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Dedication

For Domonique. Thanks for sticking around through all the chaos.

“Invention, it must be humbly admitted, does not consist in creating out of void, but

out of chaos” – Mary Shelley
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Abstract

Despite the fact that Parallel-in-Time (PinT) methods are predicted to become neces-

sary to fully utilize next-generation exa- and zettascale machines, there are currently

no known practical methods which scale well with the length of the time-domain for

chaotic problems, due to exponential dependence of the condition number on the

fastest chaotic timescale. I present modifications to the coarse-grid equations along

with a novel rediscretization approach which together greatly improve convergence of

the multigrid reduction in time (MGRIT) algorithm and allow the first known PinT

speedup for a chaotic PDE. The novel Local Shadowing Relaxation (LSR) is pre-

sented as an alternative to classical FCF-relaxation for MGRIT and demonstrated

to be a convergent, PinT smoother for chaotic PDE systems. Promising prelimi-

nary analytical results and numerical experiments with the Lorenz system indicate

that LSR may solve the scaling problem for chaotic systems, potentially allowing

space-time parallelization of turbulent computational fluid dynamics.
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Chapter 1

Introduction

1.1 Motivating parallel in time (PinT)

For the past two decades, computer processor clock speeds have stagnated, while

the number of logical cores in a single chip has grown exponentially to continue pro-

ducing exponential performance gains. This point is demonstrated dramatically by

Figure 1.1. Since the limitation on clock frequency is a physical one, it is reasonable

to expect this trend to continue, with essentially all future performance improve-

ments relying on increasingly parallel workloads. It is therefore only a matter of

time before the time dimension must be parallelized to realize the performance im-

provements offered by exascale machines and beyond for the numerical simulation of

partial differential equations (PDEs).

Parallel-in-space algorithms divide the spatial domain of a PDE problem into

smaller parts, assign each part to its own processor, then find the solution in parallel

on each of these subdomains. This does not scale indefinitely. Eventually, the spatial

1



Chapter 1. Introduction

50 Years of Microprocessor Trend Data [47]

1970 1980 1990 2000 2010 2020

100

102

104

106

108

Year

transistors (thousands)
frequency (MHz)
cores

Figure 1.1: Original data up to the year 2010 collected and plotted by M. Horowitz,
F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten. New plot and
data collected for 2010-2021 by K. Rupp

domain becomes “saturated” such that the theoretical improvement provided by

increased parallelism is completely offset by increased communication costs. This

happens when the subdomains become small enough that the amount of neighbor-

to-neighbor communication required, which is proportional to their surface area,

overtakes the amount of work assigned to each processor, which is proportional to

their volume. Of course, the obvious solution is to seek problems with larger spatial

domains so that saturation occurs at ever higher concurrent core counts. However,

the desire to run these extreme-scale simulations on long time domains and at high

resolution results in a bottleneck. High resolution in space typically requires high

resolution in time, and therefore increasingly many sequential time steps must be

performed. Without parallel-in-time (PinT) methods, it is anticipated that no matter

2



Chapter 1. Introduction

what improvements come out of the field of time integration, the time it takes to run

a simulation will remain proportional to the number of time steps required. Even if

this isn’t a serious concern now, it soon will be. Improvements to time integration

or single chip performance will only delay the need for PinT, not prevent it [16].

There are many PinT algorithms, going as far back as 1964 [37]. Small-scale PinT

is possible with direct methods like stage-parallel Runge-Kutta methods [38] and Re-

visionist Integral Deferred Correction (RIDC) [5]. Large-scale PinT, on which this

work is focused, is most often achieved using iterative multigrid-in-time (MGinT)

methods, with the most prominent examples being Parallel Full Approximation

Scheme in Space and Time (PFASST) [14], Multigrid Reduction in Time (MGR-

IT) [15], and the most studied PinT method, Parareal [20]. A notable non-multigrid

algorithm is the ParaDiag family of direct and iterative methods based on diagonal-

ization of the all-at-once space-time system [23].

MGinT methods are especially promising for large scale PinT because they have

been demonstrated to scale optimally for parabolic systems, such as the heat equa-

tion. That is to say that a well-behaved system discretized over nt points in time and

ns points in space can be solved in O (log(nt)) wall-clock time as long as the number

of processors is scaled with the number of time points. Using space-time multigrid

(STMG), the same simulation can be run in O (log(n)) time, where n = nsnt, given

sufficient resources. At high enough n, this is effectively constant time complexity

when compared to traditional time stepping, which is at best O (nt log(ns)) when

using an optimal spatial solver such as Algebraic Multigrid (AMG) [2]. This re-

markable result is due to the highly efficient structure of multigrid, which classically

solves a problem in O (1) iterations, each doing O (nt) work on O (log(nt)) hier-

archical grids, resulting in an overall complexity of O (nt log(nt)). Since the basic

building block of multigrid is relaxation, which can be chosen to be embarrassingly

parallel, given O (nt) processors, the problem can be solved with overall logarithmic

3



Chapter 1. Introduction

complexity. Note that the time stepping problem, ui = Φ(ui−1) + gi, is equivalent

to the well-known prefix sum problem in the case that the operation Φ(u) + g is

associative (e.g. if Φ(u) = u, this is a cumulative sum). The prefix sum problem has

a minimum circuit depth of log2(n), and thus the minimum possible parallel time

complexity is O (log(n)) [33]. This gives a strong indication that MGinT has opti-

mal time complexity. In fact, when applied to the prefix sum problem, the MGRIT

algorithm is equivalent to a binary tree algorithm which is known to have optimal

work efficiency.

Despite these promises, and increasing interest over the past couple of decades,

many are still skeptical that PinT will ever be practical. It is true that PinT faces

an uphill battle. Whereas there is no single optimal choice of solver for the systems

arising from elliptic problems in space, a parabolic initial-value problem is block

lower-triangular in time, and thus forward substitution, also known as time step-

ping, is the most obvious and easily implemented solution method. Therefore, while

multigrid is very attractive for spatial problems where other algorithms are extremely

inefficient in comparison, PinT methods have to compete with time stepping, which

is an optimal O (nt) direct solve that is however sequential in time. Therefore, itera-

tive PinT methods are at a disadvantage with respect to time stepping in efficiency,

since even measuring the space-time residual often requires as much work as solving

the entire system with time stepping. However, given an optimally scaling PinT al-

gorithm, there will always be a crossover point after which PinT is faster than time

stepping, because time stepping is O (nt) and PinT is ideally O (log(nt)). Because

of this, and the increasing importance of parallelism, [16] argues that it is not a

question of if PinT methods will be adopted, but when.

A more serious issue with PinT is the failure of many methods when applied

naively to more physically complex problems, such as hyperbolic and chaotic systems,

which has been documented in many published works [21, 39]. Multigrid only scales

4



Chapter 1. Introduction

optimally when the number of iterations required is independent of the size of the

problem, which is often not the case for hyperbolic and chaotic systems when applied

to the time dimension. For hyperbolic systems, information needs to be transmitted

accurately (and in many cases exactly) along characteristics from the initial condition

to the final time, which is a highly sequential process by nature. Early work failed to

produce meaningful speedups for even linear advection [49, 28]. For chaotic systems,

with which this work is primarily concerned, the condition number of the space-

time system grows exponentially with the total length of the time domain, at a rate

determined by the fastest chaotic timescale, such that naive PinT methods do not

scale well for chaotic problems [53]. This has lead many to question whether PinT

is possible for chaotic systems, a question which this work seeks to address.

1.2 Multigrid Reduction in Time (MGRIT)

MGRIT is an iterative multigrid method for solving discrete initial-value problems

of the formu0 = g0,

ui+1 = Φ(ui) + gi+1 i = 0, 1, 2, . . . , n− 1,
(1.1)

where Φ is a nonlinear time-stepping operator [15]. Systems of this form typically

arise from a time discretization of an ordinary differential equation (ODE) of the form

u′(t) = f(u(t)), in which case Φ is some time-stepping scheme such as Euler’s method

and gi corresponds to constant forcing terms. The system is defined over a discrete

time grid with nt + 1 points, Ωh = {ti}nt

i=0, and time-step size h = ti+1 − ti. We will

assume, without loss of generality, that h is constant. Let u =
[
u0; u1; . . . ; unt

]
denote the state vector and let g =

[
g0; g1; . . . ; gnt

]
be a constant forcing term

which also encodes the initial condition g0. Then equation (1.1) may be written as

5



Chapter 1. Introduction

a block nonlinear operator equation,

A(u) = g, where A(u) =



I

−Φ I

−Φ I
. . . . . .

−Φ I





u0

u1

u2

...

unt


. (1.2)

Typically, this system would be solved using forward substitution, which corresponds

with traditional sequential time stepping. MGRIT instead applies Full Approxima-

tion Scheme (FAS) Multigrid Reduction (MGR) [1, 45] to the system (1.2), allowing

it to be solved in parallel. To this end, (1.2) is approximated on a hierarchy of coarser

time grids, e.g. Ω2h,Ω4h,Ω8h, . . . , which provide error corrections to the finer grids,

while the finer grids provide further corrections via local block Jacobi relaxation.

The multigrid method requires a coarsening scheme in time, inter-grid transfer

operators, and a coarse-grid equation. Here, we define those for a two-level MGRIT

method with fine grid, Ωh, and coarse grid, Ωmh, for coarsening factor m. To coarsen

in time, label every mth time point in Ωh a C-point and all other points an F-point,

then Ωmh is the set of size nT containing the C-points in Ωh (see Figure 1.2). A C-

point, along with the following m−1 F-points to the right, is called a coarse interval.

For grid transfer operations, MGRIT uses injection. For restriction, injection maps

the values of u at the C-points in Ωh to the corresponding points in Ωmh. For

interpolation, injection maps the points in Ωmh to the corresponding C-points in Ωh.

The action of restriction by injection is given by the block matrix

R =


I

0 · · · 0 I
. . .

0 · · · 0 I

 , (1.3)

yielding a coarse-grid vector uc = Ruf on Ωmh. Interpolation by injection is then

6
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given by the action of RT . Following interpolation from Ωmh to Ωh, i.e. uf ← RTuc,

MGRIT always relaxes the solution on Ωh using F-relaxation (1.4), which evolves

the state at each C-point to the following F-points in each coarse interval using Φ.

F-relaxation is an important part of multigrid reduction since it sets the residual to

zero at each F-point, meaning that the residual is exactly representable on the coarse

grid. F-relaxation may also be viewed as part of the interpolation process, in that it

updates each F-point based on the new C-point information injected from the coarse

grid.

The two-level MGRIT method described thus far is equivalent to the popular

Parareal algorithm [20]. However, apart from being a multi-level method, one of the

key differences between MGRIT and Parareal is support for FCF-relaxation, where

F-relaxation is followed by C-relaxation (1.5), propagating the solution from the

right-most F-point in each interval to the following C-point, which is then followed by

another F-relaxation [15]. FCF-relaxation has been shown in many cases to greatly

improve convergence, especially in the multilevel setting [15, 52]. Importantly, since

the intervals are disjoint, F-and FCF-relaxation can be done in parallel, with minimal

communication between processors.

uim+k = Φ(uim+k−1) + gim+k for k = 1, . . . ,m− 1 and each coarse-interval i

(1.4)

uim = Φ(uim−1) + gim for each coarse-interval i

(1.5)

Coarsening in time induces a new system of equations posed on Ωmh, where the

7
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mh

h

Figure 1.2: Coarsening of a uniformly spaced fine time grid with MGRIT C-point
and F-point partitioning with coarsening factor m. The Ti are the C-points and form
the coarse grid, while the small hash marks ti are F-points. Together, the F- and
C-points form the fine grid.

Schur-complement system is given by the space-time operator

A∗ =



I

−Φm I

−Φm I
. . . . . .

−Φm I


. (1.6)

Here Φm(ui) is understood to denote a fine-grid propagation of the solution across

one coarse interval, from one C-point to the next, including the forcing term g, e.g.

Φ2(vi−2) = Φ(Φ(vi−2) + gi−1), Φ3(vi−3) = Φ(Φ(Φ(vi−3) + gi−2) + gi−1), etc. Solving

this ideal coarse-grid equation yields the exact solution for each C-point which would

then yield the exact solution at every time point following F-relaxation, hence A∗

is called the Schur-complement operator. However, solving this system requires just

as much work as solving the original fine-grid problem, since the number of time

points is reduced by a factor of m, but the cost of each time step is increased by

the same factor. Instead, in practice one introduces the coarse-grid time-stepping

operator Φc to cheaply approximate the action of Φm, and then A∗ is replaced by

8
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the approximate coarse-grid operator

Ac =



I

−Φc I

−Φc I
. . . . . .

−Φc I


≈ A∗. (1.7)

In the case that Φ is derived from a continuous-time problem, then Φc is usually

derived from some (possibly nonstandard) rediscretization of the continuous problem

over the new coarse time-grid Ωmh. Deriving coarse operators for general Φ is an

open problem [39, 12] and motivates Chapter 2.

Because the Schur-complement coarse-grid equation gives the exact solution as

the fine grid equation at the C-points, we may analyze MGRIT by ignoring the F-

points and focusing entirely on A∗. To this end, we now drop the subscript uc and

use uf explicitly to refer to fine-grid state vectors. From this perspective, two-level

MGRIT using the approximation of A∗ by Ac may be interpreted as a nonlinear

splitting method. Let τ (u) = Ac(u)−A∗(u), then A∗(u) = gc = Ac(u)−τ (u), and

one immediately gets the well-known τ -correction form of FAS multigrid [1, 2]:

Ac(v
k+1) = gc + τ (v

k), (1.8)

where vk denotes an approximate coarse solution on Ωmh after k multigrid iterations,

and for MGRIT, τ i = Φm(vki−1)− Φc(v
k
i−1). This splits the operator A∗ into a part

that is cheap to invert, Ac, and a part which can be computed efficiently in parallel,

τ . One iteration of the two-level MGRIT scheme involves computing τ (vk) at the

C-points on Ωh, injecting g and τ to Ωmh, solving (1.8) sequentially for vk+1, and

then interpolating to Ωh and applying F-relaxation. The vector τ takes the form

of a forcing term on the coarse-grid, being added to gc on the right-hand side, and

it steers the coarse grid equation toward the fine grid equation, as well as ensuring

9
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that the exact fine-grid solution is a fixed point of the iteration, a property which is

necessary for any iterative scheme. To see this last point, we plug the exact solution

uf satisfying A∗(Ruf ) = gc into (1.8):

Ac(v
k+1) = gc + τ (Ruf )

= gc + Ac(Ruf )− A∗(Ruf )

= Ac(Ruf )

=⇒ vk+1 = Ruf .

Thus, any u satisfying the ideal coarse-grid equation is a fixed point of the MGRIT

iteration, which is not true in general without τ correction on the coarse-grid. The

two-level MGRIT algorithm is detailed in Algorithm 1.1. A multi-level MGRIT

algorithm then results from recursive application of the two-level scheme to solve

the coarse-grid equation (1.8) with another MGRIT cycle. This recursion gives the

V-cycle MGRITm`
algorithm, with m` time-grid levels.

Algorithm 1.1 MGRIT2(vf , g,m); MGRIT two-grid cycle
v ← Rvf , gc ← Rg

for each C-point, i = 1, 2, 3, . . . , nT do

τ i ← Φm(vi−1)− Φc(vi−1)

end for

for i = 1, 2, 3, . . . , nT do

vi ← Φc(vi−1) + τ i + gc,i

end for

vf ← RTv, followed by F(CF)-relaxation

10
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1.3 MGRIT for chaotic problems

1.3.1 Chaos

Chaotic systems are globally stable, deterministic systems which demonstrate sensi-

tive dependence on initial conditions and system parameters, and which have trajec-

tories that never settle down to a steady state solution or a periodic orbit for almost

every initial condition. Trajectories of chaotic systems are able to orbit forever within

a finite region of space without ever visiting the same point because they approach

a fractal limit set called a strange attractor. Trajectories beginning away from the

attractor approach its surface exponentially fast, while nearby trajectories lying on

the attractor’s surface diverge away from each other exponentially fast.

The work [22] presents, to my knowledge, the first experiment involving PinT for

a chaotic system, by solving the Lorenz system with Parareal over a moderately long

time-scale, demonstrating the delay or stalling of convergence seen when naively

applying MGRIT to chaotic problems. The work [14] introduces the PFASST al-

gorithm, a PinT method with robust convergence for advection-diffusion problems,

however, convergence degrades when applied to the chaotic Kuramoto-Sivashinsky

(KS) equation. Parareal is applied to fully-developed plasma turbulence in [48, 44],

and to the decay of a 3D Taylor-Green vortex configuration in [35], both reporting

over 10× speedups. These works rely on spatial coarsening, where the coarse grid is

solved with lower spatial accuracy, such that the coarse-grid dynamics are essentially

non-chaotic due to the lack of small spatial scales. While promising, these works use

an alternative convergence criterion based on the difference in the total energy of the

system between iterations, and not the actual residual norm ‖g − A(u)‖. For this

reason, the method more resembles a turbulence closure model, since the result is

accurate with respect to some statistical measures, but fine space-time scales are not

resolved. Thus, reporting speedup using these methods is problematic, since speedup
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is measured relative to a DNS simulation which exactly resolves all scales. Recently,

[25] takes this perspective and presents a PinT algorithm for turbulence based on

an MGRIT framework, improving upon the Parareal algorithm by using spectral

filtering in order to isolate space-time scales to their respective grids. Convergence

in this work is based on a coarse-scale residual which ignores fine space-time scales

that are still not resolved. In this way, fine-grid relaxation iterates the fine-scale

dynamics to statistical equilibrium, while the FAS τ correction on the coarse grid

acts like a correction from a turbulence closure. No parallel speedups are reported.

All of these works rely on alternative convergence criteria and also rely on an energy

cascade from large to small space-time scales which is present in their chosen model

problems. In the presence of an inverse or bidirectional cascade, these approaches

may break down.

To study MGRIT for chaotic systems, we will use the Lorenz system as a model

problem. The Lorenz system is a three-dimensional system of ODEs which is widely

studied as an archetypal example of a chaotic system, and is given by the system of

ODEs
x′ = σ(y − x)

y′ = x(ρ− z)− y

z′ = xy − βz

. (1.9)

For the classical values of parameters σ = 28, ρ = 10, and β = 8/3, the Lorenz

system is chaotic, with greatest Lyapunov exponent of λ1 ≈ 0.9 [51]. This can be

understood to mean that two trajectories differing only infinitesimally in initial condi-

tions will, almost surely, diverge exponentially from each other in time with average

rate λ1. Although trajectories diverge from each other locally, the Lorenz system

is globally Lyapunov stable, meaning that trajectories are ultimately confined to a

bounded trapping region in space, which contains a strange attractor, a fractal man-

ifold which is the limit set of the Lorenz system. Generally, a system with ns spatial

12
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Figure 1.3: A trajectory of the Lorenz system, tracing out its famous butterfly-
shaped strange attractor, rendered as a stereogram (In the remainder of this work,

will demarcate a figure which can be viewed as a parallel-view stereogram).

dimensions has ns Lyapunov exponents, which are characteristic of the qualitative

behavior of the system, and every chaotic system has a greatest Lyapunov exponent

which is greater than zero. The corresponding Lyapunov vectors are characteristic

directions, ψk(t), k = 1, 2, . . . , ns, along which infinitesimal perturbations will grow

exponentially with average rate λk, as illustrated in Figure 1.4.

As an example, the Lorenz system is three-dimensional and has three Lyapunov

exponents: λ1 ≈ 0.9, which corresponds with perturbations lying tangent to the sur-

face of the strange attractor, λ2 = 0, which corresponds with perturbations tangent

to the flow (resulting in a difference only in phase), and λ3 ≈ −14, which corre-

sponds with perturbations away from the strange attractor. The Lyapunov vectors

having negative Lyapunov exponent are tangent to the stable manifold, those having

vanishing Lyapunov exponents are tangent to the neutral manifold, and those having

positive Lyapunov exponents are tangent to the unstable manifold. The Lyapunov
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Figure 1.4: An illustration of the finite-time evolution of Lyapunov vectors.

vectors for a trajectory of the Lorenz system are shown in Figure 1.5, where we

see that, roughly, the unstable Lyapunov vectors are tangent to the surface of the

strange attractor, the neutral Lyapunov vectors are tangent to the flow, and the

stable Lyapunov vectors are normal to the surface of the attractor, matching our

physical intuition for these subspaces.

1.3.2 The Lyapunov spectrum

It is helpful to establish a distinction between forward, backward, and covariant

Lyapunov vectors, ψ+,k(t), ψ−,k(t), and γk(t) respectively. What I have so far

called “the Lyapunov vectors” are actually the covariant Lyapunov vectors, and the

backward Lyapunov vectors are sometimes known as the Gram-Schmidt vectors,

since, as we will see, they may be computed using a special QR iteration [31].

Let u(ti) be a discrete trajectory of a nonlinear dynamical system defined on

a fixed infinite time grid {ti}∞i=−∞, having time propagator Φ, and which passes

through some point u(t0) = u0. The Jacobian of the propagator Φ at each point ui
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is the matrix Fi = ∂ui
Φ(ui), called the linear tangent propagator [31], as it describes

the propagation of infinitesimal perturbations to u from time point i to time point

i + 1, i.e. Φ(ui + e) − ui+1 ≈ Fie. Thus, the propagation of a perturbation from

time point ti to point tj is given by W (ti, tj) = Fj−1 . . . Fi+1Fi. In the limit as

j → ∞, the time-average of the singular values of W (ti, tj) are equal to exp(λi),

where the λi are the Lyapunov exponents of the system. The Lyapunov exponents

are independent of the times ti, tj, and are also the same for almost all u0 ∈ Rns ,

and are thus considered constants of the system. The forward Lyapunov vectors at

time ti, ψ+,k(ti), are given by the eigenvectors of
[
W (ti, tj)

TW (ti, tj)
]1/(2(tj−ti)) in

the limit as j → ∞, while the backward Lyapunov vectors at time tj, ψ−,k(tj), are

given by the eigenvectors of
[
W (ti, tj)W (ti, tj)

T
]1/(2(tj−ti)) in the limit as i → −∞.

Note that while the Lyapunov exponents are not time-dependent, the backward and

forward Lyapunov vectors are. Because the forward and backward Lyapunov vectors

are defined as eigenvectors of symmetric positive semi-definite matrices, they form an

orthogonal basis as long as W (ti, tj) remains invertible in the limits as ti → −∞ and

tj →∞, which turns out to be equivalent to the requirement that the limit set of Φ

is uniformly hyperbolic [42]. The Lyapunov exponents may not be distinct, in which

case the forward and backward Lyapunov vectors are not unique, but any orthogonal

set of vectors spanning the subspaces corresponding to the Lyapunov exponents with

multiplicity greater than one will suffice, so this is not an issue in practice [31].

While the forward and backward Lyapunov vectors are orthogonal, they are not

covariant with the dynamics. Consider the finite-time propagation of a perturbation

p(ti) from the point t0 to the point t1, where initially p(t0) points entirely in the

direction of one of the forward Lyapunov vectors, ψ+,j(t0). Since it is known that

the perturbation at time tj will grow with asymptotic growth rate λj, it is therefore

impossible for p(t1) to have any component pointing in the direction ψ+,k(t1) for a

larger Lyapunov exponent (k < j), since that would indicate that p(ti) would then

grow with asymptotically larger rate λk. However, if p(t1) has a nonzero component
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in the direction ψ+,k(t1) for a smaller Lyapunov exponent (k ≥ j), it is clear that this

will not affect the asymptotic growth of p, since λk ≤ λj. In other words, forward

in time, the forward Lyapunov vectors are mapped to arbitrary vectors which are

orthogonal to the set of Lyapunov vectors with larger Lyapunov exponent. Similarly,

backward in time, the backward Lyapunov vectors are mapped to vectors which are

orthogonal to the set of Lyapunov vectors with smaller Lyapunov exponent. Let

Ψ+(ti) be the matrix with columns equal to the forward Lyapunov vectors, and

Ψ−(ti) be the same for the backward Lyapunov vectors. Given the argument above,

we derive the following relationships for the finite-time propagation of the Lyapunov

vectors:

FiΨ
+(ti) = Ψ+(ti+1)Li+1, (1.10)

F−1
i Ψ−(ti+1) = Ψ−(ti)R

−1
i+1, (1.11)

for some lower triangular matrix Li+1 and upper triangular matrix Ri+1, whose in-

verses are guaranteed to exist since the diagonals of each matrix will be non-zero

by construction. Further, recall that the forward and backward Lyapunov vectors

are orthogonal, so if we also require that the Lyapunov vectors are normalized such

that ‖ψk‖ = 1, the matrices Ψ+(ti) and Ψ−(ti) will be orthonormal and uniquely

determined by the recurrence relationships (1.10) and (1.11), and by the QR and QL

factorizations, respectively [31].

The covariant Lyapunov vectors γk(ti) are defined such that

FiΓ(ti) = Γ(ti+1)Ci+1,

where Ci+1 is a diagonal matrix. We see that in contrast to the forward and backward

Lyapunov vectors, covariant Lyapunov vectors are mapped to covariant Lyapunov

vectors in finite time. However, Γ(ti) is not in general orthogonal. The γk defined

this way exist whenever the forward and backward Lyapunov vectors exist.
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Rewriting Equation (1.11) as

FiΨ
−(ti) = Ψ−(ti+1)Ri+1 (1.12)

gives a convenient way to computationally estimate the first k backward Lyapunov

vectors of a system. Given a fixed trajectory, u, we may initialize Ψ−(t0) ∈ Rns×k

with some initial guess, e.g. the first k columns of the identity matrix, then Equa-

tion (1.11) gives a time stepping relation that gives Ψ−(ti) in terms of Ψ−(ti−1) as

the forward propagation via Fi−1 followed by orthonormalization via the QR factor-

ization of the result. Indeed, starting from a non-singular initial guess to Ψ−(t0), the

columns of Ψ−(ti) do converge to the first k backward Lyapunov vectors as i→∞ in

a way analogous to the convergence of the power iteration for computation of eigen-

vectors [31]. Further, the long-time average of the diagonals of the upper triangular

matrix Ri will converge to ehλj , where λj are the Lyapunov exponents. Similarly,

the first k forward Lyapunov vectors may be approximated via back-propagation

with the adjoint linear tangent propagator F T
i followed by QR decomposition of the

result.

Given estimates of the first k backward and forward Lyapunov vectors, the covari-

ant Lyapunov vectors may be estimated by forming P (t) = Ψ+(t)TΨ−(t), computing

the LU decomposition (without pivoting) A+(t)A−(t) = P (t), and finally finding

Γ(t) = Ψ+(t)A+(t) = Ψ−(t)(A−(t))−1, (1.13)

assuming A−(t) is invertible [31].

1.3.3 Why even bother simulating chaotic systems?

Traditionally, the halting criterion for MGRIT is based on the space-time norm of the

residual. This ignores the forward error, which measures the difference between the

MGRIT and sequential time-stepping solutions. For a chaotic system, the forward
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error grows exponentially fast along the unstable manifold, and will quickly saturate

so that the error is of the same order of magnitude as the solution itself. This begs the

question, “why bother simulating chaotic systems at all, if there can be no confidence

in the given solution after a short time?” While this is a rather philosophical question

which is fairly beyond the scope of this work, there is a resolution to this quandary,

which is to consider a backward error analysis appropriate for an ill-conditioned

initial-value problem. The shadowing lemma, Lemma 2, provides such a backward

error analysis for numerical trajectories of systems with hyperbolic attracting sets,

which chaotic systems such as the Lorenz system are widely thought to behave like

[6, 42, 26, 41]. In such cases, even when the forward error is large, as long as an

approximate trajectory has a residual, here given by ri = gi+Φ(ui−1)−ui, which is

small and uniformly bounded, there exists an exact solution which is uniformly close

to the approximate trajectory but has a slightly perturbed initial condition and time

grid– that is, the backward error is small.

The shadowing lemma will be discussed in more detail in Chapter 4, but it es-

sentially provides evidence that in systems with chaotic attractors, these structures

are stable, in the sense that small perturbations to the system result in small per-

turbations to the attractor itself, even if the same small perturbation results in large

differences between individual trajectories having the same initial condition. The

residual convergence criterion depends on this backward error argument, where, as

long as a PinT method has reduced the global residual below a small uniform tol-

erance, the shadowing lemma holds and the obtained solution has backward error

which is small and uniformly bounded. The shadowing lemma can be used to make a

similar backward error argument when comparing the continuous, exact system and

the exact solution of the discrete, numerical simulation.

Anecdotally, the shadowing lemma also says something quite philosophical about

Human existence. Assuming our lives are chaotic (which I doubt many would argue
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with), that you are at all times attempting to live according to some moral standard,

and measuring the magnitude of your mistakes not by their consequences but by their

instantaneous deviation from this standard, you can make constant small mistakes

and still be assured that, in an alternate universe, there is some shadow of yourself

who never made a mistake, yet has lived a life very similar to your own. Perhaps

then the cure for perfectionism and personal shame is the acceptance of chaos. In the

same way, numerical analysts are comforted by the fact that despite only being able

to approximate the solutions to chaotic systems, making constant rounding and other

numerical errors, their simulations do indeed represent reasonable approximations to

the systems they care about.

1.3.4 MGRIT and chaotic systems: The stalling problem

PinT simulations of chaotic systems such as Lorenz are difficult because of two

main problems. The first is that the sensitivity of chaotic systems makes them ill-

conditioned. The other is that coarsening in time can cause serious global qualitative

changes between fine and coarse grids for the discretized system because of changes in

the Lyapunov spectrum. While chaotic systems are best known for their sensitivity

to perturbations in the initial conditions, they are equally sensitive to changes to the

system parameters. Coarsening in time can be considered a parametric perturbation,

and thus the solution on the coarse-grid will diverge exponentially from that of the

fine-grid. As long as there is any error on the fine grid, the τ correction will not

be accurate enough to fix this problem. In fact, once the solution on the coarse

grid has diverged sufficiently far from the solution on the fine-grid, the τ correction

will become useless, since the τ correction is only valid in a small neighborhood

around the point in space at which it was computed. Because of this, after a certain

point, the τ correction becomes harmful to the quality of the coarse grid correction.

Therefore, the challenge is to form a better coarse-grid equation that is both locally
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precise and that also captures the global qualitative behavior of the system, even for

very coarse time-grids.

Due to the existence of the unstable manifold, any numerical error committed in

solving a chaotic initial-value problem with any method will grow exponentially in

time and eventually result in error which is of the same order of magnitude as the

solution itself. We can characterize this with the condition number of the initial-

value problem (1.1). First, we define Lyapunov time, Tλ = ln(10)
λ1

, which acts as an

upper bound on the expected time for a perturbation to a trajectory to grow by a

factor of 10 [51], where λ1 is the greatest LE of the system. Hence, Tλ is roughly

the time it takes for our numerical simulation of the system to lose one digit of

accuracy on average. The Lyapunov time can be used to compute an estimate for the

condition number, κ = O(10Tf/Tλ), where Tf = nth is the length of the time-domain.

Lyapunov time serves as a normalized timescale over which all chaotic systems have

greatest Lyapunov exponent equal to unity. For example, one Lyapunov time for a

weather simulation might be a few days, while one Lyapunov time for a simulation

of planetary motion might be millions of years.

Note that other sources define the Lyapunov time alternatively, such as 1/λ1 as

given in [51]. Another possible definition is Td = ln(2)/λ1, often called the doubling

time in weather modelling [30], which one could say is the time it takes for entropy

in the system to increase by one bit. Incidentally, after 16Tλ, 16 ln(10)/ ln(2) = 53.1

bits of accuracy have been lost, which, rounded down, is the number of bits used to

store the mantissa in standard double precision floating point.

For the Lorenz system, we choose a final time of Tf = 16Tλ, giving the condition

number κ = O(1016), and exemplify MGRIT performance in Figure 1.6. This figure

demonstrates that the residual grows exponentially in time, with average rate λ1, and

thus the solution after 30 iterations does not satisfy our backward error argument,

since its residual is large at the later times and MGRIT iterations have stagnated. It
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is clear that for chaotic problems, MGRIT alone does not converge to an acceptable

solution within a reasonable number of iterations.

Because the residual is approximately an exponential function, the residual at

the beginning of the time domain needs to be made exponentially smaller than at

the end to converge to a given uniform tolerance. In exact arithmetic, it can be

shown that this is possible, but in practice we are limited by floating-point precision.

Rounding errors committed in the calculation of τ on the fine grid are being expo-

nentially magnified on the coarse grid, preventing the solution from being further

improved. This implies that, in order to eliminate this stalling behavior without

infinite precision, τ needs to approach zero as the solution converges, implying that

Φc → Φm.

We can also use this intuition to estimate the maximum length time domain for

which we can expect robust convergence of MGRIT. Given machine precision ε, and

a final time Tf , if the subtraction used to calculate τ introduces O (ε) rounding

error, and assuming no rounding error in all other calculations, then we can expect

to be able to reduce the residual at best to O (ε) near the beginning of the time

domain, and therefore the minimum tol which can be reached at the end of the time

domain is O(10Tf/Tλε). Therefore, the “time limit,” or maximum time domain size

over which MGRIT can robustly converge to tolerance tol is then approximately

log10(tol/ε)Tλ. As an example, assuming we want tol =
√
ε, we get approximate

time limits of 4Tλ for single precision, 8Tλ for double precision, and 16Tλ for quad

precision. Unfortunately, we need to double the precision to double the time limit,

so this is not a scalable approach.

What’s worse, this exponential dependence of the residual at later times on the

residual at earlier times implies that not only do we need to double the precision

to double the final time, we also need to double the number of MGRIT iterations,

since we assume that the residual near the beginning of the time domain is reduced
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to O (ε), and MGRIT typically requires O (− log10(tol)) iterations to converge for

well-behaved parabolic problems. Based on this, for fixed h, solving a chaotic system

PinT with MGRIT has O (log(n)) time complexity up until the time limit, and with

increasing precision this becomes O (n log(n)). This means that there is unlikely to

be a crossover point after which naive MGRIT is faster than time stepping for many

chaotic systems.

The following two chapters seek to remedy this stalling problem by improving the

approximation Φc ≈ Φm. Chapter 2 attempts to improve overall MGRIT convergence

for challenging nonlinear problems by constructing higher order time discretizations

on coarse grids, while Chapter 3 adds a linear correction term to the coarse grid

which has the effect of cancelling the first order error terms that grow exponentially

fast on the coarse grid. Chapter 4 attempts to eliminate the ill-conditioning problem

by relaxing the initial condition and replacing the forward solve on the coarse grid

with a stable PinT relaxation scheme.
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Figure 1.5: Lyapunov vectors of the Lorenz system.

23



Chapter 1. Introduction

0 4 8 12 16

10−15

10−10

10−5

time limit

√
ε

Tλ

‖r
i‖

2

iter. 10
iter. 20
iter. 30
iter. 40
iter. 50
λ = 0.9

Figure 1.6: Residual over the time-domain (in units of Lyapunov time) for 30 two-
level MGRIT iterations on the Lorenz system with Tf = 16Tλ and coarsening factor
m = 4. Convergence stalls after 24 iterations, due to the exponentially growing
residual which is not damped by further iterations. The Lorenz system is discretized
in time using forward Euler’s method.
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Chapter 2

θ Methods: Improved MGRIT

coarse-grid operators

The material for this chapter is primarily adapted from [54].

It is well known that the convergence rate of MGRIT depends both on the physics

of the problem and the properties of the time-stepping operators on the fine and

coarse levels [52, 19]. However, the selection of an appropriate coarse operator is an

open research problem, since the convergence of MGRIT is often very sensitive to

how well the coarse operator approximates m steps of the fine operator. The most

common choice of coarse operator is a re-discretization of the fine operator, e.g. if a

single-step method is used on the fine grid with step size h, then the same method

can be used on the coarse grid with step size mh. This presents an obvious problem

for explicit methods; since the fine step size h may already be close to the stability

limit of the method, the same method with step size mh may be unstable, making

the entire MGRIT iteration unstable. Even stable implicit methods do not guarantee

MGRIT stability. An example from [52] shows that when using the Crank-Nicolson
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method on the fine and coarse grids, MGRIT has a finite stability region, resembling

that of an explicit method, despite the fact that the Crank-Nicolson method is A-

stable.

For more difficult problems, such as chaotic or advection dominated systems,

when MGRIT is observed to diverge or converge slowly, it can be argued that this

is entirely due to the inaccuracy of the approximation Φc ≈ Φm. Using Φm on

the coarse grid will result in convergence of MGRIT in a single iteration, so we may

hypothesize that there is some approximation of Φm which is cheaper to evaluate than

Φm and which results in fast MGRIT convergence, assuming MGRIT convergence

is a smooth function of the difference Φm − Φc. One natural approach to better

approximating Φm is to use a higher order method on the coarse grid relative to

the fine grid when re-discretizing, although this alone will not necessarily improve

the matching between Φm and Φc, so this should be done carefully, in a way that

leverages the approximating power of a higher order method to cancel higher order

terms in the Taylor series expansion of Φm − Φc.

The idea of enforcing a higher order matching between fine and coarse operators

is not new to multigrid. For instance, the work [58] proposes an improved coarse grid

operator for spatial multigrid, consisting of a linear combination of different coarse

operators Lpq = αLp+(1−α)Lq, where Lp and Lq are discretizations of orders p and

q, respectively, and α is carefully chosen such that the leading truncation error term

of Lpq is equal to that of the fine-grid operator. Similarly, [13] proposes a modified

coarse-grid discretization for solving hyperbolic problems with MGRIT, based on

matching the leading order truncation error terms in space between Φm and Φc with

semi-Lagrangian discretizations. In this chapter, I consider the novel application

of this approach to the time-dimension with a general framework for Runge-Kutta

methods, resulting in the θ methods.

θ methods are a generalization of work presented by myself and coauthors in [53],
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which will be reviewed in Section 2.1. Section 2.2 presents general order conditions

which, when satisfied, allow for arbitrarily high order approximation of Φm. The gen-

eral order conditions for fixed time-step size are presented, followed by a method for

computing the order conditions for variable time-step size. A general, non-intrusive

θ method based on Richardson extrapolation is also presented. Then, in Section 2.5

I apply the linear two-grid convergence theory of [52] to demonstrate the improved

convergence provided by these methods for advection diffusion problems. Section 2.5

goes on to provide numerical confirmation of the theoretical convergence bounds and

improved convergence for the linear advection-diffusion equation and demonstrates

significantly improved parallel performance of MGRIT for a 2D linear advection-

diffusion problem in the advection dominated regime. The 2D advection-diffusion

problem is solved utilizing time-grid adaptivity provided by the XBraid [57] interface

to ARKODE [43], part of the SUNDIALS software package [24, 27], in which I imple-

mented the automatic generation of coarse grid θ methods as well as several critical

performance optimizations for implicit Runge-Kutta methods utilizing iterative spa-

tial solvers. Later, in Chapter 3, θ methods are used to greatly improve MGRIT

convergence for the chaotic Lorenz system and Kuramoto-Sivashinsky equation.

2.1 Motivation for chaotic problems

Much of this section is adapted from [53].

As we have seen in Section 1.3, one difficulty in solving chaotic systems with

MGRIT is that coarsening in time can cause dramatic qualitative changes to the

global behavior of the system. Typically, when an explicit method is used on the

fine grid, an implicit method is used on very coarse-grids for stability. However,

switching from an explicit method to an implicit one causes serious changes to the
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behavior of the discretized chaotic system. For example, when using backward Euler

to solve the Lorenz equations, the measured greatest Lyapunov exponent, estimated

by the average rate of divergence of two nearby trajectories, decreases with increasing

time-step size, h, meaning that for large h, a chaotic system can become artificially

stabilized, and even non-chaotic. Conversely, using forward Euler, the Lyapunov

exponent increases with increasing h, and the system appears more chaotic on coarse-

grids [6]. Thus, a time-stepping scheme that preserves the qualitative behavior of the

system on coarse-grids, is one which lies somewhere between the binary of forward

and backward Euler. Figure 2.1 demonstrates this dependence for different time-

stepping schemes applied to the Lorenz system, including for the second-order θ

method derived later in this section.
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Backward Euler
Forward θ
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Accepted value

Figure 2.1: Plot of the observed greatest Lyapunov exponent λ1 for different time-
step sizes h, comparing forward Euler, backward Euler, as well as the θESDIRK2
method. For forward and backward Euler, coarsening in time changes the Lyapunov
spectrum, while the θ method, using the “forward” and “backward” values of θ,
better preserves the Lyapunov exponents.
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As shown by this example, a suitable fine-grid method does not necessarily make

a suitable coarse-grid method. One option would be to use a higher order method

on the coarse-grid, such as ESDIRK2 (Crank-Nicolson method), which would likely

better preserve the Lyapunov spectrum. However, higher order methods are more

expensive, and in general do not improve MGRIT convergence. Although higher

order methods better approximate the continuous problem, this is not necessarily

useful, since the job of the coarse-grid operator is to approximate the discrete fine-

grid problem. In fact, a higher order Φc will only agree with Φm to the same order of

accuracy as Φ agrees with the continuous problem, so in a naive implementation, the

accuracy of the approximation Φc ≈ Φm is limited by the lowest order of accuracy

among the pair Φc,Φ, meaning that it is not useful in this context to use a more

expensive, higher order method on the coarse-grid. This is illustrated by Figure 2.2,

where we see that a coarse solution given by ESDIRK2 yields a better approximation

to the exact solution, but is just as accurate as Euler’s method with respect to

approximating a discrete fine solution given by Euler’s method.

What we actually seek is a coarse-grid propagator which better approximates the

discrete fine-grid solution than simple re-discretization. Here, we rely on the fact

that the fine-grid time-step size, h, is small enough that the operators Φc and Φm

admit convergent Taylor series in h and can therefore be classified by their formal

orders of accuracy. In the case where either h or m is large enough that this does

not hold, it is likely that for most problems the accuracy of high order methods

becomes roughly the same as low order methods. Thus, low order methods should

be considered over high order methods on very coarse grids in the MGRIT hierarchy

due to concerns of stability and cost, although this is not explored further in this

work.

The work [53] gives three principles for deriving coarse-grid methods: First, Φc,

should have at least the same order of accuracy as the fine-grid, Φ, so that the
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Figure 2.2: A comparison of different coarse solutions to an exact solution and a fine
solution of the Dahlquist problem.

coarse-grid discretization is suitably consistent with the fine grid. Second, rather

than choosing a single Φc, one should consider a k-parameter family of coarse-grid

time-steppers, Φc(ui,θ), whose parameters θj, j = 1, 2, . . . , k can be tuned depending

on the physics of the problem and the coarsening factor m. Third, when possible,

these parameters are tuned such that Φc approximates Φm to a higher order than Φ

approximates the continuous equation.

More precisely, consider a p-th order fine-grid time stepping operator Φ with m-

step stability function φm(z), representing m consecutive fine-grid steps, along with

a k-parameter family of time-stepping operators Φθ of at least order p, with stability
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function φθ(mz), representing a single large coarse-grid step of sizemh. If the system

of equations

φm(0) = φθ(0) (2.1a)

φ′
m(0) = φ′

θ(0) (2.1b)
...

φ(p+1)
m (0) = φ

(p+1)
θ (0) (2.1c)

...

φ(p+k)
m (0) = φ

(p+k)
θ (0) (2.1d)

has a solution for {θj}kj=1, then these parameters yield a method whose stability

function φθ approximates the m-step stability function φm to order p+ k, [53]. Note

that higher order agreement between the stability functions is not sufficient for higher

order agreement between the full operators, i.e. Φθ(u) − Φm(u) = O((mh)p+k+1),

for non-scalar, nonlinear systems beyond 2nd order. Later, in Section 2.2, sufficient

conditions are presented for approximation of the full operator.

The work [53] exemplifies θ methods by deriving a coarse-grid propagator Φθ

to better approximate m steps of forward or backward Euler’s method. The ODE

ut = f(u) can be solved to first order by any member of the family of implicit first

order single step methods given by

ui+1 = ui + h[θf(ui) + (1− θ)f(ui+1)], (2.2)

parameterized by θ ∈ [0, 1] which interpolates between forward (θ = 1) and backward

(θ = 0) Euler’s method. Note that when θ = 1/2, this θ method becomes equivalent

to the second-order Crank-Nicolson method, emphasizing the ability of the method

to approximate to second order.

Since (2.2) is first-order for any value of θ, the extra degree of freedom in the pa-

rameter θ can be used to better approximate the fine-grid discretization by choosing
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θ in such a way that m fine-grid steps of forward (or backward) Euler are approx-

imated to second order in mh. For example, applying forward Euler’s method and

the θ method to the scalar Dahlquist problem, u′ = λu for complex constant λ, let

z = hλ, where h is the time-step size. Then, the stability functions for m steps of

forward Euler with time-step h and for the θ method with time-step mh are given

by

φm(z) = φ(z)m = (1 + z)m and φθ(z) =
1 + θmz

1− (1− θ)mz
, (2.3)

respectively. In order for φθ to approximate φm to second order in z, the following

three equations must be satisfied:

φm(0) = φθ(0), φ′
m(0) = φ′

θ(0), and φ′′
m(0) = φ′′

θ(0). (2.4)

While the first and second equality are already satisfied since forward Euler’s method

and the θ method are both first order in z, the third equality yields

m(m− 1) = 2(1− θm)m2 (2.5a)

1− θm =
m− 1

2m
(2.5b)

θm =
m+ 1

2m
, (2.5c)

and a similar calculation yields θm = (m − 1)/(2m) for backward Euler’s method.

Interestingly, in the limit as m→∞, θm → 1/2, and this θ method approaches the

2nd order Crank-Nicolson method.

Figure 2.3 demonstrates that the θ method indeed appears to have second-order

convergence relative to a fixed fine grid solution computed with Euler’s method.

Notice that, as expected, there is a range of h values for which Euler’s method is a

better approximation to the fine grid than ESDIRK2, and that θESDIRK2 is a much

better approximation to the fine grid than ESDIRK2 for a wide range of h values,

while having the same computational cost.
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Figure 2.3: Error convergence curves for forward Euler’s method, ESDIRK2, and
θESDIRK2. Left: Relative error is measured with respect to the exact solution.
Right: Relative error is measured with respect to a forward Euler solution with
hfine = 10−4, and θ = (m+ 1)/2m, where m = h/hfine.

Since these values of θ give a method which approximates the fine grid to 2nd

order in the scalar case, the natural question is whether this method also better

represents the system on coarse grids for nonlinear, multivariable problems. This

is indeed the case, as depicted in Figure 2.1, where the θ method is compared to

forward and backward Euler applied to the Lorenz system. The θ method accurately

preserves the greatest Lyapunov exponent even on coarse time-grids. Thus, for this

example, we can say that the θ method addresses, at least in part, the fundamental

difficulties with PinT and chaotic problems, preserving the global dynamics on coarse

time grids and improving local accuracy. We will see in Section 2.2 that the derivation

of this second-order θ method is equivalent to solving the θ method order conditions

for second order using first order simplifying assumptions.
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In Chapter 3, the MGRIT performance of this second-order θ method is demon-

strated numerically on the Lorenz system, and a third order θ method is con-

structed using the techniques presented in this section which improves MGRIT con-

vergence and parallel performance relative to re-discretization for the solution of the

Kuramoto-Sivashinsky equation, a stiff, nonlinear, chaotic PDE.

2.2 Order conditions

For autonomous systems, having the general form
d
dt
u(t) = f(u(t)),

u(0) = u0,
(2.6)

the exact solution at time h, u(h), and the approximate solution at time h, given by

Runge-Kutta method Φ, each admit expansions as B-series. Each p-th order term

in the B-series is associated with the set of all rooted trees Tp having p nodes. This

is because the additive terms found in higher derivatives of u(t) have mathematical

structure related to these trees. A rooted tree is a graph, with no simple cycles,

having a single node designated as its root. The exact solution to the system of

equations (2.6) and any Runge-Kutta method applied to the same system can each

be expanded as:

u(h) = u0 +

p∑
j=1

hj
∑
t∈Tj

1

σ(t)t!
F (t)(u0) +O(hp+1), (2.7)

Φ(u0) = u0 +

p∑
j=1

hj
∑
t∈Tj

ψ(t)

σ(t)
F (t)(u0) +O(hp+1), (2.8)

given suitable scalar functions σ, ψ and ·!, and elementary differential F defined on

rooted trees [3]. Evidently, the only difference between the two series are the scalar
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multipliers 1/t! and ψ(t), hence the formal order conditions for Φ to attain order p

are

ψ(t) =
1

t!
, t ∈ Tj, j = 1, 2, . . . , p (2.9)

where ψ(t) is called the elementary weight function of tree t and depends on the

coefficients of the Runge-Kutta method.

Let Φ be a Runge-Kutta method of order p, having s stages, defined by the

Butcher table:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
... ... ... . . . ...

cs as1 as2 . . . ass

b1 b2 . . . bs

≡
c A

bT
(2.10)

Let C := diag(c), and let 1 = [1, 1, . . . , 1]T be of length s. Applying the first

order simplifying assumptions that bT1 = 1 and A1 = c, the order conditions, up

to third order, are given in the third column of Table 2.1. Note that the left-hand

sides of these equations are the elementary weights ψ(t), and the right-hand sides

are equal to 1/t!, as in (2.9).

We first consider the uniform time stepping case, where both the time-step size

and the Butcher table defining Φ is constant across all fine-grid time steps, followed

by the more general, variable time stepping case in which h and Φ are allowed to

vary across time steps.

2.2.1 Uniform time stepping

In order to derive a θ method, we expand Φm as a B-series, then derive the necessary

order conditions that Φθ must satisfy so that Φm−Φθ = O(hq+1), where q > p. The
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Table 2.1: Order conditions for Runge-Kutta and θ Runge-Kutta methods, up to
third order.

order, j t ψ(t) = 1/t! ψθ(t) = ψm(t)/m
j

2 bTc = 1
2

bTθ cθ =
1
2
+

(
bT c− 1

2

)
m

3 bTCc = 1
3

bTθ Cθcθ =
1
3
+

(
bTCc− 1

3

)
+(m−1)

(
bT c− 1

2

)
m2

3 bTAc = 1
6

bTθ Aθcθ =
1
6
+

(
bTAc− 1

6

)
+(m−1)

(
bT c− 1

2

)
m2

operator Φm can be written as an extended, or “block” Butcher table:

c A

c+ 1 BT A
... ... ... . . .

c+ (m− 1)1 BT BT . . . A

bT bT . . . bT

≡
ĉ Â

b̂
T

where B = {b, b, . . . , b}. Now the elementary weights of Φm and Φθ can be computed

according to the definition in [3], and the order conditions for the θ method can be

derived. If ψm(t) is the elementary weight of Φm for rooted tree t, and ψθ(t) is the

elementary weight of Φθ for t, then the θ method order conditions are given by

ψθ(t) =
ψm(t)

mj
, t ∈ Tj, j = 1, 2, . . . , q, (2.11)

where the factor of mj comes from substituting mh for h in the B-series for Φθ. For

example, the second-order elementary weight for Φm is computed by

b̂
T
ĉ = bTc+ bT (c+ 1) + · · ·+ bT (c+ (m− 1)1) = mbTc+

m−1∑
k=1

kbT1

= mbTc+
m(m− 1)

2
=
m2

2
+m

(
bTc− 1

2

)
,

and all the other higher order weights can similarly be found. The θ method order

conditions, up to third order, are listed in the fourth column of Table 2.1. Note

that the right-hand sides only differ from the Runge-Kutta order conditions by an
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O (1/m) term, meaning that in the limit as m → ∞, these order conditions reduce

to the classical ones. This explains why the second-order θ method derived in [53]

and in Section 2.1 approaches the Crank-Nicolson method as m → ∞. Further,

note that the parenthetical terms on the right-hand sides are determined by the

order of Φ, e.g. if Φ is second-order, then the (bTc − 1/2) term vanishes, and the

second-order θ condition for Φθ reduces to the usual second-order condition. In other

words, if Φ is already order p, then Φθ must satisfy the classical Runge-Kutta order

conditions up to order p, and the θ method order conditions up to order q > p so

that Φθ − Φm = O(hq).

2.2.2 Variable time stepping

When MGRIT is equipped with time adaptivity, the fine-grid will not have a uniform

time-step size, h, and thus the coarse grids will not in general have a uniform step

size either. Further, when using the θ-method coarse grid, the Runge-Kutta method

defining Φ will also vary across time steps, since each step on a coarse grid corresponds

to a coarse interval on the fine grid which will not have a uniform step size.

In the case that h and Φ are allowed to vary across time steps, the extended

Butcher table for Φm is more general, and thus the order conditions do not admit

simple closed forms. Consider a single coarse interval k = 1, 2, . . . ,m, having Runge-

Kutta methods Φk with time-step sizes hk. Let ηk = hk∑m
s=1 hs

be the normalized step

size, then m-steps with Φk having Butcher tables given by bTk , ck, Ak can be written
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as the extended Butcher table

η1c1 η1A1

η2c2 + η11 η1B
T
1 η2A2

... ... ... . . .

ηm−1cm−1 +
(∑m−2

s=1 ηs
)
1 η1B

T
1 η2B

T
2 . . . ηm−1Am−1

ηmcm +
(∑m−1

s=1 ηs
)
1 η1B

T
1 η2B

T
2 . . . ηm−1Bm−1 ηmAm

η1b
T
1 η2b

T
2 . . . ηm−1b

T
m−1 ηmb

T
m

≡
c̄ Ā

b̄
T
.

Then, the order conditions may be derived exactly as before. However, when using

MGRIT, the time domain is distributed across parallel processors, and thus the

processor that owns a particular time step may not have access to all the information

needed to compute these order conditions without a significant amount of extra

communication. Thus, I propose a method to compute the order conditions for each

coarse interval while using the same number of messages as MGRIT traditionally

does for F-relaxation followed by a residual calculation.

The above general extended Butcher table can be rewritten as a two-step extended

Butcher table

c̄m−1 Ām−1

ηmcm + η̄m−11 B̄T
m−1 ηmAm

b̄
T
m−1 ηmb

T
m

where η̄m−1 =
∑m−1

s=1 ηs. This splits the extended Butcher table into two parts, the

first part comprised of m− 1 steps, and the second part comprised of a single step.

The elementary weights for Φm can then be computed in terms of the elementary

weights for Φm−1, and the elementary weights for Φm. Given tree t, let Ψk−1(t)

denote the elementary weight for the multiple steps Φk−1, and let ψk(t) denote the

elementary weight for the single step Φk for k = 1, 2, . . . , m− 1, where η̄0 = 0 and
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Ψ0(t) = 0. As an example, the second-order elementary weight for Φm is given by

Ψm ( ) = b̄
T
c̄

= b̄
T
m−1c̄m−1 + η2mb

T
mcm + η̄m−1b

T
m1

= Ψm−1 ( ) + η2mψm ( ) + ηmη̄m−1.

Thus, the elementary weights for Φm can be computed recursively, starting with

the elementary weights for Φ1, and the order conditions for Φθ can be derived in the

same way as before, where the pth order condition for each tree t ∈ Tp is given by

ψθ(t) = Ψm(t). Note that here there is no scaling factor since we already scaled each

fine-grid time step by ηk/hk so that the Butcher tables of Φm and Φθ each span a

unit timescale.

Since only scalar elementary weights need to be communicated, and the computa-

tion of these elementary weights has the same communication pattern as the MGRIT

F-relaxation and residual calculation, i.e. the calculation of Ψk(t) depends only on

Ψk−1(t) (computed during the previous time step) and other local information, the

order conditions can be computed with the same number of messages as MGRIT

traditionally uses during F-relaxation by sending Ψk−1 in the same message as that

required to send the state vector uk−1. In this way, the order conditions may be de-

rived and solved at the time of the first F-relaxation and residual calculation on each

level, with essentially no additional communication. This will need to be done on

the first MGRIT iteration, as well as any time the fine-grid is refined in time, since

the order conditions will change. In practice, the order conditions may be solved

algebraically, leaving the right-hand side as a free variable which is determined by

the exact value of Ψm(t), or they may be solved numerically using e.g. Newton’s

method.

The recursive formulae for the elementary weights up to fourth order are given
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here:

Ψm ( ) = Ψm−1 ( ) + η2mψm ( ) + ηmη̄m−1

Ψm ( ) = Ψm−1 ( ) + η3mψm ( ) + 2η̄m−1η
2
mψm ( ) + η̄2m−1ηm

Ψm ( ) = Ψm−1 ( ) + ηmΨ
m−1 ( ) + η3mψm ( ) + η̄m−1η

2
mψm ( )

Ψm ( ) = Ψm−1 ( )+η4mψm ( )+3η̄m−1η
3
mψm ( )+3η̄2m−1η

2
mψm ( )+ η̄3m−1ηm

Ψm ( ) = Ψm−1 ( ) + η2mψm ( )Ψm−1 ( ) + η4mψm ( ) + η̄m−1η
3
mψm ( )

+ η̄m−1ηmΨ
m−1 ( ) + η̄m−1η

3
mψm ( ) + η̄2m−1η

2
mψm ( )

Ψm ( ) = Ψm−1 ( ) + ηmΨ
m−1 ( ) + η4mψm ( ) + 2η̄m−1η

3
mψm ( ) + η̄2m−1η

2
mψm ( )

Ψm
( )

= Ψm−1
( )

+ηmΨ
m−1 ( )+η2mψm ( )Ψm−1 ( )+η4mψm

( )
+ η̄m−1η

3
mψm ( )

2.2.3 Example θ methods

To illustrate the derivation of θ methods using the given order conditions, let Φ and

Φθ be given by the Butcher tables

Φ :
α α

1
and ΦθESDIRK2 :

0

1 θ 1− θ

θ 1− θ

.

Solving the second-order condition from Table 2.1 for θ yields

θ =
m+ 1− 2α

2m
.

When α = 1, in which case Φ is equivalent to backward Euler’s method, θ = (m −

1)/(2m), which agrees with the optimal value of θ derived in [53]. This method will

be referred to as θESDIRK2, where the ESDIRK2 (Crank-Nicolson) method is given

when θ = 1/2.
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The θFIRK3method used in Section 3.5.2 for the Kuramoto-Sivashinsky equation

is a linear combination of the second order Lobatto IIIA, IIIB, IIIC, and IIIC∗

methods, where θA + θB + θC + θC∗ = 1.

θFIRK3 :

θB
2

θB
2
+ θC

2
− θC

2

1 1− θA
2
− θB

2
− θC

2
θA
2
+ θC

2

1
2

1
2

. (2.12)

Other θ methods used in Section 2.5 and implemented in the XBraid-ARKODE

interface are

θSDIRK2 :

1− θ1 1− θ1 0

θ1 2θ1 − 1 1− θ1
θ2 1− θ2

, (2.13)

θSDIRK3 :

θ1 θ1 0 0

θ2 θ2 − θ1 θ1 0

1 θ3 1− θ3 − θ1 θ1

θ3 1− θ3 − θ1 θ1

, (2.14)

and

θSDIRK4 :

θ1 θ1 0 0 0 0

0.757 0.757− θ1 θ1 0 0 0

0.572 0.572− θ1 − θ2 θ2 θ1 0 0

0.234 0.234− θ1 − θ3 − θ4 θ3 θ4 θ1 0

1 1− θ1 − θ5 − θ6 − θ7 θ5 θ6 θ7 θ1

1− θ1 − θ5 − θ6 − θ7 θ5 θ6 θ7 θ1

. (2.15)

The second-order SDIRK2 method is given by ΦθSDIRK2 with θ1 =
√
2/2 and θ2 = 1/2.

The c coefficients for θSDIRK4 (namely 0.757, 0.572, and 0.234) were hand-tuned

for performance on advection-dominated problems, but still provide a significant

convergence improvement for more diffusive problems as well.
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2.3 θ extrapolation

A θ method can be constructed for any time-stepping method, not just Runge-Kutta

methods, by using a generalization of Richardson’s extrapolation. Richardson’s ex-

trapolation is a method for improving the accuracy of a numerical method by com-

bining multiple approximations of the same problem, each with a different step size.

Given Φh of order p, we can similarly approximate Φm
h using two steps of Φmh/2 with

time-step size mh
2

and one step of Φmh with time-step size mh.

θΦ2
mh/2(u) + (1− θ)Φmh(u) = Φm

h (u) +O(hp+1), (2.16)

where

θ =
2p(mp − 1)

mp(2p − 1)
. (2.17)

Note that in the limit as m→∞, θ → 2p/(2p− 1) which yields classical Richardson

extrapolation.

Since this method only relies on the order of accuracy of Φh, it can be applied

to any time-stepping method that admits a Taylor series, and which can be re-

discretized in time by scaling the time-step size, not just Runge-Kutta methods.

However, it does require significantly more work per coarse-grid time step, since it

requires three time steps of the fine-grid method per coarse-grid time step, tripling

the amount of work done on the coarse grid relative to re-discretization. Thus, it

is not as efficient as a θ method can be for Runge-Kutta methods, but it is more

general.

In classical linear multigrid, the operator complexity, defined as the total number

of nonzero entries in all system matrices on every level divided by the number of

nonzero entries in the fine-grid system matrix, is a measure of the total storage

required by a multigrid method, but since the majority of the cost of a multigrid V-

cycle is in relaxation on each level, and the cost of relaxation is typically proportional
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to the number of nonzero entries in the system operator at that level, the cost of a

V-cycle is proportional to the operator complexity of that V-cycle [2]. For MGRIT,

the system matrices aren’t stored explicitly on each level, but the majority of the

cost of a V-cycle is indeed in F-relaxation, the cost of which is proportional to the

number of time points on a given level times the work required for a single time step.

Thus, we may analogously define the operator complexity for MGRIT as the total

cost of F-relaxation on every level divided by the cost of F-relaxation on the fine

grid.

Figure 2.4 demonstrates that MGRIT with θ extrapolation converges as fast, if

not faster, than with a comparable Runge-Kutta θ method, and nearly twice as fast as

with naive re-discretization, even when iterations are scaled by operator complexity.

This provides evidence that theta methods are likely worth implementing in many

cases, despite increasing the cost of coarse grids.

2.4 MGRIT convergence bounds

Let the error propagators, EF and EFCF , give the action of one MGRIT iteration

on the error of the current solution guess using F- and FCF-relaxation, respectively.

If k is the iteration count, and ek is the difference between the current solution

approximation and exact solution to (1.1), then for F- and FCF-relaxation we have:

ek+1 = EF − ek,

ek+1 = EFCFek.

Here, we assume that Φ and Φc are Runge-Kutta methods applied to the linear

system of equations:
d
dt
v(t) = Gv(t) + f(t), 0 ≤ t ≤ T,

v(0) = g0

(2.18)
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Figure 2.4: Multilevel MGRIT residual convergence for 1D linear advection compar-
ing naive rediscretization with θ method coarse grids. The fine grid is discretized
using backward Euler’s method and the MGRIT coarsening factor m = 4. The iter-
ation counts are scaled by the operator complexity of the V-cycle, as a proxy for the
increase in work caused by the more expensive coarse-grid methods.

where the linear operator G is diagonalizable, with eigenvalues γω. Further, we

assume that Φ and Φc are stable in the sense that ‖Φ‖ < 1 and ‖Φc‖ < 1. In this

case, given time-step size h, the operators Φ and Φc will be rational functions of hG

and mhG, respectively, and will thus be diagonalized by the same basis as G. Let λω
and µω denote the eigenvalues of Φ and Φc, respectively, then the two level MGRIT

error propagators may be bound by

‖EF − e‖2 ≤ max
ω

{
|λmω − µω|

(1− |µω|N)
(1− |µω|)

}
‖e‖2 (2.19)

‖EFCFe‖2 ≤ max
ω

{
|λmω − µω|

(1− |µω|N)
(1− |µω|)

|λω|m
}
‖e‖2 (2.20)
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[52]. Note that in the limit as N → ∞, the numerator term (1 − |µω|N) → 1, by

the assumption |µω| < 1. Thus, this term will be assumed to be 1 for the remainder

of this paper, so that the convergence bounds will be independent of the grid size

N . In this limit, the |λmω − µω|/(1− |µω|) term dominates. The numerator of which

depends on how well the eigenvalues of Φm are approximated by the eigenvalues of

Φc. Also, note that FCF-relaxation has the effect of multiplying the convergence rate

by a constant factor of |λω|m, meaning that the convergence rate will be reduced by

using FCF-relaxation in all cases where the |λω| are smaller than unity.

2.4.1 MGRIT stability

For a particular spatial eigenvalue γ, λ and µ are fixed, so, letting z = hγ,

ρF (z) =
|λm(z)− µ(mz)|
(1− |µ(mz)|)

, and ρFCF (z) =
|λm(z)− µ(mz)|
(1− |µ(mz)|)

|λ(z)|m, (2.21)

act as bounds on the action of the error propagator on the particular eigenvector of

G, and the functions λ(z) and µ(z) are the stability functions of the Runge-Kutta

methods Φ and Φc, respectively. If we plot the region in the complex plane where

ρF (z), ρFCF (z) ≤ 1, we can visualize the stability region for the MGRIT iteration,

analogous to the stability region of a time-stepping method. Figure 2.5 plots the

stability regions for MGRIT when using forward Euler’s method and the Crank-

Nicolson method. When forward Euler is used with re-discretization, (2.5a, 2.5b),

the MGRIT stability is limited by the coarsening factor, m. When Crank-Nicolson is

used with re-discretization, (2.5c, 2.5d), the stability of MGRIT resembles that of an

explicit method, having a finite, bounded stability region for any m, despite the A-

stability of the Crank-Nicolson method. While the instability of MGRIT when using

forward Euler is to be expected (since the coarse grid equation becomes more unstable

as the time-step size increases), the limited stability when using Crank-Nicolson is

more surprising. According to [52], A-stability is not sufficient for MGRIT stability,
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and at least L-stability is necessary. In the stiff limit, as γ →∞, [19] demonstrates

that if the fine-grid method is A-stable, then it is sufficient that the coarse grid be L-

stable to ensure MGRIT stability, although MGRIT may converge arbitrarily slowly

in this case, since the convergence rate is bounded above by one. Indeed, MGRIT

is only certain to converge quickly in the stiff limit if both the fine- and coarse-grid

methods are L-stable.

(a) Forward Euler, m = 4 (b) Forward Euler, m = 32

(c) Crank-Nicolson, m = 4 (d) Crank-Nicolson, m = 32

Figure 2.5: The stability regions for MGRIT and the fine-grid operator using forward
Euler and the Crank-Nicolson method. The contours plot the stability boundaries
ρFCF (γ) = 1 (solid), ρFCF

θ (γ) = 1 (dashed) and |Φ(γ)| = 1 (dash-dot).

The proposed θ methods can be designed to improve MGRIT stability. As an
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example, when forward Euler’s method is used with the θESDIRK2 method on the

coarse grid, the stability region for MGRIT actually increases in size withm, meaning

that MGRIT stability is limited by the stability of Φ, not of the coarse grid Φc. When

the Crank-Nicolson method is used with the θSDIRK3 method, the stability region

expands to include the entire negative real axis. Thus, we say that the appropriate

choice of coarse grid operator can stabilize what would be an unstable MGRIT

iteration when using naive re-discretization.

Because hyperbolic problems are notoriously difficult to solve with PinT meth-

ods, with MGRIT typically diverging when G has any purely imaginary eigenvalues,

we are encouraged to explore whether, given a fine-grid discretization of a hyper-

bolic problem, there exists some coarse-grid θ method which results in a convergent

MGRIT iteration. Notice that in every plot in Figure 2.5, the imaginary axis is not

included in the MGRIT stability region, this indicates that if the spatial eigenvalues

γω lie on the imaginary axis, we should not expect MGRIT to converge, and MGRIT

will converge very slowly for eigenvalues near the boundary of the stability region, in

particular near the imaginary axis. This illustrates the main problem with solving

hyperbolic problems using MGRIT, since stability of the fine-grid method for imag-

inary eigenvalues does not imply MGRIT stability. Let us now examine this more

carefully, under the assumptions of [52].

Lemma 1. The MGRIT stability region, defined as P = {z ∈ C : ρF (z) ≤ 1} is a

subset of the fine-grid stability region L = {z ∈ C : |λ(z)| ≤ 1}.

Proof. Close inspection of the proof given in [52] of the bounds in Equation (2.21)

reveals that the assumption that ‖Φ‖ < 1 is not necessary, and thus these bounds
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are valid even if |λ(z)| > 1. For any z /∈ L, |λ(z)| > 1, and

ρF (z) =
|λm − µ|
(1− |µ|)

(2.22)

≥ ||λ
m| − |µ||
1− |µ|

(2.23)

>
1− |µ|
1− |µ|

= 1, (2.24)

=⇒ z /∈ P (2.25)

since by assumption |λm| > |λ| > 1 > |µ|. Thus, P ⊆ L.

A corollary of Lemma 1 is that it is increasingly difficult to stabilize MGRIT near

the imaginary axis for higher order fine-grid methods for which the fine-grid stability

boundary approaches the imaginary axis in a neighborhood of the origin, even for L-

stable methods. Further, MGRIT can never be made to converge with a symplectic

Runge-Kutta method on the fine grid with any Runge-Kutta method coarse grid,

because symplectic methods by design have the imaginary axis itself as their stability

boundary, meaning that the MGRIT stability region at best shares this boundary,

and thus MGRIT cannot be convergent for any purely imaginary eigenvalue. Note

that this argument only holds under the assumptions of [52], namely that the fine-

and coarse-grid methods are simultaneously diagonalizable, which is true for the

Runge-Kutta θ methods when the linear operator G is diagonalizable and also for

the θ extrapolation method whenever Φ is diagonalizable. However, for more exotic

discretizations, such as the semi-Lagrangian methods presented in [13], it is possible

for MGRIT to be made convergent for purely hyperbolic problems, although the kind

of theory that can express this rigorously for general discretizations remains an open

problem.

Although the presented θ methods cannot fix the divergence of MGRIT for purely

hyperbolic problems, it is often the case that θ methods improve MGRIT convergence

for spatial eigenvalues near the imaginary axis and result in an MGRIT stability
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region which lies closer to the imaginary axis, and therefore we should expect these

methods to be very useful for parabolic problems which are advection dominated, as

demonstrated in Section 2.5.

2.4.2 Considerations for multilevel MGRIT

For MGRIT with more than two levels and variable time-stepping, the θ method for

each level can be derived with m` in place of m, where ` is the level in the MGRIT

hierarchy, counting up from the fine grid which is level 0. This ensures that Φθ

on each level approximates the fine-grid time-stepping operator to the same higher

order of accuracy, implying that the method on each level approximates the method

on the previous level to the same order of accuracy. This argument does not hold

for variable time stepping, however, so the θ methods on each coarse interval need

to be derived so that they approximate the m steps on the fine grid that span that

interval. This can be done in practice during the first MGRIT down-cycle, or, if the

first down-cycle is skipped, a mock down-cycle can be performed to compute the θ

methods prior to the first up-cycle.

Multigrid algorithms, including classical multigrid, Parareal, and MGRIT, gen-

erally rely on the coarse grid being much cheaper to solve than the fine grid, so the

θ method, which increases the cost of time stepping on the coarse grid relative to

naive re-discretization, may appear counter to this goal. Indeed, for Parareal and

two-level MGRIT, it is very important that the coarse grid be orders of magnitude

cheaper than the fine-grid, or else one iteration of the algorithm will be expensive

with little meaningful speedup. However, the MGRIT algorithm relies on paralleliz-

ing the work on the expensive finer grids while only using sequential time stepping

to solve the coarsest grid, which will only consist of one or two time steps. Thus,

each processor only has one or a handful of sequential time steps to execute on each

level. As we will see shortly, the extra cost incurred by θ methods is typically offset
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by the improvement to MGRIT convergence they can provide, and this cost may be

further mitigated by using a larger coarsening factor, which is often possible because

of the improved convergence rate and stability due to the θ method, as demonstrated

in the numerical results for multi-level MGRIT presented in Section 2.5.

It is also reasonable to ask whether, when using the multilevel algorithm, one

should apply the θ method strategy recursively, using increasingly high order methods

on coarser grids. However, it is my opinion that this is unlikely to be necessary. This

is because the multilevel convergence rate is bounded from below by the two-level

convergence rate given the fine grid and first coarse grid. For two levels, the first

coarse grid is solved exactly, while for three levels, this exact coarse-grid solve is

replaced by an inexact solve, i.e. a recursive application of MGRIT, meaning the

three-level algorithm can at most converge as fast as the two-level one. For this

reason, increasing the order of accuracy of the second coarse grid beyond that of the

first coarse grid is not likely to improve the convergence rate very much, unless a

serious degradation of convergence is observed when going from two levels to three.

2.5 Theoretical and numerical results

In order to illustrate the potential of the proposed θ methods for accelerating

MGRIT convergence and improving stability, this section presents theoretical con-

vergence bounds and observed asymptotic convergence rates for MGRIT applied to

the one-dimensional linear advection-diffusion equation, along with space-time par-

allel strong scaling results for the two-dimensional linear advection-diffusion equa-

tion that demonstrate the superiority of θ methods as coarse grid discretizations.

Then, a parallel study is presented for the space-time parallel solution of the 2D lin-

ear advection-diffusion equation in the advection dominated regime, where adaptive

MGRIT is shown to significantly outperform adaptive time stepping and θ methods
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are demonstrated to have a clear advantage over naive re-discretization in terms of

parallel efficiency.

2.5.1 1D linear advection-diffusion

The one-dimensional linear advection-diffusion equation is given by

ut = νuxx − αux. (2.26)

The parameters α, ν ∈ R are used to tune how advective and diffusive the problem

is, respectively. The problem is posed along with periodic boundary conditions for

x ∈ [0, 1) and t ∈ [0, 1.25], with initial condition given by the half sin wave u(x, 0) =

sin(πx). This is then discretized on a uniform grid using centered second-order and

upwind first-order finite differences for the second and first derivatives, respectively.

The problem size considered here is nx × nt = 27 × 210, with time-step size ht and

spatial grid spacing hx, and thus the ratio ht/hx = 8.

For the diffusive case, (ν = 1, α = 0) Table 2.2 records the observed MGRIT con-

vergence rate along with the theoretical bound max{ρFCF} for a given combination

of fine and coarse operators Φ, Φc. The theoretical bound given is the approximate

maximum convergence rate for spatial eigenvalues on the negative real axis. When

Φc is a θ method, the ‘speedup’ column records log(max{ρFCF
θ })/ log(max{ρFCF}),

which roughly indicates the expected speedup due to the improvement in iteration

count required for the method to converge to a fixed tolerance. An entry of ‘div’

indicates that the MGRIT iteration became numerically unstable within 32 itera-

tions, ‘∞’ indicates that the function ρFCF is unbounded, and ‘*’ indicates that the

speedup for a particular method is not available, due to numerical instability or a

convergence rate greater than 1, which indicates divergence. Especially noteworthy

are the around 2× speedups provided by the θESDIRK2, θESDIRK2, and θ extrap-

olation methods when used with the SDIRK1 fine grid. Also of note is the MGRIT
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Table 2.2: Diffusion, (ν = 1, α = 0)

m = 4, FCF m = 32, FCF
Φ Φc obs. ρFCF speedup obs. ρFCF speedup

SDIRK1
SDIRK1 0.077 0.081 0.059 0.108
θESDIRK2 0.017 0.020 1.56 0.020 0.021 1.72
θSDIRK2 0.004 0.006 2.04 0.008 0.011 2.04
θ extrap. 0.005 2.11 0.012 1.99

SDIRK2
SDIRK2 0.007 0.010 0.009 0.011
θSDIRK3 0.003 0.005 1.15 0.002 0.005 1.17
θ extrap. 0.0007 1.58 0.0009 1.56

ESDIRK2
ESDIRK2 div ∞ div ∞
θSDIRK3 0.670 1 * 0.038 1 *
θ extrap. ∞ * ∞ *

convergence bound for ESDIRK2 which is unbounded with naive re-discretization,

however, the iteration becomes stable when using the θSDIRK3 coarse grid, and al-

though convergence is relatively slow for m = 4, convergence is very fast for m = 32.

For the advective case, (ν = 0, α = 1) Table 2.3 records the observed MGR-

IT convergence rate along with the theoretical bound max{ρFCF} for the same

methods as before in Table 2.2. Here, the theoretical bound is the approximate

maximum convergence rate for spatial eigenvalues on the imaginary axis. Of note

here is the combination of SDIRK1 with the θSDIRK2 and θ extrapolation coarse

grids, with theoretical speedups of 5.96× and 5.46× respectively, relative to naive

re-discretization. This is a good result for a purely hyperbolic problem at a coars-

ening factor of m = 4. For the second-order fine-grid methods tested, no coarse-grid

method yields a theoretical convergence bound less than one. However, although

the theoretical bounds for the SDIRK2 and ESDIRK2 methods indicate divergence,

interestingly, MGRIT converges quickly for SDIRK2 when m = 4 with SDIRK2 and
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Table 2.3: Advection, (ν = 0, α = 1)

m = 4, FCF m = 32, FCF
Φ Φc obs. ρFCF speedup obs. ρFCF speedup

SDIRK1
SDIRK1 0.689 0.750 1.23 1.28
θESDIRK2 0.168 0.767 0.922 4.73 21.6 *
θSDIRK2 0.085 0.180 5.96 2.60 3.03 *
θ extrap. 0.208 5.46 1.2 *

SDIRK2
SDIRK2 0.100 ∞ 2.82 ∞
θSDIRK3 0.060 2.22 * 1.95 2.54 *
θ extrap. ∞ * ∞ *

ESDIRK2
ESDIRK2 div ∞ div ∞
θSDIRK3 div 2.17 * div 2.54 *
θ extrap. ∞ * ∞ *

θSDIRK3 coarse grids.

2.5.2 Space-time parallel 2D linear advection diffusion with

adaptive time stepping

Although the previous section demonstrates that the MGRIT convergence rate is

improved through the use of coarse grid θ methods, it remains to be seen if this

improved convergence offsets the additional cost of using a more expensive coarse-

grid method in an actual parallel study. To test this, consider the 2D linear advection

diffusion equation with Dirichlet boundary conditions

ut = κ(uxx + uyy) + αxux + αyuy, (2.27)

ut(t, 0, y) = ut(t, 1, y) = ut(t, x, 0) = ut(t, x, 1) = 0, (2.28)
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and initial condition

u(0, x, y) = sin2(πx) sin2(πy). (2.29)

For the following experiments, the constants κ = 10−3, αx = αy = 1, are fixed so

that the problem is advection dominated. The Dirichlet outflow boundary makes

for a numerically challenging simulation as the initial sine hump collides with the

boundary and produces large spatial gradients. This problem is discretized in space

on a uniform spatial grid with 512 × 512 points with second-order centered finite

differencing. The temporal discretization is an SDIRK2 method with first order

embedded error estimator provided by the ARKODE module of the SUNDIALS

software package [43, 27, 24].

The implicit SDIRK stages are solved using GMRES preconditioned with a sin-

gle V-cycle of PFMG, a parallel spatial multigrid algorithm provided by the hypre

software package [29] with two pre- and post-iterations of symmetric red-black Gauss-

Seidel relaxation. In the sequential time stepping case, the PID time-adaptivity con-

troller from ARKODE is used along with error estimates from the embedded error

estimator. The MGRIT implementation used is from XBraid [57], with coarse grid

adaptive SDIRKθ methods implemented by myself on top of the ARKODE-XBraid

interface. The θSDIRK methods are implemented in the XBraid-ARKODE interface

in a very general way, such that if a user already has a SUNDIALS application code

that utilizes an ARKODE SDIRK method for adaptive time stepping, they can en-

able the XBraid wrapper in just a few lines of code. Then, with the XBraid wrapper

enabled, the user has access to θ methods up to fourth order with just two lines of

code:

ARKBraid_SetTheta ( app , t rue ) ;

ARKBraid_SetCoarseOrder ( app , f ine_ord +1);

For this experiment, the MGRIT coarse-grid method is varied in order to compare
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naive re-discretization (SDIRK2) with the θSDIRK3 and θSDIRK4 methods given in

(2.14) and (2.15). Temporal adaptivity is achieved in MGRIT using the I controller

from ARKODE along with error estimates given to generate refinement factors for

XBraid’s built in temporal refinement routine. Relative and absolute error tolerances

of 10−7 were used for temporal refinement, an absolute tolerance of 5−9 was used for

the GMRES solver, and an absolute residual tolerance of 10−7 was used for MGRIT

convergence. An MGRIT coarsening factor of 4 was used beyond the first level for all

experiments, while coarsening factors of 6, 8, and 12 were used on the first level for

coarse-grid methods SDIRK2, θSDIRK3, and θSDIRK4 respectively. An initial study

using a range of coarsening factors was used to select these as the optimal values for

each method, based on the maximum parallel speedup given by each method and

each coarsening factor.

Figure 2.6 demonstrates the improvement to scaling provided by MGRIT, and

especially highlights the improvement in parallel speedup when using the third or

fourth order θ methods on the coarse grid. This study was performed on Ruby,

a parallel cluster at Lawrence Livermore National Laboratory.1 We see here that

MGRIT is especially useful once the spatial parallel algorithm has saturated, since

after that point, further speedup is only possible by using PinT. In this regime,

MGRIT with the θ method is always faster than parallel in space alone on the same

number of processors for this problem, and the total speedup achieved using space-

time parallelism is nearly an order of magnitude greater than the speedup with spatial

parallel alone. Finally, note that MGRIT has not actually reached its theoretical

saturation limit yet in this experiment, with only about %20 of the total available

parallel work in the time dimension actually being performed in parallel, even for

the run with 8192 processors. Unfortunately, scaling beyond this point stagnated

1Ruby is a peak 5.9 PFLOP cluster commissioned in 2020 from Supermicro utilizing
an Intel Omni-Path Interconnect, with 1,480 batch nodes and two 28-core, 2.2 GHz Intel
Xeon CLX-8276L processors with 192 GiB of memory per node.
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unexpectedly due to what I suspect to be issues with the machine. Ideally, I would

like to repeat these experiments on another machine to confirm this.
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Figure 2.6: Results for a space-time strong scaling study for 2D linear advection
diffusion equation. Legend entries indicate the number of processors allocated to
each dimension, (px, py, pt), as a function of the total number of available processors,
np; the temporal solver, either time stepping or MGRIT; and the coarse-grid method
used in MGRIT. The baseline for speedup is the time required for sequential time
stepping on a single processor in space.
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Table 2.4: Time grid sizes and error test failure rates using time stepping and MGRIT
with different coarse-grid methods.

Method m time steps (nt) % error test fails
adaptive time stepping (PID) - 8882 .03%
MGRIT (SDIRK2) 6 11650 3.7%
MGRIT (θSDIRK3) 8 7174 1.1%
MGRIT (θSDIRK4) 12 7352 2.4%

Since different controllers were used for time adaptivity in the sequential and

parallel in time cases, it is interesting to compare the final sizes of the time grid

after solving the problem with each method. As can be seen in Table 2.4. Note that

even though for a fixed time grid MGRIT converges to the same solution as time

stepping, the same is not strictly true with temporal adaptivity, even if the same

controller were used. This is because refinement in XBraid is treated like adaptive

mesh refinement (AMR), where an initial coarse grid is refined by subdividing time

steps into sub-steps, whereas time adaptivity in time stepping employs feedback

control to continuously control the error, only backtracking and subdividing a step

when the error tolerance is violated.

For adaptive time stepping, it is considered expensive to recompute a time step

after failing the error tolerance test, so an ideal controller would keep the error

continuously below the tolerance without ever overshooting it. The PID controller

uses the error estimates and step sizes from the last three time steps to continuously

control the step size at the current time step, and generally it is quite efficient.

In contrast, for adaptive MGRIT, failing the error test at a given point in time

is only expensive if it causes refinement after the residual has reached the halting

tolerance, because this causes an extra MGRIT iteration to occur which could have

been avoided if that refinement had taken place during an earlier iteration when

the residual was much larger. Ideally, MGRIT would identify the optimal time grid

during the first iteration and never need to refine again, as that would likely result in
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the fastest convergence and prevent refinements which in XBraid involves reallocation

of all coarse-grid data structures. However, since the solution has very low accuracy

during the first couple of MGRIT iterations, early refinements can over-refine in

some areas while under-refining others, resulting in a much larger than necessary

time grid. Further, adaptivity in MGRIT is limited to an I controller which only

uses the current step size and error estimate, because the PID controller requires the

last three refined step sizes and error estimates to work, which are not available at a

given point in time during a given MGRIT iteration. Note that for sequential time

stepping, the I controller is typically less efficient than the PID controller.

Despite these difficulties, MGRIT has the potential to be more efficient than

adaptive time stepping at temporal adaptivity. This is because adaptive MGRIT

starts from a coarse time grid which is iteratively refined until the error test is

satisfied at every time point. Since failing the error test at a given time point is not

considered expensive, MGRIT can be fairly conservative when refining. Contrast

this with adaptive sequential time stepping where repeating a step is considered

expensive, so an initially small step size is chosen which is conservatively allowed to

increase while still keeping the error estimate below the tolerance to avoid repeating

steps. Therefore, all other things being equal, we should expect adaptive MGRIT to

be less likely to over-refine than adaptive time stepping.

Table 2.4 demonstrates that, using the θ method coarse grids, MGRIT is able

to find a more efficient grid than adaptive time stepping, as expected, although we

don’t observe this when comparing adaptive time stepping with MGRIT and naive

re-discretization. Intuitively, this makes sense because on coarse time grids, the θ

methods are roughly equivalent to their maximal order method (e.g. θSDIRK4 ≈

SDIRK4 for large m) and so the first iteration results in a much better initial guess

for the whole time domain than when using the lower order re-discretization, and a

better initial guess means the error estimates are more accurate and early refinements
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are less likely to over-refine, resulting in a closer to optimal time grid. The difference

in grid size between MGRIT with θSDIRK3 and θSDIRK4 coarse grids is small, and

it is unknown what has caused this difference.

Overall, these results demonstrate the efficacy of MGRIT with θ method coarse

grids, not only improving MGRIT convergence rates in nearly all cases, but more

than making up for their increased cost in parallel speedup.
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∆ correction

The material for this chapter is adapted from [53].

As we have seen in Section 1.3, naive MGRIT fails to converge for the Lorenz

system over long time domains due to a residual which grows exponentially in time.

For systems where the underlying dynamics are chaotic, MGRIT is very sensitive

to errors, no matter how small. This is because while the τ correction makes the

fine-grid solution a fixed point on the coarse grid, there may still be a significant

mismatch between the Lyapunov spectra on the coarse and fine grids, making this

fixed point unstable. This mismatch is why even small errors on the coarse grid

are exponentially magnified along incorrect Lyapunov coordinate vectors, causing

the observed exponentially increasing residual seen in Figure 1.6. The mismatch

can be measured (and eventually corrected for) by considering the tangent linear

propagator, Fi, along the trajectories of the fine and coarse operators. We will see

that Fi on the coarse grid needs to be extremely accurate relative to the fine grid.

Since we know that perturbations only grow along the unstable manifold for

trajectories of the Lorenz system, we should expect that the components of the error

along the unstable manifold are the slowest to converge, while the other components
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of the error converge more quickly. We further do not want the error in the unstable

manifold, which may be large, to affect the residual. Thus, we need to understand

how perturbations along these manifolds are propagated in finite time.

3.1 Lyapunov analysis of MGRIT convergence

Recall the forward time stepping relation for the backward Lyapunov vectors,

FiΨ
−(ti) = Ψ−(ti+1)Ri+1, (1.12 revisited)

where Ri+1 is upper triangular. This equation indicates that, forward in time, the

backward Lyapunov vectors are mapped to vectors which are orthogonal to the set

of Lyapunov vectors with lesser Lyapunov exponent. Thus, a perturbation along

the unstable manifold will remain orthogonal to the neutral and stable manifolds for

all time, while a perturbation along the stable manifold will almost surely have a

nonzero projection on the neutral and unstable manifolds in finite time.

Returning to MGRIT, assuming there is a large component of error along the

backward unstable manifold, we would expect that error to remain orthogonal to the

other manifolds, and if there is a small component of error along the backward stable

manifold, it should only contribute a small amount to the error in the less stable

manifolds. Thus, if MGRIT is capable of damping errors along the stable manifold

but not the unstable, we should be able to observe this by computing the components

of error using the matrices Ψ−(ti)
T as a time-dependent change of basis. However,

in practice, since the coarse grid uses an approximate time-stepping operator, Φc,

the coarse-grid equation will not have the same Lyapunov spectrum. This mismatch

between the Lyapunov vectors on the fine and coarse grid causes some error along the

unstable backward manifold to “leak” into the neutral and stable manifolds during

the coarse grid correction, thus stalling convergence. Figure 3.1a demonstrates this
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phenomenon, where we see that, after some initial convergence, the error in the

unstable manifold contributes significantly to the error in the other manifolds as

well, preventing the residual from decreasing further. While naive MGRIT is able to

achieve a residual norm of 10−6 here, the level at which naive MGRIT stalls grows

exponentially with the length of the time domain, and thus naive MGRIT will suffer

dramatically for longer time domains as seen in the results section.
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Figure 3.1: The 2-norm of the residual (r) and the components of relative error
along the unstable, neutral, and stable manifolds, (eu, en, es, respectively) for 30
two-level MGRIT iterations on the Lorenz equation with Tf = 8Tλ and coarsening
factor m = 2. (3.1a) Convergence stalls after 22 iterations, and there is significant
error even in the stable and neutral manifolds, which MGRIT should normally be
expected to correct. (3.1b) The ∆ correction allows MGRIT to correct errors in the
stable and neutral manifolds, even in the presence of error in the unstable manifold,
resulting in convergence of the residual.

3.2 Deriving ∆ correction

The ∆ correction remedies the mismatch in the Lyapunov spectrum between the fine

and coarse grids by using linearizations of the fine operator, computed at the current
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solution guess, to correct the coarse operator Φc.

Let Φ, Φc, and Φm be defined as above, and let v = u − e be an approximate

solution on the fine grid. Now define

∆i := ∂uΦ
m(vi−1)− ∂uΦc(vi−1), (3.1)

where ∆i is a matrix valued function of vi, which encodes the difference between

the linearizations of the ideal and coarse operators. The matrix ∆i will naturally

have the same number of dimensions as the number of spatial dimensions of the

system. Contrast this with the τ correction, which encodes the difference between

the values of these two operators applied to vi. We then use the computed ∆i to

form a correction to the time stepper on each coarse interval:

Φ∆i
(vi−1) := Φc(vi−1) + ∆ivi−1, (3.2)

which ensures that as v approaches the solution u, i.e. near MGRIT convergence,

∂ui
Φ∆ approaches ∂ui

Φm. Because ∂ui
Φ∆ is the linear tangent propagator on the

coarse grid, which determines the Lyapunov spectrum, the ∆ correction is able to

correct the mismatch in the Lyapunov spectrum, even when Φc is a poor approxi-

mation to Φm.

Together with the τ correction, which is computed at the same time, this gives

the modified MGRIT algorithm 3.1, where the new additions are highlighted in red.

A reduced memory variant of this algorithm is explored in Section 3.4 for problems

where direct computation of the ∆i matrices is intractable.

Note that the first loop does not update the values of v at each time point,

and may thus be done in parallel, while the loop on the coarse grid must be solved

sequentially. Remember that the multilevel method replaces the sequential solve on

the coarse grid with a recursive call to the algorithm. In Figure 3.1b, we see the

effect this ∆ correction has on the convergence of MGRIT for the Lorenz system.
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Algorithm 3.1 ∆MGRIT2(vf , g,m); MGRIT two-level cycle with ∆ correction
v ← Rvf , gc ← Rg

for each C-point, i = 1, 2, 3, . . . , NT do

∆i ← ∂ui−1
Φm(vi−1)− ∂ui−1

Φc(vi−1)

τ i ← Φm(vi−1)− Φ∆i
(vi−1)

end for

for i = 1, 2, 3, . . . , NT do

vi ← Φ∆i
(vi−1) + τ i + gc,i

end for

vf ← RTv, followed by F(CF)-relaxation on vf and Ψf

Without the ∆ correction, Figure 3.1a shows that there are significant components of

error along the neutral and stable manifolds, causing a stall in residual convergence,

however, the∆ correction in Figure 3.1b completely eliminates this problem, allowing

the iteration to converge in residual. Thus, we see that the∆ correction addresses the

main difficulty with applying MGRIT to chaotic systems by correcting the mismatch

in the Lyapunov spectrum between the fine and coarse grids and thereby eliminating

the stalling problem.

3.3 Modified FAS coarse-grid equation and quad-

ratic convergence

Since the ∆ correction updates the coarse operator, this represents a modification to

the FAS coarse-grid equation. Recall that in Section 1.2 we saw that the splitting

τ (v) = Ac(v) − A∗(v) resulted in the FAS coarse-grid Equation (1.8). Now, define

the global linear correction on the coarse grid as ∆(v) = ∂uA∗(v) − ∂uAc(v), and
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the modified coarse-grid equation is

[Ac +∆(vk)](vk+1) = gc + τ (v
k) + [∆(vk)]vk. (3.3)

Equation (3.3) is equivalent to the Multilevel Nonlinear Method from [59] applied to

the time dimension.

For the simplest choice of coarse-grid propagator where Φc ≡ 0, we have that

Ac = I, the identity operator, and (3.3) becomes

[I + ∂ui
A∗(v

k)− I](vk+1) = gc + τ (v
k) + [∂ui

A∗(v
k)− I](vk)

=⇒ [∂ui
A∗(v

k)]vk+1 = gc + v
k − A∗(v

k) + [∂ui
A∗(v

k)]vk − vk

=⇒ [∂ui
A∗(v

k)]vk+1 = [∂ui
A∗(v

k)]vk + g − A∗(v
k)

=⇒ vk+1 = vk − [∂ui
A∗(v

k)]−1(A∗(v
k)− g),

which is equivalent to an iteration of Newton’s method applied to the residual equa-

tion A∗(v
k)−f c. We should then expect MGRIT with this ∆ correction to converge

at least as well as Newton’s method, i.e. with local quadratic convergence, as long as

Ac approximates A∗ better than the identity I. In Section 3.5, we provide numerical

evidence for the quadratic convergence of MGRIT with ∆ correction.

3.4 Low-rank ∆ correction for PDEs

For the Lorenz system with dimension ns = 3, the computation and storage require-

ments for the ∆ correction are small relative to the improvement in convergence

they provide. However, the computation and storage of ns × ns matrices will be

prohibitive for the case of most PDEs, which can have ns in the millions or larger.

However, it is often the case that only a small, finite number of the Lyapunov ex-

ponents are positive, meaning that the unstable manifold of the discretized system

has dimension much smaller than ns. Moreover, there is evidence that the number
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of positive Lyapunov exponents can be bounded in many cases. For example in [17],

the authors measure the Lyapunov spectrum for a 2D simulation of a chaotic flow

around an airfoil at high Reynolds number while refining in space. They observed

that although the Lyapunov spectrum of the system was mesh dependent, beyond a

certain resolution threshold, the total number of unstable modes was no more than 5,

even as the number of degrees of freedom was increased to O (106). My own numer-

ical computation of the Lyapunov spectrum for the Kuramoto-Sivashinsky equation

on the spatial domain considered below reveals the unstable manifold to be roughly

nine or ten dimensional.

Since the tangent dynamics in the stable manifold are equivalent to a parabolic

system, we should expect MGRIT to converge well for these modes of error [52], even

without ∆ correction. In contrast, we have already seen that the unstable modes

must be represented very accurately on the coarse grid, or else exponentially growing

error will be mapped incorrectly to the stable manifold. This motivates a low-rank

approximation to the ∆ correction which targets only the low-dimensional unstable

manifold. Given an approximate solution {ui}nT
i=0, let {Ψi}nT

i=0 be such that each Ψi

is a rectangular, orthonormal matrix with columns equal to the first k backward

Lyapunov vectors ψ−,j
i for j = 0, 1, . . . k − 1, then

∆̂i = ∆iΨi−1Ψ
T
i−1 (3.4)

is a rank k approximation to ∆i, which is exact for the first k backward Lyapunov

vectors. Next, note that since ∆i is a linearization of the function Φm − Φc, the

columns of∆iΨi−1 = (∂ui
Φm−∂ui

Φc)·Ψi−1 = DΨi−1
Φm−DΨi−1

Φc are just directional

derivatives along the first k Lyapunov vectors. Thus, we only need to compute these

k directional derivatives and Ψi−1 to form ∆̂i, never forming the full matrix ∆i.

This requires storage of the factors ∆iΨi−1 and Ψi−1, which are ns × k matrices,

meaning that as long as k < ns/2, the low-rank approximation requires less storage

and computational work than the full ∆ correction.
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However, implementation of this approach requires overcoming the cost of com-

puting the first k Lyapunov vectors, which are considered expensive to obtain and

are classically computed sequentially in time. The expense is largely due to the time

propagation of Lyapunov vector matrices and linearizations of the time-stepping

operator, as well as the QR factorizations needed for orthogonalization. Here, we

outline an efficient way to estimate the Lyapunov vectors simultaneously while solv-

ing the original equation parallel-in-time. As we saw in Equation (1.12), given a

trajectory {ui}∞i=0 and an arbitrary initial orthogonal ns × k matrix Ψ0, k ≤ ns, the

QR iteration

Ψi+1Ri = [∂ui
Φ(ui)]Ψi i = 0, 1, . . . (3.5)

will result in convergence of the columns of Ψi to the first k backward Lyapunov

vectors of the trajectory as i → ∞. The QR decomposition orthonormalizes the

columns of Ψi, preventing numerical instability, however in practice, Ψi may be

normalized every m steps while still converging to the Lyapunov vectors.

Given a finite trajectory, this QR iteration will yield an estimate to the true Lya-

punov vectors which is more accurate toward the end of the time domain. However,

the sequential computation of these Lyapunov vector estimates can be more expen-

sive than solving the state equation sequentially. Thus, [53] proposes to compute

these estimates parallel in time using MGRIT. Since the Lyapunov vector computa-

tion takes the form of an initial value problem (IVP), we may apply MGRIT directly

to (3.5), using ∂ui
Φc as the coarse-grid time-stepping operator. In this way, the

MGRIT cycle will be simultaneously solving for the state vector uf and the Lya-

punov vectors Ψ. It is important to note that while the IVP for chaotic systems

is very sensitive to initial conditions, this is not the case for the Lyapunov vectors.

The first column of Ψi will almost surely converge to the first backward Lyapunov

vector ψ−,1(ti) as i → ∞, independent of the initial matrix Ψ0. This closely re-

sembles the convergence of the linear power iteration to the first eigenvector of a
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matrix. Therefore, although the state equation is chaotic, and thus ill-conditioned,

the IVP for the backward Lyapunov vectors appears to be well-conditioned in the

sense that the Lyapunov vectors at later times do not exhibit sensitive dependence

on the Lyapunov vectors at earlier times, and thus we expect fast MGRIT conver-

gence for the Lyapunov vectors without modification of the algorithm, and perhaps

counter-intuitively, the most unstable modes will also be the most accurate, as they

are the fastest to converge in the QR iteration algorithm.

In order for MGRIT to solve for the Lyapunov vectors Ψi, we also need to consider

the MGRIT FAS coarse grid for the problem of finding Lyapunov vectors. Let

Fm = ∂ui
Φm(ui) and Fc = ∂ui

Φc(ui), then an appropriate τ correction term on the

coarse grid for the Lyapunov vectors is given by

τ i+1 = (Fm − Fc)Ψi.

However, if we are using the low-rank ∆ correction, then this becomes

τ i+1 = (Fm − (Fc +∆ΨiΨ
T
i ))Ψi

= (FmΨi − FcΨi −∆Ψi)

= (∆−∆)Ψi

= 0.

Therefore, as long as we are also using the low-rank ∆ correction, the τ correction for

the Lyapunov vectors vanishes. From another perspective, the ∆ correction already

acts as a τ correction for the Lyapunov vectors.

Regarding computational cost, if Ψi is only orthonormalized with the Gram-

Schmidt method at C-points and Ψi+1 = [∂ui
Φ(u)]Ψi is used at F-points, then

there is potential to save a great deal of work without much loss in accuracy of

the computed Lyapunov vectors, since we anyway need the un-normalized product

(∂ui+m
Φ(ui+m) . . . ∂ui

Φ(ui))Ψi to form the ∆ correction for the coarse grid.
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We now have a low-rank ∆ correction for the state equation, and we have an

efficient algorithm for finding the needed Lyapunov vector estimates given a trajec-

tory. Combining the two, we get the low-rank ∆ correction Algorithm 3.2, where

changes relative to original MGRIT (Algorithm 1.1) are again highlighted in red. In

this algorithm, F-relaxation on the state vector is always followed by F-relaxation on

the Lyapunov vectors, and likewise for C-relaxation. The Lyapunov vectors are also

solved for sequentially on the coarsest grid alongside the state vector. The modified

Gram-Schmidt algorithm is used to compute the QR factorization.

Algorithm 3.2 ∆kMGRIT2(vf ,Ψfg,m); MGRIT two-grid cycle with low-rank ∆

correction and Lyapunov vector estimates
v ← Rvf , Ψ← RΨf , gc ← Rg

for each C-point, i = 1, 2, 3, . . . , NT do

∆̂i ← [∂ui−m
Φm(vi−m)− ∂ui−1

Φc(vi−1)]Ψi−1

τ i ← Φm(vi−1)− Φ∆̂i
(vi−1)

end for

for i = 1, 2, 3, . . . , NT do

vi ← Φ∆̂i
(vi−1) + τ i + gi

Ψi ← GramSchmidt([∂ui−1
Φ∆̂i

(vi−1)]Ψi−1)

end for

vf ← RTv, Ψf ← RTΨ , followed by F(CF)-relaxation

The parallel performance of MGRIT is highly dependent on the cost of solving the

coarsest grid, and the sequential propagation of the Lyapunov vectors on the coarse

grid adds significantly to this cost. However, experimentation has shown that this

sequential solve can either be skipped or approximated with parallel FCF-relaxation,

without much change to the effectiveness of the algorithm in many cases. In fact,

for many of the experiments presented in Section 3.5.2, no coarse-grid propagation

of Lyapunov vectors is performed, since it was determined experimentally that FCF-
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relaxation on finer grids resolves the Lyapunov vector estimates sufficiently well for

MGRIT convergence. In this case, the only extra work is performed in parallel on the

fine grid (i.e., the Gram-Schmidt steps on the coarse grid are skipped). However, for

long time domain sizes, the propagation of Lyapunov vectors on the coarsest grid is

necessary in order to prevent the residual stalling, as discussed in the results section.

3.5 Numerical results

I implemented the low-rank ∆ correction by modifying the XBraid software package

[57], which is written in C and MPI. This was not a trivial task due to the complexity

of communicating the extra information required to compute the Lyapunov vectors

alongside the solution vector, as well as the additional API functions required to

implement the algorithm in a general way. In order to use the low-rank ∆ correction,

the user only needs to define functions for computing a vector inner product with two

state vectors 〈u,v〉 and for computing a Jacobian-vector product [∂ui
Φ]v. Then, a

simple interface function allows the user to set the rank of ∆ correction desired, and

XBraid will estimate that many Lyapunov vectors and use them to form low-rank ∆

corrections for the coarse grid.

In all experiments in this section, the stopping criterion used is an absolute

tolerance on the global 2-norm of the residual, which is specified for each experiment.

3.5.1 Convergence for the Lorenz system

In the following experiments, we solve the discretized Lorenz system (1.9) using

forward Euler on the fine grid. A coarsening factor of m = 2 and an absolute residual

halting tolerance of 10−10 is used across all the studies. When the θESDIRK2method

is used on a coarse grid, the values of θ are dependent on the grid level ` and are
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computed according to (2.5c) with m = 2`, where ` refers to the grid level, starting

at ` = 0 for the fine grid. The implicit equation (2.2) is solved numerically using

Newton’s method. When the θ method is not used on the coarse grid, forward Euler

is used, with coarsened time-step size m`h. Only F-relaxation is considered in this

section. First, we study convergence rates for various two-level algorithms on a small

problem. Then we perform a refinement study in time and a time domain size scaling

study. Finally, we explore the effect of adding more coarse levels for different problem

sizes.

Two-level results

Figure 3.2 plots the convergence history of the modified two-level MGRIT algo-

rithms, solving the Lorenz system with Tf = 8Tλ. This experiment demonstrates

that MGRIT2, even when using the θ method on coarse grids, stalls for long enough

time domains, which is expected given the significant mismatch between the fine

and coarse grid Lyapunov spectra. However, the ∆ correction allows the method to

converge quickly, with the combination of ∆ correction and the θ method leading to

the fastest convergence. My intuition is that the increased accuracy of the θ method

in approximating the fine grid widens the basin of attraction for the quadratic con-

vergence region of ∆-corrected MGRIT.

In order to study the effect of varying time-step size h on MGRIT2 performance,

Table 3.1 presents iteration counts required to reach a residual tolerance of 10−10 for

the Lorenz system with fixed Tf and increasing numbers of time-points nt. In all

cases fewer iterations are needed for smaller h. However, compared to naiveMGRIT2,

both the ∆ correction and the θ method require roughly half as many iterations to

converge, and when used together, they require a quarter as many. Further, we see

that the θ method can correct for instabilities on the coarse grid which cause MGRIT

to diverge (see first column).
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Figure 3.2: Two-level MGRIT residual convergence for the Lorenz system, comparing
classical MGRIT with ∆ correction, with and without the θ method coarse grid.
The problem is posed on a time domain of Tf = 8Tλ with 8192 time points. We
see that standard MGRIT2 stalls as expected, but that the ∆ correction provides
fast convergence. Using ∆ correction and the θ method together leads to the fastest
convergence.

Table 3.1: Two-level MGRIT iteration counts for the Lorenz system with fixed Tf =
8Tλ and increasing number of time points, nt. An entry of ‘*’ indicates that the
algorithm diverged for the given grid size.

Tf , nt

Algorithm 4, 512 4, 1024 4, 2048 4, 4096 4, 8192
MGRIT2 * 44 22 15 12
MGRIT2, θ 19 13 9 7 6
∆MGRIT2, * 11 8 6 6
∆MGRIT2, θ 8 6 5 4 4
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Table 3.2: Two-level MGRIT iteration counts for the Lorenz system with fixed time-
step size and increasing Tf (in units of Lyapunov time). An entry of ‘-’ indicates
that the algorithm did not converge within 100 iterations

Tf , nt

Algorithm 2, 4096 4, 8192 6, 12288 8, 16384 10, 20480 12, 24576
MGRIT2 10 13 17 64 - -
MGRIT2, θ 4 5 6 7 41 -
∆MGRIT2 5 6 7 8 9 94
∆MGRIT2, θ 3 4 4 5 5 48

Table 3.2 shows iteration counts for the two-level algorithm on the Lorenz system

with increasing time domain size Tf and fixed time-step size h. For naive MGRIT2,

iteration counts increase linearly up until the critical time Tf = 6Tλ, after which

naive MGRIT2 stalls. In contrast, the ∆ correction and θ method greatly improve

convergence for all time domain sizes. Notably, the iteration counts for the ∆ cor-

rected algorithm are nearly flat (until the last column), even for long time domain

sizes, with the combined ∆ method and θ method providing the fastest convergence.

Multilevel results

While MGRIT2 is not typically used in practice, it is used as a stepping stone to-

ward understanding the multilevel algorithm. Recall that MGRIT2 solves the coarse

grid equation (1.8) using a sequential solve and that MGRIT3 replaces this direct

sequential solve with a recursive application of MGRIT2 to inexactly solve the initial

coarse grid. Thus, we expect that MGRIT3 will converge no faster than MGRIT2,

and as we add more levels, this trend should continue. However, since the coarsest

grid is solved sequentially, it is very important for parallel performance that the

coarse grid be as small as possible, since the proportion of the algorithm which is

not parallelizable limits the scaling of the method.
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Table 3.3 depicts the effect of increasing the number of coarse grids on MGRIT

convergence for various algorithmic configurations. For naive MGRIT (MGRITk),

the effects of coarsening beyond two levels quickly leads to divergence and an unusable

method. For the θ method (MGRITk, θ), convergence improves. However for the

7 level solver (where the coarsest grid size is small enough to be practical), the

method diverges or takes too many iterations (43) to be practical. For ∆ correction

(MGRITk, ∆), convergence with 3 levels is impressively stable across all Tf , but for

5 and 7 levels divergence is observed. This is primarily due to the fact that the time-

stepping scheme becomes unstable on such coarse grids. Finally, the combination of

both approaches (MGRITk, ∆, θ) combines the robust convergence for long Tf with

the improved coarse-grid stability and convergence of the θ method. The result is

promising convergence at 7 levels for Tf = 2 and Tf = 4, since the coarsest grid here

is small (64 and 128 time-points respectively) and the iteration counts are similar

to previous cases demonstrating parallel speedup for linear parabolic problems [15].

Unfortunately, the small spatial size of this problem (3) makes a parallel performance

study difficult, as computations would always be dominated by network latency.

Thus, we next consider a larger problem.

3.5.2 Parallel scaling for the Kuramoto-Sivashinsky equation

In one spatial dimension, the Kuramoto-Sivashinsky (KS) equation is given by

ut = −uxx − uxxxx − uux, (3.6)

and is posed with periodic boundary condition u(0, t) = u(L, t), for some length L.

This equation is widely studied as an archetypal example of a chaotic PDE and is

considered one of the simplest such PDEs. It is also a useful surrogate for many fluid-

dynamics applications, since it exhibits a wide range of complex dynamics including

spatio-temporal chaos [32]. The KS equation combines the linear anti-diffusion and
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Table 3.3: Multilevel MGRIT iteration counts for the Lorenz system with fixed time-
step size and increasing Tf (in Lyapunov time), using varying numbers of grids. An
entry of ‘-’ indicates that the algorithm did not converge within 100 iterations, and
an entry of ‘*’ indicates that the algorithm diverged.

Tf , nt

Algorithm 2, 4096 4, 8192 6, 12288 8, 16384
MGRIT2 10 13 17 64
MGRIT3 13 18 - -
MGRIT5 26 - - -
MGRIT7 * * * *
MGRIT2, θ 4 5 6 7
MGRIT3, θ 6 7 9 11
MGRIT5, θ 10 13 19 63
MGRIT7, θ 43 - - -
∆MGRIT2 5 6 7 8
∆MGRIT3 6 8 11 13
∆MGRIT5 * * * *
∆MGRIT7 * * * *
∆MGRIT2, θ 3 4 4 5
∆MGRIT3, θ 3 4 5 5
∆MGRIT5, θ 5 6 7 9
∆MGRIT7, θ 9 15 20 23

hyper-diffusion terms with a nonlinear advection term. Because of the structure

of the linear terms, high-frequency modes are stiffly damped by the hyperdiffusive

part, while low-frequency modes are excited by the anti-diffusive part. Although

the linear part of this equation is apparently unstable, the nonlinear term stabilizes

the equation as the advection causes an energy cascade from low- to high-frequency

components. A typical trajectory for the KS equation over a chaotic timescale is

shown in Figure 3.3. The maximal Lyapunov exponent for the KS equation depends

on the length-scale L, which we fix at L = 64 for our experiments. With this

parameter, we observe a maximal Lyapunov exponent of approximately 0.1, so one

Lyapunov time Tλ for the KS equation with these parameters is around 23 real time

75



Chapter 3. ∆ correction

units. Being a stiff, nonlinear, and chaotic PDE, the KS equation is a challenging

problem to solve with PinT methods.

Figure 3.3: A numerical trajectory of the KS equation for 8 Lyapunov time with the
initial condition u(x, 0) = sin(2πx/L).

In the following experiments the KS equation is discretized using 4th order fi-

nite differencing in space and the fully implicit, two stage, 2nd order Lobatto IIIC

method (FIRK2) in time, which is stiffly accurate and a fairly simple fully implicit

Runge-Kutta method to implement. The nonlinear implicit equation is solved us-

ing Newton’s method, while the linear part of the Newton iteration is solved using

UMFPACK from SuiteSparse [11]. When using MGRIT with naive time coarsening

and re-discretization, we use the same FIRK2 method with a larger time-step size.

For the θ method, since the two-stage Lobatto methods are actually a three

parameter family of methods, also including Lobatto IIIA (Crank-Nicolson method),

Lobatto IIIB, and Lobatto IIIC∗ (explicit trapezoid method) which all use function

evaluations calculated at the end points of the time step, we can combine of all four

of these methods into a θ method akin to the θESDIRK2 method from Chapter 2

which is a linear combination of the four methods. This is the θFIRK3 method given

in (2.12).
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Solving algebraic equations analogous to those in Section 2.1 allows us to find

values of the three parameters, θA, θB, and θC , which approximate the m-step stabil-

ity function for FIRK2 up to fourth order in mh. One degree of freedom is lost since

we find the additional constraint that θA = θB. The resulting Runge-Kutta method

is A-stable, and not stiffly accurate, and is thus a poor solver for the KS equation on

coarse time grids which was verified experimentally. So, we instead may use one of

the available degrees of freedom to enforce a stiff constraint on the stability function,

lim
z→−∞

φθ(z) = 0,

yielding a θ method of up to third order in mh which is also stiffly accurate. In

all cases where the θ method is used for the KS equation, this is the method used.

Note that this method does not satisfy the general order conditions from Section 2.2,

instead, it uses the simpler approach of matching the Taylor series of the stability

functions of Φm and Φθ as in Section 2.1. In the following experiments, we will con-

sider the initial condition u(x, 0) = sin(2πx/L), which is chosen since it is a smooth

function which satisfies the periodic boundary condition and is easily generalized to

any spatial grid resolution.

Multilevel results

FCF-relaxation is used in the following scaling studies, since it improves convergence

for MGRIT by relaxing parabolic modes of error (in the stable manifold) more ef-

fectively than F-relaxation [52] and generally leads to faster time to solution in our

experiments. Unless stated otherwise, a coarsening factor ofm = 4 is used. However,

in certain cases, I found that parallel efficiency could be improved by coarsening by

a bigger factor (here m = 16) between the fine grid and the first coarse grid, while

a coarsening factor of 4 was used for coarser grids, with little to no degradation

in convergence, similar to the approach taken in [15]. Further, as demonstrated in

Section 3.5.1, two-level convergence can be fast enough that the ∆ correction is not
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needed, however, the ∆ correction greatly improves the convergence for the multi-

level method. Thus, we may defer the ∆ correction to a coarser grid, while the first

coarse grid uses standard FAS MGRIT. This works well because the ∆ correction

is able to improve the accuracy of the coarsest grids where it is needed most, while

significant work is saved by not computing ∆ corrections on the finer grids where

they are not as useful. In this context, the ∆ correction serves as a correction to

help the multilevel method approximate the convergence of the 2-level method.

In the following experiments, the ∆ correction has been deferred to the second

coarse grid whenever more than two levels are used. An absolute residual stopping

tolerance of 10−8 is used to terminate the MGRIT iterations. Unless stated otherwise,

the Lyapunov vector estimates are not propagated on the coarsest grid, as they are

sufficiently resolved by FCF-relaxation on the finer grids in most cases, as discussed

in Section 3.4. MGRIT is an iterative method, and thus requires an initial guess for

the solution across the whole time domain. For the following experiments, the initial

guess is produced by solving the coarsest grid with sequential time stepping, then

interpolating the solution to the fine grid. Therefore, the quality of the initial guess

is dependent on the accuracy of the coarsest grid.

First, we explore weak scaling results for the KS equation. Figure 3.4 plots the

wall time to solution for increasing problem sizes, comparing sequential time stepping

against naive MGRIT, the θ method, and the θ method with rank-9 ∆ correction,

which was found a posteriori to be the optimal choice. The KS equation is solved for

4 Lyapunov time (92.1 time-units), and the number of points in space are doubled as

the points in time are quadrupled to maintain a fixed h/h2x ratio where hx is the mesh

size in space. By fixing h/h2x, we maintain a reasonable balance between the error in

space and time, since the spatial and temporal discretizations are fourth and second

order, respectively. The problem size per processor remains fixed at 256× 16 points

in space and time. The coarsest grid size is chosen individually for each algorithm
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to be as small as each algorithm stably supports for all problem sizes, i.e. remaining

fixed at 128 time-points for naive MGRIT and MGRIT with the θ method, and 32

time-points for the θ method with rank-9 ∆ correction. The ideal scaling plot is

increasing because the spatial solver used in Newton’s method is UMFPACK, which

has no parallelism in the spatial dimension and scales here for this 1D problem like

O (ns). By choosing a suitable and stable coarsest grid size for naive MGRIT, naive

MGRIT is able to scale well for a wide variety of problem sizes, albeit with a higher

iteration count than for the other solvers. This is reflected in the longer run-times

for naive MGRIT. We believe that all algorithms benefit from the fact that the size

of the unstable manifold is a property of the continuous equation, rather than being

mesh dependent. The θ method with rank-9 ∆ correction achieves a max speedup

of 21.5× over sequential time stepping for the largest problem size, (512× 32768).
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Ideal scaling, O(ns)

Figure 3.4: Weak scaling study for the KS equation with refinement in space and
time, comparing naive rediscretization with θ methods and a rank-9 ∆ correction.
Here we see that the low-rank ∆-corrected MGRIT with a fixed rank weak scales
just as well as classical MGRIT, despite the increase in ns.
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Next we explore strong scaling for the KS equation. Figure 3.5 plots the wall-

clock time to solution for naive MGRIT, the θ method, and θ method with a rank-9

∆ correction, as compared to sequential time stepping. The KS equation is solved

for a time domain of 4 Lyapunov time (92.1 time-units) with 256 points in space

and 8192 points in time. This corresponds with the second-largest problem size from

Figure 3.4. Naive MGRIT is limited to a three-level method, since the method be-

comes unstable for four levels, and thus the sequential cost of solving the coarsest

grid leads to quick run-time stagnation. The θ method, however, provides a sta-

bilized coarse grid, thus enabling a 4-level method, which scales better than naive

MGRIT. The low-rank ∆ correction reduces the number of iterations required for

convergence with only a rank-9 correction, thus making the method slightly faster,

and we observe a maximum speedup of 7.8×. However, increasing the rank of the

∆ correction beyond 9 does not further improve convergence, and only increases the

cost of each iteration. Thus, a ∆ correction rank of 9 appears to be optimal for this

problem, which is expected, as experiments measuring the full Lyapunov spectrum

indicate that the unstable manifold is roughly 9-dimensional. The dependence of the

maximum speedup on the rank of ∆ correction is illustrated in Figure 3.6.

Last, we present a strong scaling study for an even longer time domain. Figure 3.7

demonstrates strong scaling for the KS equation over 8 Lyapunov time (184.2 time-

units). As before, the KS equation is solved with 256 points in space, but the

time-grid is increased to 16384 points in time, to match the fine-grid time-step size

from the previous problem. On this timescale, naive MGRIT is unable to converge

even with only two levels, and thus timing data is not available. With the θ method,

MGRIT converges with two levels but begins to stall when a third level is added.

However, a rank-9 ∆ correction is able to remedy this, allowing rapid convergence

for both the three and four level methods. For this experiment, accuracy for the

Lyapunov vector estimates requires that the propagation of the Lyapunov vectors

be turned on for the coarsest grid (i.e., the Gram-Schmidt step in Algorithm 3.2),
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Figure 3.5: Results of a strong scaling study for the KS equation with Tf = 4Tλ and
(nx, nt) = (256, 8192), demonstrating a maximum speedup of 7.8× over sequential
time stepping.

otherwise convergence stalls. Here, ∆ correction allows for a dramatic improvement

to the scaling of the method, and we observe a maximum speedup of 6.1×. Using

F-cycles, which can improve convergence at the cost of some parallel efficiency [15],

the four-level method can be made even faster, achieving a maximum speedup of

9.6× for this problem.
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Figure 3.6: Speedup over sequential time stepping with 512 cores for the KS equa-
tion with varying ranks of low-rank ∆ correction and the θ method coarse grid (solid
line), as compared to MGRIT with the θ method coarse grid but without ∆ cor-
rection (dashed line). The best speedup is achieved when the rank of ∆̂ is roughly
equal to the dimension of the unstable manifold (measured experimentally to be 9
dimensional).
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Figure 3.7: Results of a strong scaling study for the KS equation with Tf = 8Tλ and
(nx, nt) = (256, 16384), demonstrating a maximum speedup of 9.6× when using a
four-level F-cycle with the θ method and rank-9 ∆ correction.
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Local Shadowing Relaxation:

Toward optimal-scaling PinT for

chaos

So far, we have seen that θ methods and∆ correction can significantly improve MGR-

IT convergence for chaotic systems. This has even permitted a significant speedup

over time stepping for the Kuramoto-Sivashinsky (KS) equation by increasing the

length of the time domain over which MGRIT can converge, thereby increasing the

number of time-steps available to be simultaneously parallelized [53]. This is espe-

cially significant because it is to my knowledge the first such speedup for a chaotic

system. Despite this success, the fundamental problem of PinT for chaotic systems

has thus far not been addressed: the quality of the coarse-grid correction at later

times depends exponentially on the residual at earlier times, and thus convergence

depends at least linearly on the length of the physical time domain. In this chapter,

I present a novel PinT relaxation scheme for chaotic systems which is stable and

convergent even on very long time domains, with some evidence that this approach

may be robust on arbitrarily long time domains.
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MGRIT with ∆ correction and θ methods seems to be robust on timescales

smaller than roughly 8 Lyapunov time (Tλ) when using double precision arithmetic,

with convergence breaking down on longer time domains. However, remember that

this is a relative timescale.

For many “weakly” chaotic systems, i.e. systems for which Tλ is long relative to

all other physical time-scales of interest, 8Tλ is likely long enough to enable a PinT

speedup. Many systems of importance to climate and weather simulation as well

as viscous fluid dynamics problems can be considered such weakly chaotic systems.

For example, Lyapunov analysis of a simulation of the flow around an airfoil in 2D

found a maximal Lyapunov exponent (LE) of 0.04 [17], which corresponds to a

Tλ ≈ 60 normalized to the characteristic timescale of the bulk flow. A common rule

of thumb in atmospheric modeling, first posited by the Global Atmospheric Research

Program, says that the errors accumulating in a simulation of atmospheric weather

will double roughly every 5 days [30], which translates to a Tλ ≈ 17 days. For

this class of problems, it may already be possible to achieve a PinT speedup with

MGRIT, using the tools already presented in this work, although proof of concept for

this is still needed since many of these systems are advection dominated– a challenge

independent of their chaotic nature.

In contrast, turbulent systems have fast chaotic timescales. For a turbulent sim-

ulation of the Navier-Stokes equations at high Reynolds number (Re), 8Tλ may only

consist of a few time steps on the fine grid. Worse, Tλ could be sub-grid-scale if

the fastest chaotic features aren’t even resolved on the fine grid, as is often the case

for turbulent simulations where direct numerical simulation (DNS) is not possible.

There is strong evidence that the maximal LE, λ1 of a turbulent flow, is roughly

inversely proportional to the Kolmogorov timescale, meaning that

λ1 ∼
1

τν
= Re1/2, (4.1)

and therefore Tλ may be much smaller than the reference timescale of the bulk flow
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[46, 18].

Recall that PinT methods rely on the existence of a problem size crossover point,

beyond which there are enough time steps to parallelize over such that a given PinT

method is faster than sequential time stepping. Combined with the knowledge that

current methods will eventually break down after the timescale increases beyond

some multiple of 1/λ1, it becomes obvious that it doesn’t matter how much existing

PinT algorithms are improved to increase the timescale length on which convergence

is robust, since there will always be a Reynolds number large enough so that there

is no such crossover point, and sequential in time will always be faster for any time-

domain length.

Of course, if one assumes that the fine grid is sufficiently fine to resolve the

Kolmogorov timescale, that is h = O(τν), then this problem seems a little less dire,

since λ1τν is roughly constant, and in fact the quantity λ1τν ≤ 1/
√
3 even as Re→∞

[18]. Accordingly, if the Kolmogorov timescale is always resolved on the fine grid,

then the number of time steps in a given interval of length Tλ will be roughly constant

as well. Assume that h = 0.1τν , then using the value of λ1τν ≈ 0.14 given by [18],

we can estimate the number of time steps needed per Tλ as

Tλ
h

=
ln(10)

λ1h
=

10 ln(10)

λ1τν
≈ 165.

Therefore, assuming our current limit of 8Tλ, this means there are around 1,320 time

steps available to parallelize in a DNS of turbulence at high Re. For comparison,

we only saw a maximum speedup of 10× for the KS equation at around 16,000 time

steps in Chapter 3.

Even if it is eventually possible to achieve some PinT speedup for a turbulent

system at high Re, perhaps by further increasing the time domain limit for MGRIT,

or by reducing the overhead so that large speedups are possible on O (1, 000) time

steps, the only way to solve the problem on time domains longer than the given
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limit is by so-called windowing. That is, dividing the whole time domain into time

windows or sub-intervals and then solving each window in sequence with a PinT

algorithm. Obviously, the overall speedup achieved with windowing will be equal to

the speedup on a single window, so this approach cannot be said to scale optimally

with the size of the problem, as the time complexity is still O (nt). Put plainly, a

PinT speedup for a turbulent system at a given Re means the same speedup at all

other Re, and while this would be a significant achievement, it falls quite short of the

true promise of optimally scaling multigrid in time, that is, the ability to perform

DNS of the Navier-Stokes equations at arbitrarily high Re in nearly constant time,

assuming computational resources are scaled commensurately.

Optimal scaling for a turbulent system demands an algorithm with timescale in-

dependent convergence, that is, robust convergence on arbitrarily long time domains.

This is certainly a tall order due to the exponential dependence of the residual at

later times on the residual at earlier times, but this is only true as long as the prob-

lem is posed as an initial value problem (IVP). We will now see how a reformulation

of the problem using Least Squares Shadowing (LSS) completely sidesteps the ill-

conditioning problem by relaxing the initial condition, in theory allowing for scalable

PinT simulation of turbulence [55].

4.1 Shadowing

4.1.1 The shadowing lemma

As discussed in Chapter 1, chaotic systems are in a sense structurally stable, meaning

that a small perturbation to the system results in small backward error. This stability

is formalized by the shadowing lemma, Lemma 2, for which we need to establish a
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few definitions. First, uε is called an ε-pseudo-orbit of the propagator Φ(u, h) if

‖Φ(uε
i−1, h)− uε

i‖ < ε ∀i = 1, 2, . . . , nt,

where we make explicit that the second argument of Φ is the time-step size, h. Next,

we say that the orbit us δ-shadows uε if there is a sequence of step sizes {ηi} such

that for all i = 1, 2, . . . , nt,

‖us
i − uε

i‖ < δ,

us
i = Φ(us

i−1, ηi),

and ∥∥∥ηi
h
− 1

∥∥∥ < δ.

Note that by this definition, us is an exact trajectory of Φ on a perturbed time grid

defined by {ηi}. We are now ready to write the shadowing lemma.

Lemma 2 (Shadowing Lemma). Let Λ be a hyperbolic invariant set of Φ, then

in some neighborhood U of Λ, for any δ > 0 there exists ε > 0 such that every

ε-pseudo-orbit uε ∈ U is δ-shadowed by some us ∈ Λ [42].

The hyperbolic invariant set Λ is key to making the shadowing lemma work. In

[42], the author defines Λ as a hyperbolic invariant of Φ if Λ is compact and if the

tangent space at every point p ∈ Λ can be split into subspaces

Eu(p)⊕ Es(p)⊕ En(p)

where Eu, Es, and En are unstable, stable, and neutrally stable subspaces which are

∂pΦ-invariant so that

[∂pΦ(p, h)]E
u|n|s(p) = Eu|n|s(Φ(p, h)),
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Figure 4.1: A noisy ε-orbit of the Lorenz system and its numerically computed δ-
shadow.

and where En = span(∂hΦ(p)). Then, intuitively, the shadow trajectory us is found

by projecting the perturbations Φ(uε
i−1) − uε

i onto the subspaces Eu, Es, and En,

and integrating them forward in time along Es, backward in time along Eu, and

accounting for perturbations in En using a shifted time grid defined by {ηi}. In a

sense, the shadow trajectory is the orthogonal projection of uε onto the space of

exact orbits of Φ. This motivates the Least Squares Shadowing approach discussed

in the following subsection.

It should be acknowledged that shadowing has recently become a topic of some

amount of controversy, with a recent paper even going as far as the say that “we

cannot trust the long-time averages generated by numerical simulations of chaotic

processes, even when we account for model uncertainties and statistical noise due

to finite-time averaging” [4]. The argument goes that while the shadowing lemma

guarantees the existence of a shadow trajectory, there is no such guarantee that

the trajectory will represent the statistics of the system in the same way that a

randomly chosen initial condition will. The work [4] presents several examples where

a seemingly innocent application of shadowing results in finding a shadow trajectory
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which, despite being a true orbit of the system, has an initial condition starting from

a set of measure zero with a demonstrably different statistical distribution. That is

to say that shadowing should be used with care, since there are still several open

questions as to when a shadow trajectory can be trusted as a statistical representative

of the system. However, despite these concerns, I believe that shadowing is still

the most promising potential solution to the PinT scaling problem for chaotic and

turbulent systems, so it is still important to explore these methods.

4.1.2 Least Squares Shadowing (LSS)

Rather than computing the covariant Lyapunov vectors and explicitly integrating

local perturbations forward and backward in time, which in practice is very expensive

and not numerically stable with respect to errors in the computed Lyapunov vectors

[56], in the Least Squares Shadowing (LSS) formulation, the shadow trajectory is

approximated by the solution to the convex constrained minimization problem

min
v,η

{
1

2

nt∑
i=0

‖ui − vi‖2 +
1

2

nt∑
i=1

∣∣∣∣ηihi − 1

∣∣∣∣2
}
, (4.2)

s.t. vi = Φ(vi−1, ηi), i = 1, 2, . . . , nt, (4.3)

where u takes the role of uε, and thus it is assumed that u resembles a trajectory

of Φ in some way, and v takes the role of the shadow trajectory. In the context

of LSS, u is called the reference trajectory, and v is called the shadow trajectory.

Importantly, Equation (4.3) does not specify an initial condition for v, it only ensures

that the distance ‖u0 − v0‖ is small via minimization. For this reason, LSS is said

to relax the initial condition. Because the sensitivity of chaotic systems on their

initial conditions is what causes the ill-conditioning of the IVP, we might expect the

relaxation of the initial condition to improve the conditioning of the problem, and

that is indeed the case.
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In [55], the authors show that the LSS problem is well conditioned, with con-

dition number approximately proportional to the ratio between the maximum and

minimum growth factors eλ1/eλns , where λ1 and λns are the greatest positive and

negative Lyapunov exponents of the system. Most importantly, note that this con-

dition number is only dependent on the average rates of growth in the system, and

not on the length of the time domain. Thus, [55] proposes that if the LSS problem

can be solved PinT, then it would likely result in a scalable solver for chaotic and

turbulent systems. However, the proposed algorithm is considered too expensive for

practical application, since solving the LSS problem for a system typically involves

using Newton’s method, and thus inversion of an nsnt × nsnt SPD block tridiagonal

matrix, which, although amenable to space-time multigrid, is a very difficult and

expensive problem to solve relative to time stepping, especially for a PDE, where

ns can be large. Further, LSS requires an initial guess, in the form of the reference

trajectory u, which already must be close to an exact orbit of Φ for Newton’s method

to converge, and there is no general way to generate this initial guess given in [55].

4.2 LSS and MGRIT

We saw in Section 1.3.4 that poor MGRIT convergence for chaotic systems is caused

by exponential divergence of the coarse grid solution from the restricted fine grid

solution, resulting in a failure of the τ correction at later times to properly correct

the coarse grid equation. The ability of LSS to find an exact trajectory of a chaotic

system that is uniformly close to an inexact trajectory seems to make it a good

candidate to fix this problem on the coarse grid for MGRIT, if one is able to accept

a solution with a nearby, albeit different, initial condition than the one originally

provided to the solver.

Consider solving the LSS problem on the coarse grid, where the restricted fine grid
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solution is used as the reference trajectory, and the coarse grid solution is the shadow

trajectory which is an exact solution to the τ -corrected FAS coarse grid equation,

Equation (1.8) with relaxed initial condition. The coarse grid solution would then

remain uniformly close to the restricted fine grid solution on the whole time domain

while still being an exact solution to the τ -corrected coarse grid equation with a

slightly different initial condition. Thus, the residual could, in theory, be reduced

uniformly everywhere in time by such a coarse grid correction. According to the

shadowing lemma, the closeness of the shadow to its ε-orbit is implicitly related to

the size of ε, that is, the uniform bound on the residual norm. Therefore, in this

context, if the residual were reduced following a correction from a LSS solution on

the coarse grid, then the coarse grid solution in the next iteration could be closer to

the restricted fine grid solution than in the previous iteration, resulting in an even

better coarse grid correction and lower residual everywhere. This line of reasoning

seems to imply that such an iteration could be convergent, and convergence of the

solution on the fine grid to any exact orbit of Φ would result in a zero coarse grid

correction, since the τ correction ensures that the restricted fine grid solution is,

roughly speaking, an exact orbit of Φc + τ . In other words, this process would be a

fixed point iteration.

The idea to use LSS as a replacement for the FAS coarse grid equation was

the original motivation for this dissertation work, and while it still has yet to be

realized, it has inspired the recently developed Local Shadowing Relaxation presented

in Section 4.3, which I believe represents a major step toward the realization of a

scalable MGinT solver based on shadowing.

MGinT can also potentially provide a general way to produce an initial guess

for a shadowing-based approach, using full multigrid (FMG). In FMG, instead of

starting with relaxation on the fine grid, it is assumed that no initial guess exists

for the solution value, so the cycle begins by solving the coarsest grid exactly, which
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is interpolated to the next finest grid where V-cycling takes place until the solution

on that level is solved to discretization accuracy, at which point the solution is

interpolated to the next finest grid, and so on. FMG is a remarkable algorithm in

that it can be said to solve the problem on the fine grid to discretization accuracy

in a single iteration without the need for an initial guess. In a shadowing based

MGinT solver, an FMG cycle could similarly provide an excellent intial guess to

the fine grid by initializing on a very coarse grid and iteratively refining that guess

through the two-level process described above. In contrast, FMG based on naive

MGRIT does not work for chaotic systems, since the iterative refinement process

breaks down– the initial guess provided to a fine grid after refinement comes from

solving the previous coarse grid to discretization accuracy, but this initial guess will

naturally be exponentially far from the solution obtained after solving the fine grid

to discretization accuracy.

4.3 Local Shadowing Relaxation (LSR)

Due to the exponential growth of tangent vectors along a chaotic trajectory, FCF-

relaxation, commonly used with MGRIT, is not convergent, and will in fact magnify

a small residual at a given point in time to an exponentially larger residual at a later

point in time in a few iterations. Figure 4.2 demonstrates this for the Lorenz system,

where initially noisy but uniform errors are magnified in the direction of the unstable

Lyapunov vectors. This behavior, coupled with the coarse grid correction, which is

increasingly low-quality as the time-horizon expands, leads to very poor convergence

of the MGRIT algorithm for chaotic problems. However, the LSS problem is signifi-

cantly more expensive to solve than the time stepping problem, and existing methods

for solving LSS are O (nt) and are not PinT, so this LSS coarse grid is not likely to

be practical in application. Thus, in this chapter, we will devise a PinT relaxation
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Figure 4.2: The effect of FCF-relaxation on initially uniform error in the Lorenz
system.

method which we will see converges to the same shadow trajectory as LSS, and we

will see how this relaxation performs in a MGinT setting.

Consider the LSS problem posed over a single interval containing m + 1 time-

points i, i + 1, · · · , i + m, with no time dilation, {ηi}, and only minimizing over

the two endpoints, as in Equation (4.4). Notice that the constraint can be solved

by substitution. This, along with the change of variables vi = ui + pi resulting in

Equation (4.5), makes it clear that this is equivalent to the least squares minimization

of the residual ri+m = ui+m − Φm(ui + pi) with respect to a perturbation pi along

with a term regularizing the size of pi.

min
vi, vi+m

1

2
‖vi − ui‖2 +

1

2
‖vi+m − ui+m‖2 s.t. vi+m = Φm(vi) (4.4)

≡min
pi

1

2
‖pi‖2 +

1

2
‖Φm(ui + pi)− ui+m‖2. (4.5)

While solving the fully coupled LSS problem is considered too expensive, solving the

minimization problem in Equation (4.5) on sub-intervals of the time-grid is relatively

trivial and highly parallel in time. Thus, our relaxation scheme finds a perturbation
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pi at each C-point ti, that minimizes the residual at the following C-point, updates

each initial point with ui → ui + pi, and then uses sequential time stepping to

update the following points in that interval. This procedure, given in Algorithm 4.1

for a single interval, is the atomic algorithm from which we will construct a stable

relaxation scheme which, when deployed in a multigrid algorithm, approximates the

ideal convergence of this hypothetical LSS coarse grid algorithm.

Algorithm 4.1 LSR(ui,ui+m); Local Shadowing Relaxation update
LSR update:

Solve Equation 4.5 for pi
ui ← ui + pi

FC-relaxation:

for each uj, j = i+ 1, i+ 2, . . . , i+m do

uj ← Φ(uj−1)

end for

When posed on a coarse interval, where ui and ui+m are both C-points, Al-

gorithm 4.1 resembles FC-relaxation, although the solution of (4.5) and subsequent

perturbation of ui allows information to travel backward in time before FC-relaxation

takes place.

The first-order necessary conditions for the LSR update are given via the gradient

of (4.5), which shows that, to a first-order approximation,

pi +

[
∂Φm

∂u
(ui + pi)

]T
(Φm(ui + pi)− ui+m) = 0, (4.6)

pi +
∂Φm

∂ui

T

(Φm(ui + pi)− ui+m) +O
(
‖pi‖2

)
= 0,(

I +
∂Φm

∂ui

T ∂Φm

∂ui

)
pi +O

(
‖pi‖2

)
= −∂Φ

m

∂ui

T

ri+m, (4.7)

where

ri+m = Φm(ui)− ui+m (4.8)
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is the residual at time point i + m. Ignoring second order terms, we can see that

‖pi‖ ≈ O(‖ri+1‖) since the matrix implicitly defining pi on the left-hand side of

equation (4.7) is clearly positive definite, with eigenvalues greater than or equal to

one in magnitude. This loosely argues that the perturbation pi is small whenever

the residual ri+m is small, and vanishes in the limit as ri+m → 0. It remains to prove

this by showing that the solution pi exists and that the norm of the Jacobian of pi
with respect to ri+m is less than or equal to 1.

Lemma 3. Assume Φ is twice continuously differentiable and ∂ui
Φ is full rank. In

some neighborhood of a true trajectory u∗, equation (4.6) implicitly defines the LSR

update pi as a unique, continuously differentiable function of (ui,ui+m) such that

‖pi‖ / ‖ri+m‖/2

Proof. Define gi(u,p) : R2nx → Rnx such that

gi(u,p) = pi +

[
∂Φm

∂ui

(ui + pi)

]T
(Φm(ui + pi)− ui+m). (4.9)

The Jacobian of gi is given by

∂gi
∂pi

= I +
∂Φm

∂ui

T ∂Φm

∂ui

+
∑
k

∂2Φm
k

∂ui∂uT
i

(ui+m,k − Φm
k (ui + pi)) (4.10)

∂gi
∂ui

=
∂Φm

∂ui

T ∂Φm

∂ui

+
∑
k

∂2Φm
k

∂ui∂uT
i

(ui+m,k − Φm
k (ui + pi)) (4.11)

∂gi
∂ui+m

= −∂Φ
m

∂ui

T

(4.12)

where all first and second derivatives of Φm are understood to be evaluated at the

point ui + pi. Clearly, g(u∗, 0) = 0, and the Jacobian at this point

∂gi
∂pi

(u∗, 0) = I +
∂Φm

∂ui

T ∂Φm

∂ui

(4.13)

is symmetric positive definite and thus invertible. Therefore, there exists some neigh-

borhood about the point (u∗, 0) in which pi is defined as a unique differentiable func-

tion of u by the implicit function theorem, and further we have in this neighborhood
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that

∂p

∂u
(u) = −

[
∂g

∂p
(u,p(u))

]−1
∂g

∂u
(u,p(u)), (4.14)

from which we get that

∂pi
∂ui

(u∗) = −
(
I +

∂Φm

∂ui

T ∂Φm

∂ui

)−1
∂Φm

∂ui

T ∂Φm

∂ui

, (4.15)

∂pi
∂ui+m

(u∗) =

(
I +

∂Φm

∂ui

T ∂Φm

∂ui

)−1
∂Φm

∂ui

T

. (4.16)

Finally, we bound the norm of the Jacobian ∂pi/∂ri+1 at the point (u∗, 0) by implicit

differentiation of Equations (4.6) and (4.8):

∂pi
∂ri+m

+
∂Φm

∂ui

T (
∂Φm

∂ui

(
∂ui

∂ri+m

+
∂pi
∂ri+m

)
− ∂ui+m

∂ri+m

)
(4.17)

+
∂2Φm

∂u2
i

∂ui

∂ri+m

(Φm(ui + pi)− ui+m) = 0 (4.18)

(4.19)

∂pi
∂ri+m

+
∂Φm

∂ui

T ∂Φm

∂ui

∂pi
∂ri+m

=
∂Φm

∂ui

T ∂ui+m

∂ri+m

− ∂Φm

∂ui

T ∂Φm

∂ui

∂ui

∂ri+m

(4.20)(
I +

∂Φm

∂ui

T ∂Φm

∂ui

)
∂pi
∂ri+m

=
∂Φm

∂ui

T (
∂Φm

∂ui

∂ui

∂ri+m

− I
)
− ∂Φm

∂ui

T ∂Φm

∂ui

∂ui

∂ri+m

(4.21)(
I +

∂Φm

∂ui

T ∂Φm

∂ui

)
∂pi
∂ri+m

= −∂Φ
m

∂ui

T

(4.22)

∂pi
∂ri+m

= −
(
I +

∂Φm

∂ui

T ∂Φm

∂ui

)−1
∂Φm

∂ui

T

(4.23)∥∥∥∥ ∂pi
∂ri+m

∥∥∥∥
2

=

∥∥∥∥∥
(
I +

∂Φm

∂ui

T ∂Φm

∂ui

)−1
∂Φm

∂ui

T
∥∥∥∥∥
2

(4.24)

= max
j

∥∥∥∥ σi,j
1 + σ2

i,j

∥∥∥∥ ≤ 1

2
, (4.25)

where σi,j is the jth singular value of ∂Φm/∂ui.
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Lemma 3 shows that pi is well-defined, and further that in a neighborhood of

an exact orbit u∗, ‖pi‖ / ‖ri+1‖/2, indicating that the perturbation pi is small

when the residual ri+m is small. Further, note that this procedure eliminates the

residual at every point in the interval except for at ti. Next, we find the Jacobian of

Algorithm 4.1 and see that it does not excite modes of error in a neighborhood of

u∗, in contrast to FCF-relaxation.

Lemma 4. Algorithm 4.1 is stable at any fixed point u∗.

Proof. Algorithm 4.1 is given in the equations

uk+1
i = uk

i + pi, (4.26)

uk+1
i+m = Φ(uk

i + pi), (4.27)

with Jacobian

∂uk+1

∂uk
=

 (
I + ∂Φm

∂ui

T ∂Φm

∂ui

)−1 (
I + ∂Φm

∂ui

T ∂Φm

∂ui

)−1
∂Φm

∂ui

T

∂Φm

∂ui

(
I + ∂Φm

∂ui

T ∂Φm

∂ui

)−1
∂Φm

∂ui

(
I + ∂Φm

∂ui

T ∂Φm

∂ui

)−1
∂Φm

∂ui

T

 , (4.28)

which follows directly from Equations (4.15) and (4.16). Note that this Jacobian is

symmetric positive semi-definite. Next, let UΣV T be the singular value decomposi-

tion of ∂Φm/∂ui, and we see that

JLSR =
∂uk+1

∂uk
=

V
U

 (I + Σ2)
−1

Σ (I + Σ2)
−1

Σ (I + Σ)−1 Σ2 (I + Σ2)
−1

V
U

T

, (4.29)

which has eigenvalues λ1 = 0 and λ2 = 1, each with multiplicity ns. For any vector
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vi ∈ Rns , let c = V Tvi, thenV
U

 (I + Σ2)
−1

Σ (I + Σ2)
−1

Σ (I + Σ)−1 Σ2 (I + Σ2)
−1

V
U

T  V c

[∂ui
Φ]V c

 =

=

V
U

 (I + Σ2)
−1

Σ (I + Σ2)
−1

Σ (I + Σ)−1 Σ2 (I + Σ2)
−1

V
U

T  V c

UΣc


=

V
U

 (I + Σ2)
−1

Σ (I + Σ2)
−1

Σ (I + Σ)−1 Σ2 (I + Σ2)
−1

 c
Σc


=

V
U

 (I + Σ2)
−1

(c+ Σ2c)

Σ (I + Σ2)
−1

(c+ Σ2c)

 =

 V c

UΣc

 =

 V c

UΣV TV c


=

 V c

[∂ui
Φ]V c

 ,
and we see that (vi; [∂ui

Φ]vi) is an eigenvector of JLSR corresponding to eigenvalue

λ2 = 1. Similarly, the orthogonal vector ([∂ui
Φ]vi;−vi) is an eigenvector correspond-

ing to eigenvalue λ1 = 0.

Notice that the eigenvectors of (4.28) with unit eigenvalue correspond with per-

turbations to the initial point ui, and the eigenvectors with zero eigenvalue are or-

thogonal to these. One might call the former physical errors and the latter unphysical

errors, since a physical error results in a trajectory which is indistinguishable from

an exact solution locally in time. That is, physical errors do not affect the residual

locally in time, while unphysical errors do, and thus the physical errors make up

the null-space of the local residual operator while the unphysical errors make up the

null-space of the LSR relaxation operator. This makes sense, because the shadow

trajectory is the orbit nearest the reference trajectory in the space of true orbits,

that is, orbits which only differ from each other in initial condition, so translating

that to tangent space, the difference between the reference trajectory and its shadow
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is orthogonal to the space of unphysical error. We see that LSR is an orthogonal

projection of the local error onto the subspace of physical error.

Contrast this result with FC-relaxation, which has a Jacobian of

JFC =

 I 0

∂Φm

∂ui
0

 ,
with singular values σ1 = 0 and σ2,j =

√
1 + σ2

i,j ≥ 1, where σi,j is the jth singular

value of ∂ui
Φ. The right singular vectors of JFC are the columns of the identity

matrix, and the left singular vectors are the eigenvectors of JLSR. Therefore, the

symmetrization
√
JFCJT

FC gives the action of FC-relaxation on the eigenspace of

JLSR, which shows that FC-relaxation and LSR both eliminate unphysical errors,

but FC-relaxation magnifies physical errors, while LSR does not.

4.3.1 Initial attempts at stable LSR

Despite these promising results for a single interval, LSR is not stable when applied

naively to the whole time grid. To illustrate this, let us make two initial attempts

to use Algorithm 4.1 as a PinT relaxation scheme. First, notice that while FC-

relaxation only updates ui+m, LSR provides an update for both endpoints ui and

ui+m, so there is not a single obvious way to use the overlapping updates one gets

from performing Algorithm 4.1 on each C-interval in parallel. Three options are

ui ← LSR+
i(u) := Φm(ui−m + pi−m) (4.30)

ui ← LSR−
i(u) := ui + pi (4.31)

ui ← LSR
1/2
i (u) := ui +

1

2
pi +

1

2

(
Φm(ui−m + pi−m)− ui

)
(4.32)

Where LSR− uses the update from the (ui;ui+m) interval, LSR+ uses the update

from the (ui−m;ui) interval, and LSR1/2 uses an average between the two updates.
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LSR+ seems reasonably symmetric, since there is first a flow of information backward

in time from ui → ui−m via pi−m, followed by a flow of information forward in time

from ui−m → ui via FC-relaxation with Φm, so we select LSR+ as our first candidate.

Let the superscript k denote the current relaxation iteration, then uk+1 = LSR+(uk).

We seek a bound for ‖∂uk+1/∂uk‖ at the fixed point u∗ where ‖ · ‖ = ‖·‖2,∞ is the

2-norm in space and ∞-norm in time. First, we bound the blocks in each row,∥∥∥∥ ∂uk+1
i

∂uk
i−m

∥∥∥∥
2

=

∥∥∥∥ ∂Φm

∂uk
i−m

(
I +

∂pi−m

∂uk
i−m

)∥∥∥∥
2

(4.33)

=

∥∥∥∥∥ ∂Φm

∂uk
i−m

(
I +

∂Φm

∂uk
i−m

T ∂Φm

∂uk
i−m

)−1
∥∥∥∥∥
2

(4.34)

= max
j

{
σi−m,j

1 + σ2
i−m,j

}
, (4.35)

where the second to last equality is a direct result of Equation (4.15) and σi−m,j is

the jth singular value of ∂Φm/∂ui−m, and∥∥∥∥∂uk+1
i

∂uk
i

∥∥∥∥
2

=

∥∥∥∥ ∂Φm

∂uk
i−m

(
∂pi−m

∂uk
i

)∥∥∥∥
2

(4.36)

=

∥∥∥∥∥ ∂Φm

∂uk
i−m

(
I +

∂Φm

∂uk
i−m

T ∂Φm

∂uk
i−m

)−1
∂Φm

∂uk
i−m

T
∥∥∥∥∥
2

(4.37)

≤ max
j

{
σ2
i−m,j

1 + σ2
i−m,j

}
. (4.38)

Finally, we see that∥∥∥∥∂uk+1

∂uk

∥∥∥∥
2,∞

= max
i

{∥∥∥∥ ∂uk+1
i

∂uk
i−m

∥∥∥∥
2

+

∥∥∥∥∂uk+1
i

∂uk
i

∥∥∥∥
2

}
(4.39)

= max
i,j

{
σi−m,j + σ2

i−m,j

1 + σ2
i−m,j

}
≤ 1 +

√
2

2
. (4.40)

Unfortunately, this upper bound on the Jacobian of our tentative LSR+ is greater

than one, and it is attained when σi−m,j =
√
2 + 1 ≈ 2.41 which means that this

iteration excites error for locally unstable modes.

Placing the blame for the failure of our first attempt on the forward propagation

with Φ, which perhaps is allowing errors to grow along the unstable manifold forward
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in time, we might decide to forgo this step and try just computing pi and adding it

to each ui as in LSR−. The propagation from i → i + m is only responsible for a

single factor of σi,j in our bound, so the new bound becomes∥∥∥∥∂uk+1

∂uk

∥∥∥∥
2,∞

= max
i,j

{
1 + σi,j
1 + σ2

i,j

}
≤ 1 +

√
2

2
, (4.41)

which is attained when σi,j =
√
2− 1 ≈ 0.41. The bound has not changed! However,

now the iteration is exciting error for certain locally stable modes, backward in time.

Although these initial attempts are not stable, they are tantalizingly close. Notice

that the upper bound in Equations (4.40) and (4.41), is (1 +
√
2)/2 ≈ 1.21, and

that this bound is completely independent on the physics of the problem or the

stability of Φ. Contrast this with FCF-relaxation, which has Jacobian norm equal

to maxi,j σi,j that is unbounded. In both cases we have explored so far, the Jacobian

of the iteration is block triangular, and this seems to introduce a slight bias either

forward or backward in time. The convergence bounds for LSR+ and LSR− are

plotted in Figure 4.3 for a given singular value σ, under the assumption that σ

is constant in time and that the singular vectors satisfy Vi+m = UT
i . Notice the

skew-symmetry in the convergence bounds for LSR+ and LSR−, where, apparently,

‖LSR−
Φ‖ = ‖LSR+

Φ−1‖, i.e. the two methods are equivalent up to the direction of

the arrow of time.

The third method listed above, LSR1/2 which averages the two updates from

LSR+ and LSR−, appears to be stable for all modes, as seen in Figure 4.3, although

the convergence rate is bounded from below by 1/2, which is not ideal. Further,

dropping the assumption that σ is constant in time, but keeping the orthogonality

relationship, Vi+m = UT
i , we see that

‖JLSR1/2‖2,∞ =
1

2
max
i,j

{
1 + σi,j
1 + σ2

i,j

+
σi−m,j + σ2

i−m,j

1 + σ2
i−m,j

}
≤ 1 +

√
2

2
,

where the maximum is attained when σi−m,j = 1+
√
2 and σi,j =

√
2− 1. Thus, if a

given mode is expanded by ∂ui−m
Φm and contracted by ∂ui

Φm, then LSR1/2 will be
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Figure 4.3: Plot of convergence bounds for LSR+, LSR−, the average LSR+/2 +
LSR−/2 and the product LSR+ ◦ LSR−, as a function of λ := ln(σ), where σ is a
singular value of ∂Φ/∂ui, assuming σ is constant in time.

unstable. This is in fact very likely to happen, especially for more neutrally stable

modes, since the local Lyapunov exponents ln(σi,j)/mh fluctuate around the true

Lyapunov exponents, and they may change sign without changing their long time

averages.

Figure 4.3 also suggests that the composition LSR+ ◦LSR−, which has the effect

of multiplying the two bounds together, would result in a method which is stable for

all σ, and which has a convergence rate that approaches zero as σ → 0 or σ → ∞,

which is what we are looking for– a stable, convergent relaxation method. However,

this method suffers from the same problem as LSR1/2, where time dependence of σ

results in the same bound of (1 +
√
2)/2 at the same point.
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4.4 Red-black LSR

Since our Jacobi-like iterations have failed to produce a stable relaxation method,

we will now attempt to construct a red-black Gauss-Seidel type iteration, which is

almost as parallel, and allows us to apply Algorithm 4.1 to disjoint, non-overlapping

intervals. Let the even numbered C-points {0, 2m, . . . , nt− 2m,nt} be colored black,

and the odd numbered C-points {m, 3m, . . . , nt − 3m,nt −m} be colored red, then

let a red interval be an interval starting on a red point and ending on the following

black point and define a black interval similarly. LSRred and LSRblk will refer to the

application of Algorithm 4.1 to all red or black intervals respectively, with any point

not contained in either a red or black interval being left unchanged.

At the fixed point u∗, the Jacobian of both LSRred and LSRblk will be block

diagonal, with

JLSRred
=



M0 M0F
T
0

F0M0 F0M0F
T
0

. . .

Mnt MntF
T
nt

FntMnt FntMntF
T
nt


, (4.42)

and

JLSRblk
=

I

M1 M1F
T
1

F1M1 F1M1F
T
1

. . .

Mnt−1 Mnt−1F
T
nt−1

Fnt−1Mnt−1 Fnt−1Mnt−1F
T
nt−1

I


, (4.43)
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where Fi = ∂ui
Φ, and Mi =

(
I + F T

i Fi

)−1. The 2 × 2 blocks are given by Equa-

tion (4.28) and thus both JLSRred
and JLSRblk

are symmetric positive semi-definite and

bounded by 1 in norm. This immediately implies that any composition of LSRred

and LSRblk will also have a fixed-point Jacobian which is bounded by 1 by submul-

tiplicativity of the spectral operator norm, e.g.∥∥∥∥∂LSRred ◦ LSRblk

∂u

∥∥∥∥
2

≤
∥∥∥∥∂LSRred

∂u

∥∥∥∥
2

∥∥∥∥∂LSRblk

∂u

∥∥∥∥
2

= 1,

although this particular case will not result in a symmetric positive semi-definite

Jacobian. The composition LSRblk ◦LSRred ◦LSRblk will have a fixed-point Jacobian

which is symmetric and positive semi-definite, since we have that (JblkJredJblk)
T =

JT
blkJ

T
redJ

T
blk = JblkJredJblk.

4.4.1 Convergence of LSR to a shadow trajectory

The important question remains, if LSR converges, then to what does it converge?

Intuition tells us that it should converge to the LSS shadow trajectory, but this is not

so obvious. At no point do we construct the global LSS minimization problem, and

what’s more, LSR overwrites the original reference trajectory or initial guess after one

iteration, and so the LSS objective function cannot even be evaluated after a single

iteration. We will now see that LSRred ◦ LSRblk in particular can be derived from

the KKT system of the full, global-in-time LSS problem (without time dilation), and

that this red-black LSR in some sense “remembers” the original reference trajectory,

implying that when LSR converges, it converges to the LSS shadow trajectory.

Theorem 5. The red-black LSR iteration LSRblk ◦ LSRred is equivalent to red-black

Gauss-Seidel iteration on the KKT system of the global-in-time LSS problem without

time dilation.

Proof. Without loss of generality, let m = 1, since any other m can be recovered by
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substituting Φ← Φm. The LSS problem without time dilation reads

min
v

{
1

2

nt∑
i=0

‖vi − ui‖2
}

s.t. vi = Φ(vi−1). (4.44)

Substituting pi = vi−ui and p2i+1 = Φ(u2i+p2i)−u2i+1, Equation (4.44) becomes

min
p2i

1

2

nt/2∑
i=0

‖p2i‖2 + ‖Φ(u2i + p2i)− u2i+1‖2
 s.t. v2i = Φ2(v2i−2), (4.45)

which could be called the Schur-complement minimization problem, because Equa-

tion (4.45) has the same solution as Equation (4.44) but is minimizing over half

as many variables. Further, note that without the constraint, Equation (4.45) is

identical to the disjoint minimization problems solved in LSRred.

Now, using the method of Lagrange multipliers we get the KKT system for Equa-

tion (4.44):

pi + ∂iΦ
Tλi+1 − λi = 0, (4.46)

pi+1 = Φ(ui + pi)− ui+1. (4.47)

Letting λ0 = 0, where the superscript indicates the relaxation iteration, write the

red-black Gauss-Seidel iteration as

pr,k2i−1 + ∂2i−1Φ
Tλr,k

2i = λb,k−1
2i−1 (4.48)

pr,k2i − λ
r,k
2i = −∂2iΦTλb,k−1

2i+1 (4.49)

pr,k2i = Φ(u2i−1 + p
r,k
2i−1)− u2i (4.50)

pb,k2i + ∂2iΦ
Tλb,k

2i+1 = λ
r,k
2i (4.51)

pb,k2i+1 − λ
b,k
2i+1 = −∂2i+1Φ

Tλr,k
2i+2 (4.52)

pb,k2i+1 = Φ(u2i + p
b,k
2i )− u2i+1 (4.53)
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where unknowns are on the left-hand side and known variables are on the right. Now,

subtracting (4.49) from (4.51) and (4.48) from (4.52) we get

pb,k2i − p
b,k
2i + ∂2iΦ

T
[
λb,k

2i+1 − λ
b,k−1
2i+1

]
= 0, (4.54)

pb,k2i+1 − p
r,k
2i+1 −

[
λb,k

2i+1 − λ
b,k−1
2i+1

]
= 0, (4.55)

pb,k2i+1 − p
r,k
2i+1 = Φ(u2i + p

r,k
2i + (pb,k2i − p

r,k
2i )) (4.56)

− u2i+1 − pr,k2i+1. (4.57)

Finally, define new variables p̃k = pb,k−pr,k and λ̃k
= λb,k−λb,k−1 and ur,k = u+pr,k,

and we get

p̃b,k2i + ∂2iΦ
T λ̃

b,k

2i+1 = 0, (4.58)

p̃b,k2i+1 − λ̃
b,k

2i+1 = 0, (4.59)

p̃b,k2i+1 = Φ(ur,k
2i + p̃b,k2i )− u

r,k
2i+1, (4.60)

from which we can eliminate λ̃b,k to get, finally,

p̃b,k2i + ∂2iΦ
T
[
Φ(ur,k

2i + p̃b,k2i )− u
r,k
2i+1

]
= 0, (4.61)

ub,k
2i+1 = Φ(ur,k

2i + p̃b,k2i ), (4.62)

which we recognize as being the update given by LSRblk. The same argument also

applies to a red update following a black update, with the temporal index shifted by

one, such that

p̃r,k2i−1 + ∂2i−1Φ
T
[
Φ(ub,k−1

2i−1 + p̃r,k2i−1)− u
b,k−1
2i

]
= 0, (4.63)

ur,k
2i = Φ(ub,k−1

2i + p̃r,k2i ), (4.64)

and along with the initial iterates ub,0 = u and λb,0 = 0, we get by induction on k

that this Gauss-Seidel iteration on the KKT system of the LSS minimization problem

with no time dilation is equivalent to the LSRred ◦ LSRblk iteration.
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Figure 4.4: The effect of red-black LSR on initially uniform error in the Lorenz
system.

Figure 4.4 demonstrates the convergence of red-black LSR to the shadow trajec-

tory of the Lorenz system. Contrasting this result with Figure 4.2, red-black LSR

appears to not only converge to the shadow trajectory, it seems to damp highly

oscillatory errors in time much faster than smooth errors in time. This indicates

that LSR might be a smoother, that is, a relaxation which damps high frequency

modes of error fast enough that it effectively contracts the error to a lower dimen-

sional subspace consisting of low-frequency modes. This is an excellent property for

a relaxation scheme to have in a multigrid setting, since low-frequency modes are

precisely what the coarse grid is geometrically good at representing, so we should

now confirm that red-black LSR is in fact a smoother.

While I have not yet worked out a formal proof that red-black LSR is a smoother,

it is fairly straightforward to see under our simplifying assumptions from earlier.

Assume the singular values σi,j of ∂iΦ are constant in time and that the singular

vectors satisfy the time-dependent orthonormality condition V T
i+mUi = I. Note that

we do not have to worry about this assumption here because we already know that
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the red-black LSR iteration is stable. Under these assumptions, after multiplication

of JLSRred
JLSRblk

JLSRred
and expansion of ∂ui

Φ = UΣV T , we can see that the fixed-

point Jacobian of the symmetric red-black-red iteration is congruent to

diagj


σ2
j(

1 + σ2
j

)2



2 + σ−2
j 1

1 2 1
. . . . . . . . .

1 2 1

1 2 + σ2
j


⊗

 1
1+σ2

j

σj

1+σ2
j

σj

1+σ2
j

σ2
j

1+σ2
j



, (4.65)

The tridiagonal part on the left of the Kronecker product governs the damping of

error vectors in time, and it has eigenvectors eω and eigenvalues νω given by

e0,j,i = σ2i
j ,

ν0,j = 1,

eω,j,i =

{
cos(iω) +

cos(ω)− σ−2
j

sin(ω)
sin(iω)

}
,

νω,j =
σ2
j(

1 + σ2
j

)2 (2 + 2 cos(ω)), ω =
π

nt + 1
,

2π

nt + 1
, . . . ,

ntπ

nt + 1
,

where ω is the wavenumber. The first few of these eigenvectors are plotted in Fig-

ure 4.5 for an unstable, neutral, and stable singular value σj. A particular set of

eigenvectors of this matrix are the vectors with ω = 0, e0,j = [1, σ2
j , σ

2
j . . . , σ

m
j ]

T , with

eigenvalue 1 of multiplicity ns. These eigenvectors are the global-in-time version of

the local “physical errors” that we saw before, and so it should not be surprising

that they are not damped by LSR, since they do not affect the residual. For ω > 0,

the eigenvectors are shifted cosine functions with eigenvalues νω < 1 that vanish as

σj → 0, σ →∞, and ω → π. These vectors represent the global-in-time “unphysical”

errors which affect the residual, and we observe that these errors are damped quickly

when they are highly oscillatory or when they correspond to very stable or very un-

stable manifolds. Thus, we have shown that the red-black LSR is a smoother under

109



Chapter 4. LSR: Toward optimal-scaling PinT for chaos

these assumptions. These results are very encouraging because red-black LSR seems

to damp errors that are particularly difficult to represent accurately on the coarse

grid, namely those which correspond to fast transients and which are oscillatory in

time.

4.5 Multilevel algorithm and preliminary results

Despite these promising analytical results for LSR, it remains to be seen if the al-

gorithm can be used in a practical setting. It is clear from the eigenvector analysis

of red-black LSR (which for the rest of this chapter will just be called LSR) in the

previous section that LSR, while stable, is very slow to converge for smooth errors

in near-neutral manifolds, for which the convergence rate can be arbitrarily close to

1. However, we have seen evidence that red-black LSR is a smoother, and thus it

is particularly well suited for use in multigrid. Following relaxation on the fine-grid

with LSR, the remaining error will be smooth, and thus will damp slowly on the

fine grid. However, following restriction, the smooth fine grid error will appear more

oscillatory on the coarse grid, and will thus be damped more quickly, leaving only

smooth error which is able to be accurately represented on an even coarser grid, and

so on until the coarsest grid, which is either solved or treated similarly with relax-

ation. In the case where relaxation is used on every level, including the coarsest grid,

we expect to see faster convergence as more grid levels are added. This is because, in

contrast to MGRIT, we are not replacing an exact coarse grid solve with an inexact

multilevel solve, we are replacing a slow coarse grid relaxation sweep with a more

effective multilevel relaxation.

We will now see whether LSR can be used in a V-cycle to improve on the con-

vergence of fine-grid only LSR for the Lorenz system. For the following experiment,

the red-black LSR iteration developed in the previous section is used on every level

110



Chapter 4. LSR: Toward optimal-scaling PinT for chaos

of an MGRIT V-cycle algorithm in place of FCF-relaxation, where LSR is always

followed by F-relaxation in order to compute the FAS τ -correction for the coarse

grid. The sequential coarse grid solve is replaced by a single iteration of LSR, and

a single iteration of LSR is used on every level for pre- and post-smoothing. The

initial guess used for the trajectory is a time stepping solution of the Lorenz sys-

tem which has been perturbed by significant Gaussian noise. LSR is implemented

using NonlinearSolve.jl [40] to solve the nonlinear LSR optimization problem given

in Equation (4.5), with multithreading for limited parallelism in time. The Lorenz

system is discretized using forward Euler’s method, and the same method is used for

rediscretization on all coarse grids.

Figure 4.6 shows that, at least initially, adding more coarse grid levels does im-

prove convergence of LSR when used as a smoother in MGRIT. Up to 7 levels, adding

2 more levels to the hierarchy improves overall convergence by roughly one digit of

accuracy over 20 iterations. However, convergence degrades when moving to 7 lev-

els, and the iteration begins diverging with 8 levels. Despite these less than perfect

results, Figure 4.6 demonstrates more robust convergence with respect to the time

domain length than before, with the algorithm converging nearly identically on time

domains of 16Tλ and 32Tλ. Recall that this is four times longer than the time limit of

8Tλ for robust convergence of classical MGRIT for a chaotic system, so even though

the target residual tolerance of
√
ε ≈ 10−8 wasn’t reached in this experiment, this

is still a very promising result, since it indicates that if these convergence issues can

be solved on very coarse grids, LSR is likely to be an effective and scalable parallel

solver for chaotic systems.

While I am not sure what exactly is causing the divergence on 7 and 8 levels,

there are a few possible culprits. The first is stability of forward Euler’s method.

The legend in Figure 4.6 records the time-step size hc on the coarsest grid for a

given number of levels, where hc is colored red for time steps beyond the stability
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limit of forward Euler’s method. Remarkably, the fastest solver setup tested, with

6 levels, had a coarse grid time-step size which was 4 times this stability limit,

meaning that if sequential time stepping were attempted on the coarse grid rather

than LSR, the solution would blow up in a single iteration. Even when the algorithm

begins to diverge at 8 levels, the rate of divergence is slow, and doesn’t seem to

indicate numerical instability. Indeed, according to the theory we’ve developed in the

previous sections, LSR should be stable regardless of how unstable Φc is. However,

it is unknown what effect numerical instability has on the hyperbolic structure of

the system. It may be the case that on some coarse grid, there is no longer a

splitting of the tangent space into stable and unstable manifolds, which could cause

a breakdown of the shadowing lemma. Simply performing this experiment again

with an unconditionally stable method should be able to easily rule this out.

Another possibility is that the trajectory becomes so coarse on the coarse grid

that it no longer qualitatively resembles the solution on the fine grid, and therefore

the shadow trajectory to which LSR is converging differs enough on the fine and

coarse grids to cause divergence. Even on a single level, changing the points in time

over which the LSS problem is posed changes the solution. There is currently no

mechanism in place for correcting this difference, but, the multigrid optimization

(MGOPT) framework [36] provides a way to correct the objective function in such a

way that ensures the coarse grid optimization has the same solution as the fine grid.

Finally, it may be necessary to add time dilation to the LSR formulation. The

shadowing lemma for flows given in Lemma 2 requires time dilation in the form

of perturbed time-step sizes ηi in order to deal with the neutral manifold, since

otherwise, hyperbolicity is violated and a shadow trajectory may or may not exist.

This seems to be a likely explaination for the slowdown of convergence after the

initial iterations, but perhaps not for the subsequent divergence. Recall that LSR

converges slowest for neutrally stable modes, since they are not transient either
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forward or backward in time, and thus they must be resolved on all time scales, from

the beginning of the time domain to the end, accurately, unlike the unstable and

stable modes. While a formulation of LSR with time dilation exists, the algorithm

is not as stable as the one presented here without time dilation, so more work needs

to be done to address this.
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Figure 4.5: The first few eigenvectors and eigenvalues of the red-black LSR fixed-
point Jacobian for three different fixed singular values σ.
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Conclusion

5.1 Summary

As part of this dissertation work, I have developed θ methods, a new approach for

deriving stable and accurate coarse grid operators [54], as well as the ∆ correction,

a modification to the FAS coarse grid equation that targets chaotic systems directly

in a general way [53]. Finally, I have developed Local Shadowing Relaxation (LSR)

which exhibits robust convergence over very long timescales, well past the theoretical

limit for classical MGRIT.

The θ methods make it possible to approximate the fine-grid propagator to

arbitrarily-high order on the coarse grid, even when using temporal adaptivity,

greatly improving MGRIT convergence in most cases, while also allowing larger

coarsening factors which can improve parallel efficiency of the algorithm. I present a

sizeable speedup for the space-time parallel solution of a 2D advection diffusion prob-

lem in the advection-dominated regime on an adaptive time grid, with the θ methods
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nearly doubling the speedup achieved. For ∆ correction, the modified coarse grid

equation

[Ac +∆(uk−1)]uk = gc + τ (u
k−1) + ∆(uk−1)uk−1, (5.1)

adds∆ as a linear correction to the coarse grid system operator, in contrast with clas-

sical FAS τ -correction which only adds a constant correction to the right-hand-side.

This ensures that as the solution converges, the Jacobian of Ac+∆ converges to the

Jacobian of the Schur-complement operator A∗, correcting the Lyapunov spectrum on

the coarse grid as the solution converges. I have then developed a low-rank approxi-

mation of the full ∆ correction which specifically targets and corrects unstable modes

of the system while greatly reducing the cost associated with ∆ correction. These

algorithmic improvements allows MGRIT to reach its theoretical convergence limit

of 8 Lyapunov time (Tλ) for the Lorenz system and results in a 10× PinT speedup

for the Kuramoto-Sivashinsky equation, the first such meaningful PinT speedup for

a chaotic PDE to my knowledge. Despite this success, MGRIT still breaks down on

longer time-domains where convergence stalls.

The work [55] first proposed the use of Least Squares Shadowing (LSS) as a

scalable PinT solution method that theoretically overcomes the ill-conditioning of

chaotic systems by relaxation the initial condition. Given an approximate trajectory

of a chaotic system, LSS attempts to find its shadow, a nearby trajectory, with a

perturbed initial condition, which is an exact solution to the system. Since the (LSS)

problem is well conditioned, independent of the length of the simulation, it stands

to reason that a successful PinT algorithm for the solution of the LSS problem could

constitute a scalable solver for chaotic systems. Inspired by this idea, and motivated

by the extremely fast chaotic timescales that characterize turbulent flows, I show that

if posed over a small time-interval, only minimizing over the two endpoints, LSS is

equivalent to a minimization of the residual at the terminal point, with respect to

a small perturbation at the initial point. The solution of this minimization problem
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on many disjoint sub-intervals is trivial, and forms the basis of a PinT relaxation

method, which I call Local Shadowing Relaxation (LSR). Following a theoretical

treatment of LSR demonstrating its stability, I show that, when it converges, LSR

converges to the same shadow trajectory as LSS. Following this, I provide evidence

that LSR is a smoother and present very encouraging multilevel results indicating

that LSR indeed has robust convergence, independent of the total length of the

timescale of the simulation.

5.2 Outlook and Future Work

Ultimately, PinT promise to enable massive scaling and speedups, the kind of scaling

that will become increasingly necessary as computing performance improvements

in the near future will come from greater parallellism, not improved single core

performance. Despite this, many challenges remain for PinT, namely for application

to chaotic and hyperbolic systems, although I see these problems as entirely solvable.

Since many systems of interest are weakly chaotic, 8Tλ is already a fairly sig-

nificant time domain for systems arising from weather and climate modeling and

other non-turbulent CFD applications. It may be the case that existing technology

is already sufficient to provide a PinT speedup from some of these methods. Fu-

ture work should include applying the ∆-correction algorithm to a parabolic chaotic

problem targeting climate modeling, such as the viscous rotating shallow water equa-

tions, with the goal of running a PinT climate simulation. Although current PinT

technology cannot yet handle the strongly advection dominated case, there is possi-

bly enough diffusion in current climate models for MGRIT to converge sufficiently

quickly, based on conversations with the E3SM group at Sandia National Laborato-

ries [34]. I also plan to continue developing the SUNDIALS-XBraid interface code

to improve θ methods as a black-box, non-intrusive way for users to apply PinT
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to their applications, especially for improving convergence for advection dominated

problems.

The ∆ correction is also attractive in an STMG setting, especially for highly

advective problems, where STMG has had more success than MGRIT. The work

[50], points out that a time-dependent advection problem in d dimensions appears

as a steady state advection problem in d + 1 dimensions. Thus, the authors use

approximate ideal restriction algebraic multigrid (AIR-AMG), designed for steady

state advection, to solve 3rd order space-time discretizations of linear advection, with

excellent scaling. Following this, [10, 9] introduce space-time block preconditioners

based on [7, 8] for the all-at-once solution of incompressible CFD and MHD systems,

using an outer Newton’s method to handle nonlinearity and solving the linear velocity

space-time block with AIR-AMG. Targeting turbulent CFD and MHD, future work

will be to develop all-at-once STMG solvers for turbulent flows based on space-time

block preconditioning.

While STMG methods based on Newton’s method and AIR-AMG work well for

non-turbulent advective problems, they will not work for turbulent systems. This

is because the time-evolution of the linearization of a chaotic system is unstable by

definition, thus Newton’s method is unstable on any appreciable timescale. This

mirrors the inability of MGRIT to converge past a certain time limit for a chaotic

system, but worse, because with Newton’s method there is no nonlinear mechanism

to stabilize the Newton correction, so it may grow exponentially fast without bound.

Of course, this is even worse for a turbulent system which has very fast chaotic

timescales. However, ∆-correction converges quadratically with a non-linear coarse

grid equation based on FAS and exhibits robust convergence for chaotic problems,

so a generalization of ∆ correction to the STMG setting is called for.

LSR could be very useful for turbulent systems, as it would resolve the small

space-time scales that have previously been ignored as in [25] entirely through PinT
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relaxation. This is especially promising coupled with Full Multigrid (FMG), since a

coarse initial guess for the whole trajectory could be produced with a single FMG

cycle. Ultimately, if LSR is successful, it would represent be a monumental devel-

opment in PinT technology that could be directly applicable to many important

application areas.
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