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PREFACE

This Interval arithmetic or interval mathematics developed in 
1950’s and 1960’s by mathematicians as an approach to putting 
bounds on rounding errors and measurement error in 
mathematical computations. However no proper interval 
algebraic structures have been defined or studies. In this book 
we for the first time introduce several types of interval linear 
algebras and study them. 

This structure has become indispensable for these concepts 
will find applications in numerical optimization and validation 
of structural designs. 

In this book we use only special types of intervals and 
introduce the notion of different types of interval linear algebras 
and interval vector spaces using the intervals of the form [0, a] 
where the intervals are from Zn or Z+ � {0} or Q+ � {0} or R+

� {0}. 

A systematic development is made starting from set interval 
vector spaces to group interval vector spaces. Vector spaces are 
taken as interval polynomials or interval matrices or just 
intervals over suitable sets or semigroups or groups. Main 
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feature of this book is the authors have given over 350 
examples. 

This book has six chapters. Chapter one is introductory in 
nature. Chapter two introduces the notion of set interval linear 
algebras of type one and two. Set fuzzy interval linear algebras 
and their algebras and their properties are discussed in chapter 
three.

Chapter four introduces several types of interval linear 
bialgebras and bivector spaces and studies them. The possible 
applications are given in chapter five. Chapter six suggests 
nearly 110 problems of all levels.  

The authors deeply acknowledge Dr. Kandasamy for the 
proof reading and Meena and Kama for the formatting and 
designing of the book.  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 
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Chapter One 

INTRODUCTION

In this chapter we just define some basic properties of intervals 
used in this book. Throughout this book [a, b] denotes an 
interval a � b. If a = b we say the interval degenerates to a point 
a. We assume the intervals [a, b] is such that 0 � a � b. We just 
give the notations.  

Notations: Let  
IZ�  = {[a, b] | a, b � Z+ � {0}, a � b} 

IQ�  = {[a, b] | a, b � Q+ � {0}, a � b} 

IR�  = {[a, b] | a, b � R+ � {0}, a � b}. 

Clearly IZ� � IQ� � IR � . Consider I
nZ  = {[0, r] | r � Zn} is the 

set of intervals in Zn.
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However from the context one can easily follow from which 
set the intervals are taken. 

While working we further refrain and use mainly intervals 
of the form [0, a] where a � Zn or Z+ � {0} or Q+ � {0} or R+

� {0}. We add intervals as [[a, b] + [c, d] = [ac, bd]  
In case of [0, a] type of intervals [0, a] + [0, b] = [0, a + b] 

and [0, a]. [0, b] =[0, ab] for a, b in Zn or Z+{0} or so on. We 
use only interval of the form [a, b] where a < b for in our 
collection of intervals we do not accept the degenerate intervals 
except 0. When we say A = (aij) is an interval matrix the entries 
aij are intervals. 

For example  
[0,5] [0,3]
[0,1] [0,4]
[0,2] [0,7]

� �
	 

	 

	 
� �

is a 3  2 interval matrix.
 For more about these concepts please refer [52]. 
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Chapter Two  

SET INTERVAL LINEAR ALGEBRAS OF 

TYPE I AND THEIR GENERALIZATIONS 

In this chapter we for the first time introduce the new notion of 
set interval linear algebras of type I and their fuzzy analogue. 
This chapter has two sections. 

2.1 Set Interval Linear Algebras of Type I 

In this section we define two classes of set interval linear 
algebras one built using just subsets from Z or Q or R or C or Zn

(n < �) and the other built using intervals from Z+ � {0} or Q+

� {0} or R+ � {0} or Zn discussed in chapter one of this book. 
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DEFINITION 2.1.1: Let S denote a collection of intervals of the 
form {[xi, yi]; yi, xi � Z; 1 � i � n} (This set S need not be closed 
under any operation just an arbitrary collection of intervals). 
Let F be a subset of Z+� {0} If for every c � F and s = [xi, yi] �
S, we have cs = [cxi, cyi] � S; then we define S to be a set 
interval integer vector space over the subset F. If the number of 
distinct elements in S is finite we call S to be a finite set interval 
integer vector space; if |S| = � we say S is an set integer 
interval vector space of infinite order. 

 We will illustrate this situation by some examples. 

Example 2.1.1: Let S = {[2n, 2m], n < m | m, n � Z+} � IZ� ,
take F = {2, 4, 8, …, 212} � Z. S is a set integer interval vector 
space of infinite order over the set F. 

Example 2.1.2: Let S = {[1, 2], [0, 0], [4, 7], [–2, 3], [4, 21],  
[–45, 37] [3, 7], [147, 2011]} � ZI be a subset of integer 
intervals. Take F = {0, 1} � Z. We see S is a set integer interval 
vector space over the set F. Clearly S is of finite cardinality and 
o(S) = |S| = eight. 

Now having seen the structure of set integer interval vector 
space of finite and infinite dimension we now proceed on to 
define set rational interval vector space. 

DEFINITION 2.1.2: Let S � QI or �
IQ  be a subset of intervals of 

QI or �
IQ . Let F � Z+� {0} or Q+� {0} be a subset of Z+ or Q+;

(according as S is from �
IQ  or QI).

If for every c � F and s = [x, y] � S we have c s = [cx, cy] and 
sc = [xc, yc] is in S then we define S to be a set rational interval 
vector space over F. 

 If the number of distinct elements in S is finite we say the 
cardinality is finite otherwise infinite. Throughout this chapter 
unless otherwise stated the set F over which the vector spaces 
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are defined is assumed to be subsets of Z+� {0} or Q+� {0} or 
R+� {0} that is F � Z+� {0} (or Q+ � {0} or R+ � {0}). 

We shall illustrate this situation by some examples.  

Example 2.1.3: Let

S = 1 1, 3 n
n n 2

� �� � � � �� �	 
�� �� �
� IQ� ,

be a subset of intervals. Take F = {0, 1} � Q. Clearly S is a set 
rational interval vector space over the set S of infinite 
cardinality.  

Example 2.1.4: Let S =

7 5 17 22 121 231,9 , ,4 , ,19 , ,40 ,[0,0], ,149 , ,504
2 3 5 7 2 4

� �� � � � � � � � � � � �
� �	 
 	 
 	 
 	 
 	 
 	 
� � � � � � � � � � � �� �

� IQ�  be an interval subset of IQ� .

It is easily verified S is a set rational vector space over the set F 
= {0, 1} and the cardinality of S is seven. 

DEFINITION 2.1.3: Let S � �
IR  (or RI) be the subset of intervals 

of reals. Let F � Z+ or Q+ or R+ (Z or Q or R). If for all s � S 
and c � F, sc and cs is in S then we define S to be a set real 
interval vector space over F. If the number of elements in S is 
finite we say S is of finite order otherwise S is of infinite order. 

We shall illustrate both the situations by some examples. 

Example 2.1.5: Let

S = � �n 5,n 13 n Z {0}�� � � �� �  = IR� ,

be the subset of intervals from the positive reals. Take F = {1, 2, 
3, 4, …, 256} � Z+. S is an infinite set real interval vector space 
over the set S. 
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Example 2.1.6: Let

S = n n, 1 n
7 2

� �� �� �� � �� �	 

� �� �� �

� IR �

be a subset of intervals. Take F = Z+ � R+. Clearly S is an 
infinite set real vector space over F.  

Example 2.1.7: Let S = {[0, 0], [0, 1], [ 2, 7 ], [- 3 , 4], 
[ 13, 43� ], [5, 8], [ 17 , 41]} � RI subset of real intervals. 
Take F = {0, 1} � R. We see S is a set real interval vector space 
over the set F. S is of finite dimension or cardinality and the 
number of elements in S is 7.  

Now we will define the concept of set modulo integer interval 
vector spaces. 

DEFINITION 2.1.4: Let S = {[x, y] / x, y � Zn, x < y} � I
nZ be a 

subset of intervals from the modulo integers. Take F � Zn to be 
proper subset of Zn. If for every c � F and all s = [x, y] � S, [cx 
(mod n), cy (mod n)] and [xc (mod n), yc (mod n)] � S then we 
say S is a set modulo integer interval vector space over a subset 
{0, 1} � Zn (n < �) any other subset S1 � Zn is choosen 
provided if x < y implies sx < sy � s � S1 and � [x, y] in S. 

We will illustrate this situation by some examples. 

Example 2.1.8: Let S = {[0, 0], [0, 1], [0, 2], [1, 1], [2, 2]} �
I
3Z  be the subset of intervals of Z3. Take F = Z3 it is easily 

verified that S is a set modulo integer interval vector space over 
Z3 = F. 

Example 2.1.9: Let S = {[0, 0], [2, 4], [4, 6], [6, 8], [8, 10]} �
I
12Z . Take F = {0, 1} � Z12. It is easily verified that S is a set 

modulo integer interval vector space over F.  

It is pertinent to mention here that all set modulo integer interval 
vector spaces are only of finite dimension.  
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Thus it is convenient to use these structures when our need is 
just finite. 

 Now we proceed onto define the notion of set complex 
interval vector spaces. 

DEFINITION 2.1.5: Let S � CI subset of intervals of complex 
numbers. Take F to be a subset of Z+� {0} or R+� {0} or Q+�
{0}. If for be the every c in F and for every s = [x, y] in S sc, cs 
� S then we call S to be a set complex interval vector space 
over the set F. 

We will illustrate this situation by some examples. 

Example 2.1.10: Let S = {[2i, 4i + 2], [7, 3i + 13], [0, 0], [14i + 
1, 27i + 4]} � CI be a subset of intervals from CI. Choose F = 
{0, 1}; we see S is a set complex interval vector space of 
cardinality four over the set F = {0, 1}. 

Example 2.1.11: Let S = {[ni, ni + n] | n � Z+} � CI be a subset 
of intervals from CI. Choose F = {1, 2, …, 24} we see S is an 
infinite set complex interval vector space over F.  

 We now proceed onto describe substructures in these 
algebraic structures. 

DEFINITION 2.1.6: Let S � �
IZ � (ZI) be a set integer interval 

vector space over the set F � Z+ we say a proper integer 
interval subset P � S to be a set integer interval vector 
subspace of S over F if P itself is a set integer interval vector 
space over F. 

We will illustrate this by some examples. 

Example 2.1.12: Let S = {[0, 0], [3, 9], [4, 14], [-5, 17], [13, 
19], [41, 53]} � ZI be an integer interval subset of ZI. Take F = 
{0, 1} � Z, S is a set integer interval vector space over F. Take 
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P = {[0, 0], [41, 53], [–5, 17], [3, 9]} � S, P is a set integer 
interval vector subspace of S over the set F. 

Example 2.1.13: Let S = {[0, 0], [(2m)n, (2m)n+1]; 1 � n, m �
�} � IZ� ; S is a set integer interval vector space over the set F = 
{0, 2, 22, …, 240} � Z+. Choose P = {[0, 0], [(4m)n, (4m)n+1 ] | 1 
� n, m � �} � S; P is a set integer interval vector subspace of S 
over F. 

Now we can as in case of set integer interval vector spaces 
define for set real (complex, rational, modulo integers) set real 
interval vector spaces (complex, rational, modulo integer) 
interval vector subspaces with appropriate simple changes. 

 We shall however illustrate this situation by some 
examples. 

Example 2.1.14: Let S = {[0, 0], [2, 2], [1, 1], [0, 1], [0, 2], [3, 
3], [0, 3]} � I

4Z  be a set modulo integer interval vector space 
built using Z4. Take F = {0, 1, 2, 3} � Z4. We see S is a set 
modulo integer interval vector space over F. 

Take P = {[0, 0], [1, 1], [2, 2], [3, 3], [0, 2]} � S; P is a set 
modulo integer interval vector subspace of S over F. 

Example 2.1.15: Let S = {[0, 0], [1, 2 ], [1, 3 ], [ 2 , 3 ], 
[ 17, 23 ]} � RI be a set real interval vector space over the set 
F = {0, 1}. Choose P = {[0, 0], [1, 3 ], [ 2 , 3 ]} � S; P is a 
set real interval vector subspace of S over F.  

Example 2.1.16: Let

S = {[0, 0], 3 5,
2 2
� �
	 
� �

, 5 7,
2 2
� �
	 
� �

, …, 43 45,
2 2

� �
	 
� �

} � QI

be a set rational interval vector space over the set F = {0, 1}.  

Take
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P = {[0, 0], 5 7,
2 2
� �
	 
� �

, 9 11,
2 2
� �
	 
� �

, 23 25,
2 2

� �
	 
� �

, 35 37,
2 2

� �
	 
� �

, 41 43,
2 2

�� �
�	 
� ��

� S; it is easily verified P is a set rational interval vector 
subspace of S over the set F = {0, 1}. 

Example 2.1.17: Let S = {[n 2 , n 23 ], [0, 0] | n � Z+} � RI

be a set real interval vector space over the set F = {0, 1}. 
Choose P ={[3n 2 , 3n 23 ], [0, 0]} � S; P is a set real 
interval vector subspace of S over the set F = {0, 1}.

Example 2.1.18: Let S = {[mi, (m + 3) + (m + 3)i], [0, 0] | m �
Z+} � CI be a set complex interval vector space over the set F = 
{0, 1}. Choose P = {[5mi, [5(m + 3) + 5(m + 3)i] | m � Z+} � S 
� CI. P is a set complex interval vector subspace of S over F. 

Now we call a set integer (real or complex or rational or modulo 
integer) interval vector space S to be a simple set integer (real or 
complex or rational or modulo integer) interval vector space if it 
has no proper set integer (real or complex or rational or modulo 
integer) interval vector subspace P; where P � [0, 0] or S over F. 

 We will illustrate by some simple examples the notion of set 
integer (real or complex or rational or complex or modulo 
integer) simple vector space. 

Example 2.1.19: Let S = {[0, 0], [5, 7]} be a set integer interval 
vector space over the set F = {0, 1}. We see S is a simple set 
integer interval vector space over F.  

Example 2.1.20: Let S = {[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 
5], [0, 6]} � I

7Z , be a set modulo integer interval vector space 
over the set F = {0, 1, 2, 3, 4, 5, 6}. We see S is a simple set 
modulo integer interval vector space over F. 
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Example 2.1.21: Let S = {[0, 0], [ 5 7,2 2 ]} � QI be a rational 

interval vector space over the set F = {0, 1}. S is a simple set 
rational interval vector space over F = {0, 1}.

Example 2.1.22 : Let S = {[0, 0], [1, 3 + i]} be a set complex 
interval vector space over the set F = {0, 1}. S is a simple set 
complex interval vector space over F = {0, 1}.  

Example 2.1.23 : Let S = {[0, 0], [ 7, 3 40� ]} be a set real 
interval vector space over the set F = {0, 1}. Clearly S is a 
simple set real interval vector space over F. 

We now proceed onto define the new notion of subset integer 
(real or complex or rational or modulo integer) interval vector 
subspace defined over a subset T � F of a set integer (real or 
complex or rational or modulo integer) interval vector space 
defined over F.  

DEFINITION 2.1.7: Let S � ZI be a set integer interval vector 
space defined over the set F � Z+ � {0}. Suppose P � S (P a 
proper subset of S, P � [0, 0] or P � S) is a set integer interval 
vector space over the subset T � F (T � (0) or T � P and |T| > 
1) then we define P to be a subset integer interval vector 
subspace of S over the subset T of F. Similar definition can be 
made in case of set real or complex or rational or modulo 
integer interval vector spaces with suitable modifications.

However we will illustrate this situation by some examples. 

Example 2.1.24: Let S = {[0, 0] [0, 1] [0, 2], …, [0, n] | n < �}
� ZI be a set integer interval vector space over the set F = {0, 1, 
2, 3, 4}. Choose P = {[0, 0], [0, 2], [0, 4], …, [0, 2n]} � S. P is 
a subset integer interval vector subspace of S over the subset T 
= {0, 2} � F. 

Example 2.1.25: Let S = {[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 
1], [2, 2], [3, 3], [4, 4]} be a set modulo integer interval vector 
space over the set F = {0, 1, 2, 3, 4} � Z5. Choose P = {[0, 0], 
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[0, 1], [0, 2], [0, 3], [0, 4]} � S, P is a subset modulo integer 
interval vector subspace of S over the subset T = {0, 1} � F.

We now proceed onto define the new notion of pseudo simple 
set integer (real or rational or complex modulo integer) simple 
interval vector spaces. 

DEFINITION 2.1.8: Let S � ZI (or QI or I
nZ or RI or CI) be a set 

integer (rational or modulo integer or real � Z+ � {0} or 
complex) interval vector space over the subset F � Z+ � {0}. 
Suppose S has no proper subset integer (rational or modulo 
integer or real) interval vector subspace over a proper subset T 
of F then we define S to be a pseudo simple set integer (rational 
or modulo integer or real) interval vector space over F. 

If S is both a simple set interval vector space as well as pseudo 
simple set interval vector space over F then we define S to be a 
doubly simple set interval integer (real or rational or modulo 
integer) vector space. 

We will give some illustrations before we proceed onto prove 
some properties. 

Example 2.1.26: Let S = {[0, 0], [0, 1], [0, 2], …, [0, 415]} �
IZ�  be a set integer interval vector space over the set F = {0, 1}. 

Clearly S is a pseudo simple set integer interval vector space 
over F. However S is not a simple integer interval vector space 
as S has several set integer interval vector subspaces over F = 
{0, 1}. Thus S is not a doubly simple set integer interval vector 
space over F = {0, 1}.

In view of this we have the following theorem. 

THEOREM 2.1.1: Let S � ZI (or QI or I
nZ or RI or CI) be a set 

integer (rational or modulo integer or real or complex) interval 
vector space over the set F = {0, 1}. Then S is a pseudo simple 
set integer (rational or modulo integer or real or complex) 
interval vector space over the set F = {0, 1}.
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Proof: The result follows from the fact that the set F = {0, 1} 
has no proper subset T of order greater than or equal to two. 
Thus we cannot have any subset integer (rational or modulo 
integer or real or complex) vector space over F = {0, 1}. Hence 
the theorem.  

THEOREM 2.1.2: Let S = {[0, 0], [x, y]} � ZI {or QI or I
nZ or RI

or CI) be a set integer (rational or modulo integer or real or 
complex) interval vector space over the set F = {0, 1}. Then S is 
a doubly simple set integer (rational or modulo integer or real 
or complex) interval vector space over the set F = {0, 1}. 

Proof: Obvious from the very definition and the cardinalities of 
S and F. S is a doubly simple set integer (rational or modulo 
integer or real or complex) interval vector space over F. 

Now we will give an example of a doubly simple set interval 
integer vector space. 

Example 2.1.27: Let S = {[0, 0], [ 7,3 19 ]} � RI be a set real 
interval vector space over the set F = {0, 1}. Clearly S is a 
doubly simple set real interval vector space over F.  

We now proceed onto define the notion of set interval vector 
space interval linear transformations.  

DEFINITION 2.1.9: Let S and T be any two set integer (rational 
or modulo integer or real or complex) interval vector spaces 
defined over the same set F. We call a map TI : S � T which 
maps intervals of S into intervals of T and TI(cs) = cT1(s) for all 
s � S and c � F to be a interval linear transformations of S to T.  
 The collection of such interval linear transformations of S 
to T is denoted by IHomF (S, T). 

We will give some illustrations of this definition. 
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Example 2.1.28: Let S = {[0, 0], [0, 2], …, [0, 45]} and T = {[0, 
0], [1, 2], [1, 3], …, [1, 45]} be two set integer interval vector 
spaces defined over the set F = {0, 1}.  
Define TI : S � T by  
  TI {[0, 0]}  =  {[0, 0]} 
  TI {[0, n]}  =  {[1, n]}   2 � n � 45. 

TI is an interval linear transformation of S to T. 

Example 2.1.29: Let
S = {[0, 0], [ 2, 7 ], [ 7, 11 ], [ 11, 43 ], [ 43,20 53 ]} 
and T = {[0, 0], [7, 9], [3, 11], [24, 45], [10, 29]} be two set real 
interval vector spaces defined over the set F = {0, 1}. 
Define TI ([0, 0]) = [0, 0]. 
  TI ([ 2, 7 ])   =  [7, 9] 
  TI ([ 7, 11 ])   =  [3, 11] 
  TI ([ 11, 43 ])  =   [3, 11] and  
  TI ([ 43,20 45 ])  =  [24, 45]. 
 TI is an interval linear transformation of S to T.  

It is important to mention here that S and T can be any type of 
set interval vector space built using integers or reals or complex 
or so on but only criteria we need is that both should be defined 
over the same set F. This is evident from the following example. 
 As we do not demand any thing from the set map TI except 
TI (cs) = cTI (s) for every c � F and s � S.  
 As in case of usual vector spaces we say a interval linear 
transformation is an interval linear operator if S = T in the 
definition 2.1.9. 
 Now having seen interval linear transformation TI we can 
define kernel of TI only if [0, 0] � S otherwise the notion of 
kernel of TI remains undefined.  

We will illustrate this by some examples.  

Example 2.1.30: Let S = {[2n, 2n+4] | n = 1, 2, …, �} and T = 
{[4n, 4n+4] | n = 1, 2, …, �} be two set integer interval vector 
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spaces defined over the set F = {4, 42, 43, 44, 45}. Define TI : S 
� T by TI [2n, 2n+4] = [4n, 4n+4], n = 1, 2, …, �.
 It is easily verified that TI is a interval linear transformation 
of S to T. 
 We see the notion of kernel TI has no meaning as [0, 0] � S.

Now we proceed onto give one example of a linear interval 
operator (interval linear operator) on a set interval vector space. 

Example 2.1.31: Let S = {[3n, 3n+3] | n = 1, 2, …, �} be a set 
integer interval vector space over the set F = {0, 1}. Define TI : 
V � V by TI [3n, 3n+3] � [32n, 32n+3], n = 1, 2, …, �.
 It is easily verified that TI is a interval linear operator on V. 
Further TI has kernel.  

Next we proceed onto define set interval linear algebras built 
using integer intervals, real intervals and so on.  

DEFINITION 2.1.10: Let S1, S2, …, Sk be a collection of subset 
integer (real, complex, rational or modulo integer) interval 
vector subspaces of S defined over the subsets T1, …, Tk of F 
respectively (that is each Si is a subset interval vector subspace 
of S over the subset Ti of F; i=1, 2, …, k). If W = � Si � � and T 
= �Ti � � then we call W to be a sectional subset interval vector 
sectional subspace of S over T. 

We will illustrate this situation by an example. 

Example 2.1.32: Let S = {[0, 2n], [0, 6n], [0, 5n], [0, 11n], [0, 
14n] / n = 0, 1, 2, …, �} be a set integer interval vector space 
over the set F = Z+.
 Take S1 = {[0, 2n] / n = 0, 1, 2, …, �} S2 = {[0, 6n] | n = 0, 
1, 2, …, �}, S3 = {[0, 5n] / n = 0, 1, 2, …, �}, S4 = {[0, 14n] / n 
= 0, 1, 2, …, �} and S5 = {[0, 11n] / n = 0, 1, 2, …, �} be 
subset integer interval vector subspaces of S over the subsets T1
= 2Z, T2 = 3Z, T3 = 5Z, 7Z = T4 and T5 = 11Z respectively. 
Clearly W = � Si � � and T = � Ti � �. Hence W is a sectional 
subset interval vector sectional subspace of S over T � F.



23

We have the following interesting theorem the proof of which is 
left as an exercise for the reader. 

THEOREM 2.1.3: Every sectional subset interval sectional 
vector subspace W of the set interval vector space S over the set 
F is a subset interval vector subspace of a subset F, but not 
conversely.  

We can as in case of set vector spaces define the generating 
interval set of a set interval vector space. 

DEFINITION 2.1.11: Let S be a set interval vector space built 
using interval integers or reals or rationals or complex or 
modulo integers over the set F. We say a subset of intervals B of 
S generates S if every interval s of S can be got as cs some c � F 
sj � csi and si � csj for si � sj; si, sj � B and c � F. B is called the 
generating interval set of S over F.  

We will illustrate this by some simple examples. 

Example 2.1.33: Let S = {[0, 2n], [0, 3n], [0, 5n], [0, 7n] | n = 0, 
1, 2, …, �} be a set integer interval vector space over the set F 
= {0, 1, 2, …, �}.
 Take B = {[0, 2], [0, 3], [0, 5], [0, 7]} � S; B is the 
generating interval subset of S over F. 

Example 2.1.34: Let S = {[2n, 3n], [5n, 7n], [11n, 13n], [15n, 
29n], [12n, 31n] | n = 0, 1, 2, …, �} be a set integer interval 
vector space over the set F = Z+ � {0}. Take B = {[2, 3], [5, 7], 
[11, 13], [15, 29], [12, 31]} � S, B is the interval generating 
subset of S over the set F.

We as in case of set vector spaces say a proper interval subset B 
of a set interval vector space to be linearly independent interval 
set if x, y � B then x � cy or y � dx ; c, d � F. If the interval set 
B is not linearly independent then we say B is a linearly 
dependent interval set. 
 We see in the example 2.1.34, B is a linearly independent 
subset of S. If we take D = {[2, 3], [8, 12], [5, 7], [10, 14]} � S. 
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D is not a linearly independent interval set as [8, 12] = 4 [2, 3] 
and [10, 14] = 2 [5, 7] for 4, 2 � Z+ � {0}.  

It is left as an exercise for the reader to prove the following 
theorem. 

THEOREM 2.1.4: Let S be a set interval vector space over the 
set F. Let B � S be a generating interval set of S over F then B 
is a linearly independent interval set of S over F. Further if S, P 
and V be any three set interval vector spaces over the set F (S, P 
and V may be integer interval or real interval or complex 
interval or rational interval or modulo integer interval) such 
that if TI and MI be interval linear transformations where   
     TI : S � P
and     MI : P � V.  
Then   
  TI o MI : S � V. 
That is  (TI o MI) (s) (for s � S)

   =  MI (TI (s)) 
   =  MI (p) (p � P)
   =  v; v � V; 

is a interval linear transformation for S to V.
 We can define invertible interval linear transformation of TI

where TI: S � P then 1�
IT : P � S and derive related properties.  

 It is pertinent to mention that we cannot define for these set 
interval vector spaces set interval linear functional; as F the set 
over which S is defined is not an interval set.  

Now we proceed onto define the notion of set interval linear 
algebras using integer intervals or real intervals or rational 
intervals or complex intervals or modulo integer intervals.  

DEFINITION 2.1.12: Let S be a set integer (real or complex or 
rational or modulo integer) vector space defined over the set F. 
If S is closed under the operation ‘+’ of interval addition i.e., if 
s = [x, y] and s1 = [a, b], s + s1 = [c, d] is in S for every s, s1 �
S and c (s+s1) = cs + cs1 for all s, s1 � S and c � F then we call 
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S to be a set integer (real or complex or rational or modulo 
integer) interval linear algebra over F. 

We will first illustrate this situation by some examples. 

Example 2.1.35: Let S = {[0, 2n] | n = 0, 1, 2, …, �} � IZ� be a 
set interval linear algebra over the set F = {0, 1}. Clearly S is 
closed under interval addition. For if x = [0, 2n] and y = [0, 2m] 
are in S then  
  x + y  =  [0, 2n] + [0, 2m]  
    =  [0 + 0, 2n + 2m] 
    =   [0, 2 (n + m)] � S. 

Example 2.1.36: Let S = {[0, 5 n] | n = {0, 1, 2, …, � }} �

IR�  be a set interval linear algebra over the set F = {0, 1, 2, …, 
�}.

Example 2.1.37: Let S = {[5n, 9n] | n = 0, 1, 2, …, �} is a set 
interval linear algebra over the set F = {0, 1}. For if x = [5, 9] 
and y = [20, 36] then x + y = [5, 9] + [20, 36] = [25, 45] = [5.5, 
9.5] � S. 

Now having seen examples of set interval linear algebras 
defined using real intervals or integer intervals or rational 
intervals or modulo integer intervals or complex intervals, now 
we proceed on to define set real (or complex or integer or 
rational or modulo integer) interval linear subalgebra. 

DEFINITION 2.1.13: Let S be a set interval linear algebra using 
(integer intervals or real intervals or complex intervals or 
rational intervals or modulo integer intervals) over the set F. 
Suppose P � S is a proper subset of S and P itself is a set 
interval linear algebra over F then we define P to be a set 
interval linear subalgebra of S over F. 

We will illustrate this by some examples. 
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Example 2.1.38: Let S = {[n(1 + i), n (20 + 20i)] | n � Z+} be a 
set complex interval linear algebra over the set F = {1, 2, …, 
�}. Take P = {[4n(1 + i), 4n(20 + 20i)] | n � Z+} � S; P is a set 
complex interval linear subalgebra of S over F. 

Example 2.1.39: Let S = {[21n, 43n] | n = 0, 1, 2, …, �} be a 
set interval linear algebra over the set F = Z+. Let P = {[21  5n, 
43  5n] | n = 0, 1, 2, …, � } � S. P is a set interval linear 
subalgebra of S over the set F = Z+.

We illustrate this situation by some examples. 

Example 2.1.40: Let S = {[0, 7 n] /n = 0, 1, 2, …, �} be a set 
real interval linear algebra over the set F = {0, 1}. Take P = {[0, 

7  5n ] / n = 0, 1, 2, …, �} � S; P is a set real interval linear 
subalgebra of S over F. 

Example 2.1.41: Let S = {[n (2 + 3i), n (12 + 17i)] | n = 0, 1, 2, 
…., �} be a set complex interval linear algebra over the set F = 
{0, 1}. Choose P = {[6n(2 + 3i), 6n(12 + 17i)] | n = 0, 1, 2, …, 
�} � S, P is a set complex interval linear subalgebra of S over 
F.

Now we proceed onto define subset interval linear subalgebra 
built using integer intervals or complex intervals or real 
intervals or rational intervals or modulo integer intervals. 

DEFINITION 2.1.14: Let S be a set integer (real or complex or 
rational or modulo integer) interval linear algebra over the set 
F. Let P � S be a proper subset of S (P � � and P � S); if P is a 
set integer (real or complex or rational or modulo integer) 
interval linear algebra over a proper subset T of F (T � F) then 
we define P to be subset integer (real or complex or rational or 
modulo integer) interval linear subalgebra of S over the subset 
T of F. 

We will illustrate this situation by some examples.  
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Example 2.1.42: Let S = {[0, (3 + 17 )n] be such that n = 0, 1, 
2, …, �} be a set real interval linear algebra over the set F = {0, 
1, 2, …, n = �}. Choose P = {[0, (3 + 17 )n] | n = 0, 2, 4, 6, 8, 
…., �; that is n is even} � S; P is a subset real interval linear 
subalgebra of S over the subset T = {4n | n = 0, 1, 2, …, �} � F. 

Example 2.1.43: Let S = {[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 
5]} be a set modulo integer linear algebra over the set F = {0, 1, 
2, 3, 4, 5}. Choose P = {[0, 0], [0, 2], [0, 4]} � S, P is a subset 
modulo integer Z6 interval linear subalgebra of S over the subset 
T = {0, 2, 4} � F.

Now if we have a set interval linear algebra S built over the 
(real intervals or rational intervals or complex intervals or 
modulo integer intervals) over the set F and if S has no proper 
set interval linear subalgebra over F then we define S to be 
simple set interval linear algebra over F. If S has no subset 
interval linear subalgebra over any proper subset T of F then we 
define S to be pseudo a simple set interval linear algebra. If S is 
both a simple set interval linear algebra and a pseudo simple set 
interval linear algebra then we define S to be a doubly simple 
set interval linear algebra. 

We will illustrate this by some simple examples. 

Example 2.1.44: Let S = {[0, 0], [0, 1], [0, 2] [0, 3], [0, 4]} �
Z5I be a set modulo integer 5 interval linear algebra over the set 
F = {0, 1, 2, 3, 4} then S is a simple set modulo integer 5 
interval linear algebra. Infact S is also a pseudo simple set 
modulo integer 5 interval linear algebra. Thus S is a doubly 
simple set modulo integer 5 interval linear algebra. 

Consequent of this we give a class of doubly simple set interval 
linear algebras. 

THEOREM 2.1.5: Let S = {[0, 0], [0, 1], ..., [0, p-1] / p is a 
prime and intervals are from I

pZ } be a set modulo integer p 
interval linear algebra over F = {0, 1} then S is a doubly simple 
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set modulo integer p interval linear algebra. S is a doubly 
simple set modulo p integer interval linear algebra.  

 The proof is left as an exercise for the reader.  

Now as in case of set interval vector spaces we in case of set 
interval linear algebras define interval linear transformations. 

DEFINITION 2.1.15: Let S and M to two set integer (real or 
complex or rational or modulo integer) interval linear algebras 
over a set F. Suppose TI is a map from S to M, TI is called a 
interval linear transformation if the following condition holds;

TI (cs + s1) = cTI (s) + TI (s1)
for all intervals s, s1 in S and for all c in F. 

It is important to mention that interval linear transformation is 
defined if and only if both the set linear algebras are defined 
over the same set F. Further set linear interval transformations 
of set interval vector spaces are different from set interval linear 
algebras.
 If in the definition 2.1.15, M is replaced by S then we call 
the set interval linear transformation to be a set interval linear 
operator on S. As in case of set interval vector spaces we define 
the notion of generating set linearly independent elements and 
set linearly dependent elements. 
 We see in case of set interval linear algebra S over F; a 
subset of intervals B � S is said to be a linearly independent 
interval subset if there is no s � B such that s can be written as

s = � i i
i

c s ; si � B and ci � F; 

otherwise we say the set B is a linearly dependent interval 
subset. We say a linearly independent interval subset B of S to 
be a generating interval subset if every s � S can be written as

s = � i i
i

c b ; ci � F and bi � B. 

 We will illustrate this situation by some examples. 
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Example 2.1.45: Let S = {[0, n 2 ] | n = 0, 1, 2, …, �} � RI be 
a set real interval linear algebra over the set F = {0, 1}. Take B 
= {[0, 2 ]} � S, B is the generating interval subset of S. 
Consider {[0, 2 ], [0, 5 2 ]} = C � S, C is a linearly 
dependent interval of S as [0, 5 2 ] = [0, 2 ] + [0, 2 ] + [0, 

2 ] + [0, 2 ] + [0, 2 ].  
 We call the set interval linear algebra S over F to be finite 
dimensional if B is a generating interval subset of S over F and 
the number of elements in B is finite; otherwise we say S is an 
infinite dimensional set interval linear algebra of over F. The 
dimension of S given in example 2.1.45 is finite and is one. 
 Interested reader can construct and study more about the 
dimension of set interval linear algebras. 

Now having seen only class of set interval linear algebras we 
now proceed onto define another new class of interval linear 
algebras.

2.2 Semigroup Interval Vector Spaces 

In this section we proceed on to define a new class of semigroup 
interval vector spaces and discuss a few of their properties. 
However every semigroup interval vector space is a set interval 
vector space and not vice versa. 

DEFINITION 2.2.1: Let S be a subset of intervals from ZI or RI

or I
nZ  or QI or CI. F be any additive semigroup with zero. We 

call S a semigroup interval vector space over the semigroup F if 
the following conditions hold good. 

1. c s � S for all c � F and for all s � S. 
2. 0s = 0 � S for all s � S and 0 � F. 
3. (c1 + c2) s = c1s + c2 s for all c1, c2 � F and s � S.

We will illustrate this situation by some examples. 



30

Example 2.2.1: Let S = {[0, 2n] | n = 0, 1, 2, …, � } be a 
semigroup interval vector space over the semigroup F = Z+ �
{0} under addition. 

Example 2.2.2: Let S = {[(1 + i)n, n (2 + 2i)n] | n = 0, 1, 2, …, 
�} be a semigroup interval vector space over the semigroup F = 
3Z+ � {0} under addition.  

Example 2.2.3: Let S = {[0, 0], [0, 2], [0, 4], [0, 8], [0, 6], [0, 
10], [0, 12], [0, 14], [0, 16], [0, 18]} be a semigroup interval 
vector space over the semigroup F = Z20 (semigroup under 
addition modulo 20). 

Example 2.2.4: Let S = {[0, 0], [0, 3]} � I
9Z  be a semigroup 

interval vector space over the semigroup F = {0, 3, 6} addition 
modulo 9. 

Now we proceed on to define semigroup interval vector 
subspace of S. 

DEFINITION 2.2.2: Let S be a semigroup interval vector space 
over the semigroup F. Suppose � � P � S (P � S a proper subset 
S) is a semigroup interval vector space over the semigroup F 
then we define P to be a semigroup interval vector subspace of 
S over the semigroup F.

We will illustrate this situation by some examples. 

Example 2.2.5: Let S = {[0, 0], [0, 1], [0, 2] [0, 3], [0, 4], [0, 5], 
[0, 6], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11]} be a semigroup 
interval vector space over the semigroup F = {0, 2, 4, 6, 8, 10} 
� Z12 addition modulo 12. 

 Take P = {[0, 0], [0, 4], [0, 8]} � S, P is a semigroup 
interval vector subspace of S over the semigroup F.

Example 2.2.6: Let S = {[0, n 17 ] | n = 0, 1, 2, …, �} be a 
semigroup interval vector space over the semigroup F = 3Z+ �
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{0} under addition. Take P = {[0, 4n 17 ] such that n = 0, 1, 2, 
…, �} � S; P is a semigroup interval vector subspace of S over 
the semigroup F. 

If a semigroup interval vector space S over the semigroup S has 
no proper semigroup interval vector subspace over F other than 
P = {[0, 0]}, then we call S to be a simple semigroup interval 
vector space over F.  
We will illustrate this situation by some examples. 

Example 2.2.7: Let S = {[0, 0], [0, 1], [0, 2], [0, 3], [0, 4]} be 
the semigroup interval vector space over the semigroup F = Z5
under addition modulo 5. S is a simple semigroup interval 
vector space over F. 

Example 2.2.8: Let S = {[0, 0], [0, n] / n = 1, 2, …, 22} � I
23Z

be a semigroup interval vector space over the semigroup F = Z23
under addition modulo 23. S is a simple semigroup interval 
vector space over Z23.
 In view of these examples we have the following theorem 
which guarantees the existence of a class of simple semigroup 
interval vector spaces.

THEOREM 2.2.1: Let S = {[0, n] / n = 0, 1, 2, …, p-1} � I
pZ , p 

a prime. F = Zp a semigroup under addition modulo p. S is a 
simple semigroup interval vector space over F.  

Proof:  Follows from the fact that no proper interval subset P of 
S (P � [0, 0] or P � S) can be a semigroup interval vector spaces 
over F. Hence the claim.  

Thus we have a class of infinite number of simple semigroup 
interval vector space over the semigroup F. 

Example 2.2.9: Let S = {[0, 0], [0, n] | n � Zm; m a non prime 
integer m < �} be a semigroup interval vector space over the 
semigroup Zm = F. We see S is not a simple semigroup interval 
vector space over Zm = F.  
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In view of this we have the following theorem.  

THEOREM 2.2.2: Let Zm = {0, 1, 2, …, m – 1}; m = 1
1 ... t

tp p  

where p1, …, pt are t distinct primes and  i ! 1, 1 � i � t, be the 
set of integers modulo m. S = {[0, n] | n � Zm} � I

mZ . S is a 
semigroup interval vector space over the semigroup F = Zm.
Infact S is not a simple semigroup interval vector space and Pi

= {[0, npi] / pi a prime such that i
ip / m and 1 /�i

ip /m; 1 �  i �
t, n, pi � Zm} � S are semigroup interval vector subspaces of S 
over F = Zm.

The proof is straight forward and left as an exercise for the 
reader.

We will illustrate the above theorem by some examples. 

Example 2.2.10: Let Z30 = {0, 1, 2, …, 29} be the modulo 
integer 30 and 30 = 2.3.5.  
 S = {[0, n] | n � Z30} be a semigroup interval vector space 
over the semigroup F = Z30. Take P1 = {[0, 0] [0, 2], [0, 4], [0, 
6], …, [0, 28]} = {[0, 2n] | 2, n � Z30} � S.
 It is easily verified P1 is a semigroup interval vector 
subspace of S over F.
 Take  P2 = {[0, 3n] | 3, n � Z30} � S, P2 is a semigroup 
interval vector subspace of S over F. 
 P3 = {[0, 5n] | 5, n � Z30} � S; P3 is a semigroup interval 
vector subspace of S.

Example 2.2.11: Let Z36 = {0, 1, 2, …, 35} modulo 36, integers. 
36 = 22. 32. Let S = {[0, n] | n � Z36} be a semigroup interval 
vector space of S over the semigroup Z36 = F. 
 Choose P1 = {[0, 2n] |n � Z36} = {[0, 0], [0, 2], [0, 4], [0, 6], 
…, [0, 34]} � I

36Z ; P1 is a semigroup interval vector subspace 
of S over the semigroup F = Z36. P2 = {[0, 4n] | n � Z36} = {[0, 
0], [0, 4], [0, 8], [0, 12], [0, 16], [0, 20], [0, 24], [0, 28]} � S is 
a semigroup interval vector subspace of S over the semigroup F 
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= Z36. P3 = {[0, 3n] / n � Z36} � S is a semigroup interval vector 
subspace of S over F = Z36.
 P4 = {[0, 0], [0, 9], [0, 18], [0, 27]} � S is a semigroup 
interval vector subspace of S over F = Z36.

 Now we will proceed onto define the notion of semigroup 
linearly independent linearly dependent interval subset of a 
semigroup interval vector space. 

DEFINITION 2.2.3: Let S be a semigroup interval vector space 
over the semigroup F. A set of interval elements B = {s1, s2, …, 
sn} of S is a said to be a semigroup linearly independent interval 
subset if si � csj; for all c � F and si, sj � B; i � j; 1 �  i, j � n. 
 If for some si = csj, c � F; i�j; si, sj � B then we say the 
semigroup interval subset is linearly dependent or not linearly 
independent.
 If B is a semigroup linearly independent interval subset of S 
and B generates S, the semigroup interval vector space over F; 
that is if every element s � B can be got as s = csi, c � F and si

� S; 1 �  i �  n. 

We will illustrate this by some examples. 

Example 2.2.12: Let S = {[0, n] | n = 0, 1, 2, …, �} be a 
semigroup interval vector space over the semigroup F = Z+ �
{0}. Take B = {[0, 1]} � S, B generates S as a semigroup 
interval vector space over F.

Example 2.2.13: Let S = {[0, n] | n � Z12} be a semigroup 
interval vector space over the semigroup F = {0, 6} � Z12
semigroup under addition modulo 12. Take B = {[0, 1], [0, 2], 
[0, 3], [0, 4], [0, 5], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11]} � S, B 
generates S over F = {0, 6}.  

Example 2.2.14: Let S = {[0, n] | n � Z24} be a semigroup 
interval vector space over the semigroup F = {0, 2, 4, 6, 8, 10, 
…, 22} � Z24, semigroup under addition modulo 24. 
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 Take B = {[0, 2], [0, 0], [0, 4], [0, 8]} � S; B is a linearly 
dependent interval subset of S over F. 

Example 2.2.15: Let S = {[0, n] | n = 1, 2, …, 11} be a 
semigroup interval vector space over the semigroup F = {0, 2, 4, 
…, 10} � Z12, semigroup under addition modulo 12. Take B = 
{[0, 1], [0, 3], [0, 5], [0, 7]} � S, B is a linearly independent 
interval subset of S over F but is not a generating interval subset 
of S over F. 

We will now proceed onto define the notion of semigroup 
interval linear algebra. 

DEFINITION 2.2.4: Let S be a semigroup interval vector space 
over the semigroup F. If S is also an interval semigroup under 
addition then we define S to be semigroup interval linear 
algebra over the semigroup F if c (s1 + s2) = cs1 + cs2 for s � S 
and c1, c2 � F. 

We will illustrate this situation by some examples.  

Example 2.2.16: Let S = {[0, n] | n � Z+ � {0}} be a semigroup 
interval linear algebra over the semigroup Z+ � {0} = F. Take P 
= {[0, 5n] | n � Z+ � {0}} � S; P is a semigroup interval linear 
subalgebra of S over the semigroup F = Z+ � {0}. 

Example 2.2.17: Let S = {[na, (n + 5) a] | a � Q+, n � Z+ �
{0}} be a semigroup interval linear algebra over F = Z+ � {0}. 
Take P {[na, (n + 5)a | a, n � Z+ � {0}} � S; P is a semigroup 
interval linear subalgebra of S over F. 

Example 2.2.18: Let S = {[0, na] | a � R+, n = 0, 1, 2, …, �} be 
a semigroup interval linear algebra over the semigroup F = Z+�
{0}. Consider P = {[0, na] | a � Q+; n = 0,1,2,..., �} � S, P is a 
semigroup interval linear subalgebra of S over the set F = Z+ �
{0}. If the semigroup interval linear algebra S over the set F has 
no proper semigroup interval linear subalgebras then we define 
S to be a simple semigroup interval linear algebra. 
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We will give some examples of simple semigroup linear 
algebras.

Example 2.2.19: Let S = {[0, n] | n � Z7} � I
7Z  be a semigroup 

interval linear algebra over the semigroup F = Z7. Clearly S is a 
simple semigroup interval linear algebra over F. 

Example 2.2.20: Let S = {[0, n]/ n � Zp, p any prime} � I
pZ  be 

a semigroup interval linear algebra over the set F = Zp.

It is easily verified S is a simple semigroup interval linear 
algebra over the set F. 

 Now we define new concepts of substructures in these new 
algebraic structures. 

DEFINITION 2.2.5: Let S be a semigroup interval linear algebra 
over the semigroup F. If P � S (P = {0} or P � S) be a proper 
subsemigroup of S. If T be a proper subsemigroup of F and P is 
a semigroup interval linear algebra over the semigroup T then 
we call P to be a subsemigroup interval linear subalgebra of S 
over the subsemigroup T of F.   

If S has no subsemigroup interval linear subalgebras then we 
define S to be a pseudo simple semigroup interval linear 
algebra over F.

 We will first illustrate this situation by some simple 
examples. 

Example 2.2.21: Let S = {[0, n]| n � Z29} be a semigroup 
interval linear algebra over the semigroup F = Z29. S is a pseudo 
simple semigroup interval linear algebra over F. 

Example 2.2.22: Let S = {[0, 3n]| n � Z19} � I
19Z ; be a 

semigroup interval linear algebra over the semigroup F = Z19. It 
is easily verified that S is a pseudo simple interval linear algebra 
over F. 
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 Now we define a semigroup interval linear algebra which is 
both simple and pseudo simple as a doubly simple semigroup 
interval linear algebra over F.

 We will illustrate this situation by some simple examples. 

Example 2.2.23: Let S = {[0, n] | n � Z5} � I
5Z be a semigroup 

interval linear algebra over the semigroup F = Z5. S is a doubly 
simple semigroup interval linear algebra of over F. 

Example 2.2.24: Let S = {[0, n] | n � Z11} � I
11Z  be a semigroup 

interval linear algebra over the semigroup F = Z11. S is a doubly 
simple semigroup interval linear algebra over the semigroup F. 

 In view of this we give a class of semigroup interval linear 
algebras which are doubly simple semigroup interval linear 
algebras.

THEOREM 2.2.3: Let S = {[0, n] | n � Zp, p a prime} � I
pZ  be a 

semigroup interval linear algebra over the semigroup Zp. S is a 
doubly simple semigroup interval linear algebra over Zp.

 The proof is left as an exercise to the reader. 

THEOREM 2.2.4: Let S = {[0, n]| n � Z+ � {0}} � ZI be a 
semigroup interval linear algebra over the semigroup F = Z+ �
{0}. S has both subsemigroup interval linear subalgebras and 
semigroup interval linear subalgebras. 

Proof: All Tp = {[0, np] | p � Z+ � {0}} � S is an interval 
semigroup under addition Tp � S are semigroup interval linear 
subalgebras of S over the semigroup F = Z+ � {0}. Consider Tp

� S, Tp is also a subsemigroup interval linear subalgebra of S 
over the subsemigroup T = pZ+�{0} � F = Z+� {0}.

Hence the claim. 
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DEFINITION 2.2.6: Let R and S be two semigroup interval linear 
algebras defined over the same semigroup F. Let T be a 
mapping from R to S such that T(c  + ") = cT( ) + T(") for all 
c � F and  , " � R, then we define T to be a semigroup interval 
linear transformation from R to S.
 If R = S we define T to be a semigroup interval linear 
operator on R. 

We will illustrate this by some simple examples 

Example 2.2.25: Let R = {[0, n] | n � Z+ � {0}} and S = {[0, n] 
/ n � Q+ � {0}} be two semigroup interval linear algebras over 
the semigroup F = Z+ � {0}. The map T: R � S is defined by 
T([0, n]) = [0, n], n � Z+ � {0} is a semigroup interval linear 
transformation. 

Example 2.2.26: Let R = {[n, 5n] | n � Z+ � {0}} and S = {[n, 
5n] | n � R+ � {0}} be two semigroup interval linear algebras 
defined over the semigroup F = Z+ � {0}. Define T: R� S by T 
{[n, 5n]} = [n, 5n], for all [n, 5n] � R.

 It is easily verified T is a semigroup interval linear 
transformation of R to S and infact T is an embedding. 

 We will give an example of a semigroup interval linear 
operator.

Example 2.2.27: Let S = {[n, 2n] | n � Z+ � {0}} be a 
semigroup interval linear algebra on the semigroup F = Z+ �
{0}. Define a interval map T: S � S by T{[n, 2n]} = [2n, 4n] 
for all [n, 2n] � S. T is clearly a semigroup interval linear 
operator on S.  

 Now we proceed on to define the notion of semigroup 
interval linear projection of a semigroup interval linear algebra.  

DEFINITION 2.2.7: Let S be a semigroup interval linear algebra 
over the semigroup F. Let P � S be a proper semigroup interval 
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linear subalgebra of S over the semigroup F. Let T from V to V 
be a semigroup interval linear operator over F. T is said to be a 
semigroup interval linear projection on P if T(v) = #, if # � P 
and T(  u + v) =  T(u) + T($), T(u) and T(v) � P for all  %�%F
and u, $ � S.  

We will illustrate this situation by some examples. 

Example 2.2.28: Let S = {[n, 5n]| n � Q+� {0}} be a semigroup 
interval linear algebra over the semigroup F = Z+ � {0}. Take P 
= {[n, 5n] | n � Z+ � {0}} � S; P is a semigroup interval linear 
algebra over F. 
Define T: S � S by  

T ([n, 5n]) = 
[n,5n] if n Z
[0,0] if n Z

�

�

� ��
�

���
We see T is a semigroup interval linear projection. 

Example 2.2.29: Let S = {[0, n] | n � Z30} be a semigroup 
interval linear algebra over the semigroup F = Z30. Take P = {[0, 
n] | n � {0, 5, 10, 15, 20, 25} � Z30} � S. P is a semigroup 
interval linear subalgebra of S over F.
 Define &: S � S by &{[0, n]} = [0, 5n]; & is clearly a 
semigroup interval projection of S on P.  

Now we proceed on to define the notion of pseudo semigroup 
interval linear operator on V. 

DEFINITION 2.2.8: Let S be a semigroup interval linear algebra 
over the semigroup F. Let P � S be a subsemigroup interval 
linear subalgebra of S over a subsemigroup R of F. Let T: S �
P be a map such that T( $ + u) = T( ) T($) + T(u) for all u, v 
� S and T( ) � R and  � F. 

We call T to be a pseudo semigroup interval linear algebra 
operator on S.  

Interested reader is expected to construct examples of pseudo 
semigroup interval linear operator on S. 
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DEFINITION 2.2.9: Let S be a semigroup interval vector space 
over the semigroup F. Let W1, W2, …, Wn be semigroup interval 
vector subspaces of S over F.
 If S = � i

i

W  and Wi � Wj = � or {0}, if i � j then we say S is 

the direct union of the semigroup interval vector subspaces of 
the semigroup interval vector space S over F.

We will illustrate this by some examples. 

Example 2.2.30: Let S ={[0, n]| n � Z4} be a interval semigroup 
linear algebra over the semigroup F = Z4. S cannot be written as 
a union of semigroup interval sublinear algebras over F. 

Example 2.2.31: Let S ={[0, n]| n � Z6} be a interval semigroup 
vector space over F = {0, 3}. Take W1 = {[0, n] / n � {0, 1, 3, 
5} � Z6} and W2 = {[0, n] | n � {0, 2, 4} � Z6}; W1 and W2 are 
interval semigroup vector subspace of V over F = {0, 3}. 
Clearly V = W1 � W2 and W1 � W2 = {0}. Thus W is a direct 
union of semigroup interval vector subspaces of S. 

Example 2.2.32: Let G = {[0, n]| n � Z10} be a interval 
semigroup vector space over the semigroup S = {0, 5}. Let W1

= {[0, n] | n � {0, 2, 4, 6, 8}} � G and W2 = {[0, n] | n � {0, 1, 
3, 5, 7, 9}} � G be interval semigroup vector subspaces of V 
over the semigroup S = {0, 5}. Clearly V = W1 � W2 and W1 �
W2 = {0}. Thus V is a direct sum of the interval semigroup 
vector subspaces W1 and W2.

DEFINITION 2.2.10: Let V = {[0, n]| n� Zn or Z+� {0} or R+ �
{0} or Q+ � {0}} be a interval semigroup linear algebra over 
the semigroup S. Suppose W1, W2, ..., Wm be semigroup interval 
linear subalgebras of V such that V = W1 + … + Wm and Wi �
Wj = {0} or � if i � j {1 � i, j � m} then we say V is a direct sum 
of interval semigroup linear subalgebras of V.  

We will illustrate this situation by some examples. 
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Example 2.2.33: Let

V = 
1 2

i
3 4

5 6

[0, a ] [0, a ]
a Z {0}

[0, a ] [0, a ]
1 i 6

[0, a ] [0, a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

be an interval semigroup linear algebra over F = 3Z+ � {0}.
Let

W1 = 
1 2

1 2

[0 a ] [0 a ]
0 0 a ,a Z {0}
0 0

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

W2 = 1 1 2

2

0 0
[0 a ] 0 a ,a Z {0}
[0 a ] 0

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

and

W3 = 1 1 2

2

0 0
0 [0 a ] a ,a Z {0}
0 [0 a ]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

be interval semigroup linear subalgebras of V over F = 3Z+ �
{0}. Clearly V = W1 + W2 + W3 and Wi� Wj = (0); i � j 1 � i, j 
� 3. Thus V is the direct sum of interval linear semigroup 
subalgebras.

Example 2.2.34: Let

V = 1 2
i 8

3 4

a a
a Z ,1 i 4

a a
� �� �� �� � �� �	 

� �� �� �

be a semigroup interval linear algebra over F = Z8.
Let
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W1 = 1
1 8

a 0
a Z

0 0
� �� �� ��� �	 

� �� �� �

,

W2 = 2
2 8

0 a
a Z

0 0
� �� �� ��� �	 

� �� �� �

,

 W3 = 3 8
3

0 0
a Z

a 0
� �� �� ��� �	 

� �� �� �

and

W4 = 4 8
4

0 0
a Z

0 a
� �� �� ��� �	 

� �� �� �

be semigroup interval linear subalgebras of V over Z8 = F. We 
see V = W1 + W2 + W3 + W4 and Wi � Wj = (0); 1 � i, j � 4. 
Thus V is a direct sum of semigroup interval linear subalgebras.  

Now we proceed on to define Group interval linear algebras. 

DEFINITION 2.2.11: Let V be a set of intervals with zero which 
is non empty. Let G be a group under addition. We call V to be 
a group interval vector space over G if the following conditions 
are true; 

(a) For every $ � V and g � V gv and vg are in V 
(b) 0$ =0 for every $� V and 0 is the additive identity of G.  

We will illustrate this situation by some examples. 

Example 2.2.35: Let V = {[0, ai] | ai� Z9} be a group interval a 
vector space over the group Z9 = G under addition modulo 9. 

Example 2.2.36: Let V = {[0, ai] | ai� Z25} be a group interval 
vector space over the additive group modulo 25.  

We see Z+ � {0} is not a group likewise Q+ � {0}, R+ � {0} 
and C+ � {0} are not groups under addition. 
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Example 2.2.37: Let

V = ' (

1

2
1 2 i 90

1 2 3
3 4

4

5

[0, a ]
[0, a ]

[0, a ] [0, a ] a Z
, [0, a ],[0, a ] , [0, a ]

[0, a ] [0, a ] 1 i 5
[0, a ]
[0, a ]

� �� �
� �	 

� �	 
 �� �� �	 
� �	 
 � �	 
� �� �

	 
� �
	 
� �� �� �

be a group interval vector space over the group Z90 = G , under 
addition modulo 90. 

Example 2.2.38: Let

V = ' (1 i 14
1 2 3

2

[0, a ] a Z
, [0, a ],[0, a ][0, a ]

[0, a ] 1 i 3
� ��� �� �
� �	 
 � �� �� �� �

be the group interval vector space over the group Z14 = G under 
addition modulo 14.  

Now we proceed on to define substructures of group interval 
vector spaces. 

DEFINITION 2.2.12: Let V be a group interval vector space over 
the group G. Let P � V be a proper subset of V and is a group 
interval vector space over G. We define P to be a group interval 
vector subspace over G.  

We will illustrate this situation by some examples. 

Example 2.2.39: Let

1 2 i 15

31 2

[0, a ] [0, a ] 00 0 0 0 a Z
W , ,

0 0 [0, a ][0, a ] 0 0 [0, a ] 1 i 15
� ��� �� � � �� �) � �	 
	 
 	 
 � �� � � � � �� �� �
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be a group interval vector space over the group G = Z15. Let

P = i 15
1

0 0
a Z

[0, a ] 0
� �� �� ��� �	 

� �� �� �

� V. 

P is a group interval vector subspace of V over the group G = 
Z15.

Example 2.2.40: Let V = {[0, ai]| ai � Z40} be a group interval 
vector space over the group G = Z40. Take P = {[0, ai]| ai � {0, 
2, 4, 6, 8, 10, ..., 38}� Z40}� V; P is a group interval vector 
subspace of V over G. 

Example 2.2.41: Let

V = 
10

i 7i
i

i 0

a Z
[0,a ]x

0 i 10)

�� �
� �� �� �
�

be a group interval vector space over the additive group G = Z7.
Let

W = 
5

i
i i 7

i 0
[0,a ]x a Z

)

� �
�� �

� �
� � V 

be a group interval vector subspace of V over G = Z7.

Example 2.2.42: Let

V = 
* + * +
* + * +
* + * +

1 2

3 4 i 16

5 6

0,a 0,a
0,a 0,a a Z ;1 i 6
0,a 0,a

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

be a group interval vector space over the group G = Z16,

W = 
* +
* +
* +

1

3 1 2 4 16

5

0,a 0
0,a 0 a ,a ,a Z
0,a 0

� �� �
� �	 
 �� �	 

� �	 
� �� �

� V; 
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is a group interval vector subspace of V over the group G = Z16.

DEFINITION 2.2.13: Let V be a group interval vector space over 
a group G. We say a proper subset P of V to be a linearly 
dependent subset of V if for any p1, p2 � P (p1 � p2) p1 = a p2 or 
p2 = a, p1 for some a, a, � G. 
 If for no distinct pair of elements p1, p2 � P we have a, a1 �
G such that p1 = ap2 or p2 = a1p1 then we say the set P is a 
linearly independent set. 

Example 2.2.43: Let

V = 
* +
* + * +

* +
* +

1 1
i 12

2 3 2

0,a 0 0,a 0
, a Z ;1 i 3

0,a 0,a 0,a 0

� �� � � �� �� � �� �	 
 	 

� � � �� �� �

be a group interval vector space over the group G = Z12.
 Consider  

x = 
[0,1] 0
[0, 2] [0, 4]
� �
	 

� �

, y = 
[0, 3] 0
[0, 6] 0
� �
	 

� �

in V. Clearly x and y are linearly dependent as 3x = y for 3� G 
= Z12.

Example 2.2.44: Let

V = 
* + * + * +
* + * + * +

1 2 3
i 15

4 5 6

0,a 0,a 0,a
a Z ;1 i 6

0,a 0,a 0,a

� �� �� �� � �� �	 

� �� �� �

be a group interval vector space over the group G = Z15. Let

x = 
[0,1] [0,2] [0,3]
[0,4] [0,1] [0,2]
� �
	 

� �

 and y = 
[0,4] [0,8] [0,12]
[0,1] [0,4] [0,8]
� �
	 

� �

be elements of V. 
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 We see {x, y} forms a linearly dependent subset of V. For 
we see x = 4y where 4 � Z15 = G. 

Example 2.2.45: Let V be a group interval vector space over a 
group G. Let H be a proper subgroup of G. If W � V is such 
that W is a group interval vector space over the subgroup H of 
G then we define W to be a subgroup interval vector subspace 
of V over the subgroup H of G. 

 If W happens to be both a group interval vector subspace as 
well a subgroup interval vector subspace then we define W to be 
duo subgroup interval vector subspace. If V has no subgroup 
interval vector subspace then we define V to be a simple group 
interval vector space.

 We will first illustrate this situation by some simple 
examples. 

Example 2.2.46: Let

V = 
* +
* +
* +

1

2 i 24

3

0,a
0,a a Z ;1 i 3
0,a

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

be a group interval vector space over the group G = Z24.
Consider

W = 
* +
* +

1

2 i 24

0,a
0,a a Z

0

� �� �
� �	 
 �� �	 

� �	 
� �� �

� V. 

It is easy to verify W is a subgroup interval vector subspace of 
V over the subgroup H = {0, 4, 8, 12, 16, 20} � G = Z24.

It is further verified W is also a group interval vector 
subspace of V. Thus W is a duo subgroup interval subspace of 
V.
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Example 2.2.47: Let V = {([0, a1], [0, a2], [0, a3], [0, a4], [0, a5], 
[0, a6], [0, a7])| ai � Z19, 1 � i � 7} be a group interval vector 
space over the group G = Z19. It is easy to verify that V has no 
subgroup interval subspaces as G = Z19 has no subgroups. 
However V has several group interval vector subspaces. For 
take W1 = {([0, a1], [0, a2], [0, a3], 0, 0, 0, 0) | ai � Z19; 1 � i � 3} 
� V is a group interval vector subspace of V over the group G. 
W2 = {([0, a], [0, a], …, [0, a]) where a � Z19} � V is a group 
interval vector subspace of V over the group G. W3 = {([0, a1], 
…, 0 [0, a7])| a1, a7 � Z19} � V is a group interval vector 
subspace of V. 

Example 2.2.48: Let

V = 13

[0,a]
[0,a]

a Z[0,a]
[0,a]
[0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

be a group interval vector space over the group G = Z13. It is 
easily verified V has no proper group interval vector subspace 
as well as subgroup interval vector subspace. 

 We cannot define the notion of pseudo semigroup interval 
vector subspace. However we can define the notion of pseudo 
set interval vector subspace of a group interval vector space. 

DEFINITION 2.2.14: Let V be a group interval vector space over 
the group G. S a proper subset of G. Let W � V; if W is a set 
interval vector subspace of V over the set S � G then we define 
W to be a pseudo set interval vector subspace of V over the set 
S; S � G 

 We will illustrate this situation by some examples. 

Example 2.2.49: Let V = {[0, n] | n � Z49} be a group interval 
vector space over the group G = {Z49}. Consider W = {[0, 0], 



47

[0, 7], [0, 14], [0, 21], [0, 28], [0, 35], [0, 42]} � V; W is a 
pseudo set interval vector subspace of V over the set S = {0, 1, 
7} � Z49.

Example 2.2.50: Let V = {[0, n] / n � Z40} be a group interval 
vector space over the group G = Z40. W = {[0, 0], [0, 10], [0, 
20], [0, 30]} � V is pseudo set interval vector subspace of V 
over the set S = {0, 1, 2, 3} � Z40.

 Now we proceed onto define group interval linear algebras. 

DEFINITION 2.2.15: Let V be a group interval vector space over 
the group G. If V is a group under addition then we call V to be 
a group interval linear algebra. 

 We will illustrate this by some examples. 

Example 2.2.51: Let V = {[0, n] | n � Z25} be a group interval 
linear algebra over the group G = Z25.

Example 2.2.52: Let V = {([0, a1], [0, a2], [0, a3]) / a1, a2, a3 �
Z18} be a group interval linear algebra over the group Z18 = G. 

Example 2.2.53: Let

V = 

1

2
1 2 3 4 143

3

4

[0,a ]
[0,a ]

a ,a ,a ,a Z
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

be a group interval linear algebra over the group G = Z143.

Example 2.2.54: Let

V = 
27

i 9i
i

i 0

a Z
[0,a ]x

0 i 27)

�� �
� �� �� �
�

be a group interval linear algebra over the group G = Z9.
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 Now having seen examples of group interval linear algebras 
we now proceed onto define group interval linear subalgebras. 

DEFINITION 2.2.16: Let V be a group interval linear algebra 
over the group G. Let W � V (W a proper subset of V), if W 
itself is a group interval linear algebra over the group G then 
we define W to be a group interval linear subalgebra of V over 
the group G.  

 We will illustrate this situation by some examples. 

Example 2.2.55: Let V = {[0, a] | a � Z144} be a group interval 
linear algebra over the group G = Z144. Consider W = {[0, a] / a 
� {2Z144}} �V; W is a group interval linear subalgebra of V 
over the group G = Z144.

Example 2.2.56: Let V = {([0, a1], [0, a2], [0, a3], [0, a4], [0, a5])| 
a1, a2, a3, a4, a5 � Z48 be a group interval linear algebra over the 
group G = Z48. Consider W = {([0, a1], 0, 0, 0, [0, a5]) | a1, a5 �
Z48} � V; W is a group interval linear subalgebra of V over the 
group G = Z48.

 Now we proceed onto define the notion of direct sum of 
group interval linear algebras. 

DEFINITION 2.2.17: Let V be a group interval linear algebra 
over the group G. Let W1, W2, …, Wn be a group interval linear 
subalgebras of V over the group G. We say V is a direct sum of 
the group interval linear subalgebras W1, W2, …, Wn if 

(a) V = W1 + … + Wn

(b) Wi � Wj = {0} if i � j; 1 �  i, j �  n. 

We will illustrate this situation by some simple examples. 

Example 2.2.57: Let V = {all 3  3 interval matrices with 
entries from Z48} be a group interval linear algebra over the 
group G = Z48.

Let
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W1 = 
1 2

3 1 2 3 48

[0,a ] [0,a ] 0
0 0 [0,a ] a ,a ,a Z ,
0 0 0

� �- .
� �/ 0 �� �/ 0
� �/ 0
1 2 ��

W2 = 
1

2 1 2 3 48

3

0 0 [0,a ]
[0,a ] 0 0 a ,a ,a Z

0 [0,a ] 0

� �- .
� �/ 0 �� �/ 0
� �/ 0
1 2� �

,

W3 = 1 1 48

0 0 0
0 [0,a ] 0 a Z
0 0 0

� �- .
� �/ 0 �� �/ 0
� �/ 0
1 2� �

and

W4 = 1 2 48

1 2

0 0 0
0 0 0 a ,a Z

[0,a ] 0 [0,a ]

� �- .
� �/ 0 �� �/ 0
� �/ 0
1 2� �

be group interval linear subalgebras of V over the group G = 
Z48. Clearly V = W1 + W2 + W3 + W4 and  

Wi � Wj = 
0 0 0
0 0 0
0 0 0

- .
/ 0
/ 0
/ 0
1 2

if i � j; 1 �  i, j � n. 
 Thus V is the direct sum of group interval linear 
subalgebras W1, W2, W3 and W4.

Example 2.2.58: Let V = {Collection of all 4  2 interval 
matrices with entries from Z7} be a group interval linear algebra 
over the group G = Z7.
Choose

W1 = 1
1 2 7

2

[0,a ] 0 0 0
a ,a Z

0 [0,a ] 0 0
� �� �� ��� �	 

� �� �� �

,
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W2 = 1 2
1 2 7

3

0 [0,a ] 0 [0,a ]
a ,a Z

[0,a ] 0 0 0
� �� �� ��� �	 

� �� �� �

W3 = 1
1 2 7

2

0 0 [0,a ] 0
a ,a Z

0 0 0 [0,a ]
� �� �� ��� �	 

� �� �� �

and

W4 = 1 7
1

0 0 0 0
a Z

0 0 [0,a ] 0
� �� �� ��� �	 

� �� �� �

be group interval linear subalgebras of V over the group G. We 
see V = W1 + W2 + W3 + W4 and

Wi � Wj = 
0 0 0 0
0 0 0 0
- .
/ 0
1 2

; 1 � i, j � 4. 

Thus V is a direct sum of group interval linear subalgebras. 
 Let  

P1 = 1 2 i 7

3 4

[0,a ] 0 [0,a ] 0 a Z
0 [0,a ] 0 [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

,

P2 = 1 2 i 7

3 4

0 0 [0,a ] [0,a ] a Z
0 [0,a ] 0 [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

P3 = 1 2 i 7

3 4

[0,a ] [0,a ] 0 0 a Z
0 0 [0,a ] [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

and

P4 = 1 2 i 7

3 4

0 0 [0,a ] [0,a ] a Z
[0,a ] [0,a ] 0 0 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

be group interval linear subalgebras of V over the group G = Z7.
We see P1 + P2 + P3 + P4 = V but 
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Pi � Pj �
0 0 0 0
0 0 0 0
- .
/ 0
1 2

if i � j ; 1 � i; j � 4. Thus any collection of group interval linear 
subalgebras may not in general give a direct sum of V. 

In view of this we have the following interesting definition.  

DEFINITION 2.2.18: Let V be a group interval linear algebra 
over the group G. Let W1, W2, …, Wn be n distinct group 
interval linear subalgebras of V over the group G.  

We say V is a pseudo direct sum if  

(a) V = W1 + … + Wn

(b) Wi � Wj � {0} even if i � j 
(c) We need Wi’s to be distinct that is Wi � Wj � Wi or Wi �

Wj = Wj even if i� j i.e., Wi � Wj = Wp then p � {1, 2, 
…, n} that is Wp does not belong to the collection of 
group interval linear subalgebras of V. 

We will illustrate this situation by some examples.  

Example 2.2.59: Let V = {Collection of all 5  2 interval 
matrices with entries from Z11} be the group interval linear 
algebra over the group G = Z11.

Consider

W1 = 

1

2
i 11

3

4

5

[0,a ] 0
0 [0,a ]

a Z
[0,a ] 0

1 i 5
0 [0,a ]

[0,a ] 0

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �

,
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W2 = 

1 6

2
i 11

3

4

5

[0,a ] [0,a ]
[0,a ] 0

a Z
[0,a ] 0

1 i 6
[0,a ] 0
[0,a ] 0

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �

,

W3 = 

2

3
i 11

4

5

1 6

0 [0,a ]
0 [0,a ]

a Z
0 [0,a ]

1 i 6
0 [0,a ]

[0,a ] [0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �

and

W4 = 

1

2
i 11

3

4

5

0 [0,a ]
[0,a ] 0

a Z
0 [0,a ]

1 i 5
[0,a ] 0

0 [0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �

be group interval linear subalgebras of V over G = Z11. We see 
V = W1 + W2 + W3 + W4 and Wi � Wj � 0. If i � j. Further W1,
W2, W3 and W4 are all distinct. Thus V is a pseudo direct sum of 
W1, W2, W3 and W4.

Example 2.2.60: Let

V = {all 4  4 interval matrices with entries from Z3}

be the group interval linear algebra over group G = Z3.
 Consider  
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W1 = 

1 2

1 2 7 3
3 4 5

6 7

[0,a ] [0,a ] 0 0
0 0 0 0

a ,a , ,a Z
[0,a ] [0,a ] [0,a ] 0

0 [0,a ] 0 [0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

� ,

W2 = 

2 3

1 6
i 3

4 5

7

0 [0,a ] 0 [0,a ]
0 [0,a ] [0,a ] 0

a Z ;1 i 7
0 0 [0,a ] [0,a ]
0 0 0 [0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

,

W3 = 

1 2

i 3
3 5

6 4

[0,a ] [0,a ] 0 0
0 0 0 0

a Z ;1 i 6
[0,a ] 0 0 [0,a ]
[0,a ] 0 0 [0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

and

W4 = 

1 2

3 6 4
i 3

8 5 7

[0,a ] [0,a ] 0 0
[0,a ] 0 [0,a ] [0,a ]

a Z ;1 i 8
0 0 0 0

[0,a ] 0 [0,a ] [0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

be group interval linear subalgebras of V over the group Z3.

We see Wi � Wj � (0) if i � j 1 � i, j � 4 

(a) V = W1 + W2 + W3 + W4

(b) Wi � Wj � (0) if i � j; 1 � i, j � 4. 
(c) W1, W2, W3 and W4 are all distinct group interval linear 

subalgebras of V over G.

Thus V is a pseudo direct sum of group interval linear 
subalgebras W1, W2, W3 and W4.
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We now define linear independence in group interval linear 
algebras.

DEFINITION 2.2.19: Let V be a group interval linear algebra 
over the group G. Let X 3 V be a proper subset of V, we say X is 
a linearly independent subset of V if X = {x1, …, xn} (where xi = 
[0, ai], 1 � i � n) and for some ni � G; 1 � i � n;  1x1 +  2x2 + 
… +  nxn = 0 if and only if each  i = 0. 
 A linearly independent subset X of V is said to generate V if 
every element of v � V can be represented as  

v = ; ;
)

� � ��
n

i i i
i 1

x G 1 i n  .

We will illustrate this situation by some examples. 

Example 2.2.61: Let V = {([0, a1], [0, a2], [0, a3], [0, a4]) | ai �
Z5, 1 � i � 4} be a group interval linear algebra over the group G 
= Z5. Consider X = {x1 = ([0, 1], 0, 0, 0), x2 = (0, [0, 1], 0, 0), x3

= (0, 0, [0, 1], 0) and x4 = (0, 0, 0, [0, 1]) � V. X is a linearly 
independent set and generates V over G so X is a basis of V 
over G. 

Example 2.2.62: Let V = {set all 4  2 interval matrices with 
entries from Z12} be a group interval linear algebra over the 
group G. 

Consider

X = 

[0,1] 0 0 [0,1] 0 0
0 0 0 0 [0,1] 0

, ,
0 0 0 0 0 0
0 0 0 0 0 0

�� � � � � �
�	 
 	 
 	 

�	 
 	 
 	 
�	 
 	 
 	 
�	 
 	 
 	 
�� � � � � ��

,
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0 0 0 0
0 [0,1] 0 0

,
0 0 [0,1] 0
0 0 0 0

� � � �
	 
 	 

	 
 	 

	 
 	 

	 
 	 

� � � �

,

0 0 0 0 0 0
0 0 0 0 0 0

, ,
0 [0,1] 0 0 0 0
0 0 [0,1] 0 0 [0,1]

�� � � � � �
�	 
 	 
 	 

�	 
 	 
 	 
�	 
 	 
 	 
�	 
 	 
 	 
�� � � � � ��

� V; 

X is a linearly independent set and generates V; hence X is a 
basis of V. 

Here also we cannot define the notion of pseudo semigroup 
interval linear subalgebras of a group interval linear algebra.  

However we can define the notion of pseudo group interval 
vector subspace of a group interval linear algebra. 

DEFINITION 2.2.20: Let V be a group interval linear algebra 
over the group G. If P is just a subset of V and is not a closed 
structure but is a group interval vector space over the group G, 
then we call P to be a pseudo group interval vector subspace of 
V.

We will illustrate this situation by an example. 

Example 2.2.63: Let

V = 
1 2

3 4 i 7

5 6

[0,a ] [0,a ]
[0,a ] [0,a ] a Z ;1 i 6
[0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

be a group interval linear algebra over the group Z7.



56

Consider

W = 
1 1 1 2

2 2

3 4 3

[0,a ] 0 0 [0,a ] [0,a ] [0,a ]
[0,a ] 0 , 0 [0,a ] , 0 0
[0,a ] [0,a ] 0 0 [0,a ] 0

� �� � � � � �
� �	 
 	 
 	 

� �	 
 	 
 	 

� �	 
 	 
 	 
� � � � � �� �

� V; 

W is a pseudo group interval vector subspace of V over the 
group G. 
 Now we will define in the next chapter the notion of fuzzy 
interval linear algebras.
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Chapter Three 

SET FUZZY INTERVAL LINEAR 

ALGEBRAS AND THEIR PROPERTIES

In this chapter we introduce the notion of set fuzzy interval 
linear algebras, semigroup fuzzy interval linear algebras and 
group fuzzy interval linear algebras and study their properties. 
This chapter has two sections. First section introduces set fuzzy 
set vector spaces and discusses their properties. Section two 
introduces the notion of set fuzzy interval vector spaces of type 
II and analyses their properties. 

3.1 Set Fuzzy Interval Vector Spaces and Their Properties

In this section we introduce the notion of set fuzzy interval 
vector spaces and give a few properties associated with them. 
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DEFINITION 3.1.1: A fuzzy vector space (V, &) or & V or V& is 
an ordinary vector space V defined over the field F with a map 
& : V � [0, 1] satisfying the following conditions. 

(a) &(a + b) !  min {&(a), &(b)}
(b) &(–a) = &(a) 
(c) &(0) = 1 
(d) &(ra) ! &(a) 

 for all a, b � V and r � F, where F is the field. V& or V& or 
&V will denote the fuzzy vector space.

For more about these notions refer [53]. 

DEFINITION 3.1.2: Let V be a set vector space over the set S. 
We say V with the map & is a fuzzy set vector space or set fuzzy 
vector space if &: V � [0, 1] and &(ra) ! &(a) for all a � V and 
r � S. We call V& or &V or V& to be the fuzzy set vector space 
over the set S.  

For more about these notions please refer [52]. 

Likewise we define a set fuzzy linear algebra (or fuzzy set linear 
algebra) (V, &) or V& or &V to be an ordinary set linear algebra 
V with a map & : V � [0, 1] such that &(a + b) > min (&(a), 
&(b)) for a, b � V. 

Notation: We say an interval [0, a] to be a fuzzy interval if 0 � a 
� 1. [0, 0] = (0) and [0, 1] is the fuzzy set. We include both in 

the fuzzy interval. [0, ½], [0, 0.3] [0, 1
2

], [0, 0.0031] etc are 

fuzzy intervals.  
 We will denote the collection of all fuzzy intervals by I [0, 
1] = {[0, a] | 0 � a � 1}. Clearly the cardinality of I [0, 1] is 
infinite.

Now we proceed onto define fuzzy set interval vector space or 
set fuzzy interval vector space over the set S. 
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DEFINITION 3.1.3: Let V be a set interval vector space over the 
set S. We say V with the map & is a fuzzy set interval set vector 
space or set fuzzy interval vector space if I& : V � I [0, 1] and 
I& (r[0, a]) > I& ([0, a]) for all [0, a] � V and r � S. We call VI&
or I&V to be the fuzzy set interval vector space over the set S.  

We will illustrate this situation by some examples. 

Example 3.1.1: Let V = {[0, a1], [0, a2], [0, a3], [0, a4], [0, a5)] | 
ai � Z5, 1 � i � 5} be a set interval vector space over the set S = 
{0, 1, 2, 3}. I&: V � I [0, 1] is defined as follows.  

I& ([0, ai]) = i
i

i

1[0, ] if a 0
a

[0,1] if a 0.

� ��
�
� )�

VI& is a set fuzzy interval vector space.  

Example 3.1.2: Let V = {[0, ai] | ai � Z+ � {0}} be a set interval 
vector space over the set S = {0, 1, 2, 3, 4, 5, 8}. Define I& : V 
� I [0, 1] as follows: 

I& [0, ai] = i
i

i

1[0, ] if a 0
a

[0,1] if a 0.

� ��
�
� )�

I&V is a fuzzy set interval vector space. 

Example 3.1.3:  Let  

V = 

1

2
i 15

8

[0,a ]
[0,a ]

a Z ;1 i 9

[0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

�

be a set interval vector space over the set S = {0, 1, 3, 5, 7} �
Z15. Define I& : V � I [0, 1] by  
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I& [0, ai] = i
i

i

1[0, ] if a 0
a

[0,1] if a 0.

� ��
�
� )�

;

I&V is a set fuzzy interval vector space. 

DEFINITION 3.1.4: Let V be a set interval linear algebra over 
the set S. A set fuzzy interval linear algebra (or fuzzy set 
interval linear algebra) (V, &I) or V&I is a map &I: V � I [0, 1] 
such that &I(a + b) !  min(&I(a), &I(b)) for every a, b � V. 

We will illustrate this situation by some examples. 

Example 3.1.4: Let

V = i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
�

be a set interval linear algebra over the set S = {0, 1, 2, 5, 7, 13, 
16}.
 Define &I : V � I [0, 1] as  

&I (p(x) = 
n

i
i

i 0
[0,a ]x

)
� )

=
1[0, ] if p(x) is not a constant

deg p(x)
[0,1] if p(x) is a constant

�
�
�
��

V&I is a set fuzzy interval linear algebra.  

Example 3.1.5: Let V = {([0, a1], [0, a2], [0, a3], [0, a4]) | ai �
Z18; 1 � i � 4} be a set interval linear algebra over the set S = 
{0, 4, 5, 9} � Z18. Define &I: V � I [0, 1] by  

&I([0, ai]) = i
i

i

1[0, ] if a 0
a

[0,1] if a 0.

� ��
�
� )�

V&I is a set fuzzy interval linear algebra.  
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Example 3.1.6: Let

V = 1 3

3 4

[0,a ] [0,a ]
[0,a ] [0,a ]

�- .�
�/ 0
�1 2�

where ai � Z+ � {0}} be a set interval linear algebra over the set 
S = {3Z+, 2Z+, 0} � Z+ � {0}.  
 Define &I : V � I [0, 1] by  

&I 1 3

3 4

[0,a ] [0,a ]
[0,a ] [0,a ]
- .
/ 0
1 2

 = 

1
1

2 1
2

3 1 2
3

4 1 2 3
4

1 2 3 4

1[0, ] if a 0
a
1[0, ] if a 0 and a 0
a
1[0, ] if a 0 and a 0 a
a
1[0, ] if a 0 and a a a 0
a

[0,1] if a a a a 0

� ��
�
�

� )�
�
�

� ) )�
�
�

� ) ) )�
�
� ) ) ) )
�
�

V&I is a fuzzy set interval linear algebra. 

Now we proceed onto define set fuzzy interval substructures. 

DEFINITION 3.1.5: Let V be a set interval vector space over the 
set S. Let W be a set interval vector subspace of V over the set S. 
 The map I& : W � I [0, 1] such that W&I is a set fuzzy 
interval vector space, is called the set fuzzy interval vector 
subspace of V and is denoted by I&w or &wI.

We will illustrate this situation by examples. 

Example 3.1.7: Let V = {([0, a1], [0, a2], …, [0, a12]) | ai � Z18;
1 � i � 12} be a set interval vector space over the set S = {0, 2, 
4, 16} � Z18. Let W = {([0, a1], [0, a2], …, [0, a12]) ai � 2Z18;
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{0, 2, 4, 6, 8, 10, 12, 14, 16} � Z18; 1 � i � 12} be a set interval 
vector subspace of V over S. 

Define &I : W � I[0, 1] by  

&I ([0, a1], [0, a2], …, [0, a12])  = 

i

i

i

1[0, ] if no a 0
12
1[0, ] if some a 0

10
[0,1] if all a 0

� )�
�
� )�
�

)�
��

(W, &I) is the set fuzzy interval vector subsubspace of V. 

Note: It is important and interesting to note that W&I need not 
be extendable to V&I in general. 

Example 3.1.8: Let V = {([0, a1], [0, a2], …, [0, a8)] | ai � Z+ �
{0}; 1 � i � 8} be a set interval vector space over the set S = {0, 
5, 12, 13, 90, 184, 249, 1000} � Z+ � {0}. Choose W = {([0, 
a1], [0, a2], …, [0, a8] | ai � 5Z+ � {0}} � V be a set interval 
vector subspace of V over the set S.
 Define &I : W � I [0, 1] by  

&I (x) = 
i

i
i 1

i

1[0, ] if a 0
a

[0,1] if a 0
)

� � ���
�
�

� )��

�

(W, &I) is a set fuzzy interval vector subspace. 

Example 3.1.9: Let  

V = {[0, ai], 
1

2

3

[0,a ]
[0,a ]
[0,a ]

� �
	 

	 

	 
� �

, ([0, a1], [0, a2], [0, a3], [0, a4]) 

where ai � Z24} be a set interval vector space over the set S = 
{0, 1, 2, 5, 6, 20, 21} � Z24. W = {[0, ai] | ai � Z24} � V be a set 
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interval vector subspace of V over Z24. Define &I : W � I [0, 1] 
as follows. 

&I ([0, ai]) = i
i

i

1[0, ] if a 0
a

[0,1] if a 0

� ��
�
� )�

(W, &I) is a set fuzzy interval subspace of V. Clearly &I cannot 
be extended to whole of V. 
Suppose

T = 
1

i 24
2

3

[0,a ]
a Z

[0,a ]
1 i 3

[0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

� V 

be a set interval vector subspace of V. 
 Define &I : T � I [0, 1] by  

&I
1

2

3

[0,a ]
[0,a ]
[0,a ]

� �
	 

	 

	 
� �

  = 

i

i

i

1[0, ] if a 0, i 1,2,3
3
1[0, ] if atleast one of a 0,1 i 3
2

[0,1] if a 0, 1 i 3

� � )�
�
� � � ��
�

) � ��
��

(T, &I) is a fuzzy set interval vector subspace of V. Clearly &I
cannot be extended to whole of V.  

DEFINITION 3.1.6: Let V be a set interval linear algebra over 
the set S. Suppose W � V be a set interval linear algebra of V 
over the set S. Suppose &I : W � I [0, 1] is such that (W, &I) or 
&IW is a fuzzy set interval linear algebra then we define (W, &I) 
to be a fuzzy set interval linear subalgebra of V.  

We will illustrate this situation by some examples. 
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Example 3.1.10: Let

V = 1 3

3 4

[0,a ] [0,a ]
[0,a ] [0,a ]

�- .�
�/ 0
�1 2�

where ai � Z+ � {0}; 1 � i � 4} be a set interval linear algebra 
over the set S = {0, 2, 5, 8, 11, 16} � Z+ � {0} .
Let

W = 1 3

3

[0,a ] [0,a ]
0 [0,a ]

�- .�
�/ 0
�1 2�

where ai � Z+ � {0}; 1 � i � 3} � V be a set interval linear 
subalgebra of V over the set S.

Define &I : W � I [0, 1] as follows.  

&I 1 3

3

[0,a ] [0,a ]
0 [0,a ]

- .
/ 0
1 2

 = 1 2 3
1 2 3

1 2 3

1[0, ] if a a a 0
a a a

[0,1] if 0 a a a

� � � �� � ��
� ) ) )�

(W, &I) or &I W is a set fuzzy interval linear subalgebra of V. 

Example 3.1.11: Let

V = 

1

2

3
i 12

4

5

6

[0,a ]
[0,a ]
[0,a ]

a Z ;1 i 6
[0,a ]
[0,a ]
[0,a ]

� �� �
� �	 

� �	 

� �	 
� �� � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a set interval linear algebra over the set S = {0, 2, 1, 3} � V. 
Choose



65

W = 

1

2
i 12

3

[0,a ]
0

[0,a ]
a Z ;1 i 3

0
[0,a ]

0

� �� �
� �	 

� �	 

� �	 
� �� � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

� V 

be a set interval linear subalgebra of V. 
Define &I : W � I [0, 1] by  

&I = 

1

2

3

[0,a ]
0

[0,a ]
0

[0,a ]
0

� �
	 

	 

	 

	 

	 

	 

	 

	 
� �

 = 

1 2 3
1

2 1 3
2

3 1 2
3

i

1

1[0, ] if a 0; a a 0
a
1[0, ] if a 0; a 0 a
a
1[0, ] if a 0; a 0 a
a
1[0, ] if a 0; 1 i 3 or any two nonzero
3

[0,1] if a 0;i 1,2,3

� � ) )�
�
�

� ) )�
��
� � ) )�
�
�

� � ��
�

) )��

(W, &I) is a fuzzy set interval linear subalgebra of V. 

Now we proceed onto define the notion of semigroup fuzzy 
interval vector space. 

DEFINITION 3.1.7: Let V be a semigroup interval vector space 
defined over the semigroup S. (V, &I) or V&I, the semigroup 
fuzzy interval vector space is a map &I : V � I [0, 1] satisfying 
the following condition:  

&I(ra) ! &I(a)
for all a � V and r � S. 

We will illustrate this situation by some simple examples. 
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Example 3.1.12: Let V = {[0, a]| a � Z124} be a semigroup 
interval vector space over the semigroup S = Z124.
Define &I: V � I [0, 1] as  

&I ([0, a]) = 
1[0, ] if a 0
a

[0,1] if a 0

� ��
�
� )�

(V, &I) is a fuzzy semigroup interval vector space or semigroup 
fuzzy interval vector space. 

Example 3.1.13: Let

V = 1

2

[0,a ]
,

[0,a ]
�� ��
�	 

�� ��

([0, a1], [0, a2], [0, a3], [0, a4]) | ai � Z+ � {0}; 1 � i � 4} be a 
semigroup interval vector space over the semigroup S = Z+ �
{0}. Define &I : V � I [0, 1] as  

&I 1

2

[0,a ]
[0,a ]

- .� �
/ 0	 
/ 0� �1 2

 = 1 2
1 2

1 2

10, if a a 0
a a

[0,1] if a a 0

�� �
� ��	 
��� �

� ) )�
and

&I ([0, a1], [0, a2], [0, a3], [0, a4]) = 

i
1

i

i

10, if a 0; i 1,2,3,4
a

10, if atleast one of a 0; 1 i 4
2

[0,1] if a 0; i 1,2,3,4

�� �
� )�	 


� ���
�� � � � ��	 
� ��
� ) )�

(V, &I) or &IV is a fuzzy semigroup interval vector space or 
semigroup fuzzy interval vector space. 
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Example 3.1.14: Let

V = 

1 2
1

i 233 4
1 2 2

5 6
3

7 8

[0,a ] [0,a ]
[0,a ]

a Z ;[0,a ] [0,a ]
,([0,a ],[0,a ]), [0,a ]

[0,a ] [0,a ] 1 i 8
[0,a ]

[0,a ] [0,a ]

� �� �
� �� �	 
 �� �	 
	 
� �	 
	 
 � �� �	 
	 
 � �� �� �� �

 be a semigroup interval vector space over the semigroup Z23.
 Define &I : V � I [0, 1] as follows: 

&I

1 2

3 4

5 6

7 8

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

- .� �
/ 0	 

/ 0	 

/ 0	 

/ 0	 
/ 0� �1 2

 = i

i

10, if atleast one a 0
5

[0,1] if all a 0; 1 i 8

�� � ��	 
� ��
� ) � ��

&I (([0, a1], [[0, a2]) = 

1 2
1

2 1
2

1 2

1 2

10, if a 0 and a 0
a

10, if a 0 and a 0
a

10, if a 0 and a 0
10

[0,1] if a a 0

�� �
� )�	 


� ��
�� �� � )�	 
�� �
�
� �� � �	 
�� ��

) )��
and

1
i

2

i3

[0,a ] 10, if atleast one of a 0 1 i 3
[0,a ] 9

[0,1] if a 0; i 1,2,3[0,a ]

- .� � �� � � � �/ 0 �	 
 	 
& ) � ��/ 0	 

�/ 0	 
 ) )�� �1 2

(V, &I) or &IV is a fuzzy semigroup interval linear algebra or 
semigroup fuzzy interval linear algebra. 
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Now we proceed onto illustrate only by examples fuzzy 
semigroup interval linear algebras and leave the simple task of 
defining semigroup fuzzy interval linear algebras to the reader. 

Example 3.1.15: Let

1 2

3 4 i

5 6

[0,a ] [0,a ]
V [0,a ] [0,a ] a Z {0}; 1 i 6

[0,a ] [0,a ]

�

��� �
��	 
) � � � �� �	 


� �	 
� �� �

be a semigroup interval linear algebra over the semigroup S = 
Z+ � {0}. 
 Define &I : V � I[0, 1] as follows: 

1 2

3 4

5 6

[0,a ] [0,a ]
I [0,a ] [0,a ]

[0,a ] [0,a ]

- .� �
/ 0	 
& ) )/ 0	 

/ 0	 
� �1 2

1 2 6
1 2 6

1 2 6

10, if atleast one of a a a 0
a a a

[0,1] if a a a 0

�� �
� � � ��	 
� � ��� �

� ) ) ) )�

�
�

�

(V, &I) or &I V is a fuzzy semigroup interval linear algebra or 
semigroup fuzzy interval linear algebra. 

Example 3.1.16: Let

V = 1 2
i 7

3 4

[0,a ] [0,a ]
a Z ,1 i 4

[0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

be a semigroup interval linear algebra over the semigroup Z7.
Define &I : V � I [0, 1] as follows:  
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&I 1 2

3 4

[0,a ] [0,a ]
[0,a ] [0,a ]

- .� �
/ 0	 
/ 0� �1 2

 = 

1
1

1
2

1

10, if a 0
a

10, if a 0
a

[0,1] if a 0,i 1,2

�� �
��	 


� ��
�
� ��

)	 
�
� ��
� ) )�

V&I is a semigroup fuzzy interval linear algebra. 

Example 3.1.17: Let

V = i
i i

i 0
[0,a ]x a Q {0}

�
�

)

� �
� �� �

� �
�

be a semigroup interval linear algebra over the semigroup S = 
Z+ � {0}. 
 Define &I : V � I [0, 1] as follows: 

&I i
i

i 0
[0,a ] x

�

)

- .
/ 0
1 2
�  =

if the degree of the interval polynomial is10,  
greater than or equal to three8

[0,1] if the degree of the polynomial is less than 
three this includes zero polynomial

�� �
�	 
� ���
�
�
�
��

(V, &I) is a semigroup fuzzy interval linear algebra.  
 As in case of semigroup interval vector spaces we can 
define in case of semigroup interval linear algebras the concept 
of fuzzy semigroup linear subalgebras.  

We just illustrate this situation by examples. 
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Example 3.1.18: Let

V = 
1 2 3

7 4 5 i 8

8 9 6

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] a Z ;1 i 9
[0,a ] [0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

be a semigroup interval linear algebra defined over the 
semigroup S = {0, 2, 4, 6}, under addition modulo 8. 
 Consider  

W = 
1 2 3

4 5 i 8

6

[0,a ] [0,a ] [0,a ]
0 [0,a ] [0,a ] a Z ;1 i 6
0 0 [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

� V; 

W is a semigroup interval linear subalgebra of V. 
 Define &I : W � I [0, 1] 

&I
1 2 3

4 5

6

[0,a ] [0,a ] [0,a ]
0 [0,a ] [0,a ]
0 0 [0,a ]

- .� �
/ 0	 

/ 0	 

/ 0	 
� �1 2

 = 

1
1

2 1
2

3 1 2
3

3 1 2
4

1

10, if a 0
a

10, if a 0 if a 0
a

10, if a 0 if a a 0
a

10, if a 0 if a a 0
a

[0,1] if a 0,i 1,2,...,6

�� �
��	 


� ��
�� �
� � )	 

�� �
�
� ��

� ) )	 
�
� ��
�� �
� � ) )	 

�� �
� ) )�

(W, &I) is a semigroup fuzzy interval linear subalgebra. 

Example 3.1.19: Let

V = 
25

i
i i 40

i 0
[0,a ]x a Z

)

� �
�� �

� �
�
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be a semigroup interval linear algebra defined over the 
semigroup S = {0, 10, 20, 30} � Z40.

W = 
10

i
i i 40

i 0
[0,a ]x a Z

)

� �
�� �

� �
� � V 

be a semigroup interval linear subalgebra of V over S. 
 Define &I : W � I [0, 1] as follows: 

&I
10

i
i

i 0
p(x) [0,a ]x

)

� �
)� �

� �
�  =

* +

i

i

[0,a ] corresponds to the coefficient interval
10, ; of the highest degree of x in p(x)
a

if p (x) is a constant polynomial0,1

�
� ��
	 
��� �
�
�
�
��

(W, &I) is a fuzzy semigroup interval linear subalgebra. 

Example 3.1.20: Let V = {[0, ai] | ai � Z+ � {0}} be a 
semigroup interval linear algebra over the semigroup S = {3Z+

� {0}}. Consider W = {[0, ai] | ai � 5Z+ � {0}} � V, W is a 
semigroup interval linear subalgebra over the semigroup S = 
{3Z+ � {0}}.  
 Define &I : W � I [0, 1] as follows: 

&I ([0, ai]) = 

* +

i
i

1

10, if a 0
a

0,1 if a 0

�� �
��	 


�� �
� )�

(W, &I) is a fuzzy semigroup interval linear subalgebra.  
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 Now we can define for group interval vector spaces the 
notion of group fuzzy interval vector spaces or fuzzy group 
interval vector spaces. 

DEFINITION 3.1.8: Let V be a group interval linear algebra 
defined over the group G.
Let &I : V � I [0, 1] such that  

& (a + b) ! min {&(a), &(b)}
&(–a) = &(a) 
&(0) = 1 

&(ra) ! &(a)
for all a, b � V and r � G.  
 We call V&I or (V, &I) to be the group fuzzy interval linear 
algebra.

We will illustrate this situation by some examples. 

Example 3.1.21: Let V = {([0, a1], [0, a2], [0, a3], [0, a4]) | ai �
Z40; 1 � i � 4} be a group interval linear algebra over the group 
G = {0, 10, 20, 30} � Z40.
 Define & I : V � I [0, 1] as follows: 

&I ([0, a1], [0, a2], [0, a3], [0, a4]) = 

* +

1
1

1

10, if a 0
a

0,1 if a 0

�� �
��	 


�� �
� )�

(V, &I) is a group fuzzy interval vector space. 

Example 3.1.22: Let

V = i
i i 11

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a group interval linear algebra over the G = Z11. Define &I : 
V � I [0, 1] as follows: 
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&I (p(x)) = 

* +

10,
deg(p(x))

0,1 if deg p(x) 0

�� �
�	 

� ��
� )�

(V, &I) is a fuzzy group interval vector space; or group fuzzy 
interval vector space. 

Example 3.1.23: Let

V = 

1

2
i 25

3

4

[0,a ]
[0,a ]

a Z ;1 i 4
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

be a group interval linear algebra over the group G = Z25. Define 
&I : V � I [0, 1] as follows: 

&I

1

2

3

4

[0,a ]
[0,a ]
[0,a ]
[0,a ]

- .� �
/ 0	 

/ 0	 

/ 0	 

/ 0	 
/ 0� �1 2

 =

1
1

2 1
2

3 1 2
3

4 1 2 3
4

1

10, if a 0
a

10, if a 0 if a 0
a

10, if a 0 if a a 0
a

10, if a 0 if a a a 0
a

[0,1] if a 0,1 i 4

�� �
��	 


� ��
�� �� � )	 
�� ��
� ��

� ) )	 
�
� ��
�� �� � ) ) )	 
�� �
�

) � ��

(V, &I) is a group fuzzy interval linear algebra. 

The concept of group fuzzy interval linear subalgebra and group 
fuzzy interval vector subspaces is left for the reader to define in 
an analogous way. However we give examples of them. 
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Example 3.1.24: Let

V = 
1 2

3 4 i 21

5 6

[0,a ] [0,a ]
[0,a ] [0,a ] a Z ,1 i 6
[0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

be group interval vector space. 
Define &I : V � I [0, 1] as follows: 

&I
1 2

3 4

5 6

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

- .� �
/ 0	 

/ 0	 

/ 0	 
� �1 2

 = i

1

10, ;1 i 6
max{a }

[0,1] if a 0,i 1,2,...,6

�� �
� ��	 


�� �
� ) )�

That is if

x = 
[0,8] [0,17]
[0,4] [0,1]
[,2] [0,19]

� �
	 

	 

	 
� �

� V 

then

&I (x) = 10,
19

�� �
�	 
� ��

.

Thus (V, &I) is a group fuzzy interval vector space. 
 Take  

W = 
1

2 i 21

3

[0,a ] 0
[0,a ] 0 a Z ,1 i 3
[0,a ] 0

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

� V. 

W is a group interval vector subspace of V over the group G = 
Z21.

&I : W � I [0, 1] is defined as follows: 
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&I
1

2

3

[0,a ] 0
[0,a ] 0
[0,a ] 0

� �
	 

	 

	 
� �

 = 2
2

1

10, if a 0
a

[0,1] if a 0

�� �
��	 


�� �
� )�

Clearly (W, &I) is a fuzzy group interval vector subspace of V. 

Example 3.1.25: Let V = {Collection of all 10  12 interval 
matrices; ([0, ai]) with entries from Z36 that ai � Z36; 1 � i � 20} 
be a group interval vector space over the group G = Z36.

W = {([0, ai]) demotes all matrices with entries from 2Z36}.
 Define  

&I ([0, ai]) = i 36
i

1

10, ;1 i 36; a 2Z
max{a }

[0,1] if a 0,i 1,2,...,36

�� �
� � ��	 


�� �
� ) )�

(W, &I) is a group fuzzy interval vector subspace. 

Example 3.1.26: Let V = {All upper triangular 4  4 interval 
matrices constructed using Z13} be the group interval vector 
space over the group G = Z13.   
 Let W = {all 4  4 diagonal interval matrices with entries 
from Z13} � V; W is a group interval vector subspace of V over 
the group G = Z13.
 Define &I : W � I [0, 1] as follows. 

&I

1

2

3

4

[0,a ] 0 0 0
0 [0,a ] 0 0
0 0 [0,a ] 0
0 0 0 [0,a ]

- .� �
/ 0	 

/ 0	 
 )/ 0	 

/ 0	 
/ 0� �1 2

i

i

10,
max{a }

[0,1] if a 0,1 i 4

�� �
�	 

�� �
� ) � ��

(W, &I) is a group fuzzy interval vector subspace. Suppose  
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x = 

[0,3] 0 0 0
0 [0,7] 0 0
0 0 [0,11] 0
0 0 0 [0,1]

� �
	 

	 

	 

	 

� �

� W 

then

&I (x) = 10,
11

�� �
�	 
� ��

.

We see in case of group interval linear algebras or group 
interval vector spaces we cannot use groups other than Zn, under 
addition modulo n. As Z or Q or R cannot be used since all the 
intervals we use are of the form [0, ai]. 0 � ai.
 Now having seen fuzzy set interval vector spaces, fuzzy 
semigroup interval vector spaces and group fuzzy interval 
vector spaces we proceed onto define another type of fuzzy set 
interval vector spaces, fuzzy semigroup interval vector spaces 
and fuzzy group interval vector spaces by constructing directly 
and not using set interval vector spaces, semigroup interval 
vector spaces or group interval vector spaces. These we call as 
type II set fuzzy interval vector spaces and so on. Those fuzzy 
interval vector spaces constructed in section 3.1 will be known 
as type I spaces.  

In the following section we define type II fuzzy interval spaces.  

3.2 Set Fuzzy Interval Vector Spaces of Type II and Their 
Properties

In this section we proceed on to define set fuzzy interval vector 
spaces of type II, semigroup fuzzy interval vector spaces of type 
II and group fuzzy interval vector spaces of type II using fuzzy 
intervals recall I [0, 1] = {all intervals of the form [0, ai]; 0 � ai �
1}; known as fuzzy intervals. 

DEFINITION 3.2.1: Let V = {[0, ai]| 0 � ai � 1; [0, ai]� I [0, 1]}. 
Let S be a set such that for each s � S and v � V, sv and vs are 
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in V. We then call V to be a set fuzzy interval vector space of 
type II. 

We will illustrate this by some examples. 

Example 3.2.1: Let V = {[0, ai]| 0 � ai � 1} be a set fuzzy 
interval vector space over the set S = {0, 1, ½, 1/22, …, 1/2n}.

Here for any v = [0, ai] and s = r

1
2

 (r � n) we have

sv = i
r

a0,
2

� �
	 
� �

 = vs 

and sv � V. Thus V is a fuzzy set interval vector space of type 
II over the set S. 

Example 3.2.2: Let

V = ' (

1

2
1 2 3 i

5

[0,a ]
[0,a ]

, [0,a ] [0,a ] [0,a ] 0 a 1;1 i 5

[0,a ]

� �� �
� �	 

� �	 
 � � � �� �	 
� �	 
� �� �� �

�

be a fuzzy set interval vector space of type II over the set S = 
{0, 1, 1/5, 1/10, 1/121, 1/142}. 

Example 3.2.3: Let

' (

1 2

3 4

5 6 1 2 3 4 5

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]

V [0,a ] [0,a ] , [0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

�� �
�	 

�	 
�	 
) �
	 
�
	 
�
	 
�� ��
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1 2
i

3 4

[0,a ] [0,a ]
0 a 1;1 i 10

[0,a ] [0,a ]
�� � �� � � � �	 


� � ��

be a set fuzzy interval vector space over the set  

S = n

1 n 0,1,...,27
3
� �

)� �
� �

.

Example 3.2.4: Let

V = i
i i

i 0
[0,a ]x 0 a 1

�

)

� �
� �� �

� �
�

be a set fuzzy interval vector space over the set S = {0, 1, 1/3, 
1/7, 1/5, 1/11, 1/13, 1/19, 1/17, 1/23} of type II.  

Now we define substructures of set fuzzy interval vector space. 

DEFINITION 3.2.2: Let V be a set fuzzy interval vector space 
over the set S of type II. 
 Let W � V; if W is a set fuzzy interval vector space over the 
set S of type II, then we define W to be a set fuzzy interval vector 
subspace of V over the set S of type II.  

We will illustrate this situation by examples.

Example 3.2.5: Let

V = 

1

1 2 2
i

3 4 3

4

[0,a ]
[0,a ] [0,a ] [0,a ]

, 0 a 1;1 i 4
[0,a ] [0,a ] [0,a ]

[0,a ]

� �� �
� �	 
� �� �	 
 � � � �� �	 
 	 
� �� �	 
� �� �� �

be a set fuzzy interval vector space of type II over the set  

S = n

1 ,0 n 0,1,2,...,41
2
� �

)� �
� �

.

Let
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W = 1 2
i

3 4

[0,a ] [0,a ]
0 a 1;1 i 4

[0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

�V;

W is a set fuzzy interval vector subspace of type II over the set  

S = n

10, n 0,1,2,...,41
2

� �
)� �

� �
.

Example 3.2.6: Let

V = 

1

2

3 i

4

5

[0,a ]
[0,a ]
[0,a ] 0 a 1;1 i 5
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

be a set fuzzy interval vector space of type II over the set S = 
{0, 1/3, 1/32, …, 1/37}.  

W = 
1

1 2

2

0
[0,a ]

a ,a [0,1]0
[0,a ]

0

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

� V; 

W is a set fuzzy interval vector subspace of type II of V over the 
set S. 

 We give the definition of yet another substructure. 

DEFINITION 3.2.3: Let V be a set fuzzy interval vector space 
over the set S of type II. Let W � V be a proper subset of V and 
P � S be a set fuzzy subset S. W be a set fuzzy interval vector 
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space of type II over the set P, we call W to be a subset fuzzy 
interval vector subspace of V of type II over the subset P of S. 

We will illustrate this situation by some simple examples. 

Example 3.2.7: Let

V = 1 2
i

3 4

[0,a ] [0,a ]
a [0,1],1 i 4

[0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

be a set fuzzy interval vector space over the set S = {0, 1, 1/2n,
1/3n; n = 1, 2, …, 12} of type II. Let  

W = 1 2
1 2 3

4

[0,a ] [0,a ]
0 a ,a ,a 1

0 [0,a ]
� �� �� �� �� �	 

� �� �� �

� V 

and P = {0, 1, 1/2n | n = 1, 2, …, 12} � S. W is a subset fuzzy 
interval vector subspace of V of type two over the subset P of S. 

Example 3.2.8: Let

' (1 i
1 2 3 4 5 6

2

[0,a ] 0 a 1;
V , [0,a ][0,a ][0,a ][0,a ][0,a ][0,a ]

[0,a ] i 1,...,6
� �� �� �� �) � �	 
 )� �� �� �

be a set fuzzy interval vector space of type II over the set  

S = {0, 1/2n, 1, 1/3m, 1/5m, 1/7n | 1 � m � 8, 1 � n � 12}. 
Choose

W = ' ( i1
1 2 3

0 a 1;[0,a ]
, [0,a ] 0 [0,a ] 0 [0,a ] 0

0 1 i 3
� �� �� �� �
� �	 
 � �� �� �� �

� V 

and P = {0, 1, 1/7n |1 � n � 12} � S. W is a subset fuzzy interval 
vector subspace of V of type II over the subset P of S. 
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Example 3.2.9:  Let  

1 2

3 4 1 2 3 4 i

5 6 5 6 7 8

7 8

[0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 0 a 1;

V ,
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 8
[0,a ] [0,a ]

� �� �
� �	 
 � �� �� �	 
) � �	 
	 
 � �� �� �	 
� �� �� �

be a set fuzzy interval vector space of type II over the set  

S = 10, n Z
n

�� �
�� �

� �
.

Choose

W = 1 2 3 4
i

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ]
0 a 1;1 i 8

[0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

� V 

is a subset fuzzy interval vector space of type II over the subset  

P = 10, n Z
4n

�� �
�� �

� �
� S of V. 

Example 3.2.10: Let

V = 1 2
i

3 4

[0,a ] [0,a ]
0 a 1;1 i 4

[0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

be a set fuzzy interval linear algebra over the set  

S = n

1 ,0 n 0,1,2,...,
2
� �

) �� �
� �

(the operation on V is max, i.e., if  

x = 1 2

3 4

[0,a ] [0,a ]
[0,a ] [0,a ]
� �
	 

� �

 and y = 1 2

3 4

[0,b ] [0,b ]
[0,b ] [0,b ]
� �
	 

� �
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are in V then

x + y = 1 1 2 2

3 3 4 4

[0,max(a ,b )] [0,max(a ,b )]
[0,max(a ,b )] [0,max(a ,b )]
� �
	 

� �

.

 Thus max (x, y) denoted by x + y is an associate closed 
commutative operation on V). 
 Choose  

W = 1 2
i

3

[0,a ] [0,a ]
1 i 3;0 a 1

0 [0,a ]
� �� �� �� � � �� �	 

� �� �� �

� V; 

W is a subset fuzzy interval vector subspace of V defined over 
the subset

P = n 6

1 n Z
2

�
�

� �
�� �

� �
� S. 

Now we proceed onto define set fuzzy interval linear algebra 
formally. 

DEFINITION 3.2.4: Let V be a set fuzzy interval vector space 
over a set S. If on V is defined a closed associative binary 
operation denoted by ‘+’ such that s (a + b) = sa + sb; for all s 
� S and a, b � V. Then we define V to be a set fuzzy interval 
linear algebra of type II. 

 We will illustrate this by some simple examples. 

Example 3.2.11: Let V = {[0, ai] | 0 � ai � 1} be a set fuzzy 
interval linear algebra over the set

S = n

1 ,0,1 n Z
2

�� �
�� �

� �
.

V is closed under max operation that is for [0, a] and [0, b] in V 
we have [0, a] + [0, b] = [0, max {a, b}].  
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Example 3.2.12: Let V = {collection of all 3  5 interval fuzzy 
matrices with entries from I [0, 1]} be a set fuzzy interval linear 
algebra over the set

S = 1 ,0 n 1,2,3,...
n
� �

)� �
� �

.

Example 3.2.13: Let

V = i
i i

i 0
[0,a ]x 0 a 1

�

)

� �
� �� �

� �
�

be a set fuzzy interval linear algebra over the set  

S = 
n

1 n 1,2,0,
2

� �)� �
� �

� .

We will define set fuzzy interval linear subalgebra. 

DEFINITION 3.2.5: Let V be a set fuzzy interval linear algebra 
over the set

S = � �
)� �

� �

1 ,0 n 1,2,...
n

.

Choose W � V; suppose W be a set fuzzy interval linear algebra 
over the set S; we define W to be set fuzzy interval linear 
subalgebra of V over S of type II. 

We will illustrate this situation by some examples. 

Example 3.2.14: Let

V = 1 2
i

3 4

[0,a ] [0,a ]
0 a 1;1 i 4

[0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

be a set fuzzy interval linear algebra with max operation defined 
over the set

S = 1 ,0 n 1,2,...
2n 1
� �

)� ��� �
.
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Choose

W = 1 2
i

3

[0,a ] [0,a ]
1 i 3;0 a 1

0 [0,a ]
� �� �� �� � � �� �	 

� �� �� �

� V; 

W is a set fuzzy interval linear subalgebra of V over the set S. 

Example 3.2.15: Let

V = 

1

2

3
i

4

5

6

[0,a ]
[0,a ]
[0,a ]

0 a 1;1 i 6
[0,a ]
[0,a ]
[0,a ]

� �� �
� �	 

� �	 

� �	 
� �� � � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a set fuzzy interval linear algebra over the set  

S = 1 ,0 n 0,1,2,...
3n 1
� �

)� ��� �
.

Let

W = 

1

2
i

3

[0,a ]
0

[0,a ]
0 a 1;1 i 3

0
[0,a ]

0

� �� �
� �	 

� �	 

� �	 
� �� � � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

� V 

be the set fuzzy interval linear subalgebra over the set  

S = 1 ,0 n 0,1,2,...
3n 1
� �

)� ��� �
 of V. 
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DEFINITION 3.2.6: Let V be a set fuzzy interval linear algebra 
over the set S. Suppose W � V; if W is a set fuzzy interval linear 
algebra over the subset P of S, then we define W to be subset 
fuzzy interval linear subalgebra of V of type II over the subset P 
of S. 

 We will illustrate this situation by an example. 

Example 3.2.16: Let

V = i i

i i

[0,a ] 0 a 1
[0,b ] 0 b 1

� �� �� �� �
� �	 
 � �� �� �� �

be a set fuzzy interval linear algebra over the set  

S = 10, n 1,2,...
n

� �
)� �

� �

with min operation on V. That is min {[0, ai], [0, bi]} = [0, min 
{ai, bi}]. Choose  

W = i
i

[0,a ]
0 a 1

0
� �� �� �� �� �	 

� �� �� �

� V 

is a subset fuzzy interval linear subalgebra over the subset

P = 10, n 1,2,...,
4n

� �
) �� �

� �
� S of S. 

We as in case of usual set vector spaces and set interval vector 
spaces define set fuzzy interval vector space linear 
transformation. 

We will illustrate this by some examples. 



86

Example 3.2.17: Let

V = 1 2
i

3 4

[0,a ] [0,a ]
0 a 1;1 i 4

[0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

and

W = 

1

2
i

3

4

[0,a ]
[0,a ]

0 a 1;1 i 4
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
 � � � �� �	 
� �	 
� �� �� �

be set fuzzy interval linear algebras defined over the set  

S = 1 ,0 n 1,2,...
2n 1
� �

)� ��� �
.

Define TF : V � W as

TF(A) = TF = 1 2

3 4

[0,a ] [0,a ]
[0,a ] [0,a ]

- .� �
/ 0	 
/ 0� �1 2

 = 

1

2

3

4

[0,a ]
[0,a ]
[0,a ]
[0,a ]

� �
	 

	 

	 

	 

� �

for every A in V. TF is a set linear transformation of V into W. 

 Note as in case of vector spaces we see in case of set fuzzy 
interval vector spaces define linear transformation over the 
same set. 

Example 3.2.18: Let

V = 
1

2 i

3

[0,a ]
[0,a ] 0 a 1;1 i 3
[0,a ]

� �� �
� �	 
 � � � �� �	 

� �	 
� �� �

and



87

W = 1 2 3
i

4 5 6

[0,a ] [0,a ] [0,a ]
0 a 1;1 i 6

[0,a ] [0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

be set fuzzy interval linear algebra defined over the same set  

S = n

10, n 1,2,...
2

� �
)� �

� �
.

Define TF : V � W by  

TF = 
1

2

3

[0,a ]
[0,a ]
[0,a ]

- .� �
/ 0	 

/ 0	 

/ 0	 
� �1 2

 = 1 2 3

1 2 3

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]
� �
	 

� �

.

TF is a linear transformation of V into W. 
 We define a special fuzzy semigroup S as follows: 
 Let S = I [0, 1] = {[0, ai] | 0 � ai � 1}. On S define an 
associative closed binary operation * so that S is a semigroup. 
We call (S, *) a special fuzzy semigroup.  
 Throughout this chapter by a fuzzy interval semigroup we 
mean a semigroup constructed using fuzzy intervals. 

DEFINITION 3.2.7: Let V be a set whose elements are 
constructed using fuzzy intervals from I [0, 1]. S any additive 
semigroup with 1. We call V to be a fuzzy interval semigroup 
vector space of level two or type II if the following conditions 
hold good. 

(a) sv � V for all s � S and v � V. 
(b) 0.v = 0 � V for all v � V and 0 � S; 0 is the zero vector 
(c) (s1 + s2) v = s1v + s2v for all s1, s2 � S and v � V. 

We illustrate this by the following examples. The terms type II 
and level two are used as synonym. 

Example 3.2.19: Let V = {[0, ai] | 0 � ai � 1} be a semigroup 
fuzzy interval vector space of level two over the semigroup  
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S = n

10, n 1,2,...
2

� �
)� �

� �
under multiplication.  
Let

V = ' (
1

2 1 2 3 4 5

3

[0,a ]
[0,a ] , [0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
[0,a ]

� �� �
� �	 

� �	 

� �	 
� �� �

be a semigroup fuzzy interval vector space of level two over the 
semigroup  

(S, o) = n m

1 10,1, , m,n Z
2 3

�� �
�� �

� �

under ‘o’ the max operation that is 

m n

1 1o
2 2
� �
� �
� �

 max m n

1 1,
2 3
� �
� �
� �

 = m

1
2

if m

1
2

 > n

1
3

; n

1
3

 if n

1
3

> m

1
2

Example 3.2.20: Let

W = 
1

1 2 3 4
2

5 6 7 8 i
3

[0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] 1 i 8

[0,a ] ,
[0,a ] [0,a ] [0,a ] [0,a ] 0 a 1

[0,a ]

� �� �
� �- .� �	 


� �/ 0	 
 � �1 2� �	 
� �� �

be a semigroup fuzzy interval vector space of level two over the 
semigroup  

S = n m

1 10,1, , m,n Z
5 8

�� �
�� �

� �
 under min operation. 
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Example 3.2.21: Let V =

1 2

3 4 1 2 3 4 5 i

5 6 6 7 8 9 10

7 8

[0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 0 a 1

,
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 10
[0,a ] [0,a ]

� �� �
� �	 
 � �- .� �	 
� �/ 0	 
 � �1 2� �	 
� �� �� �

be a semigroup fuzzy interval vector space of level two over the 
semigroup (S, o). 

Now we proceed onto define semigroup fuzzy interval linear 
algebra V over the semigroup (S, o). 

DEFINITION 3.2.8: Let V be a fuzzy semigroup interval vector 
space over the semigroup (S, o) of type II. If V itself is a special 
fuzzy semigroup under some operation say ‘+’ and so (a + b) = 
s o b + s o b for all s � S and a, b � V then we call V to be a 
fuzzy semigroup interval linear algebra over S of type II. 

We will illustrate this situation by some examples. 

Example 3.2.22: Let

V = 
1 2

i
3 4

5 6

[0,a ] [0,a ]
0 a 1

[0,a ] [0,a ]
1 i 6

[0,a ] [0,a ]

� �� �
� �� �	 


� �	 
 � �� �	 
� �� �

be a semigroup interval fuzzy linear algebra of type II over the 
semigroup  

(S, o) = n

1 ,0,1 n 1,2,...,
2
� �

) �� �
� �

and ‘o’ is the min operation. On V we have min operation so 
that V is a semigroup. 
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Example 3.2.23: Let

V = 1 i

2

[0,a ] 0 a 1
[0,a ] 1 i 2

� �� �� �� �
� �	 
 � �� �� �� �

be a fuzzy semigroup interval linear algebra of type II over the 
semigroup  

(S, o) = n m

1 1, ,0,1 m,n Z
2 12

��
��

�
and ‘o’ is the max operation in S}. 

Now having seen examples of fuzzy semigroup interval linear 
algebras over a semigroup of type II we describe an interesting 
property related with them. 

THEOREM 3.2.1: Every fuzzy semigroup interval linear algebra 
is a fuzzy semigroup interval vector space over the semigroup.

 The proof is simple as one part follows immediately from 
the definition and other part is obvious by some examples given 
on fuzzy semigroup interval vector spaces.  

DEFINITION 3.2.9: Let V be a semigroup fuzzy interval linear 
algebra over the semigroup S. Let W � V; if W is a semigroup 
fuzzy interval linear algebra over S then we define W to be a 
semigroup fuzzy interval linear subalgebra of V over the 
semigroup S. 

We will illustrate this by some examples. 

Example 3.2.24: Let V = {All 5  5 fuzzy interval matrices with 
entries from I [0, 1]} with min operation be a fuzzy semigroup 
interval linear algebra of type II over the semigroup  

S = n

10,1, n 1,2,...
2

� �
)� �

� �
with max operation. 
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Thus if v = [0, ai] � V and S = r

1
2

� S then

sv = vs = r

1
2

 [0, ai] = i
r

a0,
2

� �
	 
� �

.

Consider M = {all upper triangular fuzzy interval 5  5 matrices 
with entries from I [0, 1]} � V; M is a fuzzy semigroup interval 
linear subalgebra of V over S of type II. 

Example 3.2.25: Let

V = i
i i

i 0
[0,a ]x 0 a 1

�

)

� �
� �� �

� �
�

be a fuzzy semigroup interval linear algebra of type II with min 
operation (i.e., if  

i
i

i 0
[0,a ]x

�

)
�  = p(x) 

and

q(x) = i
i

i 0
[0,b ]x

�

)
�

 are in V then

p(x) + q(x) = i
i i

i 0
[0,min{a ,b }]x

�

)
�

over the semigroup  

S = n

10,1, n 1,2,...
5

� �
)� �

� �
and

sv = s p(x) (s = 20

1
5

 p(x) = i
i

i 0
[0,a ]x

�

)
� )

= i
i20

i 0

10, a x
5

�

)

� �
	 
� �

� .
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W = 2i
i i

i 0
[0,a ]x 0 a 1

�

)

� �
� �� �

� �
� � V; 

W is a semigroup fuzzy interval linear subalgebra of V over the 
semigroup S of type II. 

Now we proceed onto define the notion of fuzzy subsemigroup 
interval sublinear algebra of V over the subsemigroup P of S. 

DEFINITION 3.2.10: Let V be a fuzzy semigroup interval linear 
algebra of type II over the semigroup S. Let W � V and P � S 
where W and P are proper subsets of V and S respectively. If W 
is a fuzzy semigroup interval linear algebra of type II over the 
semigroup P then we define W to be a fuzzy subsemigroup 
interval linear subalgebra of type II over the subsemigroup P of 
the semigroup S. 

 We illustrate this situation by some examples. 

Example 3.2.26: Let

V = 

1 2

3 4

5 6 i

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ] 0 a 1;1 i 10
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

be a fuzzy semigroup interval linear algebra of type II over the 
semigroup  

S = n

11,0, n 1,2,...
2

� �
)� �

� �
.

Let
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W = 

1

2

3 i

4

5

[0,a ] 0
0 [0,a ]

[0,a ] 0 0 a 1;1 i 5
0 [0,a ]

[0,a ] 0

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

� V; 

and

P = 3n

11,0, n 1,2,...
2

� �
)� �

� �
� S. 

W is a fuzzy subsemigroup interval linear subalgebra of type II 
over the subsemigroup P � S.

Example 3.2.27: Let

V = 

1 2

3 4 i

5 6

7 8

[0,a ] [0,a ]
[0,a ] [0,a ] 0 a 1
[0,a ] [0,a ] 1 i 8
[0,a ] [0,a ]

� �� �
� �	 
 � �� �	 
� �	 
 � �� �	 
� �� �� �

be a special fuzzy semigroup interval linear algebra over the 
semigroup  

S = n m

1 10,1, , m,n Z
2 5

�� �
�� �

� �
.

Choose

W = 

1

2 i

3

4

[0,a ] 0
[0,a ] 0 0 a 4
[0,a ] 0 1 i 4
[0,a ] 0

� �� �
� �	 
 � �� �	 
� �	 
 � �� �	 
� �� �� �

� V, 

W is a fuzzy subsemigroup interval linear subalgebra of V over 
the subsemigroup  
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P = n

10,1, n Z
5

�� �
�� �

� �
� S 

of type II of V. 

Now if V has no fuzzy semigroup interval linear subalgebra 
over F then we define V to be a simple fuzzy semigroup interval 
linear algebra of type II. We say V is said to be a pseudo simple 
fuzzy semigroup interval linear algebra over S of type II if V 
has no fuzzy subsemigroup interval linear algebra over S. We 
say V is doubly simple if V has no fuzzy semigroup interval 
linear subalgebras and fuzzy subsemigroup interval linear 
subalgebras.

We will illustrate this situation by examples. 

Example 3.2.28: Let

V = 1
1

1

[0,a ] 0
a 1

0 [0,a ]
� �� �� �)� �	 

� �� �� �

be a semigroup fuzzy linear algebra over the semigroup S = {0, 
1} with min operation. It is easily verified V is a doubly simple 
semigroup fuzzy interval linear algebra of type II over S.

Example 3.2.29: Let

[0,1/ 2] [0,1/ 4] [0,1] [0]
[0,1/ 2] , [0,1/ 4] , [0,1] , [0]
[0,1/ 2] [0,1/ 4] [0,1] [0]

� �� � � � � � � �
� �	 
 	 
 	 
 	 

� �	 
 	 
 	 
 	 

� �	 
 	 
 	 
 	 
� � � � � � � �� �

 = V 

be a fuzzy semigroup interval linear algebra over the semigroup 
S = {0, 1}. V is a pseudo simple fuzzy semigroup interval linear 
algebra as V has no proper fuzzy subsemigroup interval linear 
subalgebra of type II.  
 However V has fuzzy semigroup interval linear subalgebra 
of type two over S. 
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DEFINITION 3.2.11: Let V be a fuzzy semigroup interval linear 
algebra of type II over the semigroup S. Let W � V be a fuzzy 
semigroup interval linear subalgebra of V of type II.  
 Let T : V � W be such that T(v) = w for every v � V and w 
� W. T is a fuzzy semigroup interval projection of V into W. 

We will illustrate this by some examples. 

Example 3.2.30: Let

V = 1 2
i

3 4

[0,a ] [0,a ]
0 a 1;1 i 4

[0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

be a fuzzy semigroup interval linear algebra over a semigroup  

S = n

10,1, n Z
2

�� �
�� �

� �
.

Choose

W = 1 2
i

3

[0,a ] [0,a ]
0 a 1;1 i 3

0 [0,a ]
� �� �� �� � � �� �	 

� �� �� �

� V; 

W is a semigroup fuzzy interval linear subalgebra interval linear 
subalgebra of V over S.
 Define T : V � W by  

T = 1 2

3 4

[0,a ] [0,a ]
[0,a ] [0,a ]
� �
	 

� �

 = 1 2

3

[0,a ] [0,a ]
0 [0,a ]

� �
	 

� �

T is a projection of V into W. Infact T is a linear operator on V. 

Example 3.2.31: Let

V = i
i i

i 0
[0,a ]x 0 a 1

�

)

� �
� �� �

� �
�
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be a semigroup fuzzy interval linear algebra over a semigroup S 
of type II. 
 Let  

W = 2i
i i

i 0
[0,a ]x 0 a 1

�

)

� �
� �� �

� �
� � V 

be a semigroup fuzzy interval linear subalgebra of type II over a 
semigroup S of V. 
 Define T : V � W as

T i
i

i 0
[0,a ]x

�

)

- .
/ 0
1 2
�  = 2i

i
i 0

[0,a ]x
�

)
�

T is a linear operator on V which is a projection of V onto W. 

We can as in case of linear transformation of vector spaces 
(linear algebras) define linear transformations of fuzzy 
semigroup interval linear algebras V (vector spaces) of type II 
to fuzzy semigroup interval linear algebras W (vector spaces) of 
type II provided V and W are defined over the same semigroup. 

We will illustrate this situation by some examples. 

Example 3.2.32: Let

V = 

1

2 i

3

4

[0,a ]
[0,a ] 0 a 1
[0,a ] 1 i 4
[0,a ]

� �� �
� �	 
 � �� �	 
� �	 
 � �� �	 
� �� �� �

and

W = 1 2 3 i

4 5 6

[0,a ] [0,a ] [0,a ] 0 a 1
[0,a ] [0,a ] [0,a ] 1 i 6

� �� �� �� �
� �	 
 � �� �� �� �

be fuzzy semigroup interval linear algebras defined over the 
semigroup  
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S = n m

1 10,1, , m,n Z
2 10

�� �
�� �

� �
.

Define T : V � W as follows: 

T

1

2

3

4

[0,a ]
[0,a ]
[0,a ]
[0,a ]

- .� �
/ 0	 

/ 0	 

/ 0	 

/ 0	 
/ 0� �1 2

 = 1 2

3 4

[0,a ] 0 [0,a ]
0 [0,a ] [0,a ]

� �
	 

� �

.

It is easily verified that T is a linear transformation of V into W. 

Example 3.2.33: Let

V = 
1 2 3

1 i
4 5 6

2
7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] 0 a 1

, [0,a ] [0,a ] [0,a ]
[0,a ] 1 i 9

[0,a ] [0,a ] [0,a ]

� �� �
� �� �� �	 


� �	 
 	 
 � �� �� �	 
� �� �
and

W = 

1 2

3 4

5 6

1 2 7 8 i

3 4 9 10

11 12

13 14

15 16

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

[0,a ] [0,a ] [0,a ] [0,a ] 0 a 1;
,

[0,a ] [0,a ] [0,a ] [0,a ] 1 i 16
[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 

� �	 

� �	 


� �� �� �	 
� �	 
 	 
 � �� �� �	 
� �	 
� �	 
� �	 
� �	 
� �� �

be fuzzy semigroup interval vector spaces defined over the 
semigroup  

S = n

1 ,0,1 n 32Z
2

�� �
�� �

� �
of type II. 
 Define T: V � W as follows 
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T 1

2

[0,a ]
[0,a ]

- .� �
/ 0	 
/ 0� �1 2

 = 1

2

[0,a ] 0
0 [0,a ]

� �
	 

� �

and

T
1 2 3

4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

- .� �
/ 0	 

/ 0	 

/ 0	 
� �1 2

 = 

1

2

3

4

5

6

7

8

[0,a ] 0
0 [0,a ]

[0,a ] 0
0 [0,a ]

[0,a ] 0
0 [0,a ]

[0,a ] 0
0 [0,a ]

� �
	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 
� �

.

It is easily verified that T is a linear transformation of V to W. 

Now we proceed onto define some more properties of 
semigroup fuzzy interval vector spaces and linear algebras of 
type II. 

DEFINITION 3.2.12: Let V be a fuzzy semigroup interval vector 
space of type II defined over the semigroup S. Let W1, W2, W3,
…, Wn be a semigroup interval subvector spaces of V over the 

semigroup S. If V = 
)
�

n

i
i 1

W  but Wi � Wj � � or {0} if i � j then we 

call V to be the pseudo direct union of fuzzy semigroup vector 
spaces of V over semigroup S of type II.  

The reader is expected to give some examples of these vector 
spaces.

DEFINITION 3.2.13: Let V be a fuzzy semigroup interval vector 
space of type II over the semigroup S. Let W1, W2, …, Wn be 
fuzzy semigroup interval vector subspaces of V of type II. We 
say W1, W2, …, Wn is a direct union of semigroup fuzzy interval 
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vector subspaces of V. if V = 
)
�

n

i
i 1

W  and Wi � Wj = � or {0} if i 

� j; 1 �  i , j � n.

 The reader is expected to give examples of direct union of 
semigroup fuzzy interval vector subspaces of type II. 
 Now we proceed onto define direct sum of fuzzy semigroup 
interval linear subalgebras of a fuzzy interval semigroup of type 
II.

DEFINITION 3.2.14: Let V be a fuzzy semigroup interval linear 
algebra over a semigroup S of type II. We say V is a direct sum 
of semigroup fuzzy interval linear subalgebras W1, W2, …, Wn of 
V if

(a) V = W1 + … + Wn

(b) Wi � Wj = {0} or � if i � j ; 1 �  j, j � n.  

We will illustrate this situation by an example. 

Example 3.2.34: Let

V = 1 2
i

3 4

[0,a ] [0,a ]
0 a 1;1 i 4

[0,a ] [0,a ]
� �� �� �� � � �� �	 

� �� �� �

be a fuzzy semigroup interval linear algebra of type II defined 
over the semigroup  

S = n

10,1, n Z
5

�� �
�� �

� �
.

Choose

W1 = i
i

[0,a ] 0
0 a 1

0 0
� �� �� �� �� �	 

� �� �� �

,  W2 = i
i

0 [0,a ]
0 a 1

0 0
� �� �� �� �� �	 

� �� �� �

,
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W3 = i
i

0 0
0 a 1

[0,a ] 0
� �� �� �� �� �	 

� �� �� �

and

W4 = i
i

0 0
0 a 1

0 [0,a ]
� �� �� �� �� �	 

� �� �� �

to be fuzzy semigroup interval linear subalgebras of V of type II 
over the semigroup S.  

V = W1 + W2 + W3 + W4
and

Wi � Wj = 
0 0
0 0
- .
/ 0
1 2

if i � j and 1 � i, j � n.

 If in the definition we have Wi’s to be such that Wi � Wj �
(0) or � and Wi � Wj; 1 � i, j � n then we define V to be a 
pseudo direct sum of fuzzy semigroup interval linear algebras.  

 We will illustrate this by an example. 

Example 3.2.35: Let

V = 

1 2

3 4

5 6 i

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ] 0 a 1;1 i 10
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

be fuzzy semigroup interval linear algebra of type II over the 
semigroup  

S = n

10,1, n Z
2

�� �
�� �

� �
.

Choose
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W1 = 

1

2

i

3

[0,a ] 0
0 [0,a ]
0 0 0 a 1;1 i 3
0 0
0 [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

 , 

W2 = 

1

i

2 3

4

[0,a ] 0
0 0

0 a 1;1 i 40 0
[0,a ] [0,a ]
[0,a ] 0

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

,

W3 = 

1

3

i2

4

0 [0,a ]
0 [0,a ]

0 a 1;1 i 4[0,a ] 0
0 [0,a ]
0 0

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

,

W4 = 

1

2 3

4 5 i

6 7

[0,a ] 0
[0,a ] [0,a ]
[0,a ] [0,a ] 0 a 1;1 i 7

0 0
[0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

and

W5 = 
1

2 i

3 4

5 6

0 0
[0,a ] 0

0 [0,a ] 0 a 1;1 i 6
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

 . 

 We see V = W1 + W2 + W3 + W4 + W5
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But

Wi � Wj �

0 0
0 0
0 0
0 0
0 0

� �
	 

	 

	 

	 

	 

	 
� �

if i � j. 1 � i, j � 5. Thus V is a pseudo direct sum W1, …, W5.

As it is not an easy task to define group fuzzy interval vector 
spaces, we proceed to work in different direction. 
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Chapter Four 

SET INTERVAL BIVECTOR SPACES AND 

THEIR GENERALIZATION 

In this chapter we for the first time introduce the notion of set 
interval bivector spaces and generalize them to set interval n-
vector spaces, n ! 3. We also define semigroup interval bivector 
spaces and group interval bivector spaces and generalize both 
these concepts to bisemigroup interval bivector spaces, bigroup 
interval bivector spaces, set group interval bivector spaces and 
so on. This chapter has four sections.  

4.1 Set Interval Bivector Spaces and Their Properties 

In this section we introduce the new notion of set interval 
bivector spaces and enumerate a few of their properties. 
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DEFINITION 4.1.1: Let V = V1 � V2 where V1 and V2 are two 
distinct set interval vector spaces defined over the same set S. 
That is V1 4 V2 and V2 4 V1 we may have V1 � V2 = � or non 
empty. We define V to be a set interval bivector space over the 
set S. 

We will illustrate this situation by some examples. 

Example 4.1.1: Let V = V1 � V2

= {[0, ai] | ai � Z+ � {0}} �
1

i
2

3

[0,a ]
a Z {0}[0,a ]

1 i 3
[0,a ]

�
� �� �
� �� �	 

� �	 
 � �� �	 
� �� �

be set interval bivector space over the set S = {2, 4, 3, 5, 10, 12, 
124, 149, 5021}. 

Example 4.1.2: Let

V1 � V2 =
1 2 3

4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

�� �
�	 

�	 

�	 
� ��

, [0, a1], [0, a2]

where ai � Z12; 1 � i � 9}

�

1

2
1 2

3 i 12
3 4

4

5

[0,a ]
[0,a ]

[0,a ] [0,a ]
, [0,a ] a Z ;1 i 5

[0,a ] [0,a ]
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
� �� �	 
 � � �� �	 
 	 
� �� �

	 
� �
	 
� �� �� �

be a set interval bivector space over the set S = {0, 2, 6, 5, 8, 
11} � Z12.
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Example 4.1.3: Let

V = V1 � V2 =  

1

2
1 2 3 4 i

3 i
5 6 7 8

4

5

[0,a ]
[0,a ]

[0,a ] [0,a ] [0,a ] [0,a ] a Q {0};
, [0,a ] ,[0,a ]

[0,a ] [0,a ] [0,a ] [0,a ] 1 i 8
[0,a ]
[0,a ]

�

� �� �
� �	 

� �	 
� � � �� �	 
� �	 
 	 
 � �� �� �

	 
� �
	 
� �� �� �

�

1 2 3 4

5 6 7 8 i

9 10 11 12

13 14 15 16

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] a Q {0};
[0,a ] [0,a ] [0,a ] [0,a ] 1 i 16
[0,a ] [0,a ] [0,a ] [0,a ]

�

� �� �
� �	 
 � �� �	 
� �	 
 � �� �	 
� �� �� �

 be a set interval bivector space defined over the set S = {0, ½, 
3/17, 25/4, 2, 4, 6, 21, 49}. 

Example 4.1.4: Let V = V1 � V2 = {All 10  10 interval 
matrices with intervals of the from [0, ai] with ai � Z7} �

i
i i 7

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a set interval bivector space over the set S = {0, 3, 5, 1} �
Z7.

We see examples 4.1.1, 4.1.3 and 4.1.4 give set interval bivector 
spaces of infinite order where as example 4.1.2 is of finite order. 

Now we can define substructure in them. 

DEFINITION 4.1.2: Let V = V1 � V2 be a set interval bivector 
space over the set S. Suppose W = W1 � W2 � V1 � V2 be a 
proper biset of V and if W = W1 � W2 � V is a set interval 



106

bivector space over the set S then we define W to be a set 
interval bivector subspace of V over the set S.

We will illustrate this situation by some examples. 

Example 4.1.5: Let V = V1 � V2 =

1
1 2 3 i 19

2
4 5 6

3

[0,a ]
[0,a ] [0,a ] [0,a ] a Z ;

[0,a ],
[0,a ] [0,a ] [0,a ] 1 i 6

[0,a ]

� �� �
�� �� �	 


� �	 
 	 
 � �� �� �	 
� �� �

�

25
i

i i 19
i 0

[0,a ]x a Z
)

� �
�� �

� �
�

be a set interval bivector space over the set S = {0, 2, 5, 7, 9, 12, 
17} � Z19.

Choose

W =
1

i 19
2

3

[0,a ]
a Z ;

[0,a ]
1 i 3

[0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�
25

2i
i i 19

i 0
[0,a ]x a Z

)

� �
�� �

� �
�

= W1 � W2 � V1 � V2 = V 

is a set interval bivector subspace of V over the set S.

Example 4.1.6: Let V = V1 � V2 = {[0, ai] | ai � Z+ � {0}} �

1 2 3

4 5 6 i

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] a Z {0};1 i 9
[0,a ] [0,a ] [0,a ]

�

� �� �
� �	 
 � � � �� �	 

� �	 
� �� �
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be a set interval bivector space over the set S = 2Z+ � 5Z+ �
{0}. Take

W = W1 � W2 = {[0, ai] | ai � 7Z+ � {0}} �

1 2 3

4 5 i

6

[0,a ] [0,a ] [0,a ]
0 [0,a ] [0,a ] a 3Z {0}
0 0 [0,a ]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

� V1 � V2 ; W = W1 � W2 is a set interval bivector subspace of 
V over the set S. 

Example 4.1.7: Let V = V1 � V2 = {All 7  7 interval matrices 
with interval of the form [0, ai] ai � Z18 � {All 1  9 interval 
row matrices with intervals of the form with ai 5 Z18 be a set 
interval bivector space over the set S = {0, 1, 2, 4, 5, 7} � Z18.
We see W = W1 � W2 = {All 7  7 diagonal interval matrices 
with intervals of the form [0, ai] with ai from Z18} � {([0, a1], 0, 
[0, a2], 0, [0, a3], 0, [0, a4], 0, [0, a5]) / ai � Z18; 1 < i < 5} � V1

� V2 = V is a set interval bivector subspace of V over the set S. 

Now having see examples of subspaces we now proceed on to 
define subset interval bivector subspaces.  

DEFINITION 4.1.3: Let V = V1 � V2 be a set interval bivector 
space over the set S. Let W = W1 � W2 � V1 � V2 = V be a 
proper bisubset of V and P � S be a proper subset of S. If W is a 
set interval bivector space over the set P then we define W to be 
a subset interval bivector subspace of V over the subset P of S. 

 We will illustrate this by some simple examples. 

Example 4.1.8: Let V = V1 � V2 =

' (
1

i 24
2 1 2 3 4

3

[0,a ]
a Z ;

[0,a ] , [0,a ] [0,a ] [0,a ] [0,a ]
1 i 4

[0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�
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{All 5  5 interval matrices with entries from Z24} be a set 
interval bivector space over the set S = {0, 2, 3, 5, 6, 8, 9, 10, 
14, 22} � Z24. Choose 

W = W1 � W2 = 
1

i 24
2

3

[0,a ]
a Z ;

[0,a ]
1 i 3

[0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�

{All 5  5 interval upper triangular matrices with entries from 
Z24} � V1 � V2 = V. Choose P = {0, 2, 5, 10, 14, 22} � S �
Z24. W = W1 � W2 is a subset interval bivector subspace of V 
over the subset P of S. 

Now we proceed onto define the notion of set interval linear 
bialgebra.

DEFINITION 4.1.4: Let V = V1 � V2 be a set interval bivector 
space over the set S.
 Suppose V is closed under addition and if s (a + b) = sa + 
sb for all s � S and a, b � V then we call V to be a set interval 
bilinear algebra over S. 

We will illustrate this situation by some examples. 

Example 4.1.9: Let V = V1 � V2 be a set interval bilinear 
algebra over the set S; where

V = V1 � V2

= 1 2 i 40

3 4

[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

� i
i i 40

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

and
S = {0, 2, 5, 7, 10, 14, 32} � Z40.

Example 4.1.10: Let
V = V1 � V2
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=

1

2
i

3

4

5

[0,a ]
[0,a ]

a Z {0};
[0,a ]

1 i 5
[0,a ]
[0,a ]

�

� �� �
� �	 

� �	 
 � �� �	 
� �
	 
 � �� �
	 
� �
	 
� �� �� �

�

1 2 3
i

4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
a Z {0};

[0,a ] [0,a ] [0,a ]
1 i 9

[0,a ] [0,a ] [0,a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

be a set interval bilinear algebra over the set S = {0, 3, 14, 27, 
52, 75, 130} � Z+ � {0}.  

Example 4.1.11: Let V = V1 � V2

= 1 2 3 4 5 i

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] a R {0}
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 10

�� �� � � �� �
� �	 
 � �� �� �� �

�

{All 12  11 interval matrices with intervals from Q+ � {0} of 
the form [0, ai]; ai � Q+ � {0}} be a set interval bilinear algebra 

over the set S = {0, 12, 3 , 41 , 5 12 , 412, 53
150

}.

 Now we see all the set interval bilinear algebras given in the 
examples 4.1.9, 4.1.10 and 4.1.11 are of infinite order. 

We will give one example of a finite set interval bilinear 
algebra.

Example 4.1.12: Let

V = {[0, ai] | ai � Z8} � 1 2 i 8

3 4

[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �
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be a set interval linear bialgebra over the set S = {0, 1, 2, 3, 4} 
� Z8. V is a finite order set interval linear bialgebra or finite 
order set interval bilinear algebra over the set S.

Now we proceed onto define the notion of set interval bilinear 
subalgebra of a set interval bilinear algebra over the set S. 

DEFINITION 4.1.5: Let V = V1 � V2 be a set interval linear 
bialgebra over the set S. Choose W = W1 � W2 � V1 � V2 = V; 
suppose W is a set interval linear bialgebra over the set S then 
we call W to be a set interval linear sub bialgebra of V over the 
set S. 

We will illustrate this situation by some examples. 

Example 4.1.13: Let

V = V1 � V2 = 
1 2 3

i 16
4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
a Z ;

[0,a ] [0,a ] [0,a ]
1 i 9

[0,a ] [0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�

1 2

3 4
i 16

5 6

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]

a Z ;
[0,a ] [0,a ]

1 i 10
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �

be a set interval linear bialgebra over the set S = {0, 3, 5, 8, 7, 
10} � Z16. Choose W = W1 � W2

=
1 2 3

i 16

7 8 9

[0,a ] [0,a ] [0,a ]
a Z ;

0 0 0
i 1,2,3,7,8,9

[0,a ] [0,a ] [0,a ]

� �� �
�� �	 


� �	 
 )� �	 
� �� �
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�

1

2
i 16

3

4

5

[0,a ] 0
0 [0,a ]

a Z ;
[0,a ] 0

1 i 5
0 [0,a ]

[0,a ] 0

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �

� V1 � V2 = V; W is a set interval linear subbialgebra of V over 
the set S. 

Example 4.1.14: Let

V = V1 � V2 = 
27

i
i i

i 0
[0,a ]x a Q {0}�

)

� �
� �� �

� �
� �

{All 10  10 interval matrices with entries from Q+ � {0}} be a 
set interval linear bialgebra over the set S = {3Z+, 0, 7Z+}. 
Choose

W = W1 � W2 = 
20

i
i i

i 0
[0,a ]x a Z {0}�

)

� �
� �� �

� �
� �

{all 10  10 upper triangular interval matrices with entries from 
Q+ � {0}} � V1 �V2 =V; W is a set interval linear bisubalgebra 
of V over the set S. 

 Now we proceed onto define other special type of 
substructures.

DEFINITION 4.1.6: Let V = V1 � V2 be a set interval bilinear 
algebra over the set S.
 Choose W = W1 � W2 � V1 � V2 and P a proper subset of S 
such that W = W1 � W2 is a set interval bilinear algebra over P. 
W is defined as a subset interval linear subbialgebra of V over 
the subset P of S. If V has no subset interval linear subalgebra 
then we define V to be a pseudo simple set linear bialgebra.  
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First we will illustrate this by some simple examples. 

Example 4.1.15: Let
V = V1 � V2

= 1 2 i 27

3 4

[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

� {[0, ai] | ai � Z27}

be a set interval linear bialgebra over the set S = Z27. Let  

W = W1 � W2 = 1 i 27

2

[0,a ] 0 a Z ;
[0,a ] 0 1 i 2

� ��� �� �
� �	 
 � �� �� �� �

�

{[0, ai] | ai � {0, 3, 6, 9, 12, 15, 18, 21, 24} � Z27} � V1 � V2 = 
V be a subset interval linear subbialgebra of V over subset P = 
{0, 9, 18} � S. 

Example 4.1.16: Let V = V1 � V2 = {All 5  5 interval matrices 
with entries from Q+ � {0}} �

30
i i

i
i 0

a Q {0};
[0,a ]x

0 i 30

�

)

� �� �
� �

� �� �
�

be a set interval linear bialgebra over the set S = {0, 3Z+, 11Z+,
17Z+}. Choose W = W1 � W2 = {all 5  5 interval upper 
matrices with entries from Q+ � {0}} �

20
i i

i
i 0

a Q {0};
[0,a ]x

0 i 20

�

)

� �� �
� �

� �� �
�

� V1 � V2 = V, W is a subset interval linear subbialgebra over 
the subset P = {0, 3Z+, 17Z+} � S.

Now will give some examples of a pseudo simple set interval 
linear bialgebra. 
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Example 4.1.17: Let V = V1 � V2 = {[0, a], [0, a], [0, a], [0, a]) 
| a � Z5} �

5

[0,a]
[0,a]

a Z
[0,a]
[0,a]

� �
� �
� ��� �
� �
� �� �

be a set linear bialgebra of the set S = {0, 1}. 
 Clearly V is a pseudo simple set linear bialgebra over S. 

Example 4.1.18: Let

V = V1 � V2

= 3

[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

� 3

[0,a]
[0,a] a Z
[0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

be a set interval linear bialgebra over the set S = {0, 1}. Clearly 
V is a pseudo simple set interval linear bialgebra over the set S.  

We define pseudo set interval bivector space of a set interval 
linear bialgebra. 

Example 4.1.19: Let V = V1 � V2 =

1 2 3 i 7

4 5 6

[0,a ] [0,a ] [0,a ] a Z ;
[0,a ] [0,a ] [0,a ] 0 i 6

� ��� �� �
� �	 
 � �� �� �� �

�

1 2
i 7

3 4

5 6

[0,a ] [0,a ]
a Z ;

[0,a ] [0,a ]
0 i 6

[0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a set interval linear bialgebra of V over the set S = {0, 1, 2, 
3}. Choose
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W = W1 � W2

= 1 2 1

3 4 2

[0,a ] 0 [0,a ] [0,a ] 0 0
,

0 [0,a ] [0,a ] [0,a ] 0 0
� �� � � �� �
� �	 
 	 

� �� �� �� �

�

1 1

2 2

3 3

[0,a ] 0 0 [0,a ]
0 [0,a ] , [0,a ] 0

[0,a ] 0 0 [0,a ]

� �� � � �
� �	 
 	 

� �	 
 	 

� �	 
 	 
� � � �� �

� V1 � V2 = V, W is a pseudo set interval bivector subspace of 
V over the set S. 

Example 4.1.20: Let V = V1 � V2

= {([0, a1], [0, a2], [0, a3], [0, a4], [0, a5]) | ai � Z7; 1 � i � 5} �

7

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

be a set interval bilinear algebra over the set S = {0, 1}. 
 Choose W = W1 � W2 =

{([0, a], 0, [0, a], 0, [0, a]), ([0, a], [0, a], 0, [0, a], 0) | a � Z7} �

7

[0,a] 0 0 [0,a]
, a Z

[0,a] 0 0 [0,a]
� �� � � �� ��� �	 
 	 

� �� � � �� �

� V1 � V2 = V, W is a pseudo set interval vector bisubspace of 
V over the set S. 
 As in case of usual set bivector spaces we define the 
bigenerations of set interval bivector spaces. 

We will illustrate this by an simple example. 
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Example 4.1.21: Let V = V1 � V2 = {{[0, ai] | ai � Z7} �

1
i 7

1

[0,a ]
a Z

[0,a ]

� �� �� ��� �	 

� �� �� �

be a set interval bivector space over the set S = Z7. The 
bigenerator of V is  

X = {[0, 1]} �
[0,1]
[0,1]

� �� �� �
� �	 

� �� �� �

.

 Clearly the bidimension of V is finite and is (0, 1). 

Interested reader is expected to derive more properties. 
However the concept of bilinearly independent set and bibasis 
can also be defined in an analogous way. We see the basis of the 
set interval bivector space given in example 4.1.21 is  

{[0, 1]} �
[0,1]
[0,1]
� �
	 

� �

.

The bidimension is {1, 1}. 

We will illustrate this by another example.  

Example 4.1.22: Let
V = V1 � V2

=
1 2

3 4 i

5 6

[0,a ] [0,a ]
[0,a ] [0,a ] a Z {0}
[0,a ] [0,a ]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�
6

i
i i

i 0
[0,a ]x a Z {0}�

)

� �
� �� �

� �
�

be a set interval bilinear algebra over the set S = Z+ � {0}. 
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X = 
[0,1] 0 0 [0,1] 0 0

0 0 , 0 0 , [0,1] 0 ,
0 0 0 0 0 0

�� � � � � �
�	 
 	 
 	 

�	 
 	 
 	 

�	 
 	 
 	 
� � � � � ��

0 0 0 0 0 0
0 [0,1] , 0 0 , 0 0
0 0 [0,1] 0 0 [0,1]

�� � � � � �
�	 
 	 
 	 

�	 
 	 
 	 

�	 
 	 
 	 
� � � � � ��

� {1, x, x2, x3, x4, x5, x6} = X1 � X2

is a bilinearly independent bisubset of V and X = X1 � X2
bigenerates V thus X is a bibasis of V. 

We define yet another set of interval bivector spaces called biset 
interval bivector spaces. 

DEFINITION 4.1.7: Let V = V1 � V2 where V1 is a set interval 
vector space over the set S1 and V2 is another set interval vector 
space over the set S2 where V1 and V2 are distinct that is V1 4 V2

and V2 4 V1 and S1 and S2 are distinct that is S1 4 S2 and S2 4
S1.
 Then we define V = V1 � V2 to be a biset interval vector 
bispace over the biset S = S1 � S2 or V is a biset interval 
bivector space over the biset S = S1 � S2.

We will illustrate this situation by some simple examples. 

Example 4.1.23: Let V = V1 � V2

= 11 2 3 i 12

4 5 6 2

[0,a ][0,a ] [0,a ] [0,a ] a Z ;
,

[0,a ] [0,a ] [0,a ] 1 i 6[0,a ]

� ��� �� �� �
� �	 
	 
 � �� � � �� �� �

�

1

2 i 42

3

4

[0,a ]
[0,a ] a Z ;
[0,a ] 1 i 4
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �	 
� �� �
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be a biset interval bivector space over the biset S = S1 � S2 = 
Z12 � Z42.

Example 4.1.24: Let V = V1 � V2

=

1

2 i

3

4

[0,a ]
[0,a ] a Z {0}
[0,a ] 1 i 4
[0,a ]

�

� �� �
� �	 
 � �� �	 
� �	 
 � �� �	 
� �	 
� �� �

� {[0, ai] | ai � Z7}

be a biset interval bivector space over the biset S = S1 � S2 = 
(Z+ � {0}) � Z7.

Example 4.1.25: Let V = V1 � V2

=
24

i
i i 45

i 0
[0,a ]x a Z

)

� �
�� �

� �
� �

{all 10  10 interval matrices with entries from Z+ � {0}} be a 
biset interval bivector space over the biset S = S1 � S2 = Z45 �
3Z+ � {0}. 

Now we proceed onto define substructure in this bispace. 

DEFINITION 4.1.8: Let V = V1 � V2 be a biset interval bivector 
space over the biset S = S1 � S2. Let W = W1 � W2 � V1 � V2 = 
V be a proper subset of V. 
 If W = W1 � W2 is a biset interval bivector space over the 
biset S = S1 � S2, then we define W to be a biset interval 
bivector sub bispace of V over the biset S. 

We will first illustrate this situation by some examples. 

Example 4.1.26: Let V = V1 � V2 =

1 2 i

3 4

[0,a ] [0,a ] a Q {0};
[0,a ] [0,a ] 1 i 4

�� �� � � �� �
� �	 
 � �� �� �� �

�
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{All 17  17 upper triangular interval matrices with entries from 
Z12} be a biset interval bivector space over biset the S = (Q+ �
{0}) � Z12 = S1 � S2.
 Take W = W1 � W2 =

1 2 i

3

[0,a ] [0,a ] a Q {0};
0 [0,a ] 1 i 3

�� �� � � �� �
� �	 
 � �� �� �� �

�

{All 17  17 diagonal interval matrices with entries from Z12} �
V1 � V2 = V, W is a biset interval bivector subspace of V over 
the biset S = S1 � S2.

Example 4.1.27: Let V = V1 � V2 =   

1 2 3 i 42

4 5 6

[0,a ] [0,a ] [0,a ] a Z
[0,a ] [0,a ] [0,a ] 1 i 6

� ��� �� �
� �	 
 � �� �� �� �

�

25
i 25i

i
i 0

a Z ;
[0,a ]x

1 i 6)

�� �
� �� �� �
�

be a biset interval bivector space over the biset S = S1 � S2 = 
Z42 � Z25. Choose  

W = W1 � W2

= 1 2 3 i 42

1 2 3

[0,a ] [0,a ] [0,a ] a Z ;
[0,a ] [0,a ] [0,a ] 1 i 3

� ��� �� �
� �	 
 � �� �� �� �

� � Z25}

� V1 � V2 = V; W is a biset interval bivector subspace of V 
over S.

Now we proceed onto define the notion of quasi set interval 
bivector spaces and quasi biset interval bivector spaces. 

DEFINITION 4.1.9: Let V = V1 � V2 be such that V1 is a set 
vector space over the set S and V2 a set interval vector space 
over the same set S then we define V = V1 � V2 to be a quasi set 
interval bivector space over the set S.  
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We will first illustrate this situation by some examples. 

Example 4.1.28: Let V = V1 � V2

=
1 2 3

i
4 5 6

7 8 9

a a a
a Q {0};

a a a
1 i 9

a a a

�
� �� �- .
� �� �	 
/ 0
� �	 
/ 0 � �� �/ 0	 
1 2� �� �

�

1 2 3 4 i

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ] a Q {0};
[0,a ] [0,a ] [0,a ] [0,a ] 1 i 8

�� �� � � �� �
� �	 
 � �� �� �� �

be a quasi set interval bivector space over the set S = Z+ � {0}. 

Example 4.1.29: Let V = V1 � V2

=

1 5

2 6 i 8

3 7

4 8

[0,a ] [0,a ]
[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 8
[0,a ] [0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

�
26

i
i i 8

i 0
[0,a ]x a Z

)

� �
�� �

� �
�

be a quasi set interval bivector space over the set S = Z8.

Example 4.1.30: Let V = V1 � V2

= i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
� �

{All 8  8 interval matrices with entries from Z+ � {0}} be a 
quasi set interval bivector space over the set S = 3Z+ � {0}.

 Now we define quasi set interval bivector subspace in an 
analogous way. 

DEFINITION 4.1.10: Let V = V1 � V2 be a quasi set interval 
bivector space over the set S. Let W = W1 � W2 � V1 � V2 ; W 
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is a quasi set interval bivector subspace of V over the set S, if W 
is a quasi set interval bivector spaces over the sets. 

For instance if V = V1 � V2

=
40

i
i i 28

i 0
[0,a ]x a Z

)

� �
�� �

� �
� �

1 2
i 28

3 4

5 6

[0,a ] [0,a ]
a Z ;

[0,a ] [0,a ]
1 i 6

[0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a quasi set interval bivector space over the set S = Z28.
 Let W = W1 � W2

=
20

i
i i 28

i 0
a x a Z

)

� �
�� �

� �
� �

1
i 28

2

3

[0,a ] 0
a Z ;

0 [0,a ]
1 i 3

[0,a ] 0

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

� V1 � V2; W is a quasi set interval bivector subspace of V 
over the set S. 

Example 4.1.31: Let V = V1 � V2

= 1 2 3 4 5 i

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] a Z {0};
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 10

�� �� � � �� �
� �	 
 � �� �� �� �

�

{10  10 upper triangular matrices with entries from Z+ � {0}} 
be a quasi set interval bivector space over the set S = 3Z+ � {0}. 
 Choose W = W1 � W2

= 1 2 3 i

4 5

[0,a ] 0 [0,a ] 0 [0,a ] a Z {0};
0 [0,a ] 0 [0,a ] 0 1 i 5

�� �� � � �� �
� �	 
 � �� �� �� �

�

{All 10  10 diagonal matrices with entries from 13Z+ � {0}} 
� V1 � V2 = V; W is a quasi set interval bivector subspace of V 
over the set S. 
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Now we proceed onto define the new notion of quasi biset 
interval bivector space. 

DEFINITION 4.1.11: Let V = V1 � V2 where V1 is a set vector 
space over the set S1 and V2 is a set interval vector space over 
the set S2. We call V = V1 � V2 to be a quasi biset interval 
bivector space over the biset S = S1 � S2.

We will illustrate this situation by some examples. 

Example 4.1.32: Let V = V1 � V2

=
1 2 3

i 18
4 5 6

7 8 9

a a a
a Z ;

a a a
1 i 9

a a a

� �� �- .
� ��	 
/ 0
� �	 
/ 0 � �� �/ 0	 
1 2� �� �

�

1 2

3 4 i 11

5 6

7 8

[0,a ] [0,a ]
[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 8
[0,a ] [0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

be a quasi biset interval vector bispace over the biset S = S1 �
S2 = Z18 � Z11.

Example 4.1.33: Let V = V1 � V2 = {all 12  12 matrices with 
entries from Z+ � {0}} �

i
i i 29

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a quasi biset interval bivector space over the biset S = S1 �
S2 = (13Z+ � {0}) � Z29.

Example 4.1.34: Let V = V1 � V2 =

15
i

i i
i 0

a x a 3Z {0}�

)

� �
� �� �

� �
� �
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1 2 3
i

4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
a 5Z {0};

[0,a ] [0,a ] [0,a ]
1 i 9

[0,a ] [0,a ] [0,a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

be a quasi biset interval bivector space over the biset S = S1 �
S2 = (13Z+ � {0}) � {15Z+ � {0}). 

Now we give examples of quasi biset interval bivector spaces 
their substructures. 

Example 4.1.35: Let V = V1 � V2 = {All 6  6 interval matrices 
with entries from Z7} �

i
i i

i 0
a x a Q {0}

�
�

)

� �
� �� �

� �
�

be a quasi biset interval bivector space over the biset S = Z7 �
Q+ � {0}. Choose W = W1 � W2 = {all 6  6 upper triangular 
interval matrices with entries from Z7} �

2i
i i

i 0
a x a Q {0}

�
�

)

� �
� �� �

� �
�

� V1 � V2 = V be a quasi biset interval bivector subspace of V 
over the biset Z7 � Q+ � {0}. 

Example 4.1.36: Let V = V1 � V2 =

i
i i 49

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� {All 16  16 matrices with entries from Z81} be a quasi biset 
interval bivector space over the biset S = S1 � S2 = Z49 � Z81.
Choose W = W1 � W2
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= 2i
i i 49

i 0
[0,a ]x a {0,7,14,21,28,35,42} Z

�

)

� �
� �� �

� �
�

� {all 16  16 diagonal matrices with entries from Z81} � V1 �
V2 = V. W is a quasi biset interval bivector subspace of V over 
the biset S = S1 � S2.

Example 4.1.37: Let V = V1 � V2 = {[0, ai] | ai � {0, 1, 2, 3, 4} 
= Z5} �

7

a a
a Z

a a
� �� �� ��� �	 

� �� �� �

be a quasi biset interval bivector space over the biset S = S1 �
S2 = Z5 � Z7. It is easy to verify V has no quasi biset interval 
bivector subspace over S. 

We define those quasi biset interval bivector spaces which 
has no subspace to be a simple quasi biset interval bivector 
space.
 Vector space given an example 4.1.37 is a simple quasi 
biset interval bivector space. 

Now we proceed onto define the notion of quasi subbiset 
interval bivector space. 

DEFINITION 4.1.12:Let V = V1 � V2 be a quasi biset interval 
bivector space over the biset S = S1 � S2. Let W = W1 � W2 �
V1 � V2; where W = W1 � W2 is a quasi biset interval bivector 
space over the biset P = P1 � P2 � S1 � S2 = S (where P is a 
proper subbiset of S) then we call W to be a quasi subbiset 
interval bivector subspace of V over the subbiset P of S. 

We will illustrate this situation by some examples. If V has no 
proper quasi subbiset interval bivector subspace then we call V 
to be a pseudo simple quasi biset interval bivector space. If V is 
both simple and pseudo simple then we call V to be a doubly 
simple interval space. 
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We will illustrate this by some examples. 

Example 4.1.38: Let V = V1 � V2 = {[0, a] | a � Z7} �

5

a
a a Z
a

� �� �
� �	 
 �� �	 

� �	 
� �� �

be a quasi biset interval bivector space over the biset S = {0, 1} 
� Z5 = S1 � S2. V is a doubly simple quasi biset interval 
bivector space over the biset S. 

Example 4.1.39: Let V = V1 � V2 = {(a, a, a, a, a, a, a, a) | a �
Z2} �

3

[0,a] [0,a]
[0,a] [0,a] a Z
[0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

be a quasi biset interval bivector space over the biset S = Z2 �
Z3. Clearly V is a quasi doubly simple interval bivector space 
over the biset S = Z2 � Z3.

Now we proceed onto define the notion of quasi set interval 
linear algebra semiquasi set interval linear algebra.  

DEFINITION 4.1.13: Let V = V1 � V2 be a quasi set interval 
bivector space over the set S. Suppose each Vi is closed under 
the operation, addition for i=1, 2, then we define V = V1 � V2 to 
be a quasi set interval linear bialgebra over the set S. 

We will illustrate this situation by some examples. 

Example 4.1.40: Let V = V1 � V2

= i
i

i
a x�

�
�
� | ai � Z+ � {0}} � i

i i
i 0

[0,a ]x a Z {0}
�

�

)

� �
� �� �

� �
�
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be a quasi set interval linear bialgebra over the set S = 3Z+ �
{0}.

Example 4.1.41: Let V = V1 � V2

=
9

i 7i
i

i 0

a Z ;
[0,a ]x

0 i 9)

�� �
� �� �� �
� �

1 2
i 7

3 4

5 6

[0,a ] [0,a ]
a Z ;

[0,a ] [0,a ]
1 i 6

[0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a quasi set interval linear bialgebra over the set S = Z7.
Clearly V is of finite order where as V given in example 4.1.40 
of infinite order. 

Example 4.1.42: Let V = V1 � V2 = {All 5  5 interval matrices 
with entries from Q+ � {0}} � {all 3  7 matrices with entries 
from Q+ � {0}} be a quasi set interval bilinear algebra over the 
set S = 13Z+ � {0}.

Now we proceed onto define semi quasi interval bilinear algebra 
(linear bialgebra) over the set S.  

DEFINITION 4.1.14:Let V = V1 � V2 where V1 is a set interval 
linear algebra over the set S and V2 is a set vector space over 
the same set S (or V1 is a set interval vector space over the set S 
and V2 is a set linear algebra over the set S). We define V to be 
a semi quasi set interval bilinear algebra over the set S.  

We will illustrate this situation by some examples. 

Example 4.1.43: Let V = V1 � V2

= 1 2 i 45

3 4

[0,a ] [0,a ] a ,a Z ;
[0,a],

[0,a ] [0,a ] 1 i 4
� ��� �� �
� �	 
 � �� �� �� �

�
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{All 9  3 matrices with entries from Z45} be a semi quasi set 
interval bilinear algebra over the set S = {0, 1, 5, 7, 14, 27, 35, 
42}� Z45.

Example 4.1.44: Let V = V1 � V2

=
1 2 3 4 5

i
6 7 8 9 10

11 12 13 14 15

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
a R {0}

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
1 i 15

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

�
a
b ,[a,b,c,d,e,f ] a,b,c,d,e,f R {0}
c

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

be a semi quasi set interval bilinear algebra over the set S = {0, 

1, 2 , 7 5 , 13
19

, 43 , 52, 75, 1031} � R+ � {0}.

Example 4.1.45: Let V = V1 � V2 = {[0, a] | a � Z3} �

3

a
,[a,b,c,d] a,b,c,d Z

b
� �� �� ��� �	 

� �� �� �

be a semi quasi set interval bilinear algebra over the set S = {0, 
1, 2} = Z3.

Now we proceed onto define quasi biset interval bilinear algebra 
defined over the biset S = S1 � S2.

DEFINITION 4.1.15:Let V = V1 � V2 where V1 is a set linear 
algebra over the set S1 and V2 is a set interval vector space over 
the set S2, we define V to be a quasi biset interval bilinear 
algebra over the biset S = S1 � S2.

We will illustrate this situation by some examples. 
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Example 4.1.46: Let V = V1 � V2

= 49

a b c
a b

, d e f a,b,c,d,e,f ,g,h,i Z
c d

g h i

� �� �
� �� �	 
 �� �	 
 	 
� �� �	 
� �� �

�

1
i 7

2

3

[0,a ]
a Z ;

[0,a ]
1 i 3

[0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a quasi biset interval bilinear algebra over the biset S = Z19 �
Z7.

Example 4.1.47: Let V = V1 � V2

=
1

i
2 1 2

3

[0,a ]
a Z {0};

[0,a ] ,([0,a ],[0,a ])
1 i 3

[0,a ]

�
� �� �
� �� �	 

� �	 
 � �� �	 
� �� �

�

{all 3  5 matrices with entries from Z49} be a quasi biset 
interval bilinear algebra over the biset S = 5Z+ � {0} � Z49.

We see the quasi biset interval bilinear algebra given in example 
4.1.46 is of finite order where as the quasi biset interval bilinear 
algebra given in example 4.1.47 is of infinite order. 

Example 4.1.48: Let V = V1 � V2 =

i
i i 5

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

�
a b

,[(a,b,c,d,e,f ,g,h)] a,b,c,d,e,f ,g,h Z {0}
c d

�
� �� �� �� �� �	 

� �� �� �
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be a quasi biset interval bilinear algebra over the biset S = S1 �
S2 = {0, 1} � {1, 2, 5, 0, 7}. 
 Clearly the quasi biset interval bilinear algebra given in 
example 4.1.48 is of infinite order. 

Now we will proceed onto give examples of substructures and 
the reader is given the simple task of defining these 
substructures.

Example 4.1.49: Let V = V1 � V2 =

1

21 3 5 i 29

2 4 6 3

4

[0,a ]
[0,a ][0,a ] [0,a ] [0,a ] a Z ;

,
[0,a ] [0,a ] [0,a ] [0,a ] 1 i 6

[0,a ]

� �� �
� �	 
 �� �� �	 
� �	 
 	 
 � �� �� �	 
� �	 
� �� �

�

25
i

i i 29
i 0

a x a Z
)

� �
�� �

� �
�

be a quasi set interval bilinear algebra over the set S = Z29.
 Choose W = W1 � W2

=

1

2 i 29

3

4

[0,a ]
[0,a ] a Z ;
[0,a ] 1 i 4
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �	 
� �� �

�
15

i
i i 29

i 0
a x a Z

)

� �
�� �

� �
�

� V1 � V2 = V; W is a quasi set interval bilinear subalgebra of 
V over the set S = Z29.

Example 4.1.50: Let V = V1 � V2 =

a b
(a,b,c), c d a,b,c,d,e,f Z {0}

e f

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�
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{[0, a] | a � Z+ � {0}} be a quasi set interval bilinear algebra 
over the set 5Z+ � {0} = S. Take W = W1 � W2 = {(a, b, c) | a, 
b, c � Z+ � {0}} � {[0, a] | a � 15Z+ � {0}} � V1 � V2 = V; 
W is a quasi set interval bilinear subalgebra of V over the set S 
= 5Z+ � {0}. 

Example 4.1.51: Let V = V1 � V2 =

17

a b
c d

a b e
, a,b,c,d,e,f ,g,h,i, j Ze f

c d f
g h
i j

� �� �
� �	 

� �	 
� �� �	 
 �� �	 
 	 
� �� �

	 
� �
	 
� �� �� �

�

1 2 3
i 47

4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
a Z ;

[0,a ] [0,a ] [0,a ]
1 i 9

[0,a ] [0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a quasi biset interval bilinear algebra over the biset S = Z17 �
Z47. Choose W = W1 � W2 =

17

a b e
a,b,c,d,e,f Z

c d f
� �� �� ��� �	 

� �� �� �

�

1 2 3
i 47

4 5

6

[0,a ] [0,a ] [0,a ]
a Z ;

0 [0,a ] [0,a ]
1 i 6

0 0 [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

� V1 � V2 = V, W is a quasi biset interval bilinear subalgebra 
of V over the biset S = Z17 � Z47.

Example 4.1.52: Let V = V1 � V2 = {All 7  7 matrices with 
entries from Z42} �
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' ( 1 3 5 i
1 2 3 4

2 4 6

[0,a ] [0,a ] [0,a ] a Z {0};
[0,a ],[0,a ],[0,a ],[0,a ] ,

[0,a ] [0,a ] [0,a ] 1 i 6

�� �� � � �� �
� �	 
 � �� �� �� �
 be a quasi biset interval linear bialgebra over the biset S = S1 �
S2 = Z42 � Z+ � {0}. Choose W = W1 � W2 = {all 7  7 upper 
triangular matrices with entries from Z42} � {([0, a1], [0, a2], [0, 
a3], [0, a4])| ai � Z+ � {0}; 1 � i � 4} � V1 � V2 be a quasi biset 
interval bilinear subalgebra of V over the biset S = S1 � S2 = Z42

� Z+ � {0}. 

Now as in case of set interval bivector spaces we can define the 
notion of quasi subset interval bilinear subalgebras. As the 
definition is a matter of routine the reader is given that task. 
However we illustrate this situation by some examples. 

Example 4.1.53: Let V = V1 � V2 =

{(a1, a2, a3, a4, a5, a6, a7),
a b c
d e f
g h i

� �
	 

	 

	 
� �

| ai, a, b, c, d, e,  

f, g, h, i � Z9; 1 � i � 6} �
1 2

i 9
3 4

5 6

[0,a ] [0,a ]
a Z

[0,a ] [0,a ]
1 i 6

[0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

 be a quasi set interval bilinear algebra over the set S = Z9.
 Choose W = W1 � W2 =

{(a1, a2, a3, a4, a5, a6, a7) | ai � Z9; 1 � i � 7} �

1
i 9

2

3

[0,a ] 0
a Z ;

0 [0,a ]
1 i 3

[0,a ] 0

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

� V = V1 � V2 and P = {0, 3, 6} � Z9 = S.  

W is a quasi subset interval linear subalgebra of V over the 
subset P = {0, 3, 6} of S.  
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Example 4.1.54: Let V = V1 � V2 = {all 5  5 matrices with 
entries from Z+ � {0}} �

1
1 2 3

2
4 5 i

3
6

4

[0,a ]
[0,a ] [0,a ] [0,a ]

[0,a ]
, 0 [0,a ] [0,a ] a 3Z {0};1 i 6

[0,a ]
0 0 [0,a ]

[0,a ]

�

� �� �
� �� �	 

� �	 
	 
 � � � �� �	 
	 
� �	 
	 
 � �� �	 
� �� �

be a quasi set interval bilinear algebra over the set S = 3Z+ �
{0}. Choose W = W1 � W2 = {all 5  5 upper triangular 
matrices with entries from Z+ � {0}} �

i

[0,a] [0,a] [0,a]
0 [0,a] [0,a] a 3Z {0}
0 0 [0,a]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

� V1 � V2 = V 

and P = 33Z+ � {0} � S = 3Z+ � {0}. Clearly W = W1 � W2 is 
a quasi subset interval bilinear subalgebra of V over the subset P 
� S. However it is possible that V has no quasi subset interval 
bilinear subalgebra in such cases we call V to be a pseudo 
simple quasi set interval bilinear algebra. 

 We will illustrate this situation by some examples. 

Example 4.1.55: Let V = V1 � V2 = {[0, a]| a � Z3} �

3

a a
a a a Z
a a

� �� �
� �	 
 �� �	 

� �	 
� �� �

be a quasi set interval bilinear algebra over the set S = {0, 1} �
Z3. Clearly V has no quasi subset interval bilinear algebra as 
well as V has no quasi set interval bilinear subalgebra. Thus V 
is a pseudo simple quasi set interval bilinear algebra as well as 
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simple quasi set interval bilinear algebra which we choose to 
call as doubly simple quasi set bilinear algebra. 

Example 4.1.56: Let

V = V1 � V2

= 7

[0,a] [0,b]
a,b,c,d Z

[0,c] [0,d]
� �� �� ��� �	 

� �� �� �

�

i
i i 7

i 0
a x ,(a,b,c,d) a ,a,b,c,d Z

�

)

� �
�� �

� �
�

be a quasi set interval bilinear algebra over the set S = {0, 1}. 
 Since S cannot have proper subsets of order greater than or 
equal two we see V is a pseudo simple quasi set interval bilinear 
algebra. However V is not a simple quasi set interval bilinear 
algebras as

W = 7

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

� i
i i 7

i 0
a x a Z

�

)

� �
�� �

� �
�

� V1 � V2 = V is a quasi set interval bilinear subalgebra of V 
over the set S = {0, 1}. 
 Thus V is not a doubly simple quasi set interval linear 
algebra over the set S. 

Now we will give yet another example to show the different 
possibilities.

Example 4.1.57: Let V = V1 � V2 =

19

a a
,(a,a) a Z

a a
� �� �� ��� �	 

� �� �� �

� 19

[0,a]
[0,a] a Z
[0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �
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be a quasi set interval bilinear algebra over the set S = Z19.
Clearly V has no quasi set interval bilinear subalgebra over S = 
Z19.
 However we see S can have several subsets but V cannot 
have any proper pseudo quasi subset interval bilinear 
subalgebras.
 Hence V is a doubly simple quasi set interval bilinear 
algebra over Z19 = S. 

Now we proceed onto define the notion of quasi subbiset 
interval bilinear subalgebras. 

DEFINITION 4.1.16:Let V = V1 � V2 be a quasi biset interval 
bilinear algebra over the biset S = S1 � S2. Let W = W1 � W2 �
V1 � V2 and P = P1 � P2 � S1 � S2 both W and P are proper 
bisubsets of V and S respectively. Suppose W is a quasi biset 
interval bilinear algebra over the biset P = P1 � P2 then we call 
W to be a quasi bisubset interval bilinear subalgebra of V over 
the bisubset P of S. 
 We will say V is pseudo simple quasi biset interval bilinear 
algebra over the bisubset interval bilinear subalgebra over a 
bisubset P = P1 � P2 of S = S1 � S2.

We will illustrate these situations by some simple examples. 

Example 4.1.58: Let V = V1 � V2 =

6

a b a b a b a b
, a,b,c,d Z

c d b a b a b a
� �� � � �� ��� �	 
 	 

� � � �� �� �

�

1 2

3 4 i 8

5 6

7 8

[0,a ] [0,a ]
[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 8
[0,a ] [0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

be a quasi biset interval bilinear algebra over the biset S = Z6 �
Z8.
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 Choose W = W1 � W2

= 6

a b
a,b,c,d Z

c d
� �� �� ��� �	 

� �� �� �

�

1

2 i 8

3

4

[0,a ] 0
0 [0,a ] a Z ;

[0,a ] 0 1 i 8
0 [0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

� V1 � V2 = V such that W is a quasi bisubset interval bilinear 
algebra over the subbiset P = {0, 3} � {0, 2, 4, 6} � S1 � S2.

Example 4.1.59: Let V = V1 � V2 =

1

21 2 3 4 i 3

5 6 7 8 3

4

[0,a ]
[0,a ][0,a ] [0,a ] [0,a ] [0,a ] a Z ;

,
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 8

[0,a ]

� �� �
� �	 
 �� �� �	 
� �	 
 	 
 � �� �� �	 
� �	 
� �� �

�

2

a b
a,b,c,d Z

c d
� �� �� ��� �	 

� �� �� �

be a quasi biset interval bilinear algebra over the biset S = Z3 �
{0, 1}.
 We see V has no quasi subbiset interval bilinear subalgebra 
over S as S does not contain any proper subbiset. 
 Thus V is a pseudo simple quasi biset interval bilinear 
algebra over the set S = Z3 � {0, 1}. 

Example 4.1.60: Let V = V1 � V2

= 5

a a a
a a a a Z
a a a

� �� �
� �	 
 �� �	 

� �	 
� �� �

�
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' (

1

2 i 2
1 2 3 4

3

4

[0,a ]
[0,a ] a Z ;

[0,a ] [0,a ] [0,a ] [0,a ] ,
[0,a ] 1 i 4
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �	 
� �� �

be a quasi biset interval bilinear algebra over the biset S = Z5 �
Z2. Clearly V has no quasi biset interval bilinear subalgebras. 
Also V does not contain any quasi subbiset interval bilinear 
subalgebras. Thus V is both a pseudo simple quasi biset bilinear 
algebra as well as simple quasi biset interval bilinear algebra. 
We call a quasi biset interval bilinear algebra which is both a 
simple quasi biset interval bilinear algebra as well as pseudo 
simple quasi biset interval bilinear algebra as doubly simple 
quasi biset interval bilinear algebra. 

 We have given examples of all types of quasi biset interval 
bilinear algebras. Now we proceed onto give some properties 
and the reader is expected to prove them. 

THEOREM 4.1.1: Every quasi set interval bilinear algebra over 
a set S is a quasi set interval bivector space and the converse in 
general is not true. 

THEOREM 4.1.2: Every set interval bilinear algebra is a set 
interval bivector space and not conversely. 

THEOREM 4.1.3: Every set interval bilinear algebra is a quasi 
set interval bilinear algebra and not conversely. 

THEOREM 4.1.4: Every doubly simple quasi interval bilinear 
algebra is a simple quasi interval bilinear algebra. 

THEOREM 4.1.5: Every doubly simple quasi set interval 
bilinear algebra is a pseudo simple quasi set interval bilinear 
algebra.

In the next section we proceed onto define semigroup interval 
bivector spaces and bilinear algebras.
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4.2 Semigroup Interval Bilinear Algebras and Their 
Properties

In this section we define semigroup interval bilinear algebras 
and several related structures and substructures associated with 
them. Main properties about them are discussed in this section. 

DEFINITION 4.2.1: Let V = V1 � V2 be such that V1 is 
semigroup interval vector space over the semigroup S and V2 is 
also a semigroup interval vector space over the same semigroup 
S; where V1 and V2 are distinct with V1 4 V2 or V2 4 V1.
 We define V = V1 � V2 to be a semigroup interval bivector 
space over the semigroup S.

We will illustrate this situation by some examples.  

Example 4.2.1: Let V = V1 � V2 =

1 2 3 i 19

4 5 6

[0,a ] [0,a ] [0,a ] a Z ;
[0,a ] [0,a ] [0,a ] 1 i 6

� ��� �� �
� �	 
 � �� �� �� �

� i
i i 19

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

 be a semigroup interval bivector space over the semigroup S = 
Z19.

Example 4.2.2: Let V = V1 � V2 =

1 2

3 4

5 6 i

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ] a Z {0}
[0,a ] [0,a ]
[0,a ] [0,a ]

�

� �� �
� �	 

� �	 
� �	 
 � �� �
	 
� �
	 
� �
	 
� �� �� �

�

{([0, a1], [0, a2], …, [0, a24]) | ai � 3Z+ � {0}} be a semigroup 
interval bivector space over the semigroup S = Z+ � {0}.  
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Example 4.2.3: Let V = V1 � V2 =

1 3
i 12

2 4

5 6

[0,a ] 0 [0,a ] 0
a Z ;

0 [0,a ] 0 [0,a ]
1 i 6

[0,a ] 0 [0,a ] 0

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�

1 2 3
i 12

4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
a Z ;

[0,a ] [0,a ] [0,a ]
1 i 9

[0,a ] [0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a semigroup interval bivector space over the semigroup S = 
{0, 3, 6, 9}. 
 Now we define two substructures in them. 

DEFINITION 4.2.2: Let V = V1 � V2 be a semigroup interval 
bivector space over the semigroup S. Choose W = W1 � W2 �
V1 � V2 = V2; W a proper subset of V; if W itself a semigroup 
interval bivector space over the semigroup S then we define W 
to be a semigroup interval bivector subspace of V over the 
semigroup S. If V has no proper semigroup interval bivector 
subspace then we call V to be a simple semigroup interval 
bivector space. 

We will illustrate this situation by some examples. 

Example 4.2.4: Let V = V1 � V2 =

' (1 2 i 5
1 2 3

3 4

[0,a ] [0,a ] a Z ;
, [0,a ] [0,a ] [0,a ]

[0,a ] [0,a ] 1 i 4
� ��� �� �
� �	 
 � �� �� �� �

�

1

2 i 5

3

4

[0,a ]
[0,a ] a Z ;
[0,a ] 1 i 4
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �	 
� �� �
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be a semigroup interval bivector space over the semigroup S = 
Z5. Choose W = W1 � W2 =

1 2 i 5

3 4

[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

�

1

i 5

2

[0,a ]
0 a Z ;

1 i 2[0,a ]
0

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

� V1 � V2 = V; W is a semigroup interval bivector subspace of 
V over the semigroup Z5.

Example 4.2.5: Let V = V1 � V2 =

* +
* +
* +
0,a

0,a , a Z {0}
0,a

�
� �� �� �� �	 
� �

	 
� �� �� �
�

* +
* +
* +
* +

7
i

i i
i 0

0,a

0,a
, [0,a ]x a,a 3Z {0}

0,a

0,a

�

)

� �� �
� �	 

� �	 
� �� �� �	 

� �	 

� �	 

� �� �� �

�

be a semigroup interval bivector space over the semigroup S = 
4Z+ � {0}. Take W = W1 � W2 =

* +� �0,a a 3Z {0}�� � �
7

i
i i

i 0
[0,a ]x a 3Z {0}�

)

� �
� �� �

� �
�

� V1 � V2 = V; W is a semigroup interval bivector subspace of 
V over the semigroup 4Z+ � {0} = S. 
 We see the semigroup interval bivector space can be of 
finite order or infinite order. Clearly the semigroup interval 
bivector space given in example 4.2.4 is of finite order where as 
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the semigroup interval bivector space given in example 4.2.5 is 
of infinite order. 

Example 4.2.6: Let V = V1 � V2 =

{[0, a] | a � Z29}�
* +
* +
* +

29

0,a

0,a a Z

0,a

� �� �
� �	 
� ��	 
� �
	 
� �
	 
� �� �� �

be a semigroup interval bivector space over the semigroup S = 
Z29. V is a simple semigroup interval bivector space as V has no 
semigroup interval bivector subspaces. 

Example 4.2.7: Let V = V1 � V2

=
* + * + * +
* + * + * +
* + * + * +

13

0,a 0,a 0,a
0,a 0,a 0,a a Z
0,a 0,a 0,a

� �� �
� �	 
 �� �	 

� �	 
� �� �

�

{([0, a], [0, a], [0, a], [0, a], [0, a]) | a � Z13} be a semigroup 
interval bivector space over the semigroup S = Z13. V is a 
simple semigroup interval bivector space over S = Z13.

DEFINITION 4.2.3: Let V = V1 � V2 be a semigroup interval 
bivector space over the semigroup S. Let W = W1 � W2 � V1 �
V2 = V and P � S (W and P are proper bisubset and 
subsemigroup of V and S respectively).  
 If W = W1 � W2 is a semigroup interval bivector space over 
the semigroup P then we define W to be a subsemigroup 
interval bivector subspace of V. If V has no subsemigroup 
interval bivector subspaces then we call V to be a pseudo simple 
semigroup interval bivector space over the semigroup S. 

We will illustrate this situation by some examples. 
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Example 4.2.8: Let V = V1 � V2 =

' (1 2 i 12
1 2

3 4

[0,a ] [0,a ] a Z ;
, [0,a ] [0,a ]

[0,a ] [0,a ] 1 i 4
� ��� �� �
� �	 
 � �� �� �� �

�

1 2

3 4
i 12

5 6

7 8

[0,a ] [0,a ]
[0,a ] [0,a ]

a Z
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

be a semigroup interval bivector space defined over the 
semigroup S = Z12. Choose  

W = 1 2 i 12

3 4

[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �

�

1 2

i 12

3 4

[0,a ] [0,a ]
0 0 a Z ;

[0,a ] [0,a ] 1 i 4
0 0

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

� V1 � V2 = V1 and P = {0, 4, 8} � Z12. W = W1 � W2 is a 
subsemigroup interval bivector subspace of V over the 
subsemigroup P of S = Z12.

Example 4.2.9: Let V = V1 � V2 =

1
i

2

3

[0,a ]
a Z {0}

[0,a ]
1 i 3

[0,a ]

�
� �� �
� �� �	 

� �	 
 � �� �	 
� �� �

�
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* +* +* +* +' (
* +* +

* +* +
* + * +

1 2
i

1 2 3 4 3 4

6 5

0,a 0,a 0
a 3Z {0};

0,a 0,a 0,a 0,a , 0 0,a 0,a
1 i 6

0,a 0 0,a

�
� �� �
� �� �	 

� �	 
 � �� �	 
� �� �

 be a semigroup interval bivector space over the semigroup S = 
5Z+ � {0}.  
Choose W = W1 � W2 =

1

1 3

3

[0,a ]
0 a ,a Z {0}

[0,a ]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�

* +
* +

* +

1

4 1 6 4

6

0 0,a 0
0 0 0,a a ,a ,a are in Z {0}

0,a 0 0

�

� �� �
� �	 
 �� �	 

� �	 
� �� �

� V1 � V2 = V; and P = {125Z+ � {0}} � S. W = W1 � W2 is a 
subsemigroup interval bivector subspace of V over the 
subsemigroup P of S. 

Example 4.2.10: Let V = V1 � V2

=
1

i 5
2

3

[0,a ]
a Z ;

[0,a ]
1 i 3

[0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�

{[[0, a1]  [0, a1]  [0, a1]  [0, a1]] | ai � Z5; 1 � i � 4} 

be a semigroup interval bivector space over the semigroup S = 
Z5. Clearly V has no subsemigroup interval bivector subspace as 
S has no subsemigroups. Thus V is a pseudo simple semigroup 
interval bivector space over the semigroup S = Z5.
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Example 4.2.11: Let V = V1 � V2 =

7

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

�

{([0, a], [0, a], [0, a], [0, a], [0, a], [0, a]) | a � Z7} be a 
semigroup interval bivector space over the semigroup S = Z7.
 Clearly V is a doubly simple semigroup interval bivector 
space over the semigroup S = Z7.

Example 4.2.12: Let V = V1 � V2 =

5

[0,a] [0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

� i
i i 5

n 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

 be a semigroup interval bivector space over the semigroup S = 
Z5. Clearly V is a doubly simple semigroup interval bivector 
space over the semigroup S = Z5.

We see there is difference between the semigroup interval 
bivector space described in example 4.2.11 and 4.2.12 for we 
see in example 4.2.11 both V1 and V2 are doubly simple where 
as we see in example 4.2.12 only V1 is doubly simple and V2
infact has a semigroup interval bivector subspace viz.,  

W2 = 2i
i i 5

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� � V2;

so in view of this we are forced to define yet another new 
notion.

DEFINITION 4.2.4: Let V = V1 � V2 be a semigroup interval 
bivector space over the semigroup S. If only one of V1 or V2 is 
doubly simple and one of Vi is not simple or pseudo simple (or 
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not used in the mutually exclusive sense) then we call V to be a 
semi simple semigroup interval bivector space. 

Example 4.2.13: Let V = V1 � V2 =

i
i i 19

i 0
a x a Z

�

)

� �
�� �

� �
� � 19

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

be a semigroup interval bivector space over the semigroup S = 
Z19. Clearly V is a semi simple semigroup interval bivector 
space.

THEOREM 4.2.1: Let V = V1 � V2 be a semigroup interval 
bivector space defined over the semigroup S = Zp; p a prime. V 
can be either a doubly simple semigroup bviector space or a 
semi simple semigroup bivector space.

Proof is left as an exercise to the reader. 

Now we proceed onto define the notion of semigroup interval 
bilinear algebra. 

DEFINITION 4.2.5: Let V = V1 � V2 be a semigroup interval 
bivector space over the semigroup S. If both V1 and V2 are 
closed under addition that is they are semigroups under 
addition then we call V to be a semigroup interval bilinear 
algebra over the semigroup S. 

We will illustrate this situation by some examples. 

Example 4.2.14: Let V = V1 � V2

= 1 2 3 i 12

4 5 6

[0,a ] [0,a ] [0,a ] a Z ;
[0,a ] [0,a ] [0,a ] 1 i 6

� ��� �� �
� �	 
 � �� �� �� �

�

{All 10  10 interval matrices with entries from Z12} be a 
semigroup interval bilinear algebra over the semigroup S = Z12.
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Example 4.2.15: Let V = V1 � V2

= i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
� �

{{([0, ai] [0, ai] [0, ai])}| ai � SZ+ � {0}} be a semigroup 
interval bilinear algebra over the semigroup 3Z+ � {0} = S. 

We have an interesting related result. 

THEOREM 4.2.2: Let V = V1 � V2 be a semigroup interval 
bilinear algebra over the semigroup S then V is a semigroup 
interval bivector space over the semigroup S but the converse 
however is not true.

The proof is left as an exercise to the reader. 

Now we proceed onto define substructures of these structures. 

DEFINITION 4.2.6: Let V= V1 � V2 be a semigroup interval 
bilinear algebra over the semigroup S. Let W = W1 %� W2 � V1

� V2 = V; suppose W is a semigroup interval bilinear algebra 
over the semigroup S then we call W to be a semigroup interval 
bilinear subalgebra of V over the semigroup S. If V has no 
semigroup interval bilinear subalgebra then we define V to be a 
simple semigroup interval bilinear algebra over the semigroup 
S.

We will illustrate this situation by some examples.  

Example 4.2.16: Let V =

1 2 3 4 5
i 12

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
a Z ;1 i 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

be a semigroup interval bilinear algebra over the semigroup 
S=Z12. Choose W= W1 � W2
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 = 2 1
i 12

3 4 5

0 [0,a ] 0 [0,a ] 0
a Z ;1 i 5

[0,a ] 0 [0,a ] 0 [0,a ]
� �� �� �� � �� �	 

� �� �� �

� 2i
i i 12

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� V1 � V2 = V; W is a semigroup interval bilinear subalgebra 
over the semigroup S = Z12.

Example 4.2.17: Let V = V1 � V2 =

1 2 3

4 5 6 i

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] a Z {0};1 i 9
[0,a ] [0,a ] [0,a ]

�

� �� �
� �	 
 � � � �� �	 

� �	 
� �� �

�

1

2

3 i

4

5

[0,a ]
[0,a ]
[0,a ] a Z {0};1 i 5
[0,a ]
[0,a ]

�

� �� �
� �	 

� �	 
� �	 
 � � � �� �
	 
� �
	 
� �
	 
� �� �� �

be a semigroup interval bilinear algebra over the semigroup S = 
3Z+ � {0}. Take W = W1 � W2 =

1 2 3

4 5 i

6

[0,a ] [0,a ] [0,a ]
0 [0,a ] [0,a ] a 3Z {0};1 i 6
0 0 [0,a ]

�

� �� �
� �	 
 � � � �� �	 

� �	 
� �� �

�

i

[0,a]
[0,a]

a 3Z {0}[0,a]
[0,a]
[0,a]

�

� �� �
� �	 

� �	 
� �	 
 � �� �
	 
� �
	 
� �
	 
� �� �� �
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� V1 � V2 = V; W is a semigroup interval bilinear subalgebra 
of V over the semigroup S = 3Z+ � {0}.  

Example 4.2.18. Let V = V1 � V2 =

7

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

� 7

[0,a]
[0,a]

a Z[0,a]
[0,a]
[0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

be a semigroup interval bilinear algebra over the semigroup S = 
Z7. We see V has no semigroup interval bilinear subalgebra; 
hence V is a simple semigroup interval bilinear algebra over the 
semigroup S = Z7.

Example 4.2.19. Let V = V1 � V2 =

11

[0,a] [0,a]
[0,a] [0,a]

a Z[0,a] [0,a]
[0,a] [0,a]
[0,a] [0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

�

{([0, a], [0, a], [0, a], [0, a], [0, a])|a � Z11} be a semigroup 
interval bilinear algebra over the semigroup S = Z11. V is a 
simple semigroup interval bilinear algebra over the semigroup S 
= Z11.

DEFINITION 4.2.7: Let V = V1 � V2 be a semigroup interval 
bilinear algebra over the semigroup S. Let W = W1 � W2 � V1

� V2 = V; be such that W is a semigroup interval bilinear 
algebra over a subsemigroup P of S. We define W = W1 � W2 to 
be a subsemigroup interval bilinear subalgebra of V over the 
subsemigroup P of S. If V has no subsemigroup interval bilinear 
subalgebra then we define V to be a pseudo simple semigroup 
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interval bilinear algebra over the semigroup S. If V = V1� V2 is 
both a simple semigroup interval bilinear algebra as well as 
pseudo simple semigroup interval bilinear algebra over the 
semigroup S then we call V to be a doubly simple semigroup 
interval bilinear algebra over the semigroup S. 

Example 4.2.20: Let V = V1� V2 =

1 2
i 12

3 4

[0,a ] [0,a ]
a Z ;1 i 4

[0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

� i
i i 12

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a semigroup interval bilinear algebra over the semigroup S = 
Z12 under addition modulo 12.  
Choose W = W1 � W2 =

1 2 i 12

3

[0,a ] [0,a ] where a Z
0 [0,a ] 1 i 3

� ��� �� � �� �	 
 � �� �� �� �

2i
i i

i 0
[0,a ]x a {0,2,4,6,8,10}

�

)

� �
�	 


� �
�

� V1 � V2 = V be a subsemigroup interval bilinear subalgebra 
of V over the subsemigroup P = {0, 6} � Z12 = S. 

Example 4.2.21: Let V = V1 � V2 =

1 2 3 4
i 5

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ]
a Z ;1 i 8

[0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

�

1 2 3

4 5 6

7 8 9 i 5

10 11 12

13 14 15

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] a Z ;1 i 15
[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � �� �
	 
� �
	 
� �
	 
� �� �� �
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 be a semigroup interval bilinear algebra over the semigroup S = 
Z5. Clearly S has no proper subsemigroups.  

Take W = W1� W2 =

1 2
i 5

3 4

[0,a ] 0 [0,a ] 0
a Z ;1 i 4

0 [0,a ] 0 [0,a ]
� �� �� �� � �� �	 

� �� �� �

�

1 2

3

4 5 i 5

6

7 8

[0,a ] 0 [0,a ]
0 [0,a ] 0

[0,a ] 0 [0,a ] a Z ;1 i 8
0 [0,a ] 0

[0,a ] 0 [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � �� �
	 
� �
	 
� �
	 
� �� �� �

� V1 � V2 be a semigroup interval bilinear subalgebra of V 
over the semigroup S = Z5.

However V has no proper subsemigroup interval bilinear 
subalgebra as S has no proper subsemigroups in S = Z5 under 
addition modulo 5. 

Example 4.2.22: Let V = V1 � V2 =

17

[0,a] [0,a] [0,a]
a Z

[0,a] [0,a] [0,a]
� �� �� ��� �	 

� �� �� �

� 17

[0,a] [0,a]
[0,a] [0,a]

a Z[0,a] [0,a]
[0,a] [0,a]
[0,a] [0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

be a semigroup interval bilinear algebra over the semigroup S = 
Z17. Clearly V has no semigroup interval bilinear subalgebra as 
well as V has no subsemigroup interval bilinear subalgebra. 
Thus V is a pseudo simple semigroup interval bilinear algebra 
over S.
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 Now having seen some of the substructures of the 
semigroup interval bilinear algebra we now proceed on to define 
more properties about them. 

DEFINITION 4.2.8: Let V = V1 � V2 be such that V1 is a 
semigroup interval linear algebra over the semigroup S and V2
is only a semigroup interval vector space over the same 
semigroup S and V2 is not a linear algebra then we define V = 
V1 � V2 to be a quasi semigroup interval bilinear algebra over 
S.

We will first illustrate this situation by some simple examples. 

Example 4.2.23: Let V = V1 � V2 =

1 2 3

4 5 6 i

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] a Z {0};1 i 9
[0,a ] [0,a ] [0,a ]

�

� �� �
� �	 
 � � � �� �	 

� �	 
� �� �

�

* +
1

i
2 1 2 3 4 5

3

[0,a ]
a 2Z {0};

[0,a ] , [0,a ], [0,a ], [0,a ], [0,a ], [0,a ]
1 i 5

[0,a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

be a quasi semigroup interval linear bialgebra over the 
semigroup S = 6Z+ � {0}. 

Example 4.2.24: Let V = V1 � V2 =

i
i i 47

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� �

{([0, a1], 0, [0, a2], 0, [0, a3]), (0, [0, a1], 0, [0, a2], 0) | ai � Z47, 1 
� i � 3} be a quasi semigroup interval bilinear algebra over the 
semigroup S = Z47.
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 We can as in case of semigroup interval bilinear algebras 
define substructures. The definition is a matter of routine and is 
left as an exercise for the reader.  

How ever we will illustrate this situation by some examples. 

Example 4.2.25: Let V = V1 � V2 =

* + i 421

[0,a] [0,a]
, [0,a] [0,a] [0,a] [0,a] [0,a] a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

� 2i
i i 421

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� V = V1 � V2; W is a quasi semigroup interval bilinear 
subalgebra of V over the semigroup S = Z421.

Example 4.2.26: Let V = V1 � V2 =

3

[0,a]
,[0,a] a Z

[0,a]
� �� �� ��� �	 

� �� �� �

� 3

[0,a] [0,a] [0,a]
a,b Z

[0,b] [0,b] [0,b]
� �� �� ��� �	 

� �� �� �

be the quasi semigroup interval bilinear algebra over the 
semigroup S = Z3.

Consider W = W1 � W2 =

{[0, a] | a �Z3} � 3

[0,a] [0,a] [0,a]
a Z

0 0 0
� �� �� ��� �	 

� �� �� �

� V1 � V2; W is a quasi semigroup interval bilinear subalgebra 
of V over Z3.

If the quasi semigroup interval bilinear algebra V has no 
quasi semigroup interval bilinear subalgebras then we call V to 
be a simple quasi semigroup interval bilinear algebra. 
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We will first illustrate this situation by some examples. 

Example 4.2.27: Let V = V1 � V2 =

5

[0,a] [0,a] [0,a]
, a,b Z

[0,b] [0,b] [0,b]
� �� �� �� ��� �	 
	 

� � � �� �� �

�

5

[0,a] [0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

be a quasi semigroup interval bilinear algebra over the 
semigroup S = Z5. Clearly V has no quasi semigroup interval 
bilinear subalgebras. Hence V is a simple quasi semigroup 
interval bilinear algebra over S = Z5.

We will now proceed on to give examples of quasi 
subsemigroup interval bilinear algebras. If the quasi semigroup 
interval bilinear algebra V has no quasi subsemigroup interval 
bilinear subalgebra then we call V to be a pseudo simple quasi 
semigroup interval bilinear algebra. If V is both a simple and a 
pseudo simple quasi semigroup interval bilinear algebra then we 
define V to be a doubly simple quasi semigroup interval bilinear 
algebra.

Example 4.2.28: Let V = V1 � V2 =

31 2 i 18

4 5 6

[0,a ][0,a ] [0,a ] a Z ;
,

[0,a ] [0,a ] 1 i 6[0,a ]

� ��� �� �� �
� �	 
	 
 � �� � � �� �� �

�

* +
1

2 i 18
1 2 3

3

4

[0,a ]
[0,a ] a Z ;

, [0,a ] [0,a ] [0,a ]
[0,a ] 1 i 4
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �
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be a quasi semigroup interval bilinear algebra over the 
semigroup S = Z18.
Take W = W1� W2 =

18

[0,a] [0,a] [0,a]
, a,b {0,2,4,6,8,10,12,14,16} Z

[0,b] [0,b] [0,b]
� �� �� �� �� �� �	 
	 

� � � �� �� �

� * +� �1 2 3 i 18[0,a ] [0,a ] [0,a ] a Z ;1 i 3� � �

� V1 � V2 = V and P = P{0, 9} � Z18 (P is a subsemigroup 
under addition modulo 18 of the semigroup Z18).
 W is a subsemigroup interval bilinear subalgebra of V over 
the subsemigroup P � S = Z18.

Example 4.2.29: Let V = V1 � V2 = {All 5  5 interval matrices 
with intervals of the form [0, ai] where ai � Z+ � {0}} �

1

2

31 2
i

3 4 4

5

6

[0,a ]
[0,a ]
[0,a ][0,a ] [0,a ]

, a Z {0};1 i 6
[0,a ] [0,a ] [0,a ]

[0,a ]
[0,a ]

�

� �� �
� �	 

� �	 

� �	 
� �� �� � � �	 
� �	 


	 
� �� �
	 
� �
	 
� �
	 
� �� �� �

be a quasi semigroup interval bilinear algebra over the 
semigroup S = Z+ � {0}. Let W = W1 � W2 = {all 5  5 interval 
upper triangular matrices with intervals of the form [0, ai] where 
ai � Z+ � {0}}   

� 1 3
1 3

3 1

0
[0,a]

[0,a ] [0,a ] 0
, a,a ,a Z {0}

[0,a ] [0,a ] [0,a]
0
0

�

� �� �
� �	 

� �	 

� �	 
� �� �� �	 
� �	 

� � 	 
� �

	 
� �
	 
� �
	 
� �� �� �
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� V1 � V2. W is a quasi subsemigroup interval bilinear 
subalgebra of V over the subsemigroup P = 3Z+ � {0} � Z+ �
{0} = S. 

Example 4.2.30: Let V = V1 � V2 =

7

[0,a] [0,a] [0,a]
, a Z

[0,a] [0,a] [0,a]
� �� �� �� ��� �	 
	 

� � � �� �� �

�

{([0, a], [0, a], [0, a], [0, a], [0, a])| a � Z7} be a quasi 
semigroup interval bilinear algebra over the semigroup S = Z7.
Since S has no proper subsemigroups we see V is a pseudo 
simple quasi semigroup interval bilinear algebra over S = Z7.
Further as V has no proper semigroup interval bilinear algebras 
we see V is a simple quasi semigroup interval bilinear algebra. 
Thus V is a doubly simple quasi semigroup interval bilinear 
algebra over the semigroup S = Z7.   

Now we can define bilinear transformation of quasi semigroup 
interval bilinear algebras V to W also the notion of bilinear 
operator of a quasi semigroup interval bilinear algebra V.  

This task is left as an exercise for the reader. 

4.3 Group Interval Bilinear Algebras and their Properties 

In this section we proceed on to define the notion of group 
interval bivector spaces and describe a few of their properties 
associated with them. 

DEFINITION 4.3.1: Let V = V1 � V2 be such that each Vi is a 
group interval vector space over the additive group G for i = 1, 
2; such that  

(1)  V1 4 V2 and V2 4 V1

 V1 � V2 = � or non empty 
(2) For every v = v1 � v2 � V1 � V2 = V and g � G gv = 

gv1 � gv2 and vg =  v1g � v2g belong to V = V1 � V2.
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(3)  0.v  =  0.v1 � 0.v2

    =  0 � 0 � V1 � V2 = V
 0 is the additive identity of G.  

We call V to be a group interval bivector space over the group 
G.

We will illustrate this situation by some examples. 

Example 4.3.1:  Let V = V1 � V2 =

19

[0,a]
[0,b]

[0,a] [0,a]
,[0,b], [0,c] a,b,c,d,e Z

[0,b] [0,b]
[0,d]
[0,e]

� �� �
� �	 

� �	 
� �� �	 
 �� �	 
 	 
� �� �

	 
� �
	 
� �� �� �

� {([0, a1], [0, a2], [0, a3], [0, a4], [0, a5]) | ai � Z19; i = 1, 2, 3, 4, 
5} be a group interval bivector space over the group G = Z19 (G
is a group under addition modulo 19). 

Example 4.3.2: Let V = V1 � V2 =

5
i

i i 12
i 0

[0,a ]x a Z
)

� �
�� �

� �
� �

1

2

3
i 12

4

5

6

[0,a ]
[0,a ]
[0,a ]

a Z ;1 i 6
[0,a ]
[0,a ]
[0,a ]

� �� �
� �	 

� �	 

� �	 
� �� � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a group interval bivector space over the group G = Z12 under 
addition modulo 12. We see both the group interval bivector 
spaces are of finite order. Further it is important at this juncture 
to state that we cannot built in this manner group interval 
bivector spaces using Z+ � {0} or R+ � {0} or Q+ � {0} or C+

� {0}; as they are not groups under addition.  
Thus we have our own limitations in dealing with them.  
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However we have infinite group interval bivector spaces 
using Zn.

Example 4.3.3: Let V = V1 � V2 =

2i
i 42

i 0
[0,a]x a Z

�

)

� �
�� �

� �
� � i 3i

i i i 42
i 0 i 0

[0,a ]x , [0,a ]x a,a Z
� �

) )

� �
�� �

� �
� �

be a group interval bivector space over the group G = Z42.
Clearly V is of infinite order. 

We now proceed onto define substructures related with these 
structures.

DEFINITION 4.3.2: Let V = V1 � V2 be a group interval bivector 
space over the group G. Let W = W1 � W2 � V1 � V2; such that 
W is a group interval bivector space over the group G; then we 
define W to be a group interval bivector subspace of V over the 
group G.

We say V is a simple group interval bivector space if V has 
no proper group interval bivector subspace. 

We will illustrate this situation by some examples. 

Example 4.3.4: Let V = V1 � V2 =

' (1 2
1 2 3 i 15

3 4

[0,a ] [0,a ]
, [0,a ] [0,a ] [0,a ] a Z ;1 i 4

[0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

�

1 6

2 7

3 8 i 15

4 9

5 10

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ] a Z ;1 i 10
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � �� �
	 
� �
	 
� �
	 
� �� �� �
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be a group interval bivector space over the group G = Z15.
Take W = W1 � W2 =

' (� �1 2 3 i 15[0,a ] [0,a ] [0,a ] a Z ;1 i 3� � � �

15

[0,a] [0,a]
0 0

a Z[0,a] [0,a]
0 0

[0,a] [0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

� V1 � V2 = V; W is a group interval bivector subspace of V 
over the group G. 

Example 4.3.5: Let V = V1 � V2 =

i
i i 248

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� {all 10  10 square interval matrices with entries from I 
(Z248)} be a group interval bivector space over the group G = 
Z248.

Choose W = W1 � W2 =

2i
i i 248

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� {All 10  10 upper triangular matrices with entries from I 
(Z248) = {[0, ai] | ai � Z248} � V1 � V2; W is a group interval 
bivector subspace of V over the group G = Z248.

Example 4.3.6: Let V = V1 � V2 =

15

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

�
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19

[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a]

a Z[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

be a group interval bivector space over the group G = Z19.
Clearly V is a simple group interval bivector space over G. 

Example 4.3.7: Let V = V1 � V2 =

5

[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

�

5

[0,a] [0,a]
[0,a] [0,a]

a Z
[0,a] [0,a]
[0,a] [0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

be a group interval bivector space over the group G = Z5. It is 
easily verified V = V1 � V2 simple group interval bivector 
space over the group G = Z5.

Now we proceed onto define the notion of subgroup interval 
bivector subspace of a group interval bivector space. 

DEFINITION 4.3.3: Let V = V1 � V2 be a group interval bivector 
space over the group G. Let W = W1 � W2 � V1 � V2 and (e) �
H � G be a subgroup of G. If W = W1 � W2 is a group interval 
bivector space over the group H then we define W to be a 
subgroup interval bivector subspace of V over the subgroup H 
of G. If V has no subgroup interval bivector subspace then we 
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define V to be a pseudo simple group interval bivector space. If 
V is both a simple and pseudo simple group interval bivector 
space then we define V to be a doubly simple group interval 
bivector space over the group G.

We will illustrate this situation by some examples. 

Example 4.3.8: Let V = V1 � V2 = {([0, a1], [0, a2], [0, a3], [0, 
a4]) | ai � Z48; 1 � i � 4} �

8
i

i i 48
i 0

[0,a ]x a Z
)

� �
�� �

� �
�

be a group interval bivector space over the group G = Z48. Take 
W = W1 � W2 = {([0, a1], 0, [0, a2], 0) | ai � Z48; 1 � i � 2} �

� �
8

i
i i

i 0
[0,a ]x a 0,2,4,6,8,...,44,46

)

� �
�� �

� �
�

� V1 � V2 and H = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44} 
� G a subgroup of Z48 under addition modulo 48. 
 W is a subgroup interval bivector subspace of V over H the 
subgroup G. 

Example 4.3.9: Let V = V1 � V2 =

i
i i 18

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� {All 6  6 interval matrices with entries from I(Z18)} be a 
group interval bivector space over the group G = Z18.

Take W = W1 � W2 =

zi
i i 18

i 0
[0, a ]x a Z

�

)

� �
�� �

� �
�
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� {6  6 upper triangular interval matrices with entries from I 
(Z18)} � V1 � V2; W is a subgroup interval bivector subspace of 
V over the subgroup H = {0, 9} � Z18.

Example 4.3.10: Let V = V1 � V2 =

i
i i 11

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� {set of all 11  15 interval matrices with entries from I (Z11)
= {[0, ai] | ai � Z11}} be a group interval bivector space over the 
group G = Z11. We see G = Z11 is a simple group under addition 
modulo 11. Hence V is a pseudo simple group interval bivector 
space over G.  

However V has group interval bivector subspace so V is not 
a simple group interval bivector space over G.  

Example 4.3.11: Let V = V1 � V2 = {([0, a1], [0, a2], [0, a3], [0, 
a4]) | ai � Z43} �

43

[0,a] [0,b]
[0,a] [0,b]
[0,a] [0,b]

a,b Z
[0,a] [0,b]
[0,a] [0,b]
[0,a] [0,b]

� �� �
� �	 

� �	 

� �	 
� ��	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a group interval bivector space over the group G = Z43. G has 
no proper subgroups hence V is a pseudo simple group interval 
bivector space over the group G = Z43.

In view of this we have the following theorems. 

THEOREM 4.3.1: Let V = V1 � V2 be a group interval bivector 
space over the group G = Zp; p a prime then V is a pseudo 
simple group interval bivector space over the group G = Zp.
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The proof is left as an exercise to the reader. 

THEOREM 4.3.2: Let V = V1 � V2 be a group interval bivector 
space over the group G = Zn, n not a prime,  

1. V in general is not a pseudo simple group interval 
bivector space over the group G 

2. V is not a simple group interval bivector space over G 
= Zn.

This proof is also straight forward and hence left as an exercise 
for the reader to prove.

Now one can as in case of set interval bivector spaces define the 
notion of bilinear transformation of group interval bivector 
spaces. This task is also left as an exercise for the reader. Now 
we proceed onto define the notion of group interval bilinear 
algebras.

DEFINITION 4.3.4: Let V = V1 � V2 be a group interval bivector 
space over the group G. We say V is a group interval bilinear 
algebra over the group G that is if both V1 and V2 are groups 
under addition. 

We will illustrate this situation by some examples. 

Example 4.3.12: Let V = V1 � V2 =

1 2 3 4
i 12

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ]
a Z ;1 i 8

[0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

�

i
i i 12

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a group interval bilinear algebra over the group G = Z12. V is 
of infinite order. 
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Example 4.3.13: Let V = V1 � V2 =

1 2

3 4
i 7

5 6

7 8

[0,a ] [0,a ]
[0,a ] [0,a ]

a Z ;1 i 7
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

�

1 2 3 4 5
i 7

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
a Z ;1 i 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

 be a group interval bilinear algebra over the group G = Z7.
 This V is of finite order.  

Now we proceed onto give some properties enjoyed by them 
and define some substructures associated with them. 

THEOREM 4.3.3: Let V = V1 � V2 be a group interval bivector 
space over the group G; then in general V need not be a group 
interval bilinear algebra over the group G.

The proof can be given by an appropriate example. 

THEOREM 4.3.4: Let V = V1 � V2 be a group interval bilinear 
algebra over a group G then V is a group interval bivector 
space over the group G. 

The proof directly follows from the definition of group interval 
bilinear algebras.

DEFINITION 4.3.5: Let V = V1 � V2 be a group interval bilinear 
algebra over a group G. Let W = W1 � W2 � V1 � V2 = V; if W 
itself is a group interval bilinear algebra over the same group G 
then we define W to be a group interval bilinear subalgebra of 
V over G.

If V has no proper group interval bilinear subalgebra then 
we call V to be a simple group interval bilinear algebra.  
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We will illustrate this situation by some examples. 

Example 4.3.14: Let V = V1 � V2 =

1 2 3 4

5 6 7 8 i 11

9 10 11 12

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] a Z ;1 i 12
[0,a ] [0,a ] [0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

� i
i i 11

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a group interval bilinear algebra over the group G = Z11.
 Take W = W1 � W2 =

1 3

4 2 i 11

5 6

[0,a ] 0 [0,a ] 0
0 [0,a ] 0 [0,a ] a Z ;1 i 6

[0,a ] 0 [0,a ] 0

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

�

2i
i i 11

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� V1 � V2 = V, W is a group interval bilinear subalgebra of V 
over the group G = Z11.

Example 4.3.15: Let V = V1 � V2 = {Collection of all 10  10 
interval matrices with intervals of the form [0, ai] with ai � Z20}
� {set of all 5  5 interval matrices with intervals of the form 
[0, ai] where ai � Z20} be a group interval bilinear algebra over 
the group G = Z20. Choose W = W1 � W2 = {all 10  10 
diagonal interval matrices with entries from Z20 where intervals 
are of the form [0, ai]} � {all 5  5 upper triangular interval 
matrices with intervals of the form [0, ai]; ai � Z20} � V1 � V2;
W is a group interval bilinear subalgebra of V over the group G. 
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Example 4.3.16: Let V = V1 � V2 =

13

[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

� 13

[0,a] [0,a]
[0,a] [0,a]

a Z[0,a] [0,a]
[0,a] [0,a]
[0,a] [0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

be a group interval bilinear algebra over the group G = Z13. We 
see V has no proper group interval bilinear subalgebras hence V 
is a simple group interval bilinear algebra over the group G = 
Z13.

Example 4.3.17: Let V = V1 � V2 =

3

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

� 3

[0,a] [0,a]
[0,a] [0,a]

a Z
[0,a] [0,a]
[0,a] [0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

be a group interval bilinear algebra over the group G = Z3. V is 
a simple group interval bilinear algebra over the group G = Z3.

DEFINITION 4.3.6: Let V = V1 � V2 be a group interval bilinear 
algebra over a group G. Let W = W1 � W2 � V1 � V2 be a 
proper bisubset of V and H a proper subgroup of G. If W is a 
group interval bilinear algebra over the group H then we define 
W to be a subgroup interval bilinear subalgebra of V over the 
subgroup H of G.   

We will illustrate this situation by some examples. 

Example 4.3.18: Let V = V1 � V2 =

1 2 3 4 5
i 24

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
a Z ;1 i 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �
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�

1 2

3 4

5 6
i 24

7 8

9 10

10 12

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

a Z ;1 i 12
[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 

� �	 
� �� � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a group interval bilinear algebra over the group G = Z24.

Choose W = W1 � W2 =

i 24

[0,a] 0 [0,a] 0 [0,a]
a Z

[0,a] 0 [0,a] 0 [0,a]
� �� �� ��� �	 

� �� �� �

�

i 24

[0,a] 0
0 [0,a]

[0,a] 0
a Z

0 [0,a]
[0,a] 0

0 [0,a]

� �� �
� �	 

� �	 

� �	 
� ��	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

� V1 � V2 and H = {0, 3, 6, 9, 12, 15, 18, 21} � Z24 = G a 
proper subgroup of G under addition modulo 24. W is a 
subgroup interval bilinear subalgebra of V over the subgroup H 
of G. 

Example 4.3.19: Let V = V1 � V2 =

1 2 3

4 5 6 i 35

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] a Z ;1 i 9
[0,a ] [0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

�
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1 2 3 4

5 6 7 8
i 35

9 10 11 12

13 14 15 16

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

a Z ;1 i 16
[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

be a group interval bilinear algebra over the group G = Z35.
Take W = W1 � W2 =

i 35

[0,a] [0,a] [0,a]
0 [0,a] [0,a] a Z
0 0 [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

�

1 2 3 4

5 6 7 8
i 35

9 10 11 12

13 14 15 16

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

a {0,5,10,15,20,25,30} Z
[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

� V1 � V2 = V and H = {0, 7, 14, 21, 28} � Z35 a proper 
subgroup of Z35 under addition modulo 35. W = W1 � W2 is a 
subgroup interval bilinear subalgebra of V over the subgroup H 
of G. 

Example 4.3.20: Let V = V1 � V2 =

1 2
i 5

3 4

[0,a ] [0,a ]
a Z ;1 i 4

[0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

� {([0, a1], [0, a2], [0, a3], [0, a4], [0, a5]) | ai � Z5; 1 � i � 5} be 
a group interval bilinear algebra over the group G = Z5. As G 
has no proper subgroups we see V is a pseudo simple group 
interval bilinear algebra over the group G = Z5. We see V has 
proper group interval bilinear subalgebras over G.  
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For take W = W1 � W2 =

5

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

�

{([0, a], [0, a], [0, a], [0, a], [0, a]) | a � Z5} � V1 � V2 = V; W 
is a group interval bilinear subalgebra of V over the group G = 
Z5. So V is not a simple group interval bilinear algebra. Thus V 
is not a doubly simple group interval bilinear algebra over the 
group G. 

Example 4.3.21: Let V = V1 � V2 =

23

[0,a] [0,a] [0,a] [0,a]
a Z

[0,a] [0,a] [0,a] [0,a]
� �� �� ��� �	 

� �� �� �

�

23

[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a]

a Z[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

be a group interval bilinear algebra over the group G = Z23. V is 
a simple group interval bilinear algebra over the group G = Z23,
as V has no group interval bilinear subalgebras. Further V is a 
pseudo simple group interval bilinear algebra as V has no 
subgroup interval bilinear subalgebra. Thus V is a doubly 
simple group bilinear algebra over G = Z23.
 Now we can as in case of set interval bilinear algebras and 
semigroup interval bilinear algebras develop several properties 
about group interval bilinear algebras. 
 We just show the existence of a class of pseudo simple 
group interval bilinear algebras. 
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THEOREM 4.3.5: Let V = V1 � V2 be a group interval bilinear 
algebra over the group G = Zp; p a prime. V is a pseudo simple 
group interval bilinear algebra over the group G.  

Proof: Follows from the fact that G is a group which has no 
proper subgroups. 

THEOREM 4.3.6: Let V = V1 � V2 be a group interval linear 
algebra over the group G = Zn, n not a prime and V1 and V2
take entries from Zn. Then G is not a simple group interval 
bilinear algebra as well as G is not a pseudo simple group 
interval bilinear algebra. 

The proof is obvious from the fact that Zn has subgroups when n 
is not a prime and V1 and V2 constructed over Zn will certainly 
yield sub bispaces or sub bilinear algebras. 

Example 4.3.22: Let V = V1 � V2 =

20

[0,a] [0,a] [0,a]
a Z

[0,a] [0,a] [0,a]
� �� �� ��� �	 

� �� �� �

�

20

[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a]

a Z
[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

be a group interval bilinear algebra over the group G = Z20.
Take W = W1 � W2 = 

20

[0,a] [0,a] [0,a]
a {0,5,10,15} Z

[0,a] [0,a] [0,a]
� �� �� �� �� �	 

� �� �� �

�
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20

[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a]

a {0,5,10,15} Z
[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a]

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

� V1 � V2; W is a subgroup interval bilinear subalgebra over 
the subgroup H = {0, 5, 10, 15} � Z20.
 Now having seen some of the basic properties of group 
interval bilinear algebras, we can as in case of other bilinear 
algebras define bilinear transformation and bilinear operator. 

We can define some more properties like quasi group bilinear 
algebra.

DEFINITION 4.3.7: Let V = V1 � V2 be a group interval bivector 
space over the group G, if one of V1 or V2 (or in the mutually 
exclusive sense) is a group interval linear algebra then we 
define V to be a quasi group interval bilinear algebra over the 
group G.

We will illustrate this situation by some examples. 

Example 4.3.23: Let V = V1 � V2 =

i 451 2 3

4 5 6

[0,a] [0,b]
[0,b] [0,a]
[0,a] [0,b]
[0,b] [0,a]

a ,a,b Z ;[0,a ] [0,a ] [0,a ]
, [0,a] [0,b]

[0,a ] [0,a ] [0,a ] 1 i 6
[0,b] [0,a]
[0,a] [0,b]
[0,b] [0,a]
[0,a] [0,b]

� �� �
� �	 

� �	 

� �	 

� �	 

� �	 
 �� �� �	 
� �	 
 	 
 � �� �� 	 
� 	 
� 	 
� 	 
� 	 
� � ��

�
�
�
�
�
��

�
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i
i i 45

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a quasi group interval bilinear algebra over the group G = 
Z45.

Example 4.3.24: Let V = V1 � V2 =

240

[0,a] [0,b]
[0,c] [0,d] a,b,c,d,e,f Z
[0,e] [0,f ]

� �� �
� �	 
 �� �	 

� �	 
� �� �

�

' (i
i 1 2 9 1 2 9 240

i 0
[0,a ]x , [0,a ] [0,a ] [0,a ] a ,a ,...,a Z

�

)

� �
�� �

� �
� �

be a quasi group interval bilinear algebra over the group G = 
Z240.

Now we can as in case of group interval bilinear algebras 
define two types of substructures. We will however illustrate 
this situation by some examples. 

Example 4.3.25: Let V = V1 � V2 =

i
i i 14

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� �

1 2

3 4
1 2

5 6 i 14
3 4

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]

[0,a ] [0,a ]
[0,a ] [0,a ] , a Z ;1 i 10

[0,a ] [0,a ]
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
 � �� �	 
 � � �� �	 
	 
 � �� �
	 
� �
	 
� �� �� �

be a quasi group interval bilinear algebra over the group G = 
Z14. Take W = W1 � W2 =
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2i
i i 14

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� �

i 14

[0,a] [0,a]
[0,a] [0,a]

[0,a] [0,a]
, a Z[0,a] [0,a]

[0,a] [0,a]
[0,a] [0,a]
[0,a] [0,a]

� �� �
� �	 

� �	 
 � �� �	 
 �� �	 
	 
 � �� �
	 
� �
	 
� �� �� �

� V1 � V2 be a quasi group interval bilinear subalgebra of V 
over the group G = Z14.

Example 4.3.26: Let V = V1 � V2 =

1 2 3 4

5 6 7 8
i 18

9 10 11 12

13 14 15 16

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

a Z ;1 i 16
[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

�

' (

1

2
1 2 3 i 18

3

4

[0,a ]
[0,a ]

[0,a ],[0,a ],[0,a ] a Z ;1 i 4
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

be a quasi group interval bilinear algebra over the group G = 
Z18. Take W = W1 � W2 =

1 2 3 4

1 2 3 4
i 18

1 2 3 4

1 2 3 4

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

a Z ;1 i 4
[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

�
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' ( i 18

[0,a]
[0,a]

, [0,a],[0,a],[0,a] a Z
[0,a]
[0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

� V1 � V2 be a quasi group interval bilinear subalgebra of V 
over the group G = Z18.

Example 4.3.27: Let V = V1 � V2 =

7

[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

�

7

[0,a] [0,a]
[0,a] [0,a]

[0,a], a Z
[0,a] [0,a]
[0,a] [0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

is a quasi group interval bilinear algebra over the group G. We 
see V is a simple quasi group interval bilinear algebra as V has 
no quasi group interval bilinear subalgebras. 

Example 4.3.28: Let V = V1 � V2 =

47

[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

�
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' ( 47

[0,a]
[0,a]
[0,a]

, [0,a] [0,a] a Z[0,a]
[0,a]
[0,a]
[0,a]

� �� �
� �	 

� �	 

� �	 

� �	 
� ��� �	 

� �	 

� �	 

� �	 

� �	 
� �� �� �

be a quasi group interval bilinear algebra over the group G = 
Z47. Clearly V is a simple quasi group interval bilinear algebra 
over the group G = Z47.

 Next as in case of group interval bilinear algebras define the 
same notion in case of quasi group interval bilinear algebras. 
We will only illustrate this situation by some examples and the 
task of giving the definition is left as an exercise to the reader.

Example 4.3.29: Let V = V1 � V2 =

1 2 3 4
48

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ]
a Z ;1 i 8

[0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

�

1

2

3 i
i i 48

i 04

5

6

[0,a ]
[0,a ]
[0,a ]

, [0,a ]x a Z ;1 i 6
[0,a ]
[0,a ]
[0,a ]

�

)

� �� �
� �	 

� �	 

� �	 
� �� � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

�

be a quasi group interval bilinear algebra over the group G = 
Z48. Take H = {0, 2, 4, 6, 8, 10, 12, …, 46} � Z48 to be a proper 
subgroup of G = Z48. Choose W = W1 � W2 =
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1 2 3 4
i

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ]
a H;1 i 8

[0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

�

i
i i 48

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� V1 � V2, W is a quasi subgroup interval bilinear subalgebra 
of V over the subgroup H � Z48.

 We call a quasi group interval bilinear algebra which has no 
quasi subgroup bilinear subalgebra to be pseudo quasi simple 
group interval bilinear algebra.  

Example 4.3.30: Let V = V1 � V2 =

' (
1 4

2 5 1 2 3 i 13

3 6

[0,a ] [0,a ]
[0,a ] [0,a ] , [0,a ] [0,a ] [0,a ] a Z ;1 i 6
[0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

�

i
i i 13

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a quasi group interval bilinear algebra over the group G = 
Z13. G has no proper subgroups, hence V is a pseudo simple 
quasi group interval bilinear algebra over the group G = Z13.
However V is not a simple quasi group interval bilinear algebra 
over the group G = Z13. For take W =

' ( 13

[0,a] [0,a]
[0,a] [0,a] , [0,a] [0,a] [0,a] a Z
[0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

�

2i
i i 13

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�
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� V1 � V2 is a quasi subgroup interval bilinear subalgebra of V 
over the group G = Z13.

Thus V is not a doubly simple quasi group interval bilinear 
algebra over the group G = Z13.

Example 4.3.31: Let V = V1 � V2 = {[0, a] | a � Z43} �

{([0, a], [0, a]), 
[0,a]
[0,a]
[0,a]

� �
	 

	 

	 
� �

 | a � Z43}

be a quasi group interval bilinear algebra over the group G = 
Z43. V is a doubly simple quasi group interval bilinear algebra 
over the group G = Z43.

Example 4.3.32: Let V = V1 � V2 = {([0, a], [0, a], [0, a], [0, a], 
[0, a]) | a � Z47} �

[0,a] [0,a]
[0,a] [0,a]

�� ��
�	 

�� ��

, ([0, a] [0, a]) | a � Z47}

be a quasi group interval bilinear algebra over the group G = 
Z47. V is a doubly simple quasi group interval bilinear algebra 
over the group G = Z47.

THEOREM 4.3.7: Let V = V1 � V2 be a quasi group interval 
bilinear algebra over the group G = Zp; p a prime. Then V is a 
pseudo simple quasi group interval bilinear algebra over the 
group G = Zp.

Proof is straight forward and hence left as an exercise for the 
reader.
 We see in general all quasi group interval bilinear algebra 
over Zp, p a prime need not be a simple quasi group interval 
bilinear algebra over Zp.



175

Example 4.3.33: Let V = V1 � V2 = {([0, a1], [0, a2], [0, a3], [0, 
a4], [0, a5]) | ai � Z7, 1 � i � 5} �

1

2
1 2

3 i 7
3 4

4

5

[0,a ]
[0,a ]

[0,a ] [0,a ]
, [0,a ] a Z ;1 i 5

[0,a ] [0,a ]
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
� �� �	 
 � � �� �	 
 	 
� �� �

	 
� �
	 
� �� �� �

be a quasi group interval bilinear algebra over the group G = Z7.
Take W = {([0, a1], [0, a2], 0, 0, [0, a3]) | ai � Z7; 1 � i � 3} �

7

[0,a]
0

[0,a] [0,a]
, [0,a] a Z

0 [0,a]
0

[0,a]

� �� �
� �	 

� �	 
� �� �	 
 �� �	 
 	 
� �� �

	 
� �
	 
� �� �� �

= W1 � W2 � V1 � V2, W is a quasi group interval bilinear 
subalgebra of V over the group G = Z7. Thus V is not a simple 
quasi group interval bilinear algebra over the group G = Z7.
Infact V has several such quasi group interval bilinear 
subalgebras.

Now we have a class of quasi group interval bilinear algebras 
which are not simple or pseudo simple. We illustrate this by the 
following theorem. 

THEOREM 4.3.8: Let V = V1 � V2 be a quasi group interval 
bilinear algebra over the group G = Zn; n not a prime. V in 
general is not a doubly simple quasi group interval bilinear 
algebra over Zn = G.

Proof is straight forward and is left as an exercise for the reader. 
 Now we proceed onto define yet another new structure. 
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4.4 Bisemigroup Interval Bilinear Algebras and Their 
Generalization 

In this section we define the notion of bisemigroup interval 
bilinear algebras, bigroup interval bilinear algebras, set- 
semigroup interval bilinear algebras set group interval bilinear 
algebras and semigroup group interval bilinear algebras and 
describe some of their properties. 

DEFINITION 4.4.1: Let V = V1 � V2 where Vi is a semigroup 
interval vector space over the semigroup Si, i = 1, 2, such that 
V1 4 V2, V2 4 V1 and S1 � S2 S1 � S2 and S2 4 S1. We define V = 
V1 � V2 to be a bisemigroup interval bivector space over the 
bisemigroup S = S1 � S2.

We will illustrate this by some examples. 

Example 4.4.1: Let V = V1 � V2 =

1

21 2 3
i

4 5 6 3

4

[0,a ]
[0,a ][0,a ] [0,a ] [0,a ]

, a Z {0}
[0,a ] [0,a ] [0,a ] [0,a ]

[0,a ]

�

� �� �
� �	 
� �� �	 
 � �� �	 
 	 
� �� �	 
� �	 
� �� �

�

' (
1 2 3

i 10
1 2 3 4 4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
a Z ;

[0,a ] [0,a ] [0,a ] [0,a ] , [0,a ] [0,a ] [0,a ]
1 i 9

[0,a ] [0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a bisemigroup interval bivector space over the bisemigroup S 
= S1 � S2 = Z+ � {0} � Z10.
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Example 4.4.2: Let V = V1 � V2 =

' (
1 2

3 4 1 2 i 7

5 6

[0,a ] [0,a ]
[0,a ] [0,a ] , [0,a ] [0,a ] a Z ;1 i 6
[0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

�

' (

1

i 922
1 2 3 4

7

[0,a ]
a Z ;[0,a ]

, [0,a ] [0,a ] [0,a ] [0,a ]
1 i 7

[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

�

be a bisemigroup interval bivector space over the bisemigroup S 
= S1 � S2 = Z7 � Z92.
 Now if in the definition 4.4.1 each Vi is a semigroup 
interval linear algebra over Si, i = 1, 2 then we call V to be a 
bisemigroup interval bilinear algebra over the bisemigroup S = 
S1 � S2.

We will illustrate this situation by some examples. 

Example 4.4.3: Let V = V1 � V2 =

1 2 3 4

5 6 7 8 i

9 10 11 12

[0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] a Q {0}
[0,a ] [0,a ] [0,a ] [0,a ]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�

i
i i 243

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

 be a semigroup interval bilinear algebra over the bisemigroup S 
= S1 � S2 = (Q+ � {0}) � Z243.



178

Example 4.4.4: Let V = V1 � V2 = {all 10  10 interval 
matrices with intervals of the form [0, ai] with ai � R+ � {0}} �

8

[0,a] [0,a]
a,b Z

[0,b] [0,b]
� �� �� ��� �	 

� �� �� �

be a bisemigroup interval bilinear algebra with the bisemigroup 
S = R+ � {0} � Z8.

Both the bisemigroup interval bilinear algebras in example 4.4.3 
and 4.4.4 are of infinite cardinality. 

Example 4.4.5: Let V = V1 � V2 =

1 2

3 4 i 17

5 6

[0,a ] [0,a ]
[0,a ] [0,a ] a Z ;1 i 6
[0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

�

i 1021 2 3 4 5

6 7 8 9 10

a Z ;[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 10

� ��� �� �
� �	 
 � �� �� �� �

be a bisemigroup interval bilinear algebra over the bisemigroup 
S = Z17 � Z102. We see the bisemigroup interval bilinear algebra 
given in example 4.4.5 is of finite order. 

We have as in case of other bilinear algebras the following 
theorem to be true. 

THEOREM 4.4.1: Let V = V1 � V2 be a bisemigroup interval 
bilinear algebra over the bisemigroup S = S1 � S2. V is clearly 
a bisemigroup interval bivector space over the bisemigroup S = 
S1 � S2; however if V is a bisemigroup interval bivector space 
over the bisemigroup S = S1 � S2; V need not in general be a 
bisemigroup interval bilinear algebra over the bisemigroup S = 
S1 � S2.



179

 The proof is simple and straight forward so left as an 
exercise to the reader. 
 Now as in case of other bisemigroup linear algebras and 
bisemigroup vector spaces we can define substructures.  

Here we only illustrate these situations by some examples. 

Example 4.4.6: Let V = V1 � V2 =

1

21 2
i 13

3 4 3

4

[0,a ]
[0,a ][0,a ] [0,a ]

, a Z ;1 i 4
[0,a ] [0,a ] [0,a ]

[0,a ]

� �� �
� �	 
� �� �	 
 � � �� �	 
 	 
� �� �	 
� �	 
� �� �

�

' (
1 2 3

i 18
1 2 3 4 4 5 6

7 8 9

[0,a ] [0,a ] [0,a ]
a Z ;

[0,a ] [0,a ] [0,a ] [0,a ] , [0,a ] [0,a ] [0,a ]
1 i 9

[0,a ] [0,a ] [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a bisemigroup interval bivector space over the bisemigroup S 
= S1 � S2 = Z13 � Z18.
 Take W = W1 � W2 =

1

1 2 13
2

[0,a ]
[0,a] [0,a] 0

, a ,a Z
[0,a] [0,a] [0,a ]

0

� �� �
� �	 
� �� �	 
 �� �	 
 	 
� �� �	 
� �� �� �

�

' (1 2 1 2 18

[0,a] [0,a] 0
[0,a ] [0,a ] 0 0 , 0 0 [0,a] a,a ,a Z

0 0 0

� �� �
� �	 
 �� �	 

� �	 
� �� �

� V = V1 � V2 is a bisemigroup interval bivector subspace of V 
over the bisemigroup S = S1 � S2 = Z13 � Z18.
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Example 4.4.7: Let V = V1 � V2 =

1 2

3 4 i j
i

5 6

7 8

[0, a ] [0, a ]
[0, a ] [0, a ] a , a Z {0};

,[0, a ]
[0, a ] [0, a ] 1 j 8; i, j Z {0}
[0, a ] [0, a ]

�

�

� �� �
� �	 
 � �� �	 
� �	 
 � � � �� �	 
� �� �� �

�

1

2
j o 11i

i 3
i 0

4

5

[0, a ]
[0, a ]

a , a Z ;
[0, a ]x ; [0, a ]

1 j 5
[0, a ]
[0, a ]

�

)

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �

	 
� �
	 
� �� �� �

�

be a bisemigroup interval bivector space over the bisemigroup S 
= S1 � S2 = (Z+ � {0}) � {Z11}.  

Let W = W1 � W2 =

[0,a] [0,a]
0 0

,[0,a] a Z {0}
[0,a] [0,a]

0 0

�

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

�

1

2i
i 2 i 1 2 3 11

i 0

3

[0,a ]
0

[0,a ]x ; [0,a ] a ,a ,a ,a Z
0

[0,a ]

�

)

� �� �
� �	 

� �	 
� �	 
 �� �

	 
� �
	 
� �
	 
� �� �� �

�

� V1 � V2 is a bisemigroup interval bivector subspace of V 
over the bisemigroup S = (Z+ � {0}) � Z11.
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Example 4.4.8: Let V = V1 � V2 =

1 2 3

4 5 6 i 15

7 8 9

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ] a Z ;1 i 9
[0,a ] [0,a ] [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

�

1

2

3
i 18

4

5

6

[0,a ]
[0,a ]
[0,a ]

a Z ;1 i 6
[0,a ]
[0,a ]
[0,a ]

� �� �
� �	 

� �	 

� �	 
� �� � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a bisemigroup interval bilinear algebra over the bisemigroup 
S = S1 � S2 = Z15 � Z18.

Take W = W1 � W2 =

1

2 i 15

3

[0,a ] 0 0
0 [0,a ] 0 a Z ;1 i 3
0 0 [0,a ]

� �� �
� �	 
 � � �� �	 

� �	 
� �� �

�

1

2
i 18

3

[0,a ]
0

[0,a ]
a Z ;1 i 3

0
[0,a ]

0

� �� �
� �	 

� �	 

� �	 
� �� � �	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

� V1 � V2 = V, W is a bisemigroup interval bilinear subalgebra 
of V over the bisemigroup S = S1 � S2 = Z15 � Z18.
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Example 4.4.9: Let V = V1 � V2 = {All 12  12 interval 
matrices with intervals of the form [0, ai]; ai � Z48} �

i
i i 40

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a bisemigroup interval bilinear algebra over the bisemigroup 
S = S1 � S2 = Z48 � Z40. Choose W = W1 � W2 = {All 12  12 
upper triangular interval matrices with intervals of the form [0, 
ai]; ai � Z48} �

2i
i i 40

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� � V1 � V2;

W is a bisemigroup interval bilinear subalgebra of V over the 
bisemigroup S.  
 Now one can define bisubsemigroup interval bivector 
subspaces and bisubsemigroup interval bilinear subalgebras.  
 The task of defining these notions are left as an exercise to 
the reader.

We will however illustrate these situations by some examples. 

Example 4.4.10: Let V = V1 � V2 =

1

2
1 2 3 4 i 24

3
5 6 7 8

4

5

[0,a ]
[0,a ]

[0,a ] [0,a ] [0,a ] [0,a ] a Z ;
, [0,a ]

[0,a ] [0,a ] [0,a ] [0,a ] 1 i 8
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
 �� �� �	 
� �	 
 � �	 
� �� �

	 
� �
	 
� �� �� �

�

1 2
j i 150

3 4i
i

i 0 5 6

7 8

[0,a ] [0,a ] a ,a Z ;
[0,a ] [0,a ]

[0,a ]x , 1 i ,
[0,a ] [0,a ]

1 j 8
[0,a ] [0,a ]

�

)

� �� � �� �	 

� �	 
 � � �� �	 
� �� �	 
� �� �� �

�
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be a bisemigroup interval bivector space over the bisemigroup S 
= S1� S2 = Z24 � Z150.

Take W = W1 � W2 =

1

2 1 2 3 24

3

[0,a ]
0

[0,a] 0 [0,a] 0
, [0,a ] a,a ,a ,a Z

[0,a] 0 [0,a] 0
0

[0,a ]

� �� �
� �	 

� �	 
� �� �	 
 �� �	 
 	 
� �� �

	 
� �
	 
� �� �� �

�

2i
i i 150

i 0

[0,a] 0
0 [0,a]

[0,a ]x , a ,a Z ;1 i
[0,a] 0

0 [0,a]

�

)

� �� �
� �	 

� �	 
 � � � �� �	 
� �	 
� �� �� �

�

� V1 � V2 = V and T = T1 � T2 = {0, 3, 6, 9, 12, 15, 18, 21} �
{0, 10, 20, …, 140} � S1 � S2.

It is easily verified W is a bisubsemigroup interval bivector 
subspace of V over the bisubsemigroup T = T1 � T2 of S = S1 �
S2.

Example 4.4.11: Let V = V1 � V2 = {All 9  9 interval matrices 
with intervals of the form [0, ai]; ai � Z+ � {0}} � {All 4 5 
interval matrices with intervals of the form [0, ai]; ai � Z14} be a 
bisemigroup interval bilinear algebra over the bisemigroup S = 
S1 � S2 = Z+ � {0} � Z14.

Take T = T1 � T2 = {3Z+ � {0}} � {0, 2, 4, 6, 8, 10, 12} �
S1 � S2 = Z+ � {0} � Z14 and W = W1 � W2 = {All 9  9 
interval matrices with intervals of the form [0, ai] with ai � 7Z+

� {0}} �
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14

[0,a] 0 [0,a] 0 [0,a]
0 [0,a] 0 [0,a] 0

a Z
[0,a] 0 [0,a] 0 [0,a]

0 [0,a] 0 [0,a] 0

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

� V1 � V2.
 Clearly W is a bisubsemigroup interval bilinear subalgebra 
of V over the bisubsemigroup T = T1 � T2 = 3Z+ � {0} � 2Z14 

� V1� V2.
 If V has no proper bisubsemigroup interval bilinear 
subalgebras we call V to be a simple bisemigroup interval 
bilinear algebra. If V has no proper bisubsemigroup interval 
bilinear subalgebras we call V to be a pseudo simple 
bisemigroup interval bilinear algebra. If V is both simple and 
pseudo simple then we call V to be a doubly simple 
bisemigroup interval bilinear algebra.  

We will illustrate all these three situations by examples. 

Example 4.4.12: Let V = V1 � V2 = {All 8  8 upper triangular 
interval matrices with entries from [0, ai] with ai � Z7} �

i
i i 19

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a bisemigroup interval bilinear algebra over the bisemigroup 
S = S1 � S2 = Z7 � Z19. V is a pseudo simple bisemigroup 
interval bilinear algebra but is not a simple bisemigroup interval 
bilinear algebra as W = W1 � W2 = {all diagonal interval 
matrices with intervals of the form [0, ai] | ai � Z7} �

2i
i i 19

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�
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� V1 � V2 is bisemigroup interval bilinear algebra over the 
bisemigroup S = Z7 � Z19 so V is not simple. As S = Z7 � Z19
has no proper subsemigroups V is pseudo simple. Thus V is not 
doubly simple. 

Example 4.4.13: Let V = V1 � V2 =

7

[0,a] [0,a]
a Z

[0,a] [0,a]
� �� �� ��� �	 

� �� �� �

�

11

[0,a] [0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] [0,a] a Z
[0,a] [0,a] [0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

be a bisemigroup interval bilinear algebra over the bisemigroup 
S = S1 � S2 = {Z7} � {Z11}. We see V is a doubly simple 
bisemigroup interval bilinear algebra over the bisemigroup S = 
S1 � S2 = Z7 � Z11.

We have a class of pseudo simple bisemigroup interval bilinear 
algebras over a bisemigroup S = S1 � S2.

THEOREM 4.4.2: Let V = V1 � V2 be a bisemigroup interval 
bilinear algebra over the bisemigroup S = S1 � S2 = Zp � Zq
where p and q two distinct primes. Then V is a pseudo simple 
bisemigroup interval bilinear algebra over S. V need not in 
general be simple.

The proof is left as an exercise to the reader.  

THEOREM 4.4.3: Let V = V1 � V2 be a bisemigroup interval 
bilinear algebra over the bisemigroup S = S1 � S2 = Zm � Zn

where m � n and m and n are not primes. Then V not in general 
a doubly simple semigroup interval bilinear algebra over the 
bisemigroup S = S1 � S2 = Zm � Zn.

The proof is left as an exercise for the reader. 
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THEOREM 4.4.4: Let V = V1 � V2 be a bisemigroup interval 
bilinear algebra over the bisemigroup S = S1 � S2 where 
one of S1 is Z+ � {0} or Q+ � {0} or R+ � {0} and other S2 is Zn

or some subsemigroup of Z+ � {0} or Q+ � {0} or R+ � {0} 
such that S1 4 S2 and S2 4 S1 then V is not a doubly simple 
bisemigroup interval bilinear algebra over the bisemigroup.  

This proof is also left for the reader. 

We will give some illustrative examples. 

Example 4.4.14: Let V = V1 � V2 =

[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] a Z {0}
[0,a] [0,a] [0,a]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�

45

[0,a]
[0,a]
[0,a]

a Z[0,a]
[0,a]
[0,a]
[0,a]

� �� �
� �	 

� �	 

� �	 

� �	 
� ��� �	 

� �	 

� �	 

� �	 

� �	 
� �� �� �

 be a bisemigroup interval bilinear algebra over the bisemigroup 
S = S1 � S2 = Z+ � {0} � Z45.
Take W = W1 � W2

=
[0,a] [0,a] [0,a]
[0,a] [0,a] [0,a] a 3Z {0}
[0,a] [0,a] [0,a]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�
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45

[0,a]
[0,a]
[0,a]

a {0,5,10,15,20,25,30,35,40} Z[0,a]
[0,a]
[0,a]
[0,a]

� �� �
� �	 

� �	 

� �	 

� �	 
� �� �� �	 

� �	 

� �	 

� �	 

� �	 
� �� �� �

� V1 � V2 is bisubsemigroup interval bilinear subalgebra of V 
over the bisubsemigroup T = T1 � T2 = 3Z+ � {0} � {0, 5, 10, 
15, 20, 25, 30, 35, 40} � S1 � S2 = Z+ � {0} � Z45. Thus V is 
not a pseudo simple bisemigroup interval bilinear subalgebra of 
V over the bisubsemigroup T = T1 � T2 � S1 � S2.
 Also W is a bisemigroup interval bilinear subalgebra of V 
over the bisemigroup S = S1 � S2 so, V is not a simple 
bisemigroup interval bilinear algebra over the bisemigroup S = 
S1 � S2 = Z+� {0} � Z45.

Example 4.4.15: Let V = V1 � V2 =

1 2

3 4 i

5 6

[0,a ] [0,a ]
[0,a ] [0,a ] a 3Z {0}
[0,a ] [0,a ]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�

{([0, a1], [0, a2], …, [0, a10]) | ai � 7Z+ � {0}} be a bisemigroup 
interval bilinear algebra over the bisemigroup S = S1 � S2 =
{3Z+ � {0}}  � {7Z+ � {0}}. It is easy to verify V is not a 
doubly simple bisemigroup interval bilinear algebra over the 
bisemigroup S.  

Now we define set- semigroup interval bivector space over the 
biset S = S1 � S2 where one of Si is a semigroup and other is a 
set, i = 1, 2. 
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DEFINITION 4.4.2: Let V = V1 � V2 be such that V1 is a set 
interval vector space over the set S1 and V2 is a semigroup 
interval vector space over the semigroup S2. Then we define V = 
V1 � V2 to be a set- semigroup interval bivector space over the 
set- semigroup S = S1� S2 .  

We will illustrate this situation by some examples. 

Example 4.4.16: Let V = V1 � V2 =

' (
1 2

3 4 1 2 3 i

5 6

[0,a ] [0,a ]
[0,a ] [0,a ] , [0,a ] [0,a ] [0,a ] a {0,1,2,4,8,12,15}
[0,a ] [0,a ]

� �� �
� �	 
 �� �	 

� �	 
� �� �

�

1 2 31

4 5 62 i

7 8 93

10 11 124

[0,a ] [0,a ] [0,a ][0,a ]
[0,a ] [0,a ] [0,a ][0,a ] a Z {0},

,
[0,a ] [0,a ] [0,a ][0,a ] 1 i 12
[0,a ] [0,a ] [0,a ][0,a ]

�

� �� �� �
� �	 
	 
 � �� �	 
	 
� �	 
	 
 � �� �	 
	 
� �� � � �� �

be a set-semigroup interval bivector space over the set-
semigroup S = S1 � S2 = {0, 1} � {3Z+ � {0}}. 

Example 4.4.17: Let V = V1 � V2 =

' (
1

2 1 2 9 i

3

[0,a ]
[0,a ] , [0,a ] [0,a ] ... [0,a ] a {0,1,2,..., }
[0,a ]

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�

' (1 2
1 2 3 4

3 4

[0,a ] [0,a ]
, [0,a] a,a ,a ,a ,a {1,1 i,i,0,2,4

[0,a ] [0,a ]
� �� �� �� �� �	 

� �� �� �

be a semigroup- set interval bivector space over the semigroup 
set S = S1 � S2 = 3Z+ � {0} � {1, 0}.  
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 We can as in case of other interval algebraic structures 
define substructures. We will leave the task of giving formal 
definitions to the reader but, however we will give some 
illustrative examples.  

Example 4.4.18: Let V = V1 � V2 =

1 2 2i
i i

i 03 4

[0,a ] [0,a ]
, [0,a ]x a Q {0}

[0,a ] [0,a ]

�
�

)

� �� �� �� �� �	 

� �� �� �

� �

1

2
i i j

3

4

[0,a ]
[0,a ]

[0,a ], a ,a { 3, 5, 15,Z {0}}
[0,a ]
[0,a ]

�

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

be a semigroup-set interval bivector space over the semigroup 
set S = S1 � S2 = Q+ � {0} � � �0, 3,1, 5, 15 .

Take W = W1 � W2 =

1 2

3

[0,a ] [0,a ]
0 [0,a ]

�� ��
�	 

�� ��

, 16i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
� �

i i

[0,a]
0

[0,a ], a,a {0, 3, 5, 15,4Z {0}}
0

[0,a]

�

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

� V = V1 � V2; W is semigroup set interval bivector subspace 
of V over the semigroup-set S = S1 � S2.
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Example 4.4.19: Let V = V1 � V2 =

1

1 2 3 4 2
i

5 6 7 8 3

4

[0,a ]
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]

, a {0,1,2, 3, 41,7,9}
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]

[0,a ]

� �� �
� �	 
� �� �	 
 �� �	 
 	 
� �� �	 
� �� �� �

� ' (

1 2

3 4

i 485 6
1 2 3

7 8

9 10

11 12

[0,a ] [0,a ]
[0,a ] [0,a ]

a Z ;[0,a ] [0,a ]
, [0,a ] [0,a ] [0,a ]

[0,a ] [0,a ] 1 i 12
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 

� �	 
 �� �
	 
� �� �	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a set-semigroup interval bivector space over the set-
semigroup S = S1 � S2 = {0, 1} � {Z48}. 
 Take W = W1 � W2 =

[0,a]
[0,a] [0,b] [0,a] [0,b] 0

, a,b {0,1,2, 3, 41,7,9}
[0,b] [0,a] [0,b] [0,a] [0,a]

0

� �� �
� �	 
� �� �	 
 �� �	 
 	 
� �� �	 
� �� �� �

� ' ( 48

[0,a] 0
0 [0,b]

[0,a] 0
, [0,a] [0,b] 0 a,b Z

0 [0,b]
[0,a] 0

0 [0,b]

� �� �
� �	 

� �	 

� �	 
� ��	 
� �
	 
� �
	 
� �
	 
� �
	 
� �� �� �

� V1 � V2. W is a set-semigroup interval bivector subspace of 
V over the set-semigroup S = S1 � S2.
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Example 4.4.20: Let V = V1 � V2 = {All 10  10 interval 
matrices with entries of the form [0, ai] with ai � Q+ � {0}} �

1 2 3i i j
i

i 0 4 5 6

[0,a ] [0,a ] [0,a ] a ,a {5Z {0}, 19, 2, 5};a x ;
[0,a ] [0,a ] [0,a ] 1 j 6

��

)

� �� � � �� �
� �	 
 � �� �� �� �
�

be a semigroup –set interval bivector space over the semigroup-
set S = S1 � S2 = Q+ � {0} � {5Z+ � {0}, 19, 2, 5 }.

Take W = W1 � W2 = {All 10  10 upper triangular interval 
matrices with entries of the form [0, ai] with ai � Q+ � {0}} �

i
i

i 0

[0,a] [0,a] [0,a]
a x ; a {5Z {0}, 19, 2, 5}

[0,a] [0,a] [0,a]

�
�

)

� �� �� �� �� �	 

� �� �� �

�

� V1 � V2 and T = T1 � T2 = (7Z+ � {0}) � {10Z+ � {0}, 
2 } � S1 � S2 = Q+ � {0} � {5Z+ � {0}, 19, 2, 5 }. W = 

W1 � W2 is a subsemigroup-subset interval bivector subspace 
of V over the subsemigroup-subset T = T1 � T2 of S = S1 � S2.

Example 4.4.21: Let V = V1 � V2 = {collection of all 5  5 
interval matrices with entries of the form [0, ai]; and 1  8 
interval matrices of the form [0, bj] with bj, ai � {11Z+ � {0}, 

3, 7, 19, 41, 23, 43, 101 } = S1} � {Collection of all 
16  16 interval matrices with intervals of the form [0, ai] and 
all 7  1 interval matrices with intervals of the form [0, bj]; ai, bj

� 7Z+ � {0} = S2} be a set-semigroup interval bivector space 
defined over the set-semigroup S = S1 � S2.
 Take W = W1 � W2 = {Collection of all 5  5 diagonal 
interval matrices with intervals of the form [0, ai], ([0, a], 0, [0, 
a], 0, [0, a], 0, [0, a], 0) / ai, a � S1} � {Collection of all 16  16 
upper triangular interval matrices with intervals of the form [0, 
ai] and  
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1

2

i j

3

4

[0,a ]
0

[0,a ]
a ,a 7Z {0};1 j 4}0

[0,a ]
0

[0,a ]

�

� �
	 

	 

	 

	 


� � � �	 

	 

	 

	 

	 

� �

� V1 � V2 and T = T1 � T2 = {33Z+ � {0}, 3, 19, 101 } �
{21Z+ � {0}} � S1 � S2. W is a subset-subsemigroup interval 
bivector subspace of V over the subset-subsemigroup T = T1 �
T2� S1 � S2 = S.
 If in the definition of the set-semigroup (semigroup-set) 
interval bivector space V = V1 � V2 over S = S1 � S2 if V1 is a 
set interval linear algebra and V2 is a semigroup interval linear 
algebra then we define V to be a set-semigroup interval bilinear 
algebra over S = S1 � S2.

We will illustrate this situation by some examples. 

Example 4.4.22: Let V = V1 � V2 =

i i i ii
i

i 0 i i i i 1

a ,b {13Z {0},a b 13,
[0,a ]x

a b 2,a b 3} S

��

)

� �� � �� �
� �

� � )� �� �
�

� {All 5  5 interval matrices with intervals of the form [0, ai]
and ai � Z28} be a set-semigroup interval bilinear algebra over 
the set- semigroup, S = S1 � Z48 = S1� S2.

Example 4.4.23: Let V = V1 � V2 =

1 2 3 4 5
i

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
a Q {0}

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
�

� �� �� �� �� �	 

� �� �� �
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� {All 3  3 interval matrices with intervals of the form [0, ai] / 
ai � Z27} be a semigroup-set interval bilinear algebra over the 
semigroup set S = S1 � S2 = Z+ � {0} � {{0, 1, 2, 3, 9, 14, 20} 
� Z27}.

Now we give examples of substructures. 

Example 4.4.24: Let V = V1 � V2 = {all 9  9 interval matrices 
with intervals of the form [0, ai] with ai � Z240} �

i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
�

be a semigroup set interval bilinear algebra over the semigroup-
set S = S1 � S2 = Z240 � {8Z+ � {0}, 5Z+ � {0}}. 

Take W = W1 � W2 = {All 9  9 interval upper triangular 
matrices with entries from Z240} �

2i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
� � V1 � V2;

W is a semigroup set interval bilinear subalgebra of V over the 
semigroup-set S = S1 � S2.

Example 4.4.25: Let V = V1 � V2 =

1 2 3 4
i

5 6 7 8

9 10 11 12

[0,a ] [0,a ] [0,a ] [0,a ]
a 5Z {0};

[0,a ] [0,a ] [0,a ] [0,a ]
1 i 12

[0,a ] [0,a ] [0,a ] [0,a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

�

1 2

3 4
i 12

5 6

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]

a Z ;
[0,a ] [0,a ]

1 i 10
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �
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be a set-semigroup interval bilinear algebra over the set 
semigroup S = S1 � S2 = {15Z+ � {0}, 40Z+ � {0}} � Z12.

Take W = W1 � W2 =

1 2
i

3 4

5 6

[0,a ] 0 [0,a ] 0
a 5Z {0};

0 [0,a ] 0 [0,a ]
1 i 6

[0,a ] 0 [0,a ] 0

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

�

1

2

1 2 121

2

1 2

[0,a ] 0
[0,a ] 0

a ,a Z0 [0,a ]
0 [0,a ]

[0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 �� �
	 
� �
	 
� �
	 
� �� �� �

� V1 � V2; W is a set- semigroup interval bilinear subalgebra of 
V over the set-semigroup S = S1 � S2.

Example 4.4.26: Let V = V1 � V2 = {Collection of all 6  6 
interval matrices with intervals of the form [0, ai], ai � Z+ �
{0}} �

i
i i 36

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

be a semigroup-set interval bilinear algebra over the semigroup-
set S = S1 � S2 = 3Z+ � {0} � {{0, 2 , 5, 1, 6, 7, 9, 14, 32, 30, 
35} � Z36}. Choose W = W1 � W2 = {Collection of all 6  6 
interval upper triangular matrices with intervals of the form [0, 
ai] with ai � Z+ � {0}} �

2i
i i 36

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

� V1 � V2 and T = T1 � T2 = {15Z+ � {0}} � {{ 0, 1, 2, 5, 30, 
35} � S2 � Z36} � S1 � S2.
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 Clearly W is a subsemigroup-subset interval bilinear 
subalgebra of V over the subsemigroup-subset T = T1 �T2 of S1

� S2.

Example 4.4.27: Let V = V1 � V2 =

i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
� �

1 2 3 4 5 i 412

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] a Z ;
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 10

� ��� �� �
� �	 
 � �� �� �� �

be a set-semigroup interval bilinear algebra over the set-
semigroup S = S1 � S2 = {2Z+ � {0}, 5Z+ � {0}, 3Z+ � {0}} �
Z412. Choose W = W1 � W2 =

2i
i i

i 0
[0,a ]x a 30Z {0}

�
�

)

� �
� �� �

� �
� �

412

[0,a] [0,a] [0,a] [0,a] [0,a]
a,b Z

[0,b] [0,b] [0,b] [0,b] [0,b]
� �� �� ��� �	 

� �� �� �

 ; 

T = T1 � T2 = {4Z+ � {0}, 15Z+ � {0}} � {2Z412 = {0, 2, 4, …, 
410} � Z412} � S1 � S2.
 W is a subset-subsemigroup interval bilinear subalgebra of 
V over the subset-subsemigroup T = T1 � T2 � S1 � S2.
 Now having seen examples of substructure we can define 
set- semigroup (semigroup-set) interval bilinear transformation 
provided the spaces are defined on the same set-semigroup 
(semigroup-set). 
 Let V = V1 � V2 and P = P1 � P2 be any two set-semigroup 
interval bivector space over the set-semigroup S = S1 � S2; that 
is V1 and P1 are set interval vector spaces over the same set S1
and V2 and P2 are semigroup interval vector spaces over the 
same semigroup S2. The bimap T = T1 � T2 : V1 � V2 � P1 �
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P2 where T1 : V1 � P1 and T2 : V2 � P2 are such that T1 is a set 
linear interval vector space transformation and T2 is a 
semigroup linear interval vector space transformation, then the 
bimap T = T1 � T2 is defined as the set-semigroup interval 
linear bitransformation of V in to P.  
 Interested reader can define properties analogous to usual 
linear transformations. 
 If V = P that is V1 = P1 and V2 = P2 then we define T to be a 
set-semigroup interval linear bioperator. The transformations for 
set-semigroup interval bilinear algebra can be defined using, 
some simple and appropriate modifications. 
 Now we can derive almost all properties of these algebraic 
structures in an analogous way. 
 Now we can also define quasi set-semigroup interval linear 
algebras and their substructures in an analogous way.  

Now we proceed on to define bigroup interval bivector spaces, 
set group (group-set) interval bivector spaces and semigroup-
group (group-semigroup) interval bivector spaces and derive a 
few properties associated with them. 

DEFINITION 4.4.3: Let V = V1 � V2 be such that Vi is a group 
interval vector space over the group Gi; i = 1, 2 and Vi 4 Vj, Vj

4 Vi if if i � j and Gi 4 Gj, Gj � Gi if i � j; , 1 < i , j < 2. 
Then we define V = V1 � V2 to be a bigroup interval 

bivector space over the bigroup G = G1 � G2.

Example 4.4.28: Let V = V1 � V2 = 

1

2

3
1 2 3 i 42

4
4 5 6

5

6

7

[0,a ]
[0,a ]
[0,a ]

[0,a ] [0,a ] [0,a ] a Z ;
, [0,a ]

[0,a ] [0,a ] [0,a ] 1 i 7
[0,a ]
[0,a ]
[0,a ]

� �� �
� �	 

� �	 

� �	 


�� �� � 	 

� �	 
 	 
 � �� �� �	 

� �	 

� �	 

� �	 


� �� �

�
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' (

1 2

3 4
i 30

5 6 1 2 6

7 8

9 10

[0,a ] [0,a ]
[0,a ] [0,a ]

a Z ;
[0,a ] [0,a ] , [0,a ] [0,a ] ... [0,a ]

1 i 10
[0,a ] [0,a ]
[0,a ] [0,a ]

� �� �
� �	 

� �	 
 �� �	 
� �� �	 
� �
	 
� �
	 
� �� �� �

be a bigroup interval bivector space over the bigroup G = G1 �
G2 = Z42 � Z30.

Example 4.4.29: Let V = V1 � V2 =

' ( i
1 2 15 i i 12

i 0
[0,a ] [0,a ] ... [0,a ] , [0,a ]x a Z

�

)

� �
�� �

� �
� �

1

2 1 2 9 i 29

10 11 18

15

[0,a ]
[0,a ] [0,a ] [0,a ] ... [0,a ] a Z ;

,
[0,a ] [0,a ] ... [0,a ] 1 i 18

[0,a ]

� �� �
� �	 
 �- .� �	 
� �/ 0	 
 � �1 2� �	 
� �� �� �

�

be a bigroup interval bivector space over the bigroup G = G1 �
G2 = Z12 � Z29.

 Now we will give examples of their substructure and the 
task of giving definition is left as an exercise for the reader. 

Example 4.4.30: Let V = V1 � V2 = {all 5  5 interval matrices 
with intervals of the form i i 310[0, a ];a Z }� �

1

2
1 2 3 4 310

3

4

[0,a ]
[0,a ]

a ,a ,a ,a Z
[0,a ]
[0,a ]

�� �
�	 

�	 
 ��	 
�	 
�� ��

, �
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' (i
i 1 2 17 i j 46

i 0
[0, a ]x , [0, a ] [0, a ] ... [0, a ] a , a Z ;1 j 17

�

)

�
� � � �

�
�

be a bigroup interval bivector space over the bigroup G = G1 �
G2 = Z310 � Z46.
 Take W = W1 � W2 = {all 5  5 upper triangular interval 
matrices with intervals of the form [0, ai]; ai � Z310} �

310

[0,a]
[0,a]

a Z
[0,a]
[0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

�

' (2i
i i 46

i 0
[0, a ]x , [0, a] [0, a] ... [0, a] a , a Z

�

)

� �
�� �

� �
�

� V1 � V2 is a bigroup interval bivector subspace of V over the 
bigroup G = G1 � G2 = Z310 � Z46.

Example 4.4.31: Let V = V1 � V2 =

1 6 11

2 7 12

i 3 8 13 i j 19

4 9 14

5 10 15

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

[0,a ], [0,a ] [0,a ] [0,a ] a ,a Z ;1 j 5
[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

� �� �
� �	 

� �	 
� �	 
 � � �� �

	 
� �
	 
� �
	 
� �� �� �

�

1 5 9

2 6 104i
i i j 24

i 0 3 7 11

4 8 12

[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

[0,a ]x , a ,a Z ;1 j 12
[0,a ] [0,a ] [0,a ]
[0,a ] [0,a ] [0,a ]

�

)

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

�
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be a bigroup interval bivector space over the bigroup G = Z19 �
Z24 = G1 � G2.

Take W = W1 � W2 =

19

[0,a] 0 [0,a]
0 [0,a] 0

[0,a], a Z[0,a] 0 [0,a]
0 [0,a] 0

[0,a] 0 [0,a]

� �� �
� �	 

� �	 
� �	 
 �� �

	 
� �
	 
� �
	 
� �� �� �

�

4i
i i 24 24

i 0

[0,a] [0,a] [0,a]
0 0 0

[0,a ]x , a ,a {2Z {0,2, ,22} Z
[0,a] [0,a] [0,a]

0 0 0

�

)

� �� �
� �	 

� �	 
 � ) �� �	 
� �	 
� �� �� �

� �

� V1 � V2 ; W is a bigroup interval bivector subspace of V over 
the bigroup G = Z19 � Z24.

Example 4.4.32:  Let V = V1 � V2 =

1
1 2

2 i 45
3 4

5 6
16

[0,a ]
[0,a ] [0,a ]

[0,a ] a Z ;
[0,a ] [0,a ] ,

1 i 16
[0,a ] [0,a ]

[0,a ]

� �� �
� �� �	 
 �� �	 
 	 
� �	 
 	 
 � �� �	 
 	 
� �� �� �� �

�
�

' ( j i 248i
1 2 10 i

i 0

a ,a Z ;
[0,a ] [0,a ] ... [0,a ] , [0,a ]x

1 j 10

�

)

�� �� �
� �

� �� �� �
�

be a bigroup interval bivector space over the bigroup G = G1 �
G2 = Z45 � Z248.
 Take W = W1 � W2 =
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1

2

1 2 3 4 45

3

4

0
[0,a ]

0
[0,a ]

0
0
0

[0,a] [0,a]
0

0 0 , a,b,a ,a ,a ,a Z
0

[0,b] [0,b]
0
0
0

[0,a ]
0
0

[0,a ]

� �� �
� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 
� �� �	 
� �	 
 �� �	 
	 

� �	 
	 
� �� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 

� �	 


� �� �� �

� ' (� 1 2 3 4 5[0, a ] 0 [0, a ] 0 [0, a ] 0 [0, a ] 0 [0, a ] 0 ,  

i j 2482i
i

i 0

a , a Z ;
[0, a ]x

1 j 5

�

)

� �
�� � �

�

� V1 � V2; be a bigroup interval bivector subspace of V over 
the bigroup G.  

Example 4.4.33: Let V = V1 � V2 =

1

2 i
i i j 8

i 0

12

[0, a ]
[0, a ]

, [0, a ]x a , a Z ;1 j 12

[0, a ]

�

)

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

��
�
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{All 8  8 interval matrices with interval entries of the form [0, 
ai] ; ai� Z15, ( [0, a1], [0, a2], [0, a3], [0, a4] ) | ai, aj� Z15; 1 � j �
4} be a bigroup interval bivector space over the bigroup G = G1

� G2 = Z8 � Z15.
 Take W = W1 � W2 =

2i
i i 8

i 0

[0, a]
[0, a]

, [0, a ]x a, a Z

[0, a]

�

)

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

��

� {All 8  8 upper triangular interval matrices with intervals of 
the form [0, ai]; ([0, a1], 0, [0, a2], 0) | ai, a1, a2 � Z15} � V1 � V2
be a subbigroup interval bivector subspace of V over the 
subbigroup T = T1 � T2 = {0, 2, 4, 6} � {0, 5, 10} � Z8 � Z15 = 
G1 � G2.
 If a bigroup interval bivector space V over the bigroup G = 
G1 � G2 has no subbigroup interval bivector subspace over the 
bigroup G = G1 � G2 then we say V to be a pseudo simple 
bigroup interval bivector subspace over the bigroup G. If V has 
no bigroup interval bivector subspace then we call V to be a 
simple bigroup interval bivector space. If V is both simple and 
pseudo simple then we call V to be a doubly simple bigroup 
interval bivector space. 

We will give some illustrative examples of them. 

Example 4.4.34: Let V = V1 � V2 =

' (i
i 1 2 3 i 1 2 3 7

i 0
[0,a ]x ; [0,a ] [0,a ] [0,a ] a ,a ,a ,a Z

�

)

� �
�� �

� �
� �

1

2

3

4

[0, a ]
[0, a ]

,
[0, a ]
[0, a ]

�� �
�	 

�	 
�	 
�	 
�� ��
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all 10  10 interval matrices with intervals of the form [0, ai]; ai

� Z5} be a bigroup interval bivector space over the bigroup G = 
G1 � G2 = Z7 � Z5. We see the bigroup G = Z7 � Z5 is 
bisimple as it has no subgroups. Thus V is a pseudo simple 
bigroup interval bivector space over G.  

However V is not doubly simple for take W = W1 � W2 =

' (2i
i i 7

i 0
[0, a ]x ; [0, a] [0, a] [0, a] a , a Z

�

)

� �
�� �

� �
� �

[0, a]
[0, a]

,
0
0

�� �
�	 

�	 
�	 
�	 
�� ��

all 10  10 upper triangular interval matrices with entries from 
Z5 with intervals of the form [0, ai]} � V1 � V2 ; W is a bigroup 
interval bivector subspace of V over the bigroup G. Thus V is 
not doubly simple. 

Example 4.4.35: Let V = V1 � V2 =

3

[0, a] [0, a]
,[0, a] a Z

[0, a] [0, a]
� �� �� ��� �	 

� �� �� �

� 5

[0,a]
[0,a]

a Z
[0,a]
[0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

be a bigroup interval bivector space over bigroup G = G1 � G2 =
Z3 � Z5. We see V is a doubly simple bigroup interval bivector 
space over the bigroup G.  

In view of this we have the following theorem. 

THEOREM 4.4.5: Let V = V1 � V2 be a bigroup interval bivector 
space over the bigroup G = Zp � Zq, p and q are two distinct 
primes. Then

1. V is a pseudo simple bigroup interval bivector space 
over the bigroup G.
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2. V is not a doubly simple bigroup interval bivector space 
over the bigroup in general. 

The proof is left as an exercise for the reader to prove. 

THEOREM 4.4.6: Let V = V1 � V2 be a bigroup interval bivector 
space over the bigroup G = Zn � Zm where m and n are non 
primes; V is not simple or pseudo simple. 

This proof is also left as an exercise to the reader.  

We see bigroup interval bivector spaces can be built only on 
finite bigroups of the form G = Zm � Zn, we cannot use Z+ or R+

or Q+ or C. 

Now we can define bigroup interval bilinear algebras. We give 
only examples of them.  

Example 4.4.36: Let V = V1 � V2 =

1 2 3 4 5 i 24

6 7 8 9 10

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] a Z ;
[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 10

� ��� �� �
� �	 
 � �� �� �� �

�

1

2

i 32

14

15

[0,a ]
[0,a ]

a Z ;1 i 15
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
� �	 
 � � �� �
	 
� �
	 
� �
	 
� �� �� �

�

be a bigroup interval bilinear algebra over the bigroup G = G1�
G2 = Z24 � Z32.

Example 4.4.37: Let V = V1 � V2 = {All 9  9 interval matrices 
with intervals of the form [0, ai], ai � Z38} �
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i
i i 17

i 0
[0, a ]x a Z

�

)

� �
�� �

� �
�

be a bigroup interval bilinear algebra over the bigroup G = G1 �
G2 = Z38 � Z17.

We will illustrate the substructures by some examples. 

Example 4.4.38: Let V = V1 � V2 = {([0, a1], [0, a2], . . . , [0, 
a9]) | ai � Z28; 1 � i � 9} �

1

2

i 15

11

12

[0, a ]
[0, a ]

a Z ;1 i 12
[0, a ]
[0, a ]

� �� �
� �	 

� �	 
� �	 
 � � �� �
	 
� �
	 
� �
	 
� �� �� �

�

 be a bigroup interval bilinear algebra over the bigroup G = G1

� G2 = Z28 � Z15.
Take W = W1 � W2 = {([0, a], [0, a], …, [0, a]) | a � Z28} �

1

2

i 15

11

12

[0,a ]
[0,a ]

a {0,3,6,9,12} Z
[0,a ]
[0,a ]

� �� �
� �	 

� �	 
� �	 
 � �� �
	 
� �
	 
� �
	 
� �� �� �

�

� V1 � V2 ; W is a bigroup interval bilinear subalgebra of V 
over the bigroup G = Z28 � Z15.

Example 4.4.39: Let V = V1 � V2 =

1 2 i 3

3 4

[0,a ] [0,a ] a Z ;
[0,a ] [0,a ] 1 i 4

� ��� �� �
� �	 
 � �� �� �� �
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� {([0, a1], [0, a2], …, [0, a7])| ai � Z11; 1 � i � 7} be a bigroup 
interval bilinear algebra over the bigroup G = Z3 � Z7.

Take W = W1 � W2 =

1 2 i 3

3

[0,a ] [0,a ] a Z ;
0 [0,a ] 1 i 3

� ��� �� �
� �	 
 � �� �� �� �

�

{([0, a], [0, a], …., [0, a]) | a � Z11} � V1 � V2 is a bigroup 
interval bilinear subalgebra of V over the bigroup G = Z3 � Z7.

Example 4.4.40: Let V = V1 � V2 =

1 2 3 i 18

4 5 6

[0, a ] [0, a ] [0, a ] a Z ;
[0, a ] [0, a ] [0, a ] 1 i 6

� ��� �� �
� �	 
 � �� �� �� �

�

1 2

3 4 i 40

5 6

7 8

[0, a ] [0, a ]
[0, a ] [0, a ] a Z ;
[0, a ] [0, a ] 1 i 8
[0, a ] [0, a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

be a bigroup interval bilinear algebra over the bigroup G = G1

� G2 = Z18 � Z40. Take H = H1 � H2 = {0, 6, 12} � {0, 10, 
20, 30} � G1 � G2 = Z18 � Z40 and W = W1 � W2 =

1 2
1 2 3 18

3

[0, a ] 0 [0, a ]
a , a , a Z

0 [0, a ] 0
� �� �� ��� �	 

� �� �� �

�

1

2 i 40

3

4

[0, a ] 0
0 [0, a ] a Z ;

[0, a ] 0 1 i 4
0 [0, a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

� V1 � V2 is a bisubgroup interval bilinear subalgebra of V 
over the bisubgroup H = H1 � H2 of G = G1 � G2.
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DEFINITION 4.4.4: Let V = V1 � V2 be where V1 is a group 
interval vector space over the group G1 and V2 is a semigroup 
interval vector space over the semigroup S2. V is a group 
semigroup interval bivector space over the group-semigroup G1

� S2.

We will illustrate this situation by some examples. 

Example 4.4.41: Let V = V1 � V2 =

1 2 3 4 i j
i

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ] a ,a Z {0};
,[0,a ]

[0,a ] [0,a ] [0,a ] [0,a ] 1 j 8

�� �� �� �� �
� �	 


� �� �� �� �

�

1 2

3 4 i j 17i
i

i 05 6

7 8

[0, a ] [0, a ]
[0, a ] [0, a ] a , a Z ;

, [0, a ]x
[0, a ] [0, a ] 1 j 8
[0, a ] [0, a ]

�

)

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

�

be a semigroup-group interval bivector space over the 
semigroup-group G = (Z+ � {0}) � Z17.

Example 4.4.42:  Let V = V1 � V2 =

i 481 2 3 4 5
i

6 7 8 9 10

a Z ;[0,a ] [0,a ] [0,a ] [0,a ] [0,a ]
,[0,a ]

[0,a ] [0,a ] [0,a ] [0,a ] [0,a ] 1 i 10

� ��� �� �
� �	 
 � �� �� �� �

�

1 2

3 4

5 6
i i j

7 8 i
i 0

9 10

11 12

13 14

[0, a ] [0, a ]
[0, a ] [0, a ]
[0, a ] [0, a ]

a , a Q {0};
[0, a ] [0, a ] , [0, a ]x

1 j 14
[0, a ] [0, a ]
[0, a ] [0, a ]
[0, a ] [0, a ]

��

)

� �� �
� �	 

� �	 

� �	 

� �� �	 
� �
� �	 
 � �� �	 

� �	 

� �	 

� �	 

� �� �� �

�
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be a group-semigroup interval bivector space over the group-
semigroup G = Z48 � Q+ � {0}.
 We can define substructures in a analogous way. We give 
only examples of them. 

Example 4.4.43: Let V = V1 � V2 =

1

2i i j
i

i 0 3

4

[0, a ]
[0, a ] a , a Q {0};

[0, a ]x ,
[0, a ] 1 j 4
[0, a ]

��

)

� �� �
� �	 
 � �� �	 
� �	 
 � �� �	 
� �� �� �

� �

1 2

1 2 11 3 4
i 19

5 6

[0, a ] [0, a ]
1 i 11

([0, a ] [0, a ] ... [0, a ]), [0, a ] [0, a ]
a Z

[0, a ] [0, a ]

� �� �
� �� �	 


� �	 
 �� �	 
� �� �

be a semigroup-group interval bivector space over the 
semigroup-group G = Q+ � {0} � Z19.

Take W = W1 � W2 =

2i
i i

i 0

[0, a]
0

[0, a ]x , a , a Q {0}
[0, a]

0

�
�

)

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

� �

' (� 1 2 3 4 5 6[0,a ],0,[0,a ],0,[0,a ],0,[0,a ],0,[0,a ],0,[0,a ] , 

1

2
i 19

3

[0,a ] 0
1 i 6

0 [0,a ]
a Z

[0,a ] 0

�� �
� � �	 


�	 
 � �	 
� � �

� V1 � V2; W is a semigroup-group interval bivector subspace 
of V over the semigroup-group Q+ � {0} � Z19.
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Example 4.4.44: Let V = V1 � V2 =

2i 3i
i i i 320

i 0 i 0
[0, a ]x , [0, a ]x a Z

� �

) )

� �
�� �

� �
� � �

{All 5  5 interval matrices with intervals of the form [0, ai]; ai

� 3Z+ � {0}, ([0, a1], [0, a2], [0, a3], [0, a4], [0, a5]) | aj� 4Z+ �
{0}} be a group-semigroup interval bivector space over the 
group-semigroup Z320 � 12Z+ � {0}.  

Take W = W1 � W2 =

4i 9i
i i i 320

i 0 i 0
[0, a ]x , [0, a ]x a Z

� �

) )

� �
�� �

� �
� �

� {All 5  5 interval upper triangular matrices with intervals of 
the form [0, ai], ai � 3Z+ � {0}, ([0, a1] [0, a2] [0, a3]) | a1, a2, a3

� 4Z+ � {0}} � V1 � V2; W is a group-semigroup interval 
bivector subspace of V over the group-semigroup, Z320 � 12Z+

� {0}.

Example 4.4.45: Let V = V1 � V2 =

2i 5i
i i i 196

i 0 i 0
[0, a ]x , [0, a ]x a Z

� �

) )

� �
�� �

� �
� � �

1 2
i

3 4 1 2 18

5 6

[0,a ] [0,a ]
a Z {0}

[0,a ] [0,a ] ,([0,a ] [0,a ] ... [0,a ])
1 i 18

[0,a ] [0,a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

be a group-semigroup interval bivector space over the group 
semigroup Z196 � Z+ � {0}. Choose W = W1 � W2 =

4i 10i
i i i 196

i 0 i 0
[0, a ]x , [0, a ]x a Z

� �

) )

� �
�� �

� �
� � �



209

[0, a] [0, a]
[0, b] [0, b] , ([0, a] [0, a] ... [0, a]) a, b, c Z {0}
[0, c] [0, c]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

� V1 � V2; W is a subgroup-subsemigroup interval bivector 
subspace over the subgroup-subsemigroup {0, 2, 4, 6, 8, …, 
194} � 3Z+ � {0} � Z196 � Z+ � {0}. 

Example 4.4.46: Let V = V1 � V2 = {all 8  8 interval matrices 
with intervals of the form [0, ai] ; ai � Q+ � {0}, all 3  2 
interval matrices with intervals of the form [0, ai] with ai � Z+ �
{0}} �

' ( i j 48i
i 1 2 8

i 0

a , a Z ;
[0, a ]x , [0, a ] [0, a ] ... [0, a ]

1 j 8

�

)

�� �
� �� �� �
�

be a semigroup-group interval bivector space over the 
semigroup-group Z+ � {0} � Z48.
 Let W = W1 � W2 = {all 8  8 interval upper triangular 
matrices with intervals of the form [0, ai], ai � Q+ � {0},

[0,a] [0,a]
[0,a] [0,a]
[0,a] [0,a]

� �
	 

	 

	 
� �

 a � Z+ � {0}} �

' ( i j 483i
i 1 2 3 4

i 0

a ,a Z ;
[0,a ]x , [0,a ] 0 [0,a ] 0 [0,a ] 0 [0,a ] 0

1 j 4

�

)

�� �
� �� �� �
�

� V1 � V2 and T = T1 � T2 = {4Z+ � {0}} � {0, 2, 4, 6, 8, …, 
46} � Z+ � {0} � Z48. W is a subsemigroup-subgroup interval 
bivector subspace of V over the subsemigroup-subgroup T = T1

� T2.
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Now we can in an analogous way define group-semigroup 
(semigroup group) interval bilinear algebra and their 
substructures.

We will illustrate these situations only by examples. 

Example 4.4.47: Let V = V1 � V2 =

1 2 3
i 49

4 5 6

7 8 9

[0, a ] [0, a ] [0, a ]
a Z ;

[0, a ] [0, a ] [0, a ]
1 i 9

[0, a ] [0, a ] [0, a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�

1 2

3 4

5 6 i

7 8

9 10

11 12

[0, a ] [0, a ]
[0, a ] [0, a ]
[0, a ] [0, a ] a Z {0};
[0, a ] [0, a ] 1 i 12
[0, a ] [0, a ]
[0, a ] [0, a ]

�

� �� �
� �	 

� �	 

� �	 
 � �� �
	 
� �

� �	 
� �
	 
� �
	 
� �
	 
� �� �� �

be a group-semigroup interval bilinear algebra over the group-
semigroup Z49 � Z+ � {0}. 

Example 4.4.48: Let V = V1 � V2 =

i
i i

i 0
[0,a ]x a Q {0}

�
�

)

� �
� �� �

� �
�

� {all 7  7 interval matrices with intervals of the form [0, ai], 
ai � Z412} be a semigroup-group interval bilinear algebra over 
the semigroup-group Q+ � {0} � Z412.

Example 4.4.49: Let V = V1 � V2 = {all 8  8 interval matrices 
with intervals of the form [0, ai]; ai � Z480} �
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i
i i

i 0
[0, a ]x a 3Z {0}

�
�

)

� �
� �� �

� �
�

be a group-semigroup interval bilinear algebra over the group-
semigroup S = Z480 � 3Z+ � {0}. Choose W = W1 � W2 = {all 
8  8 interval upper triangular matrices with intervals [0, ai]; ai

� Z480} �

2i
i i

i 0
[0, a ]x a 3Z {0}

�
�

)

� �
� �� �

� �
�

� V1 � V2 be a group-semigroup interval bilinear subalgebra 
of V over the group-semigroup S. 

Example 4.4.50: Let V = V1 � V2 =

1 3 5 i

2 4 6

[0,a ] [0,a ] [0,a ] a Z {0};
[0,a ] [0,a ] [0,a ] 1 i 6

�� �� � � �� �
� �	 
 � �� �� �� �

�

i
i i 15

i 0
[0, a ]x a Z

�

)

� �
�� �

� �
�

be a semigroup group interval bilinear algebra over the 
semigroup-group Z+ � {0} � Z15.
 Take W = W1 � W2 =

1 2 i

3

[0,a ] 0 [0,a ] a Z {0};
0 [0,a ] 0 1 i 3

�� �� � � �� �
� �	 
 � �� �� �� �

�

2i
i i 15

i 0
[0, a ]x a Z

�

)

� �
�� �

� �
�

� V1 � V2, W is a semigroup-group interval bilinear subalgebra 
over the semigroup-group.  
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Example 4.4.51: Let V = V1 � V2 =

i
i i

i 0
[0, a ]x a Q {0}

�
�

)

� �
� �� �

� �
� �

1 2 3 4 5
i 30

6 7 8 9 10

11 12 13 14 15

[0, a ] [0, a ] [0, a ] [0, a ] [0, a ]
a Z ;

[0, a ] [0, a ] [0, a ] [0, a ] [0, a ]
1 i 15

[0, a ] [0, a ] [0, a ] [0, a ] [0, a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

be a semigroup-group interval bilinear algebra over the 
semigroup group, G = Q+ � {0} � Z30.

Take W = W1 � W2 =

2i
i i

i 0
[0, a ]x a Q {0}

�
�

)

� �
� �� �

� �
� �

1 2 3
i 30

4 5

6 4 8

[0, a ] 0 [0, a ] 0 [0, a ]
a Z ;

0 [0, a ] 0 [0, a ] 0
1 i 8

[0, a ] 0 [0, a ] 0 [0, a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

� V1 � V2 and H = 3Z+ � {0} � {0, 5, 10, 15, 20, 25} � Q+ �
{0} � Z30. W is a subsemigroup-subgroup interval bilinear 
subalgebra of V over the subsemigroup-subgroup H of G. 

Example 4.4.52: Let V = V1 � V2 = {all 16  16 interval 
matrices with intervals of the form [0, ai] | ai � Z12} �

i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
�

be a group-semigroup interval bilinear algebra over the group-
semigroup S = Z12 � Z+ � {0}. Choose W = W1 � W2 = {all 16 
 16 upper triangular interval of the form [0, ai] | ai � Z12} �
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2i
i i

i 0
[0, a ]x a Z {0}

�
�

)

� �
� �� �

� �
�

and T = T1 � T2 = {0, 2, 4, 6, 8, 10} � 5Z+ � {0} � Z12 � Z+ �
{0}. W is a subgroup-subsemigroup interval bilinear subalgebra 
of V over the subgroup-subsemigroup T of S. 
 We say a group-semigroup (semigroup-group) interval 
bilinear algebra V (bivector space) is pseudo simple if V has no 
subgroup subsemigroup (subsemigroup-subgroup) interval 
bilinear subalgebras (or bivector subspaces). A group-
semigroup (semigroup-group) interval bilinear algebra (bivector 
space) is simple if V has no group-semigroup (semigroup-
group) interval bilinear subalgebra (bivector subspace).

We will illustrate this situation by some examples. 

Example 4.4.53: Let V = V1 � V2 =

3

[0, a] [0, a]
a Z

[0, a] [0, a]
� �� �� ��� �	 

� �� �� �

�
[0,a]
[0,a] a Z {0}
[0,a]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

be a group-semigroup bilinear algebra over the group-
semigroup Z3 � Z+ � {0}. Clearly V is pseudo simple as well 
simple. Hence V is a doubly simple group-semigroup bilinear 
algebra over the group semigroup. 

THEOREM 4.4.7: Let V = V1 � V2 be a group-semigroup 
(semigroup-group) interval bilinear algebra over the group - 
semigroup Zn � Z+ � {0} (semigroup-group Z+ � {0} � Zn).
Then V is not simple or pseudo simple provided n is a 
compositive number.

The proof is left as an exercise to the reader. 
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THEOREM 4.4.8: Let V = V1 � V2 be a group semigroup 
(semigroup-group) bilinear algebra (bivector space) over the 
group-semigroup (Zp – Z+ � {0}) p a prime. Then V is pseudo 
simple and need not in general be doubly simple. 

This proof is also left as an exercise for the reader. 
Now we proceed onto define set-group (group-set) interval 
bilinear algebra (bivector space) over the set-group (group-set). 

DEFINITION 4.4.5: Let V = V1 � V2 be such that V1 is a set 
interval vector space over the set S1 and V2 is a group interval 
vector space over the group G2. We define V = V1 � V2 to be a 
set-group interval bivector space over the set-group. 

We will illustrate this situation by some examples. 

Example 4.4.54: Let V = V1 � V2 =

3i 2i
i i i

i 0 i 0
[0, a ]x , [0, a ]x a Z {0}

� �
�

) )

� �
� �� �

� �
� � �

' (

1

2 i 9
1 2 3

3

4

[0, a ]
[0, a ] a Z ;

, [0, a ],[0, a ],[0, a ]
[0, a ] 1 i 4
[0, a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �	 
� �� �

be a set group interval bivector space over the set- group, {0, 2, 
17, 41, 142, 250} � Z9.

Example 4.4.55: Let V = V1 � V2 =

' (

1

2
1 12 i 48

3

4

[0, a ]
[0, a ]

, [0, a ],...,[0, a ] a Z ;1 i 12
[0, a ]
[0, a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �	 
� �� �

�
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i
i i i

i 0
[0, a ]x ,[0, a ] a 5Z {0}

�
�

)

� �
� �� �

� �
�

be a group-set interval bivector space over the group set Z48 �
{0, 1, 2, 7, 15Z+}.

Example 4.4.56: Let V = V1 � V2 =

2i 3i
i i i

i 0 i 0
[0, a ]x , [0, a ]x a 4Z {0}

� �
�

) )

� �
� �� �

� �
� � �

' (

1

2
1 2 i 49

8

[0, a ]
[0, a ]

, [0, a ],[0, a ] a Z ;1 i 8

[0, a ]

� �� �
� �	 

� �	 
 � � �� �	 
� �	 
� �� �� �

�

be a set-group interval bivector space over the set-group S � G 
= {16 Z+ � {0}, 4, 8} � Z49.
 Take W = W1 � W2 =

4i 3i
i i i

i 0 i 0
[0, a ]x , [0, a ]x a 16Z {0}

� �
�

) )

� �
� �� �

� �
� � �

' (

1

1

1 49
1

1

[0, a ]
0

[0, a ]
0

, [0, a],[0, a] a , a Z
[0, a ]

0
[0, a ]

0

� �� �
� �	 

� �	 

� �	 

� �	 

� �	 
 �� �	 
� �	 
� �	 
� �	 
� �	 
� �	 
� �� �
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� V1 � V2; W is a set - group interval bivector subspace of V 
over the set-group S � G. 

Example 4.4.57: Let V = V1 � V2 =

' (
1

2 1 2 7 i

3

[0, a ]
[0, a ] , [0, a ],[0, a ]...,[0, a ] a Z {0}
[0, a ]

�

� �� �
� �	 
 � �� �	 

� �	 
� �� �

�

11 2

3 4 2 i 24

5 6

7 8 11

[0, a ][0, a ] [0, a ]
[0, a ] [0, a ] [0, a ] a Z ;

,
[0, a ] [0, a ] 1 i 11
[0, a ] [0, a ] [0, a ]

� �� �� �
� �	 
	 
 �� �	 
	 
� �	 
	 
 � �� �	 
	 
� �� � � �� �

�

be a set-group interval bivector space over the set-group {3Z+,
4Z+, 17Z+, 13Z+, 0} � Z24 = S1 � G2.
 Choose W = W1 � W2 =

i
1 7

a, a 3Z {0};
([0, a ],...,[0, a ])

1 i 7

�� �� �
� �

� �� �
�

11

2 2
i 24 24

3

4 11

[0,a ][0,a ] 0
0 [0,a ] [0,a ]

, a 2Z {0,...,22} Z
[0,a ] 0

0 [0,a ] [0,a ]

� �� �� �
� �	 
	 

� �	 
	 
 � ) �� �	 
	 
� �	 
	 
� �� � � �� �

�

� V1 � V2 and T = T1 � T2 = {3Z+, 13Z+, 4Z+, 0} � {0, 4, 8, 
12, 16, 20} � S1 � G2. W is a subset-subgroup interval bivector 
subspace of V over the subset-subgroup T of S1 � G2.

Example 4.4.58: Let V = V1 � V2 = i
i i 48

i 0
[0, a ]x a Z

�

)

� �
�� �

� �
�
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� {All 6  6 interval matrices with intervals of the form [0, ai]; 
ai � Z+ � {0}} be a group-set interval bilinear algebra over the 
group-set G = G1 � S2 = Z48 � {30Z+ � {0}, 2Z+}.

Example 4.4.59: Let V = V1 � V2 = {set of all 9  5 interval 
matrices with intervals of the form [0, ai]; ai � Q+ � {0}} � {all 
3  8 interval matrices with intervals of the form [0, ai]; ai �
Z41} be a set - group interval bilinear algebra over the set - 
group S1 � G2 = {2Z+, 5Z+, 7Z+, 0} � Z41.

 We now state the theorem the proof of which is direct. 

THEOREM 4.4.9: Every set-group (group-set) interval bilinear 
algebra over a set-group (group-set) is a set-group (group-set) 
interval bivector space but not conversely.  

Example 4.4.60: Let V = V1 � V2 =

i
i i

i 0
[0, a ]x a Z {0}

�
�

)

� �
� �� �

� �
�

� {all 4  4 interval matrices with interval entries of the form 
[0, ai]; ai � Z43} be a set - group interval bilinear algebra over 
the set-group S1 � G2 = {3Z+, 2Z+, 7Z+, 0} � {Z43}.

Choose W = W1 � W2 =

2i
i i

i 0
[0, a ]x a Z {0}

�
�

)

� �
� �� �

� �
�

� {All 4  4 upper triangular interval matrices of intervals of 
the form [0, ai]; ai � Z43} � V1 � V2 ; W is a set-group interval 
bilinear subalgebra of V over S1 � G2.

Example 4.4.61: Let V = V1 � V2 =

i
i i

i 0
[0, a ]x a Q {0}

�
�

)

� �
� �� �

� �
�



218

� {all 5  2 interval matrices with intervals of the form [0, ai]; 
ai � Z48} be a set-group interval bilinear algebra over the set - 
group S1 � G2 = {7Z+ � {0}, 3Z+ � {0}, 4Z+} � Z48.
 Choose W = W1 � W2 =

2i
i i

i 0
[0,a ]x a Z {0}

�
�

)

� �
� �� �

� �
� �

1 2 3
1 2 3

1 2 48

[0,a ] 0 [0,a ] 0 [0,a ]
a ,a ,a Z

0 [0,a ] 0 [0,a ] 0
� �� �� ��� �	 

� �� �� �

� V1 � V2 and P1 � P2 = {3Z+, 4Z+, 0} � {0, 12, 24, 36} � S1

� G2. W is a subset - subgroup interval bilinear subalgebra of V 
over the subset - subgroup P1 � H2 of S1 � G2.

Example 4.4.62: Let V = V1 � V2 =

i
i i

i 0
[0, a ]x a Z {0}

�
�

)

� �
� �� �

� �
� �

7

[0, a] [0, a] [0, a] [0, a]
[0, b] [0, b] [0, b] [0, b] a, b, c Z
[0, c] [0, c] [0, c] [0, c]

� �� �
� �	 
 �� �	 

� �	 
� �� �

be a set - group interval bilinear algebra over the set-group S = 
S1 � G2 = {2Z+, 5Z+, 0} � Z7. Clearly V is a pseudo simple set - 
group interval bilinear algebra over S. 

We can derive several interesting properties related with them 
as in case of usual bigroup-linear algebras.  



219

Chapter Five 

APPLICATIONS OF THE SPECIAL CLASSES

OF INTERVAL LINEAR ALGEBRAS

These new classes of interval linear algebras find their 
applications in fields, which demand the solution to be in 
intervals and in finite element methods. The present day trend is 
scientists, technologists and medical experts seek interval 
solutions to single valued solutions. For interval solutions give 
them more freedom to work and also one can choose the best-
suited solution from that interval.  

These structures can be best utilized in the study of finite 
element analysis. These structures are well suited for the 
analysis of stiffness matrices when interval solutions are in 
demand. These new structures have several limitations for they 
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cannot be built using intervals of the form [–a, b] where a and b 
are in Z.

These structures can be used in all mathematical models and 
fuzzy models, which demand interval solutions. For more about 
interval algebraic structures refer [52]. 
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Chapter Six 

SUGGESTED PROBLEMS 

In this chapter we propose over 100 problems, which will be a 
challenge to the reader. 

1. Find some interesting properties about set complex interval 
vector spaces. 

2. Give an example of a order 21 set modulo integer vector 
space built using Z40.

3. Does their exists a set modulo integer vector space of 
cardinality 12 built using Z7? Justify your claim. 

4. Obtain some interesting properties enjoyed by the set real 
interval spaces. 

5. Does there exists a set modulo integer interval vector space of 
order 149? Justify your claim. 
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6. Let V = 
1 2

3 4 i 17

5 6

[0, a ] [0, a ]
[0, a ] [0, a ] a Z
[0, a ] [0, a ]

� �� �
� �	 
 �� �	 

� �	 
� �� �

, be a set modulo 

integer linear algebra over the set S = {0, 1, 2, 5} � Z17. Find 
set modulo integer interval linear subalgebras of V. 

7. Obtain some interesting properties about set rational interval 
vector spaces. 

8. Let S = {[a, b] | a, b � Q+ � {0}; a � b} be a set rational 
interval vector space over the set S = {0, 1}. Find set rational 
interval vector subspaces of V. Can S be generated finitely? 
Justify your claim. 

9. Obtain some interesting properties about set complex interval 
linear algebras. 

10. Give an example of a doubly simple set interval integer linear 
algebra.

11. Give an example of a semigroup interval vector space which 
is not a semigroup interval linear algebra. 

12. Give some interesting properties of semigroup interval vector 
spaces.

13. Give an example of a finitely generated semigroup interval 
linear algebra. 

14. Give an example of a simple semigroup interval vector space. 

15. Give an example of a pseudo simple semigroup interval 
vector space which is not simple. 

16. Give an example of a doubly simple semigroup interval vector 
space.
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17. Give an example of a pseudo semigroup interval linear 
algebra.

18. Does there exists a semigroup interval linear algebra which 
cannot be written as a direct sum? Justify your claim! 

19. Obtain some interesting properties about group interval linear 
algebras.

20. Does there exists an infinite group interval linear algebra?  

21. Does their exists a group interval linear algebra of order 43? 

22. Give an example of a group linear algebra of order 25. 

23. Let X = i
i i 7

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� . Is X a group interval linear 

algebra over the group Z7? Is X finite or infinite? 

24. Give an example of a set fuzzy interval vector space. 

25. Obtain some interesting properties about set fuzzy interval 
linear algebras. 

26. Give an example of a semigroup fuzzy interval linear algebra. 

27. Let V = {All 5  5 interval matrices with intervals of the form 

{[0, ai], 

1

2

9

[0,a ]
[0,a ]

[0,a ]

� �
	 

	 

	 

	 

� �

�
| ai � Z+ � {0}; 1 � i � 25} be a semigroup 

interval vector space over the semigroup S = Z+ � {0}. Obtain 
atleast 5 fuzzy semigroup interval vector spaces or semigroup 
fuzzy interval vector spaces.  

28. Obtain some interesting properties about group interval vector 
spaces.
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29. Let V = {all 6  6 interval matrices with intervals of the form 
[0, ai]; ai � Z18} be a group interval linear algebra over the 
group G = Z18.
i. Obtain group fuzzy interval linear algebras. 

ii. Does V have subgroup interval linear subalgebras?  
iii. Find at least 3 group interval linear subalgebras. 
iv. Define a linear operator on V with non trivial kernel. 

30. Bring out the difference between type I and type II semigroup 
fuzzy interval linear algebras. 

31. Obtain some interesting properties enjoyed by type II group 
fuzzy interval linear algebras? 

32. Let V = V1 � V2 = 2i 3i
i i i

i 0 i 0
[0,a ]x , [0,a ]x ;a Z {0}

� �
�

) )

� �
� �� �

� �
� �

� ' (

1

2
1 8 i

7

[0,a ]
[0,a ]

, [0,a ] [0,a ] a 3Z {0}

[0,a ]

�

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

�
�

 be a set 

interval bivector space over the set S = {2Z+, 3Z+, 0}. 
i. Find set interval bivector subspaces of V. 

ii. Find subset interval bivector subspace of V. 
iii. Define a bilinear operator on V. 
iv. Find a generating set of V. 

33. Give an example of a set interval bivector space which is not 
a set interval linear algebra of finite dimension. 

34. Give an example of a pseudo simple set interval linear 
algebra.

35. Let V = V1 � V2 = {all 7  7 interval matrices with intervals 
of the form [0, ai]| ai � Z7} � {[0, ai]| ai � Z7} be a set interval 
bilinear algebra over the set S = Z7.
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i. Find a linear bioperator on V which has a non trivial 
bikernel.

ii. Is V simple? 
iii. Can V have subset interval bilinear algebras? 

36. Give an example of a pseudo simple set interval linear 
bialgebra which is not simple. 

37. Obtain some important properties about set interval linear 
bialgebras.

38. Give an example of a set interval linear bialgebra of 
bidimension (5, 9).  

39. What is the difference between a set interval bilinear algebra 
and a biset interval bilinear algebra? 

40. Let V = V1 � V2 = {all 10  10 interval matrices with 
intervals of the form [0, ai], ai � 5 Z+ � {0}} � {3  7 
interval matrices with intervals of the form [0, ai] � 3Z+ �
{0}} be a biset interval bivector space of V over the biset S = 
10Z+ � {0} � 6Z+ � {0} = S1 � S2.

i. Find a bigenerating bisubset of V. 
ii. Is V finite bidimensional? 

iii. Find biset interval bivector subspaces of V. 
iv. Is V pseudo simple? Justify your answer. 
v. Define a nontrivial one to one bilinear operator on V.  

41. Give an example of a quasi biset interval bivector space. 

42. Let  
V = V1 � V2 = ' (� �1 8 i 7[0,a ] [0,a ] a Z�� �

1 2 3

4 5 6 i 11

7 8 9

a a a
a a a a Z
a a a

� �� �
� �	 
 �� �	 

� �	 
� �� �

 be a quasi biset interval bivector space over the biset S= Z7 �
Z11. Is V bisimple? What is the bigenerating subbiset of V? 
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43. Give an example of a doubly simple quasi biset interval 
bivector space over the biset S.

44. Let V = V1 � V2 = i
i i 13

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� � {All 3  8 

interval matrices with intervals of the form [0, ai] / ai � Z13}
be a quasi set interval linear bialgebra over the set S = Z13. Is 
V simple? Justify! 

45. Give an example of a semi quasi set interval bilinear algebra. 

46. Determine some special properties enjoyed by semigroup 
interval bilinear algebras.  

47. Let
V = V1 � V2

= 1 2 3 4
i 17

5 6 7 8

[0,a ] [0,a ] [0,a ] [0,a ]
a Z ;1 i 8

[0,a ] [0,a ] [0,a ] [0,a ]
� �� �� �� � �� �	 

� �� �� �

�

i
i i 17

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�

 be a semigroup interval bilinear algebra over the semigroup 
Z17.

i. Is V pseudo simple? 
ii. Is V simple? Justify  

iii. Find a generating bisubset of V.  

48. Prove there exists an infinite class of semigroup interval 
bilinear algebras which are pseudo simple. 

49. Give an example of a simple semigroup interval bivector 
space.
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50. Give an example of a double simple semigroup interval 
bivector space. 

51. Give some interesting applications of semigroup interval 
bilinear algebras. 

52. Let
V = V1 � V2

= ' (

1

2 i
1 14

9

[0,a ]
[0,a ] a Z {0};

, [0,a ] [0,a ]
1 i 14

[0,a ]

�

� �� �
� �	 
 � �� �	 
� �	 
 � �� �	 
� �� �� �

�
�

�

{All 7  7 interval matrices with intervals of the form [0, ai] / 
ai � 3Z+ � {0}} be a quasi semigroup interval bilinear algebra 
over the semigroup S = 2Z+ � {0}.

i. Find substructures of V. 
ii. Find a bilinear operator on V 

iii. Can V be a made into a quasi fuzzy semigroup interval 
bilinear algebra? 

iv. Is V pseudo simple? 
v. Is V doubly simple? 

53. Give an example of a doubly simple quasi semigroup interval 
bilinear algebra.

54. Describe some important properties enjoyed by group interval 
bivector space. 

55. Give an example of a simple group interval bivector space. 

56. Let V = V1 � V2 = ' (

1

2
i 23

9

[0,a ]
[0,a ]

, [0,a][0,b] a,b,a Z

[0,a ]

� �� �
� �	 

� �	 
 � �� �	 
� �	 
� �� �� �

�
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1 2 3 4
j i 23i

5 6 7 8 i
i 0

9 10 11 12

[0,a ] [0,a ] [0,a ] [0,a ]
a ,a Z ;

[0,a ] [0,a ] [0,a ] [0,a ] , [0,a ]x
1 j 12

[0,a ] [0,a ] [0,a ] [0,a ]

�

)

� �� �
�� �	 


� �	 
 � �� �	 
� �� �

�

be a group interval bivector space over the group G = Z23.
i. What is the bidimension of V? 

ii. Find group interval bivector subspaces of V. 
iii. Is V pseudo simple? Justify.  
iv. Find all generating bisubset of V. 

57. Let V = V1 � V2 = 
7

i
i i 40

i 0
[0,a ]x a Z ;0 i 7

)

� �
� � �� �

� �
� �

1

2 i 40

10

[0,a ]
[0,a ] a Z ;

1 i 10
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

�
 be a group interval bivector space over 

the group G = Z40.
i. Find at least two group interval bivector subspaces of 

V.
ii. Is V simple? 

iii. Prove V is not pseudo simple. 
iv. Find a bibasis of V. 
v. Find the bidimension of V. 

58. Give an example of a simple group interval bivector space.  

59. Give an example of a doubly simple group interval bivector 
space.

60. Give an example of a pseudo simple group interval bivector 
space which is not simple. 

61. Let V = V1 � V2 = {all 10  10 intervals matrices with 
intervals of the form [0, ai]; ai � Z43} � {All 5  8 interval 
matrices with intervals of the form [0, ai]; ai � Z43} be a group 
interval bilinear algebra over the group G = Z43.
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i. Prove V is pseudo simple. 
ii. Prove V is not simple 

iii. Find atleast 3 group interval bilinear subalgebras of V. 
iv. What is the bidimension of V? 
v. Find a bigenerating bisubset of V. 

vi. Find a bilinear operator on V. 

62. Give an example of a quasi group interval bilinear algebra 
over the group Zn.

63. Is V = V1 � V2 = 3

[0,a]
[0,a] a Z
[0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

� {([0, a] [0, a] [0, a]) / 

a � Z3} a doubly simple group interval bilinear algebra over 
the group G = Z3? Justify your claim. 

64. Let V = V1 � V2 = 
7

i
i i 5

i 0
[0,a ]x a Z

)

� �
�� �

� �
� �

5

[0,a] [0,a]
[0,a] [0,a] a Z
[0,a] [0,a]

� �� �
� �	 
 �� �	 

� �	 
� �� �

 be a quasi group interval bilinear 

algebra over the group G = Z5.
i. Is V simple? 

ii. Is V doubly simple? 
iii. Is V pseudo simple? 

65. Give some interesting properties about bigroup interval 
bilinear algebra. 

66. Give an example of a simple bigroup interval bilinear algebra.  

67. Prove all bigroup interval algebras built using the bigroups Zp

� Zp ( p and q two distinct primes) are always pseudo simple. 

68. Can one have bigroup interval bivector spaces using positive 
reals or positive rationals? Substantiate your answer. 
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69. Let
V = V1 � V2

=

1

2 i 50

12

[0,a ]
[0,a ] a Z ;

1 i 12
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

�
�

1 2 10
i 28

11 12 20

21 22 30

[0,a ] [0,a ] ... [0,a ]
a Z ;

[0,a ] [0,a ] ... [0,a ]
1 i 30

[0,a ] [0,a ] ... [0,a ]

� �� �
�� �	 


� �	 
 � �� �	 
� �� �
be a bigroup interval bilinear algebra over the bigroup G = G1

� G2 = Z50 � Z28.
i. Find atleast two subbigroup interval bilinear subalgebras. 

ii. Find atleast three bigroup interval bilinear subalgebras. 
iii. Find a generating biset of V. 
iv. Find a bilinear operator on V.  

70. Let
V = V1 � V2

= i
i i 7[0,a ]x a Z

� �
�� �

� �
� �

1

2 i 11

19

[0,a ]
[0,a ] a Z ;

1 i 19
[0,a ]

� �� �
� �	 
 �� �	 
� �	 
 � �� �	 
� �� �� �

�

be a bigroup interval bilinear algebra over the bigroup G = G1

� G2 = Z7 � Z11.
i. Prove V is pseudo simple. 

ii. Find bigroup interval bilinear subalgebras of V. 
iii. Prove V is not doubly simple. 
iv. Define a bilinear operator T = T1 � T2 : V1 � V2 � V1 �

V2 such that biker T � {0} � {0}. 
v. Find a generating biset of V. 

vi. Is bidimension of V finite? 
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71. Let V = V1 � V2 = i
i i[0,a ]x a Z {0}�� �

� �� �
� �
� � {All 6  6 

interval matrices with intervals of the form [0, ai] where ai �
Z420} be a semigroup - group interval bilinear algebra over the 
semigroup - group Z+ � {0} � Z420.
i. Find substructures of V. 

ii. Prove V is not a doubly simple space. 
iii. Find a T : T1 � T2 : V1 � V2 � V1 � V2 such that bikerT 

= {0} � {0}. 
iv. Find T : T1 � T2 : V = V1 � V2 � V = V1 � V2 such that 

biker T = {0} � {S}. S � 0. 

72. Let V = V1 � V2 = 
1 2

i
3 4

5 6

[0,a ] [0,a ]
a Z {0};

[0,a ] [0,a ]
1 i 6

[0,a ] [0,a ]

�
� �� �

� �� �	 

� �	 
 � �� �	 
� �� �

�

i
i i 47

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
�  be a set semigroup interval bilinear 

algebra over the set - semigroup 3Z+ � {0} � Z47.
i. Find a set - semigroup interval bilinear subalgebras. 

ii. Find a subset - subsemigroup interval bilinear 
subalgebras.

iii. Find a bilinear bioperator on V which is one to one. 

73. Give some interesting results about biset interval bilinear 
algebras.

74. Give examples of infinite biset interval bilinear algebra which 
is
i. simple biset interval bilinear algebra. 

ii. Pseudo simple biset interval bilinear algebra. 
iii. Doubly simple biset interval bilinear algebra. 

75. Let V = V1 � V2 be a set - semigroup interval bilinear 
algebra. Define a bilinear operator on V, which is one to one; 
where V = {all 3  3 interval matrices with intervals of the 
form [0, ai]; ai � Z17} � { 6 [0, ai] xi | ai � Z17)} = V1 � V2 is 
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a set-semigroup interval bilinear algebra over the set-
semigroup S = {3Z+, {0}, 5Z+} � Z17 = S1 � S2.
i. Is V pseudo simple? 

ii. Does V have set semigroup interval bilinear subalgebra? 
iii. Is V doubly simple? Justify. 

76. Give an example of a set-semigroup interval bivector space 
which is not a set-semigroup interval bilinear algebra of finite 
over which is doubly simple! 

77. Let V = V1 � V2 = {Collection of 2  10 interval matrices 
with entries form Z15} � {3  5 interval matrices with entries 
from Z12} be a bisemigroup interval bilinear algebra over the 
bisemigroup S = S1 � S2 = Z15 � Z12.
i. Is V simple? 

ii. Is V pseudo simple? 
iii. Is V doubly simple? 
iv. Is V finite? 
v. Determine a bilinear operator which is not one to one. 

vi. What is the bidimension of V? 

78. Determine some interesting properties about group-semigroup 
interval bivector spaces of finite dimension? 

79. Is it possible to have a bigroup interval bilinear algebra of 
infinite dimension? 

80. Is it possible to have a bigroup interval bivector space of finite 
dimension?

81. Give an example of a set - group interval bilinear algebra of 
bidimension (9, 8). 

82. Let V = V1 � V2 = {all 5  6 interval matrices of the form [0, 
ai]; ai � Z7} � {all 6  5 interval matrices over the set Z7 with 
intervals of the form [0, ai]} be a group interval bilinear 
algebra over the group Z7.
i. Is V simple? 

ii. Prove V is pseudo simple. 
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iii. Prove V is not doubly simple. 
iv. What is the biorder of V? 
v. Define a one to one bilinear operator on V.  

83. Prove if V = V = V1 � V2 is a group interval bilinear algebra 
over a group G; then the set of all bioperators on V is again a 
group interval bilinear algebra over the group G. 

84. Obtain some interesting properties about bilinear 
transformations on group interval bivector spaces V = V1 �
V2 and W = W1 � W2 defined over the group G. 

85. Let V = V1 � V2 = {all 3  1 be a set of all interval matrices 
with intervals of the form [0, ai]; ai � Z12} � {1  7 be a set of 
all interval matrices with intervals of the form [0, ai]; ai � Z19}
be a bisemigroup interval bilinear algebra over the 
bisemigroup S = S1 � S2 = Z12 � Z19.
i. Find all bisemigroup interval bilinear subalgebras of V 

over S. 
ii. Is V pseudo simple? 

iii. Find a bigenerating subset of V. 
iv. Find all bilinear operators on V. 

86. Let V = V1 � V2 be as in problem 77. 
i. Find a bigenerating subset of V. 

ii. What is the bidimension of V over S? 

87. Obtain some interesting properties on set - group interval 
bivector spaces of finite order. 

88. Let V = V1 � V2 = i
i i 3

i 0
[0,a ]x a Z

�

)

� �
�� �

� �
� � {All 8  interval 

matrices with intervals of the form [0, ai] where ai � Z42} �
i

i i[0,a ]x a Z {0}�� �
� �� �

� �
�  be a group-semigroup bilinear 

algebra defined over the group-semigroup S = S1 � S2 = Z42

� 3Z+ � {0}. 
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i. Find atleast 3 group-semigroup interval bilinear 
subalgebras of V over S. 

ii. Find atleast 3 pseudo subgroup-subsemigroup interval 

89. Give an example of a doubly simple set - group interval 
bivector space. 

90. Give an example of a pseudo simple bigroup interval bivector 
space which is not simple. 

91. Let V = V1 � V2 = i 5

[0,a]
[0,a]

a Z
[0,a]
[0,a]

� �� �
� �	 

� �	 
 �� �	 
� �	 
� �� �� �

� {([0, a], [0, a], [0, 

a], [0, a], [0, a], [0, a]) / a � Z11} be a bigroup interval algebra 
over the bigroup G = G1 � G2 = Z5 � Z11.
i. Is V simple? 

ii. Is V doubly simple? 
iii. Is V pseudo simple? Justify your claim. 

92. Prove there exists an infinite class of doubly simple bigroup 
interval bilinear algebras! 

93. Prove their exists an infinite class of bigroup interval bilinear 
algebras which are not pseudo simple! 

94. Does there exists an infinite classes of set-group interval 
bilinear algebras? Justify your claim. 

95. Does there exist a bigroup interval bilinear algebras built over 
the bigroup G = G1 � G2, where both G1 and G2 are of infinite 
order?

96. Give some innovative results on biset interval bivector spaces 
of infinite order.  
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97. Let V = {1  9 interval matrices using Z7} � {9  1 interval 
matrices using Z7} be a group interval bilinear algebra over 
the group Z7.
i. Prove V is not doubly simple! 

ii. Find all bilinear operators on V and show it is a group 
interval bilinear algebra over Z7.

98. Let V = V1 � V2 = {all 2  2 interval matrices using 3Z+ �
{0} and 5Z+ � {0}} � {3  3 interval matrices using 7Z+ �
{0}, 3Z+ � {0}} be a bisemigroup interval bilinear algebra 
over the bisemigroup S = S1 � S2 = 5Z+ � {0} � 7Z+ � {0}. 
i. Is V simple? 

ii. Find subbisemigroup interval bilinear subalgebras of V. 

99. Show V in problem (98) is not doubly simple. 

100. For V in problem (98) prove set of all bilinear operators on V 
is again a bisemigroup bilinear algebra over S. 

101. Give an example of set-semigroup interval bilinear algebra 
which is not a set-group interval bilinear algebra. 

102. Is every set-group interval bilinear algebra a set - semigroup 
interval bilinear algebra? 

103. Show a biset interval bilinear vector space in general not a 
bigroup or bisemigroup interval bivector space. 

104. Obtain conditions on a bigroup interval bilinear algebra V = 
V1 � V2 so that V is never a nontrivial bisemigroup interval 
bilinear algebra.

105. Derive some important and interesting properties related with 
bisemigroup interval bivector spaces. 

106. Give an example of a bisemigroup interval bivector space 
which is not a bisemigroup interval bilinear algebra. 
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107. Let V = V1 � V2 = i
i i

i 0
[0,a ]x a 3Z {0}

�
�

)

� �
� �� �

� �
� �{6 [0, ai]

xi | ai � 5Z+ � {0}} be a bisemigroup interval bilinear algebra 
defined over the bisemigroup S = S1 � S2 = 3Z+ � {0} � 5Z+

� {0}. 
i. Find a bigenerating subset of V. 

ii. Find atleast two bisemigroup interval bilinear 
subalgebras.

iii. Find atleast two subbisemigroup interval bilinear 
subalgebras.

108. Give an example of a pseudo simple bisemigroup interval 
bilinear algebra. 

109. Give an example of a simple bisemigroup interval bilinear 
algebra.

110. Give an example of a doubly simple bisemigroup interval 
bilinear algebra of finite order. 

111. Give an example of a group - set interval bilinear algebra of 
infinite order. 

112. Give an example of a group semigroup interval bilinear- 
algebra of finite order. 

113. Prove a set-group interval bivector space in general is not a 
semigroup-group interval bivector space.  
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