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1. Introduction

In 2000, G.B. Navalagi [4] presented the idea of
semi-o.-open sets in topological spaces. The concept of

"neutrosophic set" was first given by F. Smarandache [2,3].

A.A. Salama and S.A. Alblowi [1] presented the concept of
neutrosophic topological space (briefly NTS ). The
objective of this paper is to present the concept of
neutrosophic semi-a-open sets and study their fundamental
properties in neutrosophic topological spaces. We also
present neutrosophic semi- o -interior and neutrosophic
semi-o.-closure and obtain some of its properties.

2. Preliminaries

Throughout this paper, (U, T) (or simply U) always
mean a neutrosophic topological space. The complement
of a neutrosophic open set (briefly N-OS) is called a neu-
trosophic closed set (briefly N-CS) in (U, T). For a neutro-
sophic set A in a neutrosophic topological space (U, T),
Ncl(A), Nint(A) and A€ denote the neutrosophic clo-
sure of A, the neutrosophic interior of A and the neutro-
sophic complement of A respectively.

Definition 2.1:

A neutrosophic subset A of a neutrosophic topological
space (U, T) is said to be:

(1) A neutrosophic pre-open set (briefly NP-0S) [7] if A S
Nint(Ncl(A)). The complement of a NP-OS is called a
neutrosophic pre-closed set (briefly NP-CS) in (U, T). The

family of all NP-OS (resp. NP-CS) of U is denoted by
NPO(U) (resp. NPC(U)).

(i1)) A neutrosophic semi-open set (briefly NS-0S) [6] if
A S Ncl(Nint(A)). The complement of a NS-O0S is
called a neutrosophic semi-closed set (briefly NS-CS) in
(U, T). The family of all NS-OS (resp. NS-CS) of U is
denoted by NSO(U) (resp. NSC(U)).

(iii) A neutrosophic a-open set (briefly Na-0S) [5] if A S
Nint(Ncl(Nint(A))). The complement of a No-OS is
called a neutrosophic a-closed set (briefly Na-CS) in
(U, T). The family of all Na-0S (resp. Na-CS) of U is
denoted by NaO(U) (resp. NaC(U)).

Definition 2.2:

(1) The neutrosophic pre-interior of a neutrosophic set A of
a neutrosophic topological space (U, T) is the union of all
NP-OS contained in A and is denoted by PNint(A)[7].

(i1) The neutrosophic semi-interior of a neutrosophic set A
of a neutrosophic topological space (U, T) is the union of
all NS-0S contained in A and is denoted by SNint(A)[6].

(ii1) The neutrosophic a-interior of a neutrosophic set A of
a neutrosophic topological space (U, T) is the union of all
Na-0S contained in A and is denoted by aNint(A)[5].

Definition 2.3:

(1) The neutrosophic pre-closure of a neutrosophic set A of
a neutrosophic topological space (U, T) is the intersection
of all NP-CS that contain A and is denoted by PNcl(A)[7].
(i1) The neutrosophic semi-closure of a neutrosophic set A
of a neutrosophic topological space (U,T) 1is the
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intersection of all NS-CS that contain A and is denoted by
SNcl(A)[6].

(iii) The neutrosophic a-closure of a neutrosophic set A of
a neutrosophic topological space (U, T) is the intersection

of all Na-CS that contain A and is denoted by aNcl(A)[5].

Proposition 2.4 [5]:

In a neutrosophic topological space (U,T), then the
following statements hold, and the equality of each
statement are not true:

(i) Every N-OS (resp. N-CS) is a Na-0OS (resp. Na-CS).

(i1) Every Na-0S (resp. Na-CS) is a NS-0OS (resp. NS-CS).
(ii1) Every Na-0S (resp. Na-CS) is a NP-OS (resp. NP-CS).

Proposition 2.5 [5]:
A neutrosophic subset A of a neutrosophic topological
space (U, T) is a Na-OS iff A is a NS-0OS and NP-OS.

Lemma 2.6:

(1) If K is a N-0S, then SNcl(X) = Nint(Ncl(¥)).

(i) If A is a neutrosophic subset of a neutrosophic
topological space (U,T), then SN int(Ncl(rﬂ)) =
Ncl(Nint(Ncl(A))).

Proof: This follows directly from the definition )2.1) and
proposition (2.4).

3. Neutrosophic Semi-a-Open Sets

In this section, we present and study the neutrosophic
semi-a-open sets and some of its properties.

Definition 3.1:

A neutrosophic subset A of a neutrosophic topological
space (U,T) is called neutrosophic semi-a-open set
(briefly NSa-0S) if there exists a Na-OS H in U such that
H S AC Ncl(H) or

equivalently if A € Ncl(aNint(A)). The family of all
NSa-0S of U is denoted by NSaO(U).

Definition 3.2:

The complement of NSa-0S is called a neutrosophic semi-
a-closed set (briefly NSa-CS). The family of all NSa-CS of
U is denoted by NSaC(U).

Proposition 3.3:

It is evident by definitions that in a neutrosophic
topological space (U, T), the following hold:

(1) Every N-OS (resp. N-CS) is a NSa-0S (resp. NSa-CS).
(i1)) Every Na-0S (resp. Na-CS) is a NSa-0S (resp. NSa-
CS).

The converse of the above proposition need not be true as
seen from the following example.

Example 3.4:
LetU ={u}, A ={{u,0.5,0.5,0.4):u € U},
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B = {{u,0.4,0.5,0.8):u € U},C = {{1,0.5,0.6,0.4): u €
UL, D = {(u,0.4,0.6,0.8): u € U}.

Then T = {Oy,A,B,C,D, 1y} is a neutrosophic topology
onU.

() Let # = {(,0.5,0.1,0.3):u € U}, A S H < Ncl(A)
= (u, 0.6, 0.4, 0.2), the neutrosophic set H is a NSa-0S but
is not N-0S. It is clear that H¢ = {{u,0.5,0.9,0.7): u € U}
is a NSa-CS but is not N-CS.

(i) Let X = {(,0.5,0.1,0.2): u € U}, A € K S Ncl(A)
= (u,0.6,0.4,0.2), the neutrosophic set K is a NSa-0S,
K & Nint(Ncl(Nint (X)) =
Nint(Ncl((s,0.5,0.5,0.4))) = Nint((u, 0.6,0.4,0.2)) =
(u,0.5,0.5,0.4), the neutrosophic set X is not Na-0S. It is
clear that K¢ = {(u,0.5,0.9,0.8): u € U} is a NSa-CS but
is not Na-CS.

Remark 3.5:
The concepts of NSa-OS and NP-OS are independent, as
the following examples shows.

Example 3.6:

In example (3.4), then the neutrosophic set H =
{(u,0.5,0.1,0.3):u € U} is a NSa-0S but is not NP-0S,
because H & Nint(Ncl(}[)) = Nint({u, 0.6,0.4,0.2)) =
(u,0.5,0.5,0.4).

Example 3.7:

Let U ={a, b}, A = {{0.4,0.8,0.9),(0.7,0.5,0.3)}, B =
{{0.5,0.8,0.6),(0.8,0.4,0.3)}, C =
{(0.4,0.7,0.9),(0.6,0.4,0.4)}, D =
{(0.5,0.7,0.5),(0.8,0.4,0.6)}.

Then T = {Oy,A,B,C,D, 1y} is a neutrosophic topology
onU.

Then the neutrosophic set X = {(1,1,0.3),(0.7,0.3,0.6)}
is a NP-0OS but is not NSa-0S.

Remark 3.8:

(1) If every N-OS is a N-CS and every nowhere neutrosoph-
ic dense set is N-CS in any neutrosophic topological space
(U, T), then every NSa-0S is a N-OS.

(i1) If every N-OS is a N-CS in any neutrosophic topologi-
cal space (U, T), then every NSa-0S is a No-OS.

Remark 3.9:

(1) It is clear that every NS-OS and NP-OS of any
neutrosophic topological space (U,T) is a NSa-OS (by
proposition (2.5) and proposition (3.3) (ii)).

(i) A NSa-OS in any neutrosophic topological space
(U, T) is a NP-OS if every N-OS of U is a N-CS (from
proposition (2.4) (iii) and remark (3.8) (ii)).

Theorem 3.10:

For any neutrosophic subset <A of a neutrosophic
topological space (U,T), A € NaO(U) iff there exists a
N-0S # such that H € A S Nint(Ncl(H)).
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Proof: Let A be a Na-0S. Hence A S
Nint(Ncl(Nint(A))), so let H = Nint(A), we get
Nint(A) € A < Nint(Ncl(Nint(A))). Then there exists
a N-0S Nint(A) such that H € A S Nint(Ncl(H)),
where H = Nint(A).

Conversely, suppose that there is a N-OS H such that H <
A S Nint(Ncl(H)).

To prove A € NaO(U).

H € Nint(A) (since Nint(A)
contained in A).

Hence Ncl(H) € Nint(Ncl(A)), then Nint(Ncl(H)) <
Nint(Ncl(Nint(A))).

But H € A € Nint(Ncl(H)) (by hypothesis). Then A S
Nint(Ncl(Nint(A))).

Therefore, A € NaO(U).

is the largest N-OS

Theorem 3.11:

For any neutrosophic subset A of a neutrosophic
topological space (U,T). The following properties are
equivalent:

(i) A € NSaO(U).

(i) There exists a N-OS say H such that H S A C
Ncl(Nint(Ncl(H))).

(iii) A S Ncl(Nint(Ncl(Nint(A)))).

Proof:

(i) = (ii) Let A € NSaO(U). Then there exists K €
NaO(U), such that X € A S Ncl(X). Hence there exists
H N-OS such that ' € K € Nint(Ncl(H)) (by theorem
(3.10)). Therefore, Ncl(H) S Ncl(X) <
Ncl(Nint(Ncl(H))), implies that Ncl(K) S
Ncl(Nint(Ncl(3))). Then 5 € K S A S Nel(K) S
Ncl(Nint(Ncl(#))). Therefore, H € A <
Ncl(Nint(Ncl(H))), for some H N-OS.

(i) = (iii) Suppose that there exists a N-OS H such that
H < A S Ncl(Nint(Ncl(H))). We know that

Nint(A) S A. On the other hand, H € Nint(A) (since
Nint(A) is the largest N-OS contained in A). Hence
Ncl(H) € Ncl(Nint(A)), then Nint(Ncl(H)) €
Nint(Ncl(Nint(A))), therefore Ncl(Nint(Ncl(H))) <
Ncl(Nint(Ncl(Nint(A)))).

But A S Ncl(Nint(Ncl(#))) (by hypothesis). Hence
A S Ncl(Nint(Ncl(H))) € Ncl(Nint(Ncl(Nint(A)))),
then A S Ncl(Nint(Ncl(Nint(A)))).

(iii) = (i) Let A S Ncl(Nint(Ncl(Nint(A)))).

To prove A € NSaO(U). Let K = Nint(A); we know
that Nint(A) € A. To prove A S Ncl(Nint(A)).

Since Nint(Ncl(Nint(A))) € Ncl(Nint(A)) . Hence,
Ncl(Nint(Ncl(Nint(A)))) < Ncl(Ncl(Nint(A)))) =
Ncl(Nint(A)). But A S Ncl(Nint(Ncl(Nint(A))))

(by hypothesis). Hence, A S Ncl(Nint(Ncl(Nint(A))))
C Ncl(Nint(A)) = A < Ncl(Nint(A)). Hence, there
exists a N-OS say X, such that KX € A S Ncl(A). On the
other hand, X is a Na-0S (since K is a N-OS). Hence A €
NSaO(W).

Corollary 3.12:
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For any neutrosophic subset A of a neutrosophic
topological space (U,T), the following properties are
equivalent:

(i) A € NSaC(UW).

(ii) There exists a N-CS F such that Nint(Ncl(Nint(F)))
CACEF.

(iii) Nint(Ncl(Nint(Ncl(A)))) € A.

Proof:

(i) = (ii) Let A € NSaC(U), then A° € NSaO(U).
Hence there is H N-OS such that H S A€ C
Ncl(Nint(Ncl(H))) (by theorem (3.11)). Hence

(Ncl(Nint(Ncl(#))))¢ € A € K€,

ie., Nint(Ncl(Nint(H€))) S A S HE. Let HC=F,
where F is a N-CS in U. Then Nint(Ncl(Nint(F))) ©
A S F, for some F N-CS.

(ii) = (iii) Suppose_that there exists F N-CS such that
Nint (Ncl(Nint(F))) € A S F , but Ncl(A) is the
smallest N - CS containing A . Then Ncl(A) € F, and
therefore: Nint(Ncl Jl)) C Nint(F) =

Ncl Nint(Ncl(cA)b S Ncl(Nint(F)) =
Nint(Ncl(Nint(Ncl(A)))) € Nint(Ncl(Nint(F))) <
A = Nint(Ncl(Nint(Ncl(A)))) € A.

(iii) = (i) Let Nint(Ncl(Nint(Ncl(A)))) € A.

To prove A € NSaC(U), i.e., to prove A€ € NSaO(U).
Then A€ € (Nint(Ncl(Nint(Ncl(A)))))¢ =
Ncl(Nint(Ncl(Nint(A°)))), but
(Nint(Ncl(Nint(Ncl(A)))))¢ =
Ncl(Nint(Ncl(Nint(A°)))).

Hence A€ € Ncl(Nint(Ncl(Nint(A°)))), and therefore
A€ € NSaO(U), i.e., A € NSaC(U).

Proposition 3.13:

The union of any family of Na-OS is a Na-0S.

Proof: Let {A;};ca be a family of Na-0S of U.

To prove U;ep A; 1s a Na-0S,

i.e., UiEA‘ﬂi c Nlnt(Ncl(Nmt(Uler‘ll)))

Then A; € Nint(Ncl(Nint(A;))), Vi € A.

Since U;ep Nint(A;) € Nint(U;ep A;) and

Uiea Ncl(A;) S Ncl(Ujep A;) hold for any neutrosophic

topology.

We have Ujep A; € Ujep Nint(Ncl(Nint(A;)))
C Nint(U;ep Ncl(Nint(A;)))
C Nint(Ncl(U;ea(Nint(A;)))
C Nint(Ncl(Nint(U;ep A;))).

Hence U;cp A; is a Na-0S.

Theorem 3.14:

The union of any family of NSa-0S is a NSa-0S.

Proof: Let {A;};cp be a family of NSa-OS. To prove
Uiea A; is a NSa-0S. Since A; € NSaO(U). Then there is
a Na-OS B; such that B; € A; S Ncl(B;), Vi € A. Hence
UieaBi € Uiea A € Uiea Ncl(B;) S Ncl(Uiea By)-

But U;ep B; € NaO(U) (by proposition (3.13)).

Hence Ujep A; € NSaO(U).
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Corollary 3.15:

The intersection of any family of NSa-CS is a NSa-CS.
Proof: This follows directly from the theorem (3.14).

Remark 3.16:

The following diagram shows the relations among the
different types of weakly neutrosophic open sets that were
studied in this section:

NP-0S
NS-0S
N-0S < I Na-0S
y Y T
every nowhere N-dense
set is a N-CS A
O
every N-OS is a N-CS <+>
y

NSa-0S

A

Diagram (3.1)

4. Neutrosophic Semi-a-Interior and Neutrosophic
Semi-a-Closure

We present neutrosophic semi- o -interior and
neutrosophic semi- o -closure and obtain some of its
properties in this section.

Definition 4.1:

The union of all NSa-0S in a neutrosophic topological
space (U, T) contained in A is called neutrosophic semi-
o -interior of A and is denoted by SaNint(A) ,
SaNint(A) = U{B: B < A, Bis a NSa-0S}.

Definition 4.2:

The intersection of all NSa - CS in a neutrosophic
topological space (U,T) containing A is called
neutrosophic semi- o -closure of A and is denoted by
SaNcl(A), SaNcl(A) = N{B: A < B, B is a NSa-CS}.

Proposition 4.3:

Let A be any neutrosophic set in a neutrosophic
topological space (U, T), the following properties are true:
(i) SaNint(A) = A iff A is a NSa-0S.

(ii) SaNcl(A) = A iff A is a NSa-CS.

(iii) SaNint(A) is the largest NSo-0S contained in A.

40

(iv) SaNcl(A) is the smallest NSa-CS containing A.
Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let A be any neutrosophic set in a neutrosophic

topological space (U, T), the following properties are true:

(1) SaNint(1y — A) = 1y — (SaNcl(A)),

(i) SaNcl(1y — A) = 1y — (SaNint(A)).

Proof: (i) By definition, SaNcl(A) = N{B: A S B,Bis a

NSa-CS}

1y — (SaNcl(A)) = 1y — N{B: A € B, B is a NSa.-CS}
= U{1ly —B:A € B,BisaNSoa-CS}
=U{H:H S 1y — A, H isa NSa-0S}
= SaNint(1y — A).

(i1) The proof is similar to (i).

Theorem 4.5:

Let A and B be two neutrosophic sets in a neutrosophic
topological space (U, T). The following properties hold:

(i) SaNint(0y) = Oy, SaNint(1y) = 1.

(il) SaNint(A) < A.

(ili) A € B = SaNint(A) € SaNint(B).

(iv) SaNint(ANB) € SaNint(A)NSaNint(B).

(v) SaNint(A)USaNint(B) < SaNint(AUB).

(vi) SaNint(SaNint(A)) = SaNint(A).

Proof: (i), (i), (iii), (iv), (v) and (vi) are obvious.

Theorem 4.6:

Let A and B be two neutrosophic sets in a neutrosophic
topological space (U, T). The following properties hold:

(i) SaNcl(0y) = 0y, SaNcl(1y) = 1y.

(i) A € SaNcl(A).

(i) A € B = SaNcl(A) S SaNcl(B).

(iv) SaNcl(ANB) € SaNcl(A)NSaNcl(B).

V) SaNcl(A)USaNcl(B) € SaNcl(AUB).

(vi) SaNcl(SaNcl(A)) = SaNcl(A).

Proof: (i) and (ii) are evident.

(iii) By part (ii), B € SaNcl(B). Since A S B, we have
A S SaNcl(B) . But SaNcl(B) is a NSa - CS. Thus
SaNcl(B) is a NSa-CS containing A. Since SaNcl(A) is
the smallest NSa.-CS containing A, we have SaNcl(A) <
SaNcl(B). Hence, A € B = SaNcl(A) € SaNcl(B).
(iv) We know that ANB € A and ANB < B.

Therefore, by part (iii), SaNcl(ANB) < SaNcl(A) and
SaNcl(ANB) € SaNcl(B).

Hence SaNcl(ANB) < SaNcl(A)NSaNcl(B).

(v) Since A € AUB and B € AUB, it follows from part
(iii) that SaNcl(A) € SaNcl(AUB) and SaNcl(B) c
SaNcl(AUB).

Hence SaNcl(A)USaNcl(B) € SaNcl(AUB).

(vi) Since SaNcl(A) is a NSa-CS, we have by proposition
(4.3) part (ii), SaNcl(SaNcl(A)) = SaNcl(A).

Proposition 4.7:
For any neutrosophic subset <A of a neutrosophic
topological space (U, T), then:
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(i) Nint(A) € aNint(A) € SaNint(A) S SaNcl(A) <
aNcl(A) € Ncl(A).

(ii) Nint(SaNint(A)) = SaNint(Nint(A)) = Nint(A).
(iii) aNint(SaNint(A)) = SaNint(aNint(A)) =
aNint(A).

(iv) Ncl(SaNcl(A)) = SaNcl(Ncl(A)) = Ncl(A).

(v) aNcl(SaNcl(A)) = SeNcl(aNcl(A)) = aNcl(A).
(vi) SaNcl(A) = AUNint(Ncl(Nint(Ncl(A)))).

(vii) SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).

(viii) Nint(Ncl(A)) € SaNint(SaNcl(A)).

Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii).
(ii) To prove Nint(SaNint(A)) = SeNint(Nint(A)) =
Nint(A). Since Nint(A) is a N-OS, then Nint(A) is a
NSa.-0S. Hence Nint(A) = SaNint(Nint(A))

(by proposition (4.3)). Therefore:

Nint(A) = SaNint(Nint(A))ceovvveerereeennee. (1)

Since Nint(A) € SaNint(A) = Nint(Nint(A)) S
Nint(SaNint(A)) = Nint(A) < Nint(SaNint(A)).
Also, SaNint(A) € A = Nint(SaNint(A)) <
Nint(A). Hence:

Nint(A) = Nint(SaNint(A)).e.covevveerreonece. )
Therefore by (1) and (2), we get Nint(SaNint(A)) =
SaNint(Nint(A)) = Nint(A).

(iii)To prove aNint(SaNint(cﬂ)) = SaNint(aNint(cﬂ))
= aNint(A). Since aNint(A) is Noa-0S, therefore
aNint(A) is NSa-0S. Therefore by proposition (4.3):
aNint(A) = SaNint(aNIint(A))...c.cowvvrereeres (1)

Now, to prove aNint(A) = aNint(SaNint(cﬂ)). Since
aNint(A) € SaNint(A) = aNint(aNint(A)) <
aNint(SaNint(A)) =

aNint(A) € aNint(SaNint(A)).

Also, SaNint(A) € A = aNint(SaNint(A)) S
aNint(A). Hence:

aNint(A) = aNint(SaNInt(A) )eeeereerereernennes ()
Therefore by (1) and (2), we get aNint(SaNint(A)) =
SaNint(eNint(A)) = aNint(A).

(iv) To prove Ncl(SaNcl(c/l)) = SaNcl(Ncl(c/l)) =
Ncl(A). We know that Ncl(A) is a N-CS, so it is NSa.-CS.
Hence by proposition (4.3), we have:

Ncl(A) = SaNcl(Ncl(A)) v (1)

To prove Ncl(A) = Ncl(SaNcl(c/l)).

Since SaNcl(A) < Ncl(A) (by part (i)).

Then Ncl(SaNcl(A)) € Ncl(Ncl(A)) = Nel(A) =
Ncl(SaNcl(A)) € Ncl(A). Since A S SaNcl(A) <
Ncl(SaNcl(A)), then A S Ncl(SaNcl(A)). Hence
Nel(A) € Nel (Nel(SaNcl(A)) ) = Nel(SaNcl(A))
= Ncl(A) S Ncl(SaNcl(A)) and therefore: Ncl(A) =
Ncl(SaNCL(A)) v )
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Now, by (1) and (2), we get that Ncl(SaNcl(c/l)) =
SaNcl(Ncl(A)).
Hence Ncl(SaNcl(A)) = SaNcl(Ncl(A)) = Ncl(A).

(vii) To prove SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).

Since SaNint(A) € NSa.0(U) = SaNint(A) S
Ncl(Nint(Ncl(Nint(SaNint(A)))))

= Ncl(Nint(Ncl(Nint(A)))) (by part (ii)).

Hence SaNint(A) € Ncl(Nint(Ncl(Nint(A)))), also
SaNint(A) € A. Then:

SaNint(A) € ANNcl(Nint(Ncl(Nint(A))))..oovevenrn. (1
To prove ANNcl(Nint(Ncl(Nint(A)))) is a NSa-0S
contained in A.

It is clear that ANNcl(Nint(Ncl(Nint(A)))) <
Ncl(Nint(Ncl(Nint(A)))) and also it is clear that
Nint(A) € Ncl(Nint(A)) = Nint(Nint(A)) S
Nint(Ncl(Nint(A))) = Nint(A) <
Nint(Ncl(Nint(A))) = Ncl(Nint(A)) <
Ncl(Nint(Ncl(Nint(A))) and Nint(A) € Ncl(Nint(A))
= Nint(A) € Ncl(Nint(Ncl(Nint(A)))) and Nint(A)
€ A = Nint(A) € ANNcl(Nint(Ncl(Nint(A)))).
We get Nint(A) € ANNcl(Nint(Ncl(Nint(A)))) <
Ncl(Nint(Ncl(Nint(A)))).

Hence ANNcl(Nint(Ncl(Nint(A)))) is a NSa-0S (by
proposition (4.3)). Also, ANNcl(Nint(Ncl(Nint(A))))
is contained in A. Then ANNcl(Nint(Ncl(Nint(A))))
c SaNint(A) (since SaNint(A) is the largest NSa-0S
contained in A). Hence:

ANNcl(Nint(Ncl(Nint(A)))) S SaNint(A)............. )

By (1) and (2), SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).

(viii) To prove that Nint(Ncl(A)) S SaNint(SaNcl(cﬂ)).
Since SaNcl(A) is a NSa-CS, therefore
Nint(Ncl(Nint(Ncl(SeNcl(A))))) € SaNcl(A) (by
corollary (3.12)). Hence N int(Ncl(a‘l)) c
Nint(Ncl(Nint(Ncl(A))) € SaNcl(A) (by part (iv)).
Therefore, SaNint (Nint(Ncl(a‘l))) c
SaNint(SaNcl(A)) =

Nint(Ncl(A)) € SeNint(SaNcl(A)) (by part (ii)).

Theorem 4.8:

For any neutrosophic subset A of a neutrosophic
topological space (U,T). The following properties are
equivalent:

(1) A € NSa0(U).

(i) H € A S Ncl(Nint(Ncl(H))), for some N-OS H'.
(iii) H € A S SNint(Ncl(H)), for some N-OS H .

(iv) A € SNint(Ncl(Nint(A))).

Proof:

(i) = (ii) Let A € NSoO(U), then A <
Ncl(Nint(Ncl(Nint(A)))) and Nint(A) S A. Hence

H < A S Ncl(Nint(Ncl(H))), where H = Nint(A).
(it) = (iii) Suppose H S A S Ncl(Nint(Ncl(H))), for
some N-OS H.
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But SNint(Ncl(#)) = Ncl(Nint(Ncl(3))) (by lemma
(2.6)).

Then H € A € SNint(Ncl(H)), for some N-OS H .

(iii) = (iv) Suppose that H < A < SNint(Ncl(H)),
for some N-OS H. Since H is a N-OS contained in A.
Then I € Nint(A) = Ncl(H) € Ncl(Nint(A))

= SNint(Ncl(#)) < SNint(Ncl(Nint(A))).

But A € SNint(Ncl(H)) (by hypothesis), then

A S SNint(Ncl(Nint(A))).

(iv) = (i) Let A € SNint(Ncl(Nint(A))). But
SNint(Ncl(Nint(A))) = Ncl(Nint(Ncl(Nint(A))))
(by lemma (2.6)). Hence A € Ncl(Nint(Ncl(Nint(A))))
= A € NSaO ().

Corollary 4.9:

For any neutrosophic subset B of a neutrosophic
topological space (U,T), the following properties are
equivalent:

(i) B € NSaC(W).

(ii) Nint(Ncl(Nint(F))) € B < F, for some F N-CS.

(iii) SNcl(Nint(F)) € B < F, for some F N-CS.

(iv) SNcl(Nint(Ncl(B))) € B.

Proof:

(i) = (ii) Let B € NSaC(U) =
Nint(Ncl(Nint(Ncl(B)))) S B (by corollary (3.12))

and B € Ncl(B). Hence we get
Nint(Ncl(Nint(Ncl(B)))) € B < Ncl(B).

Therefore Nint(Ncl(Nint(F))) € B S F, where F =
Ncl(B).

(it) = (iii) Let Nint(Ncl(Nint(F))) € B € F, for some
F N-CS. But Nint(Ncl(Nint(F))) = SNcl(Nint(F)) (by
lemma (2.6)). Hence SNcl(Nint(F)) € B € F, for some
F N-CS.

(iii) = (iv) Let SNcl(Nint(F)) € B € F, for some F
N-CS. Since B € F (by hypothesis), hence Ncl(B) & F
= Nint(Ncl(B) € Nint(F) = SNcl(Nint(Ncl(B)))

C SNcl(Nint(F)) € B = SNcl(Nint(Ncl(B))) < B.
(iv) = (i) Let SNcl(Nint(Ncl(B))) € B.

But SNcl(Nint(Ncl(B))) = Nint(Ncl(Nint(Ncl(B))))
(by lemma (2.6)). Hence Nint(Ncl(Nint(Ncl(B)))) €
B = B € NSaC(U).
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5. Conclusion

In this work, we have defined new class of neutro-
sophic open sets called neutrosophic semi-a-open sets and
studied their fundamental properties in neutrosophic topo-
logical spaces. The neutrosophic semi-a-open sets can be
used to derive a new decomposition of neutrosophic continuity,
neutrosophic compactness, and neutrosophic connectedness.
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