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Abstract

Conventional measurement technology is unable to extract the most amount of

information possible from coherent states of light. Non-Gaussian measurements which

can count individual photons can surpass the sensitivity limits of ideal conventional

strategies, and approach the ultimate limits achievable given by quantum mechanics.

This thesis presents investigations and demonstrations of these unconventional

measurements, which utilize coherent operations and single photon counting. This

thesis shows that non-Gaussian measurements can outperform conventional strategies

in estimation tasks as well as a variety of communication problems. This thesis also

investigates novel approaches and algorithms for building robustness to static and

dynamic noise which is present in realistic implementations, a critical barrier to

transitioning non-Gaussian measurements out of the lab. Overall, this thesis aims to

show that the single photon counting can be leveraged to implement measurements

that operate at sensitivities which are inaccessible to current technology.
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Chapter 1

Introduction

The process of measurement allows for probing the properties of a physical system

and extracting information. The field of metrology seeks to answer the fundamental

questions of how to perform the best possible measurement, and what are the ultimate

limits in measurement precision [1, 2]. Generally, we aim to find strategies which have

the smallest possible measurement uncertainty in their outcomes [3–5]. However, the

fact that measurements of quantum systems are inherently probabilistic means that

the same system may have many possible measurement outcomes, which limits the

attainable uncertainty [6–9]. Nevertheless, the ultimate goal of metrology is to identify

measurements which operate at the limits of sensitivity and uncertainty defined by

the laws of quantum mechanics [7, 10–13].

Measurements which attempt to discriminate between a finite set of quantum

states are a central aspect of classical and quantum information theory [2, 14–17]. In

particular, discrimination of different states of laser light is a critical task in optical

communication [18–23], quantum key distribution and cryptography [24–31], non-

destructive measurements [32,33], and even quantum computation [34–37]. On the

other hand, a canonical problem in metrology is estimation of a single parameter, such

as a phase shift acquired by a field of light after interacting with an object [4, 12, 38].

Phase measurements which achieve minimal estimation uncertainty have wide ranging

1



Chapter 1. Introduction

applications from biology [39–43] to magnetometry [44–46] to astronomy [12,47], and

quantum measurement theory provides a toolbox for identifying and constructing

such measurements [8, 9, 48]. Regardless of whether information is encoded into just a

few states or infinitely many, the unavoidable overlap between different states of laser

light (i.e. coherent states) prevents any physical measurement from achieving perfect

identification [49], even in principle [2, 7]. To this end, measurement theory gives a

description of the ultimate sensitivity limits when identifying quantum states [2], and

how to potentially reach these limits. Moreover, there is a significant gap between the

sensitivity limits of current technology and what is fundamentally achievable [50].

A major goal of quantum measurement theory is finding measurement strategies

which are physically realizable and surpass the sensitivity limits of current technology,

or even approach the ultimate limits of state discrimination and estimation. On one

hand, conventional measurements for phase estimation of laser light are ubiquitous, but

strategies which approach the ultimate limits in estimation uncertainty for laser light

have remained elusive. On the other hand, quantum measurements for discriminating

multiple states of laser light have been successfully implemented in the laboratory,

showing unconditional advantages over ideal conventional measurements [51–55].

However, a critical barrier to transitioning these measurements out of the lab and into

practical applications is robustness to noise and imperfections in the communication

channel and measurement itself. Noise can originate from the fact that the components

of an experimental demonstration, such as beam splitters and detectors, are intrinsically

imperfect. However, even with an ideal implementation there may be noise induced by

a communication channel which will degrade the performance if not taken into account

by the measurement. In any case, such noise and imperfections decrease performance

in state discrimination and reduce the amount of decoded information. Solutions

to these issues of robustness to noise in communication systems using conventional

measurements currently enable many current communication technologies, albeit with

performance far from the ultimate limits of information transfer. However, these

approaches to combat the effects of noise and imperfections are tailored to conventional

2



Chapter 1. Introduction

measurements. Thus, realizations of quantum measurement strategies require novel

methods to compensate for their own imperfections, as well as ways to maintain their

performance in the presence of external noise sources such as intrinsic channel noise.

This thesis presents investigations and demonstrations of quantum measurements

that achieve sensitivities beyond conventional limits of detection. We also study

methods for making these quantum measurement strategies robust to realistic noise

and imperfections. Experimentally, we implement such quantum measurements by

combining coherent operations and interference with the ability to resolve individual

numbers of photons. The measurement strategies investigated in this thesis can either

be adaptive or non-adaptive, and possibly optimized a priori or in real-time to achieve

the best possible performance. In addition, we also investigate methods to correct

for noise present in realistic communication channels based on an intuitive model as

well as machine learning techniques. These approaches can enable future, realistic

implementations of quantum measurements for communication and estimation beyond

the sensitivity limits of conventional technology. Simply put, the overall aim of the

work in this thesis is to investigate the seemingly simple question of: how does one

implement a good measurement?

1.1 Preliminaries: Coherent States of Light and

Measurement Operators

Coherent states of light are the quantum mechanical description of laser light [8].

Having such a description facilitates the study of quantum measurements for state

discrimination and metrology using light from a laser. To define the coherent states, we

start with the quadrature operators x̂ and p̂ of the electromagnetic field, which do not

commute: [x̂, p̂] = i (~ = 1). We then define the standard creation and annihilation

(ladder) operators â and â† as: â = (x̂ + ip̂)/
√

2 and â† = (x̂ − ip̂)/
√

2. These

operators â and â† allow us to define eigenstates |n〉 of n̂ = â†â as: n̂|n〉 = n|n〉, which

correspond to quantum states of the electromagnetic field with exactly n photons,

3



Chapter 1. Introduction

known as number states, or Fock states [8]. The ladder operators have the effect of

either raising â†|n〉 =
√
n+ 1|n + 1〉 or lowing â|n〉 =

√
n|n − 1〉 between different

energy eigenstates. Given these operators, we define a coherent state of light |α〉

as eigenstates of the annihilation operator: â|α〉 = α|α〉, where a coherent state is

parameterized by a complex number α. By expanding into the orthonormal basis of

the Fock states and applying the annihilation operator, we obtain the relation:

â|α〉 = â

∞∑
n=0

cn|n〉 =
∞∑
n=1

cn
√
n|n− 1〉 =

∞∑
n=0

cn+1

√
n+ 1|n〉 = α

∞∑
n=0

cn|n〉. (1.1)

From the recursive relationship αcn = cn+1

√
n+ 1 and normalization 〈α|α〉 = 1, we

arrive at a complete quantum mechanical description of a coherent state of light:

|α〉 = e−|α|
2/2

∞∑
n=0

(αâ†)n

n!
|0〉 = e−|α|

2/2

∞∑
n=0

αn√
n!
|n〉, (1.2)

where |α|2 = 〈α|n̂|α〉 is referred to as the mean photon number of the state. Coherent

states of light have many important properties including [56]:

• The probability P (n) of detecting n photons from a coherent state of light is

given by the Poisson distribution P (n) = |〈n|α〉|2 = (|α|2)n

n!
e−|α|

2
with mean |α|2

and variance 〈(∆n̂)2〉 = |α|2.

• Re[α] = 〈â+ â†〉/2 = 〈α|x̂|α〉/
√

2 and Im[α] = 〈â− â†〉/2i = 〈α|p̂|α〉/
√

2.

• Like the vacuum state |0〉, |α〉 is a minimum uncertainty state in that 〈(∆x̂)2〉 =

〈(∆p̂)2〉 = 1/2 and the marginal quadrature distributions |〈x|α〉|2 = 1√
π
e−(x−〈x̂〉)2

and |〈p|α〉|2 = 1√
π
e−(p−〈p̂〉)2 are Gaussian distributed.

• Coherent states are not orthonormal: 〈α|β〉 = e−(|α|2+|β|2−2α∗β)/2. However, they

form an overcomplete basis satisfying Î = 1
π

∫
d2α|α〉〈α|.

Figure 1.1(a) shows the phase space representation of a coherent state of light |α〉.

The blue region shows the fundamental quantum noise associated with coherent

states and this fundamental uncertainty satisfies Heisenbergs uncertainty relation,
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Re[α]

Im[α]

φ

D(β)|α + β|

|α�
|α|φ
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Re[α]

Im[α]
|α + β�

(a) (b)

Figure 1.1: (a) A coherent state if light |α〉 in phase space. The blue region shows the intrinsic
quantum noise associated with coherent states, which satisfies Heisenbergs uncertainty
relation. (b) Phase space picture of a displacement operation D̂(β) acting on |α〉 to obtain
the state D̂(β)|α〉 = |α+ β〉.

i.e. 〈(∆x̂)2〉〈(∆p̂)2〉 = 1/4 with ~ = 1. Coherent states of light can alternatively be

defined with respect to the displacement operator D̂(α) ≡ eαâ
†−α∗â, which has two

convenient properties [8]:

• D̂†(α) = D̂(−α).

• D̂(α)D̂(β) = eαβ
∗−α∗βD̂(α + β).

Thus, we can equivalently define a coherent state as the displacement operator acting

on the vacuum: |α〉 ≡ D̂(α)|0〉. In addition, the displacement operator can act on a

coherent state such that D̂(β)|α〉 = |α+ β〉, where by adjusting the value of β, we can

translate |α〉 into a different coherent state which can have a different photon number

distribution. Figure 1.1(b) shows the phase space picture of a displacement operation

D̂(β) acting on the state |α〉 to obtain the state D̂(β)|α〉 = |α + β〉.

The probability of detecting n photons from a coherent state |α〉 is given by

P (n) = Tr
[
|n〉〈n||α〉〈α|

]
= |〈n|α〉|2, which is obtained through the typical picture

of a projective measurement |n〉〈n| onto the Fock basis. However, measurements

fundamentally need not be projective. To describe a general measurement, one can
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define a positive operator valued measure (POVM) which is a set of positive-semi-

definite operators {Π̂i} on a Hilbert space which sum to the identity:
∑

i Π̂i = Î

[9, 57]. Each POVM element Π̂i corresponds to a particular measurement setting

such that if a general quantum state described by the density matrix ρ̂ is measured,

the probability of outcome i is: P (i) = Tr[Π̂iρ̂]. In the case where Π̂i = |ψi〉〈ψi| is

a projector and ρ̂ = |φ〉〈φ| is a pure state, the traditional picture is recovered as

P (i) = Tr[|ψi〉〈ψi||φ〉〈φ|] = |〈ψi|φ〉|2.

The POVM language of measurement theory allows for constructing more general

classes of measurements which go beyond simple projective measurements. As discussed

in Chapter 2, this description of measurements becomes beneficial when comparing

measurement strategies that are designed to optimize different physical quantities,

such as minimize measurement errors [2], maximize information transfer [58,59], or

minimize inconclusive results [15]. This POVM framework also allows for constructing

measurements which may operate on multiple modes simultaneously, or in a non-local

way [8, 9, 57]. As discussed throughout this thesis, measurements are an extremely

critical aspect of many communication and metrological tasks. The fundamental

limits for these tasks are often known [2], but the POVM which reaches that limit

may not be physically realizable in the laboratory. This division between theory and

experiment leads to the question of which POVM is experimentally implementable

and achieves the best possible performance.

1.2 Probability of Error in Discrimination

A receiver implementing a measurement strategy for state discrimination knows a

priori that the input state is drawn from a finite set of possible states. Thus, the

input state is decoded either correctly or incorrectly given a particular measurement

outcome. Of course, the receiver is ideally designed to provide the correct answer

to the state discrimination problem as often as possible, i.e. have a low probability

of error PE and high probability of correct detection PC . For an arbitrary set of M

6
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input states {ρ̂k}M with prior probabilities {pk}M , the most general expression for

the probability of error PE is:

PE = 1− PC = 1−
M∑
k=1

pkP (ρ̂k|ρ̂k) = 1−
M∑
k=1

pkTr
[
Π̂kρ̂k

]
. (1.3)

The quantity P (ρ̂k|ρ̂k) = Tr
[
Π̂kρ̂k

]
is the probability of guessing state ρ̂k, which

corresponds to the measurement outcome Π̂k, given that the input state was ρ̂k. The

guess for the input state in discrimination problems usually corresponds to the most

likely state given the particular measurement outcome, i.e. the state with the highest

posterior probability. Typically, thought not always, the main goal of the problem

of state discrimination is to find strategies for which minimize PE for a given set

of states [15]. This task translates into finding an optimal POVM, known as the

Helstrom measurement, which has the smallest possible error probability, referred to

as the Helstrom bound [2, 14].

The Helstrom measurement for binary pure states {ρ̂1, ρ̂2} = {|ψ1〉〈ψ1|, |ψ2〉〈ψ2|}

is described by {Π̂1, Π̂2} where Π̂1,2 are projectors onto the eigenvectors of p1ρ̂1− p2ρ̂2.

A positive outcome of Π̂1 indicates that ρ̂1 is the more likely input state, and vice

versa. The Helstrom bound on the error probability is then given by:

PHel
E =

1

2

(
1−

√
1− 4p1p2|〈ψ1|ψ2〉|2

)
. (1.4)

The Helstrom measurement for discriminating {|ψ1〉, |ψ2〉} when p1,2 = 1/2

is implemented by projecting onto the orthonormal basis states |φ±〉, where

|ψ1〉 = a|φ+〉 + b|φ−〉 and |ψ2〉 = b|φ+〉 + a|φ−〉. Figure 1.2 shows the vector

representation of the two states |ψ1,2〉 (black) and the Helstrom measurement |φ±〉

(red), where the angle θ characterizes the non-orthogonality between |ψ1〉 and |ψ2〉.

In the specific case of two coherent states with opposite phase {|α〉, | − α〉} and

equal prior probabilities, the Helstrom measurement corresponds to projecting onto

the so-called cat states: N±(|α〉 ± | − α〉) [2]. While effort has been made into how

to approximately implement these kinds of measurements [60], and make them non-

destructively [33, 61], the Helstrom measurement for coherent states has yet to be
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|φ-

|ψ1

|ψ2

θ

Figure 1.2: Vector representation of the binary states |ψ1〉 and |ψ2〉 (black) and the Helstrom
measurement (red), which is formed by projecting onto the basis states |φ+〉 and |φ−〉.

demonstrated. Of note however, is that for binary coherent states there exists a

measurement strategy which can reach the Helstrom bound using readily available

technology. This strategy is known as the Dolinar receiver and is based on displacement

operations, single photon detection, and infinite bandwidth feedback [53,62–64], and

we study this measurement in Chapter 2.

In contrast to the problem of binary state discrimination, the optimal measurement

for the problem of discriminating many non-orthogonal states is less intuitive, if known

at all [15]. A particularly important class of states which exhibit a high degree of

symmetry is when every state ρ̂k = |ψk〉〈ψk| is generated by repeatedly applying

the same unitary operation Û : |ψk〉 = Û |ψk−1〉 = (Û)k|ψ0〉, and pk = 1/M , known

as geometrically uniform states [15, 65]. For example, a particular state in the four

state alphabet {|αeikπ/2〉} with k ∈ {0, 1, 2, 3} is obtained by applying the rotation

operator Û = ein̂
π
2 to the state |α〉 (k = 0) a particular number of times. The optimal

POVM for these states is the square-root measurement and given by Π̂k = 1
M

√
ρ̂ρ̂k
√
ρ̂

where ρ̂ = 1
M

∑
k ρ̂k, often corresponding to projections onto complex superposition

states [65–67]. Thus, the Helstrom bound for this special but ubiquitous class of states

is given by [59]:

PHel
E = 1− 1

M2

(
M∑
k=1

√
λk

)2

, (1.5)

where λk is the kth eigenvalue of the Gram matrix G with Gi,j = 〈ψi|ψj〉.
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A closed form expression for the optimal POVM {Π̂k} for state discrimination in

general cannot be found for an arbitrary set of M states {ρ̂k}M with prior probabilities

{pk}M [15]. Furthermore, the physical implementations of these optimal measurements

for coherent states of light are unknown. Thus, physically realizable measurement

strategies which approach the ultimate bounds of discrimination are not only of

fundamental importance, but also practically relevant. This is especially true when

considering applications of state discrimination to optical communication where the

limits of information transfer are set by how well coherent states of light can be

distinguished [50, 58, 68]. Thus, to efficiently facilitate the transfer of information, one

needs to account for how information is encoded into coherent states of light as well

as possible measurement strategies [18,58,59].

1.3 Encoding Information into Physical States

Considering a particular communication scenario, a sender and receiver need to

implement a certain encoding of information into a physical set of coherent states,

generally with a restriction on the average energy of the states [58]. In the context

of communication with binary states, a scheme which encodes information into the

magnitude of two coherent states is referred to as on-off-keying (OOK) and corresponds

to the alphabet |αk〉 = {|0〉, |α〉}. However, for a given amount of average energy

n̄ = 1
2
(|α1|2 + |α2|2) = |α|2 between the two coherent states, an OOK alphabet

({|0〉, |
√

2α〉}) is not optimal. We refer to an optimal encoding for error probability as

one which maximizes the distinguishability of the states within the alphabet under

an average energy constraint. For the purposes of this thesis, distinguishability is

equivalent to the amount of overlap, or non-orthogonality, between the states in the

alphabet. Thus, the distinguishability of binary coherent states given the average

energy n̄ is |〈α1|α2〉|2. Encoding information into the phase of the light to obtain a

binary phase-shift-keyed (BPSK) alphabet: |αk〉 = {| − α〉, |α〉} maximizes the energy

efficiency of a binary alphabet [69]. Here α is assumed to be real and positive and the
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information is encoded into the phase as either 0 or π. It is important to note that

if a coherent encoding is used, then the receiver must employ a coherent detection

scheme [50,58].

Regardless of the encoding, a communication scheme which utilizes two states

can only transmit at most a single bit of information. The sender can employ a

larger alphabet consisting of M states to increase the possible amount of information

transferred through a communication channel to log2(M). A natural extension is from

a single bit to two bits of information, which requires an alphabet of M = 4 coherent

states. The optimal encoding in terms of energy efficiency is now a quaternary phase-

shift-keyed (QPSK) alphabet: |αk〉 ∈ {|α〉, |iα〉, | − α〉, | − iα〉} where the information

is solely in the phase of the states. To further increase the amount of information

encoded to four bits using M = 16 states, one may expect that the optimal alphabet

requires coherent states with 16 different phases. However, given that the effectiveness

of an encoding scheme is with respect to the average energy, a more efficient alphabet

is one which leverages the ability to encode information into the phase and amplitude

simultaneously [58, 68]. These encodings are referred to as quadrature-amplitude

modulation (QAM) where states are usually arranged in a grid-like “constellation” in

phase space, i.e. 16-QAM corresponds to a 4× 4 grid of states. Figure 1.3(a-c) shows

examples of different encoding schemes which employ 2, 4, and 16 states, respectively.

Although more information can be encoded into higher order constellations, the error

in discrimination also increases. Figure 1.3(d) shows the how the Helstrom bound for

the different encodings in (a-c) compare as a function of the mean photon number n̄,

where n̄ = 1
M

∑
k |αk|2. The increase in discrimination error is due to the fact that

with more states, there is more overlap and thus a higher degree of non-orthogonality

between the states in the alphabet [70].

A communication strategy can also aim to be optimal in terms of information

efficiency, as opposed to error probability. In such a scenario, the strategy seeks to

maximize the amount information transfer for a given average energy. We can define

the average energy more generally as n̄ =
∑

k pk|αk|2 where pk is the prior probability of
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Figure 1.3: (a-c) Examples of the optimal coherent state alphabets shown in phase space
when using (a) 2 coherent states, (b) 4 coherent state, and (c) 16 coherent states. (d)
Helstrom bound on the error probability for each alphabet in (a-c) as a function of the
average mean photon number.

the transmitted state. Communication strategies which achieve the highest information

efficiency optimize both the prior probabilities {pk}M as well as the physical states

{|αk〉}M . The optimal scheme for a pure loss channel imposes a Gaussian prior

probability distribution on the states within the alphabet as pk ∝ e−|αk|
2/2σ2

, and σ

and |αk|2 are optimized for a given n̄ [18]. We study how non-Gaussian measurements

can increase the amount of information transfer when combined with non-uniform

prior probability distributions for 16-QAM encodings in Ch. 6. A pure loss channel is

an example of the well studied class of Gaussian communication channels, where the

ultimate limits of information transfer are known [18,71]. On the other hand, if the

communication channel imparts non-Gaussian noise onto the states then the ultimate

limits of information transfer may be unknown [18, 72–75], and encodings which were

optimal for a loss channel may not be ideal in the presence of non-trivial channel

noise. We study the problem of optimal communication strategies over non-Gaussian

channels in Ch. 2.2 in the context of binary communication.

1.4 Defining the Quantum Noise Limit

The fundamental limit of the Helstrom bound and how information is encoded is only

half of the story. The information needs to be decoded through a physically realizable
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measurement of the states of light once the states propagate through a communication

channel. Current measurement technologies for coherent optical communication mainly

rely on strategies which implement Gaussian measurements of the input state [5, 76].

A Gaussian measurement is one with outcomes which exhibit Gaussian distributed

statistics. The formalism of Gaussian measurement theory [5, 8, 9, 57, 76] allows us to

calculate the fundamental limit of the error probability for Gaussian measurements [5].

This limit of Gaussian receivers is referred to as the quantum noise limit (QNL)

and in general is much worse than the Helstrom bound. Thus, the QNL serves as

the benchmark of conventional measurements.1 Our investigations focus on studying

unconventional non-Gaussian measurements which unconditionally (without correcting

for any inefficiencies) surpass the QNL and push towards the Helstrom bound.

The ideal Gaussian measurement for the BPSK alphabet {| ± α〉} is an optical

homodyne receiver, which measures the x -quadrature (real component) of the state by

interfering the input field with a strong local oscillator field with phase π/2, followed

by balanced intensity measurements [50,58]. This measurement is described by the

POVM {|x〉〈x|} and the probability of correct detection PC for a homodyne receiver

corresponds to [69,77]:

PC(±α| ± α) =
1√
π

∫
R±

Tr
[
| ± α〉〈±α||x〉〈x|

]
dx =

1√
π

∫
R±

e−(x∓
√

2α)2dx (1.6)

=
[
1 + erf(

√
2α)
]
, (1.7)

where erf(·) is the error function. The integration region R± is the region of phase

space where | ± α〉 is the most likely state given the measurement outcome x. This

integration is performed only over certain regions instead of the entire phase space

due to the fact that the guess for the input state is the most likely state given the

measurement outcome, i.e. the state with the largest posterior probability. Thus, the

1We note that this QNL for state discrimination is defined with respect to conventional
Gaussian measurements and assuming the use of coherent states of light. This is in contrast
to the so-called standard quantum limit for estimation and sensing tasks, which is a statement
about the achievable uncertainty when assuming just a coherent state input and is discussed
in the context of phase estimation in Chapter 5.
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Figure 1.4: Likelihood functions P (x| ± α) for the optimal homodyne measurement of the
binary coherent states (a) | − α〉 and (b) |α〉. The blue and red shaded regions correspond
to measurement outcomes which result in discrimination errors.

total probability of correctly detecting a particular input state is the combination of

only the detection results for which that input state has the largest posterior probability.

In fact, the homodyne receiver represents the optimal Gaussian measurement for BPSK

states [69] and serves as the QNL for this problem:

QNLBPSK = 1− PC = 1−
(1

2
P (α|α) +

1

2
P (−α| − α)

)
(1.8)

= 1− 1

2

[
1 + erf(

√
2α)
]

=
1

2

[
1− erf(

√
2α)
]
. (1.9)

Figure 1.4(a,b) shows the likelihood function P (x| ± α) of each detection outcome x

for the two coherent states | ± α〉. Positive outcomes (x ≥ 0) correspond to guessing

the input state |α〉 and negative outcomes (x < 0) correspond to | − α〉. The total

probability P (α|α) of correctly detecting |α〉 is obtained from integrating P (x|α) from

x = 0 to x =∞ (i.e. R+ = [0,∞]), and vise versa for | − α〉. Discrimination errors

occur when either a positive outcome is obtained from | − α〉 (shaded region in (a)),

or when a negative outcome is obtained from |α〉 (shaded region in (b)).

Similarly, the conventional Gaussian receiver for a QPSK alphabet is an ideal

heterodyne measurement, or double-homodyne, which splits the input state in two

modes and measures the x -quadrature of one mode, and the p-quadrature of the

other [8, 58]. Given a measurement outcome γ, which is a complex number, this can

be seen as projecting onto a coherent state |γ〉〈γ| such that heterodyne detection is

described by the POVM { 1
π
|γ〉〈γ|} [58,59,76]. The probability of correct detection PC
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is the product of PC for two homodyne measurements such that the QNL for QPSK

states is given by:

QNLQPSK = 1− 1

4

[
1 + erf

(
α√
2

)]2

. (1.10)

For an arbitrary coherent state alphabet {|αk〉, pk}M which spreads over both phase

space dimensions, the limit of an ideal heterodyne measurement serves as the general

quantum noise limit [59]:

QNL = 1−
M∑
k=1

pk
π

∫
Rk

|〈αk|γ〉|2d2γ, (1.11)

where in general Rk is the phase space region where the state |αk〉 is the most likely

state given the measurement outcome γ.

The root of many of the problems addressed in this thesis however, is that in general

for the problem of state discrimination there is an exponentially large gap between the

QNL and Helstrom bound [59]. Thus, implementable and imperfect strategies which

can surpass the QNL and approach the ultimate limits of discrimination are of critical

importance to optical communication, and more generally quantum information and

measurement theory. Furthermore, conventional Gaussian measurements also do not

reach the fundamental limits associated with metrological problems such as optical

phase estimation of coherent states [78]. However, the limit of conventional strategies

for phase estimation is closer to the fundamental limit than for the state discrimination

problem. Therefore, non-Gaussian strategies must be incredibly well understood in

order to surpass the limit of conventional measurements, and we investigate this

problem of non-Gaussian receivers for optical phase estimation in Ch. 5.

1.5 Photon Counting Measurements

The fundamental measurement aspect which enables unconventional receivers to

surpass the limits of conventional measurements is having a non-Gaussian element
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such as photon counting. Instead of measuring the intensity of the light via the

operator â†â, as with homodyne or heterodyne measurements, a receiver can measure

individual photons by projecting onto individual Fock states, which is described by the

POVM {|n〉〈n|}. By itself, {|n〉〈n|} is not a coherent measurement because this POVM

alone cannot decode phase information. Thus, the receiver needs to implement a

coherent operation before photon counting. Homodyne and heterodyne measurements

rely on interference on a 50/50 beam splitter between the input state and an infinitely

(compared to the input) strong reference field of light, referred to as a local oscillator

(LO) [8, 58, 68]. In contrast, we focus on using a coherent displacement operation

D̂(β) implemented using a LO field with a precise intensity and a highly transmissive

(T ≈ 1) beam splitter [79]. We choose the state of the LO to be |β/
√

1− T 〉 and for

experimental convenience, we include an implicit π phase shift into the displacement

such that D̂(β)|α〉 = |α − β〉. The displaced photon counting measurement is then

described by the POVM {Π̂n(β) = D̂(β)|n〉〈n|D̂†(β)}.

Given a particular measurement outcome corresponding to a single POVM element

Π̂n(β), the receiver can calculate the likelihood of that detection for each input state

as well as the posterior probability using Bayes rule. The decision for the input state

in the problem of state discrimination is given by the state which has maximum a

posteriori probability. However, the receiver can also perform an adaptive strategy

instead of measuring the entire input state at once. In adaptive schemes, the input

is split into multiple adaptive steps, each of which implements a displaced photon

counting measurement and the probability of each input state is updated by recursively

applying Bayes rule (See Appendix A.1). Figure 1.5 shows a diagram of an adaptive

photon counting measurement. We use an LO to displace the input in phase space

using interference on a 99/1 beam splitter, followed by detection with a single photon

detector (SPD). Adaptive measurement strategies incorporate feedback to the LO

conditioned on the particular photon detection result.

While we may be able to write down the POVM for a single adaptive step as

Π̂n(β), constructing the POVM which describes the entire adaptive measurement is
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Figure 1.5: Diagram of an adaptive photon counting measurement. The input state (blue)
is displaced in phase space using interference on a 99/1 beam splitter between the input and
a local oscillator (LO). The displaced state is detected by a single photon detector (SPD).
An adaptive strategy includes feedback to the LO based on the photon detection result.

more complex. Nevertheless, we aim to demonstrate that displaced photon counting

measurements both adaptive and non-adaptive can surpass the limits of conventional

technologies (i.e. Gaussian measurements) for a wide variety of problems. These

investigations advance our understanding of how to best extract information encoded

into coherent states of light, and further open the door to utilizing non-Gaussian

measurements in quantum information science.

1.6 Thesis Organization

In this thesis, we investigate three main problems: (1) the discrimination of coherent

states with different measurement strategies and their applications in communication,

(2) methods for providing robustness for quantum measurements of coherent states

to noise and imperfections in realistic communication channels and devices, and (3)

the problem of phase estimation of coherent states with single-shot measurements.

Chapter 2 discusses the problem of binary state discrimination in the context of

communications and generalized quantum measurements. Section 2.1 describes how

incorporating photon number resolution into an optimized non-adaptive strategy

allows for robustness to experimental imperfections [80]. Section 2.2 investigates
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using this robust receiver for a phase diffusion channel [81]. Section 2.3 presents the

demonstration of optimally inconclusive measurement receivers for binary coherent

states [64].

Chapter 3 addresses problems in the discrimination of QPSK coherent states based

on optimized measurement strategies as well as strategies based on machine learning.

Section 3.1 presents an optimized non-adaptive strategy based on a polarization

interferometer [82]. Section 3.2 describes how different global optimizations for

adaptive strategies can allow for unconditionally surpassing the QNL in the single-

photon regime [83]. Section 3.3 investigates a reinforcement learning framework for

adaptive photon counting measurements for state discrimination [84].

Chapter 4 investigates two methods for real-time noise tracking and correction for

adaptive photon counting receivers in the presence of dynamic channel noise. Section

4.1 describes an experimental implementation of a phase tracking method based on a

simple and practical estimator [85]. Section 4.2 presents a theoretical investigation of

a scalable approach where a neural network is trained as a multi-parameter estimator

both phase and amplitude noise [86].

Chapter 5 presents an adaptive photon counting measurement for optical phase

estimation based on real-time optimizations [87,88]. Section 5.2 describes the phase

estimation strategy and Section 5.3 describes the experimental implementation. Section

5.4 presents the experimental and theoretical results. Section 5.5 discusses the

approximations used to demonstrate the strategy, and the asymptotic connection

between different optimization strategies and the Fisher information.

Chapter 6 discusses the possibility of using higher order modulation formats

combined with an optimized distribution for the input state alphabet to maximize the

mutual information. We find that adaptive photon counting measurements can reach

rates of information transfer beyond the limit of conventional Gaussian strategies [89].

Chapter 7 summarizes the work and provides concluding remarks and future directions

for non-Gaussian measurements. The published works that this thesis is based on and
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Binary Encoded Coherent States

The Helstrom bound is the smallest possible error probability in discriminating the

binary coherent states |αk〉 = {| − α〉, |α〉}. The Helstrom measurement is made by

projecting onto the superposition state N±(|α〉 ± | − α〉), but has no known physical

implementation. However, this ultimate bound can be reached by a measurement

known as a Dolinar receiver, which has a relatively complex implementation that

is susceptible to noise [53, 62, 90]. On the other hand, simple and robust receivers

which can surpass the QNL rely on a fixed displacement operation D̂(β) (β real and

positive) followed by single-photon detection. The first receiver of this kind was initially

described by Kennedy [91], where |β| = |α| such that the receiver attempts to displace

one of the states to the vacuum state followed by PNR(1) (on/off) detection, giving

an error probability of: PE = e−4|α|2/2 for equiprobable states. This measurement

was further improved to the so-called optimized Kennedy receiver by optimizing

the displacement magnitude |β| = |βopt| such that the overall probability of error

is minimized [69]. This optimized Kennedy receiver can in principle outperform

ideal homodyne detection, the optimal Gaussian measurement, for all input powers.

Experimentally, the optimized Kennedy strategy has been demonstrated surpassing

the QNL in the low power limit (|α|2 ≤ 1) both with [92] and without [52] correction
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for the system efficiency, corresponding to unconditional performance below the QNL.

While the demonstrations in Refs. [92] and [52] represent a significant advance

in understanding the benefit and capabilities of non-Gaussian measurements, the

implementations are susceptible to experimental imperfections such as non-ideal

interference visibility or detector dark counts. These imperfections limit the benefit

of the optimized Kennedy receiver over the QNL to the low power regime if the

measurement cannot be made robust to noise [80]. In addition, realistic communication

channels induce noise in the coherent states, such as thermal noise or phase noise as

opposed to a pure loss channel [93–95]. Such channel noise will impact the ability of a

receiver to perform state discrimination due to the noise reducing the distinguishability

of the states. A robust communication strategy also optimizes the input encoding

because a BPSK alphabet may not provide the best distinguishability [81] after

propagation through a noisy communication channel. Furthermore, the optimized

Kennedy receiver and similar approaches fall into the paradigm of minimum error state

discrimination, where the aim is to achieve the smallest possible error probability for

a fixed energy of the input states. However, there exist other measurement strategies

which aim to be unambiguous in their outcomes such that PE = 0 [96, 97] at the

cost of having inconclusive results. Moreover, strategies have been developed [17,63]

which interpolate between a minimum error and unambiguous receivers to implement

optimally inconclusive measurements [64], a more general class of measurement

strategies.

In this chapter, we investigate how to increase the robustness of non-Gaussian

measurements of binary coherent states, and extend the state discrimination toolbox to

include more general measurements beyond minimum error discrimination. In Section

2.1, we leverage the ability to resolve individual numbers of photons, as opposed to

on/off detection, for BPSK states to provide the measurement with information about

imperfections and enable robust discrimination strategies [80]. In Section 2.2, we

study optimized measurements for binary state discrimination in the presence of phase

noise channels [81], for which the ultimate limits of communication are not known. In
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Section 2.3, we investigate how to implement optimally inconclusive measurements [64],

which can achieve sub-Helstrom error probabilities at the cost of sometimes producing

an inconclusive result.

2.1 Robust Optimized Kennedy with PNR

An ideal optimized Kennedy receiver for BPSK coherent states is able to surpass the

QNL for all input mean photon numbers. However, this performance is degraded due

to noise and imperfections in the measurement, and previous sub-QNL demonstrations

[52, 92] have thus been limited to the low mean photon number regime (|α|2 ≤ 1).

A missing component which allows for surpassing the QNL beyond this regime is

robustness to experimental imperfections such as non-ideal interference visibility ξ 6= 1

and detector dark counts ν 6= 0. The overall effect of these imperfections is an

increase in the error probability relative to the QNL as the mean photon number of

the states increases due to erroneous photon detections. To counteract experimental

imperfections, the receiver can leverage photon number resolving capabilities to recover

sub-QNL performance by factoring in the information gained by detecting a precise

number of photons. This photon number resolution allows the receiver to incorporate

imperfections when optimizing the strategy as well as making an estimate for the

input state by adjusting which measurement outcomes correspond to each input state.

2.1.1 Measurement Strategy

Figure 2.1(a) shows the strategy for the robust optimized Kennedy receiver with

photon number resolution (PNR). The input state |αk〉 ∈ {|−α〉, |α〉} is first displaced

in phase space by D̂(β) using interference with a local oscillator (LO) on a highly-

transmissive beam splitter [79]. The displaced state D̂(β)| ± α〉 = | ± α− β〉 is then

detected by a single photon detector (SPD) with PNR(m), where m is the number of

photons the detector can resolve before becoming a threshold detector. We note that
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Figure 2.1: (a) The input states are displaced in phase space using interference on a beam
splitter. The displaced states are then detected by a photon number resolving detector.
(b) Optimal displacement ratios |βopt(m)|/|α| for different PNR(m) strategies. (c) The
resulting error probability (colored lines) for the receiver when implementing the optimized
displacements in (b) with ideal detection efficiency, but non-ideal interference visibility ξ.
The black, red, and gray dashed lines show the Helstrom bound, expected error when ξ = 1.0,
and QNL given by an ideal homodyne measurement, respectively. Figure adapted from:
Physical Review Letters 121, 023603 (2018).

for convenience, and to correspond with the experimental implementation, we have

included an implicit π phase shift into the displacement operation. Given a particular

detection outcome n, the posterior probabilities P (±α|n, β,m) for the input states

| ± α〉 are obtained through Bayes rule: P (±α|n, β,m)P (n) = L(n| ± α, β,m)P (±α).

The prior probabilities P (±α) of the input states | ± α〉 are equal to 1/2, and

L(n|αk, β,m) =
(〈n̂〉k)n

n!
e−〈n̂〉k (2.1)

is the likelihood function for detecting n photons for each input state given

the displacement β with PNR(m). We include experimental imperfections into

L(n|αk, β,m) by modeling the experimentally detected mean photon number 〈n̂〉k of

the distribution as:

〈n̂〉k = η|αk − β|2 + ν = η
(
|αk|2 + |β|2 − 2ξ|αk||β|cos(φk)

)
+ ν. (2.2)

Here η is the overall detection efficiency, ξ is the visibility and characterizes

imperfections in the interference of the two fields, ν is the dark count rate of the
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detector, and φk is the relative phase between the input |αk〉 and LO field (either

φk = 0 or φk = π for BPSK states) [80]. The strategy follows a maximum a posteriori

probability (MAP) criterion such that the estimated state is the one with the largest

posterior probability. Thus, there is a decision boundary that splits the m + 1

possible outcomes (photon detections) into two groups corresponding to which input

state is more likely. For example, a PNR(4) strategy has five outcomes {0, 1, 2, 3, 4+},

which for |α|2 = 5 are divided as: {0, 1} → | − α〉, {2, 3, 4+} → |α〉 when the

displacement D̂(β) is set to displace | − α〉 to near the vacuum state. The total

probability of error PE(α, β,m) for a given displacement β and PNR(m) is [80]:

PE(α, β,m) = 1− 1

2

m∑
n=0

max
(
{P (n|α, β,m), P (n| − α, β,m)}

)
. (2.3)

Given the expression for the probability of error, we find the optimal displacement

magnitude |βopt(m)| by minimizing Eq. (2.3) with respect to |β| for a fixed mean

photon number |α|2 and resolution m. Note that by construction due to the MAP rule,

the optimal decision boundary is also obtained from the minimization. Figure 2.1(b)

shows the resulting optimal displacement ratio |βopt(m)|/|α| for m=1, 2, and 3 with

ideal detection efficiency (η = 1) but a non-ideal interference visibility of ξ = 0.998.

The optimal displacement ratio in general converges to a value of |βopt(m)|/|α| = 1

(corresponding to displacement to the vacuum state) as the mean photon number

increases. The jumps for m 6= 1 are from optimization of Eq. (2.3) and correspond to

where the decision boundary changes.

Figure 2.1(c) shows the error probabilities (colored lines) for strategies with different

PNR(m) for η = 1 and ξ = 0.998 compared to the homodyne limit (gray dashed),

the Helstrom bound (black dashed), and an ideal strategy with ξ = 1.0 (red dashed).

For an realistic experiment where ξ = 0.998, a strategy with PNR(1) encounters a

noise floor at approximately PE ≈ 5.0× 10−3 due to erroneous photon detections from

the state which was displaced to almost the vacuum state. Increasing the PNR can

counteract this effect and allow the receiver to maintain sub-QNL performance in the

presence of experimental imperfections. As the input mean photon number increases,

the PNR of the receiver can be further increased to provide robustness. The points
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where different PNR(m) curves start to diverge correspond to the jumps in (b) of the

optimal displacement ratios and changes in the decision boundary.

2.1.2 Optimization and Implementation

The first step to implementing the optimized Kennedy receiver with PNR is to optimize

the value of the displacement |β|. There will in general be m local minima of Eq. (2.3)

for a PNR(m) strategy, one of which being the global minimum |βopt(m)|. However,

we find that the particular local minima that corresponds to the global minimum

changes depending on the value of |α|2. Figure 2.2 shows two examples of the value

of PE(α, β,m) from Eq. (2.3) as a function of the mean photon number of the

displacement |β|2. Figure 2.2(a) shows PE(α, β,m) for |α|2 = 1.4 and 1.6 as dashed

and solid lines for m=1, 2, and 3, in red, green, and blue, respectively. By examining

the dashed lines for |α|2 = 1.4, we see that there are local minima at |β|2 ≈ 1.5, 2.1,

and 3.0 with the global minimum (GM) for all PNR being at |β|2 ≈ 1.4. However, as

the input power is increased to |α|2 = 1.6 the local minima shift slightly and now the
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Figure 2.2: (a) Probability of error given by Eq. (2.3) for |α|2=1.4 (dashed) and 1.6 (solid)
for m=1, 2, 3 in red, green, and blue, respectively. The global minimum (GM) for PNR(1,2,3)
at |α|2 = 1.4 is at |β|2 ≈ 1.4 while for |α|2 = 1.6, the GM for PNR(1) is |β|2 ≈ 1.6 but at
|β|2 ≈ 2.2 for PNR(2,3). (b) Similarly, the GM changes for PNR(2) and PNR(3) when the
input energy changes from |α|2 = 3.0 to 3.2. Figure adapted from: Physical Review Letters
121, 023603 (2018).
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global minimum for PNR(1) is |β|2 ≈ 1.6 but the minimum for PNR(2,3) is |β|2 ≈ 2.2.

Figure 2.2(b) shows similar behavior at higher input powers of |α|2 = 3.0 and 3.2

where the global minimum for PNR(1) is very far from the others and the optimal

value splits for PNR(2) and PNR(3). Thus, a simple function minimization may

not find the global minimum depending on the initial search value. To reliably find

the global minimum, we implement multiple optimizations each with different initial

values. The initial values for a strategy with |α|2 can be roughly found empirically,

or by extrapolating based on the exact local minima found for |α|2 − ε where ε is a

quantity small enough such that each local minima can be “tracked” as the input

energy increases.

Figure 2.3 shows the experimental setup for the optimized Kennedy receiver with

PNR (see Appendix A.2 for details on how PNR is experimentally implemented).

Once the optimal value of |β| is found, the input states are prepared by adjusting the

energy |α|2 using a series of attenuators and setting the phase randomly to either 0

or π to give the two states: |α〉 and | − α〉. The LO field is prepared by fixing the

Figure 2.3: Experimental interferometer setup. Pulses of light are generated using a
continuous Helium-Neon laser and a pulsed acousto-optic modulator (AOM). The pulses
are split by a 50/50 beam splitter (BS) where the signal energy is prepared with an
attenuator (Att.) and phase with a phase modulator (PM) and multiplexer (MUX). The LO
(displacement) field is prepared with a second PM and an amplitude modulator (AM) which
is connected to a digital-to-analog converter (DAC) to implement arbitrary displacement
magnitudes. The two fields interfere on a 99/1 BS where the displaced signal is then detected
by a single photon detector (SPD). The experiment is controlled by a field-programmable
gate array (FPGA) which registers the photon detection, sets the displacement, and passes
information to a computer for processing.
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phase to zero and adjusting the intensity |β|2 using an amplitude modulator and an

eight bit digital-to-analog converter (DAC) [80]. Our implementation achieves an

overall detection efficiency of η = 0.72, visibility of ξ = 0.998, dark count rate of

ν = 3.6× 10−3, and APD after-pulsing probability (See Appendix B.2 for details) of

PAP = 1.1× 10−2.

2.1.3 Experimental Results

Figure 2.4 shows the experimental results for the optimized Kennedy receiver with

PNR(m) for m=1, 2, 3, and 4. The colored points and error bars correspond to the

average and one standard deviation across five experimental runs and the colored

dashed lines show the theoretical results obtained from Monte Carlo simulations

including experimental imperfections. A comparison to a homodyne measurement

with the same efficiency (dashed black) shows the robustness to noise provided by

PNR as the mean photon number increases. We find that a PNR(1) strategy can only

outperform the adjusted QNL up to an input energy of |α|2 ≈ 2.0, but by increasing

to PNR(2) the performance can be maintained up to |α|2 ≈ 4.5, where an increase to

PNR(3) then enables performance below the QNL, and so on.

This result shows that the optimized Kennedy receiver can always outperform a

homodyne receiver for any input mean photon number provided there is a large enough

photon number resolution. We note that the error probability for a given PNR(m)

strategy slightly increases once it degrades relative to larger PNR strategies, which is

apparent from the PNR(1) result. This effect is due to the receiver no longer being

able to compensate for imperfections such as non-ideal visibility in the experiment.

Thus, with PNR(1) the receiver is attempting to displace effectively to vacuum but

can only reach D̂(α)|α〉 = |
√

2(1− ξ)α〉 (≈ |0.14〉 for |α|2 = 5). The probability of

detecting a photon from this state (and thus an error) is given by 1 − e−2(1−ξ)|α|2

(≈ 0.02 for |α|2 = 5) and increases as the input energy increases. One may surmise

however, that after a certain point it would actually be more beneficial to encode
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Figure 2.4: Experimental results. Points show the results for different PNR strategies and
error bars correspond to one standard deviation of five separate runs of the experiment.
Increasing the PNR allows the receiver to maintain its benefit over an equivalent homodyne
receiver (dashed black) as the input mean photon number increases. Figure adapted from:
Physical Review Letters 121, 023603 (2018).

information into an OOK alphabet (whose error doesn’t depend on ξ) as opposed to

BPSK due to this increase in error because of imperfections. Tailoring the alphabet

to remain highly sensitive while providing robustness to communication channel noise

is discussed in Sec. 2.2.

We further investigate the capabilities of the PNR strategies for different

experimental conditions which are realistically achievable for different values of ξ and

m. Figure 2.5(a-f) shows for ratio log10(PE/Phom) of the expected error probability

to that of an ideal homodyne receiver (QNL) for PNR(1,3,5) as a function of the

interference visibility ξ and mean photon number |α|2 for η = 0.85 in (a-c) and

η = 1.0 in (d-f). The blue regions correspond to when the optimized Kennedy receiver

with PNR achieves lower error rates than the QNL. The dashed green vertical

line shows our experimental visibility of ξ = 0.998. The solid gray lines show the

boundary where the error probability is no longer less than the QNL and the gray

dashed line in (b,c,e,f) show this boundary for the smaller values of m. The value of

η = 0.85 corresponds to using a state-of-the-art low dark count detector with 98%
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Figure 2.5: (a-f) Ratio of the expected error probability compared to the QNL log10(PE/Phom)
as a function of visibility ξ and |α|2 for PNR(1,3,5) with η = 0.85 in (a-c) and η = 1.0 in
(d-f). The dashed green vertical line shows our experimental visibility of ξ = 0.998 and the
solid gray lines show where PE = Phom. (g) Comparison of different strategies to the ideal
QNL for an experimentally feasible visibility of ξ = 0.999 for η = 0.85 (dashed) and η = 1.0
(solid). A PNR(10) strategy with η = 0.85 can achieve 5 times better performance than the
ideal QNL and a perfect η = 1.0 strategy can reach over 103 times better than the QNL.
Figure adapted from: Physical Review Letters 121, 023603 (2018).

efficiency combined with our total system efficiency of ηsystem ≈ 0.88. In this practical

case with a realistic visibility, the receiver can maintain its performance relative to

the QNL with PNR(5) up to |α|2 ≈ 10. Interestingly, sub-QNL performance can be

obtained for |α|2 < 2 even as the visibility decrease beyond ξ = 0.995. Figure 2.5(g)

shows the ratio of the two error probabilities for an experimentally feasible visibility

of ξ = 0.999 for η = 0.85, 1.0 and PNR(1, 5, 10). A PNR(10) strategy which a realistic

photon number resolving detector with η = 0.85 can achieve approximately five times

better performance relative to the ideal QNL and the same strategy with a perfect

detector can reach error rates of over 103 times lower than the QNL.

2.1.4 Discussion

The demonstration of optimized strategies with PNR solves the important issue

of robustness in Kennedy-like receivers for discrimination of BPSK coherent states.

Whereas previous demonstrations of binary state discrimination below the QNL have
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been limited to low input powers due to noise an imperfections, we show that these

effects can be mitigated by using an adequate photon number resolution. Increasing

the PNR from simple on/off detection provides robustness to non-ideal interference

visibility as well as detector dark counts, and after-pulsing effects. Allowing the

optimized Kennedy receiver to have photon number resolution can also be leveraged

for quantum key distribution with coherent states [98], by allowing the receiver to

implement a more “soft” decision strategy as opposed to a “hard” decision with on/off

detection.

2.2 Optimized Communication over Phase Noise

Channels

In addition to noise and imperfections in the measurement receiver, there can

potentially be noise imparted onto the coherent states by the communication channel

itself. In such a scenario, the attainable performance of the state discrimination

measurement will generally be degraded, especially at high levels of communication

channel noise. For certain types of channel noise such as loss or phase insensitive

Gaussian noise, coherent states of light can reach the limits of information transfer,

known as the capacity [18, 71, 99]. However, the ultimate limits of communication

[72–75, 95, 100–102] and metrology [103–105] in non-Gaussian channels, and strategies

which achieve those limits, are still under investigation. To understand the impact

of non-Gaussian channels on state discrimination, experimental investigations of

strategies which perform well over these channels are needed. To this end, we study

and experimentally demonstrate an optimized communication strategy for binary

coherent states over a phase diffusion channel utilizing the optimized Kennedy receiver

with PNR described above [81]. The communication strategy jointly optimizes the

measurement receiver as well as the input alphabet to the channel under an average

energy constraint. We show that this approach can achieve lower error probabilities

compared to conventional approaches, as well as reach higher rates of information
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transfer for small and large noise levels.

2.2.1 Optimized Communication Strategy

A central aspect of the optimized communication strategy is the ability to tailor the

binary input state alphabet to reduce the impact of the phase noise channel on the

states. Figure 2.6 shows the effect of a phase diffusion channel on three different

input coherent state alphabets with the same average energy n̄: 2.6(a) shows a BPSK

alphabet {| − α〉, | + α〉}, 2.6(b) shows an OOK alphabet {|0〉, |
√

2α〉}, and 2.6(c)

shows a general alphabet {|α1〉, |α2〉} where |α1|2 + |α2|2 = 2n̄. A BPSK alphabet

achieves the smallest possible overlap |〈−α|α〉|2 for a given average energy n̄, but it
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Figure 2.6: Effect of phase diffusion on (a) a BPSK alphabet, (b) an OOK alphabet, and (c)
an optimized alphabet. The BPSK alphabet achieves the best error rate in the absence of
phase diffusion, but it is it most sensitive as the overlap between the states quickly increases
with phase diffusion. On the other hand, an OOK alphabet has higher error rates with no
phase diffusion but is also immune to this type of channel noise. An optimized alphabet seeks
to balance the benefits of BPSK and OOK to achieve the best possible error in the presence
of a particular level of phase diffusion. Figure adapted from: npj Quantum Information 5,
65 (2019).
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is highly sensitive to phase diffusion, which decreases the distinguishability of the

states [2]. On the other hand, an OOK alphabet has a larger overlap when there is no

noise and therefore a larger error probability. However, OOK is immune to the effects

of phase diffusion as information is encoded into the magnitude of the states rather

than the phase. An optimized alphabet captures both the high distinguishability of

BPSK and robustness to phase diffusion of OOK due to the ability to interpolate

between the two alphabets for a given level of channel noise.

This idea of an optimal alphabet is combined with the previously discussed

optimized Kennedy receiver with PNR such that both the alphabet and receiver are

jointly optimized. Figure 2.7(a) shows the optimized communication strategy over

a phase diffusion channel. The sender prepares a state from the alphabet {|αk〉} for

k = 1, 2 and sends the state through the phase diffusion channel. The effect of the

channel noise transforms the input alphabet into:

ρ̂k = |αk〉〈αk| → ρ̂k(σ) =

∞∫
−∞

e−
φ2

2σ2

√
2πσ2

|αke−iφ〉〈αke−iφ|dφ, (2.4)

where the phase diffusion noise strength is determined by σ. The receiver implements

an optimized Kennedy receiver with PNR to discriminate the phase diffused states.

The alphabet and displacement operation D̂(β) are jointly optimized such that the

error probability is minimized for a given value of σ, average mean photon number

n̄, and PNR(m). Similar to Eq. (2.3), the error probability for equiprobable states

where P (ρ̂1,2(σ)) = 0.5 can be constructed using the MAP criteria as:

PE(n̄, {ρ̂1,2(σ)}, β,m) = 1− 1

2

m∑
n=0

max
k

(
{L(n|ρ̂k(σ), β,m)}

)
. (2.5)

This error probability depends on the displacement β, resolution m, the energy

distribution of |α1|2 and |α2|2, and phase diffusion strength σ through Eq. (2.4).

Figure 2.7(b) shows error probability of the optimized communication strategy

(solid blue) for n̄ = 0.5 compared to a BPSK strategy (dashed red) as the the

level of phase noise increases. The black line shows the Helstrom bound PHel
E =
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Figure 2.7: (a) Optimized communication strategy where the transmitter prepares an optimal
alphabet which undergoes phase diffusion due to a non-Gaussian channel. The receiver
implements an optimized Kennedy measurement with PNR(m) which is optimized jointly
with the input alphabet to minimize the overall error probability. (b) Error rate as a function
of the noise level σ for an optimized strategy (blue), a BPSK encoding (red dashed), Helstrom
bound (black) with its own optimized alphabet, and a conventional measurement (gray)
also with its own optimal alphabet. (c) Energy of the optimal input states (|α1|2, |α2|2) and
displacement level (|β|2). Figure adapted from: npj Quantum Information 5, 65 (2019).

1
2

(
1 − 1

2
||ρ̂1(σ) − ρ̂1,2(σ)||1

)
with the alphabet {ρ̂1(σ), ρ̂2(σ)} which minimizes this

bound and in general will be different from the alphabet which minimizes the error for

a particular measurement. The gray line shows the error probability of what we refer

to as a conventional measurement (CM), which is either a homodyne measurement

with its own optimized alphabet or direct detection with OOK, whichever has the

lower error. We find that the main benefit of the optimized communication strategy is

that by modifying the input alphabet, the strategy can interpolate between a BPSK

alphabet when there is little noise and an OOK alphabet for higher noise levels. An

interesting result of this interpolation is that the optimized strategy asymptotically

approaches the Helstrom bound as the phase diffusion increases beyond σ ≈ 1.

32



Chapter 2. Binary Encoded Coherent States

Figure 2.7(c) shows this optimal alphabet (solid blue) for the strategy as a function

of the phase noise level, where the interpolation between BPSK and OOK can be

explicitly seen, as well as the optimal displacement energy |β|2 (dashed green). We

note that even when σ = 0, the optimal alphabet is not exactly a BPSK alphabet

due to the incorporation of a non-ideal interference visibility of ξ = 0.998, which the

strategy can compensate for by slightly adjusting the alphabet even in the absence of

channel noise. This would imply that optimizing the communication alphabet can

provide robustness to experimental imperfections, such as visibility and dark counts,

as well as channel noise.

2.2.2 Experimental Results

Error Probability for BPSK and Optimized Alphabets

We experimentally demonstrate the optimized communication strategies described

above using the experimental setup described in Sec. 2.1.2. We implement the phase

diffusion by applying a voltage waveform which is piecewise constant and Gaussian

distributed to the signal phase modulator. We calibrate the amplitude of the voltage

waveform following the procedure described in Ref. [81], where each amplitude level for

the waveform is associated with a corresponding standard deviation σ of the measured

phase shifts from the waveform. In order to first benchmark the performance of the

optimized communication scheme, we implement a BPSK alphabet with an optimized

Kennedy receiver with PNR. Figure 2.8(a-c) shows the experimental results for the

BPSK alphabet for an average input mean photon number of n̄ = 0.5, 1.0, and 2.0,

respectively. For n̄=0.5, we find that the receiver can tolerate a noise level of σ ≈ 0.6

before the error increases above an equivalent homodyne measurement. For n̄=2.0, the

benefit of PNR for robustness to channel noise becomes apparent and while PNR(1)

can only tolerate noise up to σ ≈ 0.06, increasing to PNR(3) allows the receiver to

outperform a homodyne measurement up to σ ≈ 0.25. However for average energies, as

the level of noise increases the achievable error probability asymptotically approaches
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Figure 2.8: Experimental error probabilities for an optimized Kennedy receiver with a BPSK
alphabet for n̄=0.5, 1.0, and 2.0 in (a-c), respectively. For n̄ = 0.5 in (a), the receiver can
only maintain an error probability better than an equivalent homodyne receiver up to a
noise level of σ ≈ 0.6 and the use of photon number resolution has a small impact. For
n̄ = 2.0, the effect of increasing from PNR(1) to PNR(3) becomes apparent and can increase
the tolerable noise level by a factor of ≈ 5. Figure adapted from: npj Quantum Information
5, 65 (2019).

0.5 as the overlap of the states approaches unity.

Figure 2.9(a-c) shows the error probability for the optimized communication

strategy for n̄=0.5, 1.0, and 2.0, respectively, and 2.9(d-f) shows the corresponding

optimal input alphabet. For n̄ = 0.5, we find that the receiver is able to outperform

a conventional measurement (dashed gray) strategy for all levels of phase noise σ

and even approach the equivalent Helstrom bound (solid black) as σ increases. The

red and green points correspond to PNR(1) and PNR(3) strategies and the error

bars represent one standard deviation across five experimental runs. For n̄ = 2.0, we

see the combined effect of an optimized communication strategy and PNR on the

probability of error. While a PNR(1) optimized alphabet can outperform BPSK, the

error is significantly above a conventional measurement for a moderate amount of noise.

However, the optimized alphabet with PNR(3) can leverage the number resolving

capabilities such that there is only a small range of phase noise for which the error of

the optimized strategy is slightly higher than that of a conventional measurement. The

optimal alphabet is also able to remain closer to BPSK than OOK with an increase in

PNR as in (f) such that the sensitivity of a coherent encoding is fully utilized. Overall,

the alphabet tends to OOK as σ increases, but we note that different PNR can have
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Figure 2.9: Error probabilities (a-c) and resulting alphabets (d-f) for the optimized
communication strategy with n̄=0.5, 1.0, and 2.0, respectively. In (a), the strategy can
outperform an equivalent conventional measurement (CM) for all noise levels and approaches
the Helstrom bound due to the ability of the alphabet to interpolate between BPSK and
OOK. In (c), increasing from PNR(1) to PNR(3) allows the receiver to perform better
than an equivalent CM for almost all values of σ and the corresponding optimal alphabet
shows jumps similar to previous experiments comparing different number resolutions. Figure
adapted from: npj Quantum Information 5, 65 (2019).

very different optimal alphabets and displacement values.

Interestingly, in Figure 2.9(c) for PNR(1) the error of the optimized alphabet is

lower than for BPSK when there is no channel noise (σ = 0). This effect is due to

the optimal alphabet attempting to compensate for imperfections in the experimental

implementation, mainly a non-ideal visibility of ξ = 0.998. This effect is apparent

by examining the optimal alphabet in (f) where |α1|2 ≈ 1.0 and |α1|2 ≈ 3.0 instead

of |α1|2 = |α2|2 = 2.0 for BPSK. Thus, for realistic implementations with limited

PNR, an optimized alphabet can further improve the error probability by taking

experimental imperfections in to account in the optimal encoding, even in just a pure

loss channel (σ = 0).
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Mutual Information for Optimized Alphabets

We further investigate the effect of a phase diffusion channel on information transfer

by studying the mutual information (MI) I(X : Y ) for optimized communication

strategies with a phase diffusion channel. The mutual information quantifies the

amount of information (in bits) which can be reliably transmitted across a channel

using a particular encoding and measurement strategy. The maximum MI for binary

states is one bit, and we aim to find communication strategies which extract the

highest possible amount of information. We calculate the MI for a displaced photon

counting strategy using a “soft-decision” rule based on the number of detected photons,

as opposed to a binary outcome of a particular state:

I(n̄, σ, β,m) =
m∑
n=0

2∑
k=1

L(n|ρ̂k(σ), β,m)P (ρ̂k(σ))log2

[
L(n|ρ̂k(σ), β,m)

P (n|m)

]
, (2.6)

where L(n|ρ̂k(σ), β,m) is the likelihood function for detecting n

photons given the input state ρ̂k(σ), displacement β, and PNR(m), and

P (n|m) =
∑

k L(n|ρ̂k(σ), β,m)P (ρ̂k(σ)) is the total probability of detecting n

photons with PNR(m). Similar to the error probability, the MI can be maximized

and will in general have different values for the optimal alphabet and displacement

for a given average energy n̄, PNR(m), and noise level σ.

Figure 2.10(a,b) show the experimental MI (points) for different PNR for n̄ = 1.0

and n̄ = 2.0, respectively, and 2.10(c,d) show the corresponding alphabets. Dashed

colored lines show the MI for different PNR and the dashed gray line shows the MI

for a conventional measurement with its own optimized alphabet. The solid red and

blue lines show the MI for a BPSK alphabet for PNR(1) and PNR(5), respectively.

We observe that having a PNR greater than PNR(1) allows for higher MI than a

conventional measurement at small values of σ, and all strategies can outperform

conventional approaches due to the optimized alphabet at large values of σ.

Increasing the PNR can allow the optimized communication strategy to approach

the MI of conventional measurements for moderate values of σ. This effect is mainly
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Figure 2.10: Experimentally measured mutual information (a,b) and corresponding alphabets
(c,d) for n̄=1.0 and 2.0, respectively. For both average energies, the optimized communication
strategy can obtain higher mutual information in the low noise and high noise regimes, and
in the intermediate regime the use of PNR greatly enhances the achievable information
transfer. (e) Maximum percent difference R(m) between the optimized communication
strategy and an equivalent conventional measurement for different PNR and input energies.
(f) R(m) as a function of m for different alphabet energies showing the power-law scaling
of the maximum percent difference with the PNR. Figure adapted from: npj Quantum
Information 5, 65 (2019).

due to a PNR(1) strategy not having access to information gained from different

photon number detections, rather just the presence or absence of photons. We calculate

the maximum percent difference R(m) between the displaced photon counting strategy

and the CM for a given PNR(m):

R(m) = max
σ

(
ICM(σ)− IPNR(σ)

ICM(σ)

)
, (2.7)

where IPNR(σ) is the mutual information for the photon counting strategy and ICM (σ)

is the mutual information of the CM. This value R(m) represents the percent difference

between the two strategies at the level of noise σ for which the a photon counting

strategy has the worst performance relative to the CM. Figure 2.10(e) shows R(m) for

n̄ ranging from 0 to 20 and different PNR(m) for m = 1 to m = 20. The blue region

to the right of the white line corresponds to when R(m) < 1%, i.e. when a PNR(m)

strategy is at worst less than 1% below the CM. Figure 2.10(f) shows R(m) on a
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log-log scale for n̄ = 0.5, 1.0, 1.5, and 2.0, in red, green, blue, and black, respectively.

The straight lines indicate power-law scaling of R(m) of the form a(m)b and we find

that for all n̄, b ≈ 1.1. This scaling indicates that for moderate phase diffusion, PNR

strategies will at worst asymptotically provide the same mutual information as the

CM. On the other hand, for small and large values of σ, optimized photon counting

strategies with realistic PNR provide advantages in the mutual information compared

to the CM.

2.2.3 Discussion

Optimized communication strategies can further our understanding of the limits of

information transfer across channels with non-Gaussian noise. In particular, when

these limits are not completely understood even in theory, experiments must probe

how to achieve efficient and effective information transfer. Furthermore, the idea

of jointly optimizing the input alphabet and receiver measurement is not restricted

to binary coherent states. For example, this approach can be used to study higher

order modulation formats such as QPSK or 16-QAM across phase diffusion channels

with different measurement schemes. Such investigations will shed light on the

underlying physics involved in non-Gaussian channels and how to approach the limits

of communication across such channels.

2.3 Optimally Inconclusive Measurements

The optimized Kennedy receiver described in Sections 2.1 and 2.2 is a measurement

strategy referred to as a minimum-error state discrimination (MESD) measurement.

In MESD strategies, the receiver aims to minimize the probability of error PE and

the minimum achievable value is the Helstrom bound PHel
E [2, 66, 106]. Beyond the

paradigm of MESD measurements, there is a different class of strategies which allow for

perfect (PE = 0) discrimination but at the cost of a high probability of an inconclusive
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result PI . These strategies are referred to as unambiguous state discrimination (USD)

measurements where the smallest probability of an inconclusive result is given by

PUSD
I [26, 49, 96, 97, 107,108]. Reference [53] demonstrated a Dolinar receiver (MESD

strategy) for intensity encoded coherent states, and Reference [109] demonstrated

USD measurements of arbitrary binary coherent states.

While MESD and USD represent two different measurement paradigms, a more

general state discrimination strategy is one which is optimally inconclusive [17,110].

This more general discrimination strategy operates on the principle that for a

given probability of an inconclusive result 0 ≤ PI ≤ PUSD
I , the receiver achieves

the minimum possible error probability 0 ≤ PE ≤ PHel
E [111, 112]. In this way,

an optimally inconclusive measurement receiver has the ability to interpolate

between the two canonical measurement paradigms of MESD and USD. Inconclusive

measurements of coherent states have been experimentally demonstrated [98].

However, the demonstration in Ref. [98] falls short of achieving the optimality of the

optimally inconclusive strategy, i.e. obtaining the lowest error for a given value of

inconclusive probability. Recent theoretical work in Ref. [63] shows that optimally

inconclusive measurements of binary coherent states can be implemented with a

modified Dolinar approach using displacement operations, photon counting, and

feedback. The measurement is performed by splitting the input state into two

temporal modes and implementing a standard Dolinar receiver in the first temporal

mode to discriminate between the states with minimal error, and then implementing

a Dolinar-like receiver in the second temporal mode to decide between the most likely

state after the first mode and an inconclusive result.

2.3.1 Measurement Strategy

The measurement operators (POVM elements) which implement the MESD and

USD measurement schemes for the binary states {|ψ1〉, |ψ2〉} can be represented in a

two dimensional space. Figure 2.11 shows the vector representation of the two non-
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Figure 2.11: Vector space representation of the binary states and measurements. The
two states |ψ1〉 and |ψ2〉 (black) are separated by an angle θ, which characterizes their
non-orthogonality. In this two dimensional space, the MESD (Helstrom) POVM is formed by
projecting onto the orthonormal vectors |φ+〉 and |φ−〉 (red), which span the two dimensional
space. A USD POVM is formed by projecting onto Π̂1, Π̂2, and Π̂?.

orthogonal states |ψ1,2〉 (black), the POVM for a minimum error measurement (red),

and the POVM for an unambiguous measurement (blue). The optimal MESD strategy

(Helstrom measurement) achieves PHel
E and is given by the POVM {Π̂1, Π̂2}, which is

formed by projecting onto the orthogonal basis states |φ±〉 with |ψ1〉 = a|φ+〉+ b|φ−〉

and |ψ2〉 = b|φ+〉 + a|φ−〉. Here, a positive outcome of Π̂1 indicates that the more

likely input state is |ψ1〉 and vice versa. A Dolinar receiver also achieves the Helstrom

bound using the experimentally implementable techniques of displacement operations,

photon counting, and fast feedback. On the other hand, an unambiguous measurement

is given by the POVM {Π̂1, Π̂2, Π̂?} where the outcome Π̂? represents the inconclusive

outcome, which occurs with probability PI . The USD measurement is constructed by

having Π̂1 be orthogonal to |ψ2〉 (i.e. 〈ψ2|Π̂1|ψ2〉 = 0) such that a positive outcome of

Π̂1 unambiguously eliminates |ψ2〉 as a possible input state. In a similar way, Π̂2 is

orthogonal to |ψ1〉 (i.e. 〈ψ1|Π̂2|ψ1〉 = 0) and a positive outcome of Π̂2 unambiguously

eliminates |ψ1〉. Thus, there are zero errors for the USD measurement (PE = 0) due

to how Π̂1 and Π̂2 are constructed. The measurement operator for the inconclusive

outcome is given by Π̂? = Î−Π̂1−Π̂2 and the corresponding inconclusive probability is

PI = 1−PC where PC = p1〈ψ1|Π̂1|ψ1〉+ p2〈ψ2|Π̂2|ψ2〉. An optimal USD measurement
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of binary coherent states {|ψ1,2} = {|α1,2〉} can be implemented using displacement

operations and photon counting without feedback, and obtains the smallest possible

inconclusive probability: PUSD
I = 1− |〈α1|α2〉| [96].

An extension to the MESD and USD paradigms is an optimally inconclusive

measurement, which aims to achieve the smallest possible error probability PE ≤ PHel
E

for a specified inconclusive probability PI ≤ PUSD
I , and interpolates between a MESD

and USD measurement. The two measurement operators Π̂1, Π̂2 for an optimally

inconclusive measurement are no longer constructed to be orthogonal to each input

state, resulting in PE 6= 0. Thus, the measurement probabilities PC , PE, and PI are

given by:

PC = p1〈ψ1|Π̂1|ψ1〉+ p2〈ψ2|Π̂2|ψ2〉, (2.8)

PE = p1〈ψ1|Π̂2|ψ1〉+ p2〈ψ2|Π̂1|ψ2〉, (2.9)

PI = p1〈ψ1|Π̂?|ψ1〉+ p2〈ψ2|Π̂?|ψ2〉 = 1− PE − PC . (2.10)

Sub-optimal inconclusive measurements of binary coherent states have been

experimentally demonstrated [98], but do not achieve minimal PE given the

inconclusive probability PI . Furthermore, recent theoretical work [63] shows that

an optimally inconclusive measurement for coherent states with arbitrary prior

probabilities can be implemented by using a modified Dolinar receiver.

Figure 2.12(a) shows the Helstrom bound on the error probability PE (orange) for

equiprobable BPSK coherent states (|ψ1〉 = |α〉, |ψ2〉 = | − α〉), and the conclusive

probability (1−PUSD
I ) of an optimal unambiguous measurement (blue) as a function of

the input energy of the states |α|2. Figure 2.12(b) shows the theoretical measurement

probabilities (PI , PE) of the optimally inconclusive receiver for equiprobable BPSK

coherent states with input mean photon numbers of |α|2 = 0.2, 0.4, and 0.6, in

blue, orange, and yellow, respectively. This result is also obtained by relating the

non-orthogonality of the two coherent states (|〈−α|α〉|2) to an angle θ between |ψ1〉

and |ψ2〉 in Fig. 2.11 with the equation: e−4|α|2 = cos2(θ).

The standard Dolinar receiver for BPSK coherent states is implemented using
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Figure 2.12: (a) Error probability for the Dolinar receiver performing at the Helstrom
bound for MESD and the conclusive probability (1 − PUSDI ) from a receiver performing
a USD measurement. (b) Theoretical results for the error probability PE as a function
of the inconclusive probability PI for |α|2=0.2, 0.4, and 0.6 for an optimally inconclusive
measurement.

displacement operations, photon counting, and feedback. The input state is displaced

in phase space using interference with a LO field, where the magnitude of the LO

has an optimal waveform |u(t)| and the phase of the LO (sign of u(t)) is switched

between 0 and π every time a photon is detected [53,62]. The authors in Ref. [63] show

that an optimally inconclusive measurement for coherent states can be implemented

with a modified Dolinar scheme. In this modified scheme, the input state is split into

two temporal modes and measured using displacement operations, photon counting,

and fast feedback, with a particular waveform for the displacement operation. The

duration of the input state is normalized such that 0 ≤ t ≤ 1, where the first temporal

mode has a duration of 0 ≤ t ≤ t1 and the second temporal mode has a duration of

t1 < t ≤ 1. The optimally inconclusive measurement from Ref. [63] implements a

standard Dolinar receiver in the first temporal mode to discriminate between | ± α〉

with minimal error using the displacement waveform:

u1(t) =
(−1)N1(t)α√

1− 4p(1− p)K2t
, (2.11)

where without loss of generality, p is the prior probability of the more likely state.

The quantity K2 = |〈−α|α〉|2 = e−4|α|2 is the overlap of the two states. The total

number of detected photons N1(t) (N1(0) = 0) in the first mode up to time t switches
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the sign of the displacement (phase of the LO) every time a photon is detected. The

instantaneous hypothesis for the input state at time t can be obtained as: |α〉 if N1(t)

is even and | − α〉 if N1(t) is odd. This optimal waveform u1(t) can be obtained based

on a Bayesian updating approach [113,114], or from an optimal control approach [90].

From a Bayesian viewpoint, the evolution of the probability of correct detection PC(t)

during the first temporal mode can be written to first order in δt as:

PC(t+ δt) = PC(t)
(

1− |u1(t)− α|2δt
)

+
(

1− PC(t)
)
|u1(t) + α|2δt, (2.12)

where PE(t) = 1 − PC(t) and PC(0) = p. Thus, the optimal waveform u1(t) is one

which maximizes PC(t) at every infinitesimal time step δt.

The optimally inconclusive receiver implements the measurement of the first

temporal mode during the time interval 0 ≤ t ≤ t1. The “switching time” t1 is

obtained from the inconclusive probability PI , prior probability p, and |α|2 as:

t1 =
1

4|α|2
ln

(
2p(1− p)

2C2 − 2CPI + PI

)
, (2.13)

where C2 = εK2 and ε = p(1 − p). Without loss of generality, the probabilities for

two input states after the first temporal mode (0 ≤ t ≤ t1) are {P (1)
C , 1− P (1)

C } where:

P
(1)
C =

1

2

(
1 +

√
1− 4p(1− p)e−4|α|2t1

)
. (2.14)

Thus, P
(1)
C corresponds to the Helstrom bound for the input states {|

√
t1α〉, |−

√
t1α〉}.

The prior probabilities for the input states at the beginning the second temporal

mode (t1 < t ≤ 1) are then {P (1)
C , 1−P (1)

C }. Now, the prior probabilities and remaining

input state energy (1−t1)|α|2 are by construction such that PI = 2(ε′−(C ′)2)/(1−2C ′)

with (C ′)2 = ε′(K ′)2, (K ′)2 = |〈−
√

1− t1α|
√

1− t1α〉|2, and ε′ = P
(1)
C

(
1 − P

(1)
C

)
,

corresponding to the so-called “single-state” domain [63, 111]. In this domain, the

POVM element corresponding to the less likely input state is zero (Π̂2 = 0) and the

other two POVM elements Π̂1 and Π̂? are non-zero. Thus, the purpose of the second

temporal mode is to implement a measurement which optimally distinguishes between

Π̂1 and Π̂? with minimal error. The outcome after the second temporal mode is then
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either the inconclusive outcome with probability PI or deciding the input state is |α〉

with probability PC = P
(s)
C . The quantity P

(s)
C is the probability of correct detection in

the single-state domain given the input states {| ±
√

1− t1α〉} with prior probabilities

{P (1)
C , 1− P (1)

C } [63]:

P
(s)
C =

(C ′)2
(
2P̃

(1)
C + 1

)
+ P

(1)
C P̃

(1)
C

(
2P

(1)
C − 1

)
+ 2ε′K ′K̃ ′

√
(C ′)2 − (D′)2(

2P
(1)
C − 1

)2
+ 4(C ′)2

, (2.15)

with (D′)2 =
(
P

(1)
C − PI

)(
1 − P (1)

C − PI
)
, K̃ ′ =

√
1− (K ′)2, and P̃

(1)
C = P

(1)
C − PI .

The value of P
(s)
C is such that PE = 1 − PI − P (s)

C is the smallest attainable error

probability, thus achieving the optimally inconclusive measurement.

The measurement of the second temporal mode during the time interval t1 < t ≤ 1

is also implemented using displacement operations, photon counting, and feedback

with a particular displacement waveform. A main result of Ref. [63] is that the

Dolinar-like receiver which implements the required binary measurement in the second

temporal mode has a displacement waveform of:

u2(t) =
(−1)N(t)+N0α√

1− 4v(1− v)K2t
. (2.16)

This waveform implements a Dolinar receiver but with the prior probability p in

Eq. (2.11) replaced by v. The quantity N2(t) (N2(0) = 0) is the number of photons

detected during t1 < t ≤ 1 and N0 determines the phase of the LO at the beginning

of the second temporal mode. If v > 0.5 then N0 = 0 and N0 = 1 otherwise where v

is found by [63]:

v =
1

2

(
1 +

vb
va

)
, (2.17)

va =
(
P

(1)
C K ′

)2

−
(

2P
(s)
C − P

(1)
C

)2

, (2.18)

vb = −
(
P

(1)
C K̃ ′

)2

+ 2
(

2P
(s)
C − P

(1)
C

)K̃ ′
K ′

√
P

(s)
C

(
P

(1)
C − P

(s)
C

)
. (2.19)

The measurement in the second temporal mode can be interpreted as a Dolinar

receiver but the strategy is operating as if the two input states have prior probabilities

{v, 1− v} instead of {P (1)
C , 1−P (1)

C } from Eq. (2.14). In a similar way to the standard
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Dolinar receiver and Eq. (2.12), the temporal evolution for the probabilities of correct

PC(t) and incorrect PE(t) discrimination during the second temporal mode where

t1 < t ≤ 1 can be written as:

PC(t+ δt) = PC(t)
(

1− |u2(t)− α|2δt
)

+
(
P

(1)
C − PC(t)

)
|u2(t) + α|2δt, (2.20)

PE(t+ δt) = PE(t)
(

1− |u2(t) + α|2δt
)

+
(
1− P (1)

C − PE(t)
)
|u2(t)− α|2δt,

(2.21)

where PI(t) = 1− PC(t)− PE(t), PE(t1) = 1− PC(t1), and PC(t1) = P
(1)
C if v > 0.5

or PC(t1) = 0 otherwise. The total measurement waveform for the displacement

operation is constructed by combining the Dolinar waveform in Eq. (2.11) for the first

temporal mode, and the Dolinar-like waveform in Eq. (2.16) for the second temporal

mode:

u(t) =


u1(t) = (−1)N1(t)α√

1−4p(1−p)K2t
0 ≤ t ≤ t1

u2(t− t1) = (−1)N2(t−t1)+N0α√
1−4v(1−v)K2(t−t1)

t1 < t ≤ 1.
(2.22)

Note that the waveform for the second mode is applied for the interval t1 < t ≤ 1

but the waveform is calculated using an interval 0 < t ≤ 1 − t1. In this sense, the

receiver implements a standard Dolinar receiver in the first temporal mode for the

states {|−
√
t1α〉,

√
t1α〉} up until t = t1. Then, the receiver implements a Dolinar-like

receiver in the second temporal mode for the states {| −
√

1− t1α〉,
√

1− t1α〉} by

operating as if input states have prior probabilities {v, 1− v} from Eq. (2.17-2.19).

Figure 2.13(a) shows examples of the displacement magnitude |u(t)| for an

inconclusive probability PI = 0.25 for |α|2 = 0.2, 0.4, and 0.6 in blue, orange, and

yellow, respectively. The jumps in the waveform occur at the switching time t1 ≈0.70,

0.57, and 0.42, for each investigated mean photon number |α|2, respectively. Figure

2.13(b) shows an example of the time evolution of the displacement waveform u(t) for

|α|2 = 0.2 and PI = 0.25. Initially, the receiver implements a Dolinar receiver using

the waveform u1(t) from Eq. (2.11) to discriminate between the two input states with

minimum error. The sign of u(t) (phase of the LO) is switched every time a photon is

45



Chapter 2. Binary Encoded Coherent States

0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Time
0 0.2 0.4 0.6 0.8 1.0

Time

1

3

5

-5

-3

-1

|α|2=0.2

|α|2=0.4|α|2=0.6

M
ag

ni
tu

de
 |u

(t)
|

Clicks

A
m

pl
itu

de
 u

(t)

t1

Mode 1 Mode 2

5(a) (b)

1 2 1 2 1 ?1

Figure 2.13: (a) Displacement magnitude |u(t)| which implement an optimally inconclusive
measurement for |α|2=0.2, 0.4, and 0.6 in blue, red, and yellow, respectively. The jumps
in magnitude correspond to the switching time t1 where the measurement switches from
the first temporal mode to the second temporal mode. (b) Example of the time evolution
of the displacement waveform u(t) when the receiver detects photons (clicks) at different
times. Every time a photon is detected, the LO phase (sign of u(t)) switches along with the
current hypothesis (circles) for the input state. Prior to t1, the hypothesis switches between
the two input states each detection and after t1, switches between the best guess after the
first mode (state 1 as shown) and the inconclusive result.

detected (top panel). The current hypothesis (circled numbers) for the input state is

given by the number of detected photons so far. After t1 ≈ 0.7 with N0 = 0, the

receiver implements the Dolinar-like receiver using the waveform u2(t) from Eq.

(2.16) to discriminate between the most likely state after the first temporal mode and

the inconclusive outcome. The overall outcome of the measurement is either correctly

guessing the state with probability P
(s)
C or an inconclusive result with probability PI

and the probability of error is: PE = 1− PI − P (s)
C .

2.3.2 Experimental Implementation

We use the same experimental setup shown in Fig. 2.3 to implement the optimally

inconclusive measurement. We obtain the experimental displacement waveform u(t)

by replacing α in Eq. (2.11) and (2.16) with
√
ηα, where our system efficiency is

η = 0.72. Although the measurement calls for extremely large values of the ratio
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between the displacement energy and input energy R = |u(t)|2/|α|2, experimentally

there is a maximum ratio R which we can implement. Due to the extinction ratio

(≈ 20dB) of the amplitude modulator in the LO arm of the interferometer, we set the

maximum of this ratio to R = 50 (See Appendix B.3 for details).

We discretize time into 1024 time bins of 160 ns each (≈ 164 µs total) where a

photon can potentially be detected to approximate a continuous measurement in our

demonstration. This choice of time bin size allows our experiment to be implemented

at a reasonable repetition rate of 4 kHz while also allowing the FPGA to easily and

reliably transfer the entire measurement record for each time bin to the computer for

processing. The magnitude of the displacement waveform |u(t)| for a specific |α|2 and

PI is stored in a pre-calculated look-up table (LUT) and evolves according Eq. (2.22).

The phase of the LO switches between 0 and π every time a photon is detected such

that u(t) switches between |u(t)| and −|u(t)|. The phase of the LO at time t = t1 is

determined by N0, which is given by the value of v in Eq. (2.17). The FPGA registers

all photon detections and saves the result for all time bins such that the experimental

measurement probabilities {P exp
E (t), P exp

C (t), P exp
I (t)} can be readily reconstructed as

a function of time in post-processing with MATLAB.

Figure 2.14(a) shows an example of the time evolution of PE(t) (solid blue), PC(t)

(solid orange), and PI(t) (solid yellow) as the measurement progresses for |α|2 = 0.2

and PI ≈ 0.31. The solid lines show the theoretical expectations (Eqs. (2.12), (2.20),

and (2.21)) and the points show the experimental results for P exp
E (t), P exp

C (t), and

P exp
I (t) every 50 time bins averaged across five different experimental runs. Figure

2.14(b) shows a zoom into the region corresponding to approximately 0.5 < t ≤ 1

and 0.05 < P < 0.35 which contains the evolution of the inconclusive probability

PI(t) (solid yellow). The measurement switches from the first mode to the second

mode at t1 ≈ 0.57. The points show the average experimental probabilities with error

bars corresponding to one standard deviation. The dashed gray line shows the ideal

Helstrom bound (η = 1.0) for MESD with |α|2 = 0.2, which the receiver surpasses

at t ≈ 0.7. We note that this is possible at the expense of introducing inconclusive
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Figure 2.14: Time evolution of the correct probability (PC , red), error probability (PE ,
blue), and inconclusive probability (PI , yellow) for a strategy where |α|2=0.2 and PI ≈0.31.
Solid lines show the theoretical expectations based on Monte Carlo simulations including
experimental imperfections and the points with error bars represent the experimentally
measured probabilities which show excellent agreement.

events which contribute to PI in the optimally inconclusive measurement.

Taking the final measured inconclusive probability P exp
I (t = 1) and error probability

P exp
E (t = 1), we obtain a single experimental point at the coordinates (P exp

I (1), P exp
E (1))

for a given input mean photon number |α|2. Figure 2.15(a) shows our total experimental

results for the optimally inconclusive measurement for |α|2 = 0.2, 0.4, and 0.6 in

blue, orange, and yellow, respectively. The data points show the experimental results

(P exp
I (1), P exp

E (1)) and the error bars represent one standard deviation across five

experimental runs each with 5× 104 individual experiments. The black lines show the

theoretical expectations from Monte Carlo simulations of the experiment incorporating

experimental imperfections such as dark counts, visibility, and finite value of R = 50.

We note that for the data points, the inconclusive probability is the experimentally

obtained P exp
I (1), not the theoretically expected value PI . The dashed gray lines show

the corresponding Helstrom error probability for an ideal measurement (η = 1) for each

input mean photon number. For these three values of |α|2, the uncorrected (η = 0.72)

optimally inconclusive measurement can reach errors below the ideal Helstrom bound

when PI > 0.15, i.e. the point for |α|2 = 0.6 at (0.2, 0.02) represents the imperfect
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Figure 2.15: (a) Experimental results (points) for the optimally inconclusive measurement
of equiprobable BPSK coherent states for |α|2=0.2, 0.4, and 0.6, in blue, orange, and
yellow, respectively. Each point corresponds to a the experimentally measured value of
P expI (1) and P expE (t) and the error bars represent the one standard deviation across five
runs of 5 × 104 independent experiments each. The solid lines show the expected results
including experimental imperfections and the dashed gray lines show the ideal (η = 1.0)
Helstrom bound for each |α|2. The receiver achieves an error probability below the ideal
Helstrom bound with an imperfect experimental implementation by allowing for inconclusive
results. (b) Experimental results (blue points) for the Dolinar receiver for equiprobable
BPSK coherent states. The gray and red solid lines show the Helstrom bound for η = 1.0
and η = 0.72 and the dashed lines show the error for a homodyne receiver.

experimental demonstration surpassing the ideal Helstrom bound.

The above framework from Ref. [63] for the optimally inconclusive receiver can

also be used to implement a MESD measurement (PI = 0) with a Dolinar receiver. In

Ref. [53], a Dolinar receiver for OOK coherent states was implemented and achieved

the equivalent Helstrom bound. However, the optimal encoding for binary coherent

states for a fixed average energy |α|2 is a BPSK alphabet [69] due to having the

smallest overlap (|〈−α|α〉|2 < |〈0|
√

2α〉|2), and thus the highest distinguishability.

We demonstrate the optimal MESD receiver for the optimal binary encoding by

implementing a Dolinar receiver for BPSK coherent states. Figure 2.15(b) shows the

experimental results (blue points) and the expected error probability (solid black) as

well as the corresponding Helstrom (solid) and homodyne limits (dashed) for an ideal

experiment with η = 1.0 (gray) and for our overall efficiency of η = 0.72 (red). The
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deviation of the data from the equivalent Helstrom bound is mainly due to detector

dark counts and the finite value of R = 50. A MESD measurement in Fig. 2.15(b)

corresponds to the y-axis in Fig. 2.15(a) and a USD measurement corresponds to the

x -axis.

Similar to a Dolinar receiver, this approach can also implement an optimal

unambiguous measurement for USD where PE = 0 and PI = PUSD
I . However,

Fig 2.15(a) shows that experimental imperfections such as dark counts and non-ideal

visibility prevent the receiver from achieving exactly PE = 0. Nevertheless, the above

framework allows for finding the measurement (i.e. displacement waveform) which

in principle can implement an unambiguous measurement. While a MESD receiver

can be implemented solely by u(t) = u1(t), a USD receiver is implemented by using

both waveforms (u1(t) and u2(t)) as opposed to just u2(t), as one may suspect. The

receiver implements a Dolinar receiver in the first temporal mode, but attempts to

displace the most likely state to vacuum (|u(t)| = |α|) once in the single-state domain

for the second temporal mode. Although the resulting PI is the minimal achievable

value and the same as the simple implementation in [96], it is interesting to note that

this USD measurement can also be implemented with the above Dolinar-like strategy.

2.3.3 Discussion

Optimally inconclusive measurements represent a more general class of quantum

measurements which include the MESD and USD paradigms. An interpretation of

these optimally inconclusive measurements is that by definition they have an optimal

post-selection threshold to achieve the minimal possible error for a given inconclusive

probability. Thus, an optimally inconclusive measurement can potentially be used for

quantum key distribution and compared to other BPSK-based protocols [31,98,115]

with post-selection. These measurements for binary encoded coherent states can

be implemented with linear optics, photon counting, and fast feedback. Although

theoretically this is difficult to extend to higher dimensional spaces, understanding
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the full capabilities of these three measurement tools is certainly a worthwhile

endeavor which may require experimental and theoretical efforts to push our

understanding of non-Gaussian measurements. Nevertheless, this result demonstrates

that implementable Dolinar-like receivers can be used to perform a wide variety of

projective and non-projective measurements within a two dimensional space.

2.4 Conclusion

In this chapter, we addressed three important problems in the area of binary state

discrimination using non-Gaussian measurements: (1) robustness to measurement

imperfections, (2) optimized communication strategies for noisy channels, and (3)

generalized measurements beyond MESD and USD. Robustness to experimental

imperfections can be acquired by allowing the receiver to have photon number resolving

capabilities, which also factors into the optimization of non-Gaussian measurements.

The photon number resolution mainly provides robustness to non-ideal visibility due

to experimental imperfections as well as also detector dark counts and after-pulsing.

In situations with communication over noisy communication channels, optimization of

the coherent state alphabet jointly with the receiver provides the best combination

of robustness and sensitivity. Such optimized communication strategies can improve

information transfer over across a phase diffusion channel. Interestingly, adjusting the

alphabet can also account for imperfections in the receiver in a similar way to PNR.

Finally, more general measurements in two dimensional spaces can be implemented

using displacements, photon counting, and feedback to interpolate between MESD and

USD type strategies. This shows that adaptive photon counting has the capability to

implement very general POVMs which can potentially be applied to higher dimensional

discrimination problems.
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Discriminating Four Coherent

States

Increasing the size of the coherent state alphabet used for communication will increase

the achievable amount of information transfer. Using an alphabet consisting of four

coherent states allows a sender to encode two bits of information instead of a single bit

using two states. In terms of distinguishability, the most energy efficient alphabet for

four coherent states is one where the states have the same mean photon number but

with different phases, referred to as quaternary phase-shift-keyed (QPSK) coherent

states [50, 58, 116]. The conventional measurement strategy for QPSK states is a

heterodyne receiver, where both quadratures of the input field are measured, and

the resulting error probability is bounded by QNLQPSK [5]. However, non-Gaussian

strategies using displacement operations and single photon counting can surpass the

QNLQPSK [51, 117,118].

A benefit of non-Gaussian measurements with simple, non-adaptive

implementations is that they can be operated at high bandwidth compared to

adaptive strategies. In addition, photon-counting based receivers that are not

adaptive require minimal resources in terms of space and complexity and can more

readily provide near term advantages for realistic optical communication [118–123].
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By utilizing the smallest number of individual hypothesis testing stages, on/off

detection, and inherently stable experimental setups, the capabilities of such

non-Gaussian receiver strategies can be explored [82, 118]. On the other hand,

adaptive strategies based on signal nulling for hypothesis testing have been

proposed [124–130] and demonstrated unconditionally surpassing the QNLQPSK at

relatively high input mean photon numbers when using PNR detection [51,54,117].

However, the performance of these receivers is worse than the QNLQPSK in the single

photon regime. Measurements which can reach below the QNLQPSK in the low-power

limit have potential applications in quantum communication [25–27,30,31,131,132],

computation [34–37, 133], and networking [19, 134]. Similar to the receivers

for BPSK coherent states studied in Ch. 2, a key component for achieving

sub-QNLQPSK performance in the single photon regime is optimization of the

displacement operation [82, 83, 118, 119]. Although, now there are different classes

of optimization for adaptive strategies, each with different levels of complexity

given the nature of feedback-based receivers. Optimized strategies are critical

to low power communications and a fundamental problem is finding receivers

which can still be implemented in the presence of non-trivial or unknown channel

noise [18, 71–73, 75, 95, 101, 102, 135]. Optimization of the receiver strategies

fundamentally requires knowledge of the photon counting likelihood functions

and therefore a mathematical description of the communication channel. Thus,

alternative approaches which can be used to implement and optimize sub-QNLQPSK

measurements without a known channel description are of great interest.

In this chapter, we discuss experimental and theoretical investigations which

address these problems of scalable, high-bandwidth receivers [82], optimized low-

power measurements [83], and strategies which can be implemented in the presence

of unknown channel noise. In Section 3.1, we explore the implementation of a non-

adaptive, minimal resource strategy and identify the critical parameters which impact

its performance. In section 3.2, we investigate the capabilities of different optimization

strategies for an adaptive receiver in the single photon regime. In Section 3.3 we
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utilize reinforcement learning concepts to develop alternative approaches to optimized

measurements, which can potentially be implemented in the presence of unknown

channel noise.

3.1 Optimized Single-Shot QPSK Receiver

Photon counting based measurements which can readily scale to current communication

bandwidths (GHz) provide a path towards real implementations of sub-QNL receivers.

In addition, non-adaptive strategies which do not require feedback and use the

minimum amount of “resources” are more directly applicable to current communication

systems. One such strategy proposed in Ref. [119] for QPSK states uses a small number

of fixed, optimized displacement operations followed by single photon detection

to implement multiple hypothesis testing simultaneously instead of sequentially.

The energy distribution for each hypothesis test and displacement magnitudes are

also optimized such that the error probability is minimized. We implement this

measurement using an inherently stable polarization interferometer which does not

require active phase stabilization [82]. We also extend the theoretical analysis from

Ref. [119] to include experimental imperfections such as interference visibility and

dark counts and identify the limitations of these strategies [82].

3.1.1 Measurement Strategy

Figure 3.1(a) shows the non-adaptive QPSK discrimination strategy proposed in

Ref. [119]. The input state |αk〉 = |αeikπ/2〉 with k ∈ {0, 1, 2, 3} is first split into

three detection arms. Each arm is set to test a different hypothesis for the input

state using displacements D̂(βi) and single photon detection. The phase of the

displacement arg(βi) in arm i is set equal to the phase of the input state being tested

and the magnitude |βi| is optimized such that the error probability is minimized. The

displaced states D̂(βi)|αk〉 = |αk − βi〉 are then each detected by a single photon
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Figure 3.1: (a) Diagram of the optimized single-shot discrimination strategy. The input state
|αk〉 is split into three detection arms with splitting ratios {R1, R2, R3}. Each arm tests a
different hypothesis for the input state by first displacing by an optimal value D̂(βi) followed
by single photon detection. (b) Based on the total detection record d = {d1, d2, d3}, the
decision for the input is the state with maximum a posteriori probability. Figure adapted
with permission from [82] © The Optical Society.

detector (SPD) with PNR(1), which yields a complete detection of d = {d1, d2, d3}

where di is the detection in the ith arm. The posterior probability distribution

P (αk|d) given the measurement outcome d can be used to infer the input state and is

given by: P (αk|d) = P (αk|d1, β1)P (αk|d2, β2)P (αk|d3, β3). The posterior probability

depends on each displacement β = {β1, β2, β3} as well as the fraction of energy Rk|α|2

(R = {R1, R2, R3}) sent to each arm with R1 + R2 + R3 = 1. The overall error

probability is then given by:

PE = 1− 1

4

4∑
k=1

P (αk|αk,β,R), (3.1)

where P (αk|αk,β,R) is the probability of correct discrimination. This error

probability can then be minimized with respect to β and R for a fixed |α|2. Figure

3.1(b) shows the possible detection outcomes d = {d1, d2, d3} and the corresponding

decision for the input state. There are in total 23 = 8 possible detection outcomes d

since there are three detection arms each with a PNR(1) detector. The decision for

the input is the state with maximum posterior probability given the detection d),

resulting in two different detection outcomes corresponding to each input state.

Figure 3.2(a) shows the expected error probability for different combinations of

experimental parameters. The colored lines show the error probability for different
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Figure 3.2: (a) Expected results for the strategy for different combinations of experimental
parameters. The red, greed, and blue lines show the error probability for (η, ξ) = (1.0, 0.995),
(0.80, 1.0), and (1.0, 1.0), respectively, with a dark count rate of ν = 0 (dashed) and ν = 10−6

(solid). The purple and black dashed lines show the Helstrom bound and QNL, while the
black solid line shows the expected performance for our experimental implementation. (b)
Optimal displacement ratios for each detection arm as a function of input mean photon
number |α|2. The inset shows the optimal splitting ratios R={R1, R2, R3}. Figure adapted
with permission from [82] © The Optical Society.

pairs of (η, ξ) with (1.0, 0.995) in red, (0.80, 1.0) in green, and (1.0, 1.0) in blue,

respectively, both without (dashed) and with (solid) dark counts of ν = 10−6. These

cases are calculated using fixed splitting ratios of R = {0.40, 0.20, 0.40}. The

black solid line shows the expected error for our implementation given experimental

imperfections, and the black dashed line shows the QNLQPSK which is given by

an ideal heterodyne receiver. Figure 3.2(b) shows the optimal displacement ratios

|βopt,i|2/Ri|α|2 corresponding to the red line in (a) where η = 1.0 and ξ = 0.995 for each

detection arm. The optimal displacement ratio for each arm asymptotes to a ratio of

|βopt,i|2/Ri|α|2 = 1 as the input power increases and is slightly higher for Arm 2, which

tests the hypothesis |αk〉 = |iα〉. The inset shows the optimal splitting ratios for each

arm, which is initially R = {0.33, 0.33, 0.33} but asymptotes to R = {0.40, 0.20, 0.40}.

We think that the optimal splitting ratio for Arm 2 converges to 20% of the total

power due to the fact that the state which Arm 2 is testing for (|iα〉) has the most

overlap between the other two states, i.e. |〈iα| ± α〉|2 > |〈±α| ∓ α〉|2.
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3.1.2 Experimental Setup

We implement the measurement strategy described above using an inherently stable

polarization interferometer with three separate detection arms [82]. Figure 3.3 shows

the experimental setup used to perform QPSK state discrimination. Optical pulses are

generated using a continuous Helium-Neon (HeNe) laser and a pulsed acousto-optic

modulator (AOM) followed by an attenuator. The input state is encoded into the

vertical polarization component of the field and the LO is encoded into the horizontal

component. The input state and LO co-propagate through the interferometer and are

split into the three detection arms with optimized splitting by a 60/40 BS and a tilted

50/50 BS to achieve the desired splitting ratios R. We implement the displacement

operation using a half-wave plate (HWP) in each arm to slightly rotate the polarization
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FPGA

SPD1

SPD3

SPD2
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|αk |α  |αk |iα  |αk |-α  

Arm 1 Arm 2 Arm 3
DE 0.869(2) 0.731(3) 0.832(2)

Visibility 0.991(1) 0.990(1) 0.993(1)
Dark Counts 5.42(2)x10-5 1.22(4)x10-3 1.65(3)x10-3

Hypothesis
PBS ER 2.03(2)x10-4 3.13(2)x10-4 1.45(1)x10-4

Figure 3.3: Polarization based interferometer setup. The input state and LO are prepared
in the vertical and horizontal polarization, respectively, with a variable attenuator (VA),
HWP, and QWP and are then split into the three detection arms. In each arm, the optimal
displacement is implemented by rotating the polarization with a HWP followed interference
at a polarizing beam splitter (PBS). The displaced state is then measured by a single photon
detector and the experimental parameters for each detection arm are shown below the
diagram. Figure adapted with permission from [82] © The Optical Society.
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such that when the input and LO fields interfere on a polarizing beam splitter (PBS),

the input is displaced in phase space by an optimal amount D̂(βi). The state is then

detected using a single photon detector with PNR(1) and the data is collected by

a field programmable gate array (FPGA). The table below the diagram shows the

experimental parameters of detection efficiency, visibility, dark counts, and extinction

ratio for each arm.

3.1.3 Results

Figure 3.4 shows the experimental results of the optimized single-shot measurement

for QPSK state discrimination. The red solid line shows the expected performance

from Monte Carlo simulations and the blue points show the measured data with error

bars corresponding to one standard deviation across five runs of the experiment. The

green, black, and gray lines show the Helstrom bound, ideal heterodyne limit, and the

error of a heterodyne receiver adjusted by our average detection efficiency of η = 0.778.

We find that the experimental results lie slightly above the adjusted heterodyne limit
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Figure 3.4: Measurement results showing the theoretical prediction (red solid) and
experimental data (blue points). Error bars show the average across five runs of the
experiment. The black (gray) lines show the ideal (adjusted) limit of a heterodyne receiver.
Figure adapted with permission from [82] © The Optical Society.

58



Chapter 3. Discriminating Four Coherent States

0.96

0.97

0.98

0.99

1.00

D
et

ec
tio

n 
Ef

fic
ie

nc
y

0.7

0.8

0.9

1.0

1.1

1.2
(c)

0.998 0.999 1.00
Visibility

η=0.998
ξ=0.9998

P
E /Q

N
L

0

4

8

12

16

20

M
ea

n 
Ph

ot
on

 N
um

be
r

-1.0

-0.2

0

0.2

1.0

ν=10-6
η=0.9

(b)

0.998 0.999 1.00
Visibility

log
10 (P

E /Q
N

L)

0

4

8

12

16

20

-1.0

-0.5

0

0.5

1.0

M
ea

n 
Ph

ot
on

 N
um

be
r ν=10-6

η=1.0
(a)

0.998 0.999 1.00
Visibility

log
10 (P

E /Q
N

L)

Figure 3.5: Error probability PE of the simple non-Gaussian strategy compared to QNLQPSK
on a log scale as a function of the visibility and mean photon number for (a) η = 1 and
(b) η = 0.9 with dark counts ν = 10−6. (c) Error probability ratio PE/QNLQPSK as a
function of visibility ξ and detection efficiency η for |α|2 = 6.0. The black circle represents
the capabilities of the strategy with a state-of-the-art detector (η = 0.998, ν ≈ 0) and beam
splitters which achieve ξ = 0.9998. Figure adapted with permission from [82]© The Optical
Society.

and closely match the theoretical predictions, which validates the theoretical proposal

in Ref. [119]. This performance is mainly due to the non-ideal detection efficiency and

interference visibility in each detection arm, but state-of-the-art components can be

used to improve the performance of the receiver.

Figures 3.5(a,b) show the expected ratio of the error probability for the non-

Gaussian receiver to a heterodyne receiver log10(PE/QNLQPSK), as a function of the

visibility ξ and input mean photon number |α|2 for (a) η = 1.0 and (b) η = 0.9 both

with ν = 10−6. The blue regions correspond to when the non-Gaussian receiver shows

an improvement over a heterodyne measurement (PE < QNLQPSK). Figure 3.5(c)

shows PE/QNLQPSK as a function of visibility ξ and detection efficiency η for a fixed

mean photon number |α|2 = 6.0 with ν = 10−6. The blue area corresponds to the

region in the experimental parameter space where implementations of these “minimum

resource” measurements that don’t require feedback operations provide an advantage

over the QNL. As a specific example, the black point shows the benefit provided by

a state-of-the-art superconducting detector with η ≥ 0.98 and ν ≈ 0 [136] with high

extinction ratio beam splitters which potentially allow for ξ ≥ 0.9998 [137]. This point

in the parameter space achieves an expected advantage of PE/QNLQPSK ≈ 0.80 at

|α|2 = 6.0 using current technologies.
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3.1.4 Discussion

This experimental demonstration validates the proposal from Ref. [119] and furthers

our understanding of the limitations and capabilities in measurements which use

“minimum resources”. A minimum resource measurement is one which is as simple

as possible in terms of complexity, i.e. no feedback, PNR(1), and a small number of

simultaneous measurements. These types of receivers can potentially provide a near-

term benefit over the QNLQPSK due to their simplicity and ability to operate at high

bandwidths. Furthermore, advances in high efficiency, low dark-count detectors and

high quality optical components potentially allow for surpassing the ideal QNLQPSK

with a realistic implementation. We also note that recent theoretical and experimental

work in Ref. [118] shows that further benefits can be obtained by also optimizing the

phase of the displacements in addition to the magnitude.

3.2 Global Optimizations in the Low-Power Limit

Measurement receivers which achieve the best possible error probability through

optimized and adaptive methods are critical to understanding the fundamental limits

of non-Gaussian measurements. The limits of non-Gaussian receivers are especially

important in the single-photon regime, where measurements need to be made on very

faint pulses of light. Due to the adaptive nature of previously demonstrated strategies

[51, 117], optimization of these receivers results in different levels of complexity

depending on exactly what parameters are optimized. On one hand, the displacement

magnitude for the entire measurement (a single parameter) can be optimized to

minimize the error probability. On the other hand, the displacement for every

possible measurement record can be optimized in a global way to obtain minimal error

probability, but at the cost of exponentially many parameters. These optimizations

allow adaptive non-Gaussian measurements to surpass the QNL in the single-photon

regime, where communications are extremely power-limited.
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3.2.1 Optimization Strategy

We study the performance of optimized versions of the adaptive non-Gaussian receiver

demonstrated in Ref. [51] for QPSK coherent states. The adaptive receiver in Ref. [51]

follows the Bayesian hypothesis testing strategy described in App. A with L = 10

adaptive measurement steps without photon number resolution, i.e. PNR(1). The

optimization of this photon counting measurement can be split into three different

strategies of increasing complexity for given values of L and PNR. The simplest

method is one where the displacement magnitude |βj| for all adaptive steps j ∈ {1...L}

is optimized such that |βj| = |βopt|, corresponding to a single-parameter optimization

and we refer to this approach as a “flat” optimization. A more complex strategy which

improves the performance is obtained by optimizing the displacement magnitude for

each adaptive step j. This will yield L optimal magnitudes such that |βj| = |βj,opt|

and is denoted as a “sequential” optimization. The best performance is achieved by a

global or “historical” optimization, where the displacement magnitude is optimized

for every possible measurement record. In this “historical” optimization strategy the

displacement magnitude for all 2L ((m+ 1)L for PNR(m)) detection histories needs to

be optimized, which yields different LO magnitudes at each adaptive step conditioned

on the particular measurement outcome up to that step. For example, the magnitude

of the third adaptive step (j = 3) is dependent on the detections in the first two steps

d = {d1, d2} such that for PNR(1), the optimal magnitude for the third step is equal

to |βopt({d1, d2})| and |βopt({0, 0})| 6= |βopt({0, 1})| 6= |βopt({1, 0})| 6= |βopt({1, 1})|. In

this way, the LO magnitude for every possible detection history d at every adaptive

step is optimized such that the receiver aims to achieve the smallest possible error

probability.

Figure 3.6(a) shows the expected error probability for an ideal experiment (η =

1.0, ξ = 1.0, ν = 0) with L = 10 adaptive steps. The brown, green, and blue solid lines

show the error for the “flat”, “sequential”, and “historical” optimization strategies,

respectively. The pink line shows the performance without optimization, which

cannot surpass the QNLQPSK (red) when |α|2 / 0.65. On the other hand, all three

61



Chapter 3. Discriminating Four Coherent States

0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

Mean Photon Number |α|2

Pr
ob

ab
ili

ty
 o

f E
rr

or

(a)

Helstrom

QNL

Non-optimized L=10
η=1
ξ=1

Flat Optim.
Sequential 

Optim.

Historical
Optim. Adaptive Step

R
at

io
 |β
|/|
α|

1
2

34
5 10 8 6 4 2

1
2
3
4
5

Adaptive Step

R
at

io
 |β
|/|
α|

10 8 6 4 2

2.0
2.5

1.0
1.5

0.5

20
40

60
80

100
Sample of 100 

detection histories

(b) (c)

|α|2

Figure 3.6: (a) Theoretical performance of different optimization strategies compared to
the QNL (red) and Helstrom bound (black). The brown, green, and blue solid lines show
the error for the “flat”, “sequential”, and “historical” optimization strategies, respectively,
for ideal receiver (η = 1.0, ξ = 1.0, ν = 0) with L = 10 adaptive steps. The purple line
shows the result for a non-optimized measurement. (b) Optimal displacement ratios for each
adaptive step for the “sequential” optimization strategy for different |α|2. (c) Sample of
optimal displacement ratios for each adaptive step for the “historical” optimization strategy.
Figure adapted from: npj Quantum Information 3, 43 (2017).

optimization strategies outperform the QNLQPSK in this single photon regime. Figure

3.6(b) shows the optimal displacement ratios |βj,opt|/|α| for each adaptive step in the

“sequential” optimization at different values of |α|2. Figure 3.6(c) shows a sample of

100 possible detection histories and the corresponding optimal ratio |βopt(d)|/|α| each

adaptive step for the “historical” optimization strategy. The detection histories are

enumerated by turning the binary detection record d = {d1, d2...} with dj ∈ {0, 1}

into a decimal number.

3.2.2 Experimental Results & Discussion

We implement the optimized strategies using the experimental setup described in

App. A.2 where the displacement is controlled by phase and amplitude modulators

in the LO arm of the interferometer. A look-up-table (LUT) outputs the optimal

displacement magnitude |βopt(d)| each adaptive step based on the current detection

record d. The optimization and LUT are pre-calculated in MATLAB and loaded into

the FPGA, which implements the strategy. Figure 3.7 shows the experimental results

for the optimized state discrimination strategies. The brown, green, and blue points
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show the results for the “flat”, “sequential”, and “historical” optimizations where

the error bars correspond to the standard deviation across five experimental runs.

While the non-optimized strategy (pink points) cannot surpass the ideal QNLQPSK

for |α|2 ≤ 1.5, all of the optimization strategies do except for very small input powers.

We also find that as the input energy increases beyond |α|2 ≈ 2.5, the non-optimized

error probability is almost equivalent to that of the optimized strategies.

This experimental demonstration shows that global optimizations can allow

measurements based on adaptive photon counting to surpass the QNLQPSK at

low input powers. However, there are multiple different levels of optimizations a

receiver can implement due to the adaptive nature of the measurement. Here, we find

that more complex optimizations of the displacement magnitude can lead to more

improvements over the QNLQPSK . Measurements which surpass the QNLQPSK in

the single-photon regime are of particular importance to quantum communication

protocols [25–27,30, 31,131,132], which often rely on discrimination of coherent states

with small powers. One interesting extension of this work will be to incorporate other

experimental parameters into the optimization such as the duration of each adaptive
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step (i.e. fraction of the total energy), the displacement phase, or the input alphabet,

and to explore optimized measurements for higher order modulation formats.

3.3 Optimized Strategies for Unknown Channels

with Reinforcement Learning

A basic assumption in constructing measurement strategies is that the receiver knows

the properties of the communication channel, and therefore has a specific description

of the states to be discriminated. For example, a pure loss channel simply re-scales

of the magnitude of the states, and a phase noise channel rotates the states in a

unitary way. Furthermore, the output states of a channel may not necessarily be

pure states such as for phase diffusion channel, which can be described as a convex

combination of states weighted by a Gaussian distribution in phase. The physical

states that the receiver is attempting to measure are known for all of these channels in

the sense that the likelihood function is given by: L(n|E(ρ̂k), β) = Tr
[
E(ρ̂k)Π̂n(β)

]
=

〈n|D(β)E(ρ̂k)D
†(β)|n〉, where E(ρ̂k) represents the output of the channel E(·) when

acting on the input state ρ̂k. Knowing the channel E(·), and by extension the

likelihood functions L(·), allows for constructing measurement receivers based on

Bayesian updating which can surpass the limits of conventional detection in the single

photon regime using complex optimizations [83]. However, unknown channels pose a

fundamental question: if one does not know or cannot calculate E(ρ̂k), then how can

an optimized receiver be constructed?

Recently, studies have shown that certain measurement strategies can be found

using reinforcement learning, where an agent (i.e. measurement receiver) attempts

a particular strategy, obtains a reward based on performance, and then updates

the strategy based on the reward [138,139]. However, standard methods for finding

solutions in a reinforcement learning framework either still rely on being able to

calculate likelihood functions, or require learning an exponentially large table of values
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for the displacement operations [138]. Thus, new approaches to finding optimized

adaptive photon counting strategies are needed which don’t depend on knowledge of

the communication channel or an exponentially large table of values.

3.3.1 Alternative Representation of a Measurement

Adaptive photon counting measurements can be decomposed into two fundamental

components. The first component implements the Bayesian updating using the

likelihood functions to obtain the posterior distribution as described in Appendix

A. The Bayesian aspect of the measurement is the receivers way of maintaining a

belief (as a probability distribution) for the input states and updating that belief

by incorporating new information gained from photon detections [51, 117]. If the

receiver doesn’t know the noise properties of the channel, and thus doesn’t know the

likelihood functions, then the standard Bayesian approach breaks down. Moreover,

ideally the receiver implements an optimized measurement like the strategies discussed

in Section 3.2, which also require knowledge of the likelihood functions. As an

alternative to recursive Bayesian updating, the receiver can use an object which is

capable of maintaining a belief for the input states (not necessarily as probabilities)

and recursively updating that belief when new information is obtained through photon

detections. Such an object or architecture ideally is inherently recursive and has

a simple representation that is not dependent on the particular parameters of the

problem at hand such as the number of adaptive steps L, or the PNR. A Long-Short

Term Memory (LSTM) is a specific type of recurrent neural network from the field of

machine learning which is well suited for this task [140–143]. An LSTM has the ability

to maintain an internal memory over long time scales and update that memory every

time step due to it’s “gate” structure. In this work, we explore the use of an LSTM

in optimized receivers based on adaptive photon counting as a method to replace

recursive Bayesian updating used in previous strategies [83].

Figure 3.8(a) shows the architecture of the LSTM used to replace the Bayesian
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Figure 3.8: (a) Long-short term memory (LSTM) architecture which consists of three gates
(input ij , forget fj , and output oj) and two memories (cell Cj and hidden hj). The memories
maintain information from one adaptive step to another and the gates control how new
information from photon detections are incorporated into the memories. (b) The hidden
memory is passed to a deep neural network which outputs values for the real and imaginary
parts of the displacement operation each adaptive step. (c) The LSTM can be temporally
unrolled to show the flow of information between adaptive steps.

updating component of adaptive photon counting measurements for coherent states.

The internal memory of the LSTM at adaptive step j is given by the cell memory

Cj and a hidden memory hj, which are both vectors. The three gates: forget fj,

input ij, and output oj, control how information flows from one adaptive step to the

next. The gates also control how new information xj is incorporated into the system

and influences hj, which is also the output of the LSTM. Merging arrows represent

concatenation of data and the “σ” and “tanh” labels represent a single neural network

layer followed by the application of the “sigmoid(·)” or “tanh(·)” activation functions.

Thus, the LSTM is represented as a set of weights and biases which define each gate

and memory in terms of the equations [140,141,144]:

ij = σ(U(i)xj + W(i)hj−1 + b(i)), (3.2)

fj = σ(U(f)xj + W(f)hj−1 + b(f)), (3.3)

oj = σ(U(o)xj + W(o)hj−1 + b(o)), (3.4)

C̃j = tanh(U(c)xj + W(c)hj−1 + b(c)), (3.5)

Cj = σ(fj � Cj−1 + ij � C̃j), (3.6)

hj = tanh(Cj)� oj, (3.7)

where U(l),W(l) and b(l) with l ∈ {i, f, o, c} are trainable weight matrices and bias
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vectors, respectively, and � denotes element wise multiplication.

The second component of an adaptive measurement is a function which takes the

current value of the memory hj and outputs a magnitude |βj| and phase arg(βj) for

the displacement operation. Usually in adaptive measurement strategies, the receivers

belief about the input states at adaptive step j is given by the prior probability

distribution, which is simply the posterior distribution from adaptive step j−1 [51,87].

The displacement βj is then obtained as: |βj,opt|eφ̂, where φ̂ is the phase of the state

with the largest prior probability and |βj,opt| is the pre-calculated optimal magnitude

as in Section 3.2 [83]. However, this approach still relies on being able to calculate

the likelihood functions to obtain the posterior distribution each adaptive step and

pre-calculate |βj,opt|. A properly trained neural network (NN) can serve as a function

approximator which in principle can map the current memory hj on to an optimal

value for the displacement without the need for likelihood functions. To this end, we

construct a NN that is designed to find a new displacement value βj for each adaptive

step based on the current value of the LSTM memory hj. A NN also has the benefit

of being represented by a set of weight matrices and bias vectors which can be trained

to achieve the best overall performance. Figure 3.8(b) shows the combined LSTM/NN

architecture where the hidden hj and cell Cj memories are fed-forward to maintain the

memory of the network. The hidden memory hj is passed to the NN which outputs two

values corresponding to the real Re[βj ] and imaginary Im[βj ] parts of the displacement

D̂(βj) for the adaptive step. To obtain βj for the current adaptive step j, the LSTM

is evaluated with the input vector xj = {Re[βj−1], Im[βj−1], 2dj−1/m} for a strategy

with PNR(m). Figure 3.8(c) shows the temporally expanded LSTM/NN showing the

flow of the information contained in the memories from one time-step to another.

This LSTM/NN architecture is represented by a set of numbers corresponding to

every single individual weight and bias. In this work, the LSTM memories (hj and

Cj) are each 16 elements, corresponding to 1280 total parameters for the LSTM. We

use a four layer network for the NN where the first three layers have 32 neurons and

a “sigmoid” activation function, and the last layer has two outputs and a custom
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Figure 3.9: Custom staircase activation function which is tailored to a QPSK alphabet:
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where h = 1/
√

2 is the height of the “stairs”, w = 2 is the width, and a = 10 controls

how steep the transition is between steps. Figure 3.9 shows the “staircase” activation

function for the output of the neural network. A single adaptive step j therefore

comprised of three steps: (1) updating the LSTM memory by evaluating the LSTM

with xj , (2) evaluating the NN with the updated hidden memory hj to obtain βj , and

(3) applying D̂(βj) and detecting a particular number of photons dj.

3.3.2 Replacing a Non-Optimized Strategy

We perform an initial study of receiver strategies based on the LSTM/NN architecture

described above to replace non-optimized discrimination measurements. We train the

LSTM/NN to implement a non-optimized, adaptive state discrimination strategy of the

QPSK states |αk〉 = |αeiφk〉 with φk =
(
k + 1

2

)
π
2

and k ∈ {0, 1, 2, 3}. This first study
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allows for investigating and benchmarking how well the LSTM/NN architecture

can implement a non-optimized measurement assuming a known channel. The

typical adaptive Bayesian measurement performs hypothesis testing by adjusting the

displacement βj each adaptive step conditioned on photon detections [51,83], resulting

in L detection results {dj}L and corresponding displacement values {βj}L. Ideally, the

LSTM/NN outputs displacement values close to {βj}L when given the input sequence

{dj}L, and we train the LSTM/NN to accomplish this. For example, if in the first

few adaptive steps (j = 1, 2, 3) the displacement values and corresponding detections

{βj, dj} obtained from a Bayesian strategy are {{αeiπ/4, 2}, {αei3π/4, 1}, {αei2π/4, 0}},

then given the fixed initial displacement β1 = αeiπ/4 and a detection d1 = 2 the

LSTM/NN should output the displacement β̂2 ≈ αei3π/4. Then, given a new detection

of d2 = 1 the LSTM/NN should output β̂3 ≈ αei2π/4, and so on. The displacement

values β2 = αei3π/4 and β3 = αei2π/4 obtained from the Bayesian strategy are referred

to as the target values because if the LSTM/NN output the target values exactly,

then the LSTM/NN would exactly implement the Bayesian strategy, i.e. the target

values are what we train the LSTM/NN to output.

We train the LSTM/NN using the gradient descent based Adam optimizer [145]

with a learning rate of 10−4 for 200 epochs using the Keras framework [146] in Python.

We use a mean-squared error cost function:

C =
∑
i,j

(
y

(i)
j,R − ŷ

(i)
j,R

)2

+
(
y

(i)
j,I − ŷ

(i)
j,I

)2

, (3.9)

where the target values y
(i)
j,R and y

(i)
j,I are the real and imaginary parts of the displacement

β
(i)
j in the jth adaptive step of the recursive Bayesian strategy for the ith sample,

and ŷ
(i)
j,R and ŷ

(i)
j,I are the outputs of the LSTM/NN. In order to obtain the target

values for the training of the LSTM/NN, we simulate 5 × 105 state discrimination

measurements using Bayesian hypothesis testing with η = 1.0, ξ = 0.997, ν = 0, and

PNR(1). Thus, the training data consists of 5× 105 experiments each represented by

a sequence of detections {dj}L and displacements {βj}L. The LSTM/NN can never

perfectly implement the adaptive Bayesian strategy due to small differences between

the target displacement values and the ones applied by the LSTM/NN. To this end,
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we also add a small amount of Gaussian noise with standard deviation σ = 0.01 to

the target values. This procedure makes the LSTM/NN more robust to deviations in

the output βj of the LSTM/NN compared to the actual Bayesian strategy, i.e. when

βj 6= αeiφk .

We test the performance of the trained LSTM/NN by simulating 5 × 105 state

discrimination experiments using the LSTM/NN to implement the measurement. After

the L adaptive steps for a single measurement, the LSTM/NN updates a final time.

The answer to the state discrimination problem θdisc corresponds to the input phase

φk that is closest to the phase of the final NN output arg(βL+1). For example, if the

output of the NN after all updates is (Re[βL+1] = −1.07, Im[βL+1] = 0.92), then the

estimate for the input state will be the |αei3π/4〉 even though arg(βL+1) ≈ 2.43 and

3π/4 ≈ 2.36. We note that this procedure is just for finding θdisc and that during the

measurement the displacement is set to whatever values the NN outputs.

Figure 3.10 shows the simulation results when using the LSTM/NN to implement
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Figure 3.10: Results for implementing a non-optimized strategy with L=10, 30, and 100
adaptive steps which attempts to displace the input state to the vacuum state. The
LSTM/NN is trained with the actual displacement values which implement the adaptive
Bayesian strategy. The blue points show the error for the LSTM/NN strategy but with a
maximum a posteriori (MAP) estimator for the final hypothesis and the orange points show
the results for the LSTM/NN strategy but using the last displacement output to obtain the
final hypothesis.
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the state discrimination strategy for different input mean photon numbers |α|2 for

L =10, 30, and 100 adaptive steps. The green line shows the results for the full

Bayesian strategy which utilizes the photon counting likelihood functions. The blue

points show the results for using the LSTM/NN to implement the measurement but

using the maximum a posteriori (MAP) estimator to obtain θdisc. The orange points

show the result of using the LSTM/NN to implement the strategy and using the

output of the NN to obtain θdisc as described above, i.e. without any knowledge

of the likelihood functions. We find that in this low mean photon number regime,

the LSTM/NN is able to replace the full Bayesian strategy with no degradation in

terms of the overall error probability. This result shows that the LSTM/NN has the

potential to implement state discrimination measurements and perform equivalently

to the Bayesian hypothesis testing approach.

3.3.3 Finding Optimized Strategies

We also aim to find optimized LSTM/NN-based strategies which can potentially

surpass the QNL in the single-photon limit, as well as in parameter regimes (such as

a large value of L) where optimizations of conventional Bayesian-based strategies are

computationally impractical or even impossible. Furthermore, optimization is ideally

performed solely based on sampling the performance of the LSTM/NN receiver, and

adjusting the parameters of the network to achieve the best error probability. The

entire LSTM/NN architecture can be represented by what we refer to as a solution

vector V , which is comprised of all the parameters of the LSTM (U(l),W(l), b(l)) and

the NN weights and biases [142,143]. Thus, one would expect that there is a particular

solution vector Vopt which allows the measurement to achieve the smallest error

probability. To find Vopt without using the likelihood functions, we need to implement

a so-called black-box optimization of the LSTM/NN [147]. This optimization strategy

relies on repeatedly sampling the error probability by evaluating the LSTM/NN with

a particular solution vector, and constructing new solutions based on the sampled

error probability. Due to fact that any sampling will be inherently noisy, a well suited
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algorithm is a genetic optimization [148] strategy known as differential evolution

[149,150]. This optimization algorithm, described in detail in Appendix C, relies on

maintaining a pool of candidate solution vectors {Vi} and updating each Vi depending

on its corresponding error probability P
(i)
E every iteration. If a candidate solution

vector has a large error probability, then a replacement solution vector is constructed

using combinations of “good” solution vectors, which have small error probabilities.

In this way, the parameter space is explored through sampling the error probability

and constructing new solution vectors based on the performance of each candidate. In

addition, we use the machine learning technique of transfer learning [151] to obtain

an initial value V
(0)
i for each solution vector. Transfer learning is a technique where a

network is trained to perform a task which is different but related to the original task,

and then used as an initialization point [151,152]. Here, we use transfer learning by first

training the LSTM/NN to implement a non-adaptive phase estimation measurement

with a limited number of adaptive steps (L = 5). We then apply different instances

of random noise to the “trained” network parameters to obtain the initial solution

vector V
(0)
i for each candidate. This process allows the LSTM/NN to learn a basic

Bayesian-like property which can then be applied to the new problem of optimized

state discrimination with a larger number of adaptive steps (see App. C for details).

Figure 3.11 shows the results for the differential evolution of the LSTM/NN as

a function of the iteration number when using transfer learning for initialization of

each solution vector. The green and black dashed lines show the QNL and Helstrom

bound, respectively, and the red dashed line shows the error for a non-optimized

strategy with L = 10, which attempts to displace the input state to the vacuum state.

The blue dashed line shows the error for the ideal “historical” optimization strategy

for L = 10 discussed in Section 3.2. The red solid line shows the error probability

as a function of iteration number for the LSTM/NN with L = 30 adaptive steps.

We find that the genetic algorithm can identify strategies which surpass the QNL

after ≈25 iterations and the L = 10 non-optimized strategy after ≈50 iterations.

The LSTM/NN can reach equivalent performance to the L = 10 globally optimized
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Figure 3.11: Results for the genetic optimization of the LSTM/NN architecture implementing
a discrimination strategy with L = 30 at |α|2 = 1.0. Panel (a) and (b) show the simulation
results on a linear and log scale in the horizontal axis for the optimization iteration. The
LSTM/NN receiver (red solid) surpasses the QNL (green dashed) after only ≈ 30 generations,
a non-optimized L = 10 strategy (red dashed) after ≈ 50 generations, and reach the error
for a L = 10 “historical” optimization (blue dashed) after ≈ 103 generations.

solution after≈ 1500 iterations and then continues to slightly improve. This LSTM/NN

receiver and genetic optimization can find optimized measurement strategies for large

numbers of adaptive steps L. Furthermore, previous approaches based on “historical”

optimizations discussed in Section 3.2 do not have favorable scaling as L increases.

For example, a “historical” optimization strategy implementing L = 10 adaptive steps

requires optimization of 210 − 1 = 1023 parameters, while a strategy with L = 30

adaptive steps requires optimization of over 109 parameters. However, the LSTM/NN

is independent of L and the PNR of the detector and thus inherently scalable to more

complex measurement strategies where “historical” optimization is impractical.

3.3.4 Future Directions in Reinforcement Learning

The main benefit of applying reinforcement learning to the LSTM/NN architecture is

that knowledge of the noise properties of the communication channel is not required

to find optimized measurement strategies. Thus, a direct application of this method
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is for finding optimized measurement strategies when the communication channel has

unknown noise associated with it. For example, if there is an unknown combination

of phase diffusion and thermal noise, then reinforcement learning of the LSTM/NN

receiver can find an approximately optimal measurement strategy. Furthermore,

Chapter 2.2 discusses how the input alphabet for binary coherent states can be

optimized jointly with the receiver to maximize information transfer in the presence of

noisy communication channels [81]. In the context of noisy channels, this reinforcement

learning framework can be extended to include optimization of the input alphabet

for any number of states. This framework also allows for investigating the limits of

information transfer of non-Gaussian channels where the fundamental limits are not

well understood [13,71,135,153,154].

3.4 Conclusion

In this chapter, we presented different measurement strategies for discrimination of

four coherent states of light. We fist investigated the capabilities of a “minimum”

resource receiver for QPSK states [82] based on the proposal in Ref. [119].

These strategies are based on testing multiple hypotheses simultaneously using

optimized displacements and PNR(1) detection. The strategy uses the smallest

number of individual measurements, no photon number resolution, no complex

feedback operations, and no phase stabilization, which makes it ideal for near-term

high bandwidth communication. By using state-of-the-art optical elements and

detectors [136], these measurements will be able to surpass the ideal QNLQPSK and

facilitate high bandwidth classical and quantum communication. Going beyond

the “simple” measurement strategies, in Sec. 3.2 we implemented an adaptive

receiver for QPSK states which can be globally optimized to achieve to best

performance [83]. More complex optimizations can obtain better error probabilities

and surpass the QNLQPSK in the single photon regime where previous non-optimized

demonstrations have fallen short. These optimized measurements are particularly
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useful for quantum communication where the input powers are extremely small,

and the receiver needs to be able to extract the most information possible. As an

extension to these optimized receivers, in Sec. 3.3 we developed a reinforcement

learning framework for optimized receivers for QPSK states where the Bayesian

hypothesis testing strategy is replaced by a LSTM/NN architecture. The receiver

strategy based on the LSTM/NN can approximate a non-optimized receiver strategy

with no degradation in performance. Moreover, this LSTM/NN strategy can be

optimized using reinforcement learning, which solely relies on sampling of the error

probability instead of requiring access to the photon counting likelihood functions.

The ability to construct an optimized strategy without specific knowledge of the

likelihood functions and the communication channel will allow for finding optimized

measurements which surpass the QNL, even in the presence of complex noise sources,

and allow for investigating the attainable mutual information for non-trivial channels.
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Noise Tracking for Non-Gaussian

Receivers

A receiver being able to efficiently identify and correct for noise in a communication

channel is a critical barrier to reliably transferring information [50, 58, 99, 116]. In

realistic communication channels, multiple static and dynamic noise sources may be

present such as phase noise [58], amplitude noise, phase diffusion [81, 103, 104], or

thermal noise [94,155]. Ideally, channel noise is parameterized, estimated, and tracked

by the receiver such that the damaging effects of the noise are counteracted. One

natural solution to the problem of parameter tracking is for the sender to simply

transmit a strong reference field in addition to the encoded information [156–160].

However, reference fields are not an efficient use of energy if the sender transmits

high power optical pulses without taking that energy into account. To that end,

conventional heterodyne receivers utilize a myriad of estimation and tracking algorithms

to efficiently monitor and correct for channel noise with advanced digital signal

processing without the need for reference pulses [58,161–167]. However, these noise

tracking algorithms usually rely on correcting heterodyne measurement data in post-

processing [58,168,169].

Adaptive non-Gaussian receivers do not directly measure the real and imaginary
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components of the input state, a property which conventional noise tracking methods

with -dyne measurements rely on. Thus, conventional noise tracking methods cannot

be applied to communication strategies using non-Gaussian receivers, which achieve

sub-QNL sensitivities. As a result, non-Gaussian measurement strategies require

fundamentally different approaches to parameter tracking which need to perform real-

time estimation and correction, where the receiver strategy self-corrects to compensate

for noise, as opposed to post-processing methods. In addition, parameter tracking

strategies for non-Gaussian receivers must rely solely on the state discrimination

data itself and not on extra resources such as reference pulses. Novel channel noise

tracking methods must be developed and demonstrated such that non-Gaussian

measurements can maintain their sub-QNL performance and become a practical and

feasible technology.

We first address the problem of phase tracking by developing an intuitive estimator

of time-dependent phase noise [85] in Section 4.1. We experimentally implement this

strategy and show that sub-QNL performance can be maintained in the presence

of applied and intrinsic phase noise. As an extension to the problem of phase

tracking, we develop and simulate an approach based on a neural network estimator

which implements parameter tracking of two parameters, phase and amplitude,

simultaneously [86]. This approach based on a neural network can be efficiently

implemented in hardware such as an FPGA, and operate at high bandwidths, which is

required for maintaining sub-QNL performance in a realistic communication scenario.

4.1 Experimental Phase Tracking Demonstration

A particularly damaging type of channel noise for phase encoded coherent states is

time-dependent phase noise due to phase changes between the sender and receiver,

which degrades the performance of the receiver [58,68]. Phase noise in realistic channels

is often modeled as a Gaussian random noise process [162,164–167], which originates

mainly from random phase differences between the transmitter laser and the LO
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used by the receiver [50], as well as other sources [170–174]. Adaptive non-Gaussian

measurements can achieve sub-QNL error rates [51,117], but are highly sensitive to

phase noise and must be actively corrected in real-time. Furthermore, conventional

approaches to tracking and compensating for phase noise cannot be directly applied to

adaptive non-Gaussian measurements. In this section, we develop and experimentally

implement a phase tracking method which uses an estimator based on the photon

counting statistics acquired from the non-Gaussian measurement. We show that

this method can correct for Gaussian noise applied to the input states and allow for

sub-QNL discrimination in the presence of moderate phase noise [85].

4.1.1 Phase Tracking Strategy

We use the adaptive photon counting strategy from Ref. [117] as a platform to study

phase tracking in non-Gaussian receivers for QPSK coherent states |αk〉 = |αeikπ/2〉

with k ∈ {0, 1, 2, 3}. Figure 4.1 shows a schematic of a non-Gaussian receiver operating

below the QNL by implementing an adaptive, non-optimized strategy with L = 7

adaptive steps and PNR(3) [85, 117]. The receiver identifies any phase shift φ in

the received states and feeds-forward a correction to the local oscillator (LO) by
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RecievedSent
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Im(α)

Sender Receiver
(Alice) (Bob)

Channel
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Figure 4.1: Phase tracking strategy where a receiver attempts to decode QPSK coherent
states in the presence of phase noise. Unknown phase shifts φ acquired by the states when
propagating through the communication channel will degrade the quality of the non-Gaussian
receiver. Real-time parameter estimation is performed and a correction is fed-forward to the
LO in order to identify and compensate for the phase noise. Figure adapted from: Physical
Review Research 2, 023384 (2020).
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implementing parameter estimation in real-time based on the state discrimination

measurement data. Figure 4.2 shows the error probability of the strategy as a function

of phase offset φ between the input states and LO for an input power of |α|2=2.0,

5.0, and 10.0 in blue, orange, and yellow, respectively. Strategies with higher powers

increasingly outperform the QNL (gray lines) but are more sensitive to phase noise

and the receiver can only tolerate φ ≈ ±0.1 rad. before the error becomes larger than

the QNL for all three input powers. The receiver must perform active phase tracking

in order to maintain sub-QNL error probabilities where estimates of the noise are

fed-forward as a correction to the LO. Furthermore, noise tracking methods need to

be computationally efficient enough to be experimentally implemented.

Efficient channel noise tracking must rely solely on the state discrimination

measurement data, and not extra resources such as reference fields. To this end,

the receiver constructs what we refer to as the detection matrix D to calculate an

estimate φ̂ for the phase shift φ (or any noise in general) present in the photon counting

measurement data. The size of the detection matrix is M × (m + 1) where M = 4

for QPSK states and m is the photon number resolution. The receiver estimates the
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Figure 4.2: Error probability as a function of phase offset φ for strategies with an input
mean photon number |α|2=2.0, 5.0, and 10.0 in blue, orange, and yellow respectively. Here
the experimental imperfections are included in simulation where η = 0.7 and ξ = 0.997 with
PNR(3). All the strategies can only tolerate φ ≈ ±0.1 rad. before the sub-QNL performance
is lost. Figure adapted from: Physical Review Research 2, 023384 (2020).
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phase noise using D after the completion of N state discrimination measurements.

During each adaptive step j in a single state discrimination measurement, the phase

of the LO arg(βj) = θj is changed between θj ∈ {0, π/2, π, 3π/2} to implement a

recursive Bayesian strategy based on hypothesis testing [51, 85, 117]. The receiver

provides an answer to the state discrimination problem θdisc which corresponds to the

most likely phase for the input state after the completion of L adaptive steps. The

measurement also registers L photon detections {dj}L in addition to the LO phases

{θj}L. Due to the low error rate of the receiver, θdisc is equal to the phase of the

input state with high probability and the receiver uses θdisc to infer the relative phase

between the LO and the input at each adaptive step as: ∆j = θj − θdisc. The data

from the state discrimination measurement {∆j, dj} is then binned into the detection

matrix D, which is initialized with all zeros. Each matrix element Dk,l is incremented

at the end of every measurement by the total number of times the number of detected

photons dj = l with the relative phase ∆j = 2πk/M where k ∈ {0, 1, ...,M −1}. Thus,

the rows of the detection matrix represent the sampled photon number distribution

P (n|∆j = kπ/2) for when the relative phase between the input state and LO is kπ/2

for QPSK states. At the end of N state discrimination measurements, D contains the

data from L×N samples of {∆j, dj}. The receiver then calculates an estimate φ̂ for

the phase noise present in D, feeds-forward a correction to the LO, and “resets” the

detection matrix to zeros.

4.1.2 Sin-Cos (SC) Estimator

The receiver must utilize a particular estimator to identify the phase noise present in

the measurement data. The input to the estimator is the matrix D and the output is

an estimate φ̂ for the phase noise φ. Figure 4.3 shows a flowchart for the algorithm

of the proposed Sin-Cos (SC) estimator which calculates φ̂ given D. The blue box

labeled “State Disc.” shows how D is interpreted as samples of the photon number

distributions for different relative phases ∆j between the LO θj and the answer for

the input state θdisc. The orange box labeled “Phase Estimation” shows how the
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Figure 4.3: Flowchart of the proposed SC estimator described in the text. The data (blue
box) from the previous N state discrimination measurements is used to construct raw
estimates for the phase noise (orange box). Due to the large uncertainty, Navg raw estimates

φ̂i are averaged to obtain the final phase estimate φ̂ (black box). Figure adapted from:
Physical Review Research 2, 023384 (2020).

algorithm calculates a raw estimate φ̂i after N state discrimination measurements.

The SC estimator first takes the average across each row of D, which is equivalent

to finding the average value of each photon number distribution P (nj|∆j = kπ/2).

Averaging across each row of D yields four mean values of 〈n〉0, 〈n〉π/2, 〈n〉π, and

〈n〉3π/2 for when ∆j = 0, π/2, π, and 3π/2, respectively, which are ideally given by:

〈n〉0 = 2η
|α|2

L

(
1− ξcos(φ)

)
+ ν, (4.1)

〈n〉π/2 = 2η
|α|2

L

(
1− ξsin(φ)

)
+ ν, (4.2)

〈n〉π = 2η
|α|2

L

(
1 + ξcos(φ)

)
+ ν, (4.3)

〈n〉3π/2 = 2η
|α|2

L

(
1 + ξsin(φ)

)
+ ν, (4.4)

where η is the detection efficiency, ξ is the interference visibility of the displacement

operation, and ν is the dark count rate per adaptive step. The algorithm obtains

a value which is a sample of cos(φ) by combining Equations (4.1) and (4.3) and in

a similar way, obtains a sample of sin(φ) from Equations (4.4) and (4.2). The SC

estimator uses these samples as estimates for the phase noise as:

〈n〉π − 〈n〉0 = C(|α|2)cos(φ)→ φ̂c = arccos

[
〈n〉π − 〈n〉0
C(|α|2)

]
, (4.5)

〈n〉3π/2 − 〈n〉π/2 = C(|α|2)sin(φ)→ φ̂s = arcsin

[
〈n〉3π/2 − 〈n〉π/2

C(|α|2)

]
, (4.6)
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where C(|α|2) = f(|α|2)× 4|α|2ηξ/L and f(|α|2) is a tunable factor which allows the

estimator to account for the non-zero probability of error in discrimination [85]. The

algorithm calculates a single raw estimate φ̂i from a weighted average of the two initial

estimates φ̂c and φ̂s:

φ̂i = sign(φ̂s)
|φ̂c|+ r(|α|2)|φ̂s|

1 + r(|α|2)
, (4.7)

where r(|α|2) is the weighting factor which is used to maximize the linearity of φ̂i

with respect to φ [85]. We set N = 500 in our demonstration such that a single raw

estimate φ̂i contains the data from 500 state discrimination measurements.

The black box labeled “Final Estimate” shows that the last step in creating the

final phase estimate φ̂ is to take the average of Navg raw estimates φ̂i with an added

gain factor g:

φ̂ = g

(
1

Navg

∑
φ̂i

)
1

Navg

∑
φ̂i = g

(
〈φ̂i〉

)
〈φ̂i〉. (4.8)

Ideally, the phase estimate φ̂ is linear as a function of the phase shift φ and has

minimal uncertainty. However, in practice this is not the case and the values of r(|α|2),

f(|α|2), and g(〈φ̂i〉) are empirically tuned to best achieve the best performance for

a particular input mean photon number |α|2. Reference [85] describes the detailed

process for obtaining the optimal values of r(|α|2), f(|α|2), and g(〈φ̂i〉) using Monte

Carlo simulations. First, the optimal value of f(|α|2) is one that minimizes the effect

of errors in the state discrimination itself. Given that PE 6= 0, there are errors in

populating the sampled distributions P (n|∆j = kπ/2) (rows of D) and therefore their

mean values 〈n〉kπ/2. Discrimination errors will mainly cause 〈n〉π − 〈n〉0 < 4|α|2ηξ/L,

which biases φ̂c away from zero when there is no phase noise. These errors also cause

a bias in φ̂s but towards zero and we tune the value of f(|α|2) to minimize the effect

of the errors. The optimal weighting factor r(|α|2) minimizes the difference between φ

and φ̂i at the endpoints of the capture range R of the phase tracking, where R = ±0.6

rad. in our experiment. The limited range R is due to requiring a relatively small

resolution of ≈ 5 mrad. when discretizing the LO phase correction into 256 phase
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points (1.2 rad./256≈ 5 mrad.). The optimal gain function g(〈φ̂i〉) maximizes the

linearity of φ̂i as a function of φ across the capture range R once f(|α|2) and r(|α|2)

are determined and is found empirically with Monte Carlo simulations.

The performance of the SC estimator can now be examined after finding optimal

values for each of the tunable parameters in the SC estimator for different input

mean photon numbers. We benchmark the SC estimator against the performance of a

Bayesian estimator, which is calculated using the complete photon counting likelihood

functions as:

φ̂B = arg

( π∫
−π

eiφP (φ|D)dφ

)
, (4.9)

where P (φ|D) is the posterior distribution for the phase φ given the state discrimination

measurement data D and is obtained by:

P (φ|D) =
P (D|φ)P (φ)

P (D)
= NP (φ)

M−1∏
k=0

m∏
l=0

L(l|φ− kπ/2)Dk,l , (4.10)

L(l|ψ) =
1

l!
〈n(ψ)〉le−〈n(ψ)〉, (4.11)

〈n(ψ)〉 = 2η|α|2
(

1− ξcos(ψ)
)

+ ν, (4.12)

where the total likelihood function P (D|φ) is the product of each individual photon

counting likelihood function L(l|φ− kπ/2) for each matrix element Dk,l.

Figure 4.4(a-c) shows the uncorrected (g = 1) SC estimator (orange) and the

corrected (g 6= 1) SC estimator (green) compared to an uncorrected (blue) and

corrected (black) Bayesian estimator for |α|2=2.0, 5.0, and 10.0, respectively. Solid

lines represent the average across 100 different Monte Carlo samples and the shaded

regions correspond to one standard deviation. The uncorrected estimates are biased

towards zero as the phase offset increases for all three input powers. The purpose

of the gain function g(·) is to “undo” this bias such that on average φ̂ = φ across

the entire capture range R = ±0.6 rad. The corrections cannot overcome the effect

of a large PE for |α|2 = 2.0 beyond φ ≈ ±0.5 rad., as can be seen by the corrected

estimates for both estimators deviating from being linear.
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Figure 4.4: Linearity of the SC estimator for different applied phase offsets φ for |α|2 =
2.0 (a), 5.0 (b), and 10.0 (c). A Bayesian estimator (blue & black) and the SC estimator
(orange & green) can both be corrected such that they are linear with respect to the actual
phase offset. This correction is done by applying a custom gain function g which is found
empirically through Monte Carlo simulations. The solid lines represent the average of 100
Monte Carlo samples and the shaded regions correspond to one standard deviation. Figure
adapted from: Physical Review Research 2, 023384 (2020).

4.1.3 Experimental Implementation

Figure 4.5 shows the experimental setup used to implement phase tracking with the SC

estimator. The phase of the signal and LO are each controlled by a phase modulator

(PM) and after interference on a 99/1 beam splitter, the displaced input state D̂(βj)|αk〉

is detected by a single photon detector (SPD). We use an Altera Cyclone II field

programmable gate array (FPGA1) to implement the state discrimination strategy

with L = 7 adaptive steps and PNR(3) at a repetition rate of fexp ≈ 12 kHz [85,117].

Figure 4.5: Experimental setup for phase tracking in adaptive non-Gaussian receivers. The
phase noise is applied to the signal phase modulator (PM) using a function generator and two
field programmable gate arrays (FPGAs) implement the state discrimination measurement
and SC estimator. The phase correction is fed-forward to the LO PM. Figure adapted from:
Physical Review Research 2, 023384 (2020).
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We achieve a detection efficiency of η = 0.72 and an interference visibility of ξ = 0.998

for this experiment. A second FPGA (FPGA2) contains the estimation algorithm

described above to implement the SC estimator. FPGA2 receives the same state

discrimination data and calculates and applies the phase correction. An 8-bit digital-

to-analog converter (DAC) controls the LO phase correction such that there are

28 = 256 discrete values which can be applied across the capture range R = ±0.6

rad. A function generator connected to the phase modulator in the signal arm applies

phase noise to the phase of the input states. In addition, the relative phase between

the input and LO can be “unlocked” such that the total phase noise is a combination

of the applied noise and the natural drift of the experimental setup.

4.1.4 Experimental Results

We investigate the capability of phase tracking method based on the SC estimator

by first applying fixed phase shifts φapp to the phase modulator in the signal arm

of the experiment. We then study the dynamic tracking ability of the SC estimator

by applying Gaussian phase noise to the signal. We apply different strengths and

bandwidths of noise for different input powers and also study the performance of the

estimator as a function of Navg, the number of averages used for a single estimate.

Constant Phase Offset

We first study the ability of the phase tracking algorithm to identify and correct

sudden, fixed phase shifts, or phase “jumps”. We apply a constant phase offset φapp

to the input states in these experiments and then, after a fixed amount of time,

the receiver enables the phase tracking algorithm such that the offset is corrected.

Figure 4.6(a) shows the probability of error as a function of time as the phase jump is

applied and corrected. The input mean photon number is |α|2 = 5.0 and we set the

number of averages per estimation to Navg = 20, giving a phase tracking frequency of

fPT = fexp/(500× 20) ≈ 1.2 Hz. The solid lines and shaded regions correspond to the
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Figure 4.6: (a) Experimental performance of the SC estimator based phase tracking method
when applying fixed phase shifts φapp to the input states. The solid lines and shaded
regions correspond to the average and standard deviation of the error probability across
five independent runs of the experiment. Initially, no phase noise is applied and the phase
tracking algorithm is disabled. At t = 2 s, a phase shift φapp is applied and causes the error
probability to increase depending on |φapp|. At t = 5 s, the SC algorithm is enabled and
can identify and correct the phase shift in only one or two iterations. (b) Estimated phases
φ̂ (colored lines) compared to the applied phase shifts φapp (dashed lines). Figure adapted
from: Physical Review Research 2, 023384 (2020).

average and standard deviation of the error probability across five independent runs of

the experiment. Starting at time t = 0 s, the error probability is calculated across time

bins of approximately 0.5 s each, corresponding to 5×103 (≈ fexp×0.5 s) experiments.

Initially, there is no applied phase offset φapp and the phase tracking algorithm is

turned off in order to verify that the measurement is performing as expected with error

probability PE(φapp = 0) (solid black), below the QNL (solid red). The phase jumps

are applied at time t = 2 s with different magnitudes and signs from φapp = ±0.1 to

±0.5 rad. (dashed gray). The green (blue) lines show the average error probability

for when the positive (negative) phase shifts are applied. The receiver enables the

phase tracking algorithm at time t = 5 s and within two estimation iterations, the

algorithm corrects for the phase offset accurately enough for the receiver to maintain

the same error probability as with no phase noise PE(φapp = 0). Figure 4.6(b) shows

the estimated phase shifts (green and blue solid lines) as a function of time compared

to the applied phase shifts φapp (gray dashed lines). The phase tracking algorithm can

efficiently identify and correct for the applied phase noise and maintain performance

below the QNL.
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Phase Tracking at Different Noise Strengths & Frequencies

To fully demonstrate the capabilities of the proposed algorithm, we implement real-

time phase tracking for different input powers, noise strengths, and noise bandwidths.

We note that for these experiments, the interferometer was purposefully unlocked in

addition to the applied phase noise to represent a realistic situation [58, 166,167]. We

simulate discrete Gaussian random walks as a phase noise model with strength σ1

and frequency fRW = 100 Hz (∆TRW = 10 ms). We apply the random walks to the

phase of the input states as: φapp(τ + ∆TRW ) = φapp(τ) +N (0, σ2
1) where τ is time

discretized into steps of ∆TRW .

Figure 4.7(a-c) shows the probability of error for a strategy with |α|2 = 5.0 and

Navg = 20 when applying Gaussian phase noise of different strengths. We tune the
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Figure 4.7: Experimental performance of the phase tracking algorithm as a function of time
for |α|2 = 5.0 and Navg = 20 when applying Gaussian random walks in phase to the input
states. The strength of the phase noise varies from (a) small (2σT � R), to (b) moderate
(2σT ≈ R), to (c) severe (2σT � R). The sub-QNL performance is maintained in the
presence of moderate phase noise until the estimated waveforms reach the phase tracking
range R = ±0.6 rad., where the feed-forward corrections are locked to R. The effect of
clamping to the range R is an increase in the error probability starting at t ≈ 50 s, but the
increase is solely due to the limited value of R in our implementation. Figure adapted from:
Physical Review Research 2, 023384 (2020).
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noise strength σ1 such that the total deviation of the random walks σT =
√
NTσ1

after NT = 6500 time steps ∆TRW corresponds to (a) σT � R/2 (σ1 = 0.1 mrad.),

(b) σT ≈ R/2 (σ1 = 5 mrad.), and (c) σT � R/2 (σ1 = 25 mrad.). The blue

and green solid lines show the error with (PT on) and without (PT off) the phase

tracking algorithm enabled, respectively, and the shaded regions correspond to the

maximum and minimum errors due to the phase noise. The lower panels (d-f) show

the corresponding applied phase noise φapp(τ) and phase corrections φff which are

fed-forward to the LO phase.

Figure 4.7(a) shows the uncorrected error probability slowly drifting upwards

and the phase tracking algorithm can easily maintain the sub-QNL error rate when

enabled for the duration of the phase walks (≈ 65 s). By comparing the applied and

estimated phase noise in (d), the spread of φff is much greater than the applied noise

φapp(τ). These deviations are due to the fact that the experiment is unlocked and

“drifting” such that natural phase drifts in the setup are also tracked. Figure 4.7(b)

shows that moderate strength phase noise quickly degrades an uncorrected experiment.

Enabling the PT algorithm allows for discrimination below the ideal QNL and error

rates almost equal to the expected error in the absence of phase noise. After t ≈ 50 s,

the error probability starts to increase as well as the spread of errors (shaded region).

This increase in the error is solely due to the finite capture range R = ±0.6 rad. of

our implementation of the phase tracking algorithm. Once the estimated waveform

goes beyond ±0.6 rad., the applied correction φff which is fed-forward to the LO is

clamped to ±0.6 rad. and the effect can be seen in the panels (e) and (f). Figure 4.7(c)

shows that severe phase noise immediately degrades the uncorrected measurement

and the corrected measurement appears to track the noise briefly before encountering

the capture range R. By examining the performance before encountering the capture

range, it appears that even with severe noise, the receiver potentially maintains an

error rate in between the ideal and equivalent QNL.

We also investigate the capabilities of the SC estimator based algorithm for higher

and lower input powers in addition to |α|2 = 5.0. Figure 4.8(a) shows the error
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Figure 4.8: Experimental performance of the phase tracking algorithm for different input
mean photon numbers of (a) |α|2 = 2.0 and (b) |α|2 = 10.0. Due to the different error
probabilities for the different input powers, the number of averages needs to be changed
to Navg = 40 (4) when |α|2=2.0 (10.0). The phase tracking bandwidth is also changed
accordingly to fRW=50 Hz for |α|2 = 2.0 and fRW=500 Hz for |α|2 = 10.0. Figure adapted
from: Physical Review Research 2, 023384 (2020).

probability for an input power of |α|2 = 10.0 in the presence of moderate phase

noise. The SC estimator requires less averaging (Navg = 4) to achieve acceptable

uncertainties due to the lower probability of error for |α|2 = 10.0. This change in Navg

also means that the algorithm should be able to track higher frequency noise. To this

end, we set fRW = 500 Hz while leaving σ1 = 5 mrad. such that 2σT ≈ R after 13 s.

We find the phase tracking algorithm enables sub-QNL state discrimination in the

presence of phase noise which would otherwise cause the performance to be entirely

degraded. Figure 4.8(b) shows the error probability for an input mean photon number

of |α|2 = 2.0. We increase the number of averages to Navg = 40 due to the relatively

high but still sub-QNL error rate. We also decrease the frequency of the phase noise

accordingly to fRW = 50 Hz such that 2σ1 ≈ R after 130 s. Similar to other input

powers, the SC estimator based algorithm is able to maintain superior performance of

the adaptive non-Gaussian receiver in the presence of phase noise.

4.1.5 SC Estimator Performance for Different Navg

A critical aspect of any phase tracking method is how the performance changes with

the number of samples N × Navg used for estimation. Increasing the number of
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averages Navg reduces the estimation uncertainty (∆φ̂)2, but at the cost of increasing

the time needed to calculate a single estimate φ̂. Increasing Navg (and subsequently

the estimation time) will also increase the deviation of the random phase walks during

the estimation time, leading to an increase in the error probability. On the other

hand, reducing the value of Navg to provide faster estimation reduces the deviation of

the random phase walks, but also increases the intrinsic variance of the SC estimator

such that (∆φ̂)2 dominates the overall estimation uncertainty. Thus, there exists an

optimal number of averages Navg required to calculate each estimate for a specific

phase noise strength. This optimal Navg is a value which balances the contributions

to the overall uncertainty from the intrinsic variance and the noise variance.

Figure 4.9(a-c) shows examples of estimates φ̂ from the SC estimator for |α|2 = 5.0

when no phase noise is applied (φ = 0) for Navg=2, 15, and 40, respectively, as well as

a histogram of the estimates on the right of each plot. The estimates have a large

uncertainty for a small value of Navg, and increasing Navg correspondingly decreases

the estimator variance. Figure 4.9(d) shows the variance σ2
0 of the SC estimator (blue

points) as a function of Navg calculated from the data shown in (a-c), where the points

and error bars show the average and standard deviation across 5 experimental data

sets. The inset (i) shows the data on a log-log scale where a model of σ2
0 = a/Navg fits

the data well, with a fitted coefficient of a = 0.014. The black line shows the deviation

variance σ2
RW of a Gaussian random walk process as a function of Navg, which is linear

in time.

Figure 4.9(e) shows an example of the performance of the algorithm when tracking

a single applied random walk (black line) with σ1=5 mrad. for when Navg=2 (gray),

Navg=10 (orange), and Navg=40 (blue). Figure 4.9(f) shows the difference ∆ = φ̂−φRW
between the estimated phase noise and applied phase noise for the different values

of Navg from (e). The deviations from zero have contributions from the intrinsic

uncertainty of the SC estimator as well as the random phase noise. The variance when

Navg = 2 (gray) is mostly due to the uncertainty of the SC estimator σ2
0 and instead of

the phase noise σ2
RW . On the other hand, the deviations of the random walks dominates
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Figure 4.9: Study of the SC estimator performance as a function of Navg for |α|2=5.0. (a-c)
Distribution of estimates when φ = 0 for Navg=2, 15, and 40, respectively. (d) Variance of
the estimates as a function of Navg, which decreases as more samples are used for estimation.
The inset shows the expected 1/Navg statistical scaling of the estimator. (e) Estimates of
a single applied random walk (black) for Navg=2 (gray), Navg=15 (orange), and Navg=40
(blue), as a function of time. (f) Difference ∆ between the estimated waveform and applied
phase noise in (e). (g) Total estimator variance σ2

∆ from (f) which is a combination of the
intrinsic estimator variance σ2

0 from (d) and the deviation variance σ2
RW from the Gaussian

random walks in phase, which scales linearly with Navg. There is an optimal value Navg ≈ 10
which balances the two contributions to the overall variance. Figure adapted from: Physical
Review Research 2, 023384 (2020).

the overall uncertainty when Navg = 40 due to the relatively low phase tracking

bandwidth compared to the phase noise. Figure 4.9(g) shows the total phase variance

σ2
∆ (blue points) of ∆ from (f) as a function of Navg across 5 different noise realizations.

The red solid line shows the expected total variance σ2
Etot which is equal to the sum of

the SC estimator variance σ2
0 plus the deviation variance of the random walk σ2

RW .

This expected variance has the form of σ2
Etot = a/Navg+bNavg = a/Navg+(500σ2

1)Navg,

and shows good agreement with the measured total variance. If the receiver knows

the strength of the random phase noise σ2
1, then an optimal value of Navg is one which

minimizes the total variance and is Navg ≈ 10 in (g). One would expect the optimal

number of averages to be Navg =
√
a/b for a general level of noise b and estimator

scaling a. Thus, if the estimator variance a/Navg decreases or if the noise variance

bNavg increases, then the optimal Navg will be smaller. On the other hand, if the noise
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variance decreases or the estimator variance increase, then the optimal Navg be need

to be larger, thus reducing the achievable phase tracking bandwidth.

4.1.6 Discussion

Implementing efficient and accurate methods for phase tracking will allow adaptive

non-Gaussian strategies to be transitioned out of the lab. Such techniques will enable

error rates beyond the QNL in practical and realistic communication systems. On

one hand, a Bayesian estimator will yield small estimation uncertainty but is very

computationally expensive to calculate. On the other hand, simple estimators such as

the SC estimator can be easily and efficiently calculated at the bandwidths necessary

for realistic implementations. We studied the capabilities and limitations of the SC

estimator across different phase noise regimes and input powers. In principle, the SC

estimator can be extended to multi-parameter tracking but may not be able to achieve

small estimation error at the required bandwidth. However, more advanced techniques

may be leveraged to develop noise tracking methods for non-Gaussian receivers which

implement high dimensional parameter tracking at high bandwidth.

4.2 Channel Noise Tracking with Neural Networks

In addition to phase noise, a communication channel can also exhibit amplitude noise

such that the power of the received states fluctuates in time. Compensating for

channel noise by actively correcting a non-Gaussian receiver now requires estimation

and tracking of two parameters, a more complex problem where simple methods may

not perform well. Recently, machine learning techniques have proven to be useful tools

for solving problems in quantum information [175–183] and optical communication

[184–187], where conventional methods may be computationally inefficient [188].

A particularly useful approach in optical communication is using artificial neural

networks [189,189–194] for channel noise estimation and monitoring [195–197]. Here,
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we develop a method for tracking multiple noise parameters simultaneously based on

a neural network estimator to correct adaptive non-Gaussian receivers [86]. We show

using Monte Carlo simulations that this method can efficiently correct for phase and

amplitude noise in parameter regimes where realistic implementations can potentially

maintain sub-QNL performance.

4.2.1 Noise Tracking Strategy

Figure 4.10(a) shows the proposed method for parameter tracking based on a neural

network (NN) estimator. The sender (Alice) prepares QPSK encoded coherent states

and transmits the states across a channel to the receiver (Bob). However, there is

dynamic phase and amplitude noise imparted onto the coherent states by the channel

such that they arrive at the receiver with a time-dependent amplitude and phase. The

receiver attempts to perform state discrimination of the QPSK states using an adaptive

non-Gaussian measurement, but the channel noise severely degrades the achievable

performance of the measurement. Estimating the phase and amplitude noise using

solely the measurement data allows the receiver to correct the state discrimination

measurement and maintain the sub-QNL performance.
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Figure 4.10: (a) NN-based multi-parameter noise tracking strategy where phase and
amplitude noise is estimated and tracked by the adaptive non-Gaussian receiver. (b)
Simulated error probability when applying phase and amplitude noise with no correction
(orange), and perfect correction (blue), compared to a heterodyne receiver with perfect
correction (black). The dashed black and gray lines show the error for non-Gaussian and
heterodyne receivers in the absence of channel noise. Figure adapted from: Physical Review
Research 3, 013200 (2021).
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The receiver implements an adaptive measurement based on photon counting with

L = 10 and PNR(10) following a hypothesis testing procedure where the phase of

the displacement D̂(βj) in adaptive step j is arg(βj) = θj ∈ {0, π/2, π, 3π/2} with

magnitude |βj| = |α| [51,117]. We simulate a receiver with ideal detection efficiency

(η = 1.0) and zero dark counts (ν = 0), but a non-ideal interference visibility ξ = 0.997

to represent a realistic implementation but with an ideal detector. The relative

phase φ(t) between the input and LO as well as the input energy |α|2(t) are not

constant in time due to channel noise. The receiver uses the measurement data and

the answer to the discrimination problem θdisc to implement phase and amplitude

tracking, where estimates for the channel noise are fed-forward to correct the LO and

maintain sub-QNL performance.

Figure 4.10(b) shows an example of the error probability of the receiver as a

function of time for an average input state energy of 〈n̂〉0 = |α|2(0) = 5.0 averaged

over 5000 realizations of channel noise. The orange points show the error rate when the

receiver does not implement noise tracking and blue points show the error probability

when the receiver has perfect knowledge of the noise, corresponding to the best possible

performance. Perfect tracking refers to the receiver having complete knowledge of the

time-dependent amplitude and phase of the input states such that the measurement

can be corrected by setting arg(β) = θj + φ(t) and |β|(t) = |α|(t). The black points

show the performance of a heterodyne receiver also with perfect correction, which

serves as the effective QNL. The dashed lines show the error probability in the absence

of noise for heterodyne (gray) and non-Gaussian (black) receivers. The error for the

non-Gaussian receiver remaining below the effective QNL shows that the measurement

maintains sub-QNL performance if the receiver implements effective channel noise

tracking and correction.

The receiver collects the state discrimination measurement data in the detection

matrix D, which is a M × (m+ 1) dimensional matrix. This matrix contains the data

from N state discrimination measurements and is used for estimation of the noise

imparted by the channel over the previous N measurements, as described in Sec. 4.1.1.

94



Chapter 4. Noise Tracking for Non-Gaussian Receivers

The discrimination of a single input state results in a sequence of L photon detections

{dj}L and relative phases {∆j}L between the LO and input at each adaptive step.

The receiver uses the final estimate θdisc for the input state to infer ∆j = θj − θdisc
and arranges the measurement data into D based on {dj,∆j} such that the rows

of D represent the sampled photon number distributions P (n|∆j = kπ/2) with k ∈

{0, 1, 2, 3} for QPSK states. The receiver must utilize a particular estimator in order

to extract the noise information from D after N state discrimination measurements.

A Bayesian estimator (see Sec. 4.1.2) which uses the full photon counting likelihood

functions will have small uncertainty, but is computationally expensive to calculate.

Furthermore, the Sin-Cos estimator described in Sec. 4.1.2 has large uncertainty and

is not easily scalable to two (or more) dimensions for multi-parameter tracking.

4.2.2 Neural Network Architecture and Algorithm

We construct and train a neural network to act as a versatile estimator of the input

phase and amplitude noise to solve the issue of computational cost while achieving

small uncertainty. One benefit of utilizing a NN is that it is far more amenable

to a practical implementation in devices such as FPGAs compared to a Bayesian

estimator. Figure 4.11 shows the NN architecture which has ten layers (eight hidden)

where each layer has a Leaky ReLU activation function [198] except the output layer,

which has a sigmoid activation. The input to the NN is the detection matrix D first

normalized across each row, and then arranged into a 1D vector (Di,j → Di(m+1)+j)

along with the LO intensity for the previous N measurements. We denote the time

dependent input intensity of the QPSK states as A(τ) = |α|2(τ) and the LO intensity

as B(τ) = |β|2(τ). Here τ represents time discretized into steps of ∆T , where 1/∆T

is the repetition rate, which we set 1/∆T = 100 MHz (∆T = 10 ns) in all simulations

to represent an achievable near-term communication bandwidth for integrated non-

Gaussian receivers [199]. The outputs of the NN are raw estimates ÂNN and φ̂NN for

the input intensity A(τ) and phase offset φ(τ) for the previous N state discrimination

measurements, respectively.
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Figure 4.11: Neural network architecture where the state discrimination data (detection
matrix D) is fed into the network which outputs raw estimates (φ̂NN , ÂNN ) for the phase
φ(t) and amplitude A(t) noise. The network is made of ten layers (eight hidden) each with a
Leaky ReLU activation except for the output later, which has a sigmoid activation. Figure
adapted from: Physical Review Research 3, 013200 (2021).

The NN is trained using 5× 105 training data points, which are obtained using

Monte Carlo simulations. Each training data point consists of N state discrimination

measurements where input intensity A and LO intensity B are constant for the N

measurements and sampled from a uniform distribution U(0.05, 25). The phase offset

for the N measurements is also constant and sampled from a zero-mean Gaussian

distribution with variance σ2 = 0.25. We also randomly sample the number of state

discrimination measurements N used for each point from a uniform distribution

U(2, 200). This random sampling allows a single NN to be used across a wide range

of channel noise parameters as well as different values of N . The target values yi,j

(i.e. what we want the NN to output) in the training are the actual input intensity

(yi,1) and phase offset (yi,2), and we use the RMSprop optimizer [200] with a weighted

mean-square-error cost function: C =
∑

i,j wi(yi,j − ŷi,j)2. The weight wi of the ith

sample is given by wi = e−(Ai−Bi)2/2 such that samples where the LO intensity is close

to the input intensity are emphasized while building robustness to large amplitude

fluctuations.

We use the NN as a two dimensional estimator of channel phase and amplitude

noise. As a model for phase noise, we simulate a Gaussian random walk in phase.
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A single step of a random walk is given by a sample from a zero-mean Gaussian

distribution with variance σ2
1 = 2π∆ν∆T such that:

φ(τ + ∆T ) = φ(τ) +N (0, σ2
1), (4.13)

where ∆ν is the phase noise bandwidth originating from laser phase noise [58,162,165],

or other noise sources [172]. We simulate noise in the input intensity A(τ) and use an

Ornstein-Uhlenbeck (OU) process as a model for amplitude noise [201,202], which is

described by the stochastic differential equation:

A(τ + ∆T )−A(τ) = γ
[
〈n̂〉0 −A(τ)

]
∆T +N (0,Σ2∆T ), (4.14)

where γ is the amplitude noise bandwidth and Σ2 controls the strength of the random

fluctuations. This noise model has a constant long-time (τ →∞) variance of Σ2
∞ =

Σ2/2γ as opposed to the phase noise, where the variance scales linearly with τ . The

parameter 〈n̂〉0 is the mean value of the random walks in intensity and we also use

this as the initial value such that 〈n̂〉0 = 〈A(τ)〉 = A(0), where the average is taken

across an ensemble of walks.

Implementing a Kalman filter for the phase and amplitude estimates improves

the performance of the NN-based tracking method. This Kalman filter takes the

raw estimates (ÂNN , φ̂NN) from the NN and outputs the final amplitude Â(τ) and

phase φ̂ estimates. Due to the finite number of experiments N per estimation, the

NN estimator outputs have relatively large variance. The Kalman filter allows for

incorporating this uncertainty along with the dynamics of the noise in an optimal

way through the Kalman gain [203]. Algorithm 1 shows the full parameter tracking

method based on the NN estimator with Kalman filtering. Initially, the LO power

B(0) is set to the average input mean photon number 〈n̂〉0. The receiver then performs

state discrimination measurements and adds the measurement data to the detection

matrix D after each individual measurement. After completing N = 10 experiments,

the receiver evaluates the NN to obtain the raw estimates φ̂NN and ÂNN for the

phase offset and input power. These raw estimates are then passed to the Kalman

filter where the filter incorporates the dynamics of the noise and returns updated,
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Algorithm 1 NN Parameter Tracking Algorithm

1: Define: x = 1− γ∆T

2: function KalmanPred(σ2
φ, B(τ), σ2

A)

3: ŷφ ← 0

4: σ̂2
φ ← σ2

φ +Nσ2
1

5: ŷA ← xNB(τ) + 〈n̂〉0(1− xN )

6: σ̂2
A ← x2Nσ2

A + Σ2∆T (x2N − 1)/(x2 − 1)

7: return ŷφ, σ̂
2
φ, ŷA, σ̂

2
A

8: end function

9:

10: function KalmanFilter(B(τ), ÂNN , φ̂NN )

11: ŷφ, σ̂
2
φ, ŷA, σ̂

2
A ← KalmanPred(σ2

φ, BN , σ2
A)

12: Kφ ← σ̂2
φ/(σ̂

2
φ + σ2

φ,NN ) . Phase Kalman gain

13: φ̂← Kφφ̂NN + (1−Kφ)ŷφ . Phase estimate

14: σ2
φ ← (1−Kφ)σ̂2

φ . Phase variance

15: KA ← σ̂2
A/(σ̂

2
A + σ2

A,NN ) . Amp. Kalman gain

16: Â ← KAÂNN + (1−KA)ŷA . Amp. estimate

17: σ2
A ← (1−KA)σ̂2

A . Amp. variance

18: return φ̂, Â(τ)

19: end function

1: Initial: B(0)← 〈n̂〉0, δ(0)← 0

2: τ ← 0 . Time in increments of symbol time

3: n← 0 . Number of measurements performed

4: loop

5: Do Single state discrimination measurement

6: {dj}L, {∆j}L ← Single measurement data

7: Add {dj}L, {∆j}L to detection matrix D

8: τ ← τ + ∆T

9: n← n+ 1

10: if n = N then . Update LO

11: ÂNN , φ̂NN ← Evaluate NN

12: Reset D to zeros

13: φ̂, Â(τ)← KalmanFilter(B(τ), ÂNN , φ̂NN )

14: B(τ)← Â(τ) . Correct LO intensity

15: δ(τ)← δ(τ) + φ̂ . Correct LO phase

16: n← 0 . Reset measurement counter

17: else . Don’t update LO

18: B(τ)← B(τ −∆T )

19: δ(τ)← δ(τ −∆T )

20: end if

21: end loop

filtered estimates φ̂, Â(τ) of the phase and amplitude noise. Finally, these filtered

estimates are used to correct the state discrimination measurement by adjusting the

LO power to B(τ) = Â(τ), and the LO phase by δ(τ) = δ(τ − ∆T ) + φ̂ such that

arg(β) = θj + δ(τ). We obtain the prediction equations in the KalmanPred(·)

function by first propagating the stochastic differential equations for the phase (Eq.

(4.13)) and amplitude (Eq. (4.14)) noise forward in time by N time steps and then

taking the mean and variance.

4.2.3 Simulation Results

We benchmark the performance of the NN-based tracking method against an approach

based on a Bayesian estimator, which has a more complex implementation than the

NN estimator. Figure 4.12(a) shows the simulated probability of error for an adaptive

non-Gaussian receiver implementing the NN-based noise tracking method as a function
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Figure 4.12: (a) Error probability for the adaptive non-Gaussian receiver in the presence
of channel noise. The green points show an uncorrected measurement while the blue and
orange points show the results for a NN-based and Bayesian-based tracking method. The
black points show the error for a perfectly corrected non-Gaussian measurement and the gray
points show the error for a heterodyne receiver with perfect correction. (b,c) Waveforms of
the applied (b) phase noise at ∆ν = 5 kHz and (c) amplitude noise with γ = 25 kHz and
Σ2
∞ = 1.5. Figure adapted from: Physical Review Research 3, 013200 (2021).

of time with 〈n̂〉0 = 5.0 and N = 10. We simulate 1000 different realizations of phase

noise (b) with ∆ν = 5 kHz, and amplitude noise (c) with γ = 25 kHz and Σ2
∞ = 1.5.

The blue and orange points show the results of the noise tracking using methods based

on a NN and Bayesian estimator, respectively. The black points show the results if the

receiver implements perfect noise tracking, which refers to the receiver having complete

knowledge of the noise such that B(τ) = A(τ) and δ(τ) = φ(τ). The green points

show the error probability when the receiver does not implement any noise tracking

and the gray points show the performance of an ideal heterodyne with perfect phase

tracking, which serves as the equivalent QNL in the presence of noise. The dashed

black and gray lines show the error probability for the heterodyne and non-Gaussian

receivers in the absence of noise. We find that the NN-based method achieves the

same performance as a more complex Bayesian estimator, and both methods can

maintain an error probability below the limit of ideal heterodyne detection.

We study the performance of the NN-based method for parameter tracking with

different phase and amplitude noise parameters to demonstrate the versatility of this

99



Chapter 4. Noise Tracking for Non-Gaussian Receivers

Perfect Correction

Heterodyne

Phase Noise BW Δν (Hz)
103 104

100

10-1

Er
ro

r P
ro

ba
bi

lit
y

Perfect Correction

No Correction

Heterodyne

100

10-1
Er

ro
r P

ro
ba

bi
lit

y

Perfect Correction

Heterodyne

10-2

10-1

10-3

Perfect Correction

Heterodyne

Phase Noise BW Δν (Hz)
103 104

10-2

10-1

10-3

Perfect Correction

Heterodyne

Perfect Correction

Heterodyne

103 104

10-3

10-1

Phase Noise BW Δν (Hz)

〈n〉0 = 2.0

NN
Bayes

NN
Bayes

NN
Bayes

NN
Bayes

NN
Bayes

NN
Bayes

(a) (b) (c)

(d) (e) (f)

10-5

10-3

10-1

10-5

〈n〉0 = 5.0 〈n〉0 = 10.0

No Correction

No Correction

No Correction

No Correction

No Correction

Perfect Correction from (a) Perfect Correction from (b) Perfect Correction from (c)

103 104 103 104 103 104

Figure 4.13: Results for the error probability as a function of the phase noise bandwidth ∆ν
without (a-c) and with (d-f) amplitude noise at γ = 25 kHz, Σ2

∞ =0.25, 1.5, and 6.0 for an
average input power of 〈n̂〉0 = 2.0, 5.0, and 10.0, respectively. The blue and orange lines
show the error for the NN and Bayesian based tracking methods. The gray dashed lines
show a perfectly corrected heterodyne receiver and the purple dashed lines show a perfectly
corrected non-Gaussian measurement. Figure adapted from: Physical Review Research 3,
013200 (2021).

method. We note that for all simulations, we fix the number of measurements per

estimation to N = 10. Figure 4.13 shows the performance of the NN-based tracking

method (solid blue) compared to noise tracking method based on a Bayesian estimator

(solid orange) as a function of phase noise bandwidth ∆ν for an average input energy of

〈n̂〉0 = 2.0, 5.0, and 10.0. Panels (a)-(c) show the results in the absence of amplitude

noise (Σ2
∞ = 0, γ = 0), corresponding to the one dimensional problem of phase

tracking described in Ch. 4.1. Panels (d)-(f) show the performance in the presence

of both phase noise and amplitude noise at γ=25 kHz with Σ2
∞=0.25, 1.5, and 6.0,

respectively. In all panels, the dashed lines show the results for an ideal heterodyne

receiver with perfect tracking (gray) and a non-Gaussian receiver implementing perfect

tracking (purple). We find that even in the presence of severe amplitude noise (lower

panels), the NN-based parameter tracking method maintains performance equivalent

to the Bayesian approach. The NN-based method enables sub-QNL performance up
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to a phase noise bandwidth of ∆ν ≈10 kHz for all input powers studied. In some

situations (b,c,e,f), the NN-based method appears to slightly outperform the Bayesian

approach. This result is potentially due to the fact that a Bayesian estimator may not

be the most precise estimator given the limited number of samples N per estimate, as

opposed to the asymptotic optimal behavior [204]. Furthermore, the relative weight

of the error in phase estimates and error in amplitude estimates can be customized in

the training process of the NN estimator. This freedom may allow for the NN-based

method to better minimize the overall error probability.

We also investigate the effect of different amplitude noise bandwidths γ with fixed

strength Σ2
∞ in the presence of constant phase noise with bandwidth ∆ν. Figure

4.14(a-c) shows the probability of error as a function of the amplitude noise γ for

a fixed phase noise level ∆ν=5 kHz for 〈n̂〉0=2.0, 5.0, and 10.0, respectively. The

blue and orange lines shows the results for the NN-based and Bayesian-based tracking

method, respectively, both with (∆ν=5 kHz) and without (∆ν = 0) phase noise. We

find that the NN-based method again performs similar to the Bayesian method across

a wide range of γ and that increasing γ has a less severe effect of the overall error

compared to increasing the phase noise bandwidth.

Figure 4.14(a) shows that both the NN and Bayesian based methods achieve

error rates below that of a perfectly corrected measurement for ∆ν = 0. At first

glance, this should not be possible since perfect correction corresponds to the receiver
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and 10.0, respectively. Figure adapted from: Physical Review Research 3, 013200 (2021).
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having complete knowledge of the time dependent noise. However, we find that this

behavior is due to an underlying bias in the amplitude estimates when 〈n̂〉0 = 2.0.

Both the NN and Bayesian estimators are biased towards estimates which are larger

than the actual input energy, causing the corrected LO power to be biased as well

such that B(τ) > A(τ). This bias results in the corrected receiver incidentally

approximating an optimized measurement strategy for state discrimination similar

to the “flat optimization” strategy described in Sec. 3.2. As discussed in Sec. 3.2,

optimized measurements for state discrimination can achieve error rates which are

below that of a nulling strategy (B(τ) = A(τ)), which corresponds to perfect correction

here. Thus, the overall effect of the estimator bias is that both parameter tracking

methods can actually perform slightly better than a perfectly corrected receiver,

albeit by accident. Note that understanding how to implement parameter tracking

with optimized measurements is an interesting topic of further study due to their

applications in the single-photon regime.

4.2.4 Strategy Comparison

While previously we fixed N = 10 for the simulations to demonstrate the versatility

and robustness of this approach, an optimal value for N can be found for specific

channel noise levels as in Sec. 4.1.5. If the channel noise parameters are well known,

then the optimal value of N minimizes the overall error probability, which depends

on the total variance σ2
tot of the estimates. This variance is comprised of the intrinsic

variance of the estimator (∆φ̂)2 and the noise variance, both of which are dependent

on the value of N . Increasing the value of N will reduce the estimator variance due

to the statistical 1/N scaling while the noise variance will increase linearly with N .

On the other hand, decreasing N causes the intrinsic estimator variance to dominate

the total variance. While the Kalman filter mainly takes care of finding the optimal

balance between these two uncertainties, there is still a need for selecting an optimal

value of N which achieves the best performance.
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Figure 4.15: Error probability at 〈n̂〉 = 5.0 for small (blue), moderate (orange), and severe
(yellow) channel noise as a function of N . The black points each show the optimal values of
N and the respective error probability. The inset shows the error for each curve normalized
by the minimum value to easily compare the optimal N for each noise level. Figure adapted
from: Physical Review Research 3, 013200 (2021).

Figure 4.15 shows the error probability for a 〈n̂〉0 = 5.0 strategy as a function of

N for three different noise regimes. The blue, orange, and yellow lines show the error

for small (∆ν = 0.5 kHz, γ = 2.5 kHz, Σ2
∞ = 0.1), moderate (∆ν = 5 kHz, γ = 25

kHz, Σ2
∞ = 0.5), and severe (∆ν = 50 kHz, γ = 250 kHz, Σ2

∞ = 1.) channel noise,

respectively. The optimal number of experiments per estimation for low levels of noise

is N ≈ 40, while for high noise levels the optimal value is N ≈ 3. The inset shows the

error probability normalized by the minimum error for each noise level. We find that

N = 10 is optimal for moderate noise levels, and the error at N = 10 for the other

noise regimes is only slightly higher than the respective minima. This finding shows

that while there is optimal value of N for a specific level of channel noise, a different

value of N may be ideal for robust and versatile implementations.

4.2.5 Discussion

Neural networks can implement highly accurate parameter estimation while being

far more computationally efficient compared to a Bayesian estimator. Here, the

neural network performs tracking of phase and amplitude channel noise but can
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easily scale to higher dimensions. The neural network based algorithm maintains

sub-QNL error rates across a wide range of input powers, noise strengths and noise

bandwidths. The network can even be tailored to devices such as FPGAs by tailoring

the architecture to allow for a high degree of parallelization, and using non-linear

activation functions with simple implementations. Furthermore, this NN-based method

can potentially be applied to optimized state discrimination strategies in the single-

photon regime to facilitate quantum communication protocols, which rely on accurate

state discrimination with low input powers.

4.3 Conclusion

In this chapter, we experimentally demonstrated a phase tracking algorithm for

adaptive non-Gaussian receivers based on a simple and efficiently calculable estimator.

We implemented this phase tracking method for different input powers and noise

strengths and investigated the trade-off between estimation accuracy and bandwidth as

a function of the resources used for estimation [85]. As an extension of phase tracking

to multi-dimensional channel noise, we also developed an algorithm for simultaneous

tracking of phase and amplitude noise based on a neural network. Through simulations

we show that this method based on a neural network can potentially enable non-

Gaussian receivers to operate below the QNL across a wide range of channel noise

parameters. This algorithm can in principle be implemented at very high bandwidth

due to its computational efficiency compared to a Bayesian estimator, and can easily

scale to even higher dimensional estimation [86]. Efficient and accurate channel noise

tracking is a critical barrier to practical implementations of adaptive photon counting

measurements and the techniques explored in this chapter will potentially enable

transitioning these technologies out of the lab.
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Phase Estimation of Coherent

States

5.1 Introduction

Estimation of a single parameter, in particular that of optical phase estimation, is a

central problem in physics and metrology [12, 205,206]. In its simplest form, a field of

light (probe state) first acquires a phase shift φ through interaction with a system.

A measurement of the light then results in an estimate φ̂ for the unknown phase φ.

The goal of any measurement of course, is to achieve the smallest possible uncertainty

(∆φ̂)2 in estimation, and any measurement will fundamentally only be able to extract

as much information as the probe state can possibly carry [1,4,7,10,207–210]. The

quantum Fisher information (QFI) quantifies how much information a given probe

state can contain [6,7,211,212] and is a useful tool for understanding the capabilities of

different states of light. The QFI also bounds the attainable uncertainty of estimation

through the Cramer-Rao lower bound (CRLB) [6]: (∆φ)2 ≥ 1/(M ×QFI), where M is

the number of repetitions of the experiment. The CRLB is proportional to 1/N when

using coherent states of light, where N is the amount of energy contained in the probe

state [5]. This limit on the uncertainty when using coherent states is also referred to as
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the standard quantum limit (SQL). On the other hand, states of light with quantum

correlations can allow for the CRLB to scale as 1/N2, i.e. Heisenberg scaling, and

quantum states of light can be used to achieve sub-SQL uncertainties [47,213–219].

Phase estimation beyond the SQL using light with quantum correlations has been

investigated [177, 178, 220–223] for sensing small phase deviations from a known

phase [213,224–229], with repeated sampling (M > 1) [230,231], and with feedback

measurements [177,178,220,221,224].

Here, we focus on using coherent states of light as opposed to states with quantum

correlations or entangled states. Phase estimation of coherent states is essential

for mechanical cooling of oscillators [232–234], preparation of spin squeezed atomic

states [235], as well as force and waveform detection [47, 236]. Furthermore, we study

“single-shot” phase estimation where M = 1, a challenging situation which allows

for exploring how to extract the most amount of information possible in a single

measurement. Much attention has been paid to adaptive homodyne measurements for

single-shot phase estimation of coherent states, which have been shown in theory to

asymptotically approach the CRLB [78,237–241]. Experimentally, adaptive homodyne

measurements [242] can outperform an equivalent (adjusted for efficiency) heterodyne

receiver, whose uncertainty is bounded by twice the CRLB for coherent states. On

the other hand, photon counting based measurements have shown that non-Gaussian

approaches have the capability to surpass the limits of heterodyne detection [228,243].

However, the limits of adaptive non-Gaussian measurements for single-shot phase

estimation of coherent states is an open question.

In this chapter, we develop and implement adaptive non-Gaussian strategies for

estimation of an unknown phase of a coherent state. These strategies are based on

optimized displacement operations, photon counting and feedback. We find that

real-time optimization of the displacement operation conditioned on the measurement

record allows for surpassing the limit of ideal heterodyne detection without correcting

for any inefficiencies [87]. We develop a Bayesian updating algorithm and optimization

strategy based on a Gaussian approximation which can be experimentally implemented
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at relatively high bandwidth. We study two different optimization strategies and find

that while on the surface the two strategies seem very different, they achieve almost

identical results and can potentially outperform the best known adaptive homodyne

measurement [88].

5.2 Phase Estimation Strategy

The strategy for phase estimation of coherent states of light relies on displacement

operations, photon counting, feedback, and real-time optimization of the displacements

conditioned on the measurement record [87]. Figure 5.1 shows a schematic of the

phase estimation strategy, which follows a recursive Bayesian approach consisting

of L adaptive steps. At the beginning of a single adaptive step j, the strategy first

obtains a value βj for the displacement operation D̂(βj). A local oscillator (LO) then

displaces the input state |αeiφ0〉 with unknown phase φ0 in phase space to the state

D̂(βj)|αeiφ0〉 = |αeiφ − βj〉, which is detected by a single photon detector (SPD) with

Figure 5.1: Diagram of the adaptive strategy for phase estimation of coherent states with
real-time optimization. In each adaptive step, the input state |αeiφ〉 is displaced D̂(βopt)
by the optimized LO field and detected by a single photon detector (SPD) with photon
number resolution. The strategy calculates the posterior distribution for the adaptive step
conditioned on the detection result and βopt. The LO is then re-optimized for the next
adaptive step given the updated phase distribution. Figure adapted from: Physical Review
Letters 125, 120505 (2020).
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PNR(m). The strategy updates the posterior distribution P (φ|dj, βj) for the phase

using Bayes rule given a particular measurement outcome dj and displacement βj:

P (φ|dj, βj) =
1

P (dj)
L(dj|φ, βj)P (φ). (5.1)

Here L(dj|φ, βj) is the likelihood function, P (φ) is the prior probability distribution,

and P (dj) =
∫
L(dj|φ, βj)P (φ)dφ is the total probability of detecting dj photons.

The posterior distribution P (φ|dj, βj) from step j then becomes the prior probability

distribution P (φ) for the next adaptive step j + 1.

The strategy obtains the displacement value βj at the beginning each adaptive step

based on the current prior probability distribution P (φ). If the displacement D̂(βj) is

set to displace the most likely state to the vacuum state, as in state discrimination

measurement strategies, then the estimation variance cannot reach below the limit of

ideal heterodyne detection [87,88]. Instead, the receiver optimizes the displacement

βj at the beginning of every adaptive step given P (φ), which yields an optimal

value βopt given the entire detection history {d1, ..., dj−1} up to the current adaptive

step j. Optimization of the displacement operation requires a particular objective

function, and we implement strategies based on two different functions [87,88]. One

possible objective function is the average sharpness of the posterior distribution, which

has been explored in the context of adaptive Gaussian measurements [223,244] and

interferometry [177,224]. The average sharpness 〈S(β,m)〉 is given by:

〈S(β,m)〉 =
m∑
n=0

P (n)

∣∣∣∣∣
2π∫

0

eiφP (φ|n, β)

∣∣∣∣∣ =
m∑
n=0

∣∣∣∣∣
2π∫

0

eiφL(n|φ, β)P (φ)

∣∣∣∣∣, (5.2)

where the average is taken over all possible detection results for adaptive step j and the

second equality is obtained by using Bayes theorem. If the sharpness of a distribution

is large, then the spread is small and vice versa, and optimization yields a displacement

value βopt which maximizes 〈S(β,m)〉.

The second objective function we study is the mutual information [241,245,246]:

I(β,m) =
m∑
n=0

2π∫
0

P (φ, n|β)log2

(
P (φ, n|β)

P (n)P (φ)

)
dφ, (5.3)
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where P (φ, n|β) = P (φ|n, β)P (n) = L(n|φ, β)P (φ) is the joint probability distribution

for φ and n. The mutual information can also be written in terms of the Kullback-

Liebler divergence, or relative entropy [247,248]:

I(β,m) =
m∑
n=0

P (n)DKL(P (φ|n, β)||P (φ)) (5.4)

=

2π∫
0

P (φ)DKL(L(n|φ, β)||P (n))dφ, (5.5)

where the Kullback-Liebler divergence DKL(P (x)||Q(x)) between two distributions

P (x) and Q(x) is given by:

DKL(P (x)||Q(x)) =

∫
P (x)log2

(
P (x)

Q(x)

)
dx. (5.6)

Therefore, maximization of the mutual information will yield an optimal displacement

βopt which maximizes the average relative entropy between the posterior and prior

distributions, averaged over possible photon detections.

We optimize the same objective function each adaptive step such that there are two

different measurement strategies, one which maximizes the sharpness and one which

maximizes the mutual information. Application of this recursive Bayesian updating

and optimization over all L adaptive steps for a single input pulse results in a history

of detections {dj}L and optimal displacement values {βopt}L. We calculate the final

phase estimate given the measurement data as [6]:

φ̂ = arg

( 2π∫
0

eiφP (φ|{dj}L, {βopt}L)dφ

)
, (5.7)

where P (φ|{dj}L, {βopt}L) is the reconstructed posterior distribution given the entire

measurement record. Figure 5.2 shows a flowchart of the adaptive phase estimation

strategy with optimized displacement operations, which starts with an initially

uniform prior probability distribution for the input phase. The strategy uses the

prior probability distribution for each adaptive step to optimize the displacement

operation and then calculates the posterior probability distribution given a particular
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φ
Estimate

Optimized non-Gaussian measurement

Figure 5.2: Flowchart of the adaptive measurement strategy based on optimized displacement
operations and feedback. The belief for the input phase is maintained as a probability
distribution and updated according to Bayes rule. The posterior probability distribution for
a given adaptive step becomes the prior probability distribution for the next adaptive step.

measurement result. The posterior distribution then becomes the prior probability

distribution for the next adaptive step and the strategy uses this new, updated prior

distribution to re-optimize the displacement in a recursive Bayesian approach.

This adaptive measurement scheme is repeated many (N) times, each with a

random initial relative phase between the input and LO. We then calculate the

variance V ar[φ̂] of the distribution of the N final phase estimates via the Holevo

variance for cyclic variables [6, 240,249], which is bounded by the CRLB:

V ar[φ̂] =
1

|〈eiφ̂〉|2
− 1 ≥ 1

4|α|2
, (5.8)

where |〈eiφ̂〉| = |
∑N

k=1 e
iφ̂k |/N corresponds to the sharpness of the distribution of final

phase estimates and 4|α|2 is the QFI for coherent states [2, 6, 7]. This Holevo variance

characterizes the estimation uncertainty for cyclic variables, such as the phase, as

opposed to the typical mean-squared error for variables which are not cyclic. However,

the mean-squared error and Holevo variance coincide in the limit that the distribution

of final phase estimates has small uncertainty [6, 9].

Figure 5.3 shows the theoretical expectations of the optimized non-Gaussian

strategy for phase estimation with L=30 adaptive steps, PNR(3), ideal detection

efficiency η = 1.0, and imperfect visibility ξ = 0.997. The orange and blue solid lines

show the results for strategies which optimize the mutual information and sharpness,
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Figure 5.3: Expected performance of the optimized strategies for phase estimation of coherent
states. The orange and blue lines show the results for strategies which optimize the mutual
information and sharpness, respectively, every adaptive step. The solid lines and shaded
regions show the average and standard deviation for five sets of 103 independent Monte Carlo
samples. The gray line shows a non-optimized strategy and the green line shows the variance
of the “Mark II” adaptive homodyne strategy from Ref. [78]. The black solid and dashed
lines show the CRLB for coherent states and limit of an ideal heterodyne measurement,
respectively. The points and error bars at |α|2 = 103 show both strategies for L = 200 with
PNR(3) and L = 30 with PNR(12) for comparison. Figure adapted from: Physical Review
Letters 125, 120505 (2020).

respectively. The shaded regions correspond to one standard deviation across five

data sets of N = 103 individual experiments each. The black solid line shows the

CRLB for coherent states (1/4|α|2) and the black dashed line shows the lower bound

on an ideal heterodyne measurement (1/CFIhet), where CFIhet = 2|α|2 is the classical

Fisher information for a heterodyne receiver. The green solid line shows the expected

results for the best known adaptive homodyne strategy termed “Mark II” proposed

in Refs. [78, 240] and the gray line shows the result for a non-optimized strategy.

We find that both optimization strategies perform almost equivalently except for

very large mean photon numbers and reach a minimum variance of ≈ 1.1 times the

CRLB at |α|2 ≈ 100. Furthermore, both strategies can achieve the same performance

as the “Mark II” measurement for |α|2 / 25. The increase in the variance at high

input powers is mainly a result of the limited number of adaptive steps and PNR.

Increasing either the PNR or the number of adaptive steps allows the measurement
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to reach performance very close to the CRLB [87, 88]. The blue and orange points

show the variance of the sharpness and mutual information strategies for L=200 with

PNR(3), respectively, and the green and red points show both strategies for L=30

with PNR(12). The strategy maximizing the mutual information with L=200 and

PNR(3) achieves the smallest variance of 1.003± 0.03 times the CRLB. Intuitively, if

the mean photon number per adaptive step (|α|2/L) is much larger than the photon

number resolution m, then the strategy will not be able to achieve small variances.

If the ratio |α|2/(mL) increases, the measurements ability to fully resolve the state

decreases, leading to an increase in the measured variance. However, this effect at

larger values of |α|2 can be avoided by increasing either L or the PNR [88].

5.3 Experimental Implementation & Real-Time

Optimization Algorithm

We use the interferometric setup described in Appendix A.2 to experimentally

implement single-shot phase estimation of optical coherent states. Figure 5.4 shows a

schematic of the experimental setup. The main difference from previous experiments

is an upgrade in the field-programmable gate array (FPGA) to an Altera Cyclone

IV (EP4CE55F23C8N), which has approximately an order of magnitude more logical

elements and memory blocks compared to previously used FPGAs. We also now can

continuously control both the LO phase and amplitude using an 8-bit digital-to-analog

converter (DAC) for each connected to the FPGA. A Helium-Neon laser and pulsed

acousto-optic modulator (AOM) generate ≈ 600 µs optical pulses and an attenuator

(Att.) and phase modulator (PM) prepare the input coherent state with mean photon

number |α|2. For experimental convenience, instead of randomly choosing the initial

input phase φ0 with a fixed initial phase of the LO θ0 = 0, we equivalently fix φ0 = π

and start the LO at a random phase θ0 such that the initial relative phase φ0 − θ0

is still random. An amplitude modulator (AM) and second PM prepare the LO

field used to implement the displacement D̂(βopt) via interference on a 99/1 beam
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Figure 5.4: Experimental setup for phase estimation of coherent states. Compared to
previous experimental setups, both the phase and amplitude of the LO field used for the
displacement operation are fully controllable using digital-to-analog converters (DACs). An
upgraded field-programmable gate array (FPGA) implements the phase estimation algorithm
including the the Bayesian updating as well as the approximate optimization. Figure adapted
from: Physical Review Letters 125, 120505 (2020).

splitter [79]. A single photon detector (SPD) then detects the displaced state with

photon number resolution (See Appendix B.1 for details). The FPGA implements

the Bayesian updating procedure (≈ 500 ns) as well as the real-time optimization

(≈ 500 ns) of the displacement every adaptive step. Our implementation uses L = 30

adaptive steps of ≈ 20 µs each with PNR(3) and achieves an overall system efficiency

of η = 0.70, interference visibility of ξ = 0.997, and dark counts of ν = 10−3 per

experiment.

The phase estimation measurement relies on obtaining an optimal displacement

value βopt conditioned on the detection history. We denote the full prior probability

distribution for adaptive step j as P (j)(φ) and the posterior distribution given detection

dj and βopt as P
(j)
post(φ) = P (φ|dj, βopt) from Eq. (5.1). Optimization of the sharpness

〈S(β,m)〉 in Eq. (5.2) or mutual information I(β,m) in Eq. (5.5) given P (j)(φ) is

simple to perform in MATLAB. However, the experimental implementation requires

very high-speed calculation of βopt on the order of hundreds of nanoseconds. To this end,

we develop a real-time approximate optimization strategy for quickly obtaining βopt at

each adaptive step j in order to experimentally implement the strategy in the FPGA.

We decompose the phase of the LO θj = arg(βj) into the current maximum a posteriori
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probability (MAP) estimate φ̂MAP = argmax
(
P

(j−1)
post (φ)

)
plus an optimized offset ∆opt

such that arg(βopt) = θopt = φ̂MAP + ∆opt. The phase range φ = [0, 2π] is discretized

into 256 phase points and we use 10 bits of precision to represent each probability

P (j)(φ) in the FPGA with fixed point notation, i.e. the bit-string {bi[0], bi[1], ..., bi[9]}

denotes a single probability as P (j)(φi) =
∑9

k=0 2−bi[k] with b[k] ∈ {0, 1}.

Figure 5.5 shows a flowchart of the algorithm for phase estimation implemented by

the FPGA. Parts (I-III) show how the algorithm splits finding the optimal magnitude

|β|opt and offset ∆opt into two cases depending on the adaptive step j:

• Case I (j≤8) - The strategy obtains the optimal magnitude |β|opt and offset ∆opt

from a pre-calculated look-up-table (LUT) whose input is the entire detection

record {d1, d2, ..., dj−1} up to adaptive step j. We construct this LUT offline by

simulating all possible detection histories and maximizing either the sharpness

or mutual information using the full prior probability distribution P (j)(φ) to

obtain the exactly optimal values for |β|opt and ∆opt.

• Case I (j≥9) - The strategy approximates the full prior distribution P (j)(φ) for

adaptive step j as a skewed Gaussian distribution for the purposes of efficient

real-time calculation of approximately optimal values for |β|opt and ∆opt. The

FPGA calculates the variance σ2 and skewness µ3 of P (j)(φ) (Step II) and

inputs the variance σ2 to a second LUT, which outputs an approximately

optimal LO magnitude |β|opt and value for the phase offset δ (Step III). We

pre-calculate this second LUT offline by approximating the prior distribution

as a zero-mean Gaussian distribution with variance σ2 and calculating |β|opt
and δ under that approximation (see Sec. 5.5). The algorithm obtains the

approximately optimal phase offset ∆opt = f(µ3) × δ using the customized

function f(µ3) = sign(µ3)/(1 + |µ3|).

We obtain the function f(µ3) empirically based on Monte Carlo simulations by

comparing the optimal phase offsets obtained using the Gaussian approximation and

the full prior probability distribution. This Gaussian approximation is justified by
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Figure 5.5: Flowchart of the phase estimation algorithm based on real-time optimization
of the displacement operation. At the beginning of each adaptive step j, the algorithm
obtains optimal LO values ∆opt, |β|opt either exactly if j ≤ 8 or approximately if j ≥ 9.
The optimized displacement D̂(|β|opteiθopt) is then implemented and the detected number of
photons dj is used to calculate the posterior distribution given the measurement outcome.
Figure adapted from: Physical Review Letters 125, 120505 (2020).

observing that beyond j ≈ 9, P (j)(φ) is well described by its first three moments: the

mean (≈ φ̂MAP ), variance σ2, and skewness µ3, and that the support over higher order

moments is negligible. Steps IV and V are the implementation of the displacement

D̂(βopt) with βopt = |β|optei(φ̂MAP+∆opt) followed by detection of dj photons.

Steps VI through IX implement the Bayesian updating of the distribution for the

unknown phase. Step VI reconstructs the complete likelihood function L(dj|φ, βopt)

given a particular detection dj , displacement magnitude |β|opt, and displacement phase

θopt. Storing the likelihood function L(dj|φ, βopt) for every possible displacement phase

and magnitude for each detection in the FPGA memory would require too many

resources. Instead, we store a basic piece of the likelihood functions for photon counting

from which the algorithm reconstructs the full likelihood function L(dj|φ, βopt). This

reconstruction procedure is described in detail in Appendix B.4 and is based on the

symmetries and circular properties of the likelihood functions for photon counting.
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Step VII (green box) implements the Bayesian updating for adaptive step j where

the FPGA multiplies the reconstructed likelihood function L(dj|φ, βopt) by the prior

probability distribution P (j)(φ) to obtain the updated but un-normalized posterior

distribution P
(j)
post(φ). Step VIII updates the phase estimate φ̂MAP as the phase with

maximum posterior probability, which is done using P
(j)
post(φ) since the MAP estimate

is not a function of the normalization factor. Step VIII also implements a quasi-

normalization of P
(j)
post(φ) in order to maintain enough precision for each probability

in the distribution (See Appendix B.4 for details). Lastly, the posterior distribution

P
(j)
post(φ) for step j then becomes the prior distribution P (j+1)(φ) for step j + 1.

5.4 Results for Phase Estimation of Coherent

States

We experimentally implement the measurement strategy for phase estimation of

coherent states based on real-time optimization of the displacement operation for both

objective functions with L = 30 adaptive steps and PNR(3). Figure 5.6 shows the

experimentally measured variance calculated with Eq. (5.8) multiplied by the QFI for

coherent states of 4|α|2. The blue and orange points show the experimental variance for

strategies which maximize the sharpness 〈S(β,m)〉 and mutual information I(β,m),

respectively. The points and error bars correspond to the average and standard

deviation across five sets of N = 104 independent experiments with random initial

relative phase φ0 − θ0 between the input and LO. We note that the experimental data

is not corrected by the detection efficiency of our system. The solid purple and green

lines show the expected variance obtained through Monte Carlo simulations of the

phase estimation algorithm described above and including all experimental parameters.

The red and black solid lines show the CRLB for ideal detection efficiency (η = 1.0)

and our efficiency (η = 0.70), respectively. The red and black dashed lines show

the ultimate limit of a heterodyne receiver: 1/CFIhet. We find that both strategies

not only have almost the same performance, but both surpass the limit of an ideal
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Figure 5.6: Experimentally obtained variance of the phase estimation measurements
multiplied by 4|α|2 (QFI). The points show the data for strategies maximizing the sharpness
(blue) and mutual information (orange) and the error bars represent one standard deviation
across five runs of N = 104 experiments each. We note that the data is not corrected for our
overall efficiency of η = 0.70. The solid purple and green lines show the expected results for
the sharpness and mutual information strategies given the experimental imperfections. The
solid red and black lines show the CRLB without and with correction for our efficiency and
the dashed lines show the limits of heterodyne detection. Figure adapted from: Physical
Review Letters 125, 120505 (2020).

heterodyne measurement from |α|2 = 20 to |α|2 ≈ 600 and an equivalent heterodyne

measurement for |α|2 ≈ 6 to > 103. The strategies reach uncertainties of less than

1.2 times the adjusted CRLB at |α|2 ≈ 70 and less than 1.7 times the ideal CRLB.

The increase in variance at larger input mean photon numbers is due to the limited

number of adaptive steps L and PNR in our implementation, which can be avoided

by either increasing the PNR or L [88].

We note that the increase in variance as the input mean photon number decreases

is of a fundamental nature. This behavior is consistent with the “Mark II” adaptive

homodyne strategy from Ref. [78] as well as the actual variance Vcan for a so-called

canonical measurement of the phase, implemented by projecting on to phase eigenstates

|φ〉〈φ| [8, 78]. The variance Vcan serves as a better limit on the performance of any
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physical measurement compared to the CRLB, given that a canonical measurement is

the optimal single-mode phase measurement [6,78]. Furthermore, the CRLB serves

only as a lower bound on the variance of any measurement strategy, and does not

guarantee that a single-mode measurement reaches it [6]. Normalizing the measurement

variance by Vcan as opposed to the CRLB provides insight as to how different strategies

perform compared to the best possible single-mode phase measurement [88].

Figure 5.7 shows the variance of both optimized non-Gaussian strategies in the

ideal case (η = 1.0, ξ = 1.0, ν = 0) for different numbers of adaptive steps and PNR but

normalized by the variance of a canonical measurement Vcan. The value of Vcan at each

input mean photon number is obtained using the framework in Ref. [78]. The dotted

lines show both optimization strategies with L = 30 and PNR(3), the solid lines show

L = 200 with PNR(3), and the dashed lines show L = 30 with PNR(12). The black line

shows the performance of the best known adaptive homodyne strategy (“Mark II” from

Ref. [78]) and the gray line shows the variance of an actual heterodyne measurement.

Figure 5.7: Variance of adaptive non-Gaussian strategies in the ideal case compared to that
of a canonical phase measurement Vcan (solid red). The orange and blue lines show the
results for strategies which maximize the sharpness and mutual information, respectively,
for three different values of L and PNR(m): L = 30 with PNR(3) (dotted), L = 200 with
PNR(3) (solid), L = 30 with PNR(12) (dashed). The black solid line shows the variance of
the “Mark II” adaptive homodyne strategy and the solid gray line shows the variance of an
actual, ideal heterodyne measurement.
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We find that in the ideal case, both optimization strategies provide similar performance

to the “Mark II” adaptive homodyne receiver and the L = 200 with PNR(3) strategies

have the best results at large input mean photon numbers. The strategies based on

photon counting maintain similar performance to the “Mark II” scheme in the low mean

photon number regime and are at most only 1.2 times the variance Vcan of a canonical

measurement at |α|2 ≈ 5. Future work examining strategies based on photon counting

with asymptotically many adaptive steps compared to homodyne based strategies will

shed light on the limits of non-Gaussian vs. Gaussian approaches [88].

5.5 Gaussian Approximation and the Classical

Fisher Information

We develop a Gaussian approximation to efficiently implement the real-time

optimization of the displacement operation in the FPGA. The Gaussian

approximation is based on calculating the variance of the full prior probability

distribution P (j)(φ) for adaptive step j and then approximating P (j)(φ) as a Gaussian

distribution:

σ2 =

2π∫
0

φ2P (j)(φ)dφ → P (j)(φ) ≈ P
(j)
G (φ) = N e−

(φ−φ̂MAP )2

2σ2 , (5.9)

where P
(j)
G (φ) is the Gaussian approximation of P (j)(φ). Figure 5.8 shows the optimal

magnitude |β|opt and phase offset δ when using P
(j)
G (φ) in the function optimizations

for different mean photon numbers |α|2 and variance σ2. Panels (a) and (b) show

the phase offset δ when optimizing mutual information and sharpness, respectively,

and panels (c) and (d) show the optimal magnitude |β|opt. The optimal values of the

LO for both objective functions appear to asymptote to the same values as the prior

variance σ2 decreases.

We further investigate the asymptotic behavior of the optimal LO values by studying

the classical Fisher information (CFI) for the measurement. The CFI characterizes
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Figure 5.8: Optimal values from the Gaussian approximation for the (a,b) phase offset
δ and (c,d) displacement magnitude |β|opt/|α| for the sharpness (top panels) and mutual
information (bottom panels) strategies. (e-f) show the ratio of the optimal value of |β|opt to
the expected value which maximizes the Fisher information |βCFI(δ)| in Eq. (5.11). The
ratio asymptotes to a value of 1 as the prior distribution variance σ2 decreases. Figure
adapted from: Physical Review Letters 125, 120505 (2020).

how much information the the outcomes of a measurement contain about the unknown

parameter φ, and can be viewed as a measure of how sensitive the likelihood functions

of a measurement are to changes in the unknown parameter. The CFI for displaced

photon counting F (φ) is a function of the unknown relative phase φ between the input

state (φ0) and LO (θ) and for infinite PNR is given by:

F (φ) =
∞∑
n=0

L(n|φ)

(
∂

∂φ
ln
(
L(n|φ)

))
=

4|α|2|β|2sin2(φ)

|α|2 + |β|2 − |α||β|cos(φ)
. (5.10)

The CFI equals the quantum Fisher information (QFI) for coherent states when

φ = 0 and |β| = |α|, corresponding to displacement to the vacuum state. However,

our numerical investigations for adaptive non-Gaussian measurements reveal that

even with hundreds of adaptive steps, a non-optimized strategy which attempts to

displace the most likely state to the vacuum state cannot outperform a heterodyne

measurement [87]. Nevertheless, optimizing the CFI with respect to the LO magnitude
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reveals an optimality condition for |β|:

|βCFI(φ)|2 =
|α|2

cos2(φ)
, (5.11)

and F (φ) when |β| = |βCFI(φ)| is:

F (φ)
∣∣∣
|β|=|βCFI(φ)|

= 4|α|2 = QFI. (5.12)

Thus, the CFI for displaced photon counting is equal to the QFI as long as Eq. (5.11)

is satisfied. In other words, for any relative phase φ between the input and LO, there

is an optimal magnitude |βCFI(φ)| which saturates the QFI.

One may expect the approximately optimal values for the LO to satisfy the

optimality condition Eq. (5.11) when j � 1, given that P
(j)
G (φ) well describes P (j)(φ)

after many adaptive steps due to the small variance σ2 and negligible skewness µ3 of

P (j)(φ). The total relative phase between the unknown input (φ0) and LO (θopt) in

the limit of P (j)(φ) having small variance is: lim
σ→0

φ0 − θopt ≈ ∆opt ≈ δ due to φ̂ ≈ φ0

and µ3 ≈ 0 such that f(µ3) = 1. The optimal displacement magnitude |β|opt and

offset δ in the Gaussian approximation are obtained using P
(j)
G (φ) in the function

optimizations. Therefore, we can obtain a prediction |βCFI(δ)| of |β|opt based on δ

and Eq. (5.11) as: |βCFI(δ)|2 = |α|2/cos2(δ).

Figure 5.8(e,f) shows the ratio |β|opt/|βCFI(δ)| of the optimal |β|opt to the predicted

|βCFI(δ)| for strategies optimizing the sharpness and mutual information, respectively.

We find that the predicted value |βCFI(δ)| asymptotes to the optimal value |β|opt
for log10(σ

2) < −1.5 for all mean photon numbers for both objective functions.

We note that the optimality condition in Eq. (5.11) is obtained assuming infinite

PNR, but the |β|opt, δ, and |βCFI(δ)| are all obtained assuming a PNR(3) detector,

as in the experiment. This result that lim
σ→0
|βCFI(δ)| = |β|opt validates the Gaussian

approximation and also shows that the LO values obtained through this approximation

are ones which saturate Eq. (5.11) and allow the CFI for displaced photon counting

to equal the QFI for coherent states.

We also study the function landscape for both the sharpness and mutual

information, as opposed to just their optimal values in the Gaussian approximation.
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Figure 5.9(a) shows an example prior probability distribution P (j)(φ) for an adaptive

step early (j = 4) in the measurement, which in general will be relatively broad and

not well approximated by a Gaussian distribution. The blue dashed line shows the

true value of the phase (φ0 = π) and the red line shows the current phase estimate φ̂

from Eq. (5.7). The red and black lines show the optimal LO phase values θopt,S and

θopt,MI which maximize the sharpness and mutual information, respectively. The

optimal LO values for the sharpness (Eq. (5.2)) or mutual information (Eq. (5.5))

correspond to global maxima in the function landscapes and are solely a function of

the full prior probability distribution P (j)(φ).

0

1

2

3

4

0 11 2 3 4 5 6
0

1

2

3

4

0 11 2 3 4 5 6

MI

S

Sharpness Mutual Information

φφ0 θopt,MI θopt,S

0 1 2 3 4 5 6
0

2

4

6

×10-3

Phase (rad.)
LO Phase θ (rad.)LO Phase θ (rad.)

MI

S

θopt,MI θopt,S

0 1 2 3 4 5 6

Phase (rad.)

1

2

3

0

×10-2

Prior for 4th

adaptive step

Prior for 30th

adaptive step

LO
 M

ag
ni

tu
de

 |β
|

LO
 M

ag
ni

tu
de

 |β
|

MI
S

MI
S

0

1

2

3

4

0 11 2 3 4 5 6
0

1

2

3

4

0 11 2 3 4 5 6

Sharpness Mutual Information

LO Phase θ (rad.)LO Phase θ (rad.)

LO
 M

ag
ni

tu
de

 |β
|

LO
 M

ag
ni

tu
de

 |β
|

φφ0

(a) (b)

(c) (d)

Figure 5.9: Comparison between the sharpness and mutual information function landscapes
and optimal values |β|opt and θopt for different prior probability distributions. (a) A prior
distribution for an early adaptive step (j = 4) will generally be non-Gaussian and (b)
the function landscapes and optimal LO values (stars) will be very different. (c) A prior
distribution for the last adaptive step (j = L = 30) will be well approximated by a narrow
Gaussian distribution. (d) In this limit of σ → 0 the entire function landscape and optimal
values are almost identical for both objective functions.
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Figure 5.9(b) shows the function landscapes for the sharpness (left panel) and

mutual information (right panel) given the prior probability distribution in Fig.

5.9(a), and are calculated assuming an ideal experiment with PNR(3). The orange

and black stars show the optimal LO values (|β|opt and θopt = φ̂ + ∆opt) which

maximize the sharpness (S) and mutual information (MI), respectively, and the

blue point corresponds to displacing the current hypothesis to the vacuum state

(|β| = |α|, θ = φ̂). It is clear that the two optimal values and the function landscapes

are very different from one another. This difference is due to the non-Gaussian form

of the prior probability distribution combined with the fact that the sharpness and

mutual information are simply very different functions.

On the other hand, Figure 5.9(c) shows an example of a prior probability

distribution for the last adaptive step (j = L = 30) of the measurement, which is very

well approximated as a Gaussian distribution with small variance (σ → 0). The

optimal LO phase values θopt,S and θopt,MI are now almost identical to each other, as

predicted based on Fig. 5.8. Figure 5.9(d) shows the function landscapes for the

sharpness (left panel) and mutual information (right panel) using the prior probability

distribution in Fig. 5.9(c). We find that the globally optimal LO values (|β|opt and

θopt = φ̂+ ∆opt) which maximize each objective function are almost identical, which is

consistent with the Gaussian approximation results discussed above. Furthermore, it

is apparent that the entire function landscape for both object functions are almost

identical. This similarity is surprising given how different the two objective functions

are and suggests that the sharpness and mutual information may be more similar

than they appear in the limit of σ → 0, but requires further investigation [88].

Our studies showing that both strategies have not only the same optimal values

but also the same optimization landscapes in the limit of a narrow Gaussian prior

distribution is consistent with the theoretical work in Ref. [246]. Reference [246]

shows that Bayesian experimental designs which maximize the mutual information,

or posterior variance (i.e. sharpness), are asymptotically efficient and can saturate

the CRLB [250]. In addition, we note that the Kullback-Liebler divergence in Eq.
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(5.6) has a series expansion in the limit of the two distributions being close to one

another, and the first non-zero term in that expansion is in fact the classical Fisher

information [248, 251]. Therefore, maximizing the mutual information is analogous to

maximizing the Fisher information in the limit of σ → 0, but with more information

contained in the higher order expansion terms. On the other hand, maximizing the

expected sharpness will achieve minimal Holevo variance [249]. An interpretation

of this result is that each strategy (sharpness and mutual information) attempts to

reach the CRLB but through two different approaches of either maximizing the Fisher

information, or minimizing the variance [88].

5.6 Conclusion

We develop and demonstrate a strategy for single-shot phase estimation of optical

coherent states which surpasses the limit of ideal heterodyne detection [87]. This

measurement is based on adaptive displaced photon counting and real-time

optimization of the displacement operation conditioned on the measurement history.

We study two different objective functions for the optimization, the sharpness and

mutual information, and find that they produce almost identical results in terms

of the overall measurement variance. We also develop and analyze a Gaussian

approximation which allows the experimental implementation of the strategy to

obtain approximately optimal LO values based on just the variance and skewness of

the prior probability distribution in real-time for each adaptive step. This approach

as well as a quasi-normalization procedure within the Bayesian updating allows

the FPGA to update the distribution for the input phase and obtain the optimal

displacement values in only ≈ 1 µs. We implement this measurement across a wide

range of input energies for a strategy with L = 30 adaptive steps and PNR(3). Our

demonstration achieves variances of less than 1.2 times the adjusted CRLB and

outperforms the ideal heterodyne limit from |α|2 ≈ 20 to ≈ 600. Furthermore, we

analyze the performance of ideal strategies with large numbers of adaptive steps and
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high photon number resolution. We find that these strategies can perform at least as

well as the best known adaptive homodyne measurements and reach variances close to

that of the best possible physical measurement.
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Maximizing Mutual Information

with Higher Order Encodings

A significant result in information theory is that communication strategies based

coherent states of light can reach the ultimate limits of information transfer, known

as the capacity, for a pure loss channel [18, 71, 252–254]. The capacity of a particular

channel is given by the maximum possible mutual information optimized over all

physical states, encodings, and POVMs, under an average energy constraint, and

also referred to as the Holevo bound [153, 253]. To reach the capacity for a pure

loss channel, a sender needs to encode information into optimal code-words created

from coherent states with non-uniform probability [18]. However, the optimal POVM

for decoding the information requires joint measurements over the elements of the

codewords at the receiver [20, 255], a task which has yet to be fully experimentally

realized [256–258]. Experiments have demonstrated strategies based on code-word

nulling [259] but such strategies still require incorporation of quantum non-demolition

measurements to approach the capacity for a pure loss channel. On the other hand,

the limit of heterodyne receivers and coherent states with Gaussian modulation in a

symbol-by-symbol paradigm is known as the Shannon limit [5, 20,252,260,261], and

serves as a benchmark for the limits of conventional technology. Studying the role of
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non-Gaussian measurements in maximizing the amount of information transfer in this

symbol-by-symbol approach will yield insights into how to surpass the Shannon Limit

using quantum measurements.

In a traditional communication scenario, a sender encodes information into a

finite set of M coherent states and thus the maximum amount of mutual information

attainable is log2(M). A strategy which utilizes M = 16 states can encode four bits

of information by using both the phase and amplitude of the coherent states, as

discussed in Section 1.3. Furthermore, the mutual information can be increased by

imposing a Gaussian prior probability distribution onto the states [18, 261]. However,

the amount of information transfer possible when using heterodyne measurements

is bounded by the Shannon limit. Recent theoretical work in Ref. [262] has shown

that adaptive non-Gaussian receivers for a 16-QAM alphabet can surpass the limits of

ideal heterodyne detection and Gaussian modulation. This performance is achieved

by optimizing the prior probability distribution for the states combined with adaptive

hypothesis testing based on displacement operations and photon counting [51,117].

In this chapter, we extend the analysis presented in Ref. [262] to include both

experimental imperfections as well as photon number resolution. We find that

receivers based on displacement operations, photon counting, and feedback using

a 16-QAM alphabet can surpass the limits of equivalent heterodyne detection with a

feasible number of adaptive measurement steps with PNR(1). Furthermore, a receiver

with photon number resolving capabilities requires a smaller number of adaptive

steps to reach the same performance. We also discuss the potential experimental

implementation of these measurement strategies.

6.1 Measurement Strategy

Reference [262] shows that communication strategies based on coherent states using

an optimized prior probability distribution and adaptive non-Gaussian measurements
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Figure 6.1: (a) 16-QAM encoded coherent states |αk,l〉 in phase space where δ controls
the spacing of the alphabet. (b) Example Gaussian prior probability distribution for the
16-QAM alphabet in (a).

can outperform the limits of heterodyne detection and Gaussian modulation. We focus

on a scenario where the sender and receiver use a 16-QAM alphabet, which is a 4×4

grid of coherent states: |αk,l〉 = |(k + il)δ〉 with k, l ∈ {−3,−1, 1, 3}. Figure 6.1(a)

shows the 16-QAM alphabet |αk,l〉 in phase space. The parameter δ is the spacing

of the states in phase space and controls the energy of the alphabet. In contrast to

other state discrimination strategies discussed in this thesis, strategies for maximizing

information transfer use an input alphabet with the prior probabilities determined

by a Gaussian distribution: P (αk,l) = N e−|αk,l|2/(2σ2) [18, 262]. Figure 6.1(b) shows

an example Gaussian prior probability distribution applied to the 16-QAM alphabet.

Here, σ and δ are optimized to achieve maximal mutual information for a given average

energy and for a specific measurement strategy.

Figure 6.2 shows the experimental concept for maximizing information transfer

using non-Gaussian measurements. A sender (Alice) first encodes information into

a 16-QAM alphabet {|αk,l〉} with a Gaussian prior probability distribution P ({αk,l})

(left 3D plot). The coherent states are then transmitted through a lossy communication

channel and measured by an adaptive non-Gaussian receiver based on displacement

operations, single photon detection, and feedback. The receiver implements an

adaptive Bayesian strategy with L adaptive steps and PNR(m), where the magnitude

|β| ∈ {|αk,l|} and phase arg(β) ∈ {arg(αk,l)} of the displacement D̂(β) are set to

displace the most likely state to the vacuum state, followed by photon counting [117].
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Figure 6.2: A sender (Alice) encodes information into a 16-QAM alphabet {|αk,l〉} with a
Gaussian prior probability distribution P ({αk,l}) (left 3D plot). The transmitted state is
measured by an adaptive non-Gaussian receiver where P ({αk,l}) is incorporated into the
Bayesian updating strategy as the initial prior distribution. The entropy of the posterior
distribution P ({αk,l|d}) (right 3D plot) after measurement is smaller than that of the prior
distribution. The mutual information is equal to the average difference between the entropy
of the prior and posterior probability distributions, averaged over all possible detections.

The final posterior distribution P ({αk,l}|d) (right 3D plot) given a particular detection

history d = {d1, ..., dL} for the measurement will have an entropy smaller than that

of P ({αk,l}). The receiver strategy aims to achieve the maximum mutual information

I(n̄, σ, δ) between the sender and receiver for a given average energy n̄, where I(n̄, σ, δ)

is obtained as:

I(n̄, σ, δ) =
∑
{d}

4∑
k,l=1

P (αk,l,d)log2

[
P (αk,l,d)

P (αk,l)P (d)

]
, (6.1)

=
∑
{d}

4∑
k,l=1

P (αk,l|d)P (d)log2

[
P (αk,l|d)

P (αk,l)

]
, (6.2)

= H
[
P ({αk,l})

]
−
∑
{d}

P (d)H
[
P ({αk,l}|d)

]
. (6.3)

Here P (αk,l,d) = P (αk,l|d)P (d) is the joint probability for the state |αk,l〉 and

detection d. The summation over {d} is over all possible detection histories, the

summation over k and l is over all possible input states, and

H[P ({αk,l})] =
∑
k,l

P (αk,l)log2

[
P (αk,l)

]
, (6.4)

H[P ({αk,l}|d)] =
∑
k,l

P (αk,l|d)log2

[
P (αk,l|d)

]
, (6.5)
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are the entropy of the prior P ({αk,l}) and posterior distribution P ({αk,l}|d),

respectively. The average energy n̄ of the coherent state alphabet is given by:

n̄ =
∑
k,l

P (αk,l)|αk,l|2 =
∑
k,l

e−δ
2(k2+l2)/(2σ2)∑

m,n

e−δ2(m2+n2)/(2σ2)
× δ2(k2 + l2), (6.6)

which depends solely on σ and δ. Note that by fixing the value of n̄ and σ, the value

of δ is obtained as the value which satisfies Eq. (6.6).

There is an optimal value of σ = σopt(n̄) for each value of the average energy n̄

that maximizes the mutual information I(n̄, σ, δ) given that the receiver implements

the adaptive non-Gaussian measurement described above. We numerically find σopt(n̄)

using Monte Carlo simulations of the non-Gaussian measurement. First, we choose

a particular value of n̄ and then scan over a range of values for σ. We obtain the

corresponding value of δ by inverting Eq. (6.6) for every n̄ and σ, thus fixing {|αk,l〉}

and P ({αk,l}). We then simulate 5× 104 independent measurements and calculate

the mutual information I(n̄, σ, δ) for these values of n̄, σ, and δ using Eq. (6.3).

Figure 6.3(a) shows the mutual information as a function of σ for a fixed average
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Figure 6.3: (a) Mutual information for an ideal receiver with L = 16 and PNR(1) as
a function of σ for n̄=2, 5, 10, and 15 in blue, orange, yellow, and purple, respectively.
The vertical dashed lines show the value of σopt(n̄) for each n̄ and the 3D insets show
P ({αk,l}) for these values. (b) The dark blue line shows the maximal mutual information
I(n̄, σopt(n̄), δopt(n̄)) as a function of the average energy. The black and gray lines show the
limit of heterodyne detection with coherent states and Holevo bound, respectively.
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energy n̄=2, 5, 10, and 15, for a ideal strategy with L = 16 adaptive steps and

PNR(1). We extract the value of σopt(n̄) from these curves for each n̄ as the value

of σ which achieves maximum mutual information. The 3D panels show the prior

probabilities P ({αk,l}) for the states at σopt(n̄) for each energy n̄. Figure 6.3(b) shows

the maximum achievable mutual information I(n̄, σopt(n̄), δopt(n̄)) as a function of n̄

for an ideal non-Gaussian strategy based on adaptive photon counting with PNR(1)

and L = 16 (blue). The thin solid lines show the mutual information as a function of

n̄ for fixed values of σ =1,2, and 3, in blue, orange, and yellow, respectively. The 3D

plots show the optimal prior probability distribution at the average energy n̄ for which

σopt(n̄)=1, 2, and 3. The black solid line shows the limit for heterodyne measurements

with a Gaussian modulation [261,262]. The black dashed line shows the Holevo bound,

which is the ultimate limit of information transfer and requires optimal code-words

and joint measurements at the receiver [6, 18, 153].

6.2 Proposed Experimental Implementation

Figure 6.4 shows a diagram of the proposed experimental setup for the 16-QAM state

discrimination measurement we aim to demonstrate in the future. We will include

an amplitude modulator in the signal arm of the interferometer and both the phase

(PM) and amplitude (AM) modulators for the signal will each be controlled by an

8-bit digital-to-analog converter (DAC). This setup will allow for easily changing the

magnitude as well as phase of the signal with the field-programmable gate array (FPGA)

to prepare different input states in the 16-QAM constellation. We will enforce the

prior probabilities P ({αk,l}) by constructing a look-up table (LUT) which sequentially

prepares the states |αk,l〉 in the signal arm for Nk,l independent experiments each,

and we will obtain data in blocks of
∑

k,lNk,l = 211 = 2048 experiments. The signal

LUT will loop over the states |αk,l〉 such that |α1,1〉 is prepared for the first N1,1

experiments, followed by |α1,2〉 for N1,2 experiments, and so on, and this pattern will

repeat every 211 experiments. The number of experiments Nk,l per input state is
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Figure 6.4: Proposed experimental setup for maximizing mutual information with a 16-QAM
alphabet. The signal and LO phase and amplitude will each be controlled by a modulator
connected to an 8-bit digital-to-analog converter (DAC). The field-programmable gate array
(FPGA) will implement the hypothesis testing strategy and prepare the input state using
the phase and amplitude modulators.

obtained as: Nk,l = round
(
211P (αk,l)

)
, where round(·) rounds to the nearest integer

such that Nk,l/
∑

m,nNm,n ≈ P (αk,l). We will prepare the displacement D̂(β) in a

similar way to previous experiments where a second pre-calculated LUT stores the

amplitude |β| and phase arg(β) for each adaptive step as discussed below. We will

construct this second LUT to implement the hypothesis testing approach where the

receiver attempts to displace the current hypothesis to the vacuum state.

6.3 Adaptive Steps vs. PNR trade-off

There exists a practical trade-off between photon number resolution and number of

adaptive steps in an experimental demonstration. Implementing these measurement

strategies at high bandwidth requires using a LUT within the FPGA to store the

displacement value β given every possible detection history d [51, 83, 117]. Each

adaptive step requires an individual LUT, and the table for adaptive step j requires

(m+ 1)j−1 elements for a strategy with PNR(m). For example, j = 2 requires m+ 1

elements because there are m + 1 possible photon detection results from the first

132



Chapter 6. Maximizing Mutual Information with Higher Order Encodings

Holevo
(η=1.0)

Heterodyne
(η=1.0)

Heterodyne
(η=0.75)

0 2 4 6 8 10 12 14 16

2.0

3.0

4.0

PNR(1)
PNR(2)

PNR(3)

Holevo
(η=1.0)

Heterodyne
(η=1.0)

Heterodyne
(η=0.75)M

ut
ua

l I
nf

or
m

at
io

n

Average Energy n

L=9
0 2 4 6 8 10 12 14 16

Average Energy n

L=16

0 2 4 6 8 10 12 14 16

L=16
PNR(1)

Average Energy n

L=9
PNR(3)

(a) (b) (c)

1.0

Holevo
(η=1.0)

Heterodyne
(η=1.0)

Heterodyne
(η=0.75)

PNR(1)

PNR(2)

PNR(3)

2.0

3.0

4.0

M
ut

ua
l I

nf
or

m
at

io
n

1.0

2.0

3.0

4.0

M
ut

ua
l I

nf
or

m
at

io
n

1.0

Figure 6.5: Comparison between different non-Gaussian strategies. (a) The blue, orange,
and yellow lines show the mutual information for a strategy with L = 9 adaptive steps and
PNR(1), PNR(2), and PNR(3), respectively. (b) The colored lines show the performance of
a strategy with L = 16 adaptive steps for each PNR. (c) Comparison between the L = 9
with PNR(3) and L = 16 with PNR(1) strategies from (a) and (b). A strategy with less
adaptive steps but larger PNR allows for slightly higher mutual information.

adaptive step, and the third adaptive step j = 3 requires (m+ 1)2 elements because

there are m + 1 outcomes each for j = 1 and j = 2. Note, the initial displacement

values for the first adaptive step j = 1 are pre-determined and do not require a LUT.

Therefore, the total size (in bits) of the LUTs required to store the displacement

magnitude and phase when they are each represented by eight bit numbers is:

2× 8×
L∑
j=2

(m+ 1)j−1 = 16× (m+ 1)L − (m+ 1)

m
. (6.7)

Constructing a LUT in the FPGA requires using a certain amount of internal memory,

which comes in specified block sizes and there is a limited total amount available.

Thus, there is a practical question of whether to use a high L but low PNR strategy, or

the other way around. This trade-off exists because increasing the PNR will decrease

the number of possible adaptive steps, and vice versa, due to the finite amount of

memory available. A strategy with PNR(1) can be implemented with at most L = 16

(16× (216 − 2) ≈1.05 Mb) adaptive steps, and a PNR(3) strategy can be implemented

with at most L = 9 adaptive steps (16× (49− 4)/3 ≈1.40 Mb) given the total amount

of memory in the FPGA in our setup (≈2 Mb).

Figure 6.5(a-c) shows the trade-off in performance between different values of

L and PNR in a realistic experiment with detection efficiency η = 0.75, visibility
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ξ = 0.997, and dark count rate ν = 160/s. Figure 6.5(a) shows the mutual information

for L = 9 with PNR(m) for m=1, 2, and 3, in blue, orange, and yellow, respectively

and 6.5(b) shows the mutual information for L = 16 with different PNR. Figure 6.5(c)

shows the comparison between the L = 9 with PNR(3) strategy (blue) from (a) and

the L = 16 with PNR(1) strategy from (b). We find that it is more beneficial to

implement a smaller number of adaptive steps with a larger PNR, which achieves

higher mutual information as the average energy increases.

6.4 Future Directions

Experimentally demonstrating the measurement strategy discussed above will show

that non-Gaussian receivers based on adaptive photon counting can surpass the

limits of conventional measurements in terms of information transfer. Furthermore,

communication strategies which maximize mutual information may also benefit from

optimizing the displacement operations using global optimizations [83] or reinforcement

learning approaches, both described in Ch. 3. Global optimizations of the measurement

strategy will aim to achieve the highest possible amount of mutual information, but

may become impractical for large numbers of adaptive steps with PNR capabilities.

The reinforcement learning framework would allow for finding optimized measurement

strategies with a large number of adaptive steps and moderate PNR. In addition,

the prior probability distribution of the input states may be incorporated into the

reinforcement learning optimization. This inclusion would allow the receiver to find

optimized communication strategies for channels with unknown noise properties, or

when conventional optimization is impractical or even impossible.
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6.5 Conclusion

In this chapter, we extend the theoretical work in Ref. [262], where the authors

investigate adaptive non-Gaussian measurements for maximizing mutual information.

Reference [262] shows that non-Gaussian measurements can outperform strategies

based on heterodyne detection and Gaussian modulation. Our numerical simulations

show that adaptive non-Gaussian receivers combined with a 16-QAM alphabet and an

optimized prior probability distribution can potentially surpass the limits of equivalent

heterodyne measurements when accounting for experimental imperfections. In addition,

non-Gaussian receivers which employ photon number resolution can achieve the same

performance with fewer adaptive measurement steps. Specifically, a strategy with

L = 9 adaptive steps and PNR(3) can outperform a strategy with L = 16 and PNR(1),

based on our analysis including experimental limitations. In the future, we plan to

experimentally demonstrate these strategies which maximize the mutual information

using adaptive non-Gaussian measurements. Furthermore, machine learning techniques

discussed in Chapter 3 can potentially be applied to adaptive non-Gaussian receivers

to find optimized strategies in parameter regimes where conventional approaches are

impractical, or even for channels with unknown noise properties.
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Thesis Conclusion

Non-Gaussian measurements can surpass the sensitivity limits of conventional

technologies based on homodyne and heterodyne detection. In this thesis, we show

that the non-Gaussian element corresponding to single-photon detection provides a

benefit across a wide range of state discrimination and parameter estimation tasks.

Quantum measurements based on photon counting can also follow an adaptive

approach. Instead of measuring the entire input state at once, a measurement

strategy can perform many different measurements by splitting the input state into

many temporal modes and sequentially measuring each mode. The information

gained by each sequential detection is maintained through recursive Bayesian

updating of the probability for each possible input state given the entire detection

history. Furthermore, non-Gaussian strategies can be optimized using the prior

information about the input state or in real-time. This possibility of optimized

measurements can enhance the performance of different strategies for various tasks.

We experimentally and theoretically show that non-Gaussian measurements can be

used for diverse problems and can to outperform conventional strategies in terms of

discrimination error, mutual information, and estimation variance.

We investigated non-adaptive measurements for binary phase-shift-keyed (BPSK)

coherent states using an optimized Kennedy receiver combined with photon number
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resolution (PNR). We found that PNR allows the receiver to maintain sub-QNL

performance while providing robustness to experimental noise and imperfections,

such as non-ideal interference visibility and detector dark counts. We also applied

this optimized Kennedy receiver with PNR to the problem of communication over

channels with complex noise properties, in particular that of phase diffusion. While

communication strategies based on a BPSK encoding and non-Gaussian measurements

provide some benefit over the QNL when the noise strength of the channel is small,

the performance of such strategies is quickly degraded as the noise level increases. To

this end, we investigated an optimized communication strategy, where both the input

coherent state alphabet as well as the displacement operation are jointly optimized and

tailored to provide the best performance for a particular noise level. The optimized

communication strategy allows the receiver to recover sub-QNL performance even in

the presence of severe channel noise. We also implemented a more general class of

binary measurements, which goes beyond the familiar paradigm of minimum error

state discrimination. These more general measurements achieve the smallest possible

error probability for a fixed probability an an inconclusive result. We experimentally

validated this measurement for binary coherent states, which is implemented using

displacement operations, photon counting, and fast feedback, where the displacement

amplitude follows a particular optimal waveform.

Increasing the alphabet size to four coherent states increases the total amount of

information which can possibly be transmitted. We studied three different measurement

strategies for the discrimination of quaternary phase-shift-keyed (QPSK) coherent

states: (1) simultaneous hypothesis testing, (2) global optimizations for adaptive

approaches, and (3) reinforcement learning of an alternative receiver architecture.

On one hand, “minimum resource” measurements which are non-adaptive, have no

PNR capabilities, and use the smallest number of simultaneous detections potentially

enable measurement strategies for sub-QNL discrimination at high bandwidth. On

the other hand, global optimizations allow for adaptive strategies to outperform

the QNL in the single photon regime compared to non-optimized strategies. As an
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alternative approach, machine learning provides a path for constructing novel receivers

for state discrimination based on artificial neural networks which are recursive and

are able to maintain an internal memory of the detection history. We show that these

networks can be trained to replace simple state discrimination measurements with

no reduction in performance. Furthermore, reinforcement learning can be used to

find optimized measurement strategies in situations where conventional techniques for

multi-parameter optimization are impractical or impossible. As a further investigation

for non-Gaussian measurements for multiple coherent states for communications, we

investigated scenarios where a sender and receiver can potentially transmit four bits

of information utilizing a 16-QAM alphabet. This alphabet employs the phase and

amplitude of the coherent states simultaneously to encode information, as opposed to

just the phase as with BPSK and QPSK encodings. We extend previous theoretical

work and show that adaptive non-Gaussian measurements can potentially surpass the

limit of heterodyne-based strategies. This performance is achieved by using a prior

probability distribution which is optimized to maximize the mutual information under

an average every constraint.

Noise in a communication channel can severely degrade the ability of a receiver

to perform state discrimination, and reduce information transfer in communications.

Estimating and tracking of channel noise is a crucial task for any communication

scenario and advanced techniques currently facilitate communication with conventional

measurement strategies. However, these standard approaches cannot be applied to

adaptive non-Gaussian measurements. We developed an estimation algorithm to

implement real-time phase tracking in adaptive non-Gaussian receivers for QPSK

coherent states. We experimentally demonstrated that an intuitive estimator enables

sub-QNL state discrimination in the presence of dynamic phase noise. In addition, we

developed a method for tracking multiple channel noise parameters based on a neural

network estimator. We numerically showed that a properly trained neural network

allows for sub-QNL performance in the presence of both phase and amplitude noise

across a wide range of channel noise levels. This approach is far more computationally
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efficient than conventional estimation techniques and can potentially enable high-

bandwidth discrimination beyond the limits of heterodyne detection in realistic

communication channels.

Estimation of the phase of a coherent state of light is a central problem in

metrology, and the best possible (canonical) measurement strategy has no known

physical implementation. We showed that adaptive non-Gaussian measurements can

outperform the limits of heterodyne detection and approach the ultimate bounds on the

uncertainty in estimation of the phase of a coherent state. These adaptive strategies

are based on real-time optimization of the displacement operation, photon number

resolution, and fast feedback. We demonstrated two optimization strategies and

develop an optimization algorithm which operates in real-time based on a Gaussian

approximation. We found that both optimization strategies provide uncorrected

estimation variances below the limit of ideal heterodyne detection, and that the two

strategies have similar behavior in the Gaussian approximation.

The work presented in this thesis serves as a foundation for addressing the seemingly

simple question of how to implement a good measurement. The answer however,

is quite complex and depends on how we define good. On one hand, quantum

measurements which discriminate between finite sets of coherent states better than

heterodyne detection can enable rates on information transfer which are inaccessible

to conventional technologies. On the other hand, the novel techniques for combating

channel noise discussed here provide insight on how to readily transfer optimized

photon counting measurements for coherent states out of the lab. One particular

open question is what truly are the limits of non-Gaussian measurements which are

optimized in real-time, and the algorithms and machine learning techniques explored

in this thesis may help shed light on these limits. So how does one actually implement

a good, or even the best possible measurement? It’s certainly challenging, but an

excellent place to start is with counting photons.
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Appendix A

Adaptive Photon Counting

A.1 Measurement Strategy

The non-Gaussian element of photon counting can enable non-conventional

measurement strategies to surpass the QNL. However, the performance of

measurements based on photon counting can be further improved by allowing the

receiver to implement an adaptive strategy. Instead of measuring the entire input

pulse all at once, the receiver splits the input state into L temporal modes and

measures each mode sequentially. Here, measurement of a single temporal mode

is referred to as a single adaptive step, each of which is comprised of a coherent

displacement operation D̂(β) followed by photon counting. The receiver must first

choose the displacement parameter β at the beginning of each adaptive step j of L

total steps. The prior probability distribution P ({αk}) for the set of coherent states

{αk} at step j can be used to infer the best displacement operation D̂(β). A typical

approach in state discrimination is to implement a hypothesis testing procedure,

where β is chosen such that current hypothesis for the input state is displaced to the

vacuum state, i.e. β = argmaxαkP ({αk}). The measurement then detects a particular

number of photons n from the displaced input state D̂(β)|αk〉 = |αk − β〉. Then, the

receiver calculates the posterior distribution P ({αk}|n, β) given the measurement
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result of n detected photons during adaptive step j through Bayes rule:

P ({αk}|n, β) =
1

P (n)
L(n|{αk}, β)P ({αk}). (A.1)

Here P (n) =
∑

k L(n|{αk}, β,m)P ({αk}) is the total probability of detecting n

photons and

L(n|αk, β) = Tr
[
|αk〉〈αk|D̂†(β)|n〉〈n|D̂(β)

]
(A.2)

= |〈n|D̂(β)|αk〉|2 (A.3)

=
(|αk − β|2)n

n!
e−|αk−β|

2

, (A.4)

is the likelihood of detecting n photons from the state |αk〉 given the displacement

amplitude β. The posterior distribution for step j then becomes the prior probability

distribution for next adaptive step j + 1, and this recursive procedure repeats until

the entire state has been measured. Thus, the final posterior probability of each state

given the displacements {βj}L and detection history {nj}L is:

P ({αk}|{nj}L, {βj}L) = NP ({αk})
L∏
j=1

L(nj|{αk}, βj), (A.5)

where N is a normalization factor and P ({αk}) is the initial prior probability

distribution. This final posterior distribution is then used to infer the true input state

depending on the task the receiver is performing. The hypothesis for the actual input

in state discrimination is the state with the largest posterior probability. Alternatively,

the estimate for the input state in phase estimation is obtained using Eq. (5.7) in

Ch. 5 by integration over P ({αk}|{nj}L, {βj}L), similar to a Bayesian estimator.

Furthermore, the measurement outcome may be inconclusive, where the receiver

guesses none of the possible input states as in Section 2.3.

A.2 Detailed Experimental Setup

Figure A.1 shows the detailed experimental setup used for most of the experiments

described in the main thesis. Optical pulses of light are generated by a continuous-wave
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Helium-Neon (HeNe) laser at 633 nm and a pulsed acousto-optic modulator (AOM) by

selecting only the first order diffraction mode. The pulses then enter a Mach-Zender

interferometer where a 50/50 beam splitter (BS) splits the pulse into the signal and

local oscillator (LO) arms of the interferometer. We use a half-wave plate (HWP)

and quarter-wave plate (QWP) to control the polarization of the light in each arm.

A variable attenuator (Att.) and a fiber coupled phase modulator (PM) prepare the

input state (signal) with fixed mean photon number and phase. A second PM and

a fiber coupled amplitude modulator (AM) prepare the LO field used to implement

the displacement operation. The signal field and LO field then interfere on a 99/1

fiber BS (purple box), which is where the displacement operation takes place. The

light exits the interferometer and is detected either by a biased detector (Det.) during

calibration using a flip-mirror, or by an avalanche photo-diode (APD) during the

experiment to detect single photons.

The experiments are usually operated at a ≈ 50% duty cycle and we maintain a

constant relative phase between the signal and LO by actively locking the relative

Figure A.1: Experimental setup, see main text for details.
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phase in the interferometer between each experiment. We use a 780 nm laser to lock

the interferometer phase, and frequency stabilize the 780 nm laser to rubidium using

the saturated absorption spectroscopy locking technique. The 780 nm light propagates

backwards through the interferometer and is detected by a differential detector (DD).

We use dichroic mirrors which have ≈ 99% transmission at 633 nm with a ≈ 1 nm

bandwidth to separate the 633 nm light and 780 nm light. The output of the DD is fed

into a PID controller which has an output that is connected to a piezo-electric crystal

(PZT) in the signal arm. This feedback loop actively maintains a constant relative

phase in the interferometer and holds its current value during each experimental pulse.

The quantum efficiency of our APD (Laser Components COUNT-T250) is ηAPD ≈ 0.82

and we achieve an overall efficiency of η ≈ 0.72 depending on the experiment. A

“blanking” period of least ≈ 160 ns is required for adaptive strategies where the output

of the APD is temporarily discarded. The blanking period corresponds to the time in

between when the FPGA begins to apply new voltage values to the modulators and

when the light propagates from the modulators to the APD. This blanking period is

required for each adaptive step and artificially reduces the overall detection efficiency

depending on how much blanking is implemented.

The experiments are timed and controlled by a field-programmable gate array

(FPGA), which also registers all photon detections and passes data to a computer

for processing. We use an Altera Cyclone IV (EP4CE55F23C8N) from Opal Kelly

(ZEM4310) which has a 50 MHz base clock, 160 output pins, and 128 MiB external

memory. Experiments are run at different repetition rates depending on the complexity

of the measurement strategy and the amount of data saved for a single experiment.

Each modulator is controlled by an 8-bit digital-to-analog converter (DAC) which

allows for the phase and magnitude of each field (signal and LO) to take on 256

possible values. We also use a series of multiplexers as high bandwidth switches to

turn the modulation on and off, or switch between two different modulation voltages.
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A.3 Experimental Limitations

One critical experimental parameter is the interference visibility ξ of the displacement

operation, which characterizes how well the input state and local oscillator field

can interfere. The two fields will destructively interfere when they have the same

magnitude and a π phase difference, resulting in a minimum intensity Imin, which is

ideally equal to zero. A phase difference of zero will result in the fields constructively

interfering to give a maximum intensity Imax. The interference visibility can then be

obtained as ξ = (Imax − Imin)/(Imax + Imin) where the background level has already

been subtracted from both Imax and Imin. Our experiment achieves a visibility of

ξ ≈ 0.998, corresponding to Imin/Imax ≈ 1/1000. Another important experimental

parameter is the dark count rate ν of the photon detector, which corresponds to

“detecting” a photon which did not come from the input light. This rate includes the

dark counts intrinsic to the detector itself as well as detections from background light

and can be modeled as a Poisson process with rate ν, and we achieve ν ≈ 160/s.

A realistic detector will not have the ability to resolve infinitely many photons,

thus it is important to consider having a finite photon number resolution (PNR). The

resolution of a detector is denoted as PNR(m), where m describes how many photons

a detector can individually resolve before become a threshold detector. For example,

the outcomes from a PNR(3) detector are {0, 1, 2, 3+} where 3+ represents detecting

three or more photons. Instead of the 3+ outcome being represented by |3〉〈3|, it is

given by Î − |0〉〈0| − |1〉〈1| − |2〉〈2| such that
∑

n Π̂n(β) = Î. As discussed throughout

this thesis, the ability to count photons is a critical aspect in surpassing the limits of

conventional Gaussian measurements. Furthermore, PNR increases the robustness of

non-Gaussian receivers to noise and imperfections in the measurement as well as the

communication channel.
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B.1 Implementing Photon Number Resolution

We allow the receiver to have photon number resolution (PNR) greater than PNR(1) in

order to demonstrate many of the experiments described in the main thesis. However,

we use an avalanche photo-diode (APD) in the experiment, which can only detect

a single photon at any moment in time. Thus, PNR refers to the ability to detect

multiple individual photons within a single adaptive step. This is in contrast to true

PNR detectors, such as transition-edge sensors [136], and our effective PNR relies on

two things. First, the temporal statistics of coherent states are such that photons are

randomly distributed in time, as opposed to bunched (e.g. thermal) or anti-bunched

(e.g. squeezed) light [8]. Second, we set our experimental repetition rate such that the

time duration of each adaptive step T/L is much greater than the dead-time Tdead

of the APD (Tdead ≈ 50 ns). The dead-time refers to the time immediately after a

detection event where the APD “resets” and cannot detect another photon. As long

as the ratio of the dead-time to the adaptive step duration LTdead/T is small, then the

probability that there is a photon present during the dead-time is negligible. Thus,

PNR for our experiment refers to the total number of individual photons detected

over the course of a single adaptive step, each detected one at a time.
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B.2 APD After-Pulsing Model

After-pulsing is an undesired effect where an avalanche photo-diode (APD) outputs

more than one “click” when just a single photon is present [263]. When the APD

detects a single (real) photon, it triggers an electron avalanche and results in the APD

outputting a macroscopic electrical pulse followed by a “dead-time” where no photons

may be detected. However, electrons can become trapped after a detection event and

the trapped electrons are released upon recharging of the APD after the dead-time and

trigger a second “fake” detection, or after-pulse, with probability PAP . Furthermore,

this effect can again trigger itself if another electron is trapped during the avalanche

due to the “fake” detection, causing three “clicks” from a single real photon, and

so on. This effect of multiple output pulses following the detection of a single real

photon is known as after-pulsing. Although complex after-pulsing models have been

developed [264], we model this process in a simple and intuitive way. This simple

model works well for our “effective” PNR detector where the precise detection time of

a photon is not recorded and we use just the information of whether or not photons

were detected within a pulse for non-adaptive strategies, or within a single adaptive

step. If the measurement strategy receives a single “click”, then that detection must

be from a single real photon. If the there are two “clicks” then that could have

resulted from either two real photons, or a single real photon and a single after-pulse.

Thus, the probability of receiving two “clicks” is modified as: P̃ (2) = P (2) +P (1)PAP

where P (n) is the probability of there being n real photons in the state |αk − β〉 the

APD is measuring. In a similar way, there are four ways to receive three “clicks”

comprising of real (R) photons and after-pulses (A): {RRR,RRA,RAR,RAA}. Thus,

the probability of receiving three “clicks” is P̃ (3) = P (3)+2P (2)PAP +P (1)P 2
AP . Note

it is impossible to have an after-pulse without first detecting a real photon, i.e. the

outcomes {ARR,AAR,ARA,AAA} are impossible, and it is also impossible to have

an after-pulse given a single “click”. This procedure can be extended to higher order

photon detection events but when incorporating after-pulsing into our experimental

model, we only use P̃ (2) and P̃ (3). We determined the after-pulsing probability for our
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detector to be PAP = 1.10× 10−2 using time-delayed photon counting measurements.

B.3 Limitations of the Optimally Inconclusive

Measurement

We implement the optimally inconclusive measurement in Chapter 2.3 using the optimal

waveform u(t) for the displacement operation. The ratio of the LO mean photon

number to the input mean photon number R = |u(t)|2/|α|2 is ideally infinite [53,62,90].

However, the maximum value of R that we experimentally implement is R = 50 due to

the finite extinction ratio of ≈20 dB of the amplitude modulator (AM) in the LO arm

of the interferometer, which corresponds to a non-ideal AM fringe visibility of ≈ 0.980.

We calibrate the LO intensity such that the maximum transmission through the LO

AM corresponds to |β|2 = max(|u(t)|2) and then a particular voltage is applied such

that |β|2 = |α|2 for calibration. However, the properties of the AM slightly drift over

time and the AM changes the polarization of the light (thus degrading the interference

visibility) when very close to the bottom of the AM fringe, i.e. at large modulation

values due to large R. Therefore, we fix R = 50 to reliably implement the optimally

inconclusive strategies even though an extinction ratio of 20 dB implies that R = 100

is possible.

Figure B.1(a) shows the effect of different values of R on the performance of

the optimally inconclusive receiver with our experimental parameters. The blue,

orange, and yellow lines show the error probability PE as a function of the inconclusive

probability PI for strategies with |α|2 = 0.2, 0.4, and 0.6, respectively. The dashed

lines shows the results for R =∞ and the solid lines show the results for R = 50 as

in our implementation. We find that the main effect of a finite value of R is that

the receiver is unable to implement the optimally inconclusive measurement near

the “middle” of each curve in Fig. B.1(a), e.g. 0.31 < PI < 0.45 for |α|2 = 0.2. We

characterize this effect as a gap g in the {PI , PE} curves as g = (∆PI)
2 + (∆PE)2
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Figure B.1: (a) Expected results for the optimal inconclusive measurement with imperfections
and a fixed maximum LO ratio R = 50 (solid) compared to an ideal measurement (except
η = 0.72) with R = ∞ (dashed). The finite value of R causes a gap g in the curves near
the middle. (b) Size of the gap g as a function of R for the different mean photon numbers.
Fitting reveals that this gap scales as: g ∝ 1/R for all |α|2.

where ∆PI and ∆PE are shown by the dashed gray lines. Figure B.1(b) shows how

g scales with R for |α|2=0.2, 0.4, and 0.6 in blue, orange, and yellow, respectively.

We find that the gap scales as g ∝ 1/R for all the mean photon numbers from curve

fitting.

B.4 Phase Estimation Algorithm

Part of the phase estimation algorithm discussed in Section 5.3 reconstructs the

likelihood function L(dj|φ, |β|opt, θopt) given a particular detection dj, displacement

magnitude |β|opt, and displacement phase θopt. The algorithm leverages both the

symmetries and circular properties of the likelihood functions for photon counting

to efficiently reconstruct L(dj|φ, |β|opt, θopt). The FPGA performs a “mirror & select”

operation in order to effectively implement a circular shift of L(dj|φ, |β|opt, 0) by the

phase of the displacement θopt to obtain L(dj|φ, |β|opt, θopt), which is easy to implement

in MATLAB but more difficult in an FPGA. First, the algorithm retrieves half of the

likelihood function L(dj|φ, |β|opt, 0) from the internal FPGA memory corresponding
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to the range φ = [0, π] given dj and |β|opt, but with no displacement phase. Next, this

half of a single likelihood function is mirrored to obtain L(dj|φ, |β|opt, 0) over the phase

range φ = [0, 2π], and then mirrored again to obtain the likelihood over φ = [0, 4π],

which is simply two copies of L(dj|φ, |β|opt, 0) for φ = [0, 2π] side by side. Finally,

the FPGA selects the phase range φ = [2π − θopt, 4π − θopt] of the doubly-mirrored

likelihood function. Thus effectively implementing a circular shift such that the

selected region corresponds to the phase range φ = [0, 2π] of the complete likelihood

function L(dj|φ, |β|opt, θopt) for the detection result dj given βopt = |βopt|eiθopt .

The phase estimation algorithm calculates the posterior distribution P
(j)
post(φ) and

also implements a quasi-normalization of P
(j)
post(φ) in order to maintain enough precision

for each probability in the distribution. This normalization step multiplies the entire

distribution by an amount equal to 2p, where p is an integer which corresponds

to the number of leading zeros in the binary representation of P
(j)
post(φ̂MAP ). We

multiply P
(j)
post(φ) by a power of two because this is equivalent to shifting the binary

representation of the probabilities p bits to the left. Shifting the posterior probabilities

is an easy operation to efficiently implement in the FPGA and allows for maintaining

the maximum amount of precision in the probability distributions. For example, if

originally P
(j)
post(φ̂MAP ) ≈ 0.174 then it has a binary representation of P

(j)
post(φ̂MAP ) =

[0010110010], and there are two leading zeros (p = 2) so the entire posterior distribution

is multiplied by 2p = 22 such that now P
(j)
post(φ̂MAP ) = [1011001000] = 0.695. The quasi-

normalization forces the maximum posterior probability P
(j)
post(φ̂MAP ) to be in between

0.5 and 1.0 and is completed in just a few nanoseconds. This quasi-normalization

also allows the FPGA to maintain an accurate representation of the true distribution,

since probabilities with values less than 1/210 ≈ 0.001 are set equal to zero due to

only having 10 bits of precision.

The algorithm also requires the prior distribution P (j)(φ) to be actually normalized

to calculate the variance σ2 and skewness µ3. The FPGA efficiently calculates these

moments by first constructing a coarse-grained version P̃ (j)(φ) of the quasi-normalized

prior distribution P (j)(φ), which is centered at φ̂MAP and consists of 31 probabilities.
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The algorithm obtains the values of P̃ (j)(φ) by starting from φ̂MAP and taking the

values of P (j)(φ) in steps of 8 moving outwards from φ̂MAP . Thus, the 31 probabilities

in P̃ (j)(φ) consist of φ̂MAP and 15 points on either side of φ̂MAP . For example, if the

index of φ̂MAP is i = 100 (φ̂MAP = φ100) then then phase values used for P̃ (j)(φ) are:

{φ−20, φ−12, φ−4, φ4, ..., φ92, φ100, φ108, ..., φ220}, (B.1)

such that

P̃ (j)(φ) = {P (j)(φ−20), ..., P (j)(φ92), P (j)(φ100), P (j)(φ108), ..., P (j)(φ220)}. (B.2)

Due to the circular properties of the phase distributions, i.e. P (j)(φi) = P (j)(φi+256)

since P (j)(φ) = P (j)(φ+ 2π), the phase values in Eq. (B.1) are equivalent to:

{φ236, φ244, φ252, φ4, ..., φ92, φ100, φ108, ..., φ220}. (B.3)

Thus, the coarse-grained prior probability distribution P̃ (j)(φ) is obtained as:

P̃ (j)(φ) = {P (j)(φ236), ..., P (j)(φ92), P (j)(φ100), P (j)(φ108), ..., P (j)(φ220)}. (B.4)

This coarse grained prior distribution P̃ (j)(φ) is then used to efficiently calculate

the variance σ2 and skewness µ3. The calculation is done by first obtaining the

normalization factor N =
∑

k P̃
(j)(φk) and then instead of immediately normalizing

P̃ (j)(φ), we calculate the variance and skewness as:

σ2 =
1

N
×

(
31∑
k=1

φ2
kP̃

(j)(φk)

)
, (B.5)

µ3 =
1

N
×

(
31∑
k=1

φ3
kP̃

(j)(φk)

)
, (B.6)

where the summation terms are calculated prior to division by N in the FPGA. This

allows the algorithm to efficiently calculate σ2 and µ3 using only a single division

operation (which takes ≈ 200 ns) as opposed to many divisions to obtain a normalized

distribution first. We note that the quasi-normalization term 2p will actually be

canceled out due to the fact that it appears in both P̃ (j)(φ) and N . Thus, the value

of p does not actually influence σ2 and µ3, and this procedure can be applied every

adaptive measurement step.
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Genetic Optimization Algorithm

We implement an evolutionary optimization strategy in Ch. 3.2 to optimize the

alternative receiver based on the LSTM/NN architecture. Evolutionary optimization

algorithms rely on maintaining a pool of candidate solutions {Vi} where Vi is an

n-dimensional vector. We aim to find solutions which are vectors of real numbers

corresponding to all the weights and biases of the LSTM/NN architecture. Thus, we

use an evolutionary algorithm referred to as differential evolution (DE), which can be

used for functions which are discontinuous, noisy, or even time-dependent [149,150]. A

single iteration of the DE algorithm follows two basic steps: evaluation and evolution.

The first step is evaluating all the candidate solutions to obtain their respective fitness

Fi, which in our case is the error probability P
(i)
E . The value of P

(i)
E is sampled

through Monte Carlo simulations using the LSTM/NN receiver to implement state

discrimination. The second step is evolution, where the algorithm constructs a new

pool of solutions from the current pool based on each candidates fitness, hence the

term evolutionary optimization.

Algorithm 2 shows the DE algorithm we implement including how new candidate

solutions are constructed. The left column is the main DE algorithm and the right

column shows the evolution (Evolve(·)) and evaluation (Evaluate(·)) functions

used by the algorithm. Each candidate vector Vi is first initialized (left column, line
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Algorithm 2 Differential Evolution (DE) Algorithm

1: Begin DE algorithm

2: Initial: {Vi} = {Vi,initial}, Sbest = {}
3: for i← 1 to N do . Initial Fitness

4: Fi ← Evaluate(Vi, Neval)

5: end for

6: Fbest = min({Fi}), Vbest = argmin({Vi})
7:

8: loop

9: Sbest ← Best p percent of {Vi} based on {Fi}
10: for i← 1 to N do . Evolve worst candidates

11: Vi ← Evolve(Sbest) if Vi /∈ Sbest
12: Fi ← Evaluate(Vi, Neval)

13: end for

14: if min(F) < Fbest then . Check possible best

15: Vcheck ← candidate who has min({Fi})
16: F ′ ← Evaluate(Vcheck, Ncheck)

17: if F ′ < Fbest then

18: Fbest ← F ′ . Update best fitness

19: Vbest ← Vcheck . Update best candidate

20: end if

21: end if

22: end loop

1: function Evolve(Sbest)

2: a, b, c, d← Sample 4 candidates from Sbest
3: if rand(0,1)≤ pmutate then

4: ynew ← a+Nn(0, fmutate) . Mutate

5: else

6: ynew ← a+ fcross(b− c) . Crossover

7: end if

8: Vnew ← d . Initialize new candidate

9: if rand(0,1)≤0.5 then . Evolve LSTM

10: for j ← 1 to nLSTM do

11: if rand(0,1)< pevolve then

12: Vnew[j]← ynew[j]

13: end if

14: end for

15: else . Evolve NN

16: for j ← nLSTM + 1 to n do

17: if rand(0,1)< pevolve then

18: Vnew[j]← ynew[j]

19: end if

20: end for

21: end if

22: return Vnew
23: end function

24:

25: function Evaluate(Vi, N)

26: Set LSTM/NN parameters to Vi
27: PE ← Evaluate with Monte Carlo with N

28: return PE
29: end function

2) and then the all candidates are evaluated (line 3 to 5). There are three steps for

each iteration (line 9 to 21) in the differential evolution algorithm. First (line 9), the

algorithm obtains the subset Sbest ⊂ {Vi} which represents the best p percent of all

candidates based on Fi, where a smaller value of Fi is better. Each candidate not

in Sbest is then evolved (line 11) based on the candidates in Sbest. Next, the fitness

Fi each candidate Vi is evaluated (line 12) based on Neval = 103 individual state

discrimination measurements. Finally, if there is a candidate which has a fitness which

is better than the current overall best value Fbest, then it is checked/re-evaluated (line

15, 16) with Ncheck = 104 to reduce the effects of finite sampling. If the re-evaluated

fitness F ′ is better than Fbest, then Vcheck replaces the best known candidate Vbest (line

17 to 20).

The algorithm evolves each candidate vector Vi not in Sbest using the Evolve(·)

function (right column, lines 1 to 23) by first randomly selecting four “good” candidates
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{a, b, c, d} from Sbest (line 2). The type of evolution (mutation vs. crossover) is

then randomly chosen with probability pmutate = 0.5. Mutation (line 4) occurs by

constructing a temporary candidate ynew and adding n-dimensional Gaussian noise

with variance fmutate = 0.025 to candidate a: ynew = a + Nn(0, fmutate). Crossover

(line 6) occurs by constructing ynew as: ynew = a + fcross(b − c) where the strength

is controlled by fcross = 0.25. The next step is to initialize a new candidate vector

Vnew = d (line 8) and then randomly choosing to update either the part of the vector

corresponding to the LSTM parameters (line 9 to 14) or the part corresponding to

the NN parameters (line 15 to 21) with equal probability. Each parameter Vnew[j] in

the new candidate vector is replaced by the temporary candidates value ynew[j] with

probability pevolve = 0.5 (line 12 or 18). This allows for randomly evolving a random

subset of either the LSTM or NN parameters by either mutation or crossover. A

candidate vector is evaluated using the Evaluate(·) function (right column, lines 25

to 29). The first step (line 26) sets the LSTM/NN parameters to the candidate vector

Vi to be evaluated. Then (line 27) the LSTM/NN is evaluated using Monte Carlo

simulations of the state discrimination measurement with N individual experiments.

The final aspect of the optimization strategy is how each candidate vector is

initialized. If each Vi randomly initialized, then the algorithm will in general fail to

converge to a good solution even after thousands of iterations. We utilize another

machine learning technique called transfer learning to address this issue of initialization.

Transfer learning is when the network is trained on a related but different problem

and then the result of that training is used as an initialization point for the original

problem [151, 152]. We initially train the LSTM/NN using gradient descent to

approximate a non-optimized phase estimation strategy (i.e. M = 256 states vs.

M = 4 for QPSK) with only a few adaptive steps L = 5 to implement transfer learning.

This technique allows the network to learn some form of adaptive Bayesian inference

while remaining untrained for the problem we actually want to solve. We extract the

“trained” parameters Ṽ at the end of this initial training and initialize each candidate

for the DE algorithm as: Vi = Ṽ +Nn(0, 0.1).
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