
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Mathematics and Statistics Faculty and Staff 
Publications Academic Department Resources 

2014 

Distance in Matrices and Their Applications to Fuzzy Models and Distance in Matrices and Their Applications to Fuzzy Models and 

Neutrosophic Models Neutrosophic Models 

Florentin Smarandache 
University of New Mexico, smarand@unm.edu 

W.B. Vasantha Kandasamy 

K. Ilanthenral 

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp 

 Part of the Algebra Commons, Analysis Commons, Data Storage Systems Commons, Discrete 

Mathematics and Combinatorics Commons, Logic and Foundations Commons, Other Computer 

Engineering Commons, and the Set Theory Commons 

Recommended Citation Recommended Citation 
Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "Distance in Matrices and Their 
Applications to Fuzzy Models and Neutrosophic Models." (2014). https://digitalrepository.unm.edu/
math_fsp/227 

This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital 
Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an 
authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu, 
lsloane@salud.unm.edu, sarahrk@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_fsp
https://digitalrepository.unm.edu/math_fsp
https://digitalrepository.unm.edu/departments
https://digitalrepository.unm.edu/math_fsp?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/184?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_fsp/227?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_fsp/227?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:amywinter@unm.edu,%20lsloane@salud.unm.edu,%20sarahrk@unm.edu
mailto:amywinter@unm.edu,%20lsloane@salud.unm.edu,%20sarahrk@unm.edu




Distance in Matrices and 
Their Applications to Fuzzy 
Models and Neutrosophic 

Models  

W. B. Vasantha Kandasamy 
Florentin Smarandache 

Ilanthenral K 

2014 



2

This book can be ordered from: 

EuropaNova ASBL 
Clos du Parnasse, 3E 
1000, Bruxelles 
Belgium 
E-mail: info@europanova.be 
URL: http://www.europanova.be/ 

Copyright 2014 by EuropaNova ASBL and the Authors 

Peer reviewers: 

Dr. Stefan Vladutescu, University of Craiova, Romania. 
Dr. Octavian Cira, Aurel Vlaicu University of Arad, Romania. 
Mumtaz Ali, Department of Mathematics, Quaid-i-Azam 
University, Islamabad, 44000, Pakistan 
Said Broumi, University of Hassan II Mohammedia, 
Hay El Baraka Ben M'sik, Casablanca B. P. 7951. 
Morocco. 

Many books can be downloaded from the following 
Digital Library of Science: 
http://fs.gallup.unm.edu/eBooks-otherformats.htm

ISBN-13: 978-1-59973-315-9 
EAN: 9781599733159 

 



 3

 

 
 
 
 
 
 
 
 

CONTENTS 
  
 
 
 
 
 
 
Preface    5 
 
 
Chapter One 
INTRODUCTION TO FUZZY MODELS AND  
NEUTROSOPHIC MODELS  7 
 
 
Chapter Two 
DISTANCE IN ROW MATRICES   13 
 
 
Chapter Three 
DISTANCE IN MATRICES  75 
 
 
 
 
 
 



 4

 
 
FURTHER READING  154 
  
INDEX 167 
 
ABOUT THE AUTHORS 169 
 



 5

 
 
 
 
 
 
 
 
PREFACE 
 
 
 
 

In this book authors for the first time introduce the notion of 

distance between any two m  n matrices. If the distance is 0 or 

m  n there is nothing interesting. When the distance happens to 

be a value t; 0 < t < m  n the study is both innovating and 

interesting. The three cases of study which is carried out in this 

book are  

1. If the difference between two square matrices is large, 

will it imply the eigen values and eigen vectors of 

those matrices are distinct? Several open conjectures 

in this direction are given.  

2. The difference between parity check matrix and the 

generator matrix for the same C(n, k) code is studied. 

This will help in detecting errors in storage systems as 

well as in cryptography.  
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3. Finally this concept of difference in matrices 

associated with fuzzy models can be implemented in 

the study of the deviance or closeness of the experts 

on any common problem.  

 

Thus in this book the notion of difference in matrices is 

applied to different sets of problems which is both innovative 

and interesting. Several open conjecture makes this book a boon 

to any researcher.  

 

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

ILANTHENRAL K 
 



 
 
 
 
Chapter One 
 

 
 
INTRODUCTION TO SOME FUZZY MODELS 
AND NEUTROSOPHIC FUZZY MODELS 
 
 
 
In this chapter we just give the reference books for these 
concepts which are used in the later chapters. 
 
 For the Fuzzy Cognitive Maps (FCMs) model please refer 
Kosko the father of FCMs.  For more refer [44-5].  The concept 
of neutrosophy (or indeterminancy) was introduced by Florentin 
Smarandache in [66-9].   
 

Here we use I to be the usual notation for interminancy.  
Further fuzzy neutrosophic numbers are denoted by  

{a + bI | a, b  [0, 1], I2 = I} 
Please refer [66-9] for more information.   

 
Finally the construction of Neutrosophic Cognitive Maps 

(NCMs) was introduced in 2003 [79].  These concepts were 
defined and used in the analysis of real world problem [75-6, 
88, 92]. 
 
 Next the generalization of Fuzzy Cognitive Maps was made 
in 2003 [93].  These newly constructed models were termed as 
Fuzzy Relational Maps.  This concept was introduced in [79]. 
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 These new models has a domain space and a range space 
and function in a similar way like FCMs except the hidden 
pattern happens to be a fixed pair or a limit cycle pair one state 
vector from the domain space and another from the range space.   
 

So FRMs are advantageous for it saves time but can be 
applied only when the collection of attributes can be divided 
into two disjoint classes.  These models have been appropriately 
adopted in several real world problems [93-4].  For more about 
FRMs refer [79]. 
 
 Now this concept of fuzzy relational maps model have been 
developed to the case of Neutrosophic Relational Maps model 
in 2003 [79].  NRMs model function similar to FRMs.   
 
 Next the notion of fuzzy relational equations models  
[43, 90] have been utilized in different ways in the study [86, 
103].   
 

These models as the name suggests works on the equation 
of fuzzy matrices. For more about the functioning of these 
models refer [43, 90].  Now as in cae of FCMs we can for 
FRMs also build NRMs.   
 

Study of NRMs inseated of FRMs by some experts is 
mainly due to the fact that some of the relations cannot be 
determined that is they remain indeterminate as far as that 
expert is concerned.  
 
 Thus we need the concept of NRMs also for when the 
expert feels there is indeterminancy he / she can use NRMs [90, 
103]. 
 
 Next we consider the fuzzy relational equations (FRE) 
models.  As the name suggests FRE models function on the 
matrix equation P o Q = R.  Further they work on predicted 
solutions and also we are not guaranteed of a solution for the 
equation P o Q = R may give a solution or may not yield a 
solution. 
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 It is important to note when a solution does not exist we 
seek the method of layered neural networks.  For the 
functioning of FRE in working a real world problem please 
refer [43, 90]. 
 
 Now sometimes in the fuzzy relational equations formed 
certain experts may not be in a position to say the weightage 
they may give an indeterminate weightage.  In such situations 
the notion of Neutrosophic Relational Equations (NRE) plays a 
vital role.  
 
 For more about their properties and functioning please refer 
[43, 90]. All these three models and their neutrosophic analogue 
have been defined and used in many real world problems. 
 
 Now the notion of Bidirectional Associative Memories 
(BAM) have been introduced in [45]. 
 
 It works in an interval [–a, a] using the synaptic connection 
matrix relating the domain space and the range space.  
 

Now we define neutrosophic Bidirectional Associative 
Memories (NBAM).  We just briefly recall the working and 
construction of them from [45]. 
 
 Let n neutrons in a field FX synaptically connect with p 
neutrons in a field FY. 
 
 Imagine an axon from the ith neuron in FX that terminates in 
a synapse mij that abuts the jth neuron in FY.  We assume that 
the real number mij summarizes the synapse and the mij changes 
so slowly relative to activation fluctuation that it is constant.   
 

Thus we assume no learning when mij = 0. The synaptic 
value mij might represent the average rate of release of a 
neurotransmitter such as norepinephrine.  So as a rate mij can be 
+ve, –ve or zero.   
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The synaptic matrix or connection matrix M is an n by p 
matrix of real numbers whose entries are the synaptic efficacies 
mij.  The ijth synapse is excitatory if mij > 0, inhibitory if mij < 0. 
 

Thus a BAM system (FX, FY, M) is bidirectionally stable if 
all inputs converage to fixed point equilibria.  Bidirectional 
stability provides one example of global or absolute stability.   
 

However in the study of BAM the concept of Hamming 
metric is used but we in this book are not interested in recalling 
them or using them. 
 
 We assume the working of a BAM in a bandwidth interval 
[–B, B], B  Z+. 
 
 Here we do not bring in the logic and the derivation for 
construction of this model, we request the reader to refer to a 
great book [45]. 
 
 However we just indicate the functioning of a BAM by an 
example and this example is by no means a data pertaining to a 
real world problem. 
 
 Let M be a 7  4 synaptic connection matrix associated with 
a BAM model. 
 

M = 

4 0 0 0 0 2 0
2 3 4 3 2 3 2

3 1 2 1 1 2 2
2 0 2 0 1 3 1

 
  
     
  

. 

 
 Let YK = (–4, –3, 1, 2, 5, –3, –1) be the initial input vector. 
 
   S(YK)   =  (0 0 1 1 1 0 0) 
   S(YK)Mt  =  (0 9 –2, 3)     =  XK+1 

S(XK+1)  =  (0 1 0 1) 
S(XK+1) M =  (–4, 3, 6, 3, 3, 6, 3)   =  YK+2 
S(YK+2)  =  (0 1 1 1 1 1 1) 
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S(YK+2) Mt =  (2 17 –7 7) 
=  XK+3 

 
S(XK+3)  =  (1 1 0 1) 

 
S(XK+3) M  =  (0 3 6 3 3 6 3) 

=  YK+4 
 

S(YK+4)  = (0 1 1 1 1 1 1); 
 
leading to a fixed binary pair;  

{(0 1 1 1 1 1 1), (1 1 0 1)}. 
 
We see equilibrium of the model is achieved at the time 

K+4 when the starting time was K. 
 
Now by using an experts opinion get the synaptic 

connection neutrosophic matrix M1 if that particular experts 
wishes to work with indeterminancy.  M1 is given in the 
following: 

 

M1 =  

4 I 1 I 0 0 3 I
2I 3 3 4 2 3 2 I 2

3 1 I 2I 0 I 0 1
2 2I 2 0 I 1 3 1

 
    
    
    

. 

 
Now one can use M1 and obtain the fixed pair.  Since only 

data can deal with on or of state we work with them. 
 
If XK = (3+I, –4, –2I, 4) then S(XK) = (1 0 0 1). 
 
Note if x = a + bI occurs and a < b then replace it by zero.  

If x = a + bI, a > b then replace by 1. 
If x = cI replace by zero. 
If x = –a (a > 0) replace by zero.  
This is the way working is carried out using neutrosophic 

synaptic connection matrix. However interested reader can refer 
[45] for more information. 
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Finally for the working of the Fuzzy Associative Memories 
(FAM) refer [45]. 

 
In this book authors are mainly interested not in finding 

solutions or making predictions using experts.  Authors are 
more interested in finding the relation between the experts 
opinion when more than one expert deals with the problem.   

 
More so; analyse the result and the dynamical system 

provided by the expert. Such analysis will certainly throw more 
light on the problem. 

 
Further in case of FCMs, NCMs, FRMs and NRMs using 

the experts opinion we get the directed graphs we can analyse 
the directed graphs using the newly constructed Kosko-
Hamming weight.  

 
As most of the fuzzy models have been described defined or 

developed by Kosko, authors to keep on record his research 
contributions name the distance functions used to study or 
analyse the model as Kosko-Hamming distance.   

 
Clearly this distance is not a Hamming distance for in the 

first place it cannot find distance between any two row vectors 
of the same order.  They need to work on the initial state of 
vector and be associated with some fuzzy model.   

 
Likewise even the Kosko-Hamming weight cannot be found 

for any row vector is infact the distance between the resultant 
and the initial vector. 

 
In this book such techniques are developed in chapter II.  In 

chapter three we develop the notion of special distance between 
any two matrices of some order. This study is new and 
innovative and gives more inside information about the very 
problem and the model. 



 
 
 
 
  
Chapter Two 
 
 

 
 
DISTANCE IN ROW MATRICES  
 

 
 In this chapter we for the first time define the notion of 
distances in matrices. We know if A and B are two row matrices 
of order 1  n then the distance d(A, B) is defined as the 
Hamming distance and study in this direction is made in a 
systematic way.  But however if the matrices are not row 
matrices we do not have any such concept of distance.  Now in 
this book we define the notion of distance between two matrices 
provided they are of the same order.  To this end we recall the 
following definition. 
 
DEFINITION 2.1:  Let A and B any two 1  n row matrices.  The 
distance or the well known Hamming distance between A and B 
is defined as the number of places in which A differs from B. 
 
 We will illustrate this situation by some examples.  
 
Example 2.1:  Let  A = (3, 2, –1, 0, 7, 4, 5) and   
B = (3, 2, 5, 0 4, 2, 5) be any two 1  7 row vectors.  The 
Hamming distance between A and B is 3. 
 
Example 2.2: Let  X = (1 0 1 1 1 1 0 0 0 1) and  
Y = (0 1 1 0  0 1 0 1 1 1) vectors.  The Hamming distance 
between X and Y is 6. 
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 The concept of Hamming distance finds its applications in 
coding theory and best approximations. 
 
 However the authors have defined in [87] the concept of 
Kosko-Hamming distance in case of FCMs and NCMs models.  
For more about these please refer [87]. 
 
 Just for the sake of completion we recall the definition of 
the Kosko-Hamming distance in the following.  
 
DEFINITION 2.2:  Let M1 and M2 be any two FCMs related with 
n  n matrices working on the same set of concepts C1, C2,  
…, Cn.  We consider a state vector X = (a1, …, an) where  
ai  {0, 1}. 
 
 Let the resultant of X on M1 and M2 be given by Y1 and Y2 
respectively. 
 
 The Hamming distance between Y1 and Y2 is defined as the 
Kosko-Hamming distance denoted by dk(Y1, Y2)  n. 
 
 This is a special type of distance between two vectors.  We 
call this as a special type for any two vectors of same length we 
cannot define Kosko-Hamming distance, for the Kosko-
Hamming distance to be defined  
 

(i) We need two FCMs models on the same problem 
with same number of attributes. 

(ii) We need to work with the same initial state vector 
X. 

(iii) We get the corresponding resultant vectors say Y1 
and Y2 for the same X. 

(iv) The Hamming distance between Y1 and Y2 is defined 
as the Kosko-Hamming distance and it is denoted 
by dk(Y1, Y2). 

 
That is Kosko-Hamming distance measures how far two 

experts agree or disagree upon a given resultant state vector or 
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to be more non abstract how far two experts agree or disagree 
upon the on state of the nodes in the resultant for the same 
initial state vector.   

 
Thus from the study we can get the deviation or the 

maximum deviated state vectors of a given node can be 
specially analysed and the causes found out so that the 
researcher finds the cause of such deviation and further analyses 
the property of those special nodes. 

 
Thus the notion of Kosko-Hamming distance helps one to 

analyse the dynamical system as well as the nature of the 
experts who give their opinion regarding the social issues.  
Those nodes which have largest deviation may be termed as 
eccentric or unusual or uncommon node.   

 
Such study is new and this technique analysis the very 

system and the expert.   
 
We give one or two examples of Kosko-Hamming distance. 

 
Example 2.3 :  Let two experts work on the same problem using 
FCM with the same set of attributes say C1, …, C7.  
 

Let the matrices associated with the first expert be denoted 
by M1 which is as follows: 
 
 

M1 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

C C C C C C C
C 0 0 1 0 0 0 0
C 1 0 0 0 0 0 0
C 0 0 0 0 1 0 0
C 0 0 0 0 0 0 1
C 0 1 0 0 0 0 0
C 0 0 0 1 0 0 0
C 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
  

  

and 
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M2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

C C C C C C C
C 0 1 0 0 1 0 0
C 0 0 0 0 0 0 1
C 0 0 0 1 0 0 0
C 1 0 0 0 0 0 0
C 0 1 1 0 0 0 0
C 0 0 0 0 0 0 1
C 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
  

 

 
and let M2 be the matrix associated with the second expert 
which is as follows: 
 

Now it is pertinent to keep on record that these are only 
illustrative examples and do not form any part of any real 
problem. 

 
Let X = (0 1 0 0 0 0 0) be the given initial vector.  To find 

the effect of X on M1 and M2. 
 
XM1  =   (1 0 0 0 0 0 0) 
    (1 1 0 0 0 0 0)   (after updating). 
  =   Y1 (say) 
 
Y1M1     (1 1 1 0 0 0 0)  = Y2 (say) 
Y2M1     (1 1 1 0 1 0 0)  =  Y3 (say) 
Y3M1     (1 1 1 0 1 0 0)  =  Y4 (say). 
 
Since Y4 = Y3 the hidden pattern of the dynamical system is 

a fixed point given by Y3 = (1 1 1 0 1 0 0).  
 
Now let us find the effect of the same X on the dynamical 

system M2. 
 
XM2     (0 1 0 0 0 0 1)  =  Z1 (say) 
Z1M2     (0 1 0 0 0 1 1)  =  Z2 (say) 
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Z2M2     (0 1 0 0 0 1 1)  =  Z3 (say). 
 Clearly Z2 = Z3 so the hidden pattern of the dynamical 
system M2 is a fixed point given by Z2 = (0 1 0 0 0 1 1). 
 
 Now we find the Kosko-Hamming distance between Y3  
and Z2. 
 
     dk(Y3,  Z2) = 5. 
 
 We see both the experts vary very much from each other on 
the node C2.  They agree upon only on the node C4.  Hence the 
researcher should take a special study on the two experts 
opinion for cause of the very large deviation.  The researcher 
should note such nodes and their resultant. 
 
 Let X = (0 0 0 1 0 0 0) be the initial state vector for which 
the experts wishes to find the hidden pattern using the matrices 
M1 and M2. 

 
XM1    (0 0 0 1 0 0 1)  =  Y1 (say) 
Y1M1   (0 0 0 1 0 1 1)  =  Y2 (say) 
Y2M1    (0 0 0 1 0 1 1)  =  Y3 (say). 
 
Clearly Y2 = Y3; thus the hidden pattern of X is the fixed 

point given by Y2 = (0 0 0 1 0 1 1). 
 
Now we find the hidden pattern of  X on the dynamical 

system M2, XM2  (1 0 0 1 0 0 0) = Z1 (say) 
 
Z1M2    (1 0 0 1 1 0 0)  =  Z2 (say) 
Z2M2    (1 0 1 1 1 0 0)  =  Z3 (say) 
Z3M2    (1 0 1 1 1 0 0)  =  Z4 (say). 
 
Z4 = Z3, hence the hidden pattern is a fixed point.  We see 

the Kosko-Hamming distance between Z3 and Y2 is given by 
dH(Y2, Z3) = dH ((0 0 0 1 0 1 1), (1 0 1 1 1 0 0)) = 5.   
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We see the on state of the node C4 also makes both the 
experts differ drastically.  So on the nodes C2 and C4 they have a 
very varied opinion. 

Let X = (0 0 0 0 0 0 1) be the initial state vector for which 
we find the hidden pattern using M1 and M2. 

 
XM1   (0 0 0 0 0 1 1) = Y1 (say) 
Y1M1   (0 0 0 1 0 1 1) = Y2 (say)   
Y2M1   (0 0 0 1 0 1 1) = Y3 (say). 

 
Clearly Y3 = Y2. Hence the hidden pattern is a fixed point. 
 
Consider the effect of X on the dynamical system M2. 
   

XM2   (0 0 0 0 0 1 1) = Z1  
Z1M1   (0 0 0 0 0 1 1) = Z2  
Z2 = Z4. 

 
The Kosko-Hamming distance dH(Y2, Z2) = 1.  The experts 

are close for the node C7.  
 
Finally consider the on state of the node C5.  

X = (0 0 0 0 1 0 0); we find the effect of X on the dynamical 
system M2 is as follows: 

 
XM2   (0 1 1 0 1 0 0) = Y1 (say) 
Y1M2   (0 1 1 1 1 0 1) = Y2 (say) 
Y2M2   (1 0 1 1 1 1 1) = Y3 (say) 
Y3M2   (1 0 1 1 1 1 1) = Y4 (say). 

 
Clearly Y3 = Y4 is a fixed point. 
 
Now we study the effect of X on M1. 
 

XM1   (0 1 0 0 1 0 0) = Z1 (say) 
Z1M1   (1 1 0 0 1 0 0) = Z2 (say) 
Z2M1   (1 1 1 0 1 0 0) = Z3 (say) 
Z3M1   (1 1 1 0 1 0 0) = Z4 (say). 
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But Z4 = Z3 hence the hidden pattern is  a fixed point  

dk(Y3, Z3) = 4.  The deviation is fairly large.   
 
Thus the experts have diverse opinion of the same problem 

for the same node. 
 
This is clearly evident from the Kosko-Hamming distance 

between the resultant vectors. 
 
Now we can from the study of Kosko-Hamming distance 

determine how far two experts agree on the on state of a node 
that is the effect of the on state of that node on the dynamical 
system by finding the Hamming distance between the initial 
state vector X and the resultant state vector Xt which is termed 
as the Kosko-Hamming weight.  

 
So Kosko-Hamming weight is different from the Hamming 

weight for Kosko-Hamming weight determines the Hamming 
distance between the state vector given by the hidden pattern 
and the initial state vector.   

 
Such study is new and the greater the Kosko-Hamming 

weight the greater the impact that on state node has on the 
dynamical system.  

 
We will illustrate this by some examples. 
 

Example 2.4:  Let three experts say E1, E2 and E3 work on the 
same problem with the same set of attributes or concepts say  
C1, …, C8. 
 
 The connection matrices related with experts E1, E2 and E3 
is respectively M1, M2 and M3. 
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M1 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C C C C C C C C
C 0 1 0 0 0 0 1 0
C 0 0 1 0 0 0 0 0
C 0 0 0 0 1 0 0 0
C 1 0 0 0 0 0 0 1
C 0 0 0 1 0 0 0 0
C 0 0 0 0 1 0 0 0
C 0 0 0 0 0 1 0 0
C 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 

be the connection matrix associated with the first expert.   
 
Let 
 

M2 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C C C C C C C C
C 0 0 0 0 1 0 0 0
C 0 0 0 0 0 0 0 1
C 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0
C 0 1 0 0 0 0 0 0
C 0 0 0 1 0 0 0 0
C 0 0 0 0 0 1 0 0
C 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 

be the connection matrix associated with the second expert.   
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Let 

M3 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C C C C C C C C
C 0 0 0 0 0 0 0 1
C 0 0 0 1 0 0 0 0
C 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 1 0
C 0 1 0 0 0 0 0 1
C 0 0 1 0 0 0 0 0
C 0 0 0 0 0 1 0 0
C 0 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

  

 
 
be the connection matrix given by the third expert. 
 
 Now we find the effect of X = (0 0 1 0 0 0 0 0) on all the 
three dynamical systems and calculate the Kosko-Hamming 
distances and the Kosko-Hamming weight of the vector X 
relative to the three experts. 
 
 The effect of X on the dynamical system M1 is given in the 
following 
 
   XM1  (0 0 1 0 1 0 0 0) = Y1 (say) 
   Y1M1  (0 0 1 1 1 0 0 0) = Y2 (say) 
   Y2M1  (1 0 1 1 1 0 0 1) = Y3 (say) 
   Y3M1  (1 1 1 1 1 0 1 1) = Y4 (say) 
   Y4M1  (1 1 1 1 1 1 1 1) = Y5 (say) 
   Y5M1  (1 1 1 1 1 1 1 1) = Y6 (say). 
 
 Y5 = Y6 is a fixed point.   
 

We see the Kosko-Hamming weight of X is dk(X, Y5) = 7.   
 

This clearly shows that this node is very powerful node for 
it makes every other node to come to on state.  But however 
whether it an influential node is to be analysed.  
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 The effect of X on the dynamical system M2 is given in the 
following. 
 
   XM2  (1 0 1 0 0 0 0 0) = Z1 (say) 
   Z1M2  (1 0 1 0 1 0 0 0) = Z2 (say) 
   Z2M2  (1 1 1 0 1 0 0 0) = Z3 (say) 
   Z3M2  (1 1 1 0 1 0 0 1) = Z4 (say) 
   Z4M2  (1 1 1 0 1 0 1 1) = Z5 (say) 
   Z5M2  (1 1 1 0 1 1 1 1) = Z6 (say) 
   Z6M2  (1 1 1 1 1 1 1 1) = Z7 (say) 
   Z7M2  (1 1 1 1 1 1 1 1) = Z8 (say). 
 
 Clearly Z7 = Z8 so hidden pattern is a fixed point.  Hence 
the Kosko - Hamming weight of X relative to M2 is also  
dk(X, Z7) = 7. 
 
 So this X is also a powerful node as all other nodes come to 
on state  in the resultant according to the second expert also.  
 
 Now we find the effect of X = (0 0 1 0 0 0 0 0) on the 
dynamical system M3. 
   
   XM3  (1 0 1 0 0 0 0 0) = S1 (say) 
   S1M3  (1 0 1 0 0 0 0 1) = S2 (say) 
   S2M3  (1 0 1 0 1 0 0 1) = S3 (say) 
   S3M3  (1 1 1 0 1 0 0 1) = S4 (say) 
   S4M3  (1 1 1 1 1 0 0 1) = S5 (say) 
   S5M3  (1 1 1 1 1 0 1 1) = S6 (say) 
   S6M3  (1 1 1 1 1 1 1 1) = S7 (say) 
   S7M3  (1 1 1 1 1 1 1 1) = S8 (say). 
 
 The hidden pattern is a fixed point so S7 = S8.  
 
 Further the Kosko-Hamming weight dk(X, S7) = 7.  This 
node also is a powerful node so all nodes come to on state. 
 
 Now we find the Kosko-Hamming distance for the resultant 
vectors by the three experts with respect to the initial state 
vector X.  
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   dk(Y5, Z7) = 7 
   dk(Y5, S7) = 7 and 
   dk(Z7, S7) = 7. 
 
 Thus the Kosko-Hamming distance of all the three pairs of 
resultant vectors by the three experts whose initial vector is X is 
the same in this case. 
 
 Let us consider the initial state vector B = (0 0 0 0 0 1 0 0); 
with only the node C6 in the on state and all other nodes.  The 
effect of B on the matrix M1 is  
  
   BM1  (0 0 0 0 1 1 0 0) = Y1 (say) 
   Y1M1  (0 0 0 1 1 1 0 0) = Y2 (say) 
   Y2M1  (1 0 0 1 1 1 0 1) = Y3 (say) 
   Y3M1  (1 1 0 1 1 1 1 1) = Y4 (say) 
   Y4M1  (1 1 1 1 1 1 1 1) = Y5 = Y4 (say) 
   Y5M1  (1 1 1 1 1 1 1 1) = Y6 = Y5 (say). 
 
 Thus the hidden pattern in this case is a fixed point given by 
Y5 = Y4.  
 
 Consider XM2  (0 0 0 1 0 1 0 0) = S1 (say) 
 
 S1M2  (0 0 0 1 0 1 0 0) = S2 (say), 
 
 S2 = S1 a fixed point. 
 
 Consider the effect of X on the dynamical system M3. 
 
   XM3  (0 0 1 0 0 1 0 0) = Z1 (say) 
   Z1M3  (1 0 1 0 0 1 0 0) = Z2 (say) 
   Z2M3  (1 0 1 0 0 1 0 1) = Z3 (say) 
   Z3M3  (1 0 1 0 1 1 0 1) = Z4 (say) 
   Z4M3  (1 1 1 0 1 1 0 1) = Z5 (say) 
   Z5M3  (1 1 1 1 1 1 0 1) = Z6 (say) 
   Z6M3  (1 1 1 1 1 1 1 1) = Z7 (say) 
   Z7M3  (1 1 1 1 1 1 1 1) = Z8 (say). 
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 Thus the hidden pattern is a fixed point given by Z8 = Z7. 
 
 Now the Kosko-Hamming weight of X is 
 
   wk(Y5) = dk(X, Y5) = (7). 
   wk(S2) = dk(X, S2) = 1 and 
   wk(Z7) = dk(X, Z7) = 7.   
 

Thus the Kosko-Hamming weight is the maximum in case 
of the dynamical systems associated with experts one and three 
which clearly shows the on state of C6 makes on all other nodes 
their by making C6 a powerful node.  However according to the 
second expert the node C6 is not powerful node as the weight is 
only one.  So the two experts vary from the second expert. 
 
 Thus the Kosko-Hamming weight denoted by wk is the 
weight of the resultant Y of X if t of the nodes are on in X then 
weight of the resultant Y denoted by  
wk(Y) = {number of differences between X and Y}. 
 
 Clearly Kosko-Hamming weight is different from the usual 
Hamming weight. 
 
 Likewise the Kosko-Hamming distance is different from the 
usual Hamming distance.  Both Kosko-Hamming distance and 
Kosko-Hamming weight are dependent on the initial state 
vector X associated with a fuzzy model. 
 
THEOREM 2.1:  Let M be the connection matrix of the FCM 
with n attributes. For any initial state vector X we see the 
Kosko-Hamming weight of the resultant state vector of Y of X 
denoted by wk(Y) = dk(X, Y) measures the influence of those on 
states in X over the system. 
 

(i) wk(Y) = 0 if and only if X has no impact on the 
dynamical system. 

(ii) If wk(Y) = n – r; where r is the number of on state 
vectors in X shows the collection of those nodes in 
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X in the on state are powerful set of nodes as all 
nodes come to on state in Y. 

(iii) wk(Y) = dk(X, Y) = t, 0  t  n–r and that number  
shows the power of the r nodes in the on state in X 
over the dynamical system. 

 
The proof is direct and hence left as an exercise to the 

reader. 
 
However we are not in a position to conclude they are the 

most influential nodes of the system.   
 
That is why we only use the term powerful node.  
 
We will illustrate these situations by some examples. 

 
Example 2.5:  Let M be the matrix associated with the FCM 
model given by an expert.  
 

M = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C
C 0 1 0 1 0 0
C 0 0 0 0 0 0
C 1 0 0 0 0 0
C 0 0 0 0 1 0
C 0 0 0 0 0 1
C 0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

 

 
be the connection matrix.  
 

Let X = (0 1 0 0 0 1) be the given initial state vector.  To 
find the effect of X on the dynamical system M is as follows. 
 
    XM  (0 1 0 0 0 1) = Y1 
    Y1M  (0 1 0 0 0 1) = Y2. 
 
    Y1 = Y2 is a fixed point.  
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 We see dk(X, Y1) = (0) that is the Kosko-Hamming distance 
is zero.  Further Kosko-Hamming weight is also zero.   
 
   wk(X) = dk(X, Y1) = 0. 
 
 Thus the on state of these two nodes has nil effect on the 
system. 
 
 Let X = (1 1 0 0 0 1) be the given initial state vector. 
 
 To find the hidden pattern of X on the dynamical system 
 
   XM  (1 1 0 1 0 1) = Y1  
   Y1 M  (1 1 0 1 1 1) = Y2 

  Y2 M  (1 1 0 1 1 1) = Y3 
 
    Y2 = Y3. 
 
 The Kosko-Hamming distance is dk(X, Y2) = 2 = wk(x)  
the Kosko-Hamming weight.  
 
 Let M1 be the another matrix of the same problem given by 
the second expert.  
 
 

M1 = 

1 2 3 4 5 6

1

2

3

4

5

6

C C C C C C
C 0 0 1 0 0 0
C 0 0 0 0 0 0
C 1 0 0 0 0 0
C 0 0 0 0 0 1
C 0 1 0 0 0 0
C 0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

. 

 
 
 Let X = (0 1 0 0 0 1) be the initial state vector. 
 
 XM  (0 1 0 1 0 1) = Z1 
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 Z1M  (0 1 0 1 0 1) = Z2 = Z1. 
 
 The hidden pattern is a fixed point. 
 
 The Kosko-Hamming distance dk(Z1, Y2) = 2. 
 
 The two experts do not vary much vary in one or two  nodes 
of the given three nodes.  
 
Example 2.6:  Let us consider the two experts connection 
matrices of the FCMs of the problem with the same set of 
attributes. Let 
 

M1 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C C C C C C C C
C 0 0 0 0 0 0 0 0
C 1 0 0 0 0 0 0 0
C 0 0 0 1 0 0 0 0
C 1 0 0 0 0 0 1 0
C 0 0 0 0 1 0 0 0
C 0 0 1 0 0 0 1 0
C 0 0 0 0 0 0 0 1
C 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

 

and 
 

M2 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C C C C C C C C
C 0 0 0 1 0 0 0 0
C 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 1
C 1 0 0 0 0 1 0 0
C 0 0 1 0 0 0 0 0
C 0 0 0 1 0 0 0 0
C 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  
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be any two connection matrices.   
 

To find the effect of the state vector;  
 
 X = (1 0 0 1 0 0 0 0) on the dynamical system M1 and M2. 
 
   XM1  (1 0 0 1 0 0 1 0) = Y1 
   Y1M1  (1 0 0 1 0 0 1 1) = Y2 
   Y2M1  (1 0 0 1 0 0 1 1) = Y3 
 
 The hidden pattern of X is a fixed point given by Y3 = Y2.  
Let us find the effect of the initial state vector X on  
XM2  (1 0 0 1 0 1 0 0) = Z1. 
 
   Z1M2  (1 0 0 1 0 1 0 0) = Z2 (say) 
   Z2M2  (1 0 0 1 0 1 0 0) = Z3 (say). 
 
 We see Z3 = Z2 is the fixed point.  
 
 Now the Kosko-Hamming distance d(Y2, Z2) = 3. 
 
 Thus the two experts differ in three nodes.  The Kosko-
Hamming weight of X given by the first expert  

wk(X) = dk(X, Y3)  = 2. 
 
 The Kosko-Hamming weight associated with the second 
expert is  
  
     dk(X, Z2) = wk(X) = 1 
 
which shows the influence of the on state of these two nodes is 
very limited.  The effect is only on one more node.  
 
 Such analysis of the hidden patterns and the relation 
between experts are possible only by using the Kosko-Hamming 
distance and Kosko-Hamming weight. 
 
 Next we study the Kosko-Hamming distance in case of 
Fuzzy Relational Maps (FRMs). 
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 We know in case of FRMs we get for any initial state vector 
a pair of resultant vectors.  However we can find only effect of 
them in case of Kosko-Hamming weight as well as Kosko-
Hamming distance.   
 

We shall first illustrate this situation by an example or two. 
 
Example 2.7: Let two experts work on a problem using FRMs 
with the same number of domain and range attributes. 
 

Let M1 = 

1 2 3 4 5

1

2

3

4

5

6

R R R R R
D 1 0 0 0 1
D 0 1 0 0 0
D 0 0 0 0 0
D 0 0 1 0 0
D 1 0 0 0 1
D 0 1 0 0 0

 
 
 
 
 
 
 
 
  

 

 
be the dynamical system associated with the first expert.  
 
Let 

M2 = 

1 2 3 4 5

1

2

3

4

5

6

R R R R R
D 0 1 0 0 1
D 0 0 0 1 0
D 0 0 0 0 0
D 1 0 0 0 0
D 0 0 0 1 0
D 0 1 0 0 0

 
 
 
 
 
 
 
 
  

 

 
be dynamical system associated with the second expert.   
 

Let us now find the hidden pattern 
 
 X = (1 0 0 0 0 0) an initial vector from the domain space of 
attributes. 



30 Distance in Matrices and Their Applications to … 
 
 
 
 
 
 
 
 
 
 
 

 
    XM1  (1 0 0 0 1) = Y (say) 
    Y t

1M   (1 0 0 0 1 0) = X1 (say) 
    X1 M  (1 0 0 0 1) = Y1 (say) 
    Y1

t
1M   (1 0 0 0 1 0) = X2. 

 
 But X2 = X1, thus the hidden pattern is a fixed pair given by 
{(1 0 0 0 1 0), (1 0 0 0 1)}. 
 
 Now we find the effect of X on the dynamical system M2. 
 
    XM2  (0 1 0 0 1) = Z1 
    Z1

t
2M   (1 0 0 0 0 1) = Y1 

    Y1M2  (1 1 0 0 1) = Z2 
    Z2 t

2M   (1 0 0 1 0 1) = Y2 
    Y2M2  (1 1 0 0 1) = Z3. 
 
 We see Z3 = Z2.  Thus the hidden pattern of the dynamical  
system is a fixed pair given by {(1 0 0 1 0 1), (1 1 0 0 1)}. 
 
 Now the Kosko-Hamming distance is given by 
 
    dk((1 0 0 0 1 0), (1 0 0 1 0 1)) = 3 and  
   
    dk((1 0 0 0 1), (1 1 0 0 1)) = 1. 
 
 Thus we see the two experts vary in three nodes in the 
domain space where as they differ only in one node in the range 
space.   
 

Now we work using the initial vector from the range space. 
 
 Let B = (0 1 0 0 0) be the initial state vector given by the 
expert from the range space. 
  
    B t

1M   (0 1 0 0 0 1) = Y1 (say) 
    Y1M1  (0 1 0 0 0) = X = B. 
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 Thus the hidden pattern is a fixed pair given by  

{(0 1 0 0 0), (0 1 0 0 0 1)}. 
 
 Now we find the hidden pattern of B on dynamical system 
given by the matrix M2 
 
   B t

2M   (1 0 0 0 0 1) = Z (say) 
   ZM2  (0 1 0 0 1) = B1 
   B1 t

2M   (1 0 0 0 0 1) = Z1. 
 
 Z1 = Z.  Thus the resultant is a fixed point given by the pair  

{(0 1 0 0 1), (1 0 0 0 0 1)}. 
 
 The Kosko-Hamming distance given by  
 
   dk((0 1 0 0 0), (0 1 0 0 1)) = 1 and 
 
   dk((0 1 0 0 0 1), (1 0 0 0 0 1)) = 2. 
 
 Thus the two experts mostly agree on the effect of the state 
vector X. 
 
Example 2.8:  Let M1 and M2 be the two connection matrices of 
the FRM given by two experts working on the same set of 
attributes on the same problem. 
 
 Let the connection matrices of both experts be as follows: 
 

M1 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

C C C C C C C C
d 1 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0
d 0 0 1 0 0 0 0 0
d 0 1 0 0 0 1 0 0
d 0 0 1 0 0 0 1 0
d 0 0 0 1 0 1 0 0

 
 
 
 
 
 
 
 
  

 and 
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M2 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

C C C C C C C C
d 0 1 0 0 0 0 0 0
d 0 0 0 1 0 0 0 0
d 0 0 0 0 0 0 0 0
d 1 0 0 0 0 1 0 0
d 0 0 0 0 1 0 0 1
d 0 0 0 1 0 0 0 1

 
 
 
 
 
 
 
 
  

 

 
be the two matrices related with the FRM of the two experts.  
 
 Now we find the effect of the initial state vector  
X = (0 0 0 1 0 0) from the domain space.  Only the node d4 is in 
the on state and all other nodes are in the off state. 
 
   XM1  (0 1 0 0 0 1 0 0) = Y1 (say) 
   Y1

t
1M   (0 0 0 1 0 1) = X1 (say) 

   X1 M1  (0 1 0 1 0 1 0 0) = Y2 (say) 
   Y2

t
1M   (0 0 0 1 0 1) = X2. 

 
 But X2 = X1.  Thus the hidden pattern is the fixed point pair 
given by 
 
   B = {(0 0 0 1 0 1), (0 1 0 1 0 1 0 0)}.  
 
 Now we find the effect of X on the system M2. 
 
   XM2  (1 0 0 0 0 1 0 0) = Z1 (say) 
   Z1

t
2M   (0 0 0 1 0 0) = X2 = X1. 

 
 Thus the hidden pattern is the fixed point pair given by  

B1 = {(0 0 0 1 0 0), (1 0 0 0 0 1 0 0)}. 
 
 Now the Kosko-Hamming distance pair is (1, 3).   
 

We see the difference is not very large.  
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 Let us consider the on state of the node in the range space  
Y = (0 0 0 0 1 0 0 0). 
 
   Y t

1M   (0 0 0 0 0 0) = Z1 say 
   Z1M1  (0 0 0 0 1 0 0 0). 
 
 The hidden pattern is a fixed point pair given by  
{(0 0 0 0 0 0), (0 0 0 0 1 0 0 0)} 
 
 Now we find the effect of the initial state vector Y on the 
dynamical system M2.   
 
   Y t

2M   (0 0 0 0 1 0) = Z1 (say) 
   Z1M2  (0 0 0 0 1 0 0 1) = Y1 
   Y1 t

2M   (0 0 0 0 1 1) = Z2 (say) 
   Z2 M2  (0 0 0  1 1 0 0 1) = Y2 (say) 
   Y2

t
2M   (0 1 0 0 1 1) = Z3 (say) 

   Z3M2  (0 0 0 1 1 0 0 1) = Y3. 
 
 Thus the hidden pattern is a fixed pair given by  

{(0 1 0 0 1 1), (0 0 0 1 1 0 0 1)}. 
 
 The Kosko - Hamming distance pair is given by (3, 2). 
 
 According to the first expert no effect on the system is 
possible.  But according to the second expert there is impact on 
the system. 
 
 Let us consider the on state of the nodes C1 and C3 in the 
range space; that is X = (1 0 1 0 0 0 0 0). 
 
 The effect of X on M1 is given by 
 
   X t

1M   (1 0 1 0 1 0) = Z1 
   Z1M1  (1 0 1 0 0 0 1 0) = X1 
   X1

t
1M   (1 0 1 0 1 0 ) = Z2 

   Z2M1  (1 0 1 0 0 0 1 0) = X2. 
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    But X2 = X1.   
 

Thus the hidden pattern is a fixed pair given by  
{(1 0 1 0 1 0), (1 0 1 0 0 0 1 0)}. 
 
 Now we study the effect of X on M2. 
 
   X t

2M   (0 0 0 1 0 0) = Y1 (say) 
   Y1 M2  (1 0 1 0 0 1 0 0) = X1 (say) 
   X1

t
2M   (0 0 0 1 0 0) = Y2. 

 
 But Y2 = Y1.  Thus the hidden pattern is a fixed pair given 
by {(0 0 0 1 0 0), (1 0 1 0 0 1 0 0)}. 
 
 Now the Kosko-Hamming distance pair is {(4, 2)}. 
 
 This is the way the Kosko-Hamming distance for a pair of 
hidden patterns is determined. 
 
 We can also define the Kosko-Hamming distance in case of 
Fuzzy Relational Equations (FRE) model, Bidirectional 
Associative Memories model (BAM) model and the Fuzzy 
Associative Memories (FAMs) model.   
 

But the way they analyse these models is different from 
FRMs and FCMs. 
 
 We will first illustrate how the notion of Kosko-Hamming 
distance of two vectors in the case of FRE.  
 

We have already recalled the working of the FREs in 
chapter I. 
 
 Suppose we use a FRE where the domain or the row 
variables are n in number and the number of column variables 
are m in number and we work with a n  m FRE model.  
Suppose two experts work with the same order n  m matrices.   
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We have a pre determined limit set say S1, S2, …, Sn  with 
the fixed values (s1, s2, …, sn) and each si lies between 0 and 1,  
1  i  n. 
 
 Now we adopt the notion of Kosko-Hamming distance in 
two ways. 
 
 If after working with a set of values (a1, …, an) we find 
dH((s1, …, sn), (b1, …, bn)) where (b1, …, bn) is the resultant 
given by (a1, …, an).  If the number of differences is say t.  
 

We say t constraints differ from the fixed values.  
 
 However this does not give the positive or negative 
deviance but the amount of deviance from the fixed value.  
 
 So we define the new notion of Kosko-Hamming deviance 
function; 
 
   f : (s1, …, sn)  (b1, …, bn) by f(s1, …, sn) 
   = (s1 – b1, s2 – b1, …, sn – bn). 
 
 We know si – bi is + ve or –ve or 0;  1  i  n. 
 
 If zero we say there is no deviance. 
 
 If si – bi < 0 we say negative deviance and if si – bi > 0 we 
say the deviance is positive. 
 
 We know or can assess that negative deviance is always 
accepted and the positive deviance is not to that extent accepted.  
 
 Since all our working is based on approximations we can 
get a value for si – bi > 0 to be negligible and for some value the 
resultant to be rejected.  
 
 Further if si – bi < 0 then if si is the acceptance value then bi 
is clearly more acceptable.   
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Finally we find for two resultant vectors for the same input 
the Kosko-Hamming distance between two experts are defined 
in two ways. 
 

(1) dk(x, y) = difference between the positions. 
(2) dk(x, y) = (|x1 – y1| |x2 – y2|, …, |xn – yn|) 

 
where we find |x – y| = (|x1 – y1| |x2 – y2|, …, |xn – yn|). 
 
where x = (x1, x2, …, xn) and y = (y1, y2, …, yn). 
 
We will fix a pre-assigned value ; || < 1 to accept or 

reject the solution or inform the deviation is small or large. 
 
We will illustrate this situation by some examples. 

 
Example 2.9:  Let two experts work with the same problem 
having the same number of domain concepts and range 
concepts.  They work with same set of limit sets. 
 
 The limit set is as follows: 
 
 s1  0.6  it is good  s1 < 0.6 not so good. 
 
 s2  0.5 it is acceptable if s2 < 0.5 not acceptable. 
 
 s3  0.6 the value of tolerable if s3 < 0.6 is not tolerable. 
 
 s4  0.5 the exception is best s4 < 0.5 the exception not at its 
best. 
 
 s5  0.6 the acceptance level is good if s5 < 0.6 cannot be 
accepted. 
 
 s6  0.4 the quality is fair s6 < 0.4 is not that fair. 
 
 s7  0.6 the quality is preferable if s7 < 0.6 the quality is not 
preferable. 
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 We give the membership matrix given by two experts.  
 

M1 = 

0 0.6 0 0.7 0.8 0.6 0.8
0.3 0.1 0.6 0.6 0 0.5 0.7
0.6 0.8 0 0.7 0.7 0.5 0.6
0 0 0.7 0.6 0 0 0
0 0 0.6 0.3 0 0.2 0

0.1 0 0 0.2 0 0.1 0
0.2 0 0.7 0.6 0 0.5 0.7

 
 
 
 
 
 
 
 
 
  

 

 
is the membership matrix given by the first expert.  
 
 The membership matrix M2 is given by the second expert.  
 
 

M2 = 

0.1 0.7 0.1 0.8 0.9 0.7 0.8
0.4 0.2 0.7 0.7 0.1 0.4 0.6
0.7 0.8 0.1 0.7 0.1 0.6 0.6
0.2 0.1 0.8 0.6 0 0.1 0
0.5 0 0.6 0.4 0 0.2 0.3
0.1 0.1 0.2 0.3 0.1 0.1 0.1
0.3 0 0.8 0.4 0 0.4 0.8

 
 
 
 
 
 
 
 
 
  

. 

 
 
 Now we find the solutions for  
P = (0.7, 0.5, 0.7, 0.4, 0.8, 0.6, 0.3) using M1 and M2. 
 
   Po M1  = R1 and 
   P o M2 = R2. 
   P o M1 = (0.8, 0.6, 0.7, 0.7, 0.6, 0.2, 0.7). 
   P o M2 = (0.8, 0.7, 0.7, 0.7, 0.6, 0.3, 0.7). 
 
 We find the Kosko-Hamming distance of R1 and R2 for the 
value P is given in the following.  
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 dk(R1, R2) = (2).  This shows the two experts almost agree 
with the values.  The distance between components of R1 and R2 
is 
 
   dk(R1, R2) = (0, 0.1, 0, 0, 0, 0.1, 0). 
 
 The difference is very small.   
 

The deviance function f : (s1, …, s7)  R1 is as follows. 
 
   f{(0.6, 0.5, 0.6, 0.5, 0.6, 0.4, 0.6}  
   
   = (0.2, 0.1, 0.1, 0.2, 0, 0.2, 0.1). 
 
   f : (s1, …, s7)  R2 is as follows. 
 
   f{(0.6, 0.5, 0.6, 0.5, 0.6, 0.4, 0.6}  
 
   = (0.2, 0.2, 0.1, 0.2, 0, 0.1, 0.1). 
 
 If we take  = 0.3 then certainly the deviation function is 
negligible. 
 
 This is the way different types of Kosko-Hamming distance 
functions are defined.  
 
 They help in analyzing the resultant vector using the three 
types of Kosko-Hamming distance / functions. 
 
 Interested reader can give more examples. 
 
 Next we show how this concept of Kosko-Hamming 
distance is used in the FAM (Fuzzy Associative Memories) 
model.   
 

The functioning of FAM’s is recalled in chapter I of this 
book.  
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We know a FAM model functions on the collection of 
attributes in the domain space and a collection of attributes from 
the range space.  

 
We have a map assigning membership function. Using these 

we get the fuzzy matrix given by the experts. 
 
 Using the same fit vector say A for the same problem and 
using the two experts whose associated matrices are M1 and M2 
we find resultant say B1 and B2 respectively.  
 

Now we find the Kosko-Hamming distance.  
 
   dk(B1, B2) = n  0. 
 
 This measures the deviation between the two experts.   
 
 We will illustrate this situation by an example or two. 
 
Example 2.10: Let us consider the three matrices given by three 
experts associated with the FAM model in the analysis of the 
problems related with the HIV / AIDs patients.  [75-6] 
 

On the domain side bad habits leading to HIV / AIDs is 
taken and consequences suffered by HIV / AIDs patients is 
taken as the range space.   
 
 Let M1 be the matrix given by the first expert 
 

M1 = 

0.6 0.7 0.8 0.6
0.4 0.3 0.6 0.2
0.5 0.7 1 0.8
0.7 0.3 0.5 0.6
0.4 0.7 0.5 0.6
0.5 0.5 0.5 0.5

 
 
 
 
 
 
 
 
  

. 

 
 Let M2 be the matrix given by the second expert 
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M2 = 

0.5 0.6 0.7 0.6
0.5 0.4 0.5 0.3
0.4 0.6 1 0.7
0.6 0.2 0.5 0.5
0.2 0.5 0.4 0.5
0.4 0.6 0.6 0.5

 
 
 
 
 
 
 
 
  

. 

 
  Let M3 be the matrix given by the third expert 
 

M3 = 

0.7 0.7 0.7 0.7
0.5 0.2 0.5 0.3
0.4 0.8 1 0.6
0.5 0.4 0.5 0.5
0.3 0.5 0.5 0.5
0.3 0.6 0.6 0.5

 
 
 
 
 
 
 
 
  

. 

 
 Let A = (0.7, 0.5, 0.8, 0.4, 0.3, 0.6) be the input vector. 
 

We get the following output vectors for M1, M2 and M3 as  
B1 = (0.6, 0.7, 0.8, 0.8),  
B2 = (0.5, 0.6, 0.8, 0.7) and   
B3 = (0.7, 0.8, 0.8, 0.7) respectively. 

 
 The Kosko-Hamming distances are as follows: 
 
     dk(B1, B2) = 3, 
     dk(B1, B3) = 3 and 
     dk(B2, B3) = 2.   
 

We see the experts two and three are more close than the 
experts one and two and one and three. 

 
Thus the notion of Kosko-Hamming distance helps one to 

find the closeness of the expert for the output vectors for the 
given input vector.  
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This is the way we find the closeness in the prediction of the 
experts working on the same problem relative with the same 
input vector. 

 
It is left as an exercise to the reader to find the examples of 

Kosko-Hamming distance in case of FAM. 
 
It is interesting we can also mention that we can find the 

average FAM.  We take say n experts working on the same 
problem with or domain attributes and s range attributes, so that 
each expert has a r  s, FAM matrix associated with them. 

 
Let M1, M2, …, Mn be the n, r  s matrices of the FAM.  

The average FAM matrix is 1/n  Mi = M. 
 
Now if we work with A an initial state vector.  If Bi is the 

resultant output state vector using the matrix Mi and B is the 
resultant of the output vector for the initial state vector A using 
M. 

 
We find the Kosko-Hamming distance dk(B, Bi) = t, if t is 

small we say the difference between the average and the expert 
one is not very large. 

 
So here also the notion of Kosko-Hamming distance is 

used. We will illustrate this situation by an example. 
 
Consider the above examples we find  

 
M = 1/3 (M1 + M2 + M3) 

 

= 

0.6 0.67 0.73 0.63
0.46 0.3 0.53 0.26
0.43 0.7 1 0.7
0.6 0.3 0.5 0.53
0.3 0.56 0.46 0.53
0.4 0.56 0.56 0.5

 
 
 
 
 
 
 
 
  

. 
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For the same A = (0.7, 0.5, 0.8, 0.4, 0.3, 0.6) we find B, B = 
(0.6, 0.7, 0.8, 0.7); 

 
dk(B, B1)  = 1, 
dk(B, B2) = 2 and dk(B, B3) = 2. 

 
Thus from the average the deviation is small.  
 
Hence we can also find the average and get the Kosko-

Hamming distance. 
 
If we fix a min or value of acceptance if dk(B, Bi) = t, t a pre 

determined value by the researcher expert.  
 
This is also one of the mode of analysis and acceptance of a 

experts opinions. 
 
Likewise we in case of FRM and FCMs also find the 

average value of the experts who work with the problem and 
then find the Kosko-Hamming distance between the resultant 
state vector of an initial vector using the average matrix and the 
resultant state vector of each of the experts. 

 
This will be illustrated by an example or two. 

 
Example 2.11:  Let us consider the following FREs whose limit 
sets are already given in example. 
 

Let P1 = 

0 0.6 0 0.7 0.8 0.6 0.8
0.3 0.1 0.6 0.6 0 0.5 0.7
0.6 0.8 0 0.7 0.7 0.5 0.6
0 0 0.7 0.6 0 0 0
0 0 0.6 0.3 0 0.2 0

0.1 0 0 0.2 0 0.1 0
0.2 0 0.7 0.6 0 0.5 0.7

 
 
 
 
 
 
 
 
 
  

 

 
be the membership matrix of the FRE given by the first expert.  
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P2 =  

0.1 0.7 0.1 0.8 0.9 0.7 0.8
0.4 0.2 0.7 0.7 0.1 0.4 0.6
0.7 0.8 0.1 0.7 0.1 0.6 0.6
0.2 0.1 0.8 0.8 0 0.1 0
0.5 0 0.6 0.4 0 0.2 0.3
0.1 0.1 0.2 0.3 0.1 0.1 0.1
0.3 0 0.8 0.4 0 0.4 0.8

 
 
 
 
 
 
 
 
 
  

 

 
be the membership matrix given by the second expert. 
 

P3 = 

0.1 0.6 0 0.6 0.8 0.7 0.8
0.2 0.1 0.5 0.6 0.1 0.5 0.7
0.6 0.9 0.2 0.8 0.7 0.8 0.7
0.4 0.5 0.7 0.6 0.1 0.2 0.1
0.6 0.5 0.6 0.5 0.1 0.2 0.5
0.5 0.4 0.1 0.4 0.1 0.2 0.4
0.2 0.6 0.4 0.6 0.1 0.6 0.7

 
 
 
 
 
 
 
 
 
  

 

 
be the membership matrix of the FRE given by the third expert. 
 

P4 = 

0.1 0.7 0 0.7 0.8 0.8 0.2
0.5 0.5 0.6 0.7 0.4 0.6 0.7
0.7 0.7 0.5 0.4 0.7 0.6 0.5
0.6 0.5 0.5 0.6 0.1 0.2 0.4
0.6 0.4 0.6 0.7 0.4 0.3 0.5
0.4 0.2 0.4 0.5 0.2 0.1 0
0.2 0.1 0.7 0.5 0 0.5 0.5

 
 
 
 
 
 
 
 
 
  

 

 
be the membership matrix of the FRE given by the fourth 
expert.  
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Let  
 

P5 = 

0 0.6 0 0.6 0.7 0.7 0.8
0.3 0.1 0.5 0.5 0 0.5 0.7
0.5 0.7 0.1 0.6 0.6 0.5 0.6
0.1 0 0.7 0.6 0.1 0.1 0.1
0.1 0 0.6 0.3 0 0.2 0.1
0.1 0.1 0.1 0.2 0.1 0.1 0.2
0.3 0.1 0.7 0.6 0.1 0.5 0.6

 
 
 
 
 
 
 
 
 
  

 

 
be the membership matrix of the FRE given by the fifth expert. 
 

   P = 1
5

(P1 + P2 + P3 + P4 + P5) 

 

= 

0.06 0.64 0.02 0.68 0.8 0.7 0.68
0.34 0.2 0.58 0.62 0.12 0.5 0.68
0.62 0.78 0.18 0.64 0.56 0.6 0.6
0.26 0.22 0.68 0.64 0.06 0.12 0.12
0.36 0.18 0.6 0.44 0.1 0.22 0.28
0.24 0.16 0.16 0.32 0.1 0.12 0.14
0.2 0.08 0.66 0.54 0.06 0.5 0.66

 
 
 






 









. 

 
 
 Let X = (0.7, 0.5, 0.7, 0.4, 0.8, 0.6, 0.3) be the given vector 
for which we solve the equation. 
 
 P1 o X  = (0.8, 0.6, 0.7, 0.7, 0.6, 0.2, 0.7) 
   = R1. 
 
 P2 o X  = (0.8, 0.7, 0.7, 0.7, 0.6, 0.3, 0.7) 
   = R2. 
 
 P3 o X  = (0.8, 0.5, 0.7, 0.7, 0.6, 0.5, 0.6) 
   = R3. 
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   P4 o X  = (0.8, 0.6, 0.7, 0.6, 0.6, 0.4, 0.7) 
     = R4. 
   
   P5 o X  = (0.7, 0.5, 0.6, 0.7, 0.6, 0.2, 0.7) 
     = R5. 
 
and  
 
   P o X  = (0.8, 0.58, 0.62, 0.68, 0.6, 0.32, 0.66) 
     = R  (0.8, 0.6, 0.6, 0.7, 0.6, 0.3, 0.7). 
 
 
 Now we find the Kosko-Hamming distance dk(Ri, R),  
1  i  5 and dk(Ri, Rj) i  j, 1  i, j  5. 
 
 By this study of Kosko-Hamming distance we learn how 
much the opinion of two experts are close or otherwise. 
 
 By finding dk(Ri, R) we find how close an expert is form the 
average FRE. 
 
     dk(R1, R) = 2, 
     dk(R2, R) = 2, 
     dk(R3, R) = 4, 
     dk(R4, R) = 3 and 
     dk(R5, R) = 3. 
 
 We see only the third expert varies from the average in 4 co 
ordinates.  Experts 4 and 5 vary from the average in three 
coordinates and so on. 
 
     dk(R1, R2) = 2, 
     dk(R1, R3) = 6, 
     dk(R1, R4) = 2, 
     dk(R1, R5) = 3, 
     dk(R2, R3) = 6, 
     dk(R2, R4) = 3, 
     dk(R2, R5) = 4, 
     dk(R3, R4) = 4, 
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     dk(R3, R5) = 4 and 
     dk(R4, R5) = 5. 
 
 We see when even the expert three is compared with the 
other experts give a bigger deviation. 
 
 However experts 4 and 5 differ, very highly deviant.  Thus 
we think of other functions to find the differences. 
 
 We fix a predetermined parameter ; 0    1 and using 
that  to find the closeness or deviation. 
 
 We define a notion called Kosko-Hamming distance 
deviation function d

kf (Ri, Rj) = |xi – xj| thus  
d
kf  : (Ri, Rj)  (x1, …, x7)  [0, 1]7 

 
 We will illustrate this situation by some examples. 
   d

kf  (R1, R2) = (0, 0.1, 0, 0, 0, 0.1, 0). 
 
 Suppose the parameter  is taken as 0.2 we get how far the 
Kosko-Hamming deviation function is away from the 
parameter. 
 
   d

kf  (R1, R2) = (0, 0.1, 0, 0, 0, 0.1, 0). 
 
So the variation in the expert one and two is negligible  
 

d
kf  (R1, R3) = (0, 0.1, 0, 0, 0, 0.3, 0.1). 

 
Some how as far as the 6th attributes is concerned it is 

deviant apart from that the variation is negligible. 
 

d
kf  (R1, R4) = (0, 0, 0, 0.1, 0, 0.2, 0). 

 
Experts one and four are not deviant from each other. 
 

d
kf  (R1, R5) = (0.1, 0.1, 0.1, 0, 0, 0, 0). 
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Experts one and five do not vary. 
 

d
kf  (R2 R3) = (0.1, 0.2, 0, 0.3, 0.2, 0.3, 0.4). 

 
Clearly experts two and three are very much deviant in their 

opinion.  
 

d
kf  (R2, R4) = (0, 0.1, 0, 0.1, 0, 0.1, 0). 

 
Experts two and four agree upon their results so not deviant.  
 

d
kf  (R2, R5) = (0.1, 0.2, 0.1, 0, 0, 0.1, 0). 

 
So the two experts mostly agree on their solution. 
 

d
kf  (R3, R4) = (0, 0.1, 0, 0.1, 0, 0.1, 0.1). 

 
The experts R3 and R4 also agree on their solution. 
 

d
kf  (R3, R5) = (0.1, 0, 0.1, 0, 0, 0.3, 0.1). 

 
There is some deviation between experts 3 and 5. 
 

d
kf  (R4, R5) = (0.1, 0.1, 0.1, 0.1, 0, 0.2, 0). 

 
Experts four and five are almost agreeable on this resultant. 
 
We find  
 

d
kf  (R, R1) = (0, 0, 0.1, 0, 0, 0, 0) 

 
thus the opinion of the first expert and the average opinion 

are one and the same. 
 

d
kf  (R, R2) = (0, 0.1, 0.1, 0, 0, 0, 0). 
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The second expert opinion and the average opinion are the 
same. 

 
d
kf  (R1, R3) = (0, 0.1, 0.1, 0, 0, 0.2, 0.1). 

 
The third experts opinion and the average opinion are the 

same  
 

d
kf  (R1, R4) = (0, 0.1, 0.1, 0, 0, 0.1, 0). 

 
The deviation of the fourth expert and the average is almost 

the same. 
 

d
kf  (R, R5) = (0.1, 0.1, 0, 0, 0, 0.1, 0). 

 
The opinion of the fifth expert and the average resultant are 

nearly the same. 
 
This is the way the model’s results are analysed.  
 
Finally we find 
 

d
kf  (S, Ri) where S = (s1, …, s7), 

the assumed limit set of the FRE. 
 

S = (0.6, 0.5, 0.6, 0.5, 0.6, 0.4, 0.6) 
 

d
kf (S, R1) = (0.2, 0.1, 0.1, 0.2, 0, 0.2, 0.1) 

 
d
kf (S, R2) = (0.2, 0.2, 0.1, 0.2, 0, 0.1, 0.1) 

 
d
kf (S, R3) = (0.2, 0, 0.1, 0.2, 0, 0.1, 0) 

 
d
kf (S, R4) = (0.2, 0.1, 0.1, 0.2, 0, 0, 0.1) 

 
d
kf (S, R5) = (0.1, 0, 0, 0.2, 0, 0.2, 0.1) 
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and  
d
kf (S, R) = (0.2, 0.1, 0, 0.2, 0, 0, 0.1). 

 
The deviation from the limit set to all the resultant vectors 

including the average happens to be acceptable with the pre 
assigned parameter. 

 
We have already introduced in [103], the concept of new 

average FRM and the new average FCMs.  Fore more about 
these concepts please refer [103]. 

 
Now we see how the resultant varies from the average 

resultant using the new technique of Kosko-Hamming distance 
deviance function. 

 
First we will illustrate this situation by an example of FCM. 
 
For the FCM given in example 2.4 of this book we find the 

average of the three connection matrices M1, M2 and M3. 
 

Let M = 1
3

 [M1 + M2 + M3].   

 
Using this M we can find the hidden pattern for any state 

vector and find for this resultant the Kosko-Hamming distance 
and also the Kosko-Hamming distance deviation function.   

 
This measures how much two experts agree upon any 

arbitrary initial state vector.  
 
Also the study helps in the analysis of how much each 

expert varies from the average connection matrix.  Such study is 
innovative and shows a lot of analysis can be done also about 
each and every expert in particular and the system in general. 

 
On similar lines we can for any collection of say some n 

experts opinion using FRM with same number of row attributes 
and same number of column attributes find the average, say if 
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N1, N2, …, Nn are the n connection matrices given by the n-

experts then let N = 1
n

 (N1 + … + Nn) 

 
Now we can find for any initial state vector X the resultant 

hidden pattern pair say (P1, M1) using the collection matrix N1; 
 
(P2, M2) related to the connection matrix N2 and so on  

(Pn, Mn) be the hidden pattern pair of X using the connection 
matrix Nn. 

 
Let (P, M) be the hidden pattern pair of X using the average 

connection matrix N. 
 
We find the Kosko-Hamming distance pair given by 
 

{(Pi, Pj), (Mi, Mj)}; i  j, 1  i, j  n. 
 
Using this pair of integers we can conclude the closeness or 

non-closeness in their opinion regarding the initial state vector.  
Thus this way of analysis is new and Kosko-Hamming distance 
and Kosko-Hamming distance deviation function helps one to 
study these concepts. This method helps in analysis experts 
closeness as well as the systems intricacies. 

 
Next we proceed onto work or define Kosko-Hamming 

distance in case of Bidirectional Associative Memories 
(BAMs).  The concept of BAM is recalled in chapter I from 
[Kosko].  Here we only indicate the functioning on BAMs. 

 
We use the synaptic connection matrix of the BAM model. 
 

Let M = 

11 1n

21 2n

m1 mn

a ... a
a ... a

a ... a

 
 
 
 
 
 

 
 

be m  n matrix.  
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 For any initial input vector  
 
   Xk = (a1, …, an) we find S(Xk)M = Yk+1. 
 
   S(Yk+1) = Xk+2 and so on.  
 
We set say S(Xk+t) as a fixed point. 
 
 Then the binary pair (A, B) represents a fixed point of a 
BAM model or the dynamic system. 
 
 Suppose M1 be the synaptic connection matrix of the BAM 
model for the same problem by another expert. 
 
 For same Xk we find the fixed point binary pair say (C, D). 
 
   We find dk((A, B), (C, D))  
  
   = (dk (A, C), dk(B, D)) 
   = (r, s) gives the Kosko-Hamming distance pair. 
 
 We will illustrate this situation by some examples. 
 
Example 2.12:  Let 3 experts work on a problem using BAM 
model. 
 
 Let M1, M2 and M3 be the synaptic connection matrices 
given by the three experts. 
 

M1 = 

3 2 2 0 1
4 3 0 1 2

3 2 2 3 3
2 1 1 2 3

4 3 2 0 3
4 3 2 1 3
2 0 2 2 0

   
   
  
    
 
 

  
   
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be the synaptic matrix given by the who works on the scale  
[–5, 5]. 
 

Let M2 = 

2 3 3 0 2
4 3 0 2 3

3 2 2 2 4
2 2 2 3 4

4 3 3 0 3
3 3 2 1 4
2 0 3 3 0

   
   
  
   
 
 

  
   

 

 
be the synaptic matrix given by the second expert who also 
works only with the same scale [–5, 5]. 
 

Let M3 = 

4 1 4 0 3
4 3 0 3 1

3 2 2 1 2
2 3 3 1 2

4 3 1 0 3
2 3 2 1 2
2 0 1 1 0

   
   
  
   
 
 

  
   

 

 
be the synaptic matrix given by the expert on the interval [–5, 5] 
 

Let Xk = (–4, –3, 1, 2, 5, –3, –1) 
be the initial input vector. 
 
 Consider S(Xk) = (0 0 1 1 1 0 0); 
 
S(Xk)M1  =  (5, 4, 1, –1, 3) 
    
  =  Yk+1 
 
S(Yk+1) t

1M   =  (–4, 1, 6, –5, 5, 8, 0) 
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  =  Xk+2 
 
S(Xk+2)   =  (0 1 1 0 1 1 0) 
 
S(Xk+2) M1  =  (7, 11, –2, –5, 11) 
   
  =  Yk+3 
 
S(YK+3)  =  (1 1 0 0 1) 
  
S(YK+3) t

1M   =  (–6, 1, 8, –6, 10, 10, 2) 
 
  =  (XK+4) 
 
S(YK+4)  =  (0 1 1 0 1 1 1) 
 
S(Xk+4) M1  =  (5, 11, –4, –4, 11) 
  
  =  YK+5 
 
S(YK+5)  =  (1 1 0 0 1). 
 
 Thus the binary pair {(0 1 1 0 1 1 1), (1, 1, 0, 0, 1)} = A1 
represents the fixed point of the dynamical system M1. 
 
 Now we find the effect of  
 

XK = (–4, –3, 1, 2, 5, –3, –1) 
as the initial output vector. 
 
S(XK)  =  (0 0 1 1 1 0 0) 
  
S(XK)M2  =  (5, 3, 3, 1, 11) = YK+1  
 
S(YK+1)  =  (1 1 1 1 1)  
 
S(YK+1) t

2M   =  (–4, 0, 5, 5, 1, 3, 7, –4)  
 
 =  XK+2. 
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S(XK+2)  =  (0 0 1 1 1 1 0)  
 
S(XK+2)M2  =  (8 6 5 0 15) = YK+3 
  
S(YK+3)  =  (1 1 1 0 1) 
 
S(YK+3) t

2M   =  (–4, 2, 7, 2, 13, 8, –1) 
 
 =  XK+4 
 
S(XK+4)   = (0 1 1 1 1 1 0) 
 
S(XK + 4) M2  =  (4, 9, 1, –2, 18) 
   
 =  YK+5 
 
S(YK+5)  =  (1 1 1 0 1). 

 
The fixed binary pair is {(0 1 1 1 1 1 0), (1 1 1 0 1)} = A2 
 

d(A1, A2) = (2, 1). 
Consider the same initial input vector. 
 

Yk  = (–4, –3, 1, 2, 5, –3, –1) 
 

S(YK)  =  (0 0 1 1 1 0 0) 
 

We find S(XK) M3  =  (5, 2, 2, 0, 7) 
 

= YK+1 
  
S(YK+1)   = (1 1 1 0 1) 
 
S(YK+1) t

3M   = (–4, 0, 5, 0, 11, 5, 1) 
    =  XK+2 
 
S(XK+2)   = (0 0 1 0 1 1 1). 
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S(XK+2) M3  =  (11, 8, –4, –3, 7)  
 

=  YK+3 
 

S(YK+3)  =  (1 1 0 0 1) 
 

S(YK+3) t
3M   =  (–8, 0, 7, –3, 10, 7, 2) 

    = XK+4 
 

S(XK+4)  =  (0 0 1 0 1 1 1) 
 

S(XK+4)M3  =  (11, 8, –4, –3,7)  
    = YK+5 
 
 

S(YK+5)  =  (1 1 0 0 1) 
 

S(Yk+6)   = (0 0 1 0 1 1 1) 
    = S(XK+4)  
 
Thus the fixed binary pair  
A3 = {(0 0 1 0 1 1 1), (1 1 0 0 1)}.  
 

dk(A1, A3) = {(2, 0)}. 
 

dk(A2, A3) = {(2, 1)}. 
 
Thus A1 is more agreeable with A3.  More or less the three 

experts are not very deviant in their opinion for this Xk. 
 
Likewise we can find the closeness or the deviation from 

expert to expert.   
 
Thus the new notion of Kosko-Hamming distance pair will 

help one to analyse the deviation or the closeness of two 
experts. 

 
We can also find the Kosko-Hamming distance pair 

between each of the experts and the average value. 
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Let  

M = 1/3 (M1 + M2 + M3) 
 

= 

3 2 3 0 2
4 3 0 2 2

3 2 2 2 3
2 2 2 2 3

4 3 2 0 3
3 3 2 1 3
2 0 2 2 0

   
   
  
   
 
 

 
   

. 

 
 

   XK = (–4, –3, 1, 2, 5, –3, –1) 
 
   S(XK)   =  (0 0 1 1 1 0 0) 
 
   S(XK)M  =  (5 3 2 0 9) 
      =  YK+1 
 
   S(YK+1)  =  (1 1 1 0 1) 
   S(YK+1) Mt  =  (–4, 1, 6, 1, 12, 11, 0) 
      =  XK+2 
 
   S(XK+2)  =  (0 1 1 1 1 1 0) 
   S(XK+2)M  =  (4 9 4 –3 14) 
      =  YK+3 
 
   S(YK+3)  =   (1 1 1 0 1). 
 
 Thus the fixed binary pair of the dynamical system M is a  
 

A = {(0 1 1 1 1 1 0), (1 1 1 0 1)}. 
 
 
 Now we find the Kosko-Hamming distance  
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    dk(A, A1) = {(2, 1)} and 
    dk(A, A2) = {(0, 0)}. 
    dk(A, A3) = {(2, 1)}. 
 
 Thus the Kosko-Hamming distance from the average 
dynamical system is very close to the systems M1, M2 and M3 
and infact the value of A2 and A are the same. 
 
 Thus for the first time we have introduced the new notion of 
New average BAM by an example.   
 

Infact if n-experts work on a problem using BAM and if M1, 
M2, …, Mn are the associated synaptic matrices all working in 
the interval [–s, s]. 
 
 We construct the new synaptic matrix as  
 

M = 
n

i
i 1

1 M
n 
  = (mij), 

 
if mij is not an integer say mij = p.q where q is the decimal part 
and if q > 0.5 make p.q = p + 1 if q  0.5 make p.q = p.   
 
 This is the way by which M has all its values to be integers. 
 
 This was illustrated by an example with n  = 3.   
 

Now we find Kosko-Hamming distance dk(Ai, Aj) where Ai 
is the fixed point pair associated with the initial state vector Xk 
of the ith expert who has given the opinion using the synaptic 
matrix Mi.  The same is true for Aj, i  j, 1  i, j  n.  

 
Thus dk(Ai, Aj) gives a pair which show the closeness or 

deviation of the expert Ai with Aj; 1  i, j  n.  
 
 Now dk(A, Ai), the Kosko-Hamming distance gives a pair of 
the ith expert opinion on the initial state vector Xk with the 
average synaptic matrix A for the same initial state vector Xk,  
i = 1, 2, …, n. 
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 This is the way the deviation or closeness of each expert 
with the average for any initial state vector is analysed. 
 
 Now for the given initial state vector Xk using the n  m 
synaptic connection matrix M if S(Xk+r) is a fixed point then we 
find the Kosko-Hamming distance dk(S(Xk+r), Xk) = t; t a 
number lying in 0  t  (n–1). 
 
 We define Xk to be the powerful initial state vector if t is the 
largest value when compared with all the appropriate Xk and 
S(Xk+r) using Kosko-Hamming distance we call that initial state 
vector as the most powerful state vector. 
 
 If another 

1KX gives S(
1K sX  ) and if the Kosko-Hamming 

distance between 
1KX  and S(

1K sX  ) is less than t but is the next 
largest value then we call 

1KX  as the more powerful initial state 
vector and so on.   
 

Thus the Kosko-Hamming distance measures the power of 
each initial state vector; as most powerful, more powerful, just 
powerful, least powerful, not powerful and so on. 
 
 Next one can proceed onto study this for NCMs, NRMs, 
NREs and NBAMs the concept of Kosko-Hamming distance 
and Kosko-Hamming distance deviation function.  We feel such 
study is a matter of routine and can be easily carried out with 
some simple and appropriate modifications.  
 
 We will illustrate these situations by an example or two. 
 
 Let us consider n experts working on the same problem with 
the same number of concepts using the Neutrosophic Cognitive 
Maps Model.   
 

Let suppose S1, S2, …, Sn be the n connection neutrosophic 
matrices associated with the n-experts of the NCMs model. 
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 For any fixed initial state vector X we find the hidden 
patterns using S1, S2, …, Sn and let them be denoted by Y1, Y2, 
…, Yn. 
 
 We find the Kosko-Hamming distance dk(Yi, Yj) = mt, i  j, 
1  i, j  n.  This number mt shows whether two experts opinion 
are close are very deviated or deviated.  
 
 Further we can find the New Average NCM of these n 
NCMs as 
 
   S = 1/n (S1 + S2 + … + Sn).  
 
 For that X if Y is the hidden pattern then we find the n- 
Kosko-Hamming distance for Y and Yi, i = 1, 2, …, n that is we 
find dk(Y, Yi) = Pt for each i.  If Pt is small we conclude the 
deviation from the average NCM model of each of the expert is 
negligible, otherwise it is large. 
 
 Such study can be done only using Kosko-Hamming 
distance.  Finally dk(X, Yi) gives the most influential node (1  i 
 n) or more influential node or so on.  We can also say which 
expert represents the average dynamical system.   
 
 Interested reader can construct one such model.   
 

Now we can in case of NRM (Neutrosophic Relational 
Maps) also consider or use Kosko-Hamming distance on a pair 
of fixed pair of points. 
 
 Thus for instance if n experts work on a problem using 
Neutrosophic relational Maps model.  All the experts use the 
same set of domain attributes and range attributes.   
 

Here we denote the n matrices by P1, P2, …, Pn.  If X is the 
initial state vector from the domain space whose effect we want 
to study on the n dynamical systems given by the experts. 
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 Let Y1, Y2, …, Yn be the hidden pattern of the n experts 
using the dynamical systems P1, P2, …, Pn respectively.   
 

We find  
dH(Yi, Yj) = tij (say) i  j; tij  (0, 0). 

 
 If tij is a small pair of numbers we assume the experts more 
or less agree on the outcome of the initial state vector X. This is 
important to note that any two experts need not totally agree 
with each other on every initial state vector.  Sometimes on 
certain initial state vectors the two experts may disagree, those 
state vectors can be specially analysed. 
 
 It is at the juncture the Kosko-Hamming distance plays a 
vital role.  
 
 Further when we find the Kosko-Hamming weight  
dH(Yi, X) for i=1, 2, …, n, we can find the nature of the nodes.  
The Kosko-Hamming weight will make one know the most 
influential node and so on.   
 
 This is the way the notion of Kosko-Hamming distance  and 
Kosko-Hamming weight play a vital role in the NCMs model. 
 
 It can be carried as a matter of routine so it is left as an 
exercise to the reader to give examples of this situation.   
 
 Next we can as in case of FCMs define the notion of New 
Simple Average NCMs (NASNCMs)  in the case of NRMs also. 
 
 Let  

N = 1/n (N1 + … + Nn) = (nij). 
 
 If nij = a + bI and both a and b less than n

2    then nij = 0 
 
 If nij = a + bI and both a and b greater than equal to n

2    
then nij = 1 + I. 
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  If nij = a and a < n
2    then nij = 0. 

 
  If nij = a and a  n

2    then nij = 1.  
 
  If nij = bI and b < n

2    then nij = 0. 
 
  If nij = bI and b  n

2    then nij = I. 
 
  If nij = a + bI and a   n

2    b  < n
2    then nij = 1. 

 
  If nij = a + bI and a < n

2    and b   n
2    then nij = I. 

 
 This is the way the NSANCM matrix is constructed. 
 
 Now if Y is the hidden pattern associated with the 
dynamical system N. 
 
 We find dk(Y, Yi); i = 1, 2, …, n.  If dk(Y, Yi) is small we 
see the deviation of the experts opinion from the expert is 
acceptable if other way we see that expert has a different view 
on the problem and we start to study that expert more closely 
and also analyse his / her closeness with other experts same 
procedure is done using Kosko-Hamming distance and  Kosko-
Hamming weight. 
 
 Next we can define for Neutrosophic Relational Maps 
(NRMs) model the concept and Kosko-Hamming distance and 
Kosko-Hamming weight. 
 
 In this case it will be Kosko-Hamming distance pair and 
Kosko-Hamming weight pair. 
 
 We will first describe this situation. 
 
 Let m experts work on a problem all of them use only 
Neutrosophic Relational Maps (NRMs) model. 
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 Let S1, S2, …, Sm be then m t  s neutrosophic matrices 
given by the m experts.  Expert 1, expert 2, …, expert m 
respectively. 
 
 Now let us work with the domain space nodes which is of t 
dimension that is D = {(a1, …, at) | ai  {0, 1}, 1  i  t} and the 
range space R = {(b1, …, bs) | bj  {0, 1}, 1  j  s} of the nodes 
associated with the neutrosophic system dynamical system. 
 
 Let X be a  1  t row matrix associated with the domain 
space with some one node in the on state which is taken as the 
initial state vector. 
 
 We find the hidden pattern pair which may be a fixed pair 
or a limit cycle pair. 
  
 Let XSi gives the hidden pattern of the dynamical system 
given by (Pi, Mi) where Pi is a 1  t resultant state vector and Mi 
is a 1  s resultant state vector from the domain and range space 
respectively.  The same procedure is repeated for every 
dynamical system i = 1, 2, …, m. 
 
 Now we find the Kosko-Hamming  distance pair between 
any two experts i and j. 
 
 Let (Pi, Mi) and (Pj, Mj) be the fixed point pair given by the 
experts i and j.   
 

The Kosko-Hamming distance pair is dk((Pi, Mi), (Pj, Mj)) 
 
 = dk((Pi, Pj), (Mi, Mj)) 
 
 = (aij, bij)    (both aij and bij are values greater than or equal 
0, integers). 
 
 If (aij, bij) is very small the experts agree upon the resultant 
on the specific vector. 
 



Distance in Row Matrices  63 
 
 
 
 
 

 If the deviation is very large we see the experts differ and a 
study is made on those initial state vectors over which experts 
differ largely. 
 
 Another method of this is if we find Y to be a 1  s initial 
state vector from the range space.  Now using the neutrosophic 
dynamical system Si we find t

iYS .  
 

If the hidden pattern is a fixed point pair say (Ai, Bi), and if 
the using Sj we get (Aj, Bj) to be the fixed point pair we find the 
Kosko-Hamming distance dk((Ai, Bi), (Aj, Bj)) = dk((Ai, Aj), (Bi, 
Bj)) = (aij, bij) where both aij and bij are positive integers or zero. 
 
 If (aij, bij) is a small pair of integers then we say the experts i 
and j agree upon that specific initial state vector.  If the pair is 
large we see they differ and study the situation for that initial 
state vector and about those two experts.  
 

Thus i and j can vary from 1 to m (i  j).  This is the way 
the Kosko-Hamming distance pair plays a role in the analysis of 
the NRMs. 
 
 Now we can also find Kosko-Hamming weight pair in case 
of the initial state vector with the hidden pattern.  For instance if 
for a initial state vector X from the domain space the resultant is 
(A, B), where A is a 1  t row vector and B is a 1  s row vector 
from the domain and range space respectively.  
 

Now we find then Kosko-Hamming weight pair which is as 
follows: 
 
    dk((A, B), (X, (0)) 
 
   = (m, n) where n = weight of B. 
 
 If both m and n are very large then we say the initial state 
vector X for which if Cp is the associated node then the pth node 
of the domain space to be the most influential node.   
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If B also happens to be so we say this pair is the most 
influential node pair.  
 

Likewise we can define more influential node, just 
influential node, influential node, least influential node and so 
on.  We see some time the pair will be so at  other time only one 
of them will be so. 
 
 Now we can as in case of NASNCMs define the notion of 
NANRMs also, which we will describe in a line or two.  
 

Let S1, S2, …, Sm be the m, NRMs matrices given by the m 
experts. 
 
 We find S = 1/m (S1 + S2 + … + Sm) 
 
    = (sij) 
where sij’s have been remade as in case of NASNCMs described 
earlier. 
 
 Now we using the NANRMs dynamical system find for 
initial vector X from the domain space D.   
 

Let XS lead to the hidden pattern pair (V, W) where V is in 
the domain space and W is in the range space.   
 

We find the Kosko-Hamming distance pair  
 

dk((Ai, Bi), (V, W))  
 

   = dk((Ai, V), (Bi,W)) 
 
   = (e, f)  (e and f positive integers including  zero). 
 
 Now seeing the pair (e, f) we can  predict whether for this 
initial state vector X the ith expert is close to the average value 
or not.   
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We can for the NANRMs find the most influential node, 
more influential node, and so on using the notion of Kosko-
Hamming weight pair. 
 
 This study of going from FRMs to NRMs is a matter of 
routine and hence left as an exercise to the reader.   
 

The reader is advised to adopt Kosko-Hamming distance 
pair method of analysis for atleast one real world problem. 
 
 Next we give a brief description of NRE (Neutrosophic 
Relational Equations) model in the following. 
 
 For more about NREs model refer [90]. 
 
 Let some n experts work on the same problem using the 
Neutrosophic Relational Equations (NREs) model.   
 

Let all them agree upon to work with the same set of limit 
set fixed value. 
 
 All the n experts work with same set of domain attributes 
and range attributes. Let N1, N2, …, Nn denote the set of n 
matrices associated with each of the n experts. 
 
 Here for any given matrix by the expert  will be fuzzy 
neutrosophic matrix. 
 
 Any state vector X be taken we find min {X, Ni} = Pi,  
i = 1, 2, …, n.  Here we find as in case of FRE use the Kosko-
Hamming distance function and find the value or distance 
between two experts Pi and Pj. 
 
 If the difference is negligible we accept that both the experts 
mostly agree upon their views regarding the vector X as in case 
of FREs. 
 
 Also we find the NANRE is given by and if  

N = 1/n (N1 + N2 + … + Nn). 
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 We find using N the effect of the initial state vector X.  If P 
is the resultant we find use the Kosko-Hamming distance 
function dk and find the distance between P and any experts 
opinion Pi.   
 

If the deviation is negligible we accept otherwise analyse 
the cause for such large deviations.   
 
 It is left as an exercise for the reader to find suitable real 
valued problem and use NREs with some experts, construct the 
models use the Kosko-Hamming distance function to analyse 
the resultants given by the model. 
 
 Next we proceed to find the use of Kosko-Hamming 
distance in Neutrosophic Bidirectional Associative Memories 
(NBAMSs).   
 

In the BAMs if we instead of an interval [–n, n] if use the 
interval [– (a + bI), (a + bI)], a and b equal integers that is  
[–(a + aI), a + aI]  and if the entries of the neutrosophic synaptic 
matrix B takes its entries as integers values or a combination of 
both we then call the model as NBAM model. NBAM model 
function in a similar way to as that of a BAM model. 
 
 Let n experts work on the same problem in the same 
neutrosophic interval using same set of domain and range 
attributes. 
 
 Let L1, L2, …, Ln be the n Neutrosophic synaptic connection 
matrices of the n experts.  
 
 Suppose Xk be the initial state vector.  Using Xk on Li gives 
the pair of fixed points say ({S(Xi), S(Yi)}. 
 
 Suppose for the same initial vector Xk, (S(Xj), S(Yj)) be the 
fixed pair using the synaptic connection neutrosophic matrix Lj, 
1  i, j  n. 
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 Now we can find the Kosko-Hamming distance  
dk((S (Xi), S(Yi)), (S(Xj), S(Yj))). 
 
 Let dk((S(Xi), S(Yi)), (S (Xj), S(Yj)) 
 
 = (dk(S(Xi), S(Xj), dk(S(Yi), S(Yj))) 
 
 = (a, b), a and b be positive integers greater than or equal to 
zero. 
 
 If a and b are negligibly small we assume that both the 
experts more or less agree upon the resultant for that initial 
vector Xk. 
 

Such comparative study can be made only by using the new 
notion of Kosko-Hamming distance.   

 
We can also as in case of BAMs find the New Average 

Neutrosophic Bidirectional Associative Memories (NANBAM) 
model.  Using this we can find Kosko-Hamming distance.   

 
The working is also a matter of routine and hence left as an 

exercise to the reader.  This model certainly saves time and 
money. 

 
However we briefly describe how the New Average 

Neutrosophic Bidirection Associative Memories (NANBAM) 
model. 

 
Let L  = 1/n (L1 + … + Ln) 

 
    = (lij). 
 
We see if lij = a + bI and both a = p.q and b = s.t then  

a = p if q  0.5  
a = p + 1 if q > 0.5.  

 
Similar procedure is carried out for b = s.t. 
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(Here p is the integer part and q is the decimal part in  
a = p.q). 

 
Now using that L we find for Xk; S(Xk)L. 
 
If (S(X), S(Y)) is the fixed pair of hidden pattern then we 

can find using Hamming Kosko distance, how far the ith expert 
varies from the average synaptic connection matrix.  Such study 
can reveal how far NANBAM average differs from the experts 
opinion on any initial vector X. 

 
Now it is pertinent to keep on record that we can also find 

mixed special average NFCM, mixed special average NFRM, 
mixed special average NFRE and mixed special average 
NBAM.  

 
We will just describe these in a line or two. 
 
Suppose m + n experts want to work on a problem with m 

of them working using FCMs and n of them work using NCMs, 
all of them work only with the same set of concepts. 

 
Now we can find the Special mixed Average NFCMs 

(SANFCMs) of these m + n dynamical system. 
 

Let S = 1
m n

(P1 + … + Pm + R1 + … + Rn) where Pi’s are 

the connection matrices of the m experts who have used FCMs 
and Rj’s are the connection matrices of the n experts who have 
used the NCMs, 1  i  m, 1  j  n. 

 
Let S = (sij) the value of sij is determined as usual.   
 

If sij = a + bI, a < m n
2
 

  
 and b < m n

2
 

  
 then sij = 0.   

 

If sij = a + bI, a < m n
2
 

  
 and b  m n

2
 

  
replace by I. 
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If sij = a + bI, a  m n
2
 

  
 and b  m n

2
 

  
  

then replace by 1+I. 

If a  m n
2
 

  
 and b < m n

2
 

  
 then replace by 1. 

So S = (aij); aij  {0, 1, I, 1 + I}. 
 
S is the dynamical system associated with the mixed New 

Average Neutrosophic Fuzzy Cognitive Maps (NANFCMs) 
model.   

 
Likewise we calculate for the m + n FRMs and NRMs, 

where m experts work with FRMs and n experts work using 
NRMs. In the same way for m FREs and n NREs. 

 
Suppose are see m experts work with BAMs on the same 

problem with same domain and range attributes and n experts 
work with NBAM on the same problem with the same set of 
attributes, we find the mixed special new average NBAM in the 
same way provided the BAMs experts works on the scale [–a, a] 
then NBAMs experts work on the scale [– (a + aI), a + aI]. 

 
We suggest a few problems for the reader in the following. 

 
Problems:  
 

1. Distinguish between Hamming distance and Kosko-
Hamming distance. 

 
2. What are the benefits of using Kosko-Hamming 

distance in FCMs model? 
 

3. Construct a FCMs model for a real world problem 
with some t number of experts and use Kosko-
Hamming distance to analyse the problem. 

 
4. Prove Kosko-Hamming distance can be used to find 

the influential nodes of the directed graph of FCMs. 
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5. What are the advantages of using the Kosko-
Hamming weight? 

 
6. Show (Kosko-Hamming weight) of any resultant 

vector can be used to find the most influential node, 
more influential node and so on. 

 
7. Prove Kosko-Hamming distance not only analyses 

the closeness or deviation two experts opinion but 
also has other functions on the dynamical system. 

 
8. Prove by adopting Kosko-Hamming distance on 

FRMs which give a pair of values and using this 
notion analyse the model. 

 
9. What are the advantages of using Kosko-Hamming 

distance on FRMs? 
 

10. Study or introduce any other interesting properties 
derived using Kosko-Hamming distance on FRMs. 

 
11. Show by examples Kosko-Hamming distance on 

FREs can be beneficial to analyse the experts 
opinion and the model. 

 
12. Work with a set of experts using FRE and their 

comments using the Kosko-Hamming distance and 
Kosko-Hamming distance deviance functions. 

 
13. Show Kosko-Hamming distance plays a vital role in 

studying the New Average FCMs and the various 
experts opinion using FCMs whose NASFCMs is 
formed. 

 
14. Study the problem 13 in case of New Average 

FRMs. 
 

15. Study the problem 13 in case of NAFREs. 
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16. Describe NCMs and the use of Kosko-Hamming 
distance and find influential nodes by implementing 
NCMs in a real world problem. 

 
17. Distinguish between NASFCMs and NASNFCMs. 
 
18. Describe the functioning of NANCMs. 
 
19. Compare NANFCMs and NANCMs. 
 
20. What are the advantages of using special 

NASNFCMs? 
 
21. Use NRMs in the real world problem using a set of 

t experts. 
(i) Use Kosko-Hamming distance to study and 

analyse the model. 
(ii) Find NANRMs model. Using NANRMs 

model study its closeness with respect to 
experts. 

(iii) What are the advantages of using NANRMs 
model? 

 
22. Find the special features associated with special 

NANFRMs in studying a problem. 
 
23. What are the advantages of using NAFRMs in the 

place of special NANFRMs? 
 
24. Distinguish between NANRMs and NANFRMs. 

 
25. Show using the concept of Kosko-Hamming 

function / distance / weight in the BAMs model 
helps one to analyse the effect of every initial 
vector. 

 
26. Define and describe the notion of NABAMs and the 

use of Kosko-Hamming distance. 
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27. Define, describe and develop a NBAMs model 
using a real world problem. 

 
28. Using Kosko-Hamming distance for the NBAMs 

model, analyse the problem. 
 
29. What are the advantages of using NABAMs? 
 
30. What are the advantages of using NANBAMs? 
 
31. Show the use and advantage of the special mixed 

NANBAMs. 
 
32. Show using Kosko-Hamming distance and weight 

we can find the most influential node, more 
influential node, just influential node, influential 
node, less influential node, least influential node 
and so on. 

 
33. Study and analyse the concepts described in 

problem 32 by constructing a real world problem 
using FCMs. 

 
34. Study problem 32 and 33 in case of NCMs. 
 
35. Show the problem 32 may be made use of in FRMs, 

NCMs and NRMs. 
 
36. Illustrate each of the situations by some real world 

problems. 
 
37. Show by example that influential nodes in general 

are not powerful nodes and vice versa. 
 
38. Use the Kosko-Hamming distance function to 

analyse the FRE model.  
 
39. Describe some of the special features associated 

with the Kosko-Hamming distance function.  
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40. Show Kosko-Hamming distance is different from 
usual Hamming distance. 

 
41. What are the advantages of using Kosko-Hamming 

distance function in FREs? 
 
42. Using the notion of Kosko-Hamming distance 

function in NREs to analyse a real world problem. 
 
43. What are the merits of using NAFREs? 
 
44. What are the advantages of using NANREs? 
 
45. Define, describe and develop the notion of special 

NANFREs? 
 
46. Compare special NANFRE with NAFRE? 
 
47. Compare special NANFRE with NANRE? 
 
48. Obtain any special and striking features enjoyed by 

Kosko-Hamming weight? 
 
49. Obtain any special feature attached in the use of 

Kosko-Hamming distance in NRMs, FRMs and 
mixed special average NANFRMs. 

 
50. Show the Kosko-Hamming weight in the above 

cases can predict the nature of the nodes. 
 
51. Prove or disprove the most influential node related 

to one expert in general need not be the most 
influential node related to every other expert. 

 
52. Can the same in problem 51 be said about powerful 

nodes? 
 
53. Prove use of NASFCMs more powerful than 

combined FCMs in case of several experts. 
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54. Prove use of NASNCMs is better than combined 

NCMs in case of several experts. 
 
55. Prove or disprove that it is always possible to get 

the connection matrix with entries from the set  
{0, 1} instead of the set {0, 1, –1} by redefining the 
nodes without changing the underlying principle. 

 
56. Give any other method of analyzing the NASFCMs 

model. 
 
57. Can we say NASFCMs model is a needed one in 

case of certain problems? 
 
58. Prove the concept of indeterminacy is a powerful 

tool in generalizing most of the fuzzy models. 
 
59. Enumerate by an example that use of Neutrosophic 

fuzzy models in case of certain problems. 
 
60. Give an example of a problem in which 

neutrosophic concepts plays a vital role in the 
prediction of solutions. 

 
61. Show use of NAFREs saves time. 
 
62. Prove use of mixed NANFREs can both save time 

and economy. 
 
63. Show by an example that the fluctuations of the 

resultant with predicted values can be best studied 
using the Kosko-Hamming distance function. 

 
64. Obtain any other innovating results about this type 

of analysis of these models. 



 
 
 
 
  
Chapter Three 
 
 

 
 
DISTANCE IN MATRICES  
 

 
 In this chapter we define the concept of distance in general 
matrices of same order.  We see as applications whether the 
distance in matrices affect the characteristic equations and 
characteristic values. 
 
 How the difference in matrices affect the code space is also 
analysed.  Finally we study the effect of difference in matrices 
over the distinctness of the linear transformation and linear 
operations.  
 
 Also distance in matrices play a role in the study of experts 
opinion and the related fuzzy model.  Finally the distance and 
its effect on the graph for graphs are represented by matrices. 
 
 Let us before we define this new concept justify our study 
to be a natural or generalization of Hamming distance. 
 
 Recall Hamming distance measures the distance between 
two row vectors of same order.  Now the column matrix is 
nothing but the transpose of the row vector.  When the 
Hamming distance is defined for row vectors then why not for 
the transpose of the row vector which is a column vector.  
Hence distance between two m  1 column matrices A and B is 
defined in a similar way. 
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 Now we just define it. 
 
DEFINITION 3.1:  Let A be a n  1 column matrix and B be a  
n  1 column matrix. The special distance between A and B 
defined by  

d(A, B) = (number of places in which A and B differ) 
 
 d(A, B)  0 and  
 d(A, B) = 0    if A and B are identical 0  d(A, B)  n and 
d(A, B) = n if A and B are not the same on any of the 
coordinates. 
 
 We will illustrate this by some examples. 
 
 
Example 3.1:  Let  
 

A = 

0
7
2
1

3.7
0
0
1

 
 
 
 
  
 
 
 
 
 
  

 and B = 

0
7
2
0
1
2
3
1

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
be two 8  1 column matrices.  The distance between A and B is 
4 denoted by d(A, B) = 4. 
 
 Thus we see d(At, Bt) = 4 where At = (0, 7, 2, –1, 3.7, 0, 0, 
1) and Bt = (0, 7, 2, 0, 1, 2, 3, 1).   
 

Thus we can find the Hamming distance of a column matrix 
also. 
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Example 3.2:  Let  
 

M = 

0.3
1
2
3
4
0
5

 
 
 
 
 
 
 
 
 
  

 and N = 

0.5
1
2
4
5
3
1

 
 
 
 
 
 
 
 
 
  

 

 
be two 7  1 column matrices d(M, N) = 5. 
 
 The authors see that Hamming distance in case of column 
matrices is nothing but the Hamming distance of transpose of 
them.  So such definition is in keeping with the classical 
definition. 
 
 Next we proceed onto define special distance between two 
m  n matrices m  1 and n  1 ( m can be equal to n). 
 
DEFINITION 3.2:  Let M and N be two m  n matrices we say 
d(M, N) = number of places in which the m  n matrices M and 
N are different.  Clearly the special distance d(M, N)  0 and 0 
 d(M, N)  m  n. 
 
 We will illustrate this by an example or two and then give 
the applications of them. 
 
Example 3.3:  Let  
 

A = 
0 5 2.1 7
8 1 0 3
1 2 5 0

 
 
 
  

 and B = 
0 5 1 7
8 1 0 8
1 2 3 0

 
 
 
  
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 be two 3  4 matrices d(A, B) = 3. 
   Clearly 0  d(A, B)  12. 
 
   We see d(A, A) = 0 and d(B, B) = 0. 
 
Example 3.4: Let 
 
 

  A = 

0.7 0.9 0.16
0 9.1 11
2 3 4
5 0 6
7 8 1

 
 
 
 
 
 
  

 and B =

1.2 0.9 0.16
0 0 11
2 3 4
5 0 0
7 8 1

 
 
 
 
 
 
  

  

 
be any two 5  3 matrices. 
 
   d(A, B) = 3.   
 

So the distance between A and B is 3; that is A and  B differ 
from each other in 3 places. 
 
Example 3.5:  Let  
 

A = 
0 2 3 4 5.1 6 7
8 9 0 1 2 3 0
 
 
 

 and 

 
 

B =
0 2 3 4 5 6 0
8 9 0 1 2 4 2
 
 
 

 

 
 

be any two 2  7 matrices d(A, B) = 4, 0  d(A, B)  14. 
 
 Thus we see A and B differ in four places. 
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Example 3.6:  Let  
 

M = 
0 3 4
5 2 1
0 1 1

 
 
 
  

 and N =
2 1 5
5 2 1
0 1 1

 
 
 
  

 

 
be two 3  3 matrices.  The distance between them is defined as 
d(M, N) = 3.  That is M and N differ in 3 places. 
 
 Now we study the eigen values the associated characteristic 
equations when two matrices have distance one, two, three and 
so on.   
 

Next we study the codes associated with a k  n matrix (or a 
n–k  n parity check matrix) when the distance between them is 
one, two and so on.   
 
 Such study can later be used in storage systems as when 
difference is 1 we assume one error and see the impact of the 
error on the system. Such study is not only innovative but lead 
to several types of new methods in retrieving the stored data and 
so on. 
 
 Further we can use the generator matrix and parity check 
matrix. When in the matrix a change is made we study the codes 
when a single change is made. Study in the difference, that can 
make into two distinct codes or sometimes the same type of 
code. 
 
 Finally we see the applications of the difference in the 
expert’s dynamical systems on the same problem and study the 
difference of these matrices. Such study will help in further 
analysis of the problem.  Also in case these codes sometimes the 
hidden small changes can guarantee security.   
 

First we study the case of eigen values and eigen vectors.  
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 Example 3.7:   Let  
 

A = 
3 0
7 2
 
 
 

 

 
be a 2  2 matrix. The eigen values and the characteristic 
equation of A is as follows. 
 

|A – | =  
3 0 0
7 2 0

   
      

 

 

=  
3 0

7 2
  

   
 

 
= (3 – )(2 – ) = 0 

 
= 2 – 5 + 6. 

 
  = 3 and  = 2 are characteristic values. 
 

   Let A1 = 
3 1
7 2

 be any matrix. 

 
   d(A1, A) = 1. 
 
 Eigen values of A1 are 
 

   |A1 - | = 
3 1

7 2
  

   
 

 
   = (3 – ) (2 – ) – 7 
 
   = 6 – 5 + 2 – 7 
 
   = 2 – 5 – 1 = 0 
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    = 5 25 4
2

    = 5 29
2

  . 

 

 A2 = 
3 0
5 2

 be another 2   2 matrix d(A, A2) = 1 

 

 |A2 - | = 
3 0

5 2
  

   
 

 
 = (3 – ) (2 – ) 
 
 = 6 – 5 + 2 
 

  = 5 25 4 6
2

    = 5 1
2
  = 3,2 

 
 We see all the characteristic values are same for A and A2.  
 

 Let A3 = 
1 0
7 2
 
 
 

 be the square matrix.  |A3 – | 

 

 = 
1 0

7 2
  

   
 = 0; (1 – ) (2 – ) = 0 

 
  = 1 and  = 2.  We see d(A, A3) = 1. 
 

 Let A4 = 
3 0
7 5

;  A4 –  
1 0
0 1

   

 

   = 
3 0

7 5
 

 
 = 0 
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 gives  = 3 and 5. d(A4, A) = 1.  That is one of the eigen values 
is different and other is the same. 
 

 We see if A5 = 
3 1
5 2

 be matrix such that d(A5, A) = 2. 

 

   |A5 – | = 
3 1

5 2
 

 
 = 0 

 
   (3 – ) (2 – ) – 5 = 0. 
 
   6 – 5 + 2 – 5 = 0 
 
   2 – 5 + 1 = 0 
 

    = 5 25 4
2

    = 5 21
2

  . 

 
 We see d(A5, A) = 2 and both the eigen values are different. 
 

  Let A6 = 
3 0
2 4

, d(A, A6) = 2 

 

  |A6 – | = 
3 0

2 4
 

 
 

 
  = (3 – ) (4 – ) = 0 
 
   = 3 and  = 4. 
 
 We see only one eigen value is common between A and A6. 
 

  Let A7 = 
3 1
6 5

; A = 
3 0
7 2
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  We see d(A7, A) = 3. 
  
  Eigen values of A7 is |A7 – |  = 0 
 

  
3 1

6 5
 

 
 = 0 implies (3 – ) (5 – ) – 6 = 0 

 
  15 – 5 – 3 + 2 – 6 = 0 
 
  2 – 8 + 9 = 0 
 

   = 8 64 36 8 28
2 2

  
  = 4  7 . 

 
 We see both the eigen values are different.   
 

If d(At, A) = 4 we do not work with it for it is not in keeping 
to study them  as they are treated as different matrices. 
 
 Thus we observe a change or distance between matrices A 
and A1 may change the eigen values or in some cases may not 
affect the eigen values.  In some cases the eigen values are 
drastically affected.  
 
 It is left as an open problem. 
 
Problem 1: Find in a n  n square matrices A, B with  
d(A, B) = 1, the maximum changes in the eigen values of A 
from B for n a sufficient large n. 
 
Problem 2:  Study problem 1 if d(A, B) = 2. 
 
Problem 3:  Compare results in problems (1) and (2). 
 
Problem 4:  Study problem (2) if d(A, B) = 3. 
 
Problem 5:  Let d(A, B) = r and d(A, B) = r + t; when will the 
eigen values of A and B be closer, for r or r + t (t  1). 
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 Problem 6:  Is it ever possible to have the characteristic 
equation of A and B to be same where both the entries above 
and below diagonals are non zero and  

d(A, B) = r (r  1). 
 
Problem 7:   Let 1 ,…, n and 1 ,…, n be the n-eigen values 
of the n  n matrices A and B respectively. 
 

(1) If d(A, B) = 1 can we say |i – i| = 1 where 1 will be 
small; i = 1, 2, …, n. 

(2) If d(A,B) = 2 can we say |i - i| = 2 with 2 > 1. 
(3) If d(A,B) = t can we say |i – i| = t with t > t–1 and 

so on (1  i  n). 
 
Problem 8: If d(A, B) = n – 1 where A and B are n  n 
matrices; Is it possible for A and B to have atleast one common 
eigen value? 
 
Problem 9: Boils down to; can we say atleast the characteristic 
equations have a common root? 
 
 So study in this direction is dormant and left as a collection 
of open problems for the reader. 
 
Example 3.8:  Let  
 

  A = 
3 0 0
0 2 0
0 0 1

 
 
 
  

 and B = 
3 0 1
0 2 0
0 0 1

 
 
 
  

 

 
be the given 3  3 matrices d(A, B) = 1. 
 
 We see eigen values A and B are identical and the 
characteristic equation of A and B is the same given by  
( – 1) ( – 2) ( – 3). 
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 Thus for every B1 which is different from A not on the 
diagonal elements have identical eigen values and characteristic 
equation.    
 
 Prove or disprove if A is diagonal matrix and all other 
entries are zero and if B is a matrix with d(A, B) = 1 with no 
difference in the diagonal terms.  The characteristic values of A 
and B are the same and the characteristic equation is the same 
for A and B. 
 
 In example 3.2  let  
 

   B1 = 
3 0 1
0 2 0
4 0 1

 
 
 
  

 

 
d(A, B1) = 2. 
 
 Eigen values of A are 3, 2, 1.   
 

Eigen values of B1 are given by  
(3 – ) (2 – ) (1 – ) + 4 (2 – ) = 0 

 
  (2 – ) [(3 – 4 + 2) + 4] 
 
 = (2 – ) [2 – 4 + 7). 
 
 So the characteristic values are 2,  
 

4 16 4 7 1
2

      

which is imaginary. 
 
So if A takes its entries from reals B1 does not have the 

characteristic values as a pair of them is imaginary. 
 
So for d(A, B1) = 2 we see we have only one of the eigen 

values to be the same other two does not exist. 
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A = 
3 0 0
0 2 0
0 0 1

 
 
 
  

 and B2 = 
3 1 1
0 2 0
0 0 1

 
 
 
  

 

 
d(A, B2) = 2. 

 
Eigen values of A are 3, 2, 1.  
The characteristic equation for B2 ; 
 

|B2 – | = 
3 1 1

0 2 0
0 0 1

  
 

 
 

 
= (3 – ) [(2 – ) (1 – )] – 1.0 + (–1).0 

 
We see A and B2 have the same characteristic equation and 

hence the same set of eigen values though  
d(A, B2) = 2. 

 

Consider B3 = 
3 1 2
0 2 1
0 0 1

 
 
 
  

 

 
d(A, B3) = 3.   The eigen values of A are 3, 2 and 1. 
 
Characteristic equation of B3 is 
 

3 1 2
0 2 1
0 0 1

 
 

 
  

 
= (3 – ) (2 – ) (1 – ) – 1  0 + 2  0. 

 
 
The characteristic values of B3 are the same as that of A. 
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In view of this we have following theorem. 

 
THEOREM 3.1:  Let A be a diagonal matrix. All matrices B with 
same diagonal elements as A but which is a upper triangular 
(or a lower triangular) matrix with  
d(A, B)  (n–1) + (n–2) + (n–3) + … + 1 have same set of eigen 
values and the same characteristic equation.  
 
 The proof is direct and hence left as an exercise to the 
reader.  
 
 We will however illustrate this situation by some examples. 
 
Example 3.9:  Let  
 
 

A = 

2 0 0 0
0 5 0 0
0 0 1 0
0 0 0 7

 
 
 
 
 
 

 

 
 
be the diagonal matrix. 
 
 

B1 = 

2 0 1 0
0 5 0 0
0 0 1 0
0 0 0 7

 
 
 
 
 
 

 

 
 
is a matrix such that d(A, B1) = 1 and it is easily verified both A 
and B1 have same characteristic values and characteristic 
equation. 
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Let B2 = 

2 4 1 0
0 5 0 0
0 0 1 0
0 0 0 7

 
 
 
 
 
 

 

 
be a matrix such that the special distance from A and B2 is 2; 
that is d(A, B2) = 2. 
 
 Characteristic equation of B2 is 
 
 

2 4 1 0
0 5 0 0
0 0 1 0
0 0 0 7

 
 

 
 

 

 
 
 

 = 2 –  
5 0 0

0 1 0
0 0 7

 
 

 
 – 4 

0 0 0
0 1 0
0 0 7

 
 

 +  

 
 
 

1
0 5 0
0 0 0
0 0 7

 

 
 – 0  

0 5 0
0 0 1
0 0 0

 
   

 
 
= (2 – ) (5 – ) (1 – ) (7 – ). 
 
 The same characteristic equation as that of A. 
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 Let B3 = 

2 4 1 2
0 5 0 0
0 0 1 0
0 0 0 7

 
 
 
 
 
 

 be the matrix with same diagonal  

 
values d(A, B3) = 3. 

 
It is easily verified the characteristic equation of B3 is the 

same as that of A. 
 

Let B4 = 

2 4 1 2
0 5 0 3
0 0 1 0
0 0 0 7

 
 
 
 
 
 

 be the matrix with same set of 

diagonal elements as that of A with special distance  
d(A, B4) = 4. 

 
 
Clearly the characteristic equation of B4 is the same as that 

of A. 
 

Now let B5 = 

2 4 1 2
0 5 7 3
0 0 1 0
0 0 0 7

 
 
 
 
 
 

 be the matrix with same set of 

diagonal elements as that of A with special distance  
d(A, B5) = 5.   
 

We see both B5 and A have the same set of eigen values. 
 

Finally let B6 = 

2 4 1 2
0 5 7 3
0 0 1 8
0 0 0 7

 
 
 
 
 
 

 be the matrix whose eigen  
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 values are the same as that of A. 

 
Clearly d(B6, A) = 6 but eigen values of B6 and A are the 

same. 
 
Now having seen this example which is the case when n = 4 

in the theorem; the result is true. 
 
Note we cannot say up to d(A, B) = 6 we can have the result 

to be true only when the different elements are from the upper 
diagonal (or lower diagonal) or used in the mutually exclusive 
sense.  However if 

 
 d(A, B) = 2 with C given in the form  
 
 

C = 

2 0 1 0
0 5 0 0
1 0 1 0
0 0 0 7

 
 
 
 
 
 

 we see the characteristic equations of  

 
A and C are not the same though d(A,C) = 2. 

 

|C – | = 

2 0 1 0
0 5 0 0
1 0 1 0
0 0 0 7

 
 

 
 

 

 
 

= 2 –  
5 0 0

0 1 0
0 0 7

 
 

 
 – 0 |    | +  
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 1 

0 5 0
1 0 0
0 0 7

 

 
 – 0 |  | 

 
= (2 – ) (5 – ) (1 – ) (7 – ) + (–1) (5 – ) (7 – ) 
 
 (2 – ) (5 – ) (1 – ) (7 – ). 
 
Hence the claim. 
 
Since eigen values play a major role and if during 

transmission some errors have occurred in the matrix and if they 
are of the same form we can find the distance and the related 
deviation in the eigen values. 

 
Next we proceed onto analyse the problem when the special 

distance is different in the generator matrix of a code or the 
parity check matrix of a code.   

 
We just recall the definition of a code word but for more 

about them refer [49]. 
 
We first make an assumption that the elements of a finite 

field represent the underlying alphabets for coding.  Let G(Fq) 
be the Galois field with q elements q a prime or a power of a 
prime. 

 
Code words are written in the form x =(x1, …, xn) where the 

first k symbols x1, x2, …, xk are message symbols and the n – k 
elements xk+1, …, xn are the check symbols (or control 
symbols).  All these xi  G(Fq), 1  i  n. 

 
A code word x satisfies the system of linear equations  

HxT = (0) where H is the (n – k)  n matrix with elements from 
G(Fq) we can always derive the standard form of H as  
(A, In–k) where A is an n – k  k matrix and In–k the  
n–k  n – k identity matrix. 
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 We will first illustrate this by an example. 
 
Example 3.10:  Let q = 3, n = 7 and k = 4.  The message a1, a2, 
a3, a4 is encoded as the code word x = a1, a2 a3 a4 x5 x6 x7. 
 
 Here x5, x6 and x7 are such that for the given matrix 
 

   H = 
0 0 1 0 1 0 0
1 0 0 1 0 1 0
0 1 0 0 0 0 1

 
 
 
 
 

 = (A, I3). 

 
We have HxT = (0) that is 
   
     a3 + x5 = 0 
     a1 + a4 + x6 = 0 
     a2 + x7 = 0 
 
 gives x5 = a3, x6 = a1 + a4 and x7 = a2. 
 
 Now we find the code words using these codes as follows; 
 
   0 0 0 0 0 0 0     1 0 0 1 0 0 0  
   1 0 0 0 0 1 0     0 1 1 0 1 0 1 
   0 1 0 0 0 0 1     0 1 0 1 0 1 1 
   0 0 1 0 1 0 0     0 0 1 1 1 1 0  
   1 0 1 0 1 1 0     1 1 1 0 1 1 1 
   1 1 0 0 0 1 1     1 1 0 1 0 0 1 
   1 0 1 1 1 0 0     0 1 1 1 1 1 1 
   0 0 0 1 0 1 0    1 1 1 1 1 0 1 
 
HxT = (0)  are also known as check equations.  
 
 The set of all n dimensional vectors x satisfying  
HxT = (0) over G(Fq) is called a linear code over G(Fq) of block 
length n.   

 
The matrix H is called the parity check matrix of the code 

C. C is also called the linear (n, k) code.   
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The  set C of solutions of Hxt = (0); the solution space of 
this system of equations form a subspace of n

qF  over G(Fq) of 
dimension k. 
 
 For the given parity check matrix in the standard form  
H = (A, In–k), the matrix G = (Ik, –At) is called the canonical 
generator matrix or encoding matrix of a (n, k) code.  In this 
case we have GHt = (0). 
 
 We will illustrate this situation by an example. 
 
Example 3.11:  Let  
 

G = 
1 0 0 1 0 0 1
0 1 0 1 1 0 0
0 0 1 0 1 1 0

 
 
 
 
 

 

 
be the canonical generator matrix.  We find for any message a 
the code is obtained from x = aG. 
 
 We shall get the set of code words using G 
 
 0 0 0 0 0 0 0      0 1 1 1 0 1 0  
 1 0 0 1 1 0 1      1 0 1 1 1 1 1 
 0 1 0 1 1 0 0      1 1 0 0 1 0 1 
 0 0 1 0 1 1 0      1 1 1 0 0 1 1 
 
 For more about algebraic codes refer [  ]. 
 
 Now we show if we have a parity check matrix  H and if we 
have another parity check matrix H1 which is such that the 
special distance d(H, H1) = t where both H and H1 are over the 
same  field G(Fq).   
 

We study the code words of H and H1. 
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Let H = 
1 1 1 0 1 0 0
0 1 0 1 0 1 0
0 0 0 1 0 0 1

 
 
 
 
 

 and 

 

H1 = 
0 1 0 0 1 0 0
0 1 0 1 0 1 0
1 0 0 1 0 0 1

 
 
 
 
 

 

 
be any two parity check matrices d(H, H1) = 3. 
 
 Now the code words C using the parity check matrix H is as 
follows: 
 
 0 0 0 0 0 0 0      0 1 0 1 0 0 1  
 1 0 0 0 1 0 0      1 0 0 1 1 1 1 
 0 1 0 0 0 1 0      1 1 1 0 1 1 0 
 0 0 1 0 1 0 0      1 1 0 1 0 0 1  
 0 0 0 1 0 0 1      1 0 1 1 0 1 1 
 0 0 1 1 1 1 1      0 1 1 1 0 0 1 
 1 1 0 0 0 1 0      1 1 1 1 1 0 1 

1 0 1 0 0 0 0 
0 1 1 0 0 1 0 

 
 Now the code words C1 associated with the parity check 
matrix H1 is as follows: 
 
 0 0 0 0 0 0 0      0 0 1 0 0 0 0  
 1 0 0 0 1 0 0      0 0 0 1 0 1 1 
 0 1 0 0 1 1 0      1 1 0 0 0 1 0 
 1 0 1 0 0 0 0      0 0 1 1 1 1 1  
 1 0 0 1 1 1 1      1 1 1 0 1 1 0 
 0 1 1 0 0 1 0      0 1 1 1 0 0 1 
 0 1 0 1 1 0 1      1 0 1 1 0 1 1 

1 1 0 1 0 0 1 
1 1 1 1 1 0 1 
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 However number of code words common between C and C1 
is as follows: 
 
 {(0 0 0 0 0 0 0), (1 0 0 0 1 0 0), (1 1 0 0 0 1 0),(0 0 1 1 1 1 
1), (1 0 1 0 0 0 0), (1 1 1 1 1 0 1), (0 1 1 1 0 0 1), (1 0 0 1 1 1 1), 
(1 1 1 0 1 1 0), (1 1 0 1 0 0 1), (1 0 1 1 0 1 1), (1 1 0 1 0 0 1)} 
 
 Only four code words are different if some deviation has 
taken place.  
 

The special Hamming distance between the code words of 
H and H1 is as follows:  
 
   dk((0 1 0 0 0 1 0) (0 1 0 0 1 1 0)) = 1 
   dk((0 0 1 0 1 0 0) (0 0 1 0 0 0 0)) = 1 
   dk((0 0 0 1 0 0 1) (0 0 0 1 0 1 1)) = 1 

and  dk((0 1 0 1 0 0 1) (0 1 0 1 1 0 1)) = 1. 
 
 Further if d(H, H1) =3 we see out  of 16 code words  12 are 
the same only four code words are different and the distance 
between them is negligible;  in all cases the Hamming distance 
is one. 
 
Example 3.12 :  Let G be the generator matrix of the code C 
 

 G =  

1 0 0 0 1 0 0
0 1 0 0 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1

 
 
 
 
 
 

 and G1 be generator matrix  

 
of the code C1. 
 

G1 = 

1 0 0 0 0 0 1
0 1 0 0 1 1 0
0 0 1 0 0 0 0
0 0 0 1 0 1 1

 
 
 
 
 
 

. 
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 We see the special distance between G and G1 is 3, that is 
dk(G, G1) = 3. 
 
 It is easily verified that only four out of the 16 code words 
are wrong and the rest is correct inspite of the special distance 
between the generator matrices G and G1 being 3.   
 
 We give one more example before we proceed onto study 
more about the special distances of matrices of same order. 
 
Example  3.13:  Let  
 

H = 
0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 1 1 1 0 0

 
 
 
 
 

 

 
be a parity check matrix and  
 

 
 

H = 
1 0 1 1 0 1 1
0 1 1 0 1 0 1
1 1 1 0 1 0 0

 
 
 
 
 

 

 
 
be the parity check matrix wrongly stored as H. 
 
 The special distance between H and H is d(H, H) = 9. 
 
 Now we see the differences got using the parity check 
matrices H and H. 
 
 The code words C associated with H are C = 
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0 0 0 0 0 0 0
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1
1 1 0 0 1 0 1
1 0 1 0 0 0 1
0 1 1 0 1 0 0
0 1 1 1 0 0 1















      

1 1 1 0 0 1 0
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 1 0 1 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1
1 0 1 1 1 0 0













 

 
 
 Let C denote the code words associated with H 
 

C = 

0 0 0 0 0 0 0
1 0 0 0 1 1 0
0 1 0 0 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 0
0 1 1 0 0 1 0
0 0 1 1 1 1 0
1 0 0 1 1 0 0
0 1 0 1 1 1 0
1 1 1 0 1 0 0
0 1 1 1 0 0 0
1 1 0 1 0 0 0
1 0 1 1 0 1 0
1 1 1 1 1 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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  Only out of 16 code words four are the same rest are 
different. 
 
 Now we find the distance between the corresponding 12 
code words in C and C1. 
 
   dk((0 1 0 0 0 1 1), (0 1 0 0 1 0 0)) = 3 
 
   dk((0 0 1 0 1 1 1), (0 0 1 0 1 1 0)) = 1 
 
   dk((0 0 0 1 1 0 1), (0 0 0 1 0 1 0)) = 3 
 
   dk((1 1 0 0 1 0 1), (1 1 0 0 0 1 0)) = 3 
 
   dk((1 0 1 0 0 0 1), (1 0 1 0 0 0 0)) = 1 
 
   dk((0 1 1 0 1 0 0), (0 1 1 0 0 1 0)) = 2 
 
   dk((0 1 1 1 0 0 1), (0 1 1 1 0 0 0)) = 1 
 
   dk((1 1 1 0 0 1 0), (1 1 1 0 1 0 0)) = 2 
 
   dk((1 0 0 1 0 1 1), (1 0 0 1 1 0 0)) = 3 
 
   dk((0 0 1 1 0 1 0), (0 0 1 1 1 1 0)) = 1 
 
   dk((1 1 1 1 1 1 1), (1 1 1 1 1 1 0)) = 1 
 
   dk((1 0 1 1 1 0 0), (1 0 1 1 0 1 0)) = 2. 
 
 We see the deviations are also large and the number of code 
words which are different are also large.  
 
 Thus we see from these two examples if  the special 
distance between the parity check matrices is large then the 
number of non identical code words associated with them is also 
large. 
 
 From this we only conjecture the following. 
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Problem 10:  Let H be a m  n parity check matrix; H a m  n 
parity check matrix distorted from H.  
 
 (i)  If the special distance dk(H, H) is large;  does it imply 
several code words in H and H are different and the distance 
(Hamming) of these appropriate code words are also large. 
 
 (ii)  Can we say if the special distance dk(H, H) is 
considerably small then the number of code words different in 
H and H will also be small and the Hamming distance between 
the respective code words will also be small? 
 
 Next we proceed onto give the special distance between the 
generator matrices G and G got from G with errors. 
 
 Let  
 

G = 

1 1 0 0 1 0 1
0 1 1 0 1 1 1
0 0 0 1 1 1 0
1 0 0 1 0 1 1

 
 
 
 
 
 

 

 
be the generated matrix of a C(7, 3) code.   
 

Let G be the distorted version of G given by  
 

G = 

0 1 1 0 1 1 0
1 1 0 0 0 1 1
1 0 1 1 1 0 1
1 0 0 1 1 1 1

 
 
 
 
 
 

. 

 
 Now the code words C generated by G is as follows: 
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 C = 0 0 0 0 0 0 0 1 0 1 0 0 1 0

1 0 0 0 1 0 1 1 1 1 0 0 1 0
0 1 0 0 0 0 0 1 1 0 1 0 1 1
0 0 1 0 1 1 1 1 0 1 1 1 0 0
0 0 0 1 1 1 0 1 1 1 1 1 0 0
0 0 1 1 0 0 1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 1 0 0 1 0 1 1
1 1 0 0 1 0 1 0 1 1 1 1 1 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 The code words C generated by G is as follows: 
 
C = 

 

0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 1 1 0 1 1 0 1 1 1 1 0 0 1
1 1 0 0 0 1 1 0 0 0 1 0 0 0
1 0 0 1 1 1 1 1 1 1 0 0 0 1
1 0 1 0 1 0 1 0 0 1 1 0 1 0
0 1 1 1 1 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1 0 0 0 1 1 1
1 1 0 1 0 1 1 1 0 1 1 1 0 1

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 The special distance between G and G given by 
 
    d3(G, G) = 12. 
 
 Now we see out of 16 code words only three are identical.  
 

All the other 13 code words are different. 
 
   dk((1 0 0 0 1 0 1), (1 0 0 0 1 1 1)) = 1 
 

dk((0 1 0 0 0 0 0), (0 1 0 0 1 0 0)) = 1 
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dk((0 0 1 0 1 1 1), (0 0 1 0 0 1 0)) = 2 
 
dk((0 0 0 1 1 1 0), (0 0 0 1 0 0 0)) = 2 
 
dk((0 0 1 1 0 0 1), (0 0 1 1 0 1 0)) = 2 
 
dk((0 1 1 0 0 0 1), (0 1 1 0 1 1 0)) = 3 
 
dk((1 1 0 0 1 0 1), (1 1 0 0 0 1 1)) = 2 
 
dk((1 0 1 0 0 1 0), (1 0 1 0 1 0 1)) = 3 
 
dk((1 1 1 0 0 1 0), (1 1 1 0 0 0 1)) = 2 
 
dk((1 0 1 1 1 0 0), (1 0 1 1 1 0 1)) = 1 
 
dk((1 1 1 1 1 0 0), (1 1 1 1 0 0 1)) = 2 
 
dk((0 1 0 1 0 0 1), (0 1 0 1 1 0 0)) = 2 
 
dk((1 0 0 1 0 0 1), (1 0 0 1 1 1 1)) = 2 

 
It is pertinent to keep on record the maximum value of dk 

for this code C(7, 4) can only be 3 so in some places the 
deviation is very high and only in three code words the distance 
is 1. 

 
So if dk(G, G) is large so is  the deviation among code 

words generated by G and G. 
 
Thus this study of (comparison)  distance between the 

generator matrices and that of the code words can be analysed. 
 
If G and G be the generator matrices of a C(n, k) code; then 

the maximum distance between the code words can be (n – k) 
only.   

 
So if n–k is the special Hamming distance function  then we 

cannot say the distance is small infact the distance is the largest. 
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 Now we propose the following open conjecture. 
 
Conjecture 3.1:  
 

(i) If G and G are associated with two C(n, k) codes what 
is maximum dk(G, G) so that none of the code words 
other than (0, 0, 0, 0, 0, 0, …, 0) are different? 

 
(ii) What is the bound value of dk(G, G) so that all code 

words are identical? 
 

(iii) What is the value of dk(G, G) so that all the distance 
between code words is less than n–k? 

 
Next we proceed on to study the implications of the distance 

between two fuzzy models of same type having the same type 
having the same order of the matrices.  

 
We first define the notion of special distance between 

connection matrices FCMs for the same problem. 
 

DEFINITION 3.3:  Let two experts work on the same problem 
with same number of concepts / attributes using FCMs model.  
Suppose let M1 and M2 be the connection matrices of the 
dynamical system given by the two experts.  We define  
dk(M1, M2) to be the special distance between the dynamical 
systems/connection matrices.   
 

Then study the Kosko-Hamming distance between the 
resultant vectors (hidden pattern) for the same initial state vector 
X. 
 
 This will help one to analyse the models and the experts 
opinion.   
 
 We will first illustrate this situation by an example. 
 
Example 3.14:  Let us study this notion in case of the FCMs 
model given by four experts. 



Distance in Matrices  103 
 
 
 
 
 

 
 Let E1, E2, E3 and E4 be the four connection matrices given 
by them.   

 
 

E1 = 

0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
is the connection matrix given by the first expert. 
 
 
 

E2 = 

0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
associated with the second expert.  
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Let E3 = 

0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
be the connection matrix given by the third expert. 
 
 

Let E4 = 

0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
be the connection matrix given by the fourth expert. 
 
 New dk(E1, E2) = 7 that is difference between the matrices 
E1 and E2 is 7. 
 
 We now give the Kosko-Hamming distance function 
between the hidden pattern given by the two experts for the Ci’s 
where C1 = (1 0 … 0), C2 = (0 1 0 0 … 0), C3 = (0 0 1 0 … 0) 
and so on C7 = (0 0 … 0 1). 
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 We tabulate them in the following as table 1. 
 

Table 1 
 

Ci’s Hidden 
pattern given 

by E1 

Hidden 
pattern given 

by E2 

d(E1, E2) 

(100000000) 
(010000000) 
(001000000) 
(000100000) 
(000010000) 
(000001000) 
(000000100) 
(000000010) 
(000000001) 

(100001111) 
(110111111) 
(101111111) 
(100111111) 
(100111111) 
(100001111) 
(100001111) 
(100001111) 
(100001111) 

(110000111) 
(110101111) 
(111101111) 
(110101111) 
(110111111) 
(110101111) 
(110101111) 
(110101111) 
(110101111) 

2 
1 
2 
2 
1 
2 
2 
2 
2 

 
 We see the two experts have more or less the same opinion 
as the deviation is two or less deviation is two or less than two. 
 
 Now table 2 gives the difference between expert 1 and 3. 
 

Table 2 
 

The initial 
vectors Ci’s 

Hidden 
patterns 

given by E1 

Hidden 
pattern given 

by E3 

d(E1, E3) 

(100000000) 
(010000000) 
(001000000) 
(000100000) 
(000010000) 
(000001000) 
(000000100) 
(000000010) 
(000000001) 

(100001111) 
(110111111) 
(101111111) 
(100111111) 
(100111111) 
(100011111) 
(100001111) 
(100001111) 
(100001111) 

(100001110) 
(110111111) 
(011110001) 
(010110001) 
(010110001) 
(100001110) 
(100001110) 
(100001110) 
(110111111) 

1 
0 
5 
5 
5 
1 
1 
1 
3 
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We observe the experts (1) and 3 vary drastically in case of the 
initial state vectors on the nodes C3, C4 and C5.  But otherwise 
they largely agree upon other nodes. 
 
 Now table 3 gives the Kosko-Hamming distance of the 
hidden  pattern gives for C1, C2, …, C9 as initial state vectors 
given by experts 1 and 4. 
 
 

Ci’s Hidden 
pattern of 
expert 1 

Hidden 
pattern 
expert 4 

d(E1, E4) 

(100000000) 
(010000000) 
(001000000) 
(000100000) 
(000010000) 
(000001000) 
(000000100) 
(000000010) 
(000000001) 

(100001111) 
(110111111) 
(101111111) 
(100111111) 
(100111111) 
(100111111) 
(100001111) 
(100001111) 
(100001111) 

(101000111) 
(010111000) 
(101001111) 
(111111111) 
(111111111) 
(101001111) 
(101001111) 
(101000111) 
(101000111) 

2 
4 
2 
2 
2 
1 
1 
2 
2 

 
 We see except for the node C2 the two experts agree upon 
all other nodes. 
 
 Table 4 gives the hidden pattern and Kosko-Hamming 
distance of the experts 2 and 3. 
 

 
Table 4 

 
Ci’s Hidden 

pattern of 
expert 2 

Hidden 
pattern 
expert 3 

dK(2, 3) 

(100000000) 
(010000000) 
(001000000) 
(000100000) 
(000010000) 

(110000111) 
(110101111) 
(111101111) 
(111101111) 
(110111111) 

(100001110) 
(110111111) 
(011110001) 
(010110001) 
(010110001) 

3 
1 
5 
6 
4 
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(000001000) 
(000000100) 
(000000010) 
(000000001) 

(110101111) 
(110101111) 
(110101111) 
(110101111) 

(100001110) 
(100001110) 
(100001110) 
(110111111) 

3 
3 
3 
1 

 
 Clearly from the table we see the experts do not agree upon 
the resultants the deviations are large. 
 
 Now table 5 gives the Kosko-Hamming distance of hidden 
pattern of the experts 2 and 4. 
 
 
 

Table 5 
 

Ci’s Hidden 
pattern of 
expert 2 

Hidden 
pattern 
expert 4 

dK(E2, E4) 

(100000000) 
(010000000) 
(001000000) 
(000100000) 
(000010000) 
(000001000) 
(000000100) 
(000000010) 
(000000001) 

(110000111) 
(110101111) 
(111101111) 
(110101111) 
(110111111) 
(110101111) 
(110101111) 
(110101111) 
(110101111) 

(101000111) 
(010111000) 
(101001111) 
(111111111) 
(111111111) 
(101001111) 
(101001111) 
(101000111) 
(101000111) 

2 
5 
2 
2 
1 
2 
3 
3 
4 

 
 
 
 We see experts 2 and 4 do not agree upon the opinion.   
 

Now we give in table 6 the Kosko-Hamming distance of the 
hidden pattern given by the experts 3 and 4. 
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Table 6 
 

Ci’s Hidden 
pattern of 
expert 3 

Hidden 
pattern 
expert 4 

dK(E3, E4) 

(100000000) 
(010000000) 
(001000000) 
(000100000) 
(000010000) 
(000001000) 
(000000100) 
(000000010) 
(000000001) 

(100001110) 
(110111111) 
(011110001) 
(010110001) 
(010110001) 
(100001110) 
(100001110) 
(100001110) 
(110111111) 

(101000111) 
(010111000) 
(101001111) 
(111111111) 
(111111111) 
(101001111) 
(101001111) 
(101000111) 
(101000111) 

3 
4 
7 
5 
5 
2 
2 
3 
5 

 
 However expert 3 and expert 4 do not agree upon for the 
same initial state vector the resultant hidden pattern. They are 
deviant. Further expert three happens to hold views entirely 
different from the three experts.  
 

Only the introduction of the Kosko-Hamming distance 
function can give such nice results and yield of such 
comparisons. 
 
 Next we proceed on to study the Kosko-Hamming weight 
function in case of FCMs and the concept of influential or vital 
nodes of the FCMs.  We see the Kosko-Hamming weight will 
give the most influential node of the dynamical system and the 
expert opinion. 
 
 Let us consider the first experts opinion for all the hidden 
patterns the Kosko-Hamming weight of the hidden patterns. 
 
  dk((1 0 0 0 … 0),(1 0 0 0 0  1 1 1 1)) = 4 
 
   = wk(1 0 0 0 0 1 1 1 1). 
 
 
  dk((0 1 0 0 … 0),(1 1 0 1 1 1 1 1 1))  



109 Distance in Matrices and Their Applications to … 
 
 
 
 
 
   = wk(1 1 0 1 1 1 1 1 1) = 7. 
 
  dk((0 0 1 0 0 0 0 0 0),(1 0 1 1 1 1 1 1 1))  
 
   = wk(1 0 1 1 1 1 1 1 1) = 7. 
 
  dk((0 0 0 1 0 0 0 0 0),(1 0 0 1 1 1 1 1 1))  
 
   = wk(1 0 0 1 1 1 1 1 1) = 6. 
 
  dk((0 0 0 0 1 0 0 0 0),(1 0 0 1 1 1 1 1 1))  
 
   = wk(1 0 0 1 1 1 1 1 1) = 6. 
 
  dk((0 0 0 0 0 1 0 0 0),(1 0 0 0 0 1 1 1 1))  
 
   = wk(1 0 0 0 0 1 1 1 1) = 4. 
 
  dk((0 0 0 0 0 0 1 0 0),(1 0 0 0 0 1 1 1 1))  
 
   = wk(1 0 0 0 0 1 1 1 1) = 4. 
 
  dk((0 0 0 0 0 0 0 1 0),(1 0 1 1 1 1 1 1 1))  
  
   = wk(1 0 0 0 0 1 1 1 1) = 4. 
 
  dk((0 0 0 0 0 0 0 0 1),(1 0 0 0 0 1 1 1 1))  
 
   = wk(1 0 0 0 0 1 1 1 1) = 4. 
 
 Thus according to the first expert C2 and C3 the nodes 1 and 
2 are the most influential nodes as the Kosko-Hamming 
distance is 7. 
 
 Likewise the nodes C4 and C5 are the more influential node 
as the Kosko-Hamming distance is 6. 
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 The rest of the five nodes have Kosko-Hamming weight to 
be four.  
 
 Next we study the Kosko-Hamming weight of C1, C2, …, C9 
of the second expert. 
 
  dk((1 0 0 0 0 0 0 0 0),(1 1 0 0 0 0 1 1 1))  
 
   = wk(1 1 0 0 0 0 1 1 1) = 4. 
 
  dk((0 1 0 0 … 0),(1 1 0 1 0 1 1 1 1))  
 
   = wk(1 1 0 1 0 1 1 1 1) = 6. 
 
  dk((0 0 1 0 0 0 0 0 0),(1 1 1 1 0 1 1 1 1))  
 
   = wk(1 1 1 1 0 1 1 1 1) = 7. 
 
  dk((0 0 0 1 0 0 0 0 0),(1 1 0 1 0 1 1 1 1))  
 
   = wk(1 1 0 1 0 1 1 1 1) = 6. 
 
  dk((0 0 0 0 1 0 0 0 0),(1 1 0 1 1 1 1 1 1))  
 
   = wk(1 1 0 1 1 1 1 1 1) = 7. 
 
  dk((0 0 0 0 0 1 0 0 0),(1 1 0 1 0 1 1 1 1))  
 
   = wk(1 1 0 1 0 1 1 1 1) = 6. 
 
  dk((0 0 0 0 0 0 1 0 0),(1 1 0 1 0 1 1 1 1))  
  

= wk(1 1 0 1 0 1 1 1 1) = 6. 
 
  dk((0 0 0 0  … 01 0),(1 1 0 1 0 1 1 1 1))  
 
   = wk(1 1 0 1 0 1 1 1 1) = 6. 
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  dk((0 … 0 1),(1 1 0 1 0 1 1 1 1))  
 
   = wk(1 1 0 1 0 1 1 1 1) = 6. 
 
 
 The nodes C3 and C5 are the most influential nodes and the 
Kosko-Hamming weight of C3 and C5 is 7. 
 
 The nodes C4, C6, C7, C8, C9 are the more influential nodes 
as the Kosko-Hamming weight of them is 6. 
 
 The rest of the nodes of Kosko-Hamming weight is 4. 
 
 Now we study the Kosko-Hamming weights of C1, C2, C3, 
…, C9 given by the third expert. 
 
 
  dk((1 0 0 0 0 0 0 0 0),(1 0 0 0 0 1 1 1 0))  
  

= wk(1 0 0 0 0 1 1 1 0) = 3. 
 
  dk((0 1 0 0 … 0),(1 1 0 1 1 1 1 1 1))  
  

= wk(1 1 0 1 1 1 1 1 1) = 7 
 
  
  dk((0 0 1 0 0 0 0 0 0),(0 1 1 1 1 0 0 0 1))  
 
   = wk(0 1 1 1 1 0 0 0 1) = 4 
 
  dk((0 0 0 1 0 0 0 0 0),(0 1 0 1 1 0 0 0 1))  
 
   = wk(0 1 0 1 1 0 0 0 1) = 3 
 
  dk((0 0 0 0 0 1 0 0 0),(0 1 0 1 1 0 0 0 1))  
 
   = wk(0 1 0 1 1 0 0 0 1) = 3 
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  dk((0 0 0 0 0 1 0 0 0),(1 0 0 0 0 1 1 1 0))  
 
   = wk(1 0 0 0 0 1 1 1 0) = 3 
 
  dk((0 0 0 0 0 0 1 0 0), (1 0 0 0 0 1 1 1 0))  
 
   = wk(1 0 0 0 0 1 1 1 0) = 3 
 
  dk((0 0 0 0 0 0 0 1 0), (1 0 0 0 0 1 1 1 0))  
 
   = wk(1 0 0 0 0 1 1 1 0) = 3 
 
  dk((0 0 0 0 0 0 0 0 1), (1 1 0 1 1 1 1 1 1))  
 
   = wk(1 1 0 1 1 1 1 1 1) = 7. 
 
 
 The weight of C2 and C9 have the heighest weight and they 
are the most influential nodes by the expert 3. 
 
 The more influential node by the expert 3 has weight C3. 
 
 The Kosko-Hamming weight of the nodes C1, C2, …, C9 by 
the expert 4 is as follows: 
 
 
 
  dk((1 0 0 0 0 0 0 0 0),(1 0 1 0 0 0 1 1 1))  
 
   = wk(1 0 1 0 0 0 1 1 1) = 4 
 
  dk((0 1 … 0),(0 1 0 1 1 1 0 0 0))  
  

= wk(0 1 0 1 1 1 0 0 0) = 3 
 
  dk((0 0 1 0 … 0),(1 0 1 0 0 1 1 1 1))  
 
   = wk(1 0 1 0 0 1 1 1 1) = 5 
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  dk((0 0 0  1 0 … 0),(1 1 1 1 1 1 1 1 1))  
 
   = wk(1 1 1 1 1 1 1 1 1) = 8 
 
  dk((0 0 0 0 1  0  0  0  0),(1 1 1 1 1 1 1 1 1))  
 
   = wk(1 1 1 1 1 1 1 1 1) = 8 
 
  dk((0 … 0 1 0 0 0),(1 0 1 0 0 1 1 1 1))  
 
   = wk(1 0 1 0 0 1 1 1 1) = 5 
 
  dk((0 0 … 0 1 0 0),(1 0 1 0 0 1 1 1 1))  
 
   = wk(1 0 1 0 0 1 1 1 1) = 5 
 
  dk((0 0 … 0 1 0),(1 0 1 0 0 0 1 1 1))  
 
   = wk(1 0 1 0 0 0 1 1 1) = 4 
 
  dk((0 … 0 1),(1 0 1 0 0 0 1 1 1))  
 
   = wk(1 0 1 0 0 0 1 1 1) = 4. 
 

 
Thus the nodes C4 and C5 are the most influential nodes of 

expert 4 and the Kosko-Hamming weight is 8.   
 
Thus we see the most influential node also depends on the 

expert and varies from expert to expert. 
 
 Next we proceed onto find the Kosko-Hamming distance 
function pair in case of FRMs and the special distance between 
two FRMs given by two experts. 
 
Example 3.15:  Let M1 and M2 be the connection matrices 
associated with FRM given by two experts. 
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Let M1 = 

1 1 0 1 0
1 0 0 1 0
0 0 1 1 1
1 1 1 1 0
0 0 0 1 0
1 1 0 0 1

 
 
 
 
 
 
 
 
   

 and 

 
 

M2 = 

1 1 1 1 0
0 1 1 0 0
0 1 1 1 0
0 1 0 1 0
0 0 0 1 0
1 1 0 0 1

 
 
 
 
 
 
 
 
  

 

 
be the 2 expert FRMs.  The special distance between M1 and M2 
denoted by 
 
   dK(M1, M2) = 10. 
 
   C1 = (1 0 0 0 0 0) on M1 gives  
   C1M1  (1 1 0 1 0) = X1 say 
   X1

t
1M   (1 1 1 1 1 0) = Y1 say 

  
Y1M1  (1 1 1 1 1) = X2 say 

   X2
t
1M   (1 1 1 1 1 0) . 

  
 
 Thus we get a fixed pair as the hidden pattern  
   ((1 1 1 1 1 0), (1 1 1 1 1)) = A. 
 
 
 Now we find the hidden pattern pair of C1 using M2. 
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   C1M2  (1 1 1 1 0) = X1 
   X1

t
2M   (1 1 1 1 1 0) = Y1  

  Y1M2  (1 1 1 1 0) = X2 . 
 
 Thus the hidden pattern is a fixed pair  

((1 1 1 1 1 0), (1 1 1 1 0)) = B. 
 
 Now the Kosko-Hamming distance between the pair A and 
B is dK(A, B) = (0, 1). 
 
 Thus the two experts agree on the node C1 or they are 
approximately very close.  
 
 Now the Kosko-Hamming weight relative to C1 is 
  dK((1 1 1 1 1 0), (1 0 0 0 0 0)) = 4. 
 
 Next let us consider 
 
   R1 = (1 0 0 0 0) from the range space 
  R1

t
1M   (1 1 0 1 0 0) = X1 say 

  X1 M1  (1 1 1 1 0) = Y1 say 
  Y1 t

1M   (1 1 1 1 1 0) = X2 
  X2 t

1M   (1 1 1 1 1) = Y2 say 
  Y2 t

1M   (1 1 1 1 1 0) = X3 (= X2). 
 
 Thus the hidden pattern is a fixed point pair given by  
   C = ((1 1 1 1 1), (1 1 1 1 1 0)) 
 
 Now we find the hidden pattern pair of the dynamical 
system using M2 
 
  R1

t
2M   (1 0 0 0 0 0) = X1 say 

  X1M2  (1 1 1 1 0) = Y1 
  Y1 t

2M   (1 1 1 1 1 0) = X2 
  X2 t

2M   (1 1 1 1 0) = Y2 (= Y1). 
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 Thus the hidden pattern pair is a fixed point pair given by 
 
   D = ((1 1 1 1 0), (1 1 1 1 1 0)) 
 
 Now the Kosko-Hamming distance pair of C, D is  
 
    dK(C, D) = (1, 0). 
 
  Kosko-Hamming weight is  
 
   dk = ((1 1 1 1 0), (1 0 0 0 0)) 
 
   = wk (1 1 1 1 0) = 3 this is case with expert two. 
 
 
 Incase of expert one; 
 
  dk((1 1 1 1 1), (1 0 0 0 0)) 
  
  = wk (1 1 1 1 1) = 4. 
 
 
 Thus this node according to expert one is the most 
influential node.   
 

The study in this direction can be carried out as in case of 
FCMs. 
 
 Next we show how the special distance between the 
membership matrices associated with FRE works and the 
relation between the experts. 
 
 
Example 3.16:  Let us consider the matrices of the FRE’s given 
by 3 experts.  
  
 Let S1, S2 and S3 be the three membership matrices given by 
the three experts 
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S1 = 

0 0.6 0 0.7 0.8 0.6 0.8
0.3 0.1 0.6 0.6 0 0.5 0.7
0.6 0.8 0 0.7 0.7 0.5 0.6
0 0 0.7 0.6 0 0 0
0 0 0.6 0.3 0 0.2 0

0.1 0 0 0.2 0 0.1 0
0.2 0 0.7 0.6 0 0.5 0.7

 
 
 
 
 
 
 
 
 
  

 

 
 
be the membership matrix given by the first expert. 
 
 

S2 = 

0.1 0.7 0.1 0.8 0.9 0.7 0.8
0.4 0.2 0.7 0.7 0.1 0.4 0.6
0.7 0.8 0.1 0.7 0.1 0.6 0.6
0.2 0.1 0.8 0.8 0 0.1 0
0.5 0 0.6 0.4 0 0.2 0.3
0.1 0.1 0.2 0.3 0.1 0.1 0.1
0.3 0 0.8 0.4 0 0.4 0.8

 
 
 
 
 
 
 
 
 
  

 

 
be the membership matrix given by the second expert. 
 
 Let  
 

S3 = 

0.1 0.6 0 0.6 0.8 0.7 0.8
0.2 0.1 0.5 0.6 0.1 0.5 0.7
0.6 0.9 0.2 0.8 0.7 0.8 0.7
0.4 0.5 0.7 0.6 0.7 0.2 0.1
0.6 0.5 0.6 0.5 0.1 0.2 0.5
0.5 0.4 0.1 0.4 0.1 0.2 0.4
0.2 0.6 0.4 0.6 0.1 0.6 0.7

 
 
 
 
 
 
 
 
 
  

 

 
be the membership matrix of the FRE given by the third expert. 
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 The special distance between S1 and S2 is d(S1, S2) = 0 for 
we measure it a very different way. 
 
 If M =(mij) and n = (nij) be two FRE membership matrices. 
 
  d(M, N) = Number of elements |(mij – nij)| which are 
greater than 0.5. 
 
 Thus in case of S1 and S2  
 d(S1, S2) = 0. 
 
 Consider d(S1, S3) = 0 and d(S2, S3) = 0. 
 
 Now we find the effect of  
 X = (0.7, 0.5, 0.7, 0.4, 0.8, 0.6, 0.3) 
On the dynamical systems S1, S2 and S3 are  
 
 x o S1   = (0.8, 0.6, 0.7, 0.7, 0.6, 0.2, 0.7) 
    = R1 
 
 x o S2   = (0.8, 0.7, 0.7, 0.7, 0.6, 0.3, 0.7) 
    = R2 
 
 x o S3   = (0.7, 0.5, 0.7, 0.7, 0.6, 0.5, 0.6) 
    = R3 
 
respectively. 
 
   d(R1, R2) = (0, 0.1, 0, 0, 0, 0, 0) 
   d(R1, R3) = (0.1, 0.1, 0, 0, 0, 0.2, 0.1) 
   d(R2, R3) = (0.1, 0.2, 0, 0, 0, 0.2, 0.1). 
 
  

Thus experts one and two agree or have identical opinion. 
 

Experts 1 and 3 and experts one and two do not deviate 
much from each other.  In conclusion all the three experts holds 
the same set of opinion in this regard. 
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 Next we can find the special distance between neutrosophic 
matrices as well as between a neutrosophic matrix and the usual 
matrix. 
 
 We will illustrate these two situations by examples. 
 
Example 3.17:  Let 
 

 A = 

I 2I 1 0 0
3 2 1 I
4 0 2I 0
7 0 3I 1
5I 7I 0 0
2I 4 2 3

 
 
 
 
 
 
 
 
  

 and B = 

I 2 0 0
3 2 2I I
4 1 2I 1 0
7 2 1 1
5I 7I 0 0
2I 4I 2 3

 
 
 
 
 
 
 
 
  

 

 
be any two neutrosophic matrices. 
 
 The special distance between them is 7.  This is the way the 
special distance is measured. 
 
Example 3.18: Let  
 

A = 
3I 0 1 2 3I
2 4I 0 I 1 2

 
  

 and 

 
 

B =
3I 1 1 2 3I 1
2 4I 0 I 1 2

 
  

 

 
be any two neutrosophic matrices.  The special distance 
between A and B is 2.   
 

We can also get the distance between usual or real matrices 
and neutrosophic matrices.  We can find the distance between 
the neutrosophic matrix and the real matrix of same order.   
 



Distance in Matrices  120 
 
 
 
 
 
 

We will illustrate this situation by an example. 
 
Example 3.19: Let  
 

A = 

3 2 4 0
0 1 3 0
4 2 7 1
2 5 6 8
3 4 3 1

8 1 0 1

 
 
 
  
 
 
 
 
  

 and 

 
 

B = 

3I 2 4 I 3
0 1 3 I 0
4 2 I 7 1
2 5 6 8
3 4 3 I

8 I 3 0 1

 
  
   
 
 
 
 

  

 

 
be the real and neutrosophic matrices respectively. 
 
 The special distance between A and B is 6. 
 
Example 3.20: Let  
 

M1 = 

0.3 2I 1 3 5I 7 0
8 4 0 8I 1 3
7I 0 5 4I 0 2

1 3I 2 8I 3 4I
8I 0 0 6I 0
0 2I 4I 2 7

  
  
 
  
 
 
  

   

 
be a neutrosophic matrix. 
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Let 

 
 

M2 = 

0.3 1 2 7 6
8 4 0 6 3
6 0 4 0 2
0 2 2 4 1
8 7 3 2 0
7 0 5 2 7

 
 
 
 
 
 
 
 
  

 

 
be the real matrix.   
 

The special distance between M1 and M2 is d(M1, M2) = 17. 
 
 Now we use these two concepts in case of NCMs we take 
two NCMs working on the same problem with same number of 
attributes.  
 
 We will first illustrate by some examples. 
 
Example 3.21:  Let us consider the two experts opinion using 
NCMs on the same problem.  Let N1 and N2 be the connection 
neutrosophic matrices given by the two experts.  
 

 N1 = 

0 I 1 1 1 0 0
I 0 I 0 0 0 0
1 I 0 0 I 0 0

1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 I 0 1
1 0 0 0 0 0 0

 
 
 
 
 
 
 
 

 
  

 

 
be the NCMs connection matrix given by the first expert. 
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 N2 = 

0 1 1 1 I 0 1
0 0 0 0 I 0 I
1 0 0 0 0 0 0

1 0 0 0 1 0 0
I I 0 0 0 0 0
0 0 0 1 0 0 1
1 0 0 0 0 1 0

  
 
 
 
 
 
 
 

 
   

 

 
be the connection neutrosophic matrix given by the second 
expert.  
 
 The special distance between N1 and N2 is 15. 
 
 Let X1 = (1 0 0 0 0 0 0) be the initial state vector. 
 
 X1N1  (1 I 0 1 1 0 0) = X2 
 X2N1  (1 I 0 1 1 0 0) = X3 (=X2). 
 X1N2  (1 1 0 1 I 0 0) = X2 
 X2N2  (1 1 0 1 I 0 0) = X3 
 X3N2  (1 1 0 1 I 0 0) = X4 (= X3). 
 
 Thus the Kosko-Hamming distance is 2. 
 
 
 So both the experts agree closely.  This is the way Kosko-
Hamming distance for the hidden patterns for the same initial 
state vector is determined.  
 
 By this method we can find the experts closeness or 
distance.  Also using Kosko-Hamming weight we can predict 
the most influential node or just influential node and so on.  The 
working is just like that of the usual FCMs model.   
 

We can also find the special distance between the NCMs  
and FCMs model using the same number of nodes.  This 
situation will be represented by some examples. 
 



123 Distance in Matrices and Their Applications to … 
 
 
 
 
 
Example 3.22: Let  
 
 

M1 = 

0 1 1 1 0 0 1
0 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 1
1 0 0 0 0 1 0

  
 
 
 
 
 
 
 

 
   

 

 
be the first  experts connection using FCM. 
 
 

 Let N1 = 

0 1 1 1 I 0 1
0 0 0 0 I 0 I
1 0 0 0 0 0 0

1 0 0 0 1 0 0
I I 0 0 0 0 0
0 0 0 1 0 0 1
1 0 0 0 0 1 0

  
 
 
 
 
 
 
 

 
   

 

 
 
be the neutrosophic connection matrix using the NCMs model 
for the same problem. 
 
 
 The special distance between M1 and N1 is 9. 
 
 Let X = (1 0 0 0 0 0 0) be the initial vector. 
 
 XM1  (1 1 0 1 0 0 0) = X1 
 X1M1  (1 1 0 1 0 1 0) = X2 
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 X2M1  (1 1 0 1 0 1 0) = X3 (= X2) 
is the fixed point. 
 
 Now XN1  (1 1 0 1 I 0 0) = 1X  
 X1N1  (1 1 0 1 I 0 0) = 2X  
 

2X N1  (1 1 0 1 I 0 0) = 3X  (= 2X ) 
a fixed point. 
 
 
 The Kosko – Hamming distance of X2 and 2X  
 dK((1 1 0 1 0 1 0), (1 1 0 1 I 0 0)) = 2. 
 
 Thus the deviation is not very large.   
 

We can study all the properties and develop and describe 
the analysis as in case of FCMs even if we use NCMs or FCMs 
and NCM.   

 
The only criteria which we have to follow is that the experts 

should work on the same problem with same set of attributes or 
nodes. 
 
 Next we can use the theory of working with NRMs. Just 
like FRMs we can study several experts NRMs or one NRM 
and a FRM comparison and analysis is also possible. 
 
 These two situations will be described by examples. 
 
 
Example 3.23:  Let us suppose two experts work on a problem 
using same set of domain and range attributes.  Both chooses to 
work with NRMs. 
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 Let  
 

N1 = 

0 0 0 0 1
1 I 0 0 0
0 0 1 0 0
1 I I 0 0
0 1 0 0 0
0 0 0 0 1
1 I 0 0 0
0 0 0 1 I

 
 
 
 
 
 
 
 
 
 
 
  

 and 

 

N2 = 

I 0 0 1 1
0 I 1 0 0
I 0 1 0 0
1 1 0 I I
0 0 1 I 0
0 0 1 0 I
1 0 I 0 1
0 I 0 1 1

 
 
 
 
 
 
 
 
 
 
 
  

 

 
be the two connection matrices of the FRM given by the two 
experts. 
 
 Clearly the special distance between N1 and N2 is 18.  
 

d(N1, N2) = 18. 
 
 Now let X= (1 0 0 0 0 0 0 0) 
 
be the given initial state vector.  
 

To find the effect of X on N1 and N2. 
 
   XN1  (0 0 0 0 1) = Y1 
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   Y1
t
1N   (1 0 0 0 0 1 0 I) = X2 

   X2 N1  ( 0 0 0 I 1) = Y2 
   Y2 t

1N   (1 0 0 0 1 0 I) = X3 (=X2). 
 
 Let us denote the fixed point pair by 
   ((1 0 0 0 0 1 0 I), (0 0 0 I 1)). 
 
 Now we find the effect of X on N2. 
 
   XN2  (I 0 0 1 1) = Y1 
   Y1 t

2N   (1 0 I I I I 1 1) = X1 
   X1N2  (I I I 1 1 ) = Y2 
   Y2 t

2N   (1 I I I I I 1 1) = X2 say 
   X2 N2  (I I I 1 1) = Y3 (=Y2). 
 
 Thus hidden pattern is a fixed point pair given by  

B = ((1 I I I I I 1 1), (I I I 1 1)). 
 
 The Kosko-Hamming distance pair is given by  
 

dK(A, B) = (7, 4). 
 
 Thus this pair proves beyond doubt that for the initial state 
vector (1 0 0 0 0 0 0 0) the experts do not agree upon they hold 
diverse opinion.   
 

Likewise we can work with more number of initial state 
vectors.  
 
 Such type of analysis is not only new but it gives analysis 
with in the experts and the models they use.  
 
 Now we can also compare the FRM models with NRM 
models on the same problem by different experts. 
 
 This will be illustrated by the following example. 
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Example 3.24:  Let two experts work on the same problem.  
One of them use the FRM model and the connection matrix 
given by the expert is as follows: 
 

M1 = 

0 0 0 1 1
0 0 1 0 0
0 0 1 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 Let the second expert work with the same problem using the 
NRMs.  Let M2 be the neutrosophic connection matrix given by 
the second expert. 
 

M2 = 

I 0 0 1 1
0 I 1 0 0
I 0 1 0 0
1 1 0 I I
0 0 1 I 0
0 0 1 0 I
0 0 I 0 1
0 I 0 1 1

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 We the special distance between M1 and M2 is 10.   
 

Now we find the Kosko-Hamming distance between the 
experts on the node X = (1 0 0 0 0 0 0 0) 
 
   XM1  (0 0 0 1 1) = Y1 
   Y1

t
1M   (1 0 0 0 0 1 1 1) = X1 

   X1M1  (0 0 0 1 1) = Y2 



Distance in Matrices  128 
 
 
 
 
 
 

   Y2 t
1M   (1 0 0 0 0 1 1 1) = X2 (=X1). 

 
   Let A = ((1 0 0 0 0 1 1 1) (0 0 0 1 1)) 
be the fixed point pair of the initial state vector. 
 
   X = (1 0 0 0 0 0 0 0) be the initial state vector. 
 
   XM2  (I 0 0 1 1) = Y1 
   Y1 t

2M   (1 0 I I I I 1 1) = X1 
   X1M2  (I I I 1 1 ) = Y2 
   Y2 t

2M   (1 I I I I I 1 1) = X2 
   X2M2  (I I I 1 1) = Y3 (= Y1). 
 
 Thus the hidden pattern is a fixed pair given by  

B = {(1, I, I, I, I, I, 1, 1), (I, I, I, 1, 1)}. 
 
The Kosko-Hamming distance pair between A, B is  

dk(A, B) = (5, 3). 
 
The deviation infact is large.  
 
Thus we can in case of two nodes one a neutrosophic model 

and other real fuzzy model we can compare them using these 
newly introduced tools. 

 
We will just give how these distance functions work on the 

Neutrosophic Relational Equations (NRE) models.   
 
We will illustrate this situation by an example or two. 

 
 
Example 3.25: Let two experts work using NREs on the same 
problem.  
 
 Let M1 and M2 be the neutrosophic fuzzy matrix given by 
them. 
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 Let M1 = 

0.2I 0.6 0.3I 0.7 0.8 0.6 0.8
0.3 0.7I 0.6 0.6 0.3I 0.5 0.7
0.6 0.8 0.7I 0.7 0.7 0.5 0.7
0.5I 0.2 0.7 0.6 0.3 0.2 0.7
0.7 0.4I 0.6 0.3 0.2I 0.7 0.5
0.1 0.5 0.3 0.2 0.7 0.1 0.5I
0.2 0 0.7 0.6 0 0.5 0.7

 
 
 
 
 
 
 
 
 
  

 

 
the neutrosophic membership matrix of the NRE given by the 
first expert. 
 
 Let M2 be the neutrosophic membership matrix of the NRE 
given by the second expert which is as follows: 
 

 M2 = 

0.I 0.6 0 0.4 0.7 0.8 0.9
0.3I 0.I 0.4 0.6I 0.I 0.5 0.7
0.5 0.9 0.2I 0.5 0.6 0.5 0.6
0.3 0.4I 0.6 0.4 0.2 0.I 0.2
0.5 0.5 0.6 0.5 0.I 0.2 0.5
0.3 0.2 0.2 0.3 0.2 0.I 0.3
0.I 0.5 0.2 0.4 0.I 0.4 0.5

 
 
 
 
 
 
 
 
 
  

. 

 
 
 Now let both the expert work with  
 

X = (0.7, 0.5, 0.7, 0.4, 0.8, 0.6, 0.3) 
 
Using M1  
 
M1 o Xt = (0.8, 0.6, 0.7I, 0.7, 0.7, 0.7, 0.7) = R1. 
 
Let the second expert work with the same X. 
 
M2 o Xt =   (0.7, 0.5, 0.6, 0.6, 0.6, 0.3, 0.5) = R2. 
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Now the distance function between R1 and R2 is 
 
(0.1, 0.1, | 0.7I, –0.6| 0.1, 0.1, 0.4, 0.2) 
 
We see except for the third node the deviation is not very 

large for it is less than 0.5. 
 
Likewise for any initial state vector X we can find the 

Kosko-Hamming distance between the two experts opinion by 
find the Kosko-Hamming distance of the resultant for the initial 
state vector X. 

 
Such study is considered as a matter of routine and is left as 

an exercise to the reader. 
 
Now we give an example in which we find the special 

distance between the membership matrix of an FRE and the 
membership matrix of a NRE. 

 
This is illustrated by the following example. 

 
Example 3.26:  Let two experts work on the same problem with 
same set of attributes one works using NRE and the other uses 
FRE.  How we compare them is illustrated in the following. 
 
 Let the expert working with FRE has the following 
membership matrix. 
 

 S1 = 

0.1 0.7 0 0.7 0.8 0.8 0.2
0.5 0.5 0.6 0.7 0.4 0.6 0.7
0.7 0.7 0.5 0.4 0.7 0.6 0.5
0.6 0.5 0.5 0.6 0.1 0.2 0.4
0.6 0.4 0.6 0.7 0.4 0.3 0.5
0.4 0.2 0.4 0.5 0.2 0.1 0
0.2 0.1 0.7 0.5 0 0.5 0.5

 
 
 
 
 
 
 
 
 
  

. 
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 Let the second expert work with the same set of variables 
and initial limit points but with the NRE membership matrix S2 
which is as follows: 
 

 S2 = 

0.I 0.5 0.2 0.7 0.6 0.9 0.5
0.6 0.8 0.8 0.9 0.2 0.6 0.5
0.4 0.2 0.5 0.4 0.7 0.6 0.3I
0.5 0.4 0.2 0.5 0.2 0.2 0.3
0.5 0.4 0.5 0.8 0.6 0.4 0.5
0.4 0.2 0.6 0.5 0.2 0.I I
0.2 0.3 0.6I 0.4 0 0.2 0.2

 
 
 
 
 
 
 
 
 
  

. 

 
 Now we see the special distance between S1 and S2 is 6. 
 
 Now we find the effect of the initial state vector 
 
 X = (0.7, 0.5, 0.7, 0.4, 0.8, 0.6, 0.3). 
 
 Using the membership matrix S1. 
 
 S1 o X = (0.8, 0.6, 0.7, 0.7, 0.6, 0.2, 0.7) = R1. 
 
 Similarly the effect of X on the membership matrix S2 of 
the NRE is as follows: 
 
 S2 o X = (0.6, 0.7, 0.7, 0.5, 0.6, 0.6, 0.6I) = R2. 
 
 The Kosko-Hamming distance function dK(R1, R2) = 1 using 
|xi – xj|  5 is replaced as zero difference  
 
 dK(R1, R2) = (|0.8 – 0.6|, |0.6 – 0.7|, |0.7 – 0.7| , |0.7 – 0.5|, 
|0.6 – 0.6|, |0.2 – 0.6|, |0.7 – 0.6I|) 
 
 = (0.2, 0.1, 0, 0.2, 0, 0.4, | 0.7 – 0.6I|) 
 
 = 1  
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using |xi – xj|  0.5 is 0 when both xi and xj are real and  
> 0.5 is 1 if one of xi or xj is neutrosophic then 1 or I according 
as the coefficient value of them and if both xi and xj are 
neutrosophic I or 0 as usual and  
 
 |xi – xj| = a + bI if a  0.5 and b  0.5 it is zero. 
 if even one of a > 0.5 or b > 0.5 it is 1. 
 
 Only by this rule we calculate the Kosko-Hamming distance 
function provided they are the resultant of the same initial state 
vector X. (However expert has the liberty to work differently by 
assigning different values).  
 
 Next we indicate how in the first place super Hamming 
distance can be defined for two super row vectors. 
 
DEFINITION 3.4:  Let X = (a1 | … | … | … an) and  
Y = ( 1a  | … | … | na ) be two super row vectors.  The super 
Hamming distance between X and Y can be defined if and only 
if 
 

(i) Both X and Y are of same order. 
(ii) Both X and Y enjoy the same type of partition. 

 
Then the super Hamming distance d s(X, Y) is the number of 

places in which X and Y differ. 
 
We will first illustrate this situation by an example or two. 

 
Example 3.27:  Let X = (3 7 | 2 1 0 | 5 2 0 | 7) and  
Y = (3 7 | 3 1 0 | 2 2 0 | 3) be two super row matrices of same 
type. 
 
 The super Hamming distance dS(X, Y) = 3. 
 
Example 3.28:  Let X = (1 | 2 3 4 | 5 7 | 0 2 3) and  
Y = (1 2 | 3 4 5 | 7 0 | 2 3) be two super row vector.  They are 
not of same type but we see entries in both X and Y are 
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identical, still we cannot define the super Hamming distance for 
them. 
 
Example 3.29:  Let X = (3 1 | 5 6 2 | 1 | 3 0 1 1 | 7 | 2 1) and  
Y = (3 1 | 5 6 4 | 5| 3 0 1 1| 7 | 3 2) be any two super row vectors 
of same type; the super Hamming distance dS(X, Y) = 4. 
 
 We can as in case of usual matrices, define the notion of 
special super distance.  Here also the concept of super special 
distance is possible provided the super matrices of same natural 
order and they are of same type.   
 

Unless these two criteria’s are satisfied it is not possible to 
define super special distance between them. 
 
 We will illustrate these situations by some examples. 
 
Example 3.30:  Let  

X = 

3
7
8
9
4
3
2
1
0
3
1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 and Y = 

3
7
1
9
4
3
0
1
0
2
7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
be two super column vectors.   
 

The special super Hamming distance dS(X, Y) = 4.   
 

Now we see both X and Y have same natural order and they 
are of same type. 
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Example 3.31:  Let  
 
 

X = 

3
2
1
1
1
1
4
2

 
 
 
 
 
 
 
 
 
 
 
  

 and Y = 

3
2
1
1
1
1
4
2

 
 
 
 
 
 
 
 
 
 
 
  

 

 
be two super column vector both these are same entries and 
same natural order but are of different types so we are not in a 
position to define super special distance between them. 
 
Example 3.32:  Let  
 
 

X = 
3 4 0 7 10 1 0 2
2 5 0 8 9 0 3 1
1 0 1 9 1 2 1 1

 
 
 
  

 and 

 
 

Y = 
3 4 1 7 10 1 0 2
2 5 0 8 8 0 3 1
1 2 1 0 1 2 1 4

 
 
 
  

 

 
 
be two super row vectors of same type. 
 
 The special super distance dS(X, Y) = 5. 
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Example 3.33: Let  
 
 

Y = 

0 1 1 1
6 5 0 2
7 1 1 0
1 2 3 6
3 1 2 4

1 2 3 0
3 1 1 1
0 0 1 1

 
 
 
 
  
 
 
 
 
 
  

 and  X = 

0 1 1 1
6 5 2 2
7 1 1 0
1 2 3 6
3 1 2 5

1 2 3 6
3 1 1 1
0 0 1 1

 
 
 
 
  
 
 
 
 
 
  

 

 
 
be any two super column matrices of same type d (Y, X) = 3. 
 
Example 3.34:  Let  
 
 

X = 

2 3 1
4 5 7
8 1 0
0 0 1
1 1 2
0 3 3
1 8 0
3 1 7
8 1 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 and  Y =

2 3 1
4 5 7
8 1 0
0 0 1
1 1 2
0 3 3
1 8 0
3 1 7
8 1 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
be any two super column matrices.   
 

We see they are of same natural order.  But they are not 
same type so special distance cannot be found. 
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Example 3.35:  Let  
 
 

M = 

1 2 3 4 5 0
0 7 8 9 1 2
1 3 0 1 0 0
3 0 1 1 4 1
0 0 1 0 3 1
6 0 2 0 0 1
1 2 3 4 5 6

 
 
 
 
  
 
 
 
 
 

 and 

 
 

N =

1 2 3 4 5 6
0 7 8 9 1 2
1 3 6 1 0 0
3 0 1 1 4 2
0 0 1 0 3 1
6 0 2 0 0 5
1 2 3 4 5 7

 
 
 
 
 
 
 
 
 
 
 

 

 
be any two super matrices of same natural order and same type. 
 
 The special distance between M and N is  dS(M, N) = 4. 
 

Example 3.36:  Let X = 

3 1 1 3 8 4
5 6 8 9 0 1
1 0 0 0 1 3
2 2 4 8 0 4
1 0 2 1 0 1
5 6 3 4 5 4
9 6 2 0 0 0
1 0 2 0 1 5

 
 
 
 
 
 
 
 
 
 
 
  
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and Y = 

3 1 1 3 8 4
5 6 8 9 0 1
1 0 0 0 1 3
2 2 4 8 0 4
1 0 2 1 0 1
5 6 3 4 5 4
9 6 2 0 0 0
1 0 2 0 1 5

 
 
 
 
 
 
 
 
 
 
 
  

 

 
be any two super matrices.  
 

We see they are of same natural order but we cannot find 
the special distance between them. 
 
Example 3.37:  Let  
 

S = 
9 2 7
1 4 8
9 1 0

 
 
 
 
 

 and R = 
9 2 0
1 4 8
0 1 1

 
 
 
 
 

 

 
be any two super matrices. 
 
 We see the special distance dS(S, R) = 3. 
 
Example 3.38:  Let  
 

R = 
3 1 0
8 4 5
0 7 1

 
 
 
  

 and S = 
0 1 6
7 8 1
1 4 4

 
 
 
 
 

 

 
be any two super matrices.  They are of same natural order but 
of different type. 
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 So the special distance between R and S cannot be 
determined. 
 

Example 3.39:  Let A = 

9 0 1 2 1 2 0
6 1 0 0 0 1 1
7 2 1 0 6 0 3
8 1 0 6 0 3 1
0 2 6 7 2 1 6
1 0 3 0 6 1 2
8 1 1 0 1 0 3

 
  
 
 
 
 
 
 
 
 

 

 
 

and B = 

9 0 1 2 1 2 7
6 1 0 0 0 6 1
7 2 1 0 6 0 3
8 1 0 6 0 3 1
0 2 6 7 2 1 6
1 0 3 0 6 1 2
8 1 1 6 1 2 4

 
  
 
 
 
 
 
 
 
 

 

 
be any two super matrices of same type.   
 

The special distance between A and B dS(A, B) = 4. 
 
 Now we can as in case of usual fuzzy models FCMs, FRMs, 
FREs, NCMs, NRMs and NREs  apply it to super fuzzy models 
also.   
 

This task is left as in case of usual matrices for the reader to 
find Kosko-Hamming distance between two initial super 
vectors.   

 
We give example of them. 
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Example 3.40:  Let us consider the fuzzy super FCMs model 
given by the following super matrix M1 given by the first 
expert.  
 

 M1 = 

0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 0 (0)

0 0 1 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0

0 1 0 1 0
1 0 1 0 1

(0) 0 1 0 1 0
1 0 1 0 1
0 0 1 1 0

 
 
 
 
  
 
 

 
 
 
 
  
 
 

 

 

 
 
 Let M2 be the super matrix given by the second expert. 
 
 

 M2 = 

0 1 0 0 0 1
1 0 0 1 1 0
0 0 0 1 0 0 (0)
0 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 0

0 1 0 1 0
1 0 1 0 1

(0) 0 1 0 0 0
1 0 0 0 1
0 0 1 0 0

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
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 We see both the experts work on the same set of attributes.  
The super matrices of the super FCM are of same type. 
 
 The special distance d(M1, M2) = 6. 
 
 Let us consider the super initial row vector 
 
 X = [1 0 0 0 0 1 | 0 1 0 0 0] 
 
 X o M1  [1 1 0 0 0 1 | 1 1 1 0 1] = Y1 
 
 Y1 o M1  [1 1 0 1 1 1| 1 1 1 0 1] = Y2  
 
 Y2 o M1  [1 1 0 1 1 1 | 1 1 1 0 1] = Y3 (= Y2). 
 
 Let us find the effect of X on the super FCM M2. 
 
 X M2  [1 1 0 0 0 1 | 1 1 1 0 1] = Z1 
 
 Z1 M2  [1 1 0 1 1 1| 1 1 1 1 1] = Z2  

Z2 M2  [1 1 0 1 0 1 | 1 1 1 1 1] = Z3  
 Z3M2  (1 1 0 1 1 1 | 1 1 1 1 1] = Z4 = Z3  
 
 The hidden pattern is a limit cycle. 
 
 The Kosko-Hamming distance between dK(Y2, Z2) = (0, 1) 
 
 and dK(Y2, Z3) = (1, 1). 
 
 This is the way the Kosko-Hamming distance for the initial 
vector X is formed. Likewise we can find the super Kosko-
Hamming distance.  
 

Similarly we can find the Kosko-Hamming distance of two 
super FRMs.  This study is a matter of routine and is left as an 
exercise to the reader.  
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 We will find super Kosko-Hamming distance for any set of 
experts opinions we can also find the super Kosko-Hamming 
weight of the hidden pattern for any initial vector X. 
 
 dS ((1 1 0 1 1 1 | 1 1 1 0 1), (1 0 0 0 0 1 | 0 1 0 0 0)) =  
   wS (1 1 0 1 1 1| 1 1 1 0 1) = (3, 3) 
 
 Likewise we find the super Kosko-Hamming weight  
dS((1 1 0 1 1 1 | 1 1 1 1 1), (1 0 0 0 0 1 | 0 1 0 0 0) = (3, 4) 
 
 = wS ((1 1 0 1 1 1 | 1 1 1 1 1)). 
 
 Interested reader can work for different initial state super 
vectors. 
 
 Now we proceed onto give some problems for the reader. 
 
Problems  
 

1. Find any other nice applications and uses of the special 
distance between two matrices of same order. 

 
2. Show the distance between two square matrices changes 

in general the eigen values associated with it. 
 

3. Let A = 

3 4 2 1
0 1 4 0
2 4 5 6
0 1 0 7

 
 
 
 
 
 

 and B = 

3 1 2 1
7 1 4 2
2 0 5 6
0 1 0 7

 
 
 
 
 
 

  

 
 

be any two 4  4 matrices. 
 

(i) Find how many eigen values of A and B are 
identical? 

 
(ii) Find the special distance between A and B. 
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(iii) If C = 

3 4 2 1
0 1 4 1
2 4 0 2
0 1 0 7

 
 
 
 
 
 

find the special distance  

 
between A and C and B and C. 

 
(iv) How many eigen values of A and C are identical? 
 
(v)  Find the number of eigen values which are common 

between B and C. 
 
 

4. If instead of a usual square matrix a upper or a lower 
triangular matrix is used study the maximum number of 
acceptance changes that can occur without changing the 
eigen values. 

 
 

5. Let    A = 

3 7 2 1 0 5
0 1 0 5 2 1
0 0 9 0 7 9
0 0 0 8 1 2
0 0 0 0 9 8
0 0 0 0 0 11

 
 
 
 
 
 
 
 
  

 and  

 

B = 

3 0 3 4 6 7
0 1 5 2 1 8
0 0 9 1 9 9
0 0 0 8 3 4
0 0 0 0 9 7
0 0 0 0 0 11

 
 
 
 
 
 
 
 
  

  

 
be two  upper triangular matrices. 
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(i) Find d(A, B). 
(ii) Are the eigen vectors and values of A different from 

B? 
 

6. Obtain any special feature about eigen values of two 
square matrices which are at a maximum distance. 

 
7. Obtain a minimum distance between any two square 

matrices so that they have the same set of eigen values. 
 

8. Prove or disprove if some of the diagonal values vary in 
two square matrices then they have different eigen 
values.  

 
9. Describe the role of special distance of matrices in 

FCMs. 
 

 

10. Let A1 = 

9 2 0 0
1 8 0 7
4 0 9 8
1 2 3 5

 
 
 
 
 
 

 and A2 = 

7 2 0 0
1 2 0 7
4 0 9 8
1 2 3 5

 
 
 
 
 
 

  

 
be any two square matrices.  
 
(i)   Find the special distance between A1 and A2. 
 

 
 

11. Let  M1 = 

0 1 1 0 0 1
0 0 0 1 0 0
1 0 0 1 0 1
0 0 0 0 1 1
1 1 0 0 0 1
0 0 1 0 1 0

 
 
 
 
 
 
 
 
  

,  
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M2 = 

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 1
1 1 0 0 0 0

 
 
 
 
 
 
 
 
  

 and  

 
 
 

M3 = 

0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

  

 
be the  3 connection matrices associated with FCMs 
given by three experts. 
 
 
(i)  Find the special distance between the matrices M1 

and M2, M2 and M3 and M1 and M3. 
 
(ii) Find for the six on state of nodes. 
 
 X1 = (1 0 0 0 0 0),  

X2 = (0 1 0 0 0 0),  
X3 = (0 0 1 0 0 0),  
X4 = (0 0 0 1 0 0),  
X5 =(0 0 0 0 1 0) and  
X6 = (0 0 0 0 0 1) the Kosko-Hamming distance of 
the hidden patterns between the experts. 
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(iii) Find the Kosko-Hamming weight of the hidden    
patterns. 

 
(iv) Find the most influential nodes and more influential 

nodes of the 3 experts. 
 

12. Let S1 = 

0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 1 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
be the connection matrix given by the first expert.   

 
Let S2 be the connection matrix given by the second 
expert which is as follows: 

 

S2 = 

0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 
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Study questions (i) to (iv) of problem 11 for this 
pair. 
 

13. What are  the special features helpful in the study of 
special distance in FRM models? 

 
14. Describe using a FRM model the most influential node, 

more influential node and so on. 
 

 

15. Let    M1 = 

0 1 0 0 1
0 0 0 1 1
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 1 1 0 0
0 0 0 1 0
0 1 0 0 0

 
  
 
 
 
 
 
 
 
 
  

 and  

 
 

M2 = 

0 1 0 0 0
0 0 0 0 1
1 0 1 0 0
0 1 1 1 0
1 0 1 0 1
0 1 1 0 0
0 0 0 1 0
0 1 1 0 0

 
  
 
 
 
 
 
 
 
 

  

  

 
be two FRM connection matrices given by two experts 
on the same problem with same number of range and 
domain nodes. 
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(i)  Find the special distance between M1 and M2. 
 
(ii) Find on how many domain nodes the experts agree 

upon the resultant. 
 
(iii) In how many range nodes experts do not agree upon 

the resultant vectors? 
 
(iv) Find the influential nodes of the domain and range 

spaces. 
 

16. Using several experts and using FRMs to analyse a real 
world problem, find the closeness or deviation of 
experts.   

 
Show in general the most influential node is not the 
same for all experts. 

 
17. Show in Fuzzy Relational Equations the notion of 

special distance and Kosko-Hamming distance plays a 
very vital role in the study of these FRE models of 
different experts. 

 
 
 

18. Let M1 = 

0.8 0.4 1 0 0 0.7
0.1 0.7 0 0.5 0 0.6
0 0 0.8 0.4 0.7 0
0 0.2 0 0 0 0.5

0.3 0.9 0 1 0.2 0
1 0 0 0 0.7 0
0 0.2 0.5 0.1 0.8 0

 
 
 
 
 
 
 
 
 
  

 and  
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  M2 = 

1 0.3 0.8 0 0.1 0.8
0 0.8 0.1 0.7 0 0.7

0.2 0.1 0.9 0.6 0.5 0.7
0.8 0.3 0 0.1 0.2 0.6
0.5 0.8 0.1 0.7 0.7 0.7
0.8 0 0 0.1 0.6 0
0 0.2 0.6 0.2 0.8 0.3

 
 
 
 
 
 
 
 
 
  

  

 
be the membership matrices of FRE given by two 
experts. 
 
(i) Find the special distance between M1 and M2. 
 
(ii) Using same initial state vector X study the effect of 

these matrices and find the Kosko-Hamming 
distance between them. 

 
(iii) Can we speak of Kosko-Hamming weight in this 

case? 
 

19. Study for two NCMs of two experts the notion of 
Kosko-Hamming distance function and Kosko-
Hamming weight function. 

 
 

20. Let S1 =

0 I 1 0 1
0 0 0 I 1
1 0 0 1 0
0 1 0 0 0
0 0 I 0 0

 
 
 
 
 
 
  

 and S2 =  

0 1 0 0 1
0 0 0 I 1
1 0 0 1 I
0 1 I 0 0
0 0 1 0 0

 
 
 
 
 
 
  

  

 
 

be two connection neutrosophic matrices given by two 
different experts. 
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(i)  Find the special distance between S1 and S2. 
 
(ii) For the set of initial state vectors X1 = (1 0 0 0 0), 

X2 = (0 1 0 0 0), X3 = (0 0 1 0 0), X4 = (0 0 0 10) 
and X5 = (0 0 0 0 1) find for the resultant vectors 
Kosko-Hamming distances. 

 
(iii) Using  Kosko-Hamming weight determine the most 

influential node and the least influential node. 
 

21. Study the notion of Kosko-Hamming distance function 
pair and Kosko-Hamming weight in case of NRMs 
given by two experts. 

 

22. Let   N1 = 

I 0 1 1 1
0 0 1 I 0
1 0 0 0 1
0 I 0 0 0
0 0 0 1 0
1 0 1 0 1
0 I 0 0 I
0 0 1 0 1

 
 
 
 
 
 
 
 
 
 
 
  

 and  

 
 

 N2 = 

I 0 1 0 1
0 1 0 I 0
1 0 0 0 1
0 1 0 0 0
0 0 0 I 0
1 0 1 0 1
0 1 0 0 I
0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
  
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be the two relational matrix of NRMs given by two 
experts on a problem. 
 
(i)  Find the special distance between N1 and N2. 
 
(ii) Find for the initial state vector X1 = (1 0 … 0)  

X3 = (0 0 1 0 0 0 0 0), X4 = (00 0 10 0 0 0),  
X5 = (0 0 0 0 1 0 0 0), X6 =(0 0 0 0 0 1 0 0) and  
X8 = (0 0 0 0 0 0 0 0 1) in the domain space, the 
corresponding hidden pattern pairs and study using 
Kosko-Hamming distance function, the closeness or 
distance of the two experts opinion. 

 
(iii)  For the set of initial vector Y1 = (1 0 0 0 0), 

Y3 = (0 0 1 0 0) and Y5 = (0 0 0 0 1) in the range 
space find the hidden pattern pair and study the 
relation between the experts using Kosko-Hamming 
distance functions. 

 
(iv) Find also the Kosko-Hamming weights of the 

resultant vector pairs of these initial vectors given 
in (ii) and (iii) and find the most influential node 
and just influential nodes.  

 
23. Show by appropriately modifying the problem one can 

use the same and study questions (i) to (iv) of problem 
22 for a FCM given by one expert and for a NCM given 
by another expert who work with the same problem and 
the same set of attributes. 

 
24. Show if two experts work on the problem with same set 

of domain and range attributes using FRM and NRM 
then one can study questions (i) to (iv) of problem 22 
for this FRM and NRM. 

 
25. Show for membership matrix of NREs given experts, 

we can use the concept of Kosko-Hamming distance 
function to analyse the models. 
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26. Let two experts work on the same problem using the 
same set of attributes with neutrosophic matrices S1 and 
S2 where  

 

S1 = 

0.I 0.2 0 0.7I 1 0 1
1 0 I 0 0.7 0.2 0

0.3 I 1 0.2I 0 0 0.7
0.7I 0 0.3I 0 0.2I 1 0

0 0.8I 0 1 0.8 0 0.6I
0.3I 0 0 0 0 0 0.7
0.I 1 0.2I 0.7 0.2I I 0

0.8I I 0.5I 0 0 0 0.2I

 
 
 
 
 
 
 
 
 
 
 
  

 and  

 
 

S2 = 

0.3 1 0 0.2I 1 0 I
0 I 0 0.4I 0 0.2 0.3

0.5I 0 0.7 0 0.8 0.4 0
0 0.1 0.8I 0.4 0 0.6 0.7
1 0.3 I 0 0.3 I 0.2

0.8 0.3I 0 0.7 0.6I 0 0.4I
0.7I 0.6 1 0.4 0 I 0.2
0.2 0.4I 0.3I 0 0.8I 0 0.6I

 
 
 
 
 
 
 
 
 
 
 
  

  

 
be the neutrosophic membership matrices of the NREs 
given by two experts. 
 
(i)  Find the special distance between the matrices S1 

and S2. 
 
(ii) For 3 different essential initial points find the 

Kosko-Hamming distances. 
 
(iii) Can we get the most influential node?  Justify your 

answer. 
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27. Show these concepts can be applied to super fuzzy 
models also. 

 
 
28. Let us consider two super diagonal matrices who work 

on the same problem given by 3 sets of experts. 
 
S1 =  
 
 

      

0 1 0 0 1
0 0 0 1 0
1 0 0 0 1 (0) (0)
0 0 0 0 1
0 1 1 0 0

0 1 0
(0) 1 0 0 (0)

0 0 1
0 1 1 0 0 0 1
0 0 0 1 0 1 0
1 0 0 0 1 0 0

(0) (0) 0 0 0 0 0 1 1
1 0 1 0 0 0 1
0 0 0 1 0 0 1
1 0 1 1 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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and S2 =  
 

0 0 1 0 0
0 0 0 1 1
1 0 0 0 1 (0) (0)
0 0 1 0 0
0 1 1 0 0

0 0 1
(0) 1 0 1 (0)

0 1 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
1 0 0 0 1 0 0

(0) (0) 0 0 0 1 0 1 0
1 0 0 0 0 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

 
 
be the expert opinions. 
 
(i)   Find for the initial state super vector  

X = (1 0 0 0 0 | 0 0 1 | 0 0 1 0 0 0 0) the resultant 
Kosko-Hamming distance function using S1 and S2. 

 
(ii)  Find the special distance between S1 and S2. 
 
(iii) Find the most influential nodes for S1 and S2. 
 
29. Study the other super fuzzy models and find the 

influential nodes.  
 
30. Obtain any other interesting notions while studying 

super fuzzy models. 
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