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ABSTRACT 

We report here on a unique, newly discovered, silica-rich ungrouped achondrite 

Northwest Africa 11575 (NWA 11575). NWA 11575 is one of four known silica-rich 

ungrouped achondrites, presenting evidence for igneous processes resulting in evolved 

compositions early in the history of the solar system. It is unique from the other silica-

rich ungrouped achondrites in that it has pyroxene compositional trends matching those 

of lunar samples and martian meteorites; contains quartz and potassium feldspar; and 

contains oxygen, hydrogen, and chromium isotopes that are similar to those of LL 

chondrites. Together, these four silica-rich ungrouped achondrites provide evidence for 

evolved compositions resulting from igneous processes on at least three separate bodies. 

NWA 11575 consists of two lithologies, the host or light lithology and the dark 

lithology. The dark lithology occurs as clasts within the light lithology, with a distinct 

contact between the lithologies. The mineralogy of the host lithology consists of 53.8% 

oligoclase, 34.1% pyroxene, 4.8% potassium feldspar, 3.8% quartz, and 2.6% apatite and 

merrillite, along with minor chromite, ilmenite, iron oxide, iron sulfide, and low-Ni iron. 
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The apatite is three times more abundant than the merrillite. The dark lithology consists 

of 70% groundmass and 30% pyroxenes but has a similar trachyandesitic to andesitic 

bulk composition. Apatite is present in some regions within the dark lithology but is not 

ubiquitous. The pyroxene compositional zoning trend for the light lithology consists of 

magnesian pigeonite, mantled by an augitic layer, and then rimmed by ferropigeonite.   

Numerous similarities between the host and dark lithologies, such as similar oxygen 

isotopic compositions, bulk compositions, and pyroxene trends, suggest that the host and 

dark lithology are derived from the same source, but differ in their cooling and 

crystallization histories.  

One possible interpretation is that the host and dark lithologies are lavas formed 

through extensive magmatic differentiation, possibly derived from a precursor of 

chondritic composition, which erupted on the surface of their parent body. The dark 

lithology cooled quickly forming a quenched glass with hopper pyroxenes. The later-

erupted material, perhaps with more overlying material to insulate the magma and 

provide for a slower cooling rate, cooled slowly enough to crystallize complexly zoned 

pyroxenes, feldspars, and a residual mesostasis of quartz, potassium feldspar, apatite, and 

minor phases.  Alternatively, the dark lithology could be an impact melt. Either process 

could have occurred on a volcanic parent body with oxygen isotopes similar to those of 

LL chondrites, or at some location on the LL-chondrite parent body itself. 
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1.0 Introduction 

Northwest Africa 11575 (NWA 11575) is classified as an ungrouped achondrite, 

because it is 1) higher in bulk SiO2 content than any other group of meteorites, 2) 

isotopically similar to ordinary chondrites, but displays clear igneous textures precluding 

it from being considered a chondrite, and 3) contains complex pyroxene zoning trends 

similar to martian and lunar samples. Three other silica-rich ungrouped achondrites have 

been studied, NWA 11119, Alma-A, and GRA 06128/9. The silica-rich ungrouped 

achondrites vary in their oxygen isotopic composition and have varying amounts of silica 

and alkalis, suggesting that they formed on different parent bodies. Furthermore, the 

crystallization ages of NWA 11119, Alma-A, and GRA 06128/9 are all between 4.568 

and 4.526 Ga, suggesting that igneous processes were producing silica-rich compositions 

(greater than 55 wt% SiO2) early in the history of the solar system. NWA 11575 is unique 

from the other ungrouped achondrites because it has a pyroxene zoning trend matching 

that of lunar and martian pyroxenes, contains quartz and potassium feldspar, and has an 

oxygen isotopic composition that is similar to that of LL chondrites. 

Northwest Africa 11119 (NWA 11119) is the most recently found of these felsic, 

ungrouped achondrites. It is also the oldest meteorite with evidence of extrusive, silica-

rich volcanism, with an Al-Mg crystallization age of 4564.8 ± 0.3 Ma. It contains the 

highest modal abundance of free silica, with 30% tridymite by volume, and is andesitic in 

composition, with 61.37 wt% silica and 0.93 wt% total alkalis. The mineralogy consists 

of 56% plagioclase feldspar, 30% tridymite, and 14% pyroxene (clinopyroxene and 

orthopyroxene). The oxygen isotopic composition matches that of the Ureilites 

(Srinivasan et al. 2018). 
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Alma-A is also thought to have originated from the ureilite parent body (UPB) on 

the basis of similar oxygen isotopic compositions and similar feldspar compositions to 

those of clasts thought to be remnants of melts from the UPB. Alma-A is similar in silica 

content to NWA 11119, with 60.07% silica, but contains significantly more total alkalis 

than NWA 11119, with 7 wt% Na2O + K2O. Alma-A has a trachyandesitic composition. 

The mineralogy consists of 70 vol% feldspars (zoned plagioclase and anorthoclase), 20 

vol% Ca-pyroxene, and 5 vol% low-Ca pyroxene. The Al-Mg age indicates the presence 

of Si-rich volcanism on the UPB 6.5 Ma after the formation of Ca-Al-rich inclusions 

(Bischoff et al., 2014).  

The third silica-rich ungrouped achondrite is Graves Nunataks 06128 and 06129 

(GRA 06128/9), which are paired ungrouped achondrites. The bulk composition is 

trachyandesitic to andesitic, with 52.2 to 57.8 wt% SiO2 and an average of 5.74 wt% total 

alkalis between the different analyses. The mineralogy includes sodium-rich plagioclase 

(oligoclase, >75%), olivine, and two pyroxenes. The oxygen isotopic composition 

matches that of the brachinites, which are olivine-rich primitive achondrites. It has been 

age-dated to 4.526 ± 0.06 Ga, and is thought to have been formed through partial melting 

of a chondritic composition with Na-rich feldspar and FeO-rich silicates. (Day et al., 

2009).  

NWA 11575, in comparison, is closest in bulk composition to the more silica-rich 

compositions presented for GRA 06128/9. NWA 11119 has significantly less alkalis than 

NWA 11575, and Alma-A is slightly more silica and alkali rich than NWA 11575. GRA 

06128/9, Alma-A, and NWA 11575 have crystallization ages between 4.56 and 4.52 Ga, 

although the age of NWA 11575 has not been determined. GRA 06128/9, Alma-A, and 
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NWA 11575 all contain chlorapatites, as well. While there are numerous similarities, 

there are also numerous differences between these meteorites, suggesting different 

origins for each of the meteorites. NWA 11575 is the only silica-rich ungrouped 

achondrite containing quartz and potassium feldspar. It also has pyroxene compositional 

trends matching that of lunar samples and martian meteorites. The oxygen isotopic values 

of NWA 11575 are similar to those of the LL chondrites, while Alma-A’s and NWA 

11119’s match those of the Ureilites, and GRA 06128/9’s match those of the Brachinites. 

This is strong evidence for igneous processes occurring on multiple bodies within the 

solar system from 4.568 to 4.526 Ga.  

2.0 Results 

2.1 Physical Characteristics of NWA 11575 

The main mass of NWA 11575, Figure 1, weighs 598 grams. The exterior of the 

sample (left and right) has a shiny, black fusion crust covering 80% of the surface. The 

interior, as seen on the broken surface (middle) and the saw-cut surface (upper right), is 

light in color with an aphanitic texture. On the saw-cut surface, a shock melt vein is 

visible, oriented diagonally from the upper left to the lower right corner. A crack is seen 

perpendicular to the shock melt vein, oriented top to bottom. The saw-cut also revealed 

two large dark-colored clasts, along with multiple smaller dark-colored clasts. The light 

lithology makes up greater than 95% of the material and surrounds the dark clasts. The 

dark clasts are also shown in Figure 2, the deposit sample at the University of New 

Mexico, from a more direct angle. Portions of the largest dark clast from within the 
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deposit sample were used in this study. Thin sections containing the light lithology and 

the shock melt vein were also obtained from the deposit sample.  

 

Figure 1. Main mass of NWA 11575 (©2018 Darryl Pitt / MMGM). The shiny, black fusion crust 

covers 80% of the surface of the main mass and is seen on the left and right, with a broken 

surface in the middle. A cut surface is in the upper right, which reveals two large dark-colored, 

angular clasts, and multiple smaller dark-colored clasts. The broken surface and the cut surface 

reveal the light-colored interior of NWA 11575. 

 

Figure 2. Cut surface of the deposit sample of NWA 11575 held at UNM. Two dark-colored 

clasts are apparent, with numerous smaller dark-colored clasts. A shock melt vein, approximately 

1 mm wide, is visible as the dark linear feature oriented from the top corner of the cut surface to 

just below the dark clast. 
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The contact between the dark clast and the light lithology appears sharp in hand 

sample. Backscatter electron (BSE) images, such as Figure 3, reveal that while the 

contact is sharp, the contact is not as linear as it appears in hand sample. In figure 3, a 

large pyroxene crystal within the dark lithology is cross-cut by the light lithology, labeled 

a. Figure 3 also reveals what appear to be clasts or pockets of dark lithology within the 

light lithology along the contact. The opposite, in which there is a pocket of light 

lithology within the dark lithology, is also visible in Figure 4. These pockets of material 

are just surface irregularities, perhaps vesicles, where the meteorite is cut at an angle that 

distorts the relationship between the two materials directly along the contact. There are 

clasts of dark lithology material further from the contact, however, which are likely to be 

true clasts.  

The morphological distinctions between the dark lithology pyroxenes and those of 

the light lithology are also evident in figure 3; the dark lithology pyroxenes are much 

more euhedral than the light lithology pyroxenes. The dark lithology also contains hopper 

pyroxenes, which are large euhedral crystals that formed very rapidly, and thus, failed to 

crystalize in the interior of the crystal. Compositional variations in the pyroxenes of the 

dark lithology occur amongst the larger pyroxenes and the smaller pyroxenes. 

Compositional zoning within the pyroxene crystals occurs near the edges and along 

cracks within the pyroxene crystals. Within the host lithology, the pyroxenes are much 

more distinctly zoned, with high contrast in BSE images, and the zoning occurs over a 

greater width within the crystal. The smaller pyroxene crystals within the host lithology 

tend to be ferropigeonite, while the larger crystals display the full range of chemical 

compositions present in NWA 11575’s pyroxenes.
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Figure 3. BSE image of the contact between the host lithology and the dark lithology. The dark lithology appears lighter in color and contains 

hopper pyroxenes. It is located in the upper third of the image. The light lithology contains more distinctly zoned pyroxenes surrounded by 

plagioclase and is in the lower two-thirds of the image. The contact is partially marked with yellow arrows. A pyroxene that has been cross-cut by 

the light lithology is labeled a. Labels b through e indicate areas of dark lithology within the host lithology. Dotted lines were used when the 

boundaries are indistinct.  
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Figure 4. BSE image showing apparent inclusions. The apparent inclusion is actually the result of 

surface irregularities along the contact that appear as clasts of material within the other lithology, 

due to the angle at which the meteorite has been cut. The dark lithology is present on the left, 

with the light lithology on the right. In the center of the image, labeled ai, an apparent inclusion 

of feldspar from the light lithology is present within the dark lithology.  

2.2 Mineralogy and Petrology of the Host Lithology 

The mineralogy of the host lithology consists of 53.8% oligoclase (by volume), 

34.1% pyroxene, 4.8% potassium feldspar, 3.8% quartz, and 2.6% apatite and merrillite, 

along with minor chromite, ilmenite, iron oxide, iron sulfide, and low-Ni iron.  Mineral 

abundances were determined using element maps and the thresholding tools in Fiji. 

Figure 5 displays two of the RGB element maps that were used to determine the modal 

abundances. Figure 5 also illustrates the ophitic texture present in the host lithology, 

which is defined by the pyroxene crystals being less numerous than the feldspar crystals, 

but with the pyroxene crystals typically being larger than the feldspar crystals. The 

pyroxene crystals tend to be 200-500 µm in size, but larger elongate crystals have been 

found up to 2 mm in length. NWA11575 is a single-pyroxene rock, but the pyroxenes 
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show igneous zoning through magnesian pigeonite, augite, and ferropigeonite 

compositions. Figure 6 contains two RGB element maps of a region within the host 

lithology that contains euhedral to subhedral, elongate pyroxene crystals, surrounded by 

smaller subhedral to anhedral feldspar crystals, providing another example of the ophitic 

texture present within the host lithology of NWA 11575. 

 

Figure 5. RGB element maps of a representative region of NWA 11575. The upper portion of the 

figure shows Al in red, Ca in green, and Fe in blue. Plagioclase feldspars are displayed in red, 

apatite and calcite veins in bright green, pyroxene in the fainter green color, and iron, iron oxides, 

or iron sulfides are shown in blue. The lower portion of the figure shows K in red, Na in green, 

and Mg in blue. Potassium feldspar feldspars appear in red, the plagioclase feldspars appear in 

green, and the pyroxenes appear in blue.  
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Figure 6. RGB element maps displaying an ophitic texture within the host lithology. On the left, 

Mg is displayed in red, Ca in green, and Al in blue. The magnesian pigeonite cores of the 

pyroxenes are displayed in red and the augite composition appears faintly green. Apatite and 

calcite veins are displayed in green, and the plagioclase feldspars are displayed in blue. In the 

figure to the right, Ca is displayed in red, P in green, and Fe in blue, resulting in the apatite being 

displayed in yellow, distinguishing the apatite from the calcite veins, which appear as a bright 

red. 

Compositional zoning within the pyroxene crystals occurs as magnesian pigeonite 

cores, mantled by augite, and finally rimmed by ferropigeonite. The cores are magnesian 

pigeonite, Fs28.4±4.4 Wo8.7±3.7, Fe/Mn 36±3, n=38. The intermediate composition is augite 

Fs30.1±11.6 Wo28.3±4.4, Fe/Mn=37±6, n=90, and the rims are ferropigeonite Fs58.1±4.6 

Wo14.3±2.3, Fe/Mn=48±3, n=98. For representative analyses, averages, and standard 

deviations of the pyroxene analyses, see Table 1 in the Appendix. Figure 7 displays the 

pyroxene quadrilateral for the host lithology. 

The pyroxene quadrilateral displays three distinct compositions of pyroxenes, 

with few intermediate analyses, suggesting that the crystallization of pyroxene occurred 

rapidly to record the changing chemical composition of the magma. The zoning appears 

abrupt, also supporting the interpretation of rapid crystallization and rapid magma 

composition change. Igneous zonation can typically be expected to occur as layers 

throughout the entire crystal, reminiscent of tree rings. In NWA 11575, however, the 



10 
 

zonation is often truncated, as shown in Figure 8.  Figure 8b shows one pyroxene crystal 

with the typical zonation on one end, and truncated zonation on the other end of the 

crystal. The truncated zonation is not consistent with chemical disequilibrium and is 

instead likely the result of a mechanical disturbance. The zonation within the crystal also 

suggests the degree and style of crystallization. The magnesian pigeonite core is euhedral, 

while the ferropigeonite rim extends out into what must have been open spaces along the 

mineral’s boundary, transitioning to a more anhedral grain boundary as the crystal 

continued to grow. This transition and the truncation of the pyroxene zonation suggests 

that an eruption occurred, which caused a mechanical disruption of the pyroxene crystals 

prior to crystallization of the ferroan pigeonite rims. This explains the anhedral nature of 

the ferropigeonite rims and the occurrence of many small ferropigeonite crystals.  

 

Figure 7. Pyroxene quadrilateral of host lithology pyroxenes. The zonation begins with 

magnesian pigeonite cores, rapidly progresses to augite, and then the rim composition is 

ferropigeonite. 
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Figure 8. RGB element maps of pyroxene crystals in the host lithology of NWA 11575. Ca is in 

red, Fe is in green, and Mg is in blue in both 8a and 8b. The large pyroxene crystal in fig. a and 

both crystals in fig. b show the truncated zonation. The upper crystal in fig. b is only truncated on 

the right side. The left side shows a normal, igneous zonation. 

In addition to the igneous zonation, exsolution and chemical zoning is present in 

the host lithology pyroxenes. Exsolution is present, although very rare, within the 

pyroxene crystals, as seen in Figure 9a. Zoning along cracks, possibly a result of 

alteration by a fluid, is common along the edges and cracks within pyroxene crystals, as 

shown in Figure 9b. 
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Figure 9. BSE images showing exsolution and zoning along cracks in pyroxenes. a) BSE image 

showing exsolution with a pyroxene in the host lithology. b) BSE image showing evidence of 

compositional zoning along cracks within the pyroxene crystal, which suggests alteration by a 

fluid after crystallization. 

The oligoclase composition is fairly consistent throughout the sample, with 

Ab81.5±2.2 An17.2±2.3 Or1.4±0.2, n=44. The potassium feldspar composition is fairly constant 

with 44 out of 49 analyses having between 12.03 wt% K2O and 16.62 wt% K2O, 

corresponding to Ab3.8±0.9 An0.4±0.3 Or95.8±1.1, n=44. The remaining five analyses range in 

K2O from 4.30 to 14.31 wt%. The composition for all of the potassium feldspar is 

Ab7.8±12.1 An0.5±0.3 Or91.8±12.2, n=49, which poorly represents the majority of potassium 

feldspar in NWA 11575, due to the extreme range in composition for the other five 

potassium feldspar analyses.  Figure 10 displays the feldspar ternary for feldspars within 

the host lithology and Table 2 in the Appendix presents the average, standard deviation, 

and representative electron microprobe analyses of feldspars within the host lithology. 

The oligoclase feldspar crystals do not exhibit compositional zoning and are subhedral to 

anhedral. The potassium feldspar occurs mostly as an exsolved phase from the oligoclase 

feldspar, and occurs only rarely with a distinct crystal habit, but is still associated with 

the oligoclase feldspar, as shown in figure 11.  

a b
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Figure 10. Feldspar ternary displaying the compositions of the potassium feldspar and oligoclase 

within the host lithology. 

 

Figure 11. BSE image of oligoclase with potassium feldspar exsolution. The oligoclase appears as 

the dark grey phase, while the potassium feldspar is the medium grey phase, labeled K-spar. Also 

apparent are numerous vesicles present within the potassium feldspar and oligoclase. Quartz is 

not present. 

K-spar

K-spar
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The potassium feldspar and quartz are also found in contact with each other, such 

as in figure 12, in which quartz is surrounded by potassium feldspar. The potassium 

feldspar and quartz also occur as a fine intergrowth, as illustrated in figure 13, with a 

micrographic texture. In the regions with the micrographic texture, apatite, low-Ni iron 

metal, iron-oxide, troilite, chromite, and ilmenite are also commonly found. These 

regions are interpreted to be disequilibrium assemblages representing the residual melt, or 

mesostasis, as a result of either eutectic crystallization or significant undercooling. The 

quartz is always found to be in contact with the potassium feldspar, although the 

potassium feldspar can be found without the quartz. The presence of quartz has been 

determined by X-ray diffraction (XRD). Due to the overlap of cristobalite and pigeonite 

peaks, the presence of cristobalite in addition to the quartz is uncertain.  

 

Figure 12. BSE image of quartz surrounded by potassium feldspar. The quartz and oligoclase 

appear the same dark grey color in BSE images. 

Apatite and merrillite within the host lithology account for 2.6% of the meteorite 

by volume. All of the apatite in the host lithology is chlorapatite, with 81% of the X-site 
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filled with Cl, equating to 5.55 ± 0.27 wt% and F content varies from below detection 

limits to 0.19 wt% F.  The F in the X-site only accounts for an additional 1%, with 18% 

thus being a missing component. OH accounts for only 5-6% of the missing component, 

with the remaining missing component likely comprised of O and a vacancy substitution, 

as observed in synthetic and natural Cl-rich apatites (Hovis and Harlov, 2010; Schettler et 

al., 2011; McCubbin and Ustunisik, 2018; Jones et al. 2014; Jones et al. 2016). The 

apatite does not display compositional zoning and is interpreted to be a primary mineral, 

suggested by the large size (200 microns) of some of the apatite grains and the euhedral  

 

Figure 13. Backscatter Electron image and RGB element maps of mesostasis. a) BSE image of 

the quartz and potassium feldspar intergrowth. b) Potassium feldspar and quartz intergrowth is 

displayed with Si in red and K in green. c) Apatite and calcite veins are displayed in green. Na is 

displayed in blue, showing the Na-feldspar core in the euhedral potassium feldspar crystal near 

the center. d) Ilmenite is shown in light blue, and troilite is shown in orange.  
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crystal habit sometimes observed. The crystal habit of the apatite ranges from euhedral 

and anhedral. Apatite is more abundant than merrillite by a factor of three. The merrillite 

and apatite occur as individual grains, except in at least one case where the merrillite and 

apatite are found within the same crystal.  Table 3 in the appendix contains representative 

electron microprobe analyses of apatite from within the host lithology, as well as the 

average and standard deviation.  Figure 14 is a ternary diagram showing the Cl-F-OH 

composition of the apatite within the host lithology, as well as the compositions of 

apatites from H, L, and LL ordinary chondrites, and GRA 06128/9. The apatite is similar 

in composition to the ordinary chondrites and GRA 06128/9 but contains less fluorine. 

The apatite appears often in association with the disequilibrium assemblages but appears 

to be ubiquitous throughout the light lithology. The apatite ranges in size from a micron 

to over 200 microns and is often acicular. Figure 15 suggests that the apatite crystallized 

after the plagioclase. The apatite sizes form distinct groups, with a small percentage of 

apatite crystals on the order of 100 microns, and the majority being small apatites, on the 

order of a few microns. The smaller apatites seem to occur within the disequilibrium 

assemblages, suggesting that they may have formed later than the larger apatites. Further 

study is needed to ascertain whether or not there are two populations of apatites that 

crystallized at different times. Figure 15 shows one of the larger apatites that is not 

surrounded by the potassium feldspar silica intergrowth. Instead, it is next to a euhedral 

feldspar and is in contact with several ferropigeonites. Figure 16 shows a BSE and RGB 

element map of an apatite crystal that is surrounded by the potassium feldspar and quartz 

intergrowth. Also present is an iron phase and ilmenite, located within the potassium 

feldspar and quartz intergrowth.  
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Figure 14. Cl-F-OH- ternary diagram of NWA 11575 host lithology apatites and apatites from 

ordinary chondrites and GRA 06128/9. The OH- component is calculated by OH-=(1-Cl-F) with 

Cl and F being measured in formula units. Data for the H chondrites is from Jones et al. (2016). 

Data for the L chondrites is from Lewis & Jones (2016). Data from the LL chondrites is from 

Jones et al. (2014), and data from GRA06128/9 is from Shearer et al. (2011).  

 

Figure 15. BSE image and RGB element maps of a large apatite within the host lithology. The 

apatite is approximately 200 microns x 100 microns. The feldspar is the dark grey phase in BSE, 

and the apatite is best identifiable in the RGB maps showing Cl or Ca. Potassium feldspar is 

present in the upper right RGB map and is displayed in red.  
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Two apatite crystals and one merrillite crystal were analyzed for H2O content and 

δD using nanoSIMS. The apatite crystals contained 944 and 1098 ppm H2O, and the δD 

measured +87±110‰ and -173±218‰. The merrillite contained 1773 ppm and the δD 

value measured +23±76‰. Figure 17 shows δD ‰ values for apatite and merrillite from 

NWA 11575, along with the values from Jupiter, martian meteorites, bulk Earth, 

carbonaceous chondrites, and ordinary chondrites. The δD values overlap with ordinary 

and carbonaceous chondrites, Vesta, and samples from Earth. It has been suggested that 

the Earth’s source of water could have been hydrous CM chondrites (Sharp, 2018), which 

could be the case for NWA 11575, because the δD of NWA 11575 apatite and merrillite 

are similar to the bulk Earth values. This is assuming that NWA 11575 formed within the 

snow-line. If we assume that NWA 11575 formed outside of the snow line, it would 

simply represent the composition of the water in the region where NWA 11575 formed.  

 

Figure 16. Apatite located within a region of silica and potassium feldspar intergrowths. a) BSE 

image. b) RGB element map with Ca in red, P in green, and Si in blue. The apatite appears in 

yellow and the quartz in blue. c) RGB element map showing Fe in red, Ti in green, and P in blue. 

The apatite appears in blue, pyroxene and iron phases in red, and ilmenite appears in a yellow-

green color. d) RGB element map with Cl in red, Si in green, and K in blue. This shows the 

intergrowth of the potassium feldspar and quartz.  
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Figure 17. Comparison of δD‰ of NWA 11575 apatite and merrillite with other planetary bodies. 

The range of hydrogen isotopic compositions are shown for apatites from martian meteorites, 

carbonaceous chondrites, ordinary chondrites, Vesta, and Earth. The data for Jupiter and the data 

from NWA 11575 are represented by the value and the 1σ and 2σ error, respectively. Data from 

Sharp (2017), Robert et al. (2000), Mahaffy et al., (1998), and Hallis (2016). 

2.3 Mineralogy and Petrology of the Dark Clast 

The dark lithology consists of 70% groundmass and 30% pyroxene, with trace 

amounts of low Ni iron and iron oxides (less than 1% combined). Apatite is also present 

within the dark lithology but is not ubiquitous, and thus the abundance has not been 

determined. Tables 4, 5, and 6 in the appendix contain representative analyses, averages, 

and standard deviations for analyses of the groundmass, pyroxenes, and apatites from the 

dark lithology. 

The pyroxenes occur as two different morphologies: 1) large pyroxenes 

approximately 200 microns or greater in diameter, with a hopper morphology or 2) 

smaller, euhedral pyroxene crystals, approximately 50 microns in diameter. Both 

morphologies of pyroxene crystals appear to be zoned near the edges of the crystal, as is 

evident in Figure 18. 
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Figure 18. Backscatter electron image of the pyroxenes within the dark lithology of NWA 11575. 

The three larger pyroxenes in the center of the image are hopper pyroxenes, where the interior of 

the crystals contains groundmass, because the crystal formed very rapidly and the interior did not 

fully crystallize. The other pyroxenes are significantly smaller. Both large and small pyroxenes 

show compositional zoning just near the edge of the crystals. 

The compositional trend of the pyroxenes in the dark lithology is very similar to 

that of the light lithology (see Figure 19). However, the compositional trend did not 

advance to the ferropigeonite composition, and the change in composition occurs 

between the large and small pyroxenes. The large hopper pyroxenes are magnesian 

pigeonite, while the smaller pyroxenes are augitic. A transect across one of the large 

hopper pyroxenes revealed no compositional zoning, with an average composition of 

Wo(5.8±0.3), Fs(26.2±0.9), with seven analyses across the pyroxene crystal. The pyroxene 

compositions within the dark lithology are magnesian pigeonite Wo(8.1±4.5), Fs(27.1±2.8), 

Fe/Mn 37±2, n= 34, and augite Wo(31.0±3.7), Fs(29.1±7.6), Fe/Mn 37±4, n=53. 
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Figure 19. Pyroxene quadrilateral comparing the dark and host lithologies’ pyroxenes 

compositions. The dark lithology pyroxenes show a compositional trend between the large hopper 

pyroxenes and the small pyroxenes, with the large pyroxene compositions matching that of the 

host lithology pyroxenes’ cores (magnesian pigeonite). The small pyroxenes within the dark 

lithology are augite. 

The groundmass is similar in composition to feldspar, with high SiO2 (62.06 

wt%), Al2O3 (15.12 wt%), and Na2O (8.67 wt%), but also contains an average of 7.28 

wt% FeO. The average and standard deviation of analyses of the groundmass can be 

found in Table 4 in the Appendix. The groundmass is interpreted to be a quenched glass, 

as is supported by the quench texture seen in figure 20, showing unequilibrated olivine 

within the groundmass. The apatite within the dark lithology is also chlorapatite. It was 

found within the dark lithology near the contact between the host and dark lithologies, 

but was not found in a larger thin section of the dark lithology. Because the apatite is not 

ubiquitous within the dark lithology, more work is required to determine the abundance 

of this phase and the connection between the apatite within the host and dark lithologies. 

Apatite is typically one of the last phases to crystalize, so its presence within the dark 

lithology is unexpected, since the dark lithology contains only euhedral pyroxenes and 
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the quenched groundmass. Figure 21 is a BSE image of chlorapatite within the dark 

lithology.  

 

Figure 20. BSE image of the groundmass within the dark lithology. The bright phase in the dark 

grey phase (groundmass) is the unequilibrated olivine. The medium grey phase is pyroxene. 

 

Figure 21. BSE image of an apatite crystal within the dark lithology, labeled Ap.  
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2.4 Fe/Mn of Pyroxenes from the Host and Dark Lithologies 

Fe/Mn ratios within pyroxenes from the host lithology range from 36±3 in the 

magnesian pigeonite cores, to 37±6 in the augitic mantles, to 48±3 for the ferropigeonite 

rims. The Fe/Mn ratios of the pyroxenes within the dark lithology are on average 37±2 

for the magnesian pigeonite and 37±4 for the augite. The host lithology shows a greater 

range in Fe/Mn ratios, as can be seen in Figure 22, a plot of Fe versus Mn (in atomic 

formula units). Additionally, the host and the dark lithology plot along the same line, 

which plots in between that of Mars, Earth, and the Moon. This suggests that the host and 

dark lithologies are derived from the same parent body, but the dark lithology pyroxene 

compositions did not evolve to the ferropigeonite composition that is responsible for the 

higher Fe/Mn ratios within the host lithology. 

 

Figure 22. Fe2+ versus Mn of pyroxenes within the host and dark lithologies of NWA 11575, 

along with those of pyroxenes from Earth, Moon, Mars, and Vesta (after Papike et al., 2009). Fe 

and Mn are presented in atomic formula units and have been corrected for the presence of Fe3+, as 

described by Droop (1987). The trendline presented for NWA 11575 accounts for all data points 

from the host and dark lithologies. 
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2.5 Bulk Compositions of the Host and Dark Lithologies 

The shock melt vein, which runs through the host lithology, represents the bulk 

lithology’s composition assuming that all of the phases present in the host lithology 

melted at the same rate and were incorporated in the melt vein in the ratios that were 

present within the host lithology. This assumes complete melting along the shock melt 

vein. Another assumption is that the shock melt vein did not incorporate any dark 

lithology material. The shock melt vein analyses are presented in Table 6 in the 

Appendix. The bulk composition of the host lithology was also determined using 

microprobe analyses for all major phases, along with their abundances and assumed 

average density. The same approach was used for determining the bulk composition of 

the dark lithology. The bulk composition is represented on the total-alkalis versus silica 

(TAS) diagram, figure 23, and in Table 7 in the appendix. The TAS diagram is utilized in 

igneous petrology to classify extrusive igneous rocks and can be used to describe the 

degree of chemical evolution of an igneous rock (Le Bas et al., 1986). The composition 

of the light lithology plots within the andesite field, with 58.70±0.94 wt% SiO2, 

4.82±0.20 wt% Na2O, and 0.77±0.21 wt% K2O. The composition of the melt vein is 

slightly higher in both silica and alkalis, with 60.65±1.30 wt% SiO2, 6.27±0.47 wt% 

Na2O, and 0.61±0.17 wt% K2O, which may be a result of melting a higher proportion of 

feldspars relative to the pyroxenes within the shock vein. The composition of the dark 

lithology is within error of the light lithology melt vein, and slightly more silica- and 

alkali-rich than the bulk composition of the host lithology, with 60.41±1.32 wt% SiO2, 

6.36±0.49 wt% Na2O, and 0.16±0.03 wt% K2O. 
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Figure 23. Total-alkalis versus silica diagram showing the bulk composition of the host and dark 

lithologies of NWA 11575 (after Le Bas et al., 1986). Also shown on the diagram are the average 

pyroxene composition and the average composition of the groundmass within the dark lithology, 

as well as a tie-line between the two phases. The bulk composition of the dark lithology plots 

within error of the tie-line. The light lithology composition is plotted in yellow, and the melt vein 

composition is plotted in orange. 

2.6 Stable Isotope Geochemistry of the Host and Dark Lithologies 

Oxygen isotopic analyses of acid-washed bulk rock samples of NWA 11575’s 

host lithology resulted in an average δ18O of 5.449±0.310‰, an average δ17O of 

4.063±0.165‰, and an average ∆17O of 1.186±0.004‰ out of six analyses. Analyses 

from the non-acid-treated dark lithology material resulted in an average δ18O of 5.377‰ 

± 0.154, an average δ17O of 4.003‰ ± 0.083, and an average ∆17O of 1.164‰ ± 0.005 out 

of four analyses. The slopes of the linear trendlines produced by these data are 0.531 for 

the light lithology and 0.540 for the dark lithology, as demonstrated in Figure 24, a triple 

oxygen diagram. Figure 24 shows that NWA 11575 plots in the same field as LL 
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chondrites. The average values for LL chondrites are δ18O = 5.026‰ ± 0.2303, δ17O = 

3.869‰ ± 0.166, and ∆17O = 1.255‰ ± 0.117, with a trend line slope of 0.511 (Clayton 

et al., 1991). NWA 11575 occupies the same space on a triple oxygen diagram, with 

remarkably similar values for ∆17O and the slope of the trend line, suggesting that NWA 

11575 formed in the same isotopic reservoir as the LL chondrites. This also suggests that 

NWA 11575 may share a genetic link with LL chondrites, perhaps being derived from 

the LL chondrite parent body. The similar oxygen isotopic ratios between the light and 

dark lithologies also suggests that they share the same source material and the dark 

lithology is not a foreign xenolith. 

Chromium isotopes are useful in identifying early-formed heterogeneities, and 

thus genetic links, because manganese-52 decays into chromium-53 with a half-life of 3.7 

± 0.4 my, and thus any heterogeneities in the 53Cr/52Cr must have been established in the 

first 20-26 my after nucleosynthesis of 53Mn (Righter et al., 2006). 54-Chromium is 

stable. The bulk chromium stable isotope ratios for the host lithology of NWA 11575 are 

ε53Cr = +0.23 ± 0.06 and ε54Cr = -0.29 ± 0.09. The ε54Cr of NWA 11575 is similar to 

those of ordinary chondrites, particularly the L and LL chondrites. Warren (2011a, 

2011b) noticed a bimodality between the ε54Cr and ∆17O values of planetary materials, 

such as is shown in figure 25, and he proposed that this is either a result of heterogeneous 

accretion of materials within the protoplanetary disk or a result of isotopic differences 

between the inner and outer solar system during planetary formation. However, 

regardless of whether it does represent a divide between the inner and outer solar system, 

the bimodality differentiates between carbonaceous and non-carbonaceous materials 

(Warren, 2011b). Furthermore, the agreement of the chromium and oxygen isotopic  
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Figure 24. Triple oxygen diagrams showing the analyses from NWA 11575’s host and dark lithologies. Also shown are analyses of the ordinary 

chondrites (Clayton et al., 1991). The left portion of the diagram shows the location of the ordinary chondrite fields relative to other analyzed 

meteorite groups or bodies (modified from Sharp et al., 2018). The equations for the lines of best fit for the host and dark lithologies are shown in 

the red and green boxes, respectively.  The TFL line is the Terrestrial Fractionation Line, along which all samples from the earth and the moon 

plot. 
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systems strengthens the argument that NWA 11575 formed in the same isotopic reservoir 

as the LL chondrites. 

 

Figure 25. ∆17O versus ε54Cr of planetary materials. The bimodality in oxygen and chromium 

isotopic compositions can be seen between the carbonaceous chondrites and ureilites, HEDs, 

ordinary chondrites, the Earth, the Moon, Mars, Enstatite chondrites, aubrites, angrites, and R 

chondrites. The bimodality has been proposed to have resulted from formation within the inner 

and outer solar system, with the carbonaceous chondrites being formed in the outer solar system 

and the other grouping to have formed in the inner solar system. Figure modified from Warren, 

(2011a). 

2.7 Rare Earth Elements 

Rare earth element (REE) patterns were obtained for the bulk light lithology and 

the bulk dark lithology from raster analyses using Laser Ablative Inductively Coupled 

Mass Spectrometry (LA-ICP-MS). The analyses, normalized to chondritic values, can be 

seen in figure 26. (La/Lu)N is 1.22 for the light lithology, and the dark lithology has a 

(La/Lu)N of 1.17. These values indicate negative slopes for the light and dark lithologies’ 
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REE patterns, and thus are indicative of slight LREE enrichment and HREE depletion. In 

comparison to the other silica-rich ungrouped achondrites, NWA 11575 has a slight 

negative slope, comparable to that of GRA 06128/9, while NWA 11119 and Alma-A 

both show positive slopes. The REE patterns for NWA 11575 show elevated 

concentrations from those of the ordinary chondrites, which can be expected for a liquid 

that has undergone significant fractional crystallization. The host and dark lithologies 

both have a negative europium anomaly. The host lithology has a negative europium 

anomaly of 0.57, and the dark lithology has a negative europium anomaly of 0.84. GRA 

06128/9, Alma-A, and NWA 11119 all have positive europium anomalies, as can be 

expected for a rock containing significant amounts of plagioclase.  

The negative europium anomaly in the whole rock data for the light and dark 

lithologies could suggest that there was removal of plagioclase from the bulk rock. The 

Eu2+ substitutes for Ca2+ in the plagioclase structure, due to having a similar size and 

charge, so plagioclase carries the positive europium anomaly. However, if significant 

amounts of plagioclase were removed, the bulk rock could still have a negative europium 

anomaly. This could explain the lack of zoning in the plagioclase crystals, as perhaps the 

early-formed plagioclase crystals, which likely would have been rich in Ca, were 

removed. 
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Figure 26. Rare Earth Element analyses of NWA 11575, the silica rich ungrouped achondrites, 

and ordinary chondrites. For the silica-rich ungrouped achondrites and the ordinary chondrites, 

references are listed in parentheses. 

Ni and Co are both highly compatible elements and a depletion in these elements 

suggests a high degree of fractionation. CI chondrites contain on average 10640 ppm Ni 

and 502 ppm Co, to produce a Ni/Co ratio of 21.2 (Lodders, 2003). The Ni abundance in 

NWA 11575 is 5 ppm Ni, while the Co abundance is 13 ppm. The Ni/Co of the bulk host 

lithology is 0.40. The concentrations of Ni and Co are both depleted compared to the 

chondritic values, but Ni is more depleted than Co. The ratios suggest that NWA 11575 

has lost a significant amount of metal, as the Ni would partition into the metal at greater 

rates than the Co. 

The magnesium number (Mg#) for the bulk light lithology is 41.3 ±2.1 and for the 

dark lithology, the Mg# is 44.66 ± 1.44. These values are considered low Mg#’s, 

suggesting a moderate degree of fractionation, as can be expected with a higher SiO2 

content. 
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3.0 Discussion 

The bulk compositions of the four chemically evolved ungrouped achondrites are 

plotted in figure 27, a total alkalis vs silica diagram. The similarities in composition 

between NWA 11575, GRA 06128/9, and Alma-A are apparent, while NWA 11119 is 

more silica-rich and alkali-poor. NWA 11119, GRA 06128/9, and Alma-A all have 

ancient crystallization ages, ranging from 4.568 to 4.526 Ga (Srinivasan et al., 2018; Day 

et al., 2009; Bischoff et al., 2014). The crystallization age of NWA 11575 has not been 

determined yet, but is expected to be similarly ancient, since melting from radiogenic 

heating and impacts would have been more likely within the first 1.5-2.5 Ma after the 

formation of CAIs, and thus more likely to produce significant melting (Sahijpal et al., 

2007; Weiss and Elkins-Tanton, 2013). The differences in bulk composition and 

crystallization ages weakly suggest that igneous processes resulting in evolved 

compositions were happening on more than one body. The oxygen isotopic compositions 

of the four silica-rich ungrouped achondrites, which are presented in figure 28, further 

suggest that these ungrouped achondrites were formed on different bodies. Alma-A and 

NWA 11119 both have oxygen isotopic compositions that plot within the Ureilite field. 

GRA 06128/9 plots within the Brachinite field, and NWA 11575 plots within the LL 

chondrite field. This suggests at least three separate bodies underwent significant heating 

early in the history of the solar system, which resulted in chemically evolved 

compositions. 



32 
 

 

Figure 27. Total alkali vs. silica diagram showing the bulk composition of NWA 11575, GRA 

06128/9, NWA 11119, and Alma-A (after Le Bas et al., 1986). 

 

Figure 28. Triple oxygen isotope diagram, showing the distribution in δ17O and δ18O of NWA 

11575, GRA 06128/9, Alma-A, and NWA 11119. Data from Day et al. (2009), Srinivasan et al 

(2018), and Bischoff et al. (2014). 
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3.1 Pyroxene Compositions 

One of the ways in which NWA 11575 is unique from the other silica-rich 

ungrouped achondrites, is the unusual pyroxene compositional trend. It is similar to lunar 

samples and martian meteorites, as shown in Figure 29, a series of pyroxene quadrilateral 

diagrams in which the pyroxenes all have magnesian pigeonite cores, augite mantles, and 

ferropigeonite rims. Wadhwa et al., (1998) proposed that the trend is a result of first 

crystallizing the magnesian pigeonite cores, followed by the augite mantles as a result of 

plagioclase not having begun to crystalize. The composition then shifts to the ferroan 

pigeonite composition once the plagioclase begins to crystallize. Also noteworthy is that 

the plots (figure 30) showing TiO2 wt% versus Al2O3 wt% of pigeonite and augite within 

NWA 11575 and EETA79001B, a martian meteorite with similar pyroxene 

compositional trends, are remarkably similar. Mikouchi et al. (1999) explain the 

pyroxene quadrilateral trend and the TiO2 wt% versus Al2O3 wt% trend to be a result of 

rapid, disequilibrium crystallization from an undercooled magma. The overall lack of 

exsolution lamellae in the pyroxene crystals is also consistent with a magma that 

experienced undercooling (Mikouchi et al., 1999). 

3.2 Host and Dark Lithology Relationship 

The similarities in pyroxene compositions, bulk compositions, Fe/Mn ratios, and 

oxygen isotopic compositions of the two lithologies strongly suggest that the two 

lithologies were both derived from the same source and have undergone different cooling 

and evolution histories. The dark lithology must have formed first, due to the angular, 

clastic nature of the material embedded within the light lithology, which makes up the 

bulk of the rock. This suggests that the dark lithology formed earlier and rapidly cooled 
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Figure 29. Pyroxene quadrilaterals of NWA 11575 and martian and lunar samples. a) Host lithology of NWA 11575 b) Martian Shergottite Queen 

Alexandra Range 94201 (QUE 94201) c) Martian meteorite EETA79001B d) Lunar samples 12075, 15499, and 15058, shown in green, and e) 

Lunar meteorite Northeast Africa 003-A. All show a trend of a magnesian pigeonite core, augite mantle, followed by a ferropigeonite rim. Figures 

from Karner et al. (2006), Haloda et al. (2009), McKay et al. (1996) and Mikouchi et al (1999). 
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Figure 30. Plots of TiO2 versus Al2O3 in wt% for NWA 11575 (upper) and EETA79001B 

(lower). The trend is remarkably similar between the two, with the pigeonite core trending 

towards higher Al2O3 and slightly higher TiO2, followed by the augitic core composition. The 

ferropigeonite rim drops to a low Al2O3 with varying TiO2 wt%. Figure for EETA79001B from 

Mikouchi et al., (1999). 
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to form a lithology consisting largely of a quenched groundmass and euhedral pyroxenes. 

The dark lithology is likely a chill margin of the same or similar erupted material that 

crystallized to form the host material. A likely formation sequence begins with the 

differentiation of a possibly chondritic source to form the evolved trachyandesitic 

magma. The early erupted material cools quickly on the margins of the flow. As the 

eruption continues, the fresh magma causes the more brittle, chill margin material to 

fracture and break up. The chill margin material could easily be fragmented and 

incorporated into the more recently erupted host material. The timing of these events, 

which could be determined through crystallization ages is not yet known. 

 Alternatively, if the magma contained significant volatiles, a more explosive 

eruption could cause lava to be erupted into the air. This could result in angular, 

quenched fragments, such as in the dark lithology. The later-erupted material may entrain 

the dark lithology fragments and cool more slowly. 

 The final possiblity is that the dark lithology material is simply an impact melt 

formed from a magma that crystallized and formed a lithology similar in composition to 

the host lithology. The impact could have melted the prior material, forming the dark 

lithology material. A later eruption, perhaps spurred by the impact, could have entrained 

the now quenched impact melt material. 

3.3 Possible Origin of NWA 11575 

The oxygen, hydrogen, and chromium isotopic compositions of NWA 11575 are 

similar to those of the LL chondrites. This could suggest a genetic link with ordinary 

chondrites, or that NWA 11575 formed within the same isotopic reservoir. It’s possible 
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that NWA 11575 could have formed on the LL chondrite parent body, or another similar 

body within the same isotopic reservoir. This is supported by one-bar partial melting 

experiments in which Jurewicz et al. (1995) produced an andesitic melt from an LL 

chondrite, Saint Severin. The resulting composition contained 58 wt% SiO2, which is 

similar to the silica content of NWA 11575, 58.70±0.94 wt% SiO2. Figure 31 illustrates 

how the removal of olivine via fractional crystallization from an ordinary chondrite bulk 

composition could result in the bulk composition of NWA 11575. This plot is beneficial 

in examining how the composition of the melt would change with removal of olivine 

 

Figure 31. Plot of Al/Si versus Mg/Si modeling the derivation of the bulk composition of NWA 

11575 from removal of olivine from an LL chondrite composition. The LL chondrite bulk 

composition plots in between the bulk composition of NWA 11575 and an olivine composition 

from an R chondrite, Rumuruti. The three points form a line, suggesting that the removal of 

olivine would drive the composition towards the bulk composition of NWA 11575. The olivine 

compositions from LL chondrites of varying petrologic types plot slightly higher on the y-axis. It 

is important to note, however, that NWA 11575 does not contain any olivine, so the olivine 

composition that could have been removed from the parent body’s bulk composition is not 

known. Data from Wasson and Kallemeyn (1988), Schulze et al. (1994), McCoy et al. (1990), 

and Bhandari et al. (2005). 
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crystals from an LL chondrite-like composition, because Mg, Al, and Si account for the 

pyroxenes and feldspars, which make up the majority of NWA 11575. Given that NWA 

11575 does not contain any olivine, it is also reasonable to consider the removal of 

olivine as the driving factor for changing the composition of the melt. However, due to 

the fact that NWA 11575 does not contain any olivine, the composition of the olivine that 

could have been removed is not known. Thus, it is reasonable to consider multiple olivine 

compositions, including those included in figure 31, which are olivine compositions from 

LL chondrites with varying petrologic type and an olivine composition from an R 

chondrite. 

Multiple models exist for the parent body of the LL chondrites, including the 

single parent body model, models involving multiple parent bodies, and models invoking 

incremental accretion. The original single parent body model proposed that all the 

chondrites and achondrites formed on a single parent body approximately the size of a 

small moon that was partially differentiated, with a metallic core, an igneous silicate 

layer, and a chondritic crust (Wood, 1958; Weiss & Elkins-Tanton, 2013). However, 

oxygen isotopes proved the single parent meteorite body model to be invalid, and models 

involving multiple parent bodies grew in favorability (Clayton et al., 1976; Weiss & 

Elkins-Tanton, 2013). The oxygen isotopic evidence showed that the different meteorites 

had isotopic differences that were not possible through isotopic fractionations, but rather 

reflect formation from different oxygen isotopic reservoirs within a heterogenous solar 

nebula (Clayton et al., 1976). A variation on the single parent body model is the onion 

shell model, in which chondrites of varying petrologic types result from internal heating, 
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with the petrologic type-6 ordinary chondrites located in the interior of the unmelted 

chondritic parent body (Miyamoto et al., 1981).  

Alternatively, the multiple parent body models allow for varying degrees of 

melting and differentiation on different parent bodies, with unmelted chondritic bodies, 

partially melted bodies, and fully differentiated bodies. Primitive achondrites, which are 

partially melted residues that often retain oxygen isotopic signatures or relict chondrules 

from the parent body, suggest that on some chondritic bodies melting and differentiation 

occurred to a significant extent (Weisberg et al., 2006; Weiss & Elkins-Tanton, 2013). 

Additionally, parent bodies could have undergone complete silicate melting, but still 

retain an unmelted chondritic crust (Anders & Goles, 1961; Weiss & Elkins-Tanton, 

2013). Additionally, the body from which NWA 11575 possibly originated could have 

been fully melted and differentiated, without an unmelted chondritic crust. Figure 32 

shows three ideas for the parent body of NWA 11575, based off of an unmelted 

chondritic model similar to the onion shell model (Miyamoto et al., 1981), the partially 

differentiated body with a chondritic crust (Elkins-Tanton, 2011; Weiss and Elkins-

Tanton, 2013) and a fully melted body (Mason, 1967; Anders & Goles, 1961, Sahijpal et 

al., 2007; Hevey & Sanders, 2006), but with the addition of one or two magmatic 

differentiation events that could allow for a silica-rich composition like that of NWA 

11575.  

Building off of the single parent body model, the chondritic model, presented on 

the left, consists of an unmelted body similar in composition to LL chondrites, which has 

been impacted and locally melted. The regions of localized melt would provide a heat 

source for thermal metamorphism of the underlying crustal material, resulting in 
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petrologic types 7-3 with a decrease in petrologic type further from the heat source. The 

regions closest to the melt would have the highest petrologic type, and the regions 

furthest from the impact melt would remain completely unmelted, with a petrologic type 

of 3. This model, however, does not account for a method of fractionating or 

differentiating the magma to produce an evolved, silica-rich composition, such as is 

evident in NWA 11575. 

 

Figure 32 Parent body models for NWA 11575. Three parent body models are displayed in this 

image. The unmelted, chondritic model is presented on the left, which invokes impact melting as 

the method of producing a melt from an ordinary chondrite body. In the middle, the partially 

melted parent body model, modeled after Elkins-Tanton et al. (2013), is presented. The body is 

internally melted from decay of radiogenic elements. The heat results in a melt that undergoes 

two differentiation events to reach a silica-rich, andesitic composition.  The fully melted parent 

body model, shown on the right, invokes a body that has been completely melted and 

differentiated to form a basaltic crust, as suggested by Sahijpal et al., (2007) and Hevey & 

Sanders (2006). The basaltic crust melts to form an andesitic magma. 

The fully melted parent body model, derived from Taylor et al. (1993), McCoy et 

al. (2006), Sahijpal et al. (2007), Hevey & Sanders (2007), and others, involves the 

complete melting of a body to form a core, a peridotite mantle, and a basaltic crust. A 
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fully melted parent body is possible if the body was large (much larger than a 200-400 

km diameter body) and able to retain more heat or if the body formed before 1.5 Ma after 

the formation of CAIs (Hevey & Sanders, 2006). This fits best with the multiple parent 

body model, in which multiple bodies that formed within the same isotopic reservoir 

experienced varying degrees of melting and differentiation. Some bodies may have 

remained completely unmelted, while other bodies experienced full or partial melting 

during the accretion process. This is necessary to account for the occurrence of LL 

chondrites, primitive achondrites, and achondrites that retain the LL chondrite isotopic 

signatures. Because the size of the body on which NWA 11575 formed is not known, this 

remains a valid possibility for a parent body model for NWA 11575. 

The partially melted parent body model has been derived from Weiss & Elkins-

Tanton (2013), with the addition of two magmatic differentiation events in order to 

achieve the silica-rich, andesitic composition of NWA 11575. This is the favored model, 

because it does not require multiple parent bodies for NWA 11575 and the LL chondrites, 

and accounts for recent incremental accretion models that predict an unmelted chondritic 

lid on small bodies. Models that assume instantaneous accretion predict a molten interior 

and a very thin (~2 km) unmelted crust (Weiss & Elkins-Tanton, 2013; Hevey & Sanders, 

2006). Models that invoke incremental accretion allow for a thicker, unmelted crust, but 

also allow for rapid heating and cooling as the body grows, which slows as the body 

gains mass (Weiss & Elkins-Tanton, 2013 and references therein). This does provide a 

problematic scenario for the ascent of magmas through the chondritic crust, however. 

 A chondritic parent body is expected to have a high-porosity crust, making ascent 

of magma due to buoyancy difficult. Two possibilities that would allow the magma to 
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research the surface include either a highly volatile magma or a large impact, which 

could allow for the ascent of magma through fractures in the crust (Weiss & Elkins-

Tanton, 2013). However, a body that forms through incremental accretion would be 

expected to have a lower volatile content as the volatiles are driven off as water is 

released (Weiss & Elkins-Tanton, 2013 and references therein). Additionally, it is 

important to note that these studies are assuming that the magma is basaltic, rather than 

andesitic, and there is strong evidence that NWA 11575 erupted, i.e. the truncated 

pyroxene crystals.  

Considering the interpretation of the host and dark lithology relationship, there are 

two possible explanations. The first option is that an erupted magma flows out onto the 

surface, where the margins of the magma would cool rapidly, particularly on a body with 

little or no atmosphere. The chill margin material would become brittle and could form 

what would appear to be angular clasts within the later erupted host lithology. 

Alternatively, the magma could have erupted in a more explosive manner, and the dark 

lithology could represent a portion of magma that was erupted more violently and cooled 

while in the air. In either case, the later-erupted material could cool more slowly if there 

was more overlying, erupted magma that would act as an insulator for the interior 

material. This would require either a high volatile content and a thin crust or an impact 

that would fracture the crust or penetrate into underlying molten material. The vesicles 

found within the disequilibrium assemblages support NWA 11575 having a high volatile 

content. Furthermore, the fragmented nature of the pyroxene crystals suggests that 

mechanical disruption of the crystals occurred before the ferropigeonite layer formed, 

which was most likely the result of an eruption. This interpretation only requires the body 
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to have been partially melted, but a body that had been fully melted and differentiated is 

also possible. An unmelted chondritic layer, such as in the partially melted parent body 

model, may have been present but simply not sampled in NWA 11575.  

4.0 Conclusions 

NWA 11575 is an andesitic, ungrouped achondrite consisting of two lithologies. 

Due to similarities in bulk composition, pyroxene compositional trends, and most 

importantly, oxygen isotopic compositions, the dark lithology is not a foreign xenolith, 

but is in fact derived from the same magma. The difference in mineralogy and textures is 

a result of different cooling rates. The dark lithology must have cooled faster because of 

the prevalence of the groundmass. The host lithology experienced slow cooling which 

resulted in the euhedral crystallization of the magnesian pigeonite cores and augitic 

mantles within the magma chamber. An eruption occurred, causing mechanical disruption 

of the pyroxene crystals, resulting in pyroxenes with truncated zonation. The eruption 

also spurred the crystallization of plagioclase and the ferropigeonite rim composition. 

This petrologic evidence provides strong support that NWA 11575’s host lithology was 

also the result of extrusive volcanism. Due to the low density expected of a chondritic 

crust, the magma would have either needed to have a lower density than the chondritic 

crust, have a high volatile content, or require fracturing of the crust via impactors in order 

to allow for the magma to erupt.  

The similarities between NWA 11575 and LL chondrites include oxygen, 

hydrogen, and chromium isotopic compositions. This suggests a genetic link with LL 

chondrites.  Graphical modeling of the removal of an olivine composition from an LL 

chondrite bulk composition suggests that this process could result in the bulk composition 
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of NWA 11575, given a removed olivine composition similar to that of olivine from the 

R chondrite Rumuruti. Partial melting experiments by Jurewicz et al. (1995) also provide 

support for the derivation of an andesitic composition from the LL chondrite St. Severin. 

The model invoking a fully melted silicate portion overlain by a chondritic crust is 

supported by numerous recent models involving incremental accretion and conduction 

within the melted interior. The partially melted parent body model provides the simplest 

explanation for the similarities in isotopic compositions, suggesting that LL chondrites 

and NWA 11575 could have formed on the same parent body.   

 NWA 11575 and the other ungrouped achondrites provide evidence for 

differentiation and chemical evolution on multiple bodies early in the history of the solar 

system. Oxygen isotopic compositions suggest that at least three different bodies 

underwent igneous processing, since the isotopic compositions of the various ungrouped 

achondrites match those of LL chondrites, Brachinites, and Ureilites. Furthermore, NWA 

11575 contains pyroxene compositional trends that match those of lunar samples and 

martian meteorites, which result from significant undercooling of the magma, consistent 

with eruption. The pyroxene compositional trends and the presence of potassium feldspar 

and quartz are unique compared with the other silica-rich ungrouped achondrites. Further 

study of NWA 11575 and the other silica-rich ungrouped achondrites could aid in 

providing a more complete view of igneous processes in the early solar system. 

5.0 Suggestions for Future Work  

 Age-dating to determine the crystallization age would confirm whether or not 

NWA 11575 truly is an example of early solar system igneous processes. However, if it 
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does not have an ancient crystallization age, it could help to constrain a period in which 

igneous processes were active and evolved compositions were being produced. 

 Additional experiments using an LL chondrite composition could further support 

the genetic link between LL chondrites and NWA 11575. The composition produced by 

Jurewicz et al. (1995) contained a similar SiO2 wt% content, but further comparison with 

the mineralogy and textures could provide additional support. 

 Determination of the density of the melt and modeling the conditions under which 

the magma ascent could have occurred for the host and dark lithologies could support 

NWA 11575 being the result of extrusive volcanism, although this is already strongly 

supported by the mechanically disrupted pyroxene crystals. This could refine the view on 

the degree and style of melting on parent bodies. 

6.0 Methods 

6.1 Electron Probe Microanalysis (EPMA) 

The JEOL JXA 8200 electron microprobe at the University of New Mexico was 

used to obtain backscatter electron images, compositional data, and element maps on 

multiple probe mounts.  

Due to the similarity in brightness between the apatite crystals and the pyroxene 

crystals, the apatite grains were found by tuning the spectrometer to the 197.2 wavelength 

of phosphorous on a PET crystal (XR2). The beam was slowly rastered over the sample 

at high-enough magnification to minimize spectrometer defocusing while viewing the 

resulting X-ray image and BSE image in split-screen mode. The apatite registers as 

clusters of dots in the x-ray image, which can be matched to the corresponding region in 
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the compositional view. Qualitative element maps were conducted using EDS or beam 

mapping on the microprobe, depending on the size of the apatite being measured. 

Regarding the microprobe analyses on apatites, a single section of Northwest Africa 

11575 was carbon coated and analyzed using a JEOL 8530 field emission electron 

microprobe at NASA’s Johnson Space Center. An accelerating voltage of 15 kV, a nominal 

probe current of 20 nA, and a beam diameter of 3-5 µm were used during each analysis. 

Additionally, a ZAF correction was applied to all analyses using the Probe for EPMA 

software using procedures reported previously in McCubbin et al., (2010). We analyzed 

the elements Si, Y, Ce, Fe, Mn, Mg, Ca, Na, P, F, Cl, and S. Fluorine was analyzed using 

a light-element LDE1 detector crystal, and Cl was analyzed using a PET detector crystal. 

The standards used were as follows: Apatite from SPI Supplies was used as a primary 

standard for P. Albite from SPI Supplies was used as a primary standard for Na and Si. 

Ilmenite from the National Museum of Natural History was used as an Fe standard (NMNH 

96189; Jarosewich et al., 1980). Apatite from Durango, Mexico, was used as a standard for 

Ca, and Mn was standardized on rhodonite from SPI supplies. Y was standardized on 

yttrium orthophosphate, and Ce was standardized on cerium orthophosphate (Jarosewich 

and Boatner, 1991). Springwater olivine (NMNH 2566) was used as a standard for Mg 

(Jarosewich et al., 1980). Barite from SPI supplies was used as a primary standard for S. F 

was standardized on a strontium fluoride standard from JSC. Cl was standardized on 

tugtupite from SPI supplies, and sodalite was used as a secondary standard for Cl.  

In order to reduce or eliminate electron beam damage, we used a 5 µm defocused 

beam for standardization and 3-5 µm diameter beam for analysis of phosphate grains. 

Stormer et al. (1993) documented that F and Cl X-ray count rates change with time during 
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electron microprobe analysis of apatite as a function of crystallographic orientation. Probe 

for EPMA software was used to monitor for F and Cl X-ray count rate variation in the 

present study following the procedures of McCubbin et al., (2010). X-ray count rates for F 

and Cl did not exhibit time-dependent intensity variations over the course of our analyses. 

The quality of each phosphate analysis was assessed based on electron microprobe 

totals and stoichiometric constraints. For apatite, if analytical totals were outside of the 

range 97.0–102.0 wt.%, the analysis was discarded. If the stoichiometry of the P or Ca sites 

deviated by more than ±2% (i.e., 0.06 structural formula units (sfu) or 0.10 sfu on a 13 

anion basis for the P- and Ca-sites, respectively), the analysis was discarded. Using these 

constraints, we discarded six of our apatite analyses. For merrillite, if analytical totals were 

outside of the range 98.0–101.0 wt.%, the analysis was discarded. If the stoichiometry of 

the P site deviated by more than ±2% (i.e., 0.28 structural formula units (sfu) on a 56 anion 

basis), the analysis was discarded. Given that merrillite cannot incorporate F or Cl into its 

structure (McCubbin et al., 2018) and overlap of our beam with apatite was a possibility, 

we discarded any analyses that had more than 0.1 wt% of either F or Cl. Given that the 

merrillite can have vacancies on the Ca site, we accepted Ca-site sums between 21 and 22 

sfu on a 56 anion basis. Using these constraints, we discarded seven of our merrillite 

analyses. The quality assessment for apatite and merrillite are similar to those of previous 

studies on apatite and merrillite in planetary materials (McCubbin et al., 2016; Shearer et 

al., 2015). 
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6.2 Scanning Electron Microprobe (SEM) 

The JEOL 5800LV Scanning Electron Microscope at the University of New 

Mexico was used to identify minor phases in NWA 11575, particularly metals, sulfides, 

and oxides. 

6.3 X-ray Diffraction 

Small pieces of the host lithology from the SE quadrant of the meteorite were 

ground to a powder in a mortar and pestle for approximately 10 minutes until the sample 

had obtained a fine clay-like texture. The powdered sample was placed in a single-crystal 

quartz holder, which was designed to have a very low background signal, by way of the 

crystal orientation. The Rigaku SmartLab System at the University of New Mexico was 

used for the XRD analyses.  

6.4 Fiji 

The Fiji program was used to determine the percentages of phases in the light and 

dark lithologies from large mapped or imaged regions. The mapped region in the host 

lithology measured 3x4 mm. The color threshold tool was used to differentiate between 

the phases and determine mineralogical percentages. The maps showed complex regions 

of a silica phase and a k-rich phase in contact with each other. Three such regions were 

mapped on a smaller scale and the ratios between the silica phase and the potassium 

feldspar were determined using the threshold function in Fiji. The average of the three 

ratios was used to refine the quartz and potassium feldspar mineralogical percentages. A 

weighted average of the pyroxene compositions was used to determine the average 

pyroxene composition, based on the RGB element maps for the pyroxene crystals. The 
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bulk composition was calculated from the mineral abundances of major phases, 

determined using Fiji, along with the average or weighted average (for the zoned 

pyroxenes) of analyses of each phase within the light lithology. 

The Fiji program was also used to determine the bulk composition from a 

backscatter electron image of a portion of the dark lithology. The threshold tool was used 

to differentiate between different phases and to give percentages of each phase. The 

percentages were normalized to 100 to correct for cracks in the sample. This resulted in 

70% groundmass and 30% pyroxenes. The bulk composition of the dark lithology was 

calculated using the average composition of all pyroxenes within the dark lithology and 

the average composition of the groundmass, along with the data from Fiji.  

6.5 Oxygen Isotopes 

The MAT 253 mass spectrometer, coupled with an in-situ laser fluorination line, 

at the Center for Stable Isotopes at the University of New Mexico was used to measure 

the triple oxygen isotope ratios of the host and dark lithologies. The laser-fluorination 

line uses a BrF5 gas in the sample chamber, which reacts with the sample when heated 

with the CO2 laser, as described by Sharp (1990). The resulting gases travel through the 

line until reaching multiple liquid nitrogen traps that cause the unwanted gases to 

condense onto zeolites within the traps. The remaining oxygen gas is transferred to the 

MAT 252 mass spectrometer, where the ratios of oxygen-16 to oxygen-17, and oxygen-

16 to oxygen-18 are measured relative to the lab standard. The values are presented 

relative to Vienna Standard Mean Ocean Water (VSMOW).  
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6.6 NanoSIMS 

The Cameca NanoSIMS 50L at NASA’s Johnson Space Center was used in multi-

collection mode to perform hydrogen isotope analyses of phosphates in a thin section of 

NWA 11575. A Cs+ primary ion beam of ~1 nA at the sample was used. The negative 

secondary ions of 1H, D, 13C, and 18O were measured concurrently in electron multipliers. 

The instrument was tuned to achieve a mass resolution of ~3000. The sample and 

standards were coated with ~10 nm carbon and an electron gun was used; both provided 

charge compensation.  

Prior to analysis, areas of interest approximately 400 µm2 were pre-sputtered to 

clean the surface and allow for the identification of the phosphate in the raster area. For 

each analysis the primary ion beam was rastered over 100 µm2 areas. Electronic gating 

was used to restrict counting of secondary ions to the inner 25% of the sputtered area. 

Each analysis area was divided at 64 x 64 pixels with a 0.54 s dwell time. Each analysis 

was ~30 minutes long. The highly fractured nature of the phosphate crystals in NWA 

11575 meant that cracks sometimes appeared during sputtering. In such cases the signals 

corresponding to the cracks (high 1H and 13C counts) were isolated using the NanoSIMS 

DataEditor software. 

Well-characterized reference apatites (c.f. McCubbin et al., 2012) were pressed 

into indium and were used for correction of measured D/H ratios for instrumental mass 

fractionation and for calibrating 1H/18O ratios (OH contents) in the unknowns (reported 

henceforth as H2O equivalent). A San Carlos olivine crystal also in the indium block was 

analyzed in the same manner as standards and NWA 11575 and was used to assess 

instrumental background H2O. The H2O background was calculated to be ~70 ppm (n=2) 
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with a δD of -236 ± 124 ‰ (2SD). A nominally dry crystal in NWA 11575 was also 

analyzed giving a very similar H2O content to San Carlos of 65 ppm (n=1) showing that 

the background calculated on San Carlos is adequate for correcting data in the epoxy 

mounted thin section. The instrumental background corresponded to <7% total H2O 

measured in the unknowns. 

6.7 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

LA-ICP-MS measurements were performed on an Electro Scientific Instruments 

New Wave™ UP193FX excimer laser ablation system coupled to a Thermo Element 

XR™ at the Plasma Analytical Facility, Florida State University. Analytical methods 

employed followed Yang et al. (2015) and Oulton et al. (2016). Spot analyses were 

conducted on pyroxene and plagioclase crystals within the host lithology and on 

pyroxenes and groundmass within the dark lithology. Raster analyses were also 

conducted to obtain bulk values on both the host and dark lithologies. 

6.8 Chromium Isotope Analysis and Inductively Coupled Mass Spectrometry (ICPMS) 

A fragment of NWA 11575 (0.08632 g) was crushed using an agate mortar and 

pestle. The powder was homogenized and then a 0.02436 g aliquot was taken for 

dissolution. The powder was placed in a PTFE capsule with a 3:1 mixture of concentrated 

HF:HNO3 and sealed in a stainless steel Parr jacket. The sealed capsule was heated in an 

oven at 190°C for 96 hours. The dissolved sample was dried down, treated with 

concentrated HNO3 and 6N HCl to break down fluorides formed during the dissolution 

process. Ninety percent of the dissolved sample was processed for Cr isotope chemistry 

and 10% remains unprocessed. An aliquot of the 10% remainder was diluted to 3 
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dilutions (dilution factors of 4435x, 48364x, and 96809x) for trace, minor, and major 

element determination. A series of dilutions of rock standards (BCR-2 and Allende) were 

made to generate a calibration curve. A terrestrial USGS rock standard BHVO-2 was also 

analyzed to compare against literature values to determine accuracy. All samples 

analyzed (NWA 11575 and BHVO-2 dilutions and calibration curve dilutions) were 

spiked with a In, Re, Bi solution as an internal standard. The samples were analyzed 

using a Thermo Element XR high resolution inductively coupled plasma mass 

spectrometer. Measurements were made in low-, medium-, and high-resolution, 

depending on potential inferences for a given element. Concentrations were determined 

by comparison of the signal intensity in the sample, compared to the calibration curve 

and correcting for dilutions of the original sample solution.
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Appendix 

Table 1: Representative electron microprobe analyses of pyroxenes and the average and standard deviation for each type of pyroxene 

analyzed within the host lithology. 

 
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

Augite 52.51 0.15 0.78 0.86 14.36 0.48 17.61 12.96 0.26 0.02 100.00 

Augite 52.32 0.23 1.03 1.04 12.65 0.36 14.46 17.48 0.41 0.01 99.98 

Augite 52.48 0.18 0.87 0.83 15.01 0.45 15.94 13.89 0.33 0.02 99.98 

Ferroaugite 49.88 0.36 0.48 0.37 28.11 0.63 10.38 9.65 0.20 0.03 100.08 

Average 51.53 0.27 0.82 0.76 17.99 0.47 14.18 13.34 0.29 0.02 99.68 

SD 1.42 0.19 0.25 0.26 6.36 0.08 3.39 2.24 0.06 0.01 0.38  
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

Ferropigeonite 49.76 0.29 0.45 0.28 31.00 0.71 10.88 6.47 0.15 0.02 100.01 

Ferropigeonite 48.75 0.40 0.29 0.22 36.14 0.74 7.35 6.01 0.12 0.00 100.00 

Ferropigeonite 49.38 0.31 0.32 0.22 32.60 0.70 9.80 6.52 0.14 0.02 100.01 

Ferropigeonite 49.02 0.39 0.36 0.33 33.74 0.68 8.64 6.62 0.17 0.03 99.98 

Average 48.88 0.41 0.37 0.24 33.46 0.69 8.94 6.42 0.15 0.03 99.57 

SD 0.72 0.16 0.46 0.07 2.29 0.03 1.75 1.04 0.10 0.01 0.42  
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

Mg Pigeonite 53.98 0.07 0.57 0.91 16.30 0.45 24.44 3.17 0.06 0.02 99.98 

Mg Pigeonite 53.50 0.09 0.49 0.71 17.29 0.48 23.46 3.88 0.10 0.02 100.01 

Mg Pigeonite 53.32 0.05 0.50 0.97 17.24 0.44 24.08 3.28 0.09 0.02 99.98 

Mg Pigeonite 53.40 0.07 0.53 0.80 17.78 0.46 23.66 3.18 0.11 0.03 100.03 

Average 53.21 0.07 0.52 0.76 17.84 0.49 22.27 4.25 0.12 0.02 99.57 

SD 0.68 0.03 0.12 0.16 2.42 0.05 2.46 1.74 0.04 0.01 0.44 

Note: Analyses are presented in wt%. SD is the standard deviation of all samples analyzed in that pyroxene type, within the host 

lithology. 
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Table 2: Representative electron microprobe analyses of feldspars and the average and standard deviation for each type of feldspar 

analyzed within the host lithology. 
 

SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

Oligoclase 64.49 0.02 22.38 0.00 0.15 0.00 0.00 2.50 10.16 0.32 100.00 

Oligoclase 62.16 0.04 23.75 0.00 0.50 0.01 0.00 4.24 9.10 0.22 100.02 

Oligoclase 63.28 0.01 22.76 0.01 0.36 0.00 0.02 3.87 9.33 0.28 99.93 

Oligoclase 62.38 0.01 23.49 0.01 0.36 0.01 0.02 4.35 9.10 0.22 99.95 

Average 63.45 0.02 23.15 0.00 0.31 0.01 0.01 3.63 9.53 0.24 100.36 

SD 0.76 0.01 0.56 0.01 0.10 0.01 0.01 0.47 0.28 0.04 0.45  
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O TOTAL 

Orthoclase 64.66 0.05 18.36 0.01 0.18 0.01 0.00 0.04 0.42 16.24 99.98 

Orthoclase 64.87 0.08 18.24 0.02 0.18 0.00 0.00 0.07 0.48 16.04 100.03 

Orthoclase 64.14 0.08 18.89 0.00 0.20 0.01 0.00 0.04 0.38 16.25 99.99 

Orthoclase 64.91 0.05 18.43 0.00 0.24 0.01 0.00 0.04 0.39 15.90 99.98 

Orthoclase 63.79 0.07 18.92 0.00 0.20 0.01 0.00 0.03 0.40 16.62 100.04 

Orthoclase 71.87 0.13 16.21 0.00 0.51 0.01 0.08 0.14 4.29 7.18 100.42 

Average 65.35 0.05 18.06 0.00 0.30 0.01 0.01 0.09 0.72 15.04 99.63 

SD 3.93 0.03 1.83 0.01 0.10 0.01 0.02 0.07 0.94 2.93 0.56 

Note: Analyses are presented in wt%. SD is the standard deviation of all samples analyzed in that feldspar group, within the host 

lithology. 
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Table 3: Representative electron microprobe analyses of apatite and merrillite, and the average and standard deviation, for apatites and 

merrillites analyzed within the host lithology. 
 

   P2O5      SiO2      Ce2O3     Y2O3      FeO       MnO       MgO       CaO       Na2O      F         Cl     SO3 -O = F + Cl Total 

Apatite 41.97 0.00 0.03 0.00 0.20 0.01 0.00 52.88 0.36 0.00 5.99 0.01 1.35 100.10 

Apatite 41.89 0.02 0.00 0.00 0.39 0.02 0.00 53.08 0.34 0.13 5.21 0.01 1.23 99.86 

Apatite 42.08 0.00 0.04 0.00 0.25 0.03 0.02 52.87 0.33 0.00 5.73 0.02 1.29 100.09 

Apatite 41.53 0.20 0.03 0.00 0.34 0.02 0.11 53.20 0.43 0.13 5.29 0.04 1.25 100.07 

Apatite 41.47 0.49 0.05 0.00 0.50 0.03 0.00 52.83 0.22 0.12 5.45 0.04 1.28 99.91 

Average 41.54 0.17 0.02 0.00 0.39 0.03 0.02 52.87 0.32 0.03 5.55 0.05 1.27 99.73 

SD 0.61 0.25 0.01 0.01 0.22 0.01 0.03 0.76 0.04 0.05 0.27 0.05 
  

Merrillite 46.35 0.16 0.07 0.06 2.28 0.06 2.68 45.87 2.65 0.00 0.01 0.03 0.00 100.20 

Merrillite 45.96 0.38 0.05 0.04 2.29 0.05 2.57 45.38 2.45 0.00 0.02 0.04 0.01 99.23 

Merrillite 46.28 0.22 0.06 0.04 2.49 0.06 2.70 45.57 2.64 0.00 0.01 0.02 0.00 100.11 

Merrillite 46.65 0.05 0.05 0.07 2.04 0.06 2.63 45.76 2.69 0.00 0.02 0.01 0.00 100.02 

Merrillite 46.37 0.00 0.06 0.06 1.98 0.06 2.70 45.92 2.63 0.00 0.01 0.02 0.00 99.80 

Average 46.38 0.17 0.06 0.07 2.26 0.06 2.64 45.59 2.64 0.00 0.02 0.02 0.00 99.90 

SD 0.40 0.11 0.03 0.07 0.20 0.01 0.05 0.38 0.08 0.00 0.01 0.01 
  

Note: Analyses are presented in wt%. SD is the standard deviation of all apatite analyzed in the host lithology. bdl indicates 

concentrations below detection limits. 

 

 

Table 4: Average and standard deviation of electron microprobe analyses on the groundmass within the dark lithology. 

 SiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO Total 

Average 62.06 15.12 bdl 7.28 0.11 0.70 3.01 8.67 0.22 bdl 97.19 

SD 0.94 0.59 bdl 2.21 0.04 0.21 0.97 0.30 0.03 bdl 0.63 

Note: Analyses are presented in wt% and bdl indicates concentrations below detection limits. 
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Table 5: Representative electron microprobe analyses of pyroxenes within the dark lithology, along with the average for each group 

and the standard deviation.  
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

Augite 51.33 0.38 1.65 0.80 15.69 0.42 13.44 15.79 0.33 0.03 99.87 

Augite 50.54 0.54 1.84 0.58 19.75 0.45 10.98 15.03 0.40 0.03 100.14 

Augite 51.63 0.30 1.49 1.06 15.30 0.44 15.31 14.20 0.36 0.02 100.11 

Average 51.15 0.40 1.90 0.86 16.72 0.44 13.32 14.23 0.54 0.02 99.46 

SD 2.14 0.09 2.16 0.36 3.65 0.07 2.65 2.48 1.17 0.03 0.56  
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Total 

Mg Pigeonite 53.78 0.04 0.44 0.75 16.36 0.45 25.20 2.97 0.10 0.03 100.11 

Mg Pigeonite 53.93 0.06 0.43 0.74 16.30 0.45 25.08 3.02 0.09 0.03 100.12 

Mg Pigeonite 53.60 0.10 0.77 1.03 16.40 0.46 24.56 3.36 0.09 0.01 100.39 

Average 53.77 0.14 0.61 0.86 16.95 0.46 22.79 3.92 0.12 0.01 99.53 

SD 1.14 0.09 0.29 0.14 1.45 0.03 2.68 2.09 0.06 0.01 0.44 

Note: Analyses are presented in wt% 

 

Table 6: Composition data for the shock melt vein within the light lithology. 

     SiO2    Al2O3    Cr2O3      FeO      MnO      MgO      CaO     Na2O      K2O      NiO    TOTAL 

Shock Melt Vein 60.65 14.64 0.11 8.69 0.17 2.81 4.86 6.27 0.61 bdl 98.81 

SD 1.30 1.63 0.03 1.75 0.04 0.69 0.36 0.47 0.17 
 

0.54 

Note: Data is presented in wt% and bdl indicates concentrations below detection limits. 
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Table 7: Bulk composition data of the host and dark lithologies. 
 

SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

Host Lithology 58.70 0.06 12.48 0.31 7.04 0.20 7.88 6.55 4.82 0.77 1.17 100.00 

SD 0.94 0.05 0.44 0.08 1.64 0.03 1.12 1.05 0.20 0.21 0.00 
 

Dark Lithology 60.41 0.11 11.31 0.26 10.30 0.21 5.63 5.24 6.36 0.16 
 

100.00 

SD 1.32 0.04 0.95 0.09 2.44 0.05 1.75 2.35 0.49 0.03 
  

Note: Data is presented in wt% and has been calculated according to the methods in section 6.3.
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