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PREFACE

Through this book, for the first time we represent every finite 
group in the form of a graph. The authors choose to call these 
graphs as identity graph, since the main role in obtaining the 
graph is played by the identity element of the group.  

 This study is innovative because through this description 
one can immediately look at the graph and say the number of 
elements in the group G which are self-inversed. Also study of 
different properties like the subgroups of a group, normal 
subgroups of a group, p-sylow subgroups of a group and 
conjugate elements of a group are carried out using the identity 
graph of the group in this book. Merely for the sake of 
completeness we have defined similar type of graphs for 
algebraic structures like commutative semigroups, loops, 
commutative groupoids and commutative rings. 

 This book has four chapters. Chapter one is introductory in 
nature. The reader is expected to have a good background of 
algebra and graph theory in order to derive maximum 
understanding of this research.

 The second chapter represents groups as graphs. The main 
feature of this chapter is that it contains 93 examples with 
diagrams and 18 theorems. In chapter three we describe 
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commutative semigroups, loops, commutative groupoids and 
commutative rings as special graphs. The final chapter contains 
52 problems. 

 Finally it is an immense pleasure to thank Dr. K. 
Kandasamy for proof-reading and Kama and Meena without 
whose help the book would have been impossibility. 

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE



7

Chapter One 

INTRODUCTION TO SOME BASIC 
CONCEPTS

This chapter has two sections. In section one; we introduce 
some basic and essential properties about rooted trees. In 
section two we just recall the definitions of some basic algebraic 
structures for which we find special identity graphs.  

1.1 Properties of Rooted Trees  

In this section we give the notion of basic properties of rooted 
tree.

DEFINITION 1.1.1: A tree in which one vertex (called) the root is 
distinguished from all the others is called a rooted tree. 

Example 1.1.1:  

Figure 1.1.1 gives rooted trees with four vertices. 

Figure 1.1.1 
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We would be working with rooted trees of the type.  

We will also call a vertex to be the center of the graph if every 
vertex of the graph has an edge with that vertex; we may have 
more than one center for a graph. 

In case of a complete graph Kn we have n centers.

We have four centers for K4.   

K3 has 3 centers 

a is a center of the graph. 

Figure 1.1.2 

a

Figure 1.1.3 
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For rooted trees the special vertex viz. the root is the center. 
 Cayley showed that every group of order n can be 
represented by a strongly connected digraph of n vertices.  

However we introduce a special identity graph of a group in 
the next chapter. As identity plays a unique role in the graph of 
group we choose to call the graph related with the group as the 
identity graph of the group G. 
 For more about Cayley graph and graphs in general refer 
any standard book on graph theory.  

1.2 Basic Concepts  

 In this section we just recall some basic notions about some 
algebraic structures to make this book a self contained one. 

DEFINITION 1.2.1: A non empty set S on which is defined an 
associative binary operation * is called a semigroup; if for all 
a, b � S, a * b � S. 

Example 1.2.1: Z+ = {1, 2, …} is a semigroup under 
multiplication.  

Example 1.2.2: Let Zn = {0, 1, …, n – 1} is a semigroup under 
multiplication modulo n. n � Z+.

Example 1.2.3: S(2) = {set of all mappings of (1, 2) to itself is a 
semigroup under composition of mappings}. The number of 
elements in S(2) is 22 = 4. 

Example 1.2.4: S(n) = {set of all mappings of (1, 2, 3, …, n) to 
itself is a semigroup under composition of mappings}, called 
the symmetric semigroup. The number of elements in S(n) is nn.

 Now we proceed on to recall the definition of a group. 

DEFINITION 1.2.2: A non empty set G is said to form a group if 
on G is defined an associative binary operation * such that 
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1. a, b � G then a * b � G 
2. There exists an element e � G such that a * e = e * a = 

a for all a � G. 
3. For every a � G there is an element a-1 in G such that  

a * a-1 = a-1 * a = e (existence of inverse in G).  

A group G is called an abelian or commutative if a * b = b * a 
for all a, b, � G. 

Example 1.2.5: Let G = {1, –1}, G is a group under 
multiplication. 

Example 1.2.6: Let G = Z be the set of positive and negative 
integers. G is a abelian group under addition. 

Example 1.2.7: Let Zn = {0, 1, 2, …, n – 1}; Zn is an abelian 
group under addition modulo n. n � N. 

Example 1.2.8: Let G = Zp \ {0} = {1, 2, …, p – 1}, p a prime 
number G = Zp \ {0} is a group under multiplication of even 
order (p � 2) 

Example 1.2.9: Let Sn = {group of all one to one mappings of 
(1, 2, …, n) to itself}; Sn is a group under the composition maps. 
o(Sn) = |n. Sn is called the permutation group or symmetric 
group of degree n.  

Example 1.2.10: Let An be the set of all even permutations. An
is a subgroup of Sn called the alternating subgroup of Sn, o(An) 
= |n/2.

Example 1.2.11: Let D2n = {a, b | a2 = bn = 1; bab = a}; D2n is 
the dihedral group of order 2n. D2n is not abelian (n � N). 

Example 1.2.12: Let G = �g | gn = 1�, G is the cyclic group of 
order n, G = {1, g, g2, …, gn–1}. 

Example 1.2.13: Let G = G1 � G2 � G3 = {(g1, g2, g3) | gi � Gi; 1 
� i � 3} where Gi’s groups 1 � i � 3. G is a group. 
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DEFINITION 1.2.3: Let (G, *) be a group. H a proper subset of 
G. If (H, *) is a group then we call H to be subgroup of G. 

Example 1.2.14: Let Z10 = {0, 1, 2, …, 9} be the group under 
addition modulo 10. H = {0, 2, 4, 6, 8} is a proper subset of Z10
and H is a subgroup of G under addition modulo 10. 

Example 1.2.15: Let D26 = {a, b / a2 = b6 = 1, bab = a} be the 
dihedral group of order 12. H = {1, b, b2, b3, b4, b5} is a 
subgroup of D2.6. Also H1 = {1, ab} is a subgroup of D26.

For more about properties of groups please refer Hall 
Marshall (1961). Now we proceed on to recall the definition of 
the notion of Smarandache semigroups (S-semigroups).  

DEFINITION 1.2.4: Let (Si, o) be a semigroup. Let H be a proper 
subset of S. If (H, o) is a group, then we call (S, o) to be a 
Smarandache semigroup (S-semigroup). 

 We illustrate this situation by some examples. 

Example 1.2.16: Let S(7) = {The mappings of the set (1, 2, 3, 
…, 7) to itself, under the composition of mappings} be the 
semigroup. S7 the set of all one to one maps of (1, 2, 3, …, 7) to 
itself is a group under composition of mappings.  
 Clearly S7 is a subset of S(7). Thus S(7) is a S-semigroup. 

Example 1.2.17: Let Z12 = {0, 1, 2, …, 11} be the semigroup 
under multiplication modulo 12. Take H = {1, 11} � Z12, H is a 
group under multiplication modulo 12. Thus Z12 is a S-
semigroup. 

Example 1.2.18: Let Z15 = {0, 1, 2, …, 14} be the semigroup 
under multiplication modulo 15. Take H = {1, 14} � Z15, H is a 
group. Thus Z15 is a S-semigroup. P = {5, 10} � Z15 is group of 
Z15. So Z15 is a S-semigroup. 
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DEFINITION 1.2.5: Let G be a non commutative group. For h, g 
� G there exist x �G such that g = x h x-1, then we say g and h 
are conjugate with each other.  

For more about this concept please refer I.N.Herstein (1975). 

 Now we proceed onto define groupoids.  

DEFINITION 1.2.6: Let G be a non empty set. If * be a binary 
operation of G such that for all a, b � G, a * b � G and if in 
general a * (b*c) � (a * b) * c for a, b, c � G. Then we call (G, 
*) to be a groupoid. We say (G, *) is commutative if a*b = b * a 
for all a, b � G. 

Example 1.2.19: Let G be a groupoid given by the following 
table.

* 0 1 2 3 4
0 0 2 4 1 3
1 2 4 1 3 0
2 4 1 3 0 2
3 1 3 0 2 4
4 3 0 2 4 0

 G is a commutative groupoid. 

Note: We say a groupoid G has zero divisors if a * b = 0 for a, b 
� G \ {0} where o � G.

We say if e �G such that a * e = e * a = a for all a � G then we 
call G to be a monoid or a semigroup with identity. If for a � G 
there exists b � G such that a * b = b * a = e then we say a is a 
unit in G. 

Example 1.2.20: Let G = {0, 1, 2, …, 9} define ‘*’ on G by a * 
b = 8a + 4b (mod 10), a, b � G \ {0}. (G, *) is a groupoid.

We can have classes of groupoids built using Zn.
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Next we proceed onto define loops. 

DEFINITION 1.2.7: A non empty set L is said to form a loop if on 
L is defined a binary non associative operation called the 
product denoted by * such that 

1. For all a, b � L, a * b � L. 
2. There exists an element e � L such that a * e = e * a = 

a for all a � L. e is called the identity element of L. 
3. For every ordered pair (a, b) � L � L there exists a 

unique pair (x, y) � L such that ax = b and ya = b. 

 We give some examples. 

Example 1.2.21: Let L = {e, 1, 2, 3, 4, 5}. The loop using L is 
given by the following table 

* e 1 2 3 4 5
e e 1 2 3 4 5
1 1 e 5 4 3 2
2 2 3 e 1 5 4
3 3 5 4 e 2 1
4 4 2 1 5 e 3
5 5 4 3 2 1 e 

Example 1.2.22: Let L = {e, 1, 2, 3, …, 7}. The loop is given 
by the following table. 

* e 1 2 3 4 5 6 7
e e 1 2 3 4 5 6 7
1 1 e 4 7 3 6 2 5
2 2 6 e 5 1 4 7 3
3 3 4 7 e 6 2 5 1
4 4 2 5 1 e 7 3 6
5 5 7 3 6 2 e 1 4
6 6 5 1 4 7 3 e 2
7 7 3 6 2 5 1 4 e 
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 We now proceed onto define a special class of loops. 

DEFINITION 1.2.8: Let Ln(m) = {e, 1, 2, …, n} be a set where n 
> 3, n is odd and m is a positive integer such that (m, n) = 1 
and (m –1, n) = 1 with m < n. Define on Ln(m) a binary 
operation ‘o’ as follows. 

1. e o i = i o e = i for all i � Ln(m)
2. i2 = i o i = e for i � Ln(m)
3. i o j = t where t = (mj – (m – 1)i) (mod n) for all i, j �

Ln(m); i � j; i � e and j � e, then Ln (m) is a loop under 
the operation o. 

We illustrate this by some example. 

Example 1.2.23: Let L7(3) = {e, 1, 2, …, 7} be a loop given by 
the following table. 

o e 1 2 3 4 5 6 7
e e 1 2 3 4 5 6 7
1 1 e 4 7 3 6 2 5
2 2 6 e 5 1 4 7 3
3 3 4 7 e 6 2 5 1
4 4 2 5 1 e 7 3 6
5 5 7 3 6 2 e 1 4
6 6 5 1 4 7 3 e 2
7 7 3 6 2 5 1 4 e 

Example 1.2.24: Let L5 (3) be the loop given by the following 
table.

o e 1 2 3 4 5
e e 1 2 3 4 5
1 1 e 4 2 5 3
2 2 4 e 5 3 1
3 3 2 5 e 1 4
4 4 5 3 1 e 2
5 5 3 1 4 2 e 
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 Now we proceed on to recall the definition of rings and S-
rings

DEFINITION 1.2.9: Let (R, +, o) be a nonempty set R with two 
closed binary operations + and o defined on it. 

1. (R, +) is an abelian group. 
2. (R, o) is a semigroup
3. a o (b + c) = a o b + b o c for all a, b, c � R. We call R 

a ring. If (R, o) is a semigroup with identity (i.e., a 
monoid) then we say (R, +, o) is a ring with unit. 

If a o b = b o a for all a, b � R then we say (R, +, o) is a 
commutative ring. 

Example 1.2.25: Let (Z, +, �) is a ring, Z the set of integers. 

Example 1.2.26: (Q, +, �) is a ring, Q the set of rationals. 

Example 1.2.27: Z30 = {0, 1, 2, …, 29} is the ring of integers 
modulo 30.  

We recall the definition of a field. 

DEFINITION 1.2.10: Let (F, +, o) be such that F is a nonempty 
set with 0 and 1. F is a field if the following conditions hold 
good. 

1. (F, +) is an abelian group. 
2. (F \ {0}, o) is an abelian group 
3. a o (b + c) = a o b + a o c and 

(a + b) o c = a o c + b o c 
for all a, b, c � F.

Example 1.2.28: (Q, +, �) is a field, known as the field of 
rationals.

Example 1.2.29: Z5 = {0, 1, 2, 3, 4} is a field, prime finite field 
of characteristic 5. 
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Example  1.2.30:  F = 2
2

Z [x]
Ix x 1 	
 


 is a quotient ring which 

is a finite field of characteristic two.  

 Now we proceed onto recall the definition of a 
Smarandache ring. 

DEFINITION 1.2.11: Let (R, +, o) be a ring we say R is a 
Smarandache ring (S-ring) if R contains a proper subset P such 
that (P, + , o) is a field. 

 We illustrate this situation by some simple examples. 

Example 1.2.31: Let Q [x] be a polynomials ring. Q [x] is a S-
ring for Q � Q [x] is a field. So Q[x] is a S-ring. 

Example 1.2.32: Let

M2�2 = 
a b

a,b,c,d Q
c d

� � �� ��� �� �
� �� �� �

,

M2�2 is a ring with respect to matrix addition and multiplication. 
But

P = 
a 0

a Q
0 0

� � �� ��� �� �
� �� �� �

is a proper subset of M2�2 which is a field. Thus M2�2 is a S-ring. 

Example 1.2.33: Let R = Z11 � Z11 � Z11 be the ring with 
component wise addition and multiplication modulo 11. P = Z11

� {0} � {0} is a field contained in R. Hence R is a S-ring. 

It is important to note that in general all rings are not S-rings. 

Example 1.2.34: Z be the ring of integers. Z is not a S-ring. 
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Chapter Two  

GROUPS AS GRAPHS

Here we venture to express groups as graphs. From the structure 
of the graphs try to study the properties of groups. To describe 
the group in terms of a graph we exploit the notion of identity in 
group so we call the graph associated with the group as identity 
graph. We say two elements x, y in the group are adjacent or 
can be joined by an edge if x.y = e (e, identity element of G). 
Since we have in group x.y = y.x = e we need not use the 
property of commutatively. It is by convention every element is 
adjoined with the identity of the group G. If G = {g, 1 | g2 = 1} 
then we represent this by a line as g2 = 1. This is the convention 
we use when trying to represent a group by a graph. The 
vertices corresponds to the elements of the group, hence the 
order of the group G corresponds to the number of vertices in 
the identity graph.  

Example 2.1: Let Z2 = {0, 1} be the group under addition 
modulo 2. The identity graph of Z2 is

1 0

Figure 2.1 
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as 1+1 = 0(mod 2), 0 is the identity of Z2.

Example 2.2: Let Z3 = {0, 1, 2} be the group under addition 
modulo three. The identity graph of Z3 is 

Example 2.3: Let Z4 = {0, 1, 2, 3} be the group under addition 
modulo four. The identity graph of the group Z4 is 

Example 2.4: Let G = �g | g6 = 1� the cyclic group of order 6 
under multiplication. 
 The identity graph of G is  

Example 2.5: Let

S3 = 
1 2 3

e
1 2 3

�  �� 	� � �
� � ��

, 1

1 2 3
p

1 3 2
 �

	 � �
� �

,

1 2

0

Figure 2.2 

1 3

0 2

Figure 2.3 

 g2

1 g 

 g5

 g4

 g3

Figure 2.4 
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2

1 2 3
p

3 2 1
 �

	 � �
� �

, 3

1 2 3
p

2 1 3
 �

	 � �
� �

,

4

1 2 3
p

2 3 1
 �

	 � �
� �

 and 4

1 2 3
p

3 1 2
� ��	 �� �
�� ��

be the symmetric group of degree three. The identity graph 
associated with S3 is  

 We see the groups S3 and G are groups of order six but the 
identity graphs of S3 and G are not identical. 

Example 2.6: Let D2.3 = {a, b | a2 = b3 = 1; b a b = a} be the 
dihedral group. o(D2.3) = 6.

The identity graph associated with D2.3 is given below. 

We see the identity graph of D2.3 and S3 are identical i.e., one 
and the same. 

1

 p3

Figure 2.5 

 p1  p2

 p5

 p4

1

 b

Figure 2.6 

 a ab

 ab2

 b2
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Example 2.7: Let G = �g | g8 = 1�. The identity graph of the 
cyclic group G is given by 

Example 2.8: Let G = �h | h7 = 1� be the cyclic group of order 7. 
The identity graph of G is 

Example 2.9: Let Z7 = {0, 1, 2, …, 6}, the group of integers 
modulo 7 under addition. The identity graph of Z7 is 

 It is interesting to observe that the identity graph of Z7 and 
G in example 2.8 are identical. 

Example 2.10: Let G = �g | g12 = 1� be the cyclic group of order 
12.

The identity graph of G is 

1

Figure 2.7 

 g2

 g7

 g

 g6
 g3

 g5

 g4

1

Figure 2.8 

 h2

 h6

 h
 h5

 h4

 h3

0

Figure 2.1.9 

6 4 

31

5 2 
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Example 2.11: Let

A4 = 
1 2 3 4

e
1 2 3 4

�  �� 	� � �
� � ��

, 1

1 2 3 4
h

2 1 4 3
 �

	 � �
� �

,

2

1 2 3 4
h

4 3 2 1
 �

	 � �
� �

, 3

1 2 3 4
h

3 4 1 2
 �

	 � �
� �

,

4

1 2 3 4
h

1 3 4 2
 �

	 � �
� �

, 5

1 2 3 4
h

1 4 2 3
 �

	 � �
� �

,

6

1 2 3 4
h

3 2 4 1
 �

	 � �
� �

, 7

1 2 3 4
h

4 2 1 3
 �

	 � �
� �

,

8

1 2 3 4
h

2 4 3 1
 �

	 � �
� �

, 9

1 2 3 4
h

4 1 3 2
 �

	 � �
� �

,

10

1 2 3 4
h

2 3 1 4
 �

	 � �
� �

, 11

1 2 3 4
h

3 1 2 4
� ��	 �� �
�� ��

be the alternating group of order 12.  

The identity graph associated with A4 is 

 g10

1

Figure 2.10 

 g2
 g9

 g3

 g4

 g8 g7

 g11

 g5

 g 

 g6



22

 It is interesting to observe both A4 and G are of order 12 
same order but the identity graph of both A4 and G are not 
identical.

We now find the identity graph of Z12, the set of integers 
modulo 12. 

Example 2.12: Let Z12 = {0, 1, 2, …, 11} be the group under 
addition modulo 12.  

The identity graph of Z12 is 

We see the identity graph of Z12 and G given in example 2.10 
are identical.

Now we see the identity graph of D2.6.

Example 2.13: The dihedral group D2.6 = {a, b | a2 = b6 = 1, b a 
b = a} = {1, a, b, ab, ab2, ab3, ab4, ab5, b2, b3, b4, b5}.
 The identity graph of D2.6 is 

 h2

 h3

e

Figure 2.11 

 h1

 h9
 h10

 h8 h11

 h7 h4

 h6 h5

0

Figure 2.12 

6

11

1

10
2 9 

3

4

8

7
5
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We see the identity graph of D26 is different from that of A4, Z12
and G, though o(D26) = 12. 

Example 2.14: The identity graph of the cyclic group G = �g | 
g14 = 1� is as follows 

Example 2.15: The identity graph of the dihedral group D2.7 = 
{a, b | a2 = b7 = 1, bab = a} is as follows:  
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We see o(D2.7) = o(G) = 14, but the identity graph of D2.7 and G 
are not identical.

Example 2.16: Let Z17 = {0, 1, 2, …, 16} be the group under 
addition modulo 17.  

The identity graph of Z17 is 

Example 2.17: Let G = Z17 \ {0} = {1, 2, …, 16} be the group 
under multiplication modulo 17.  

The identity graph associated with G is 

Example 2.18: Let G' = �g | g16 = 1� be the cyclic group of order 
16.

The identity graph of G�.
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 We see the identity graphs of G and G� are identical. 

Example 2.19: Let G  = H � K = {1, g | g2 = 1} � �h | h8 = 1� = 
{(1, 1) (1, h), (1, h2), (1, h3), (1, h4), (1, h5), (1, h6), (1, h7), (g, 
h), (g, h2), (g, h3), (g, h4), (g, h5), (g, h6), (g, 1), (g, h7)}. 

We see G  = H � K is of order 16 but the identity graph 
of G  is different from that of G and G� given in examples   

Example 2.20: Let K = P � Q = {1, g, g2, g3 | g4 = 1} � {1, h, h2,
h3 | h4 = 1} be the group of order 16. K = {(1, 1), (1, h), (1, h2),
(1, h3), (g, h) (g, 1) (g, h2), (g, h3), (g2, 1) (g2, h2), (g2, h) (g2, h3)
(g3, 1) (g3, h) (g3, h2) (g3, h3)}.

 The identity graph of K is as follows. 
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o(K) = o( G ) = 16.  
We see the identity graphs of K and G  are identical. G

given in example 2.19.   

Example 2.21: Let D2.8 = {a, b | a2 = b8 = 1, bab = a} = {1, a, b, 
b2, b3, b4, b5, b6, b7, ab, ab2, ab3, ab4, ab5, ab6, ab7} be the 
dihedral group of order 16. The identity graph of D2.8 is 

We see o(D28) = o( G ) = o(K) = o(G) = 16.  

But the identity graph of the group D2.8 is distinctly 
different from that of the groups G  and K given in examples. 
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Example 2.22: Let G = {g | g2 = 1} � {h | h3 = 1} � {p | p2 = 1} 
= {(1 1 1), (g 1 1), (1 h 1), (1 h2 1), (g h 1), (g h2 1), (1 1 p), (g h 
p), (g 1 p), (g h2 p), (1 h p), (1 h2 p)} be a group of order 12. The 
identity graph of G is 

The identity graph of G is identical with that of A4.

Example 2.23: Let G = {g | g2 = 1} � {h | h6 = 1} = {(1 1), (g 
1), (1 h), (1 h2), (1 h3), (1 h4), (1 h5), (g h), (g h2), (g h3), (g h4), 
(g h5)} be a group of order 12. The identity graph of H is as 
follows.

This is identical with the identity graph of the group A4.

Example 2.24: Let G = Z30 = {0, 1, 2, …, 29} be the group 
under addition modulo 30.  

The identity graph associated with G is as follows. 
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 Now we can express every group G as the identity graph 
consisting of lines and triangles emerging from the identity 
element of G. Lines give the number of self inversed elements 
in the group. Triangles represent elements that are not self 
inversed.

Now we proceed on to describe the subgroup of a group by 
a identity graph. 

DEFINITION 2.1: Let G be a group. H a subgroup of G then the 
identity graph drawn for the subgroup H is known as the 
identity special subgraph of G (special identity subgraph of G). 

Example 2.25: Let G = {g | g8 = 1} be a group of order 8. The 
subgroups of G are H1 = {1, g4}, H2 = {1, g2, g4 g6}, H3 = {1} 
and H4 = G.

The identity graphs of H1, H2, H3 and H4 = G is as follows: 
The identity special subgraph of H3 is just a point,  

1

8

0

3

27
15

13

17

9
21

22

7

23

6

24

25

14

16

18

12

26
4

1

29

28

19

11

20

10

2

Figure 2.24 

5



29

which is known as the trivial identity graph.  

The identity graph of H1 is

i.e., a line graph as g4 is a self inversed element of G. 

The identity graph of H2 is 

The identity graph of H4 = G is as follows. 

We see clearly the identity graphs of H1, H2 and H3 are also 
identity subgraphs of G. 

Example 2.26: Let D2.7 = {a, b | a2 = b7 = 1, bab = a} be the 
dihedral group of order 14.  

The identity graph of D2.7 is as follows. 
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The subgroups of D27 are Ho = {1, a} whose identity graph is  

Hi = {1, abi} is a subgroup of D27 with its identity graph as  

such subgroups for i = 1, 2, 3, 4, 5 and 6 are given by  

H7 = {1, b, b2, b3, b4, b5, b6} is a subgroup of D26. The identity 
graph associated with H7 is 

 We see the identity graphs of the subgroups are special 
identity subgraphs of the identity graph of D27.
 However it is interesting to note that all subgraphs of an 
identity graph need not correspond with a subgroup. We have 
for every subgroup H of a group G a special identity subgraph 
of the identity graph, however the converse is not true. 

1

Figure 2.26 

ab

b3

b5b2
b6

b b4

ab6

ab5

ab4

ab3

ab2a

1 a

1 abi

1 abi

1

b3

b5b2
b6

b b4



31

THEOREM 2.1: Let G be a group. Gi denote the identity graph 
related to G. Every subgroup of G has an identity graph which 
is a special identity subgraph of Gi and every identity subgraph 
of Gi need not in general be associated with a subgroup of G. 

Proof: Given G is a group. Gi the related identity graph of G. 
Suppose H is a subgroup of G then since H itself is a group and 
H a subset of G the identity graph associated with H will be a 
special identity subgraph of Gi.
 Conversely if Hi is a identity subgraph of Gi then we may 
not in general have a subgroup associated with it. 
 Let G = {g | g11 = 1} be the cyclic group of order 11. The 
identity graph associated with G be Gi which is as follows: 

This has

as some identity subgraphs of Gi. Clearly no subgroups can be 
associated with them as G has no proper subgroups, as o(G) = 
11, a prime. Hence the theorem. 

1

Figure 2.27 

g9

g5g6
g4

g7 g2

g10gg8g3

1

g8g3

g5g6

g2

g10g

1

1

g9

g2



32

Example 2.27: Let A4 = {1, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10,
h11} be the alternating subgroup of S4. The identity graph Gi
associated with A4 is as follows: 

 The subgroups of A4 are {1} = P1, P2 = A4, P3 = {1, h2}, P4
= {1, h1} P5 = {1, h3}, P6 = {1, h1, h2, h3}, P7 = {1, h4, h5}, P8 = 
{1, h6, h7}, P9 = {1, h8, h9} and P10 = {1, h10, h11}.

The special identity subgraph H1 of P1 is  

The special identity subgraph of P2 is given in figure 2.28.  The 
special identity subgraph of the subgroup P3 is 

The special identity subgraph of the subgroup P4 is 

The special identity subgraph of the subgroup P5 is 

The special identity subgraph of P6 is 
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The special identity subgraph of P7, the subgroup of A4

The special identity subgraph of the subgroup P8 is 

The special identity subgraph of the subgroup P9 is 

The special identity subgraph of the subgroup of P10 is 

However we see some of the subgraphs of the identity graph of 
Gi are 
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These have no subgroups of A4 being associated with it. 

Example 2.28: Let G = �g | g5 = 1� be the cyclic group of order 
5. The identity graph Gi associated with G is 

Clearly this has no identity special subgraph. 

Example 2.29: Let G = �g | g19 = 1� be the cyclic group of order 
19. The identity graph associated with G is 
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 This too has no identity special subgraphs. 

Example 2.30: Let G = �g | g15 = 1� be the cyclic group of order 
15. The identity graph of G, is given in the following. 

 The subgroups of G are H1 = {1}, H2 = G, H3 = {1, g3, g6,
g9, g12}, H4 = {1, g5, g10}. The associated special identity 
subgraphs of Gi are 

THEOREM 2.2: If G = �g | gp = 1� be a cyclic group of order p, 
p a prime. Then the identity graph formed by G has only 
triangles infact (p – 1) / 2 triangles. 

Proof: Given G = �g | gp = 1� is a cyclic group of order p, p a 
prime. G has no proper subgroups. So no element in G is a self 
inversed element i.e., for no gi in G is such that (gi)2 = 1. For by 
Cauchy theorem G cannot have elements of order two. Thus for 
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every gi in G there exists a unique gj in G such that gigj = 1 i.e., 
for every gi the gj is such that j = (p – i) so from this the 
elements 1, gi, gp–i form a triangle. Hence the identity graph will 
not have any line any graphs. Thus a typical identity graph of 
these G will be of the following form. 

 Hence the theorem. 

COROLLARY 2.1: If G is a cyclic group of odd order then also 
G has the identity graph Gi which is formed only by triangles 
with no lines. 

Proof: Let G = {g | gn = 1}, n is a odd number. Then the identity 
graph associated with G is as follows. 
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 We illustrate this by examples and show Gi mentioned in 
the corollary has special identity subgraphs. 

Example 2.31: Let G = �g | g13 = 1� be the cyclic group of order 
13. The identity graph Gi associated with G is as follows: 

 This has no special identity subgraphs. 

Example 2.32: Let G = �g | g16 = 1� be the cyclic group of order 
16. The identity graph of G is Gi given by 

 The subgroups of G are H1 = {g2, g4, g6, g8, g10, g12, g14, 1}, 
H2 = {g4, g8, g12, 1} and H3 = {1, g8}.
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 The special identity subgraph of H1 is 

 The special identity subgraph of H2 is 

 The special identity subgraph of H3 is 

Example 2.33: Let G = �g | g9 = 1� be the cyclic group of order 
9. The identity graph of G is  
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 The subgroup of G is H = {1, g3, g6}. The special identity 
subgraph of H is 

THEOREM 2.3: If G = �g | gn = 1� be a cyclic group of order n, 
n an odd number then the identity graph Gi of G is formed with 
(n – 1) / 2 triangles.  

Proof: Clear from figure 2.32 and theorem 2.2. 

THEOREM 2.4: Let G = �g | gm = 1� be a cyclic group of order 
m; m an even number. Then the identity graph Gi has (m – 2) / 2 
triangles and a line. 

Proof: Given G = �g | gm = 1� is a cyclic group of order m where 
m is even. The identity graph Gi associated with G is given 
below:

 If it easily verified that exactly (m – 1)/2 triangles are 
present and only a line connecting 1 to gm/2 for gm/2 is a self 
inversed element of G.  

Example 2.34: Let G = �g | g6 = 1� be the cyclic group of order 
6. The identity graph associated with G is given by 
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Example 2.35: Let G = �g | g4 = 1� be the cyclic group of order 
4. The identity graph associated with G is

Example 2.36: Let G = �g | g10 = 1� the cyclic group of order 10. 
The identity graph associated with G is 

Example 2.37: Let G = {g / g4 = 1} � {g1 / 6
1g  = 1} = {(1, 1), 

(g, 1), (g, g1), (g, g1
2), (g, g1

3), (g, g1
4), (g, g1

5), (g2, g1), (g2, 1), 
(g2, g1

2), (g2, g1
3), (g2, g1

4), (g2, g1
5), (g3, 1), (g3, g1), (g3, g1

2), (g3,
g1

3), (g3, g1
4), (g3, g1

5), (1, g1), (1, g1
2), (1, g1

3), (1, g1
4), (1, g1

5)}
be the group of order 24. The identity graph of G is as follows.  
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 This group is not cyclic has twenty four elements. This has 
three lines and the rest are triangles. 

Example 2.38: Let D2.10 = {a, b / a2 = b10 = 1, bab = a} = {1, a, 
b, b2, b3, b4, b5, b6, b7, b8, b9, ab, ab2, ab3, ab4, ab5, ab6, ab7, ab8,
ab9} be the dihedral group. The identity graph of D2,10 is as 
follows.
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We can now bring an analogue of the converse of the 
Lagrange’s theorem. 

THEOREM 2.5: Let G be a finite group. Gi be the identity graph 
related with G. Just as for every divisor d of the order of G we 
do not have subgroups of order d we can say corresponding to 
every identity subgraph Hi of the identity graph Gi we may not 
in general have a subgroup of G associated with Hi.

Proof: This can be proved only by an example. Let G = D27 = 
{a, b / a2 = b7 = 1, bab = a} = {1, a, b, b2, b3, b4, b5, b6, ab, ab2,
ab3, ab4, ab5, ab6} be the dihedral group of order 14. Let Gi be
the identity graph associated with D27.

Let Hi be the subgraph 
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Clearly Hi is the identity subgraph of Gi but the number of 
vertices in Hi is 9, i.e., the order of the subgroup associated with 
Hi if it exists is of 9 which is an impossibility as (14, 9) = 1 i.e., 
9 / 14.
 Thus we have for a given identity graph Gi of a finite group 
G to each of the subgraphs Hi of Gi we need not in general have 
a subgroup H of G associated with it. Hence the theorem.  

COROLLARY 2.2: Take G = �g | gp = 1�, be a cyclic group of 
order p, p a prime, Gi the identity graph with p vertices 
associated with it. G has several identity subgraphs but no 
subgroup associated with it.

COROLLARY 2.3: Let G be a finite group of order n. Gi the 
identity graph of G with n vertices. Let H be a subgroup of G of 
order m (m < n). Suppose Hi is the identity subgraph associated 
with H having m vertices. Every subgraph of Gi with m vertices 
need not in general be the subgraph associated with the 
subgroup H. 

Proof: The proof is only by an example.  
Let D2.11 = {a, b / a2 = b11 = 1, bab = a} = {1, a, b, b2, b3, b4,

b5, b6, b7, b8, b9, b10, ab, ab2, ab3, ab4, ab5, ab6, ab7, ab8, ab9, ab10}
be the dihedral group of order 22. Let Gi be the identity graph 
associated with D2.11 which has 22 vertices. 
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 Let H = {1, b, b2, …, b9, b10} be the subgroup of D2.11 of 
order 11. The identity graph associated with H be Hi, Hi is a 
subgraph of Gi with 11 vertices. 

Take Pi a subgraph of Gi with 11 vertices viz. 

 Pi is a subgraph of Gi but Pi has no subgroup of D2.11
associated with it. 

 Clearly D2.11 has only one subgroup H of order 11 and only 
the graph Hi is a special identity subgraph with 11 vertices and 
Gi has no special identity subgraph with 11 vertices. However it 
can have identity subgraphs with 11 vertices. 
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 In view of the above corollary we can have the following 
nice characterization of the dihedral groups and its subgroup of 
order 2p where p is a prime. 

THEOREM 2.6: Let D2p = {1, a, b | a2 = bp = 1; bab = a} = {1, 
a, b, b2, …, bp-1, ab, ab2, …, abp-1} be the dihedral group of 
order 2p, p a prime. Let Gi be the identity graph of D2p with 2p 
vertices. Hi be a special identity subgraph of Gi with p-vertices. 
Then Hi is formed by (p – 1)/2 triangles which will have p 
vertices. This Hi is unique special identity subgraph of Gi.

Proof: Given D2p is a dihedral group of order 2p, p a prime so 
order of D2p is 2p and D2p has one and only one subgroup of 
order p. 
 Let Gi be the identity graph associated with D2p. It has 2p 
vertices and it is of the following form. 

 Thus the graph Gi has p lines and p/2 triangles which 
comprises of (p + 1) vertices for the p lines and p vertices for 
the triangles the central vertex 1 is counted twice so the total 
vertices = vertices contributed by the p lines + vertices 
contributed by the p/2 triangles – (one vertex), which is counted 
twice.
 This add ups to p + 1 + p – 1 = 2p. Thus the special identity 
subgraph of Gi is one formed by the p/2 triangles given by 
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which has p vertices given by the subgroup H = {1, b, b2, …, bp–

1}. Hence the claim. This subgroup H is unique so also is the 
special identity subgraph Hi of Gi.

Example 2.39: Let G = Z4 � Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 
1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)} be the direct 
product group under component wise addition of two additive 
groups Z4 and Z3.

The identity subgraph of G is  

 The subgroup H = {(0, 0), (0, 1), (2, 0), (2, 1), (2, 2), (0, 2)} 
of G is of order 6. 
 The special identity subgraph associated with H is given by  
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However the following  

subgraph does not yield a subgroup in G hence it cannot be a 
special identity subgraph of G. 

DEFINITION 2.2: Let G be a group, Gi the identity graph 
associated with G. H be a normal subgroup of G; then Hi the 
special identity subgraph of H is defined to be the special 
identity normal subgraph of Gi.

If G has no normal subgroups then we define the identity 
graph Gi to be a identity simple graph. Thus if G is a simple 
group the identity graph associated with G is a identity simple 
graph.

Example 2.40: Let G = �g | g13 = 1� be the cyclic group of order 
13. Clearly G is a simple group.  

The identity graph associated with G be Gi which is as 
follows:
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Clearly Gi is a identity simple graph. 

Example 2.41: Let G = �g | g15 = 1� be a group of order 15. The 
normal subgroups of G are H = {1, g3, g6, g9, g12} and K = {1, 
g5, g10}. The identity graph of G be Gi which is as follows: 

The special normal identity subgraph Hi of Gi is given in figure. 

The special normal identity subgraph Ki of Gi is 

Figure 2.47 
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We now discuss of the vertex or (and) edge colouring of the 
identity graph related with a group in the following way. First 
when the group G is finite which we are interested mostly; we 
say subgroup colouring of the vertex (or edges) if we colour the 
verices (or edges) of those subgroups Hi of G such that Hi � Hj

or Hj � Hi. We take only subgroups of G and not the subgroups 
of subgroups of G.  
 We now define the special clique of a group G. 

DEFINITION 2.3: Let G be a group S = {H1, …, Hn | Hi’s are 
subgroups of G such that Hi � Hj or Hj � Hi; Hi � Hj = {e} with 
G = � Hi for i, j � {1, 2, …, n}; i.e., the subgroup Hi is not a 
subgroup of any of the subgroups Hj for j=1, 2, …, j; i � j true 
for every i, i=1, 2, …, n}.  

We call S a clique of the group G, if G contains a clique 
with n element and every clique of G has at most n elements. If 
G has a clique with n elements then we say clique G = n if n = 
� then we say clique G = �. We assume that all the vertices of 
each subgroup Hi is given the same colour. The identity element 
which all subgroups have in common can be given any one of 
the colours assumed by the subgroups Hi.
 The map C: S � T such that C(Hi) � C(Hj) when ever the 
subgroups Hi and Hj are adjacent and the set T is the set of 
available colours.  

All that interests us about T is its size; typically we seek for 
the smallest integer k such that S has a k-colouring, a vertex 
colouring C: S � {1, 2, …, k}. This k is defined to be the special 
identity chromatic number of the group G and is denoted by 
�(S). The identity graph Gi with �(S) = k is called k-chromatic; 
if �(S) � k and the group G is k-colourable.  

We illustrate this by a few examples. 

Example 2.42: Let

1

g10g5
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S3 = 
1 2 3

e
1 2 3

� �� 	�� �
�� ��

, 1

1 2 3
p

1 3 2
 �

	� �
� �

,

2

1 2 3
p

3 2 1
 �

	� �
� �

, 3

1 2 3
p

2 1 3
 �

	� �
� �

,

4

1 2 3
p

2 3 1
 �

	� �
� �

 and 5

1 2 3
p

3 1 2
� � �	 �� �
�� � �

be the symmetric group of S3. S = {H1 = {e, p1}, H2 = {e, p2},
H3 = {e, p3}, H4 = {p4, p5, e}.  

The identity graph Gi of S3 is 

Here two colours are sufficient for p3 and p1 can be given 
one colour and p2, p4 and p5 another colour so k = 2, for the 
identity graph given in figure 2.49 for the group S3.
 Thus � (S) = 2. 

Example 2.43: Let G = {1, 2, 3, 4, 5, 6} = Z7 \ {0} be the group 
under multiplication modulo 7. The subgroups of G are H1 = {1, 
6}, {1, 2, 4} = H2. We see G � H1 � H2. Thus we see the group 
elements 3 and 5 are left out. 

However Gi the identity graph associated with G is  

Figure 2.49 

e

p4 p5

p1

p2

p3
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 We from our definition we cannot talk of S hence of � (S). 

Example 2.44: Let G = Z12, the group under addition modulo 
12. 0 is the identity element of Z12.

The identity graph Gi associated with G is given by the 
following figure. 

The subgroups of G = Z12 are H1 = {0, 6}, H2 = {2, 4, 6, 8, 10, 
0} and H3 = {0, 3, 6, 9}.  

We see the elements 1 or 5 or 7 or 11 cannot be in any one 
of the subgroups. So S for G = Z12 cannot be formed as union of 
subgroups. 

Example 2.45: Let G = �g | g18 = 1� be the group of order 18, 
The identity graph Gi of G is given below. 
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 The subgroups of G are H1 = {1, g9}, H2 = {1, g2, g4, g6, g8,
g10, g12, g14, g16}, H3 = {1, g3, g6, g9, g12, g15}, H4 = {1, g6, g12}.
Clearly {g, g5, g7, g11, g13, g17} do not form any part of any of 
the subgroups. Thus for this G also we cannot find any S. So the 
question of �(S) is impossible. 
 Now we proceed on to find more examples. 

Example 2.46: Let D2.8 = {a, b / a2 = b8 = 1; bab = a} be the 
dihedral group of order 16. Thus D28 = {1, a, b, b2, b3, b4, b5, b6,
b7, ab, ab2, ab3, ab4, ab5, ab6, ab7} and its identity graph is as 
follows.
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 The subgroups of D2.6 which can contribute to S are as 
follows.

H1 = {1, b, b2, b3, b4, b5, b6, b7}
H2 = {1, a}, H3 = {1, ab}, 

H4 = {1, ab2}, H5 = {1, ab3}, 
H6 = {1, ab4}, H7 = {1, ab5}, 

H8 = {1, ab6} and H9 = {1, ab7}.

Clearly S = {H1, H2, H3, H4, H5, H6, H7, H8, H9} is such that  

D2.8 = 
9

i
i 1

H
	
� . Now � (S) = 3. 

Example 2.47: Let

A4 = 
1 2 3 4

e
1 2 3 4

�  �� 	� � �
� � ��

, 1

1 2 3 4
p

2 1 4 3
 �

	 � �
� �

,

2

1 2 3 4
p

3 4 1 2
 �

	 � �
� �

, 3

1 2 3 4
p

4 3 2 1
 �

	 � �
� �

,

4

1 2 3 4
p

1 3 4 2
 �

	 � �
� �

, 5

1 2 3 4
p

1 4 2 3
 �

	 � �
� �

,

6

1 2 3 4
p

3 2 4 1
 �

	 � �
� �

, 7

1 2 3 4
p

4 2 1 3
 �

	 � �
� �

,

8

1 2 3 4
p

2 4 3 1
 �

	 � �
� �

, 9

1 2 3 4
p

4 1 3 2
 �

	 � �
� �

,

10

1 2 3 4
p

2 3 1 4
 �

	 � �
� �

, 11

1 2 3 4
p

3 1 2 4
� ��	 �� �
�� ��

be the alternating group of S4. Let Gi be the identity graph 
associated with A4 which is given below.  
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S = {H1 = {e, p1, p2, p3}, H2 = {p4, p5, e}, H3 = {e, p6, p7}, H4 = 
{e, p8, p9}, H5 = {p10, p11, e}}. = {P1 = {e, p1}, P2 = {e, p2}, P3 = 
{e, p3}, P4 = {e, p5, p4}, P5 = {e, p6, p7}, P6 = {e, p8, p9}, P7 = {e, 
p10, p11}}.

We see we have 3 colouring for these subgroups. 

G = 
5 7

i i
i 1 i 1

H P
	 	

	� � .

 Now we have seen from the examples some groups have a 
nice representation i.e., when S is well defined in case of some 
groups S does not exist. This leads us to define a new notion 
called graphically good groups and graphically bad groups. 

DEFINITION 2.4: Let G be a group of finite or infinite order. S 
= {H1, …, Hn; subgroups of G such that Hi � Hj, Hj � Hi if 1 � j, 

j � n and G = 
1	
�

n

i
i

H } i.e., the clique of the group exists and G is 

colourable then we say G is a graphically good group. If G has 
no clique then we call G a graphically bad group and the 
identity subgraph of Gi for its subgroups is called the special 
bad identity subgraph Gi of G. 

We illustrate by a few examples these situations. 

Example 2.48: Let D2.6 = {a, b / a2 = b6 = 1, bab = a} = {1, a, b, 
b2, …, b5, ab, ab2, …, ab5} be the dihedral group of order 12. S 
= {H1 = {1, a}, H2 = {1, ab}, H3 = {1, ab2}, H4 = {1, ab3}, H5 = 

p7

Figure 2.53 
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{1, ab4}, H6 = {1, ab5}, H7 = {1, b, b2, …, b5}} where G = 
7

i
i 1

H
	
�  Hi � Hj; 1 � i, j � 7}. The special identity graph Gi of D2.6

is

 Then �(S) = 3. By putting b, b2, b3, b4, b5 one colour say 
red, ab2 and ab–blue colour, ab3 and ab4–red, ab3–blue and a–
white we can use a minimum of three colours to colour the 
group D2.6. Thus D2.6 is graphically a good graph.  

Example 2.49: Let G = {g | g12 = 1} be the cyclic group of order 
12. The subgroups of G are H1 = {1, g2, g4, g6, g8 and g10}, H2 = 
{1, g3, g6, g9}. The elements of G which is not found in the 
subgroups H1 and H2 are {g, g5, g7, g11}.
 The special identity graph of G is given in figure 2.55. 
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 The special bad subgroup of G associated with the 
subgroups H1 and H2 of G is 

H1 = {1, g6, g3, g9} and H2 = {1, g2, g4, g6, g8, g10} where H1 �
H2 = {1, g6}.
 We cannot give any colouring less than two. Now one 
interesting problem arises g6 should get which colour if we 
colour the two subgroups of G. Such situations must be 
addressed to. 
 This situation we cannot colour so we say the identity 
graphs are impossible to be coloured so we call the special 
graphs related with these groups to be graphically not 
colourable groups. 

Example 2.50: Let G = �g | g6 = 1� = {1, g, g2, g3, g4, g5} be the 
cyclic group of order 6. 
 The special identity graph associated with G is Gi which is 
given below. 

The subgroups of G are H1 = {1, g3} and H2 = {1, g2, g4}. 
Clearly G � H1 � H2; The bad graph associated with G is given 
by the following figure. 
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This group needs atleast two colours and the group is 
graphically bad group or has a bad graph for its subgroup as S 
does not exist.  

Example 2.51: Let G = �g | g8 = 1� = {1, g, g2, g3, g4, g5, g6, g7}
be the cyclic group of order 8. The special identity graph of G 
denoted by Gi is as follows. 

 The subgroups of G are H1 = {1, g4}, H2 = {1, g2, g4, g6}.
Thus S does not exist as S has only one subgroup, viz., H2.

So the question of finding a minimal colour does not exist as it 
has only one subgroup. 

Now this is yet a special and interesting study. 

Example 2.52: Let G = {g | g9 = 1} = {1, g, g2, g3, g4, g5, g6, g7,
g8} be the cyclic group of order 9. 

The special identity graph of G is given by Gi which is as 
follows:
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 Now the subgroup of G is H1 = {1, g3, g6}. So G cannot 
have S associated with it and hence the question of colouring G 
does not arise. 

Example 2.53: Let G = �g | g16 = 1� = {1, g, g2, g3, …, g15} be 
the cyclic group of order 16. The identity special graph Gi
associated with G is given below.  

The subgroups of G are H1 = {1, g8}, H2 = {1, g4, g8, g12} and 
H3 = {1, g2, g4, g6, g8, g10, g12, g14}. Clearly H1 � H2 � H3. So H3
is the only subgroup of G and we cannot find S.  

Thus colouring of G does not arise. In view of this we 
define single special identity subgraph of colourable subgroup 
of a group. 
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DEFINITION 2.5: Let G be group of finite order. If G has only 
one subgroup Hi such that Hi � Hj for only j, j � i, i.e., G has 
one and only one maximal subgroup (i.e., we say a subgroup H 
of G is maximal if H � K � G. K any other subgroup containing 
H then either K = H or K = G). We see then in such case we 
have to give only one colour to the special identity subgraph of 
subgroup. 
 We call this situation as a single colourable special identity 
subgraph, hence a single colourable bad group. Clearly these 
groups are badly colourable groups. But every bad colourable 
special identity subgraph in general is not a single special 
colourable special identity subgraph. 

Example 2.54: Let G = �g | g25 = 1� = {1, g, g2, …, g24 } be the 
cyclic group of order 25. The subgroups of G is H = {g5, g10,
g15, g20, 1}; i.e., G has one and only one subgroup. The special 
identity graph Gi of G is as follows: 

 The special identity subgraph associated with the subgroup 
H of G is 
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i.e., single (one) colourable special identity subgraph i.e., G is a 
single colourable bad group. 

Now we give a theorem which guarantees the existence of 
single colourable bad groups.  

THEOREM 2.7: Let G = | 	
2pg g 1  where p is a prime, be a 

cyclic group of order p2. G is a single colourable bad group.

Proof: Let G = 
2pg | g 1	  = {1, g, g2, … 

2p 1g � } be a cyclic 

group of order p2, p a prime. The only subgroup of G is H = {gp,
g2p, g3p, …, g(p–1)p, 1}. Clearly order of H is p. Further G has no 
other subgroups. The special graph of G is formed by (p2 – 1)/ 2 
triangles centered around 1. The special identity subgroup of H 
is formed by (p – 1) / 2 triangles centered around 1. 

Thus G is a one colourable bad group. 

Example 2.55: Let G = �g | g32 = 1� be a cyclic group of order 
32. The largest subgroup of G is given by H = {1, g2, g4, g6, g8,
…, g30} which is of order 16 and has no other subgroup K such 
that K � H. 
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 Thus G is a one colourable graphically bad group. 

THEOREM 2.8: Let G = | 	
npg g 1  where p is a prime n   2 

be a cyclic group of order pn. G is a one colourable graph bad 
group.

Proof: Given G is a cyclic group of prime power order. To show 
G has only one subgraph H such that there is no other subgroup 
K in G with K � H or H � K. i.e., G has one and only one 
maximal subgroup. 

Now the maximal group H = {1, gp, g2p, …, g(n–1)p} which is 
of order pn–1.
 Thus G is only one colourable as g has no S associated with 
it we see it is a bad graph group. Now as G has only one 
subgroup G is a uniquely colourable graph bad group. Thus we 
have a class of groups which are single colourable graph bad 
groups.

Example 2.56: Let G = {g | g10 = 1} be a cyclic group of order 
10. The subgroups of G are H1 = {g2, g4, g6, g8, 1} and H2 = {1, 
g5}. Clearly S does not exist as G � H1 � H2 so G cannot be a 
good graph group.  

 The special identity graph associated with G is as follows 

 The subgraph of the subgroups of G is given by 

g

1

g3
g2

g4 g5

g7

g6

Figure 2.61 

g9

g8



62

 Clearly Hi is minimum two colourable. For g5 vertex is 
given one colour and the vertices g2, g4, g6 and g8 are given 
another colour. However Gi � Hi as the vertices {g, g9, g3, g7}
cannot be associated with a group.

Example 2.57: Let G = {g | g30 = 1} be a cyclic group of order 
30. The special identity graph Gi associated with G is as 
follows.

 The subgroups of G are H1 = {1, g15}, H2 = {g10, g20, 1}, H3
= {1, g5, g10, g15, g20, g25}, H4 = {1, g6, g12, g18, g24}, H5 = {1, g2,
g4, g6, g8, …, g26, g28} and H6 = {1, g3, g6, g9, g12, g15, g18, g21,
g24, g27}.
 Clearly G � �Hi.
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 The maximal subgroups are H3, H5 and H6. We cannot give 
one colour to g6, g12, g10, g18, g20, g24.
 Hence it is impossible to colour the subgroups properly. In 
view of this we are not in a position to say whether there exists 
three colourable bad groups. 

Example 2.58: Let G = {g | g18 = 1} be a cyclic group of order 
18. The subgroups of G are H1 = {1, g9}, H2 = {g3, g6, g9, g12,
g15, 1}, H3 = {g2, g4, g6, g8, g10, g12, g14, g16, 1} and H4 = {1, g6,
g12}. We have two subgroups H2 and H3 such that H2 � H3 or H3

� H2. However H2 � H3 = {1, g6, g12}. So how to colour these 
subgroups even as bad groups. The special identity graph Gi
associated with G is as follows: 

Since we have common elements between H2 and H3. We 
cannot assign any colour to g6 and g12. Hence this is not a 
colourable bad group. 
 Now we proceed onto show that we have a class of two 
colourable bad groups. 

THEOREM 2.9: Let G = �g | gn = 1� where n = pq with p and q 
two distinct primes be a cyclic group of order n. Then G is a 
two colourable bad group.  
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Proof: Let G = {1, g, g2, …, gn-1} be the cyclic group of degree 
n. The maximal of G are H1 = {1, gp, g2p, …, g(p-1)q} and H2 = 
{1, gq, g2q, …, g(q-1)p} be subgroups of G.  

Clearly both H1 and H2 are maximal subgroups of G. 
However G � H1 � H2 and H1 � H2 = {e}. Thus G is a two 
colourable bad group. 

Example 2.59: Let G = {g | g35 = 1} be a cyclic group of order 
35. The two maximal subgroups of G are H1 = {1, g5, g10, g15,
g20, g25, g30} and H2 = {1, g7, g14, g21, g28}. H1 � H2 = {1} and G 
� H1 � H2. These can be coloured with 2 colours.  

The special identity subgraph associated with the subgroups is 
given by 5 triangles with centre one which is as follows: 

 The vertices g5, g30, g25, g10, g20 and g15 are given one colour 
and g21, g14, g27 and g7 are given another colour. Thus G is two 
colourable special graph bad group. 

Example 2.60: Let G = �g | g22 = 1� be the cyclic group of order 
22. The two maximal subgroups of G are H1 = {1, g11} and H2 = 
{g2, g4, g6, g8, g10, g12, g14, g16, g18, g20, 1}

 Thus G is a two colourable special identity subgraph bad 
group.

1

Figure 2.64 

g20

g10g25
g30

g5 g15

g7g28g14g21



65

 The vertex {g11} is given one colour and the vertices {g2, g4,
g6, g8, g10, g12, g14, g16, g18and g20} are given another colour.  
 Now we proceed onto study the colouring problem of 
normal subgroups of a group G. 

DEFINITION 2.6: Let G be a group. Suppose N = {N1, …, Nn are 
normal subgroups of G such that G = � i

i

N , Ni � Nj = {e} then 

we call N the normal clique of G and has atmost n elements, 
then clique G = n. If the sizes of the clique are not bounded, 
then define normal clique G = �.

The chromatic number of the special identity graph Gi of G 
denoted by �(G), is the minimum k for which N1, …, Nn accepts 
k colours where one colour is given to the vertices of a 
subgroup Ni of G for i = 1, 2, …, n.  

We call such groups are k – colourable normal good 
groups.

However the authors find it as an open problems to find a 
groups G which can be written as a union of normal subgroups 
Hi such G = i

i

H�  with Hi � Hj = {1}, 1 the identity element of 

G.
 We give illustration before we define more notions in this 
direction.

Example 2.61: Let G = {g | g6 = 1} = {1, g, g2, g3, g4, g5} be a 
cyclic group of order six. The normal subgroups of G are H1 = 

1
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{1, g3} and H2 = {1, g2, g4}. Clearly the elements of H1 i.e., g3

can be given one colour and the vertices of H2 viz. {1, g2, g4}
can be given another colour thus two colours are sufficient to 
colour the normal subgroups of G. However the elements {g, 
g5} do not form any part of the normal subgroups so cannot be 
given any colour.  

Example 2.62: Let G = {g | g12 = 1} = {1, g, g2, g3, g4, g5, g6, g7,
g8, g9, g10, g11} be a group of order 12. The normal subgroups of 
G are H1 = {1, g2, …, g10} and H2 = {1, g3, g6, g9} other normal 
subgroups are H3 = {1, g6}, H4 = {1, g4, g8}. We see H3 and H4

are contained in H1 and H3 � H2 and further H1 � H2 = {1, g6},
so the normal subgroups cannot be coloured as g6 cannot 
simultaneously get two colours. 
 In view of all these examples we propose the following 
definition.

DEFINITION 2.7: Let G be a group, if G has no normal 

subgroups Ni such that G = �
n

i
iN

1	

 and Ni � Nj = {1}, if i � j 

then we say G is a k-colourable normal bad group 0 � k � n. If k 
= 1 then we say G is a one colourable normal bad group. If k = 
2 then we say G is a 2-colourable normal bad group. If k = t 
then we say G is a t-colourable normal bad group. If k = 0 we 
say G is a 0-colourable normal bad group.  

We illustrate these situations by explicit examples.  

Example 2.63: G = {g | gp = 1}, p a prime be a cyclic group of 
order p. We see G is simple i.e., G has no normal subgroups, so 
G is 0-colourable normal bad group. 

Example 2.64: Let A3 be the alternating subgroup of S3. A3 is 
also 0-colourable normal bad group. 

Example 2.65: Let An, n   5 be the alternating subgroup of Sn.
An is also 0-colourable normal bad group. 
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THEOREM 2.10: The class of 0-colourable normal bad groups is 
non empty. 

Proof: Take all alternating subgroups An of Sn, n � 4, n   3; and 
as An is simple so An’s are 0-colourable normal bad groups. 
Similarly all groups G of order p, p a prime is a 0-colourable 
normal bad group as G has no proper subgroups. Hence the 
theorem. 

Example 2.66: Let S5 be the symmetric group of order |5. S5 has 
only one proper normal subgroup viz. A5 so S5 is a 1-colourable 
normal bad group.  

Example 2.67: Let G = {g | g9 = 1} be a cyclic group of order 9. 
G = {1, g, g2, g3, g4, g5, g6, g7, g8} and H = {1, g3, g6} is the only 
normal subgroup of G. So G is one colourable normal bad 
group.

Example 2.68: Let G = {g / g32 = 1} = {1, g, g2, …, g31} be the 
cyclic group of order 32. The only normal subgroup of G is H = 
{1, g2, g4, …, g30}. Clearly every other normal subgroup K of G 
is properly contained in H. Thus G is one colourable normal bad 
group.

Inview of these examples we have the following theorem which 
gurantees the existence of a class of one colourable normal bad 
groups.

THEOREM 2.11: Let G = | 	
npg g 1  where p is any prime 

and n   2, G is a one colourable normal bad group. 

Proof: To show G is a one colourable normal bad group, it is 
enough if we show G has only one normal subgroup H and all 
other subgroups are contained in H. Take H = {1, gp,

2 np p 1g , ..., g � } = �gp�; This is the largest normal subgroup of G. 
Clearly any other subgroup of G is contained in H. Thus G has 
only one normal subgroup such that all other subgroups of G are 
contained in it. Hence G is a one colourable normal bad group, 
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as all the vertices of the group H are given one colour i.e., all 
the elements of H are given only one colour.  
 Thus G is a one colourable normal bad group. 

THEOREM 2.12: Let Sn be the symmetric group of degree n. Sn
is a one colourable normal bad group. 

Proof: Let Sn be the symmetric group of degree n. An be the 
alternating normal subgroup of Sn. We know Sn has only one 
normal subgroup viz. An. So Sn is a one colourable normal bad 
group.
 Thus the class of one colourable bad groups is non empty.  

Consider the following example. 

Example 2.69: A4 be the alternating subgroup of S4. A4 is one 
colourable normal bad group.  

Example 2.70: Let G = {g | g26 = 1} be a cyclic group of order 
26. G has only two normal subgroups H1 = {1, g13} and H2 = {1, 
g2, g4, …, g24}.

Infact G has no other subgroups. But G � H1 � H2 so G is 
not a k-colourable normal good group, but only a 2-colourable 
normal bad group. 

 This theorem shows the existence of 2-colourable normal 
bad groups. 

THEOREM 2.13: Let G = {g | gpq = 1} where p and q are primes 
p � q, be a cyclic group of order pq. G is a 2-colourable normal 
bad group. 

Proof: Given G = {1, g, g2, …, gpq-1} be the cyclic group of 
order pq where p and q are primes; p � q. The two normal 
subgroups of G are H1 = {1, gp, p2p, …, gp(q-1)} and H2 = {1, gq,
p2q, …, gq(p-1)}. Thus the group G is a 2-colourable normal bad 
group.
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Example 2.71: Let G = Zn = {0, 1, 2, …, pqr –1 = n – 1}, 
(where p, q and r are distinct primes) be the group of order n. 
Take n = 30, Z30 = {0, 1, 2, …, 29}. The normal subgroups of 
Z30 are H1 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}, 
H2 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27} and H3 = {0, 5, 10, 15, 
20, 25}. Thus Z30 has only 3 normal subgroups. G is not a three 
colourable normal bad group.  

Example 2.72: Z210 = {0, 1, 2, …, 209} is an additive group 
order 210. H1 = �2�, H2 = �3�, H3 = �5� and H4 = �7� are the four 
normal subgroups of Z210. Z210 is a not a four colourable normal 
bad group.  

Example 2.73: Let G = Z3 � Z2 � Z5 = { (a, b, c) / a � Z3, b �
Z2 and c � Z5} a group got as a the external direct product of the 
groups under modulo addition. G is a group of order 30. G has 
three normal subgroups. H1 = {(000), (100) (200)}, H2 = {(000), 
(010)} and H3 = {(000), (001), (002), (003), (004)}. 

These are the normal subgroups of G. However G �
3

i
i 1

H
	
�  Hi �

Hj = (000) if i � j. 
 The special identity subgraph of G is as follows. 

 Clearly minimum 3 colours are needed to colour this figure. 
Thus one colour is given to the vertex (010) another colour to 
the vertices {(001), (002), (003) and (004)}. Yet another colour 

(0 0 0) 

Figure 2.66 

(0 1 0)

(0 0 3) (0 0 2)

(2 0 0)

(1 0 0)(0 0 1)
(0 0 4)
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different from other two are given to the vertices (100) and 
(200). (000) can be given any one of the three colours. 
 Thus G is a 3-colourable normal bad groups. 

Example 2.74: Let G = G1 � G2 � G3 � G4 where G1 = {g | g3 = 
1}, G2 = {Z2}, G3 = Z4 under addition modulo 4 and G4 = {g | g5

= 1} is the external direct product of 4 distinct groups. G is of 
order 60.

The normal subgroups of G are H1 = {(1001), (g 001) (g2001)} 
H2 = {(1001) (1101)}, H3 = {(1001) (1011) (1021) (1031)} and 
H4 = {(1001) (100g) (100g2) (100g3) (100g4)} We see Hi � Hj = 
(1001) for all i�j; 1 � i, j � 4. 

 However G �
4

i
i 1

H
	
� . Now G is two colourable normal bad 

group. For the elements of H1 can be given one colour. H2 and 
H3 another colour and H4 the colour as that of H1. The 
corresponding special identity subgraph is given by the 
following diagram.  

(1001) can be given red or blue colourable. Thus G is a 2 
colourable normal bad group. 

(1 0 0  1) 

Figure 2.67 

(1 0 0 g2)

(1 0 0 g3)(1 0 0 g4)

(1 0 0 g) 

BLUE

(g2 0 0 1)(g 0 0 1) 
BLUE

(1 1 0 1) 
(0 0 2 1) 

(1 0 1 1) 

(1 0 3 1) 
RED

RED
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THEOREM 2.14: Let G = G1 � G2 � … � Gn be the direct 
product of n-groups, n an even number. Then G is a 2 
colourable normal bad group. 

Proof: Given G = G1 � G2 � … � Gn direct product of n-distinct 
/ different groups n even. We see iG  = {e1} �{e2} � … � Gi �
… � {en} is a subgroup in G, which is normal in G and is 
isomorphic with Gi. Here {ei} is the identity element of Gi, i = 
1, 2, …, n.  
 Thus G has n normal subgroups which are disjoint. 
 Clearly iG � jG  = {identity element of G}. Now since n 
is even we see this group G is a 2 colourable normal bad group. 
 It is left as a simple problem for the reader to find the 
number of colours needed to colour the group G = G1 � … � Gn,
when n is odd, where G1, …, Gn are n distinct groups in the 
external direct product. 
 Can one say n be even or odd in G = G1 � … � Gn. G is 2 
colourable normal bad group. 
 In case of k-colourable bad group or k-colourable group of 
k-colourable normal bad group we see k is always less than or 
equal to 3. Thus more than study of these k-colourable property 
the interesting features would be their graphic representation for 
it would interest the students to look at it and concretely view 
atleast finite groups. 
 Next we see about the p-sylow subgroup of a group and 
their colouring. 
 We want to show by colouring how many p-sylow 
subgroups are conjugate etc. This is mainly to attract the 
students about groups and their properties. So we are not 
bothered about colouring with minimum number of colours but 
we are bothered about mainly how we can make easy the 
understanding of Sylow theorem or Cauchy theorem and so on. 
 First we show how to colour the p-sylow subgroups of a 
group G. 

Example 2.75: Let S3 = {1, p1, p2, p3, p4, p5} be the symmetric 
group of degree 3. The order of S3 is 6. 6 = 2.3. S3 has only 2-
sylow subgroups and 3-sylow subgroups. The 2-sylow 
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subgroups of S3 are H1 = {1, p1}, H2 = {1, p2} and H3 = {1, p3}.
The 3-sylow subgroup of S3 is H3 = {1, p4, p5}.

 p1, p2, p3 are given one colour for they are 2-Sylow 
subgroups of S3. The 3-sylow subgroup H3 is given another 
colour to p4 and p5. Thus the vertices are given different colours 
for only different types of p-sylow subgroups. 
 Thus S3 is 2 colourable p-sylow subgroups. 

Example 2.76: Let S4 be the permutation group of degree 4. 
Clearly o(S4) = 1.2.3.4 = 24 = 23.3. Thus S4 has only 2-sylow 
subgroups and 3-sylow subgroups. Hence S4 is a 2 colourable p-
sylow subgroups. 

Example 2.77: Let S5 be the permutation group of (12345). o 
(S5) = |5 = 1.2.3.4.5 = 23. 3.5. S5 has only 2-sylow subgroups, 3-
sylow subgroups and 5-sylow subgroups. Thus S5 is a 3-
colourable p-sylow subgroup.  

 In view of the above examples we have the following 
theorem. 

THEOREM 2.15: Let Sn be the permutation group of degree n. 
The group Sn is a m-colourable p- sylow subgroup, where m is 
the number of primes less than or equal to n. 

Proof: Let Sn be the symmetric group of degree n. o(Sn) = 
1.2.3…n = |n. Now p is a prime such that p � n, then p / o(Sn) as 
o(Sn) = |n. So Sn has p-sylow subgroups. This is true of all 
primes p such that p � n as o(Sn) = |n. So if m is the number of 
distinct primes which divide |n or equivalently m is the number 

1

 p3

Figure 2.68 

 p1

 p2

 p5

 p4
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of primes which is less than or equal to n then we have m-
distinct sylow subgroups of different orders. Thus the group Sn
is a m-colourable p-sylow subgroups. 

Example 2.78: Consider S31, the symmetric group of degree 31. 
o(S31) = |31 = 1.2.3.4.5.6.7.8 … 31. The primes which are less 
than or equal to 31 are 2,3, 5, 7, 11, 13, 17, 19, 23, 29 and 31. 
Thus S31 has 11-distinct sylow subgroups of different orders. 
Thus S31 is a 11-colourable p-sylow subgroups.  
 Another interesting way of colouring the vertices of a group 
is by colouring the center of a non commutative group G. So by 
looking at the colours the student can know the centre of the 
group G. 

Example 2.79: Let G = {a, b / a2 = b5 = 1; bab = a} = {1, a, b, 
ab, ab2, ab3, ab4, b2b3, b4} C (G) = 1 only 1 is given a colour and 
rest of the vertices in the graph Gi of G remain uncoloured. 
 Thus the graph of G is 

Example 2.80: Let G = {a, b / a2 = b4 = 1, bab = a} = {1, a, b, 
b2, b3, ab, ab2, ab3}. The graph of G is as follows. 

 b2

b3

 b4

1

Figure 2.69 
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 In this graph 1 and b2 are given a colour, rest of the vertices 
remain uncoloured. 

Example 2.81: Let G = S3 � {g / g4 = 1} be the group of order 
24. To find the center of G. Given G = {(e 1), (p1, 1), (p2, 1), 
(p3,1), (p4,1), (p5,1), (e, g), (p1, g), (p2, g), (p3, g), (p4, g), (p5, g), 
(e,g2), (p1,g2), (p2,g2), (p3,g2), (p4,g2), (p5,g2), (p1,g3), (e1,g3),
(p2,g3), (p3,g3), (p4,g3), (p5,g3)}. The center of G is given by {(e, 
1), (e, g), (e, g2), (e, g3)}

 The graph of G is given below 

The rest of the vertices are not given any colour. 

So by looking at the coloured graph Gi one can find the center 
and inverse of each elements. 

Example 2.82: Let G = S3 � D2.11 � H where H = {g | g14 = e1}
be a group of order n = 6 � 22 � 14. The center of G is given by 
C (G) = {(e, 1, g) / g � H} � G.

(e, 1)

Figure 2.71 

(p1, g2)

(e, g3)

(e, g2)(e, g) 
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(p1, g) 
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(p4, g) 

(p2, g2)

(p3, g2)
(p4, 1) 

(p5, 1) 

(p4, g3)
(p5, g) 

(p4, g2)

(p5, g2)
(p2, 1) 

(p1, 1) 

(p2, g) 

Give one colour 
to {(e, 1), (e, g), 
(e, g2), (e, g3)}  
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The graph Gi associated with G is coloured as follows:  

Out of the 1848 vertices of the group G only the 14 vertices of 
C(G) = {e, 1, e1) (e, 1, g), …, (e, 1, g13)} are given one colour, 
rest are uncoloured. 

 Now all the vertices which form the group elements are 
adjoined with identity. Two elements are adjacent if and only if 
one is the inverse of the other and they are joined. If an element 
is a such that its square is identity that is self inversed then only 
the vertex is joined with the identity in the centre. All the group 
elements which form the vertex set are joined with the identity. 

Remark: By looking at the identity graph of a group one can 
immediately say the number elements x in the group G which 
are such that x2 = e (e-identity element of G)  

Now we proceed onto give the matrix representation of the 
identity graph of G which is called as the graph – matrix 
representation of a group G. 

 The identity graph in the case of the group G can be given 
the corresponding adjacency matrix or connection matrix which 
is known as the graph –matrix representation of the group. 

DEFINITION 2.8: Let G be a group with elements e, g1, …, gn.
Clearly the order of G is n + 1. Let Gi be the identity graph of 
G. The adjacency matrix of Gi is a (n + 1) � (n + 1) matrix X = 
(xij) in which diagonal terms are zero i.e., xii = 0 for i = 1, 2, …, 
n + 1 the first row and first column are one except, xij = 1 if the 
element gi is the inverse of gj in which case xij = xji = 1 if (i � j). 
We call the matrix X = (xij) to be  (n + 1) � (n +1) the identity 
graph matrix of the group G.  

We shall illustrate this situation by some examples. 

Example 2.82: Let Z10 = {0, 1, 2, …, 9} be the group under 
addition modulo 10. The identity graph of Z10 is given by the 
following figure. 
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 The identity graph matrix of Z10 is a 10 � 10 matrix X. 

 0 1 2 3 4 5 6 7 8 9 

X = 

0 0 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1
2 1 0 0 0 0 0 0 0 1 0
3 1 0 0 0 0 0 0 1 0 0
4 1 0 0 0 0 0 1 0 0 0
5 1 0 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0 0 0
7 1 0 0 1 0 0 0 0 0 0
8 1 0 1 0 0 0 0 0 0 0
9 1 1 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Example 2.84: Let G = {a, b | a2 = b4 = 1, bab = a} = {1, a, b, 
b2, b3, ab, ab2, ab3} be the dihedral group of order 8.  

The identity graph of G denoted by Gi is as follows. 

0
7

3

8

2

9
1

4

6

5

Figure 2.72 
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 The identity graph matrix X of Gi is as follows. 

 1 a b b2 b3 ab ab2 ab3

1 0 1 1 1 1 1 1 1 
a 1 0 0 0 0 0 0 0 
b 1 0 0 0 1 0 0 0 
b2 1 0 0 0 0 0 0 0 
b3 1 0 1 0 0 0 0 0 
ab 1 0 0 0 0 0 0 0 
ab2 1 0 0 0 0 0 0 0 
ab3 1 0 0 0 0 0 0 0 

Example 2.85: Let

A4 = {1, g1 = 
1 2 3 4
2 1 4 3
 �
� �
� �

, g2 = 
1 2 3 4
3 4 1 2
 �
� �
� �

 , 

g3 = 
1 2 3 4
4 3 2 1
 �
� �
� �

, g4 = 
1 2 3 4
1 3 4 2
 �
� �
� �

,

g5 = 
1 2 3 4
1 4 2 3
 �
� �
� �

, g6 = 
1 2 3 4
3 2 4 1
 �
� �
� �

,

g7 = 
1 2 3 4
4 2 1 3
 �
� �
� �

, g8 = 
1 2 3 4
2 4 3 1
 �
� �
� �

,

1
a

ab

ab2

Figure 2.73 
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b
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g9 = 
1 2 3 4
4 1 3 2
 �
� �
� �

, g10 = 
1 2 3 4
2 3 1 4
 �
� �
� �

,

g11 = 
1 2 3 4
3 1 2 4

� ��
�� �
�� ��

be the alternating subgroup of S4.
The graph Gi of A4 is as follows. 

The corresponding identity graph – matrix X of A4 is as follows: 

 1 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 0 1 1 1 1 1 1 1 1 1 1 1 
g1 1 0 0 0 0 0 0 0 0 0 0 0 
g2 1 0 0 0 0 0 0 0 0 0 0 0 
g3 1 0 0 0 0 0 0 0 0 0 0 0 
g4 1 0 0 0 0 1 0 0 0 0 0 0 
g5 1 0 0 0 1 0 0 0 0 0 0 0 
g6 1 0 0 0 0 0 0 1 0 0 0 0 
g7 1 0 0 0 0 0 1 0 0 0 0 0 
g8 1 0 0 0 0 0 0 0 0 1 0 0 
g9 1 0 0 0 0 0 0 0 1 0 0 0 
g10 1 0 0 0 0 0 0 0 0 0 0 1 
g11 1 0 0 0 0 0 0 0 0 0 1 0 

1

Figure 2.74 
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(1) We see X is a symmetric matrix with diagonal entries to 
be zero. 

(2) Further if the row gi has only one 1 at the 1st column 
then gi � G is such that 2

ig  = 1. 
(3) If a row gj has two ones and the rest zero then for the gj

we have a gk row that has two ones and gjgk = gkgj = 1. 

This observation is also true for columns. 

We now proceed onto study or define a graph of a group by 
its conjugate elements. We assume the groups are non 
commutative. 

DEFINITION 2.9: Let G be a non abelian group. The 
equivalence classes of G be denoted by [e], [g1], …, [gn]. Then 
each element hi in an equivalence class [gi], is joined with gi, i 
= 1, 2, …, n. 

This graph will be known as conjugate graph of the 
conjugacy classes of a non commutative group. 

We illustrate this situation by the following examples. 

Example 2.86: Let S3 = {e, p1, p2, p3, p4, p5} be the symmetric 
group of degree 3. The conjugacy classes of S3 are [e], [p1] and 
[p4]. The conjugacy graph of S3 is 

Example 2.87: Let D24 = {a, b / a2 = b4 = 1, bab = a} = {1, a, b, 
b2, b3, ab, ab2, ab3}. The conjugacy class of D24 are {1}, {a, ab2,
b2} = {a}, {b} = {b, b3} and {ab3} = {ab, ab3}.
 The conjugacy graph of D24 is 

Figure 2.75 

p2 p3

p1

p5

e

p4
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 We now proceed onto find the conjugacy graph of D27.

Example 2.88: Let G = D27 = {a, b / a2 = b7 = 1, bab = a} = {1, 
a, b, b2, …, b6, ab, ab2,…, ab6} be the dihedral group of order 
14.
 The conjugacy classes of D27 are {1}, {a} = {a, ab3, ab, ab5,
ab4, ab6, ab2}, {b} = {b, b6}, {b2} = {b2, b5} and {b3} = {b3, b4}.
 The conjugacy graph associated with D27 is 

 We see the graphs of different type for D2n when n is a 
prime and n a non prime. 

Example 2.89: Let D26 = {a, b | a2 = b6 = 1, bab = a} = {1, a, b, 
b2, …, b5, ab, ab2,…, ab5} be a group of order 12. The 
conjugacy classes of D2.6 is {1}, {b2} = {b2, b4}, {a} = {a, ab2,

Figure 2.76 
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ab4}, {b3} = {b3}, {b} = {b, b5}, {ab} = {ab, ab3, ab5}. The 
conjugacy graph of D26 is 

Example 2.90: Let D2.9 = {a, b | a2 = b9 = 1, bab = a} be the 
group of order 18. The conjugacy classes of D29 is {1}, {a} = 
{a, ab2, ab4, ab6, ab8, ab, ab3, ab5, ab7}, {b} = {b, b8} b2 = {b2,
b7} {b3} = {b3, b6}, {b4} = {b4, b5}. The conjugacy graph of D2.9
is

Figure 2.78 
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 We have the following theorem. 

THEOREM 2.16: Let Z2p = {a, b / a2 = bp = 1, bab = a} be a 
dihedral group of order 2p, p a prime. The conjugacy classes of 
Z2p forms a collection of complete graph with p – 1 / 2 complete 
graphs with two vertices and one complete graph with p 
vertices.

Proof: Let Z2p = {a, b / a2 = bp = 1 bab = a} = {1, a, b, b2, …, bp-

1, ab, ab2,…, abp-1} where p is a prime. The conjugacy classes of 
Z2p are {1}, {a} = {a, ab, ab2, …, abp-1}, {b} = {b, bp-1}, {b2} = 

{b2, bp-2} … 
p 1 p 1 p 1
2 2 2b b ,b
� � 
� � � �

	� � � �
� � � �

.

 Clearly the conjugacy graph associated with this groups 
consists of a point graph, p – 1/2 number complete graphs with 
two vertices and one complete graph with p vertices, which is 
indicated below 

Example 2.91: Let Z2.10 = {a, b / a2 = b10 = 1, bab = a} be the 
dihedral group of order 20. 

{1}

bp–1

b b2
p 1
2b
�

bp–2 p 1
2b
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 The conjugacy classes of Z2.10 are {1} = {1}, {a} = {a, ab2,
ab4, ab6, ab8}, {ab3} = {ab7, ab3, ab, ab5, ab9}, {b} = {b, b9},
{b2} = {b2, b8}, {b3} = {b3, b7}, {b4} = {b4, b6}. 
 The conjugacy graph of D20 is given below.  

 We see in this case we have 2 complete graphs with five 
vertices.

Example 2.92: Consider the dihedral group of order 24 given 
by D2.12 = {a, b / a2 = b12 = 1, bab = a}. The conjugacy classes of 
D2.12 is as follows.
 {1}, {a} = {a, ab2, ab4, ab6, ab8, ab10}, {ab} = {ab, ab9, ab7,
ab5, ab3, ab11} {b} = {b, b11}, {b2} = {b2, b10}, {b3} = {b3, b9},
{b4} = {b4, b8}, {b5} = {b5, b7} and {b6}. The conjugacy graph 
of D2.12 is as follows. 
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b

b8

b2

b7

b3

b6

b4

a

ab2

ab4ab6

ab8

ab

ab7

ab9ab3

ab5

Figure 2.81 
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 We see the conjugacy graph of D2.12 contains 2 points 
graphs 5 complete graph with two vertices and 2 complete 
graphs with 6 vertices. 

Example 2.93: Let Z2.18 = {a, b | a2 = b18 = 1, bab = a} be the 
dihedral group of order 36. The conjugacy classes of Z2.18 are 
{1}, {a} = {a, ab2, ab4, ab6, ab8, ab10, ab12, ab14, ab18}, {ab} = 
{ab, ab3, ab5, ab7, ab9, ab11, ab13, ab15, ab17} {b} = {b, b17}, {b2}
= {b2, b16}, b3 = {b3, b15}, b4 = {b4, b14}, b5 = {b5, b13}, {b6} = 
{b6, b12}, {b7} = {b7, b11}, {b8} = {b8, b10} and {b9}. The 
conjugacy graph of Z2.18 is as follows. 

Figure 2.82 
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 In view of this we have the following theorem 
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THEOREM 2.17: Let D2n = {a, b / a2 = bn = 1, bab = a} where n 
is of the form 2r. Then the conjugacy graph of D2n has two point 
graphs. (n – 2)/2 number of complete graph with two vertices 
and two complete graphs with r vertices. 

Proof: Given D2n = {a, b / a2 = bn = 1 bab = a} where n = 2r is a 
dihedral group of order 2n. The conjugacy classes of D2n are 
{1}, {r}, {b, b2r-1}, {b2, b2r-2}, {b3, b2r-3}, …, {br-1, b2r-(r-1)},

{a, ab2, ab4, …, ab2r-2} and 
{a, ab3, ab5, …, ab2r-1}.
The conjugacy graph of D2n consists of 2r-2/2 number 

of complete 2 vertices graphs and two complete graph with r 
vertices. Hence the claim. 

Example 2.94: Let D2.8 = {a, b / a2 = b8 = 1 bab = a} be the 
dihedral group of order 16. The conjugacy classes of D28 are 
{1}, {a, ab2, ab4, ab6}, {b, b7}, {b2, b6}, {b3, b5}, {b4} {ab, ab5,
ab3, ab7}. The conjugacy graph associated with D28 is as 
follows.

Example 2.95:  

A4 = 
1 2 3 4 1 2 3 4 1 2 3 4

, , ,
1 2 3 4 2 1 4 3 4 3 2 1

� �  �  ��
�� � � � � �
�� � � � � ��

b4 {1}

b7

b

b6

b2

b5

b3

Figure 2.84 
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1 2 3 4
3 4 1 2
 �
� �
� �

,
1 2 3 4 1 2 3 4

, ,
1 3 4 2 1 4 2 3
 �  �
� � � �
� � � �

1 2 3 4 1 2 3 4 1 2 3 4
, , ,

3 2 4 1 4 2 1 3 2 4 3 1
 �  �  �
� � � � � �
� � � � � �

1 2 3 4
4 1 3 2
 �
� �
� �

,
1 2 3 4 1 2 3 4

,
2 3 1 4 3 1 2 4

� �  ��
�� � � �
�� � � ��

be the alternating group of S4.

The conjugacy classes of A4 are

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
, , ,

1 2 3 4 2 1 4 3 4 3 2 1 3 4 1 2
� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

,

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
, , ,

1 3 4 2 3 1 2 4 4 2 1 3 2 4 3 1
� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

,

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
, , ,

1 4 2 3 3 2 4 1 2 3 1 4 4 1 3 2
� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

 The conjugacy graph associated with A4 is as follows. 

1 2 3 4
1 2 3 4
 �
� �
� �

1 2 3 4
2 1 4 3

 �
� �
� �

1 2 3 4
3 4 1 2
 �
� �
� �

1 2 3 4
4 3 2 1

 �
� �
� �
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THEOREM 2.18: Let G be any non commutative group of finite 
order. The conjugacy graph of G is always a collection of 
complete graphs. 

Proof: If x is conjugate with p elements say g1, …, gp then each 
gi is conjugate with p elements resulting in a complete graph 
with p + 1 vertices. Hence the claim. 

Figure 2.85 

1 2 3 4
2 4 3 1

 �
� �
� �

1 2 3 4
4 2 1 3

 �
� �
� �

1 2 3 4
3 1 2 4
 �
� �
� �

1 2 3 4
1 3 4 2
 �
� �
� �

1 2 3 4
1 4 2 3
 �
� �
� �

1 2 3 4
3 2 4 1
 �
� �
� �

1 2 3 4
2 3 1 4

 �
� �
� �

1 2 3 4
4 1 3 2

 �
� �
� �



89

Chapter Three  

IDENTITY GRAPHS OF SOME ALGEBRAIC
STRUCTURES

For the first time we introduce the identity graphs of some 
algebraic structures like semigroups, loops and commutative 
rings. This chapter has three sections. In section one we study 
the identity graph of semigroups and S-semigroups. In section 
two we study the graphs of loops and commutative groupoids. 
In the final section the identity graph of a commutative ring is 
studied.

3.1 Identity graphs of semigroups 

Now we consider the identity graph of the semigroup S which is 
taken under multiplication. Let (S, *) be a commutative 
semigroup with identity 1, i.e., a monoid, we say an element x �
S has an inverse y in S if x * y = y * x = 1. If y = x then x * x = 
x2 = 1 we say x � S is a self inversed element of S. 

Example 3.1.1: Z12 the set of modulo integers 12 is a semigroup 
under multiplication modulo 12. We see Z12 is a commutative 
monoid. 
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 We can draw identity graph for semigroups with units. We 
say the element and its inverse are adjoined by an edge. Like 
zero divisor graphs for semigroups we draw identity graphs for 
semigroups which are commutative with unit. 

Example 3.1.2: Let Z6 = {0, 1, 2, 3, 4, 5} be the semigroup 
under multiplication modulo 6. The identity graph of Z6 is just a 
line graph joining 1 and 5.  

Example 3.1.3: Let Z5 = {0, 1, 2, 3, 4} be the semigroup under 
multiplication modulo 5. The identity graph is 

Example 3.1.4: Let Z12 = {0, 1, 2, …, 11} be the semigroup 
under multiplication modulo 12. The identity graph of Z12 is 

Figure 3.1.1 
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Example 3.1.5: Let

S(2) = 
1 2 1 2 1 2 1 2

, , ,
1 1 1 2 2 1 2 2

� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

be the symmetric semigroup under composition of maps. The 
identity graph of S(2) is 

Example 3.1.6: Let Z15 = {0, 1, 2, …, 14} be the semigroup 
under multiplication modulo 15. The identity graph of Z15 is 

Example 3.1.7: Let Z14 = {0, 1, 2, …, 13} be the semigroup 
under multiplication modulo 14. The identity graph of Z14 is 

1 2
1 1
 �
� �
� �

Figure 3.1.4 
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Example 3.1.8: Let Z10 = {0, 1, 2, …, 9} be the semigroup 
under multiplication modulo 10. The identity graph of Z10 is 

Example 3.1.9: Let Z21 = {0, 1, 2, …, 20} be the semigroup 
under multiplication modulo 21. The identity graph of Z21 is 

Example 3.1.10: Let Z18 = {0, 1, 2, …, 17} be the semigroup 
under multiplication modulo 18. The identity graph of Z18 is as 
follows:

1

Figure 3.1.7 
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Example 3.1.11: Let Z30 be the semigroup under multiplication 
modulo 30. The identity graph of Z30 is 

Example 3.1.12: Let

V = 
1 0 0 0 0 1 0 0

, , , ,
0 0 0 0 0 0 1 0

� �  �  �  ��
�� � � � � � � �
�� � � � � � � ��

0 0 1 1 1 0 0 0 0 1
, , , ,

0 1 0 0 1 0 1 1 0 1
 �  �  �  �  �
� � � � � � � � � �
� � � � � � � � � �

,

1 0 0 1 1 1
, , ,

0 1 1 0 1 0
 �  �  �
� � � � � �
� � � � � �

0 1 1 0 1 1 1 1
, , ,

1 1 1 1 0 1 1 1
� �  �  �  ��
�� � � � � � � �
�� � � � � � � ��

 be the semigroup under multiplication; elements of V are from 
Z2 = {0, 1}. Clearly V is a semigroup of order 16.  

The identity graph associated with V is as follows.  

1
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 However the semigroup V is non commutative since  

ab = ba = 
1 0
0 1
 �
� �
� �

is true for the inverse elements we need not be bothered about 
commutativity, as only thing we should guarantee is that the 
presence of unique inverse for a � V which is such that

ab = ba = 
1 0
0 1
 �
� �
� �

.

However this work is left for the reader to prove. 
We know the zero divisor graph of the semigroup has been 

studied extensively in [7]. We now give some examples of the 
zero divisor graph and compare it with the identity graph. 

Example 3.1.13: Let Z6 = {0, 1, 2, 3, 4, 5} be the semigroup 
under multiplication modulo 6. The zero divisors in Z6 are 
2.3 ' 0 (mod 6), 4.3 ' 0 (mod 6). The zero divisor graph of Z6 is 
as follows: 

Figure 3.1.11
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Example 3.1.14: Let Z8 = {0, 1, 2, 3, …, 7} be the semigroup 
under multiplication modulo 8. The zero divisor graph of Z8 is 
as follows: 

Example 3.1.15: Let Z10 = {0, 1, 2, 3, 4, 5, …,8} be the 
semigroup under multiplication modulo 10. The zero divisor 
graph of Z10 is as follows: 

Example 3.1.16: Let Z18 = {0, 1, 2, 3, …, 17} be the semigroup 
under multiplication modulo 18. The zero divisor graph of Z18 is 
as follows: 

 Now having seen the zero divisor graph and the identity 
graph of a semigroup S, we now proceed on to define the notion 
of identity-zero combined graph of a semigroup G. 
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DEFINITION 3.1.1: Let S = {0, 1, s1, …, sn} be the commutative 
semigroup where 0 and 1 � S i.e., semigroup is a monoid which 
has both zero divisors and units. The combined graph of S with 
zero divisor graph and identity graph will be known as the 
combined identity-zero graph of the semigroup. 

We illustrate this by some examples. 

Example 3.1.17: Let Z6 = {0, 1, 2, …, 5} be the semigroup 
under multiplication modulo 6. The identity-zero combined 
graph (combined identity-zero graph) of Z6 is as follows: 

Example 3.1.18: Let S = {0, 1, 2, …, 7} = Z8 be the semigroup 
under multiplication modulo 8. The combined identity-zero 
graph of Z8 is as follows: 

Example 3.1.19: Let Z9 = {0, 1, 2, …, 8} be the semigroup 
under multiplication modulo 9. The identity-zero combined 
graph of Z9 is as follows: 

Figure 3.1.16
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Example 3.1.20: The combined identity-zero graph of Z10 = {0, 
1, 2, 3, …, 9} under multiplication modulo 10 is as follows: 

Example 3.1.21: The identity-zero combined graph of the 
semigroup Z12 = {0, 1, 2, 3, …, 11} under multiplication 
modulo 12 is as follows: 

Example 3.1.22: Let Z15 = {0, 1, 2, 3, …, 14} be the semigroup 
under multiplication modulo 15. The combined identity-zero 
graph of Z15 is as follows: 

Example 3.1.23: Let Z16 = {0, 1, 2, 3, …, 15} be the semigroup 
under multiplication modulo 16. The combined identity-zero 
graph of Z16 is as follows: 
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Example 3.1.24: Let Z30 = {0, 1, 2, 3, …, 29} be the semigroup 
under multiplication modulo 30. The combined identity-zero 
graph of Z30 is as follows. 

 Now having seen some examples of monoids with zero 
divisors. We illustrate the three adjacency matrices associated 
with the identity graph, zero divisor graph and the combined 
identity-zero graph. 

DEFINITION 3.1.2: Let S be a semigroup. The adjacency matrix 
associated with identity-zero combined graph Si is defined to be 
the identity-zero combined adjacency matrix of Si.

 It is assumed that the reader is familiar with adjacency 
matrix of the identity graph and the zero graph. If the semigroup 
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has no zero divisors they we will not have the notion of zero 
graph or the combined identity-zero graph. 
 If the semigroup has no identity then the semigroup has no 
identity graph associated with it. 

We will illustrate this situation before we proceed to define 
some more new notions. 

Example 3.1.25: Let Z12 = {0, 1, 2, 3, …, 11} be the semigroup 
under multiplication modulo 12.  
The combined identity-zero graph of Z12 is as follows. 

This graph is the associated with the following adjacency matrix 

 0  1  2  3  4  5  6  7  8  9  10  11 

A = 

0 0 0 1 1 1 0 1 0 1 1 1 0
1 0 0 0 0 0 1 0 1 0 0 0 1
2 1 0 0 0 0 0 1 0 0 0 0 0
3 1 0 0 0 1 0 0 0 1 0 0 0
4 1 0 0 1 0 0 1 0 0 1 0 0
5 0 1 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 1 0 0 0 1 0 1 0
7 0 1 0 0 0 0 0 0 0 0 0 0
8 1 0 0 1 0 0 1 0 0 1 0 0
9 1 0 0 0 1 0 0 0 1 0 0 0

10 1 0 0 0 0 0 1 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Figure 3.1.24
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The zero graph associated with Z12 is given in the following. 

The adjacency matrix of the zero graph is as follows.  

 0  1 2  3 4  5  6  7  8  9  10  11 

B = 

0 0 0 1 1 1 0 1 0 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 1 0 0 0 0 0
3 1 0 0 0 1 0 0 0 1 0 0 0
4 1 0 0 1 0 0 1 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 1 0 0 0 1 0 1 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 1 0 0 1 0 0 1 0 0 1 0 0
9 1 0 0 0 1 0 0 0 1 0 0 0

10 1 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

 The identity graph of the semigroup Z12 is as follows. 

Figure 3.1.25
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The adjacency matrix of the identity graph is as follows. 

  C = 

0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
#
#
#
#
#
#
#
#
#
#% &

$
$
$
$
$
$
$
$
$
$

It is verified that the combined identity-zero adjacency 
matrix of the combined identity-zero graph can be, got as the 
sum of the adjacency matrix of the special identity and 
adjacency matrix of the zero divisor graph, i.e., A = B + C.  

Example 3.1.26: Let Z6 = {0, 1, 2, 3, 4, 5} be the semigroup 
under multiplication modulo 6.  
The zero divisor graph of Z6 is

The associated adjacency matrix D of the zero divisor graph  

Figure 3.1.27

1

5

0

2

3

4



102

D = 

0 1 2 3 4 5
0 0 0 1 1 1 0
1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 1 0 1 0 1 0
4 1 0 0 1 0 0
5 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

The special identity graph of Z6 is 

The adjacency matrix B of the special identity graph is as 
follows:

B = 

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 1 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

.

The combined identity-zero divisor graph of Z6 is given below.

Figure 3.1.28
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 The combined adjacency matrix C of the identity-zero 
divisor combined graph C is as follows: 

C = 

0 1 2 3 4 5
0 0 0 1 1 1 0
1 0 0 0 0 0 1
2 1 0 0 1 0 0
3 1 0 1 0 1 0
4 1 0 0 1 0 0
5 0 1 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

We see 

 C = 

0 0 1 1 1 0
0 0 0 0 0 1
1 0 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 0
0 1 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

=

0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

! " ! "
# $ # $
# $ # $
# $ # $


# $ # $
# $ # $
# $ # $
# $ # $
# $ # $% & % &

= D + B. 

Example 3.1.27: Let Z8 = {0, 1, 2, …, 7} be the semigroup 
under multiplication modulo 8. 
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 The zero divisor graph of Z8 is as follows: 

The corresponding adjacency matrix of the above graph is 

B = 

0 1 2 3 4 5 6 7
0 0 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0 0
2 1 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0 0
4 1 0 1 0 0 0 1 0
5 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

The special identity graph of Z8 is as follows: 

The adjacency matrix of the above graph is 

Figure 3.1.30
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A = 

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1
2 0 0 0 0 0 0 0 0
3 0 1 0 0 0 1 0 0
4 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Now we find

B + A = 

0 1 2 3 4 5 6 7
0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1
2 1 0 0 0 1 0 0 0
3 0 1 0 0 0 0 0 0
4 1 0 1 0 0 0 1 0
5 0 1 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0
7 0 1 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

.

We find the special identity-zero graph of Z8.

The adjacency matrix associated with the graph is as follows: 

Figure 3.1.32
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0 1 2 3 4 5 6 7
0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1
2 1 0 0 0 1 0 0 0
3 0 1 0 0 0 0 0 0
4 1 0 1 0 0 0 1 0
5 0 1 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0
7 0 1 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

 = B + A. 

Example 3.1.28: Let Z5 = {0, 1, 2, …, 4} be the semigroup 
under multiplication modulo 5.  

The zero divisor graph of Z5 is 

 Thus we see as Z5 has no non trivial zero divisors; no edges 
in the zero divisor graph but only vertices. Thus the related 
adjacency matrix would only be a zero matrix as we do not 
consider ab = 0 with a = 0 or b = 0 as a non trivial zero divisor. 

The special identity graph of Z5 is 

The related adjacency matrix is as follows. 

Figure 3.1.33
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0 1 2 3 4
0 0 0 0 0 0
1 0 0 1 1 1
2 0 1 0 1 0
3 0 1 1 0 0
4 0 1 0 0 0

! "
# $
# $
# $
# $
# $
# $% &

.

 We see the combined identity-zero graph of Z5 is the same 
as the special identity graph of Z5.
 Further the zero divisor graph has only 5 vertices and no 
edges.

 In view of this we have the following theorem. 

THEOREM 3.1.1: Let Zp = {0, 1, 2, …, p-1} be the semigroup 
under multiplication modulo p, p a prime. The zero divisor 
graph has no edges so the related adjacency matrix is a zero 
matrix and the special identity graph is the same as the 
combined identity-zero graph. 

Proof: Since in the semigroup Zp = {0, 1, 2, …, p – 1}, p a 
prime, we see Zp \ {0} is a group so Zp has no non trivial zero 
divisors. Hence the zero divisor graph has no edges hence the 
associated adjacency matrix is a p � p zero matrix. 
 Now Zp \ {0} is a group so every element x � Zp \ {0} has 
inverse so in the special identity graph of Zp all elements in Zp \ 
{0} are adjacent with one and 0 alone is left with no element 
adjacent with it. Thus we see the matrix associated with the zero 
divisor graph is just a zero matrix. 
 Like wise if the semigroup has no identity then this 
semigroup will not have the special identity graph associated 
with it. Thus in this case also we will not have the combined 
identity-zero matrix associated with it. 

 We give a few examples. 
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Example 3.1.29: Let S = 2Z12 = {0, 2, 4, 6, 8, 10} be the 
semigroup under multiplication modulo 12. Clearly 1 ( 2Z12.
Thus the zero divisor graph associated with 2Z12 is  

This has no special identity graph associated with it as 1 ( 2Z12.

Example 3.1.30: Let 3Z15 = {0, 3, 6, 12} be the semigroup. The 
semigroup too has no identity. The zero graph associated with 
3Z15 is as follows. 

 No zero divisors so no graph can be associated with it.  
Also this semigroup cannot have the special identity graph 
associated with it as 1 ( 3Z. 

 Thus we can have semigroups which has no zero divisors 
and no special identity graph as it does not contain 1 so such 
semigroups cannot be given any graph representation. This 
property is a major difference between the groups and 
semigroups. 

Example 3.1.31: Let 2Z30 ={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 
22, 24, 26, 28} be the semigroup under multiplication modulo 
30. Since 1 ( 2Z30 the question of its special identity graph does 
not arise. 

 Now the zero divisor graph of 2Z30 is as follows. 

Figure 3.1.35
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The associated adjacency matrix M with this graph is as 
follows.

 0  2  4  6  8  10  12 14 16  18  20  22  24 26  28 

M = 

0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
20 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
22 0 0 0 0 0 0 0 0 0 0
24
26
28

0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

This semigroup has no associated special identity graph as 1 
( 2 Z30.
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Example 3.1.32: Let S(3) be the semigroup of the maps of (1 2 
3) to (1 2 3). This semigroup has no zero divisors hence no zero 
divisor graph associated with it. However the special identity 
graph associated with it is as follows:  

 Thus this semigroup does not have a combined identity-zero 
divisor graph associated with it. 

THEOREM 3.1.2: The class of symmetric semigroups S(n) has 
only special identity graphs associated with it and with no zero 
divisor graph hence cannot have the combined identity-zero 
graph associated with it. 

Proof: S(n) is a semigroup of order nn. Clearly S(n) has no zero 
divisors. So S(n) cannot have any zero divisor graph associated 
with it. 
 Further S(n) contains the subset Sn which is the symmetric 
group of degree n. Now associated with Sn is the special identity 
graph. Thus with S(n) we have an associated special identity 
graph and no zero divisor graph. Hence S(n) cannot have the 
combined identity-zero graph associated with it. 

We illustrate this by an example. 

Figure 3.1.38
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Example 3.1.33: Let S(4) be the symmetric semigroup got from 
the maps of (1 2 3 4) to itself. S(4) is a semigroup under the 
operation of composition of mappings. 
 S4 is the permutation group of degree 4 is a proper subset of 
S(4). Clearly S(4) has no zero divisors. Thus S(4) has no zero 
divisor graph associated with it. Now S4 � S(4) and since S4 is 
group; every element in S4 has an inverse. Hence S4 � S(4) has 
a special identity graph associated with it. 

 Thus the semigroup too cannot have a combined identity-
zero divisor graph associated with it. 

 We give a theorem which shows we have a class of 
semigroups which cannot have the special identity graph 
associated with it. 

THEOREM 3.1.3: Let pi Zn = {0, pi, 2pi, …, pi(n – 1)} be a 
semigroup under multiplication modulo n where pi / n and n = 
p1 p2 … pt, where each pi is a prime 1 � i � t, t   2. These 

Figure 3.1.39
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semigroups do not contain identity so these classes of 
semigroups have no special identity graphs associated with 
them.

Proof: Given pi Zn = {0, pi, …, pi (n – 1)} is a semigroup under 
multiplication modulo n, where n = p1 p2 … pt, t   2 and p1 … pt

are distinct primes 1 � i � t. Clearly 1 ( pi Zn so pi Zn cannot 
contain units hence piZn is a semigroup for which one cannot 
associate special identity graph with it. 
 Thus we have a class of semigroups which has no special 
identity graph associated with it. Thus this class of semigroups 
cannot have combined identity-zero divisor graph associated 
with it. 
 Next we give a class of semigroups which has combined 
identity-zero divisor graphs associated with it. 

THEOREM 3.1.4: Let Zn = {0, 1, 2, …, n-1} be the semigroup 
under multiplication modulo n where n is a composite number. 
This semigroup has combined identity-zero divisor graph.

Proof: Given Zn = {0, 1, 2, …, n – 1} is a semigroup of order n, 
n a composite number under multiplication modulo n. Clearly 
Zn has zero divisors as well as units. Thus Zn has a zero divisor 
graph and a special identity graph associated with it. Hence Zn
has a combined identity-zero divisor graph associated with it. 
Thus we have a class of semigroups for which we have an 
associated combined identity-zero graph. 
 We illustrate this by some examples before we proceed onto 
define some more new notions. 

Example 3.1.34: Let 3Z24 = {0, 3, 6, 9, 12, 15, 18, 21} be the 
semigroup under multiplication modulo 24. We see 3Z24 has no 
units but only zero divisors. Also 3Z24 is not a monoid as 1 (
3Z24. The zero divisor graph associated with 3Z24 is as follows: 

Figure 3.1.40
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The adjacency matrix of the zero divisor graph is 

 0  3  6   9  12 15  18 21 
0 0 0 1 0 1 0 1 0
3 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0
9 0 0 0 0 0 0 0 0

12 1 0 1 0 0 0 1 0
15 0 0 0 0 0 0 0 0
18 1 0 0 0 1 0 0 0
21 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Example 3.1.35: Let 4Z24 = {0, 4, 8, 12, 16, 20} be the 
semigroup under multiplication modulo 24. This semigroup too 
has no units but only zero divisors. Infact 1 ( 4Z24 so no units, 
that is cannot have the special identity graph associated with it. 
The zero divisor graph associated with 4Z24 is as follows:  

The zero divisor matrix associated with this graph is as follows; 

  0  4  8  12 16  20 
0 0 1 1 1 1 1
4 1 0 0 1 0 0
8 1 0 0 1 0 0

12 1 1 1 0 1 1
16 1 0 0 1 0 0
20 1 0 0 1 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

Figure 3.1.41
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Example 3.1.36: Consider the semigroup 2Z24 = {0, 2, 4, 6, 8, 
10, 12, 14, 16, 18, 20, 22} under multiplication modulo 24. This 
has no unit so cannot have a special identity graph associated 
with it. The zero divisor graph associated with 2Z24 is as 
follows.

The adjacency matrix associated with the zero divisor graph is 
as follows. 
 0  2  4   6  8 10  12 14  16  18  20 22 

0 0 1 1 1 1 1 1 1 1 1 1 1
2 1 0 0 0 0 0 1 0 0 0 0 0
4 1 0 0 1 0 0 1 0 0 1 0 0
6 1 0 1 0 1 0 1 0 1 0 1 0
8 1 0 0 1 0 0 1 0 0 1 0 0

10 1 0 0 0 0 0 1 0 0 0 0 0
12 1 1 1 1 1 1 0 1 1 1 1 1
14 1 0 0 0 0 0 1 0 0 0 0 0
16 1 0 0 1 0 0 1 0 0 1 0 0
18 1 0 1 0 1 0 1 0 1 0 1 0
20 1 0 0 1 0 0 1 0 0 1 0 0
22 1 0 0 0 0 0 1 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
#% &$

Example 3.1.37: Let 8Z24 = {0, 8, 16} be the semigroup under 
multiplication modulo 24. For this semigroup we can take 24 as 
the identity. This is evident from the following table 

Figure 3.1.42
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� 8 16
8 16 8 
16 8 16

Thus the special unit matrix of 8Z24 is

0 0 0 0
8 0 0 1

16 0 1 0

! "
# $
# $
# $% &

Example 3.1.38: Let 6Z24 = {0, 6, 12, 18} be the semigroup 
under multiplication modulo 24. The zero divisor graph of 6Z24

The matrix of the zero divisor graph is as follows: 

 0  6  12  18 
0 0 1 1 1
6 1 0 1 0

12 1 1 0 1
18 1 0 1 0

! "
# $
# $
# $
# $
% &

This sort of study with a different element as identity is 
interesting.

Example 3.1.39: Let Z20 = {0, 1, 2, …, 19} be the semigroup 
under multiplication modulo 20. The zero divisor graph of Z20 is 
as follows. 
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0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

 The special identity graph associated with the semigroup is 
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The matrix associated with the special identity graph is as 
follows:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

One can using both the matrices get the combined special 
identity-zero divisor graph which is as follows. 

8
12

16

10

2

14

4

18

6

0

Figure 3.1.46

15

5
3

7 9

1 17

11

13

19



118

 The related combined adjacency matrix is 

0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Figure 3.1.47
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Now we proceed onto define the zero divisor graph of a 
Smarandache semigroup (S-semigroup). Since every S-
semigroup is also a semigroup we have the same definition of 
zero divisor graph and special identity graph to hold good. 
However we have the following to be true in case of S-
semigroups. 
 We define for S-semigroups the special group semigroup 
identity graphs. 

DEFINITION 3.1.2: Let S be a S-semigroup. Let P be a proper 
subset of G such that P is a group under the operations of G. 
Then we have a special identity graph associated with P. This 
graph will be known as the special group semigroup identity 
graph of S. 

Note: A S-semigroup has atleast one special group semigroup 
identity graph. It is pertinent to note in general a semigroup S 
need not have a special group – semigroup identity graph. We 
first give some examples of these structures, before we proceed 
on to define more properties about them. 

Example 3.1.40: Let S = {0, 1, 2, …, 14} be a semigroup under 
multiplication modulo 15. P = {1, 14} is a proper subgroup in S. 
The special group - semigroup identity graph of S is given by 

Take P1 = {5, 10} is again a subgroup in P1 with 10 as the 
identity. The special group semigroup identity graph associated 
with it is; 

 Take the subset P2 = {3, 6, 9, 12} in S. Clearly P2 is a 
subgroup of S. The special group semigroup identity graph 

Figure 3.1.48
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associated with P2 as a group is as follows. For P2, 6 acts as the 
identity element of the group. 

 Thus we have seen 3 subgroups in S and their related 
special group semigroup identity graphs. Here also two groups 
are isomorphic. Now we see the position of these groups in the 
combined special identity-zero divisor graph of S. 

 From this example it is surprising to see the special group 
semigroup identity graphs are from the zero divisor group also. 
However one group is from the special identity graph of S.  

Example 3.1.41: Let S = {0, 1, 2, …, 7} be a semigroup under 
multiplication modulo 8. Clearly S is a S-semigroup for 72 = 1 
(mod 8) and P = {1, 7} forms a group. Also P1 = {1, 3} forms a 
group and P2 = {1, 5} forms a group. 
 Thus the special group semigroup identity graphs of S 
related to P, P1 and P2 is as follows: 

93

6

12

12

10

5

3

9

0

6
144

1

11

7

13

8

2

Figure 3.1.49

Figure 3.1.50

1

7

1

3

1

5



121

 The combined special identity-zero divisor graph of S is as 
follows:

 We see also P3 = {1, 3, 5, 7} is a subgroup of S and its 
special group semigroup identity graph is the special identity 
graph of S. However no group has been found from the zero 
divisor graph of S. 
 It is pertinent to mention here that when S = Z15 and S = Z8
the behavior of these two semigroups under modulo 
multiplication behaves differently. 

Example 3.1.42: Let S = Z9 = {0, 1, 2, …, 8} be a semigroup 
under multiplication modulo 9. Clearly Z9 is a S-semigroup. 
 The combined special identity-zero divisor of Z9 is as 
follows:

 P1 = {1, 8} is a subgroup of S. 
 P2 = {1, 7, 4} is again a subgroup of S.  
 P3 = {1, 2, 5, 8, 7, 4} is again a subgroup of S.  

Thus vertices of the special identity graph of S is again a group. 
However the elements of S which forms the zero divisor graph 
does not yield to any subgroups of the semigroup. 

Figure 3.1.51
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Example 3.1.43: Let S = Z25 = {0, 1, 2, …, 24} be a semigroup 
under multiplication modulo 25.  

The special combined identity-zero divisor graph of Z25 is 
as follows: 

 Now we find the subsets of S which are subgroups under 
multiplication modulo 25. 

 P1 = {1, 24} is a subgroup of S. 
 P2 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 23, 24} is a subgroup.  

The special group semigroup identity graph of S = Z25 is the 
whole of the special identity graph given by the following 
diagram. 

Figure 3.1.53

155

0

10

20

6

1

21

19

4

22

8

24

17

14

9

3

12

23 13

2

16

11 7

18



123

 Now we see yet another example. 

Example 3.1.44: Let G = {0, 1, 2, 3} be the S-semigroup under 
multiplication modulo 4. Clearly the combined special identity-
zero divisor graph of G is given by 

The special group semigroup identity graph is given by 

Example 3.1.45: Let S = {0, 1, 2, 3, 4, 5} be the semigroup 
under multiplication modulo 6. The combined special identity-
zero divisor graph of S is 
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 The special group semigroup identity graph of S is 

Example 3.1.46: Let Z20 = {0, 1, 2, …, 19} be the S-semigroup 
under multiplication modulo 20. The combined special identity-
zero divisor graph of Z20 is as follows. 

 The subgroup of Z20 = S are P1 = {1, 9}, P2 = {1, 11}, P3 = 
{1, 19}, P4 = {1, 3, 7, 9}, P5 = {1, 13, 17, 9}, P6 = {1, 3, 7, 9, 
11, 13, 17, 19} and P7 = {1, 9, 11, 19}. 
 Thus the related graphs of these subgroups are given in the 
following diagrams.   

Figure 3.1.55
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Consider another example.  

Example 3.1.47: Let Z30 = {0, 1, 2, …, 29} be the semigroup 
under multiplication modulo 30. 

The zero divisor graph of Z30 is as follows 

The special identity graph of Z30 is

Cleary Z30 is also a S-semigroup. 

THEOREM 3.1.5: Let S be a S-semigroup. Then S has atleast 
one nontrivial special identity graph. 
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Proof: Since every S-semigroup S has a proper subset P which 
is a group under the operations of S we see the special identity 
graph of P gives the non trivial special identity graph of S. 
Hence the claim. 
 We now show we have classes of S-semigroups which 
satisfy the above theorem. 
 The class of symmetric semigroups S(n) where n denotes 
the set (a1, …, an) or (1, 2, 3, …, n) and S (n) is the set of all 
maps of the set (1, 2, 3, …, n) to itself. Clearly Sn � S (n) and Sn
is the symmetric group got from the one to one maps of (1, 2, 3, 
…, n). 
 Thus S(n) is a S-semigroup and Sn gives the special identity 
graph. Infact S(n) will have several identity graphs depending 
on the proper subgroups of Sn including Sn.

 We illustrate this situation by the following example. 

Example 3.1.48: Let S(4) be the set of all maps of (1 2 3 4) to 
itself. Clearly S(4) is a S-semigroup as S(4) contains the 
symmetric group of degree 4 viz. S4. Some of the subgroups of 
S(4) are as follows:

A4, H1 = 
1 2 3 4 1 2 3 4

,e
1 2 4 3 1 2 3 4

� � �  �� �	� �� � � �
� �� � � �� �

H2 = 
1 2 3 4 1 2 3 4

e, ,
1 2 3 4 2 3 4 1

� �  �� 	�� � � �
�� � � ��

1 2 3 4 1 2 3 4
,

3 4 1 2 4 1 2 3
� �  ��
�� � � �
�� � � ��

H3 = 
1 2 3 4 1 2 3 4

, ,
1 2 3 4 2 1 4 3

� �  ��
�� � � �
�� � � ��

1 2 3 4 1 2 3 4
,

4 3 2 1 3 4 1 2
� �  ��
�� � � �
�� � � ��

 and so on.  
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The special identity graphs associated with the subgroups A4,
H1, H2 and H3 are as follows. 

THEOREM 3.1.6: Let Zn be the semigroup under multiplication 
modulo n, n � N. Zn has atleast one special identity graph 
associated with it. 
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Proof: The result follows from the fact that every Zn is a S-
semigroup hence every Zn has atleast one proper subset P which 
is a group; P being a group one can find the special identity 
graph associated with it. 

Example 3.1.49: Let 3Z15 = {0, 3, 6, 9, 12} be a semigroup 
under multiplication. Clearly P = {3, 6, 9, 12} is a group under 
multiplication modulo 15. P is given by the following table. 

 6 3 9 2 
6 6 3 9 12
3 3 9 12 6 
9 9 12 6 3 
12 12 6 3 9 

 The special identity graph associated with P is as follows. 

Example 3.1.50: Let 3Z24 = {0, 3, 6, 9, 12, 15, 18, 21} be the 
semigroup under multiplication modulo 24. P = {9, 3, 15, 21} is 
a proper subset of 3Z24 and is a group under multiplication 
modulo 24 with 9 acting as the identity. The special identity 
graph for this group is as follows.  

 Now having seen the graphs associated with semigroups we 
now proceed onto define or extend these notions to loops and 
commutative groupoids. 
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3.2 Special Identity Graphs of Loops  

 We define the special identity graph of a loop identical to 
that of a group as the associativity operation has no role to play. 
Thus taking verbatim the definition for groups to be true for 
loops we proceed onto give only examples. 

Example 3.2.1: Let L be the loop given by the following table. 

* e a1 a2 a3 a4 a5

e e a1 a2 a3 a4 a5

a1 a1 e a4 a2 a5 a3

a2 a2 a4 e a5 a3 a1

a3 a3 a2 a5 e a1 a4

a4 a4 a5 a3 a1 e a2

a5 a5 a3 a1 a4 a2 e

The special identity graph related with L is as follows. 

Example 3.2.2: Consider the loop L5 (2) = {e, 1, 2, 3, 4, 5}. The 
composition table for L5 (2) is given below 

* e 1 2 3 4 5
e e 1 2 3 4 5
1 1 e 3 5 2 4
2 2 5 e 4 1 3
3 3 4 1 e 5 2
4 4 3 5 2 e 1
5 5 2 4 1 3 e 

a2

Figure 3.2.1 
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 The special identity graph is as follows.  

Example 3.2.3: L9 (8) be the loop given below by the following 
table

* e 1 2 3 4 5 6 7 8 9
e e 1 2 3 4 5 6 7 8 9
1 1 e 9 8 7 6 5 4 3 2
2 2 3 e 1 9 8 7 6 5 4
3 3 5 4 e 2 1 9 8 7 6
4 4 7 6 5 e 3 2 1 9 8
5 5 9 8 7 6 e 4 3 2 1
6 6 2 1 9 8 7 e 5 4 3
7 7 4 3 2 1 9 8 e 6 5
8 8 6 5 4 3 2 1 9 e 7
9 9 8 7 6 5 4 3 2 1 e

 The special graph identity of L9(8) is given below: 

THEOREM 3.2.1: Let Ln(m) be the loop where n > 3, n is odd 
and m is a positive integer such that (m, n) = 1 and (m – 1, n) = 
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1 with m < n. Then the special identity graph of these loops are 
rooted trees of special type with (n + 1) vertices. 

Proof: We know Ln(m) = {e, 1, 2, …, n} is a loop of order n+1 
with every element x � Ln(m) a self inversed element of Ln(m). 
Thus we see the special identity graph of these loops are special 
rooted trees with (n + 1) vertices given below. 

 We can have for the new classes of loops only rooted trees 
of special form. However for general loop this may not be true. 

Now we proceed onto define the special identity graph the zero 
divisor graph and the combined special identity-zero divisor 
graph in case of commutative monoids with identity. If the 
commutative monoids do not contain 1 then we do not have 
with it the associated special identity graph consequently the 
notion of combined special identity-zero divisor graph does not 
exist.

Thus throughout this book we only assume all the groupoids 
are commutative groupoids. 
 The notion of special identity graph, zero divisor graph and 
the combined special identity-zero divisor graph are defined for 
commutative groupoids as in the case of commutative 
semigroups. 

We illustrate these situations by some examples. 

Example 3.2.4: Let G be a groupoid given by the following 
table.
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* 0 1 2 3 4
0 0 2 4 1 3
1 2 4 1 3 0
2 4 1 3 0 2
3 1 3 0 2 4
4 3 0 2 4 1

 This groupoid contains the elements 0 and 1 but however 
under the operation * described in the table this groupoid is 
commutative but  
 0 * x = x * 0 = 0 does not hold good for all x � G. 
 Also 1 * x = x * 1 = x does not hold good for all x � G.
 Thus we have class of groupoids which are commutative 
but for which no graph can be associated. This is explained by 
the following theorem. 

THEOREM 3.2.2: Let Zn = {0, 1, 2, …, n-1} n   3; n < �. Define 
* on Zn as a * b = ta + tb, t < n, t � Zn. Then (Zn, *) is a 
commutative groupoid which has no zero divisors graph or 
special identity graphs associated with it. 

Proof: These groupoids by the very binary operation defined on 
it are commutative and 0 is such that 0 * x = x * 0 = 0 does not 
hold good. For any a � Zn; a * 0 = ta + 0t = ta = at � 0 as a � 0 
and t � 0 
 Also if a � Zn then 
  1 * a  =  a * 1   

=  ta + t   
=  t (a+1) 

    =  t + at  �  1 
as t � 1 and a � 1. 

 So these groupoid do not contain zero or identity. Hence we 
cannot associate with these groupoids the notion of zero divisor 
graphs or special identity graphs. 
 However we can define commutative groupoids with zero 
divisors and units. 
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Example 3.2.5: Let G be a groupoid given by the following 
table:

 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 5 7 1 4 3 3
3 0 3 7 6 5 4 2 0
4 0 4 1 5 5 2 2 4
5 0 5 4 4 2 1 5 6
6 0 6 3 2 2 5 2 0
7 0 7 3 0 4 6 0 0

 Clearly G is commutative groupoid. The zero divisor graph 
associated with G is as follows: 

The special identity graph of G is given below. 

 Here it is pertinent to mention in case of groupoids there are 
elements which are either zero divisors or units. Interested 
reader can further study about graphs related with commutative 
groupoids and loops.  
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3.3 The identity graph of a finite  
commutative ring with unit 

Let R be a finite commutative ring with unit we define here the 
notion of identity graph of R. The graph of R is formed with 
elements of R which are units in R. This notion will bring in a 
nice relation between the graphs and commutative ring with 
unit. We know already a study relating to zero divisors of a ring 
with graphs were introduced in 1988 by Beck.  
 This study was fancied as the vertex coloring of a 
commutative ring. Beck defined this notion as follows: “A 
commutative ring with unit is considered as a simple graph R 
whose vertices are all elements of R such that two different 
elements x and y in R are adjacent if and only if x.y = 0; (x � 0, 
y � 0). The ‘0’ is adjacent with every element in R. 

In a similar way we define the new notion of identity graph of a 
commutative ring with 1 of finite order. 

DEFINITION 3.3.1: Let R be a finite commutative ring with 1. 
We take U(R) the set of units in R (clearly U (R) � ) as 1 �
U(R)). Now the elements of U(R) form the vertices of the simple 
graph. Two elements x and y in R are adjacent if and only if x.y 
= 1. We assume that 1 is adjacent with every unit in R. The 
graph associated with U(R) is defined to be the unit graph of R.

Remark: In case of zero divisor graph we take for the simple 
graph the vertices as all the elements of R. Here for the identity 
or unit graph of R we take the vertices as its unit elements of R. 

Remark: If R has no element other than 1, i.e., U (R) = {1} 
then the identity or unit graph is just a point. 

1



135

Example 3.3.1: The identity or unit graph of Z8 is given below.  

Now we can compare the unit or identity graph of Z8 with the 
zero graph of Z8.

Thus we see the zero divisor graph alone is 

Example 3.3.2: Let Z12 = {0, 1, 2, …, 11} be the ring of 
integers modulo 12. The identity or unit graph associated with 
Z12 is as follows:
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However the zero divisor graph of Z12 is 

Example 3.3.3: Let Z10 = {0, 1, 2, …, 9} be the ring of modulo 
integers 10. The identity graph of Z10 is 

Figure 3.3.4 
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Example 3.3.4: Let Z9 = {0, 1, 2, …, 8} be the ring of integers 
modulo 9.  
The identity graph of Z9 is 

The zero divisor graph of Z9 is 

Example 3.3.5: Let Z15 = {0, 1, 2, …, 14} be the ring of 
integers modulo 15.  

The identity graph of Z15 is 

The zero divisor graph of Z15 is given in the following: 
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Example 3.3.6: Let Z16 = {0, 1, 2, …, 15} be the ring of 
integers modulo 16. The unit graph of Z16 is as follows:

The zero divisor graph of Z16 is as follows: 
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Example 3.3.7: Let Z25 = {0, 1, 2, …, 24}be the ring of integers 
modulo 25. The identity graph of Z25 is as follows:  

The unit center is just 1. The zero divisor graph of Z25 is 

 Now we proceed onto define the notion of combined 
identity zero divisor graph for a commutative ring with unit. 
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DEFINITION 3.3.2: Let R be a commutative ring with unit. The 
combined identity zero divisor graph when it exists is the two 
graphs namely the zero divisor graph of R and the special 
identity or unit graph of R. 

 We illustrate this situation by some simple examples and 
also justify the definition. 

Example 3.3.8: Let Z7 = {0, 1, 2, …, 6} be the ring under 
multiplication and addition modulo 7. The zero divisor graph of 
Z7 does not exist as x.y = 0(mod 7) is impossible for any x, y �
Z7 \{0}. 
 The special identity or unit graph of Z7 is as follows: 

The unit center is 1. 

Example 3.3.9: Let Z11 = {0, 1, 2, …, 10} be the ring of 
integers modulo 11. This ring too has no zero divisor graph only 
this ring has special identity graph associated with it which is as 
follows:
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In view of these examples we can prove the following theorem. 

THEOREM 3.3.1: Let Zp = {0, 1, 2, …, p – 1} be the ring of 
integers modulo p. Zp has no zero divisor graph only special 
identity graph. Hence Zp has no combined special identity zero 
divisor graph associated with it. 

Proof: We know Zp is a field hence, Zp has no nontrivial zero 
divisors. So Zp cannot be associated with a zero divisor graph. 
Since every element in Zp \ {0} has inverse, Zp has a special 
identity graph with p – 1 vertices. 

Example 3.3.10: Let Z12 = {0, 1, 2, …, 11} be the ring of 
integers modulo 12. 

The identity graph of Z12 is as follows: 

The unit center is 1. 
The zero divisor graph of Z12 is

The zero center of Z12 is 0 only.  
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Thus we see Z12 has both zero divisor graph as well as the 
special identity graph. 

Further it is interesting to note that these properly divides Z12
into two disjoint classes. 

Example 3.3.11: Let Z10 = {0, 1, 2, …, 9} be the ring of 
integers modulo 10.  

The zero divisor graph of Z10 is as follows: 

The zero centers are 0 and 5. 
The special identity graph of Z10 is as follows: 

We see Z10 also has both the zero divisor graph and the two 
graphs are disjoint. 
 The unit center of Z10 is just one. 

Example 3.3.12: Let Z15 = {0, 1, 2, …, 14} be the ring of 
integers modulo 15.  

The zero divisor graph of Z15 is  
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This graph too has only 0 as its zero center. The special identity 
graph of Z15 is as follows: 

The unit center of the graph is just 1. 

Example 3.3.13: Let Z14 = {0, 1, 2, …, 13} be the ring of 
integers modulo 14.  

The zero divisor graph of Z14 is 

The zero center of Z14 is 0 and 7. 
The special identity graph of Z14 is as follows: 
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The unit center of Z4 is just one. 

Example 3.3.14: Let Z22 = {0, 1, 2, …, 21} be the ring of 
integers modulo 21. The zero divisor graph associated with Z22
is

The zero center of this zero divisor graph is 0 and 11. 
 The special identity graph of Z22 is as follows: 
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Clearly the unit center of Z22 is 1. 

Example 3.3.15: Let Z30 = {0, 1, 2, …, 29} be the ring of 
integers modulo 30. The zero divisor graph of Z30 is as follows: 

This graph too has only 0 to be its zero center. Now we draw the 
unit graph of Z30.

The unit center of Z30 is just 1. 
In view of all these examples we have the following 

theorem. 

THEOREM 3.3.2: Let Z2n = m = {0, 1, 2, …, 2n – 1 = m – 1} be 
the ring of integers modulo 2n = m where n is a prime number. 
Then Z2n has both the zero divisor graph as well as the special 
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identity graph such that the zero center of the zero divisor 
graph is n and 0 and the unit center of Z2n is just 1.

Proof: We see the zero divisors are contributed by the even 
numbers and the number of even number is n and they also 
contribute to zero divisors as n as zero center as well as 0 as 
zero center. Hence the vertices 0 and p have same number of 
edges going out of them. The case of unit center is obvious. 

Remark: We see this is not true when n is a non prime. Also 
this theorem does not hold good if m = 3p where p is again a 
prime such (3, p) = 1.

All these claims in the remark are substantiated by examples.  

DEFINITION 3.3.3: Let R be a commutative ring or a non 
commutative ring. The additive inverse graph of R is the special 
identity graph of R using 0 as the additive identity. 

Example 3.3.16: Let Z8 be the ring of integers modulo 8. The 
additive inverse graph of Z8 is as follows: 

Clearly the identity (unit) center of Z8 is 0. 

Example 3.3.17: Let Z7 = {0, 1, 2, …, 6} be the ring of integers 
modulo 7. The additive inverse graph of Z7 is 0 which is the unit 
center of Z7.
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Example 3.3.18: Let Z15 = {0, 1, 2, …, 14} be the ring of 
integers modulo 15. The additive inverse graph of Z15 is  

Clearly 0 is the unit (inverse) center of Z15.

Thus we see with a ring we can in general have three graphs 
associated with them. 

(1) additive inverse graphs which always exists and all 
vertices are included. 

(2) zero divisor graph, it may or may not exist. For Zp has 
no zero divisors for p a prime. 
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(3) The special identity graph may or may not exist for if 1 
( R then the question of special identity graph becomes 
superfluous.

(4) Additive inverse graphs always exists for a ring be it 
commutative or other wise. 

We now find the 3 graphs for the following rings. 

Example 3.3.19: Let Z6 = {0, 1, 2, 3, 4, 5} be the ring of 
integers modulo 6.  
The zero divisor graph of Z6 is 

The special identity graph of Z6 is

The additive zero graph of Z6 is 
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Example 3.3.20: Let Z9 = {0, 1, 2, …, 8}  be the ring of 
integers modulo 9.  
The additive zero graph of Z9 is 

The zero divisor graph of Z9 is 

The special unit graph of Z9 is 

It is important to note that the zero divisor graph of Z9 happens 
to be the subgraph of the additive zero graph of Z9.

Example 3.3.21: Let Z18 = {0, 1, 2, …, 17} be the ring of 
integers modulo 18.  
The zero divisor graph of Z18 is as follows: 
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The additive inverse graph of Z18 is as follows: 

The special identity graph of Z18 is as follows: 
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Thus we see rings Zn when n is a composite number have all 
the three graphs associated with it. 

Next we proceed onto define the notion of special identity graph 
and the additive inverse graph of finite fields. It is pertinent to 
mention at this juncture that fields have no zero divisor graphs 
associated with them. 
 The zero divisor graph and the special identity graph of a 
field are defined as in case of commutative rings. So we 
illustrate them with examples. 

Example 3.3.22: Let Z2 = {0, 1} be the field of characteristic 
two.
The special identity graph is just a point  

The additive graph of Z2 is just a point  

Example 3.3.23: Let Z3 = {0, 1, 2} be the prime field of 
characteristic three. 
The additive inverse graph is  

The special identity graph is 

We see the additive inverse graph has p vertices. The special 
identity graph has (p – 1) vertices. 
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Example 3.3.24: Let Z5 = {0, 1, 2, …, 4} be the prime field of 
characteristic five. The additive inverse graph of Z5 is a follows: 

The special identity graph of Z5 is 

Example 3.3.25: Let Z7 = {0, 1, 2, …, 6} be the prime field of 
characteristic 7. The identity graph of Z7 is 

The additive inverse graph of Z7 is 
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 We see both the graphs in case of fields have only one unit 
center as 1 in case of special identity graph and 0 in case of 
additive inverse graph. 
 Now we proceed onto define the special identity graph and 
additive inverse graph of a S-ring which we call as the 
Smarandache special identity graph and Smarandache special 
additive graph. 

DEFINITION 3.3.4: Let R be a S-ring F be a proper subset of R 
which is the field. The special identity graph of F will be called 
as the Smarandache special identity graph (S-special identity 
graph) of R. 
 The additive inverse graph of F will be known as the 
Smarandache special additive inverse graph (S-special additive 
inverse graph) of R.

We first illustrate this situation by some examples. 

Example 3.3.26: Let Z12 = {0, 1, 2, …, 11} be the ring of 
integers modulo 12. The proper subset F = {0, 4, 8} � Z12 is a 
field isomorphic to Z3. 4 acts as the unit element. Thus the 
Smarandache additive inverse graph of Z12 is

and the S-special identity graph

Example 3.3.27: Let Z10 = {0, 1, 2, …, 9} be the ring of 
integers modulo 10. Z10 is a S-ring. For take F = {0, 2, 4, 6, 8} 
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is a field isomorphic to Z5. Here 6 acts as the unit or 
multiplicative identity. 

The S-additive inverse graph of Z10 is 

The S-special identity graph of Z10 is   

Now take P = {0, 6} a field isomorphic to Z2. The S- additive 
inverse graph of Z10 is 

The S-special identity graph of Z10 is 

 Thus we see the ring Z10 has two S-special identity graph and 
two S-additive inverse graph. Thus a S-ring can have in general 
more than one S-special identity graph and S-additive inverse 
graph.

Example 3.3.28: Let Z30 = {0, 1, 2, …, 29} be the ring of 
integers modulo 30. This is a S-ring. For take F1 = {0, 10, 20} is 
a field isomorphic to Z3, 10 acts as identity. 
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This S-additive inverse graph of Z30 is 

The S-special identity graph of Z30 is  

F2 = {0, 6, 12, 18, 24} � Z30 is the field isomorphic to Z5 with 6 
acting as the multiplicative identity. 

The S-additive inverse graph of Z30 is 

The S- special identity graph of Z30 is

We have the following theorem. 

THEOREM 3.3.3: Let Zn = {0, 1, 2, …, n – 1} be the ring of 
integers modulo n. If n = p1, p2, …, pt, t-distinct primes then Zn
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has t-number of S-special identity graphs and S-additive inverse 
graphs associated with it.

Proof: Given Zn is the ring of integers modulo n where n = p1 p2
… pt, t distinct primes. 
 Let m1 = p2 … pt
  m2 = p1p3 … pt and so on 
  mt = p1 p2 … pt–1.

Take m1Zn = {0, p1, 2p1, …, (p1 – 1)m1} clearly m1Zn is 
isomorphic to the field 

1pZ .
 Likewise miZn = {0, pi, 2pi, …, (pi – 1)mi} is a field 
isomorphic to 

ipZ , 1 � i � t. Thus relative to each field 
1pZ , …, 

tpZ we have t number of S-additive inverse graphs and S-special 
unit identity graphs associated with Zn. Hence the claim. 
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Chapter Four  

SUGGESTED PROBLEMS 

In this chapter we suggest over 50 problems for the reader to 
solve them. 

1. Characterize all groups which are k-colourable normal 
good groups. 

2. Does there exist a group G which is a k-colourable 
normal good group? (The authors think that there does 
not exist a group G which is a k-colourable normal 
good group, i.e., G is a group such that G = i

i

N� ;  Ni

� G with Ni � Nj = {1}, Ni a normal subgroup of G). 

3. Find the special identity graph of S4.

4. Find the special identity graph of A5.

5. Find the special identity graph of G = �g | g25 = 1�.
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6. Find the special identity graph of G = �g | g36 = 1�.

7. Prove or disprove isomorphic groups have identical 
special identity graphs. 

8. Are the special identity graphs of D23 and S3 same? 
Justify your claim. 

9. Find the special identity graph of G = A4 � S3.

10. Find the unit center of the special identity graph D2 15.

11. Find the special identity graph of D2 16.

12. Is it true that the unit centre of the special identity graph 
of a group is always the vertex which is the identity 
element of the group G? 

13. Can a generalized special identity graph of Sn be given, 
n any natural number? 

14. Find the special identity graph of S25.

15. Find the special identity graph of S24. (Compare the 
graphs of S25 and S24.)

16. Find the special identity graph of G = A6 � A3.

17. If G = G1 � G2 is the direct product of two groups. What 
can we say about the graph G = G1 � G2? Is it the union 
of the graphs associated with the two groups? Or is it 
the sum of the graphs associated with the two groups? 
Or there exists no relation between the graphs of G and 
G1 and G2.

18. Let G = S3 � A4 � D27 be the direct product group of S3,
A4 and D27. Obtain the special identity graph of G. Find 
the special identity graphs of A4, S3 and D27 and find 
any possible relations between them. 
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19. Find the special identity graph and the zero graph of the 
semigroup, Z32 under multiplication modulo 32. 

20. Find the zero divisor graph of the semigroup Z30 � Z12 = 
S.

21. Obtain some interesting results about special identity 
graphs of the semigroup. 

22. Let G = S5 be the symmetric group of degree 5. Find the 
conjugate graph of S5.

23. Find the conjugate graph of D29.

24. How many complete graphs does the conjugate graph of 
the group D2 30 contain? 

25. Can a generalization of the conjugate graph of Sn be 
made for any n? 

26. Find the conjugate graph of the alternating group A5.

27. Obtain all the conjugate graph of the group An; n � N. 

28. Obtain some interesting results about the conjugate 
graph of the group Sn.

29. Find the special identity graph of S6.

30. Find the special identity graph of S8 and compare it 
with the special identity graph of S27.

31. Find the special identity graph of A8 and compare it 
with the special identity graph of A27.

32. Compare the conjugacy graphs of the groups A8 and 
A27.

33. Find the special identity graph of G = S3 � A4. Find also 
the conjugacy graph of G and compare it with the 



160

conjugacy graph of S3 and A4. Does there exist any 
relation between the 3 conjugacy graphs? 

34. Find the zero divisor graph of the group ring Z2G where 
G = {g | g9 = 1}. Find the unit center of the special 
identity graph of Z2G.

35. Let Z3G be the group ring of the group G = {g | g25 = 1} 
over the field Z3.

(1) Find the special identity graph of Z3G.

(2) Find the additive inverse graph of Z3G.

(3) Find the zero divisor graph of Z3G.

36. Let Z8G where G = �g | g5 = 1� be the group ring of the 
group G over the ring Z8. Find the zero divisor graph of 
Z8G. What is the zero center? 

37. Let 2
5 2

Z [x]F
Ix x 1

	
	
 


, be the field. Find the additive 

inverse graph and the unit special identity graph of F; 
where I is the ideal generated by the polynomial x5 + x2

+ 1, in Z2[x]. 

38. Let Z23 be the field of characteristic 23. Find the 
additive inverse graph and the special identity (unit) 
graph of Z23.

39. Characterize those rings which do not contain the zero 
divisor graph. 

40. Characterize those rings which do not contain the 
special unit or identity graph. 

41. Define special identity (unit) graphs for non 
commutative rings. 
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42. Find the additive inverse graph of Z2S4. Find the zero 
divisor graph and unit graph of Z2S4.

43. Characterize those rings which has two zero centers for 
the zero graph. 

44. Does these exists rings with more than two zero centers 
for the zero graph? 

45. Can a ring with more than one unit center for the unit 
graph exist? Justify your claim. 

46. Find some interesting properties about the zero centers 
of the zero graphs of a ring. 

47. Apply the zero divisor graphs and unit graphs of a ring 
to the theory net working in computers. 

48. Obtain some interesting applications of these special 
graphs of groups and rings. 

49. Find the S-additive inverse graphs and S-special 
identity graphs of Z60.

50. Find the S-special identity graphs and S-additive 
inverse graphs of Z30G where G = �g | g12 = 1�.

51. Find the S-special identity graphs and S-additive 
inverse graphs of Z18G where G = �g | g6 = 1�.

52. Find the S-special identity graphs and S-additive 
inverse graphs of Z20S4.
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Conjugate graph of the conjugacy classes of a non
   commutative group, 79 
Cyclic group, 10 

D

Dihedral group, 10 

F

Field, 15 

G

Graphically bad group, 54 
Graphically good group, 54 
Group, 9-10 
Groupoid, 12 

I

Identity graph matrix, 75 
Identity graph of a group, 17-20 
Identity simple graph, 47 

K

k-colourable normal good groups, 65 

L

Loops, 12-3 

M

m-colourable p-sylow subgroups, 73 
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Monoid, 12 

P

Permutation group, 10 

Q

Quotient ring, 16 

R

Ring with unit, 15 
Ring, 15 
Rooted tree with four vertices, 7-8 
Rooted trees, 7-8 

S

Semigroup, 9 
Single colourable bad group, 59 
Special class of loops Ln(m), 14 
Special identity chromatic number, 49-50 
Special identity graphs, 7, 17-9, 140 
Special identity normal subgraph, 47 
Special identity subgraph of a group, 28 
Special identity subgraph, 54 
S-ring, 16 
S-semigroup, 11 
S-special additive inverse graph, 153 
S-special identity graph, 153 
Subgroup, 11 
Symmetric group, 10 
Symmetric semigroup, 9 
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T

t-colourable normal bad group, 66  
Tree, 7 

U

Unit graph of a ring, 134, 140 

Z

Zero divisors in a groupoid, 12 
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