembly.DatumCsysByDefault(

CARTESIAN)

mdb.models[model_name]. rootAssembly.Instance(dependent=ON ,

name=instance_name ,

part=mdb.

models[

model_name

].parts[’

matrix ’])

def instance_coh(instance_name=’coh -1’, coh1x =0.0, coh1y =0.0,

coh1z =0.0, model_name=’Model -1’):

mdb.models[model_name]. rootAssembly.Instance(

dependent=ON, name=instance_name , part=mdb.models[

model_name].parts[’coh’])

81

B.2. MODULE CODE

mdb.models[model_name]. rootAssembly.instances[

instance_name]. translate(

vector =(coh1x , coh1y , coh1z))

def instance_fiber(instance_name=’fiber -1’, fiber1x =0.0,

fiber1y =0.0, fiber1z =0.0, model_name=’Model -1’):

mdb.models[model_name]. rootAssembly.Instance(

dependent=ON, name=instance_name , part=mdb.models[

model_name].parts[’fiber ’])

mdb.models[model_name]. rootAssembly.instances[

instance_name]. translate(

vector =(fiber1x , fiber1y , fiber1z))

def translate_instance(instance_name , x, y=0.0, z=0.0,

model_name=’Model -1’):

mdb.models[model_name]. rootAssembly.translate(

instanceList =(instance_name ,), vector =(x, y, z))

def rotate_instance(instance_name , angle , axisDirectionX ,

axisDirectionY , axisDirectionZ , axisPointX , axisPointY ,

axisPointZ , model_name=’Model -1’):

mdb.models[model_name]. rootAssembly.rotate(angle=angle ,

axisDirection =(axisDirectionX , axisDirectionY ,

axisDirectionZ),

axisPoint =(

axisPointX ,

axisPointY ,

82

B.2. MODULE CODE

axisPointZ),

instanceList

=(

instance_name

,))

def create_tie(master_instance , master_surface , slave_instance

, slave_surface , model_name=’Model -1’):

tie_name = "{}.{}".format(slave_instance , slave_surface)

mdb.models[model_name].Tie(adjust=ON ,

master=mdb.models[model_name].

rootAssembly.instances[

master_instance]. surfaces[

master_surface],

name=tie_name ,

positionToleranceMethod=

COMPUTED ,

slave=mdb.models[model_name].

rootAssembly.instances[

slave_instance]. surfaces[

slave_surface],

thickness=ON ,

tieRotations=ON)

def create_step(step_name=’Step -1’, initial_increment =0.1,

max_num_increments =100000 , nonlinear_geometry=

83

B.2. MODULE CODE

True , previous_step_name=’Initial ’,

model_name=’Model -1’):

mdb.models[model_name]. StaticStep(initialInc=

initial_increment ,

maxNumInc=

max_num_increments ,

name=step_name ,

nlgeom=

nonlinear_geometry ,

previous=

previous_step_name)

def set_field_output_requests(model_name , request_name ,

variables):

"""

Set values for field output requests in Abaqus.

Args:

- model_name (str): Name of the model in mdb.

- request_name (str): Name of the field output request.

- variables (tuple): Tuple containing the variables for

field output.

"""

Create default Field Output Request , if it doesn ’t exist

if ’F-Output -1’ not in mdb.models[model_name].

fieldOutputRequests.keys():

mdb.models[model_name]. FieldOutputRequest(name=’F-

Output -1’,

variables =(’

84

B.2. MODULE CODE

S’, ’U’,

’RF’))

Create default History Output Request , if it doesn ’t

exist

if ’H-Output -1’ not in mdb.models[model_name].

historyOutputRequests.keys():

mdb.models[model_name]. HistoryOutputRequest(name=’H-

Output -1’,

variables

=(’U1’,

’U2’,

’U3’))

mdb.models[model_name]. fieldOutputRequests[request_name].

setValues(

variables=variables)

def combine_sets(model_name , combined_set_name , *set_tuples):

"""

Combines multiple sets into a single set in Abaqus.

Parameters:

- model_name: name of the model

- combined_set_name: name of the resulting combined set

- set_tuples: tuples containing (instance_name , set_name)

for all sets to be combined

"""

85

B.2. MODULE CODE

assembly = mdb.models[model_name]. rootAssembly

sets_to_combine = [assembly.allInstances[inst_name].sets[

set_name]

for inst_name , set_name in set_tuples]

assembly.SetByBoolean(name=combined_set_name , sets=tuple(

sets_to_combine))

def create_ysymm_bc(model_name , step_name , bc_name , set_name):

"""

Creates a Y-symmetric boundary condition for a specified

set.

Parameters:

- model_name: name of the model

- step_name: name of the step for which the BC is defined

- bc_name: name of the boundary condition

- set_name: name of the set to which the BC is applied

"""

mdb.models[model_name]. YsymmBC(createStepName=step_name ,

localCsys=None ,

name=bc_name ,

region=mdb.models[

model_name]. rootAssembly

.sets[set_name])

def create_xsymm_bc(model_name , step_name , bc_name , set_name):

86

B.2. MODULE CODE

"""

Creates an X-symmetric boundary condition for a specified

set.

Parameters:

- model_name: name of the model

- step_name: name of the step for which the BC is defined

- bc_name: name of the boundary condition

- set_name: name of the set to which the BC is applied

"""

mdb.models[model_name]. XsymmBC(createStepName=step_name ,

localCsys=None ,

name=bc_name ,

region=mdb.models[

model_name]. rootAssembly

.sets[set_name])

def create_no_rotate_bc(model_name , step_name , bc_name ,

set_name , ur1_value =0.0, ur2_value =0.0, ur3_value =0.0):

"""

Creates a displacement boundary condition with specified

rotational displacements.

Parameters:

- model_name: name of the model

- step_name: name of the step for which the BC is defined

- bc_name: name of the boundary condition

- set_name: name of the set to which the BC is applied

87

B.2. MODULE CODE

- ur1_value , ur2_value , ur3_value: Rotational

displacements around x, y, z respectively

"""

mdb.models[model_name]. DisplacementBC(amplitude=UNSET ,

createStepName=

step_name ,

distributionType=

UNIFORM ,

fieldName=’’,

fixed=OFF ,

localCsys=None ,

name=bc_name ,

region=mdb.models[

model_name].

rootAssembly.sets

[set_name],

u1=UNSET ,

u2=UNSET ,

u3=UNSET ,

ur1=ur1_value ,

ur2=ur2_value ,

ur3=ur3_value)

def zsymm_bc(model_name , step_name , bc_name , set_name):

"""

Apply Z-symmetric boundary condition to a specified set.

Parameters:

88

B.2. MODULE CODE

- model_name: Name of the model

- step_name: Name of the step in which BC should be

applied

- bc_name: Name for the boundary condition

- set_name: Name of the set to which BC should be applied

"""

mdb.models[model_name]. ZsymmBC(createStepName=step_name ,

localCsys=None ,

name=bc_name ,

region=mdb.models[

model_name]. rootAssembly

.sets[set_name])

def apply_displacement_bc(model_name , step_name , bc_name ,

instance_name , set_name , u1=UNSET , u2=UNSET , u3=UNSET , ur1=

UNSET , ur2=UNSET , ur3=UNSET):

"""

Apply Displacement boundary condition to a specified set

in a specified instance.

Parameters:

- model_name: Name of the model

- step_name: Name of the step in which BC should be

applied

- bc_name: Name for the boundary condition

- instance_name: Name of the instance where the set is

located

- set_name: Name of the set to which BC should be applied

89

B.2. MODULE CODE

- u1, u2, u3: Displacements in the X, Y, and Z directions

respectively

- ur1 , ur2 , ur3: Rotational displacements about X, Y, and

Z axes respectively

"""

region = mdb.models[model_name]. rootAssembly.instances[

instance_name].sets[set_name]

mdb.models[model_name]. DisplacementBC(amplitude=UNSET ,

createStepName=

step_name ,

distributionType=

UNIFORM ,

fieldName=’’,

fixed=OFF ,

localCsys=None ,

name=bc_name ,

region=region ,

u1=u1 , u2=u2 , u3=u3 ,

ur1=ur1 , ur2=ur2

, ur3=ur3)

def get_edges_from_surface(part , surface_name):

"""

Get edges associated with the specified surface in the

given part.

Parameters:

90

B.2. MODULE CODE

- part: Reference to the ABAQUS part.

- surface_name: Name of the surface in the part.

Returns:

- A list of edges associated with the surface.

"""

face_tuple = part.surfaces[surface_name].faces

edge_list = []

for face in face_tuple:

for edge_index in face.getEdges ():

edge = part.edges[edge_index]

edge_list.append(edge)

return edge_list

def get_edges_from_surfaces(part , surface_names):

"""

Get edges associated with a list of specified surfaces in

the given part.

Parameters:

- part: Reference to the ABAQUS part.

- surface_names: List of surface names in the part.

Returns:

- A list of edges associated with the surfaces.

"""

edge_list = []

for surface_name in surface_names:

edge_list.extend(get_edges_from_surface(part ,

91

B.2. MODULE CODE

surface_name))

return edge_list

def create_mesh(model_name , part_name , material_name , size ,

special_seed_size=None):

p = mdb.models[model_name].parts[part_name]

Seed the entire part with default size first

p.seedPart(size=size , deviationFactor =0.1, minSizeFactor

=0.1)

Determine the appropriate element types based on the

material name

if material_name == ’fiber’:

elem_types = (mesh.ElemType(elemCode=C3D8R ,

elemLibrary=STANDARD , secondOrderAccuracy=OFF ,

kinematicSplit=

AVERAGE_STRAIN ,

hourglassControl=

DEFAULT ,

distortionControl=DEFAULT)

,

mesh.ElemType(elemCode=C3D6 , elemLibrary

=STANDARD),

mesh.ElemType(elemCode=C3D4 , elemLibrary

=STANDARD))

if special_seed_size:

special_surfaces = [’fiber_coh_face ’]

special_edges = get_edges_from_surfaces(p,

92

B.2. MODULE CODE

special_surfaces)

p.seedEdgeBySize(constraint=FINER , deviationFactor

=0.1,

edges=special_edges ,

minSizeFactor =0.1, size=

special_seed_size)

elif material_name == ’matrix ’:

elem_types = (mesh.ElemType(elemCode=C3D8R ,

elemLibrary=STANDARD),

mesh.ElemType(elemCode=C3D6 , elemLibrary

=STANDARD),

mesh.ElemType(elemCode=C3D4 , elemLibrary

=STANDARD))

if special_seed_size:

special_surfaces = [

’bottom_matrix_coh_face ’, ’top_matrix_coh_face

’]

special_edges = get_edges_from_surfaces(p,

special_surfaces)

p.seedEdgeBySize(constraint=FINER , deviationFactor

=0.1,

edges=special_edges ,

minSizeFactor =0.1, size=

special_seed_size)

elif material_name == ’coh’:

elem_types = (mesh.ElemType(elemCode=COH3D8 ,

elemLibrary=STANDARD),

mesh.ElemType(elemCode=COH3D6 ,

elemLibrary=STANDARD),

mesh.ElemType(elemCode=UNKNOWN_TET ,

93

B.2. MODULE CODE

elemLibrary=STANDARD))

Set the element type

cells = p.cells [:]

pickedRegions = (cells ,)

p.setElementType(regions=pickedRegions , elemTypes=

elem_types)

Generate the mesh

p.generateMesh ()

def create_coh_mesh(model_name , part_name , size , surface_names

, special_surfaces , special_size):

p = mdb.models[model_name].parts[part_name]

Access the edges of the provided surfaces using the

helper function

edges_main = get_edges_from_surfaces(p, surface_names)

edges_special = get_edges_from_surfaces(p,

special_surfaces)

Mesh the edges

p.seedEdgeBySize(constraint=FINER , deviationFactor =0.1,

edges=edges_main , minSizeFactor =0.1, size

=size)

p.seedEdgeBySize(constraint=FINER , deviationFactor =0.1,

edges=edges_special , minSizeFactor =0.1,

size=special_size)

94

B.2. MODULE CODE

Set element types specific for ’coh’ material

elem_types = (mesh.ElemType(elemCode=COH3D8 , elemLibrary=

STANDARD),

mesh.ElemType(elemCode=COH3D6 , elemLibrary=

STANDARD),

mesh.ElemType(elemCode=UNKNOWN_TET ,

elemLibrary=STANDARD))

cells = p.cells [:]

pickedRegions = (cells ,)

p.setElementType(regions=pickedRegions , elemTypes=

elem_types)

p.seedPart(size=size , deviationFactor =0.1, minSizeFactor

=0.1)

p.generateMesh ()

def create_job(model_name , job_name=’Job -1’, description=’’,

memory =90,

numCpus=2, numDomains =2, numGPUs =1):

"""

Create a job in Abaqus.

Parameters:

- model_name: Name of the model.

- job_name: Name of the job. Default is ’Job -1’.

- description: Description for the job. Default is empty

string.

- memory: Memory allocation. Default is 90.

95

B.2. MODULE CODE

- numCpus: Number of CPUs. Default is 2.

- numDomains: Number of domains. Default is 2.

- numGPUs: Number of GPUs. Default is 1.

"""

Ensure the model assembly is updated

mdb.models[model_name]. rootAssembly.regenerate ()

Create the job

mdb.Job(atTime=None , contactPrint=OFF , description=

description , echoPrint=OFF ,

explicitPrecision=SINGLE , getMemoryFromAnalysis=

True , historyPrint=OFF ,

memory=memory , memoryUnits=PERCENTAGE , model=

model_name , modelPrint=OFF ,

multiprocessingMode=DEFAULT , name=job_name ,

nodalOutputPrecision=SINGLE ,

numCpus=numCpus , numDomains=numDomains , numGPUs=

numGPUs , queue=None ,

resultsFormat=ODB , scratch=’’, type=ANALYSIS ,

userSubroutine=’’,

waitHours =0, waitMinutes =0)

def submit_job(model_name , job_name):

"""

Regenerate the root assembly of the given model and submit

the specified job.

Then wait for the job to complete before returning.

96

B.2. MODULE CODE

Parameters:

- model_name: Name of the model.

- job_name: Name of the job to submit.

"""

mdb.models[model_name]. rootAssembly.regenerate ()

mdb.jobs[job_name]. submit(consistencyChecking=OFF)

mdb.jobs[job_name]. waitForCompletion ()

This block is executed only when this script is run directly

(not when it’s imported elsewhere)

if __name__ == "__main__":

print("Running my_module.py standalone")

print(function1 ())

print(function2 ())

97

References

[1] Y Benveniste. A new approach to the application of Mori-Tanaka’s theory in
composite materials. Mechanics of Materials, 6(2):147–157, 1987.

[2] Tsu Wei Chou, Seiichi Nomura, and Minoru Taya. A Self-Consistent Approach
to the Elastic Stiffness of Short-Fiber Composites. Journal of Composite Mate-
rials, 14(3):178–188, 7 1980.

[3] H. L. Cox. The elasticity and strength of paper and other fibrous materials.
British Journal of Applied Physics, 3(3):72–79, 1952.

[4] lene Di Francis and Thomas C Ward. The single-fibre pull-out test. 1: Review
and interpretation. Composites: Part A, 27:591–612, 1996.

[5] Bassem El Zoghbi. Modelling of Failure Mechanism in Unidirectional Carbon
Fiber-Reinforced Polyamide Composites Using Cohesive Zone Model. Interna-
tional Journal of Composite Materials, 9(1):16–23, 2019.

[6] B. D. Ellis, D. L. McDowell, and M. Zhou. Simulation of single fiber pullout
response with account of fiber morphology. Cement and Concrete Composites,
48:42–52, 2014.

[7] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion,
and related problems. In Collected Works of J. D. Eshelby, pages 209–229. 2007.

[8] I I Gol’denblat and V A Kopnov. Strength of glass-reinforced plastics in the
complex stress state. Polymer Mechanics, 1(2):54–59, 1965.

[9] Ge He, Yucheng Liu, T. E. Lacy, and M. F. Horstemeyer. A historical review of
the traditional methods and the internal state variable theory for modeling com-
posite materials. Mechanics of Advanced Materials and Structures, 29(18):2617–
2638, 2022.

98

References

[10] Carl T Herakovich. Mechanics of composites: A historical review, 2012.

[11] R. Hill. The elastic behaviour of a crystalline aggregate. Proceedings of the
Physical Society. Section A, 65(5):349–354, 1952.

[12] Mark F. Horstemeyer and Douglas J. Bammann. Historical review of inter-
nal state variable theory for inelasticity. International Journal of Plasticity,
26(9):1310–1334, 2010.

[13] Michael Hyer. Stress Analysis of Fiber-Reinforced Composite Materials. 1998.

[14] Ryan D. Jamison and Yu Lin Shen. Delamination analysis of metal–ceramic
multilayer coatings subject to nanoindentation. Surface and Coatings Technol-
ogy, 303:3–11, 2016.

[15] Yuanyuan Jia, Wenyi Yan, and Hong Yuan Liu. Carbon fibre pullout under the
influence of residual thermal stresses in polymer matrix composites. Computa-
tional Materials Science, 62:79–86, 2012.

[16] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of
materials with misfitting inclusions. Acta Metallurgica, 21(5):571–574, 1973.

[17] D J Mortell, D A Tanner, and C T Mccarthy. A virtual experimental approach
to microscale composites testing. 2017.

[18] M. J. Pitkethly and J B Doble. Characterizing the fibre/matrix interface of
carbon fibre-reinforced composites using a single fibre pull-out test. Composites,
21(5):389–395, 1990.

[19] Yiping Qiu and Peter Schwartz. A new method for study of the fiber-matrix
interface in composites: Single fiber pull-out from a microcomposite. Journal
of Adhesion Science and Technology, 5(9):741–756, 1991.

[20] B F Sørensen and H Lilholt. Fiber pull-out test and single fiber fragmentation
test - Analysis and modelling. In IOP Conference Series: Materials Science and
Engineering, volume 139, 2016.

[21] Ramesh Talreja. Stiffness properties of composite laminates with matrix crack-
ing and interior delamination. Engineering Fracture Mechanics, 25(5-6):751–762,
1986.

[22] Stephen W Tsai and Edward M. Wu. A General Theory of Strength for
Anisotropic Materials. Journal of Composite Materials, 5(1):58–80, 1971.

99

	Effect of Fiber Proximity on the Pullout Response: A Finite Element Study
	Recommended Citation

	List of Figures
	List of Tables
	Glossary
	Introduction
	Review of Related Literature
	Observable State Variable Theories
	Long Fiber Models
	Short Fiber Models
	Non-ISV Failure Theories

	Internal State Variable Theories

	Methodology
	Materials
	Matrix
	Fiber
	Cohesive elements
	Viscosity

	Model Setup
	Boundary Conditions
	Mesh Generation
	Solver Configuration

	Results
	Rule of Mixtures (ROM)
	Without cohesion
	With cohesion

	Fiber Analysis
	Single fiber
	Single vs Double
	Single vs Double vs Double without Cohesion

	Cohesive Properties
	Maximum Displacement
	Maximum Traction
	Thickness

	Embedded Fiber

	Conclusions
	Limitations of the Study
	Implications for Future Research

	Appendices
	S13 Contour Plots
	Parametric Python Code
	Parametric code for varying FVF
	Module Code

	References

