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ABSTRACT

In this manuscript, the multiple linear regression method is applied to clarify terms and
their coefficients in data-driven models for velocity/pressure-gradient (VPG) correlations
in the Reynolds stress transport equations. Additionally, a method for developing universal
linear models for the VPG correlations with unchanging coefficients when complex con-
ditions arise in a flow is introduced. The generated models were assessed using residual
analysis to ensure an appropriate level of accuracy. Data from direct numerical simulation
in an incompressible fully-developed turbulent channel flow at Reτ = 392 with an adverse
pressure gradient is used in the study as the data source.
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INTRODUCTION

Current modeling of turbulent flows relevant to engineering applications involves the
use of the Reynolds Averaged Navier-Stokes (RANS) equations. In RANS equations, the
high resolution of the Direct Numerical Simulation (DNS) method, where all turbulence
scales are calculated, is given up in exchange for fast calculations. However, even the
simpler RANS equations invoke a significant challenge for modelers since they include the
Reynolds stresses that have to be modeled. This makes a solution of the RANS equations
sensitive to the modeling strategy chosen.

When applied to engineering problems, Reynolds stresses are modeled using the linear-
eddy viscosity models based on the Boussinesq hypothesis. In this hypothesis, the Reynolds
stresses are modeled as proportional to the mean strain rate of a flow by a factor of the “tur-
bulence viscosity”. This approach leads to a family of one- and two-equation models such
as the k-ω model (first suggested by Kolmogorov [1], translated to English by Spalding
and later improved in Wilcox [2]), k-ε model [3], [4], Spalart-Allmaras model [5], and
their variations [6]. However, these models are known to underperform in flows with high
degrees of anisotropy, significant streamline curvature, flow separation, recirculation, and
flows influenced by mean rotational effects [7]. Also, the linear-eddy viscosity models
cannot reproduce the behavior of turbulent flows approaching the rapid distortion theory
(RDT) limit or the return to isotropy behavior in decaying turbulent flows [8].

Reynolds-stress transport (RST) models where transport equations for the Reynolds
stresses are included have the potential to provide better predictions than simpler one- and
two-equation models at a computational expense much lower than methods which resolve
turbulence scales. In particular, such models may be able to reproduce the directional
effects of the Reynolds stresses and additional complex interactions in turbulent flows [9],
and accurately describe the return to isotropy of decaying turbulence and the behavior of
turbulence in the RDT limit [10]. For these reasons, RST models are considered in this
study.

In RST models, three terms have to be modeled, namely the velocity-pressure gradient
(VPG) correlations, turbulent diffusion, and dissipation terms. In homogeneous turbulence,
modeling is reduced to the pressure-strain correlations and the dissipation terms. However,
this study is concerned with inhomogeneous turbulent flows and, particularly with model-
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ing VPG correlations in such flows.

The VPG correlations,Π, are the terms that describe the interaction of turbulent velocity
and pressure fields. The more familiar pressure-strain correlations, Φ, are a convenient
substitution for the VPG correlations for modeling purposes only in homogeneous flows
(an impractical assumption for engineering flows). To highlight the subtle yet significant
difference, expressions for VPG and pressure-strain correlations in the RST equations for
incompressible flow are compared below, written in Cartesian coordinates with x⃗ = (x, y, z)
and u⃗ = (u, v,w):

Πi j = −
1
ρ

⎡⎢⎢⎢⎢⎣u j
∂p
∂xi
+ ui
∂p
∂x j

⎤⎥⎥⎥⎥⎦ vs. Φi j =
1
ρ

⎡⎢⎢⎢⎢⎢⎣p
(︄
∂u j

∂xi
+
∂ui

∂x j

)︄⎤⎥⎥⎥⎥⎥⎦ . (1)

In these equations, p is the flow pressure fluctuation, ρ is the fluid density, and ω represents
an ensemble average of parameter ω.

Current efforts for modeling the pressure-strain correlations include a wide variety of
traditional linear and nonlinear modelling approaches [11]–[13], and machine learning
models [14], [15]. These models are broadly categorized as empirical or data-driven, and
require the use of many coefficients or training of neural networks. For decades, numerous
attempts to improve the performance of Φmodels in inhomogeneous flows through the use
of empirical, semi-empirical, and artificial correlations resulted in rather modest success in
predicting the behavior of simpler flows. With such evidence in place, it is reasonable to
return to modeling the VPG correlations, since they are apt for inhomogeneous flows by
nature.

The effort of modeling the VPG correlations was never completely abandoned and can
be traced back to [16], where it was suggested to derive models for the VPG correlations
from the analysis of their exact integro-differential expressions striving to preserve the ten-
sor properties of relevant two-point turbulence statistics in a model for one-point VPG
correlations. Various linear and non-linear models were developed in such a manner over
the years [10] including for the correlations up to the fourth order, applicable to complex
flows with separation and under rotation (see e.g. [17]–[22]). However, these models (like
many others for turbulent flows) rely on adjustment of their model coefficients in different
flows to achieve more accurate results when compared to reference data. Additionally, it
was concluded in [20] that matching the tensor-invariant properties of two-point correla-
tions may not be sufficient for developing one-point VPG correlation models accurate in
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the near-wall flow regions.

For these reasons, a data-driven approach to modeling VPG correlations in wall-bounded
flows was proposed by Poroseva and Murman in [20], [23]. The model expressions for the
correlations up to the fourth order were obtained from the analysis of data from DNS data
of incompressible planar wall-bounded turbulent flows. In [24]–[27], the models were fur-
ther clarified and successfully validated using available datasets for wall-bounded flows of
different geometries [28]–[31], at different Reynolds numbers, and in the presence of flow
separation. Of particular importance was the demonstration that the linear models for VPG
correlations that include only the existing terms in RANS equations for velocity moments
of corresponding orders can accurately reproduce the correlation behavior in the entire flow
area including the wall vicinity without variation of the model coefficients.

Whereas the models were shown to work excellently in planar wall-bounded turbulent
flows, the models have not yet been validated in free-shear flows, the scalar coefficients
have no physical interpretation yet, and the models have not been generalized to three
dimensions. This requires fixing model coefficient values in a manner that accounts for
DNS data inaccuracies. Indeed, it was shown in [26], [27] that the choice for the initial DNS
dataset used to determine model coefficients slightly affects the coefficient values for VPG
correlation models. Additionally, the models include diffusion terms with a non-negligible
contribution to the models, but are in some regions in the same order of magnitude as
balance errors in the transport equation budgets collected from DNS [32]. This brings to
question the physical meaning of the diffusion term coefficients.

The work in this manuscript discusses the modeling of the velocity-pressure gradient
using the data-driven linear model approach proposed initially by Poroseva and Murman
[20], [23] supplemented with Multiple Linear Regression to determine model terms and
their respective coefficients. In the first chapter, multiple linear regression is used to gener-
ate models using DNS data for an unstrained channel flow [31], with residual distributions
utilized to quantify a model’s quality. For each VPG correlation, models are simplified fol-
lowing a stepwise procedure until a final model is obtained that is simple while preserving
accuracy. In the second chapter, a new method for applying regression is presented, where
a single model is generated for each VPG correlation by optimizing the model performance
over multiple channel strain rates. After that, the initial optimized model undergoes sim-
plification using a stepwise reduction procedure. The model quality is quantified using
residual analysis similar to the one described in the first chapter.
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DATA

0.1. Mathematical Framework

For the majority of flows relevant to industry, CFD simulations using Reynolds-Averaged
Navier-Stokes (RANS) equations are the only practical option. The RANS approach is
appealing because it allows for the use of coarse computational grids and in many practical
situations the flow is steady in the mean so the problem reduces to solving spatial variations
[10].

Obtaining the RANS equations involves the use of the Reynolds decomposition, in
which an instantaneous variable is expressed as the sum of the mean and the fluctuation
around that mean. The decomposed parameters replace the instantaneous parameters in the
Navier-Stokes equations, and then the equations are averaged in time, which results in the
following equations of motion:

∂ρ

∂t
+
∂(ρUi)
∂xi

= 0, (2)

∂(ρUi)
∂t

+
∂(ρU jUi)
∂x j

=
∑︂

n

Fn
i −
∂P
∂xi
+
∂

∂x j

[︄
µ

(︄
∂Ui

∂x j
+
∂U j

∂xi
− ρuiu j

)︄]︄
. (3)

In these equations, t is the time variable, ρ is the fluid density, P is the mean flow
pressure, µ is the fluid dynamic viscosity, and Fn

i are body forces acting on the flow. Ad-
ditionally, Ui is the mean flow velocity, xi is the Cartesian coordinate, with i = 1, 2, 3
corresponding to streamwise, wall-normal, and spanwise directions, respectively. The final
term in the square brackets, ρuiu j is referred to as the Reynolds stress tensor. The com-
ponents of this tensor are unknown terms in the RANS equations of motion and require
modeling to close the equations. Hereafter, the body force term is not considered because
there are no external forces acting on the flow being studied in this work.

An exact equation for the transport of the Reynolds stress, uiu j is derived from the
equation for velocity fluctuations ui obtained by subtracting the RANS momentum equation
(3) from that for the instantaneous velocity. This equation, named the Reynolds stress
transport equation, is as follows:
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Duiu j

Dt
≡
∂uiu j

∂t
+ Uk

∂uiu j

∂xk

= −

(︄
uiuk
∂U j

∂xk
+ u juk

∂Ui

∂xk

)︄
−

1
ρ

⎛⎜⎜⎜⎜⎝ui
∂p
∂xk
+ u j
∂p
∂xi

⎞⎟⎟⎟⎟⎠ − 2ν
∂ui

∂xk

∂u j

∂xk

+
∂

∂xk

[︄
ν
∂uiu j

∂xk

]︄
−
∂

∂xk

[︂
uiu juk

]︂
(4)

Terms in this equation can be grouped to allow for physical interpretation of the pro-
cesses with the following labels:

Pi j =

(︄
uiuk
∂U j

∂xk
+ u juk

∂Ui

∂xk

)︄
,

Πi j =
1
ρ

⎛⎜⎜⎜⎜⎝ui
∂p
∂xk
+ u j
∂p
∂xi

⎞⎟⎟⎟⎟⎠ ,
εi j = 2ν

⎛⎜⎜⎜⎜⎜⎝ ∂ui

∂xk

∂u j

∂xk

⎞⎟⎟⎟⎟⎟⎠ ,
DM

i j =
∂

∂xk

[︄
ν
∂uiu j

∂xk

]︄
,

DT
i j =

∂

∂xk

[︂
uiu juk

]︂
.

In this grouping, Pi j is the stress production due to the mean velocity gradient, Πi j is the
velocity-pressure gradient correlation, εi j is the stress dissipation rate, DM

i j is the molecular
diffusion of the Reynolds stress tensor, and DT

i j is the turbulent diffusion of the Reynolds
stress tensor [10]. Three terms in this equation require modeling, namely Πi j, εi j, and DT

i j.
The work in this manuscript is concerned with modeling the velocity-pressure gradient
correlation, Πi j. The grouped terms are also referred to as "budget" terms in the RANS
equations.
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0.2. DNS Dataset Description

The data used for this study is from DNS of a fully-developed channel flow at Reynolds
number Reτ = δuτ/ν = 392 (based on the channel friction velocity and the channel width)
conducted in [33]. The data includes budget terms in the RANS equations in the three
Cartesian directions, x, y, and z, where x is the streamwise direction, y is the wall-normal
direction, and z is the spanwise direction, as shown in Figure 1. Alternatively, the three
Cartesian directions x, y, and z can be denoted by 1, 2, and 3, respectively.

Figure 1: Diagram showing channel flow coordinates

DNS was conducted for a conventional turbulent channel flow and for a strained channel
flow in [33]. The channel was strained to reproduce properties of an adverse pressure
gradient (APG) boundary layer such as those observed under flow separation. In the DNS,
the channel was progressively strained in time by simultaneously applying a sliding motion
and a straining motion to the flow domain as shown in Figure 2.

The strain rate, Ai j = ∂Ui/∂x j, is zero at t = 0 for the unstrained channel case and at
t > 0, it is spatially uniform and constant with time, such that the resulting strain increases
linearly with time. This tensor has two non-zero components: A11 =

∂U
∂x < 0 (streamwise

compression) and A22 =
∂V
∂y > 0 (wall-normal expansion), which satisfy the condition

A11 + A22 = 0.

The wall sliding motion is synchronized with the strain to reproduce the bulk deceler-
ation of the APG, ultimately leading to flow reversal at the walls. The difference between
the mean centerline velocity, Uc(t), and the channel wall velocity, Uw(t), diminishes expo-
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nentially following the relation Uc(t) − Uw(t) = Uc exp (A11t).

The strain values used in this study are at A22t = 0 (unstrained), 0.020, 0.281, 0.365,
0.675, and 0.772, where t is time. After the strain of A22t = 0.675, there is separation in the
flow.

Figure 2: Strained channel progression with time
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Part I

Model Development for an
Incompressible Channel Flow
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1. METHODS

In this section, the method of multiple linear regression is applied to developing models
for the VPG correlations in the unstrained channel flow.

1.1. Multiple Linear Regression using Least Squares

In this study, multiple linear regression (MLR) using the least squares method was used
for developing data-driven models for VPG correlations in the Reynolds Stress Transport
Equations. In the MLR approach, the best fit, Θ̂, is sought for the observed variable, Θ, as
a weighted sum of multiple regressors:

Θ̂ = a1r1 + a2r2 + · · · + atrt (1.1)

where ai, i = 1, 2, · · · , t are coefficients found to optimize the fit using the method of least
squares, outlined in this section. Variables Θ, Θ̂, and ri are d × 1 vectors. The scalar
coefficients ai are concatenated into a t × 1 vector, A = [a1 a2 · · · at]T . Also, regressor
vectors are concatenated to form a d × t matrix, R, with each of regressor vector as a
column: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 · · · r1t
...
. . .

...

rd1 · · · rdt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
As a result, (1.1) can be expressed more compactly as Θ̂ = RA.

Now to quantify the difference between Θ̂ and Θ̂, the residual, ε, is defined as:

ε = Θ − Θ̂ = Θ − RA. (1.2)

Then, the scalar coefficients in (1.1) are found by minimizing the sum of the squares of the
residuals,

∑︁d
j=1 ε

2
j , with the objective function,

S(A) =
d∑︂

j=1

ε2
j = ε

Tε = (Θ−RA)T (Θ−RA) = ΘTΘ−ΘT RA−AT RTΘ+AT RT RA. (1.3)
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Note that each term in (1.3) is of dimension 1 × 1. Now since (ΘT RA)T = AT RTΘ, and
the transpose of a 1× 1 matrix is the matrix itself, the second and third term in (1.3) can be
combined as −ΘT RA − AT RTΘ = −2AT RTΘ. Thus, S(A) can be written as:

S(A) = ΘTΘ − 2AT RTΘ + AT RT RA. (1.4)

To minimize the objective function, S(A), take the derivative of S(A) with respect to A
and set it equal to zero:

dS(A)
d A

=
d

d A

[︂
ΘTΘ − 2AT RTΘ + AT RT RA

]︂
= 0. (1.5)

Further simplification leads to:

−2RTΘ + 2RT RA = 0 (1.6)

This equation is rearranged to form the least-squares estimator of A as:

A = (RT R)−1RTΘ. (1.7)

After the coefficients vector, A, are found, the fitting process is complete. Further, the
quality of the fit is determined by inspection of the residual (ε) plots. Specifically, a "ho-
moscedastic" fit is preferred where model residuals have the same finite variance through
all predictions made. A homoscedastic fit is preferred because it implies that the model er-
rors are normally distributed. An example of such a fit is shown in 1.1(a). In contrast, when
residuals have differing variance through all predictions made, the residual distribution is
said to be "heteroscedastic". A heteroscedastic residual distribution implies that there is an
unaccounted bias, possibly explained by an incomplete set of regressors or model-form de-
ficiency (e.g. a non-linear model would be more appropriate). Examples of heteroscedastic
fits are shown in 1.1(b) and 1.1(c).
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(a) (b) (c)

Figure 1.1: Distributions of residuals: a) homoscedastic, b) and c) heteroscedastic.

The calculations used for the model development as described in this section were com-
pleted using MATLAB [34].
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2. RESULTS

The results of an initial analysis of the application of the standard MLR procedure
described in section 1.1 to the modeling of the velocity/pressure-gradient correlations are
shown in this section. The data used in this section is DNS data from [31] of the veloc-
ity/ pressure-gradient correlations at a channel strain rate of A22t = 0. At this strain rate
value, the channel flow has no adverse pressure gradient, which results in a reduced flow
complexity in comparison to flows at higher strain rates. This simple flow will serve as
a benchmark to decide the applicability of the MLR method to the modeling of the VPG
correlations.

For each VPG correlation, the initial models found in previous works are compared to
the models found using the MLR procedure. Then, if the residual distributions indicate
that the models are unsatisfactory, adjustments are made to the list of regressors until a
satisfactory fit is found.

2.1. Πxy Correlations

Figure 2.1(a) compares the DNS data for the correlation Πxy from [31] (black dots) with
the model profile for this correlation (solid line) obtained using the Πxy model from [26]:

Πxy = −0.3DM
xy − 0.92DT

xy − 0.92Pxy. (2.1)

In Figure 2.1(b), the same DNS data are compared with the model from [27]:

Πxy = −0.3DM
xy − 0.8DT

xy − 0.92Pxy − 0.2DM
yy. (2.2)

In these figures and those that follow, all budget terms are normalized with respect to
friction velocity, uτ, and kinematic viscosity, ν.

Adding the term with molecular diffusion in (2.2) appears to improve the agreement
between the model profile and the DNS data near the channel wall (Fig. 2.1(b)). The
residual distribution near the wall also becomes more random (Fig. 2.1(e)) to compare with
that on Fig. 2.1(d). Nevertheless, residual distributions for both models are heteroscedastic
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(see Fig. 1.1 for reference), which indicates that these models are likely to be incomplete.
In figures 2.1(d)-2.1(f) and those below with the residual distributions, the parameter i runs
from 1 to 97, with i = 1 and 97 corresponding to locations at the channel wall and the
channel axis, respectively. MLR applied to the regressors of model (2.1) to clarify the
coefficient values gives the following expression:

Πxy = −0.276DM
xy − 0.757DT

xy − 0.908Pxy. (2.3)

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Comparison of the DNS (black dots) and model (solid lines) profiles for Πxy: (a), (b)
and (c). The residual distributions for models (2.1) - (2.3): (d), (e) and (f). Figures (a), (d) - model
(2.1); (b), (e) - model (2.2); (c), (f) – MLR fit (2.3).

Based on these observations, we increased the set of regressors to include all terms in
the Reynolds Stress Transport Equation, such as: turbulence production, molecular diffu-
sion, and turbulent diffusion. We then fit a MLR model with this new set of regressors to
obtain the following model:

Πxy = −0.212DM
xy − 0.790DT

xy − 0.934Pxy − 0.005Pxx − 0.003DT
xx − 0.064DT

yy+

0.552DM
yy + 0.242DT

zz + 0DM
xx + 0DM

zz .
(2.4)
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Visual comparison of the fit from model (2.4) with the DNS data does not reveal much
change in comparison to the results shown in Figures 2.1(b) and 2.1(c). However, there
is a clear improvement in the residual distribution as is illustrated in Figures 2.2(a) and
2.2(b). The magnitude of the residuals decreases significantly, and the residual distribution
become more homoscedastic for model (2.4).

(a) (b) (c)

Figure 2.2: Results for MLR fit model (2.4): a) comparison of the DNS profiles (circles) and MLR
fit model (2.4) (solid lines), b) and c) the residual distribution for model (2.4) with different scales.

In MLR fit (13), values of coefficients for DM
xx and DM

zz are shown as zero after rounding
to three figures after the decimal point. Due to their small contributions, these terms were
removed from the set of regressors as the next step. The resulting MLR fit is the following:

Πxy = −0.211DM
xy − 0.790DT

xy − 0.934Pxy − 0.005Pxx − 0.004DT
xx − 0.073DT

yy+

0.607DM
yy + 0.261DT

zz.
(2.5)

This procedure did not change values of the coefficients for the first four terms in (2.4)
and slightly altered the coefficients for the remaining four terms. The plots for this new
model are shown in Figure 2.3 and indicate no significant penalty in residual magnitude
or homoscedasticity as a result of removing the extraneous terms. To analyze the stability
of the coefficients in model (2.5), an MLR fit with the same regressors list was done using
data with 1000 additional flow realizations from [27], to generate the following model:

Πxy = −0.207DM
xy − 0.782DT

xy − 0.930Pxy − 0.004Pxx − 0.001DT
xx − 0.061DT

yy+

0.625DM
yy + 0.300DT

zz,
(2.6)
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with differing coefficient values from (2.5) shown in red. As shown in Figure 2.3, the
residual values for model (2.6) are reduced towards the channel wall and the residual dis-
tribution becomes more homoscedastic near the channel wall as well in comparison to (2.5).
Therefore, a longer simulation may lead to a more homoscedastic fit, which is expected as
computational systematic errors should decrease as variables converge further.

The heteroscedastic residual distribution near the channel axis can potentially be at-
tributed to the grid resolution used in DNS. The grid step in DNS [31], [33] increases
significantly from the channel wall to its axis (Fig. 5c). This rate may be too fast for ac-
curate calculation of the derivatives, whose values are close to zero. Additional studies are
required to quantify the effects of the grid resolution used in the DNS.

(a) (b) (c)

Figure 2.3: Results for MLR fits (2.5) and (2.6): (a) comparison of the DNS profiles (circles) and
the MLR fits (solid lines), (b) the residual distribution for (2.5), and (c) the residual distribution for
(2.6).

(a) (b) (c)

Figure 2.4: Budget terms in the Reynolds stress transport equations included as the regressors in (a)
MLR fit (2.5) using DNS data from [31] and (b) MLR fit (2.6) using DNS data from [33]. The grid
step growth used in DNS [31], [33] is shown in (c). Lines in (a) and (b): solid black - Pxy, dashed
black - Pxx, red - DM terms, blue solid - DT

xy, blue dashed - DT
xx, blue dashed-dotted - DT

yy, and blue
dashed-dot-dot - DT

zz.
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2.2. Effects of the Balance Errors on the Πxy Models

In the previous sections, the effect of inaccuracies in the DNS data has not been considered
when selecting the set of regressors used for creating a MLR model. However, the effect of
this inaccuracy is not negligible for modeling purposes [32]. In DNS datasets, the balance
errors account for the inaccuracy of terms in the transport equations (hereafter referred to
as budget terms). For example, in the budget of the shear stress ⟨uv⟩, the balance errors,
Errxy, are defined as Errxy = Pxy + Πxy + DT

xy + DM
xy − ϵxy.

Figure 2.5(a) shows shows that in the dataset [31], two molecular diffusion terms, DM
xy

and DM
yy used as regressors in the MLR fits for Πxy above are smaller than the balance errors

Errxy in the transport equation for this Reynolds stress. Their values exceed that of the
balance errors only close to the wall. Some of the turbulent diffusion terms, DT , are also
comparable in value with the balance errors in half of the flow area (not shown here). This
issue persists for all mentioned budget terms when using data from [33] where more flow
realizations were used to collect statistics (Figure 2.5(b)). Therefore, one should expect for
the coefficient values in any MLR fit to be affected by the DNS data inaccuracy.

(a) (b)

Figure 2.5: Molecular diffusion terms in the Reynolds stress transport equations in comparison with
Errxy, (a) DNS data [31], (b) DNS data [33]

16



(a) (b) (c)

Figure 2.6: Contributions airi (absolute values) in the MLR fit (2.5) (a) including contributions
from Pxy (black solid line) and DT

xy (blue solid line), (b) without contribution from Pxy, (c) without
contributions from Pxy and DT

xy. Other lines: black dashed - Pxx, red solid – DM
xy, red dashed-dotted

– DM
yy, blue dashed - DT

xx, blue dashed-dotted - DT
yy, and blue dashed-dot-dot - DT

zz

It was shown in [32] that adding the balance errors as an additional term when solv-
ing RANS equations with all terms but the molecular diffusion substituted with their DNS
profiles (RANS-DNS simulations), helps dramatically in obtaining the right solutions for
the equations. Following that approach, we propose to add the balance errors as re-
gressors in models for the VPG correlations with the purpose of determining more
accurate coefficients for the remaining terms. We hope these accurate coefficients will
allow for a physical interpretation of the model coefficients and provide information on the
contribution of each regressor to the VPG correlations.

Adding the balance error term, Errxy to the set of regressors used in model (2.3) and
applying MLR generates the following model:

Πxy = −0.314DM
xy − 0.766DT

xy − 0.919Pxy + 2.010 Errxy . (2.7)

In (2.7), the values of coefficients for DM
xy and Pxy are −0.143 and −0.919 to compare

with those in (2.3): −0.276 and −0.908, respectively. When rounded, these are the same
values that were used in models (2.1) and (2.2) obtained without using any algorithm. The
coefficient value in front of DT

xy is now 0.766, which falls between values used in (2.2) and
(2.3).

Figure 2.7 compares profiles ofΠMLR5
xy andΠ(M2)

xy (Figure 2.7(a)) and the terms 2.01 Errxy

in (2.7) and −0.2DM
yy in (2.2) (Figure 2.7(b)). The regression distributions for (2.2) and (2.7)

are compared in Figure 2.7(c). Figure 2.7 demonstrates that not only the residual values are
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reduced substantially for the MLR fit (2.7), but also the residual distribution for (2.7) tends
to be more homoscedastic to compare with that of (2.2). Therefore, the presence of DM

yy in
the set of regressors can be attributed to data inaccuracies rather than to physical processes,
and the data inaccuracies are better absorbed by the balance errors included in the model.

(a) (b) (c)

Figure 2.7: Comparisons of (a) MLR fits (2.2) and (2.7) for Πxy, (b) terms −0.2DM
yy in (2.2) and

2.01 Errxy in (2.7), and (c) residual distributions for (2.2) and (2.7). Lines: black for (2.2) and blue
for (2.7)

Following the procedure described above, we can understand the contribution of each
regressor used in (2.7), particularly the significance of small terms such as molecular dif-
fusions. Terms with small contribution are removed for the sake of model simplicity. First,
when removing DM

xy from the set of regressors in (2.7), the MLR fit is as follows:

Πxy = −0.822DT
xy − 0.914Pxy + 0.752 Errxy . (2.8)

Although model (2.8) fits the data well (Figure 2.8(a)), the fit has a poor residual distri-
bution near the wall region in comparison to model (2.7), as shown in Figure 2.8(d). This
indicates that although DM

xy has a small magnitude (comparable to that of balance errors),
its presence in the set of regressors is beneficial to the model.

Next, we will consider the effect of adding balance errors as regressors to the full set
of regressors used in model (2.4). The balance errors added correspond to the regressors in
the original list (i.e. Errxx is only added as a regressor if a term in this direction, like DM

xx,
is in the original regressors list). In this case, model (2.4) includes terms from the transport
equations for all Reynolds stresses as regressors, so each corresponding balance error is
added to the set of regressors. The fit with this set of regressors is as follows:

18



Πxy = −0.221DM
xy − 0.791DT

xy − 0.935Pxy − 0.005Pxx − 0.003DT
xx + 0.563DM

yy−

0.047DT
yy + 0.237DT

zz + 0DM
xx + 0.001DM

zz + 0.925 Errxy +

0.086 Errxx +0.294 Erryy −0.369 Errzz .

(2.9)

Results for this fit are shown in Figures 2.8(b) and 2.8(e).

Three terms in model (2.9), namely DM
xx, DT

xx, and DM
zz , have negligible contributions to

the fit as a result of the small coefficient values and are removed to produce the following
fit:

Πxy = −0.213DM
xy − 0.775DT

xy − 0.926Pxy − 0.002Pxx + 0.614DM
yy − 0.056DT

yy+

0.281DT
zz + 1.009 Errxy +0.096 Errxx +0.621 Erryy −0.223 Errzz .

(2.10)

The results for this model are very similar to those of model (2.9) and thus are not shown
here.

Note that balance errors should be included in the fit when the magnitude of the balance
errors is similar to that of a regressor in the same direction. In (2.10), the only term from
the Reynolds stress equation in the streamwise direction (xx) is Pxx which is significantly
larger than Errxx. Therefore, we expect that removing Errxx from the list of regressors
should have a minimal impact on the fit. This reduced MLR fit model is as follows:

Πxy = −0.212DM
xy − 0.779DT

xy − 0.925Pxy − 0.002Pxx + 0.613DM
yy − 0.059DT

yy+

0.296DT
zz + 0.918 Errxy +0.748 Erryy −0.224 Errzz .

(2.11)

As expected, this reduction step produced results similar to model (2.9) (Figures 2.8(c)
and 2.8(f) ). The removal of other terms was explored while seeking an improved fit, but
every option increased the heteroscedasticity of the residual distribution and the magnitude
of residual values. Therefore, model 2.11 is the current final selection for VPG correlation
Πxy.
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(a) (b) (c)

(d) (e) (f)

Figure 2.8: Comparisons of MLR fits and DNS data for Πxy: (a) model (2.7) (blue line) and model
(2.8) (black line), (b) model (2.4) and model (2.9), (c) model (2.11) and model (2.9), and the residual
distributions for (d) model (2.7) (blue dots) and model (2.8) (black dots), (e) model (2.4) (black dots)
and model (2.9) (blue dots), (f) model (2.11) (black dots) and model (2.9) (blue dots).

2.3. Πxx Correlations

In this section, we discuss the modeling of Πxx correlations using MLR, and the results are
compared with those of models (2.12) - (2.14) suggested in [26], [27].

Πxx = −0.78Πxy − 0.7Πyy − 0.25DT
xy + 0.01DM

xx, (2.12)

Πxx = −0.8Πxy − 0.6Πyy − 0.25DT
xy + 0.01DM

xx + 0.22DT
yy, (2.13)

Πxx = 0.25DM
xy + 0.65DT

xy + Pxy + 0.01DM
xx + 0.02Pxx + DT

yy − 0.6DT
zz. (2.14)

Results for model (2.12) are shown in Figure 2.9: the black line in Figure 2.9(a) are for
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the model profile and the black dots in Figure 2.9(b) are for the model residual distribution.

Now, the MLR fit for VPG correlation Πxx with the same regressors list as model (2.12)
is as follows:

Πxx = −0.753Πxy − 0.739Πyy − 0.265DT
xy + 0.007DM

xx. (2.15)

Applying MLR to this set of regressors made little difference to the fit, and the residual
distributions for models (2.12) and (2.15) (not shown here) are heteroscedastic and both
indicate that the set of regressors is incomplete. Similarly, changing the list of regressors to
match that of models (2.13) and (2.14) and fitting an MLR model resulted in heteroscedastic
residual distributions. The most improvement was observed with the full set of regressors:

Πxx = 0.860DM
xy + 0.608DT

xy + 1.002Pxy + 0.059DM
xx + 0.048DT

xx + 0.022Pxx − 2.387DM
yy

+1.673DT
yy − 0.153DM

zz − 1.900DT
zz.

(2.16)

Results for model (2.16) are shown in Figure 2.9 by the blue line in Figure 2.9(a) and
by the blue dots in Figure 2.9(b) for the model residual distribution. Notice that with all its
complexity, model (2.16) provides rather modest improvements. The values of model co-
efficients exceeding one are also difficult to interpret in terms of their relevance to physical
processes.

(a) (b) (c)

Figure 2.9: Comparisons of (a) model (2.12) with the MLR fits (2.16) and (2.17) forΠxx, (b) residual
distributions for (2.12) and (2.16), (c) residual distributions for (2.12) and (2.17). Lines/dots: black
for (2.12) and blue for (2.16) and (2.17).

Following the strategy suggested in the previous section, relevant balance errors were
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added to the fit and generated the following model:

Πxx = 0.911DM
xy + 0.597DT

xy + 0.950Pxy + 0.062DM
xx + 0.050DT

xx + 0.013Pxx − 2.500DM
yy

+ 1.718DT
yy − 0.161DM

zz − 2.079DT
zz + 0.348 Errxy +1.090 Errxx −4.875 Erryy −0.369 Errzz .

(2.17)

When compared with the DNS profile for Πxx, model (2.16) produced no significant
change from the MLR fit (2.16), as shown in Figure 2.9(a). However, the residual distri-
bution improves slightly as seen in Figure 2.9(c), where the residual distribution for model
(2.12) (black dots) is compared with that of (2.17) (blue dots). The model coefficients of
some small regressors such as DM

yy, DT
yy, and DT

zz, are still larger than one, which is likely to
be unphysical. This motivated us to explore the fit performance without these terms starting
from those in the spanwise direction (zz).

Removing all regressors in the spanwise direction from the preceding model results in
the following MLR model:

Πxx = −0.097DM
xy + 0.460DT

xy + 1.024Pxy + 0.005DM
xx − 0.012DT

xx + 0.044Pxx − 0.918DM
yy

+0.924DT
yy − 0.783 Errxy +0.746 Errxx −3.754 Erryy .

(2.18)

In the rest of the discussion for Πxx, the direct visual comparison of fits provides little
information because of small differences in the models. Therefore, these figures are omitted
and the residual distributions are analyzed, as they are more informative. For model (2.18),
the residual distribution is shown in Figure 2.10(a) by blue dots, and compared to the resid-
ual distribution for model (2.17) shown in black dots. This step does not affect the residual
distribution towards the channel wall, but the distribution becomes more heteroscedastic
towards the channel axis. On the other hand, the values of all model coefficients but that of
Pxy are now less than one and the model is simpler. The new fit also includes a very small
term (marked by in red in (2.18)), which is the next candidate for removal. This fit and two
more steps are shown below, with the terms being removed in each following fit indicated
in red:

Πxx = −0.079DM
xy + 0.489DT

xy + 0.999Pxy − 0.026DT
xx + 0.032Pxx + 0.007DM

yy + 0.853DT
yy

−1.233 Errxy +0.745 Errxx −3.774 Erryy,
(2.19)
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Πxx = −0.080DM
xy + 0.489DT

xy + 0.999Pxy − 0.026DT
xx + 0.032Pxx + 0.853DT

yy − 1.235 Errxy

+0.745 Errxx −3.777 Erryy,
(2.20)

Πxx = 0.487DT
xy + 0.991Pxy − 0.019DT

xx + 0.029Pxx + 0.872DT
yy − 2.157 Errxy +0.599 Errxx

−4.288 Erryy .
(2.21)

The residual distributions for models (2.19)-(2.21) are shown in Figures 2.10(a)-2.10(d)
by blue dots. Notice that all terms removed in (2.18)-(2.20) are those associated with
molecular diffusion. It would be tempting at this point to conclude that the model for
the Πxx correlation should not include a molecular diffusion term. However, adding the
molecular diffusion term in the spanwise direction along with the corresponding balance
error to the list of regressors:

Πxx = 0.357DT
xy + 0.926Pxy − 0.031DT

xx + 0.016Pxx + 0.911DT
yy + 0.009DM

zz

−0.662 Errxy +0.698 Errxx −6.704 Erryy −2.227 Errzz,
(2.22)

improves the residual distribution scedasticity near that channel axis (2.12(e)). Whether
these improvements correspond to a physical phenomenon has yet to be confirmed by test-
ing the model in other flow geometries.
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(a) (b) (c)

(d) (e)

Figure 2.10: Residual distributions of MLR fits (2.18)-(2.22) for Πxx (blue dots) in comparison with
that of (2.17) (black dots): (a) model (2.18), (b) model (2.19), (c) model (2.20), (d) model (2.21),
(e) model (2.22).

Notice that variations in the models and in the MLR fits have little effect on the residual
distribution near the channel axis, similar to what was observed when modeling Πxy. This
is another confirmation that this error source is not relevant to modeling, but to the DNS
data used.

2.4. Πyy Correlations

In this section the modeling VPG correlation in the wall-normal direction, Πyy, is consid-
ered. The original model used for reference is that proposed in [27]:

Πyy = −0.47DT
xy − 0.45Pxy − 0.031Pxx + 0.2DM

yy − 1.35DT
yy + 1.15DT

zz, (2.23)

with results shown in Figures 2.11(a) (black line) and 2.11(b) (black dots). Applying MLR
to the same set of regressors as model (2.23) results in the following model:
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ΠMLR1
yy = −0.469DT

xy − 0.444Pxy − 0.030Pxx + 0.140DM
yy − 1.388DT

yy + 1.109DT
zz. (2.24)

The resulting coefficients for model (2.24) are very similar to those of (2.23), and do
not lead to any significant difference in results, so the plots are not shown here.

The MLR fit for Πyy with the full set of regressors is as follows:

Πyy = −0.150DM
xy − 0.486DT

xy − 0.447Pxy − 0.008DM
xx − 0.014DT

xx − 0.032Pxx + 0.358DM
yy

−1.468DT
yy + 0.021DM

zz + 1.228DT
zz.

(2.25)
The results for model (2.25) are shown in Figure (2.25) are shown by a blue line and
blue dots. Comparing the residual distribution of (2.25) with that of (2.23) shows that
the increase in model complexity is not beneficial to the model as the residual magnitude
and scedasticity remain relatively unchanged. Now, adding balance errors to the list of
regressors results in the following fit:

Πyy = −0.133DM
xy − 0.475DT

xy − 0.426Pxy − 0.007DM
xx − 0.010DT

xx − 0.027Pxx + 0.329DM
yy

− 1.464DT
yy + 0.017DM

zz + 1.255DT
zz + 0.193 Errxy −0.400 Errxx +1.521 Erryy +0.217 Errzz .

(2.26)
This increase in complexity also does little to improve the results (Figure 2.11(c)).

(a) (b) (c)

Figure 2.11: Comparisons of (a) model (2.23) with the MLR fits (2.25) and (2.26) for Πyy with
DNS data as black dots, (b) residual distributions for (2.23) and (2.25), (c) residual distributions for
(2.23) and (2.26). Lines/dots: black for (2.23) and blue for (2.25) and (2.26).

The set of regressors in the MLR fit for Πyy can be clarified following the same proce-
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dure suggested in the previous section, that is, by recognizing that in (2.26), there are small
terms and some of them have coefficients larger than one. Such terms are removed starting
from those in the spanwise (zz) direction. In the fits below, the terms to be removed next
are marked in red:

Πyy = −0.002DM
xy − 0.391DT

xy − 0.494Pxy − 0.001DM
xx − 0.010DT

xx − 0.058Pxx + 0.333DM
yy−

1.076DT
yy + 0.694 Errxy −0.121 Errxx +1.209 Erryy,

(2.27)

Πyy = −0.390DT
xy − 0.494Pxy−0.001DM

xx − 0.010DT
xx − 0.058Pxx + 0.326DM

yy − 1.076DT
yy+

0.688 Errxy −0.121 Errxx +1.208 Erryy,
(2.28)

Πyy = −0.387DT
xy − 0.498Pxy−0.012DT

xx − 0.059Pxx − 0.193DM
yy − 1.087DT

yy+

0.629 Errxy −0.120 Errxx +1.2087 Erryy,
(2.29)

Πyy = −0.343DT
xy − 0.482Pxy − 0.054Pxx − 0.340DM

yy − 1.036DT
yy+

1.499 Errxy −0.008 Errxx + 1.946 Erryy,
(2.30)

Πyy = −0.343DT
xy − 0.482Pxy − 0.054Pxx−0.339DM

yy − 1.036DT
yy+

1.505 Errxy +1.934 Erryy,
(2.31)

Πyy = −0.299DT
xy − 0.471Pxy − 0.052Pxx − 1.040DT

yy+

2.655 Errxy +3.240 Erryy .
(2.32)
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.12: Residual distributions of MLR fits (2.27)-(2.32) for Πyy (blue dots) in comparison with
that of (2.26) (black dots): (a) model (2.27), (b) model (2.28), (c) model (2.29), (d) model (2.30),
(e) model (2.31), (f) model (2.32), (g) model (2.33).

Similar to the previous section, balance error Errxx is removed from the set of regressors
since balance errors should only be included in a model if small terms, such as molecu-
lar and turbulent diffusions, are among the regressors. In (2.30), the only term from the
Reynolds stress transport equation in the streamwise direction (xx) is the production, Pxx,
which is large in comparison to Errxx.

Figure 2.12(g) shows the results of adding the turbulent diffusion in the spanwise direc-
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tion (along with the relevant balance error) to the fit:

Πyy = −0.448DT
xy − 0.448Pxy − 0.033Pxx − 1.326DT

yy + 0.903DT
zz

0.377 Errxy +0.461 Erryy +0.061 Errzz .
(2.33)

This step helps to reduce the magnitude of the residuals and produces a residual distri-
bution almost identical to that of (2.26) without the additional complexity. The coefficients
in model (2.33) all have magnitude less than one except for the turbulent diffusion in the
wall-normal direction, DT

yy. This is something that should be explored in future studies.

Model (2.33) has no contribution from molecular diffusion in the plane of flow develop-
ment, but it does have a contribution from the turbulent diffusion in the spanwise direction,
similar to Πxx. This is in contrast to the fit for Πxy where both molecular and turbulent
diffusions were found to be of importance.

2.5. Πzz Correlations

In this section, modeling the VPG correlation in the spanwise direction, Πzz, is considered.
The initial model is the three-regressor model found in [23]:

Πzz = −0.500DT
zz + 0.025Pxx − 0.550Pxy. (2.34)

The plot and residual distribution for this model are shown in Figure 2.13 as black lines
and black dots respectively. Now, applying MLR to the same set of regressors as model
(2.34) results in the following model:

Πzz = −5.402DT
zz − 0.043Pxx − 0.564Pxy. (2.35)

The plot and residual distribution for this model are shown in Figure 2.13 as blue lines and
blue dots respectively.
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(a) (b)

Figure 2.13: Comparison of models (2.34) and (2.34): (a) black lines: plot of model (2.34), blue
lines: plot of model (2.35), DNS data: black dots; (b) black dots: residual distribution for model
(2.34), blue dots: residual distribution for model (2.35).

In model (2.35), the coefficient for turbulent diffusion DT
zz, −5.402, has a magnitude

greater than one and is thus unphysical. In an attempt to mitigate this, the balance error
term Errzz was added to the regressors list but had an adverse effect, since the fit was worse
(not shown here).

Πzz = −0.628Pxy − 0.071Pxx − 5.384DT
zz − 6.449 Errzz . (2.36)

Adding the Errxy term to the regressors was not considered because the only term in
that direction is the production term, Pxy (which is large in magnitude).

In [27] another model for this correlation with more complexity was considered:

Πzz = −1.55DM
xy − 0.5DT

xy − 0.54Pxy + 0.045DM
xx − 0.05DT

xx + 0.015Pxx − 0.07DM
zz − 2.6DT

zz.

(2.37)
Applying MLR to the full set of regressors results in the following model:

Πzz = −0.030DM
xy − 0.517DT

xy − 0.313Pxy + 0.132DM
xx + 0.112DT

xx + 0.118Pxx−

0.511DM
yy − 0.051DT

yy − 0.333DM
zz + 0.529DT

zz.
(2.38)
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(a) (b)

Figure 2.14: Comparison of models (2.36) and (2.37): (a) black lines: plot of model (2.37), blue
lines: plot of model (2.36), DNS data: black dots; (b) black dots: residual distribution for model
(2.37), blue dots: residual distribution for model (2.36).

The results shown in Figure 2.14 indicate there was a significant improvement in the fit
from model 2.37 when MLR is applied to the full set of regressors, as the residual mag-
nitude decreases significantly. This improvement shows not only the benefit of applying
MLR to the model, but also the importance of the terms in the wall-normal direction (yy)
that are missing in model 2.37.

Adding relevant errors to the regressors list results in the following model:

Πzz = 0.229DM
xy − 0.441DT

xy − 0.267Pxy + 0.151DM
xx + 0.144DT

xx + 0.135Pxx − 0.997DM
yy

+0.047DT
yy − 0.384DM

zz − 0.741DT
zz + 0.078 Errxy −0.582 Errxx −0.151 Erryy +1.741 Errzz .

(2.39)
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(a) (b)

Figure 2.15: Comparison of models (2.38) and (2.39): (a) black lines: plot of model (2.38), blue
lines: plot of model (2.39), DNS data: black dots; (b) black dots: residual distribution for model
(2.38), blue dots: residual distribution for model (2.39).

Note all terms representing physical processes in this model only have coefficients with
magnitudes less than one. From Figure 2.15, it is apparent that adding the balance errors
slightly improved the residual distribution towards the channel axis (large y+ values), but
not as much towards the channel wall.

Now, we are interested in removing extraneous regressors that have little impact on
the fit residual distribution for the sake of simplifying the model. The present approach
consists of removing one regressor term at a time and comparing the newly generated
residual distribution with that generated using the original regressors list. At each step,
every term in the regressor list is removed individually, then replaced when another term is
being considered for removal. A term is removed when its removal has the least impact on
the quality of the residual distribution in comparison to other terms. The first iteration in
this process results in the following MLR model, where DT

yy is removed from (2.39):

Πzz = 0.170DM
xy − 0.454DT

xy − 0.267Pxy + 0.147DM
xx + 0.139DT

xx + 0.135Pxx − 0.891DM
yy

−0.374DM
zz − 0.629DT

zz + 0.003 Errxy −0.599 Errxx −0.234 Erryy +1.683 Errzz .
(2.40)

As evidenced by Figure 2.16, the removal of this term has very little impact on the residual
distribution, and most of the discrepancy comes near the channel wall.
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Figure 2.16: Comparison of residual distributions: black - model (2.40), blue - model (2.39)

Following the same procedure with (2.40) as the original fit, it was determined that
removing DM

xy had the least effect on the residual distribution. The resulting MLR model is
as follows:

Πzz = −0.464DT
xy − 0.277Pxy + 0.139DM

xx + 0.128DT
xx + 0.131Pxx − 0.958DM

yy

−0.349DM
zz − 0.658DT

zz + 0.164 Errxy −0.569 Errxx −0.156 Erryy +1.530 Errzz .
(2.41)

Figure 2.17: Comparison of residual distributions: black - model (2.41), blue - model (2.39)

Figure 2.17 shows that the removal of DM
xy from (2.40) results in a small discrepancy in

the model quality with respect to model (2.39).

Further simplification indicated that two more terms, namely DM
yy and Erryy, could be

removed from the regressors list without sacrificing fit quality. With this step, the fit no
longer depends on terms in the wall-normal direction (yy). Removal of any additional
terms resulted in a reduction of fit quality, so the final model for Πzz in this section is as
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follows:

Πzz = −0.426DT
xy − 0.317Pxy + 0.131DM

xx + 0.115DT
xx + 0.114Pxx − 0.330DM

zz

−0.752DT
zz + 0.558 Errxy −0.504 Errxx +1.040 Errzz .

(2.42)

(a) (b)

Figure 2.18: Comparison of models (2.42) and (2.39): (a) black lines: plot of model (2.42), blue
lines: plot of model (2.39), DNS data: black dots; (b) black dots: residual distribution for model
(2.42), blue dots: residual distribution for model (2.39).

The final model has deficiencies near the wall in comparison to model (2.39), evidenced
by the increase in residual magnitude, but overall has similar scedasticity and remains in
the same order of magnitude.
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Part II

Generalization of Model Coefficients
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3. METHODS

The results found in Part I indicate that there is great potential in the application of
the MLR procedure to developing linear models that describe the VPG correlations using
terms in the Reynolds stress transport equations. However, the models developed in the
previous section were developed for a turbulent flow without complex conditions such as
flow separation and adverse pressure gradients. Hence, the goal in the present chapter is
to develop a "universal" model for each VPG correlation that is linear in nature and whose
coefficients do not vary when complex conditions arise in a flow.

The DNS data from [31] provides flow parameters at progressively more complex flow
states in "time" increments A22t. The variable A22t acts as an indicator of the strain value
of the channel, and an increasing strain value corresponds to an increasing adverse pres-
sure gradient, with flow separation occurring at A22t = 0.675. Here, we analyze 6 spe-
cific instances of the flow at strain values of A22t = 0 (unstrained), 0.020, 0.281, 0.365,
0.675, and 0.772.

We now seek a single model that performs well at every strain value without changing
model coefficients that provides an appropriately small residual distribution magnitude and
acceptable scedasticity, for a given VPG correlation. Intuitively this avenue of modeling
the VPG correlations seems far-fetched because of the rigid and simple nature of the linear
models, and there is no guarantee that a single model will produce adequate results at all
strain values.

In this chapter, the Least Sum of Least Squares Method is introduced and applied to
develop universal linear models for each VPG correlation. The accuracy and viability of
applying this method is assessed by analyzing the residuals of the models with regards to
the data.

3.1. Least Sum of Least Squares (LSLS)

In the previous section, the least squares method was applied to minimize the sum of the
squared errors between a VPG model and a single data set. In this section, we are seeking
to minimize the sum of the squared errors over multiple data sets simultaneously to develop
a universal model for a given VPG correlation.
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This problem for an arbitrary observed variable, Θ, can be written symbolically as
follows:

minimize
a,b,c,···

S (a, b, c, · · · ) =
D∑︂

j=1

N∑︂
i=1

(Θ( j)
i − ax( j)

1i − bx( j)
2i − cx( j)

3i − · · · )
2, (3.1)

where: S = sum of the squared errors over D data sets of the model with
coefficients a, b, c, · · · and regressors x

D = total number of data sets
N = number of entries in each vector, i.e. length of the vectors
a, b, c, · · · = constant coefficients corresponding to each regressor in the

model
x( j)

ri = ith entry of rth regressor from jth data set
Θ

( j)
i = ith entry of observed variable vector from jth data set.

From elementary calculus, assuming S is differentiable, the solution to this problem
occurs when:

∂S
∂a
=
∂S
∂b
=
∂S
∂c
= · · · = 0. (3.2)

Differentiating (3.1) according to (3.2) results in a system of linear equations:

∂S
∂a
=

D∑︂
j=1

N∑︂
i=1

2(Θ( j)
i − ax( j)

1i − bx( j)
2i − cx( j)

3i − · · · )x( j)
1i = 0

∂S
∂b
=

D∑︂
j=1

N∑︂
i=1

2(Θ( j)
i − ax( j)

1i − bx( j)
2i − cx( j)

3i − · · · )x( j)
2i = 0

∂S
∂c
=

D∑︂
j=1

N∑︂
i=1

2(Θ( j)
i − ax( j)

1i − bx( j)
2i − cx( j)

3i − · · · )x( j)
3i = 0

...

(3.3)
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Now, (3.3) can be rewritten as:

∂S
∂a
=

D∑︂
j=1

N∑︂
i=1

Θ
( j)
i x( j)

1i − a
D∑︂

j=1

N∑︂
i=1

x( j)
1i x( j)

1i − b
D∑︂

j=1

N∑︂
i=1

x( j)
2i x( j)

1i − c
D∑︂

j=1

N∑︂
i=1

x( j)
3i x( j)

1i − · · · = 0

∂S
∂b
=

D∑︂
j=1

N∑︂
i=1

Θ
( j)
i x( j)

2i − a
D∑︂

j=1

N∑︂
i=1

x( j)
1i x( j)

2i − b
D∑︂

j=1

N∑︂
i=1

x( j)
2i x( j)

2i − c
D∑︂

j=1

N∑︂
i=1

x( j)
3i x( j)

2i − · · · = 0

∂S
∂c
=

D∑︂
j=1

N∑︂
i=1

Θ
( j)
i x( j)

3i − a
D∑︂

j=1

N∑︂
i=1

x( j)
1i x( j)

3i − b
D∑︂

j=1

N∑︂
i=1

x( j)
2i x( j)

3i − c
D∑︂

j=1

N∑︂
i=1

x( j)
3i x( j)

3i − · · · = 0

...
(3.4)

To simplify the visual appearance of (3.4), let us define two terms as follows:

Zrs =

D∑︂
j=1

N∑︂
i=1

x( j)
ri x( j)

si =

D∑︂
j=1

x( j)
r · x

( j)
s

and

Yw =

D∑︂
j=1

N∑︂
i=1

Θ
( j)
i x( j)

wi =

D∑︂
j=1

Θ( j) · x( j)
w .

Note that Zrs and Yw are both scalars and Zrs = Zsr.

Then, (3.4) can be rewritten as:

∂S
∂a
= Y1 − aZ11 − bZ21 − cZ31 − · · · = 0

∂S
∂b
= Y2 − aZ12 − bZ22 − cZ32 − · · · = 0

∂S
∂c
= Y3 − aZ13 − bZ23 − cZ33 − · · · = 0

...

(3.5)

Or more compactly as:
Y = AZ, (3.6)
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where: Y =
[︂
Y1 Y2 Y3 · · ·

]︂

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Z11 Z12 Z13 · · ·

Z21 Z22 Z23 · · ·

Z31 Z32 Z33 · · ·

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A =

[︂
a b c · · ·

]︂
.

Thus, A can be obtained as follows:

A = YZ−1. (3.7)

This "least sum of least squares" procedure minimizes the sum of the sum of least squares
for a model over multiple data sets, thus generating one model which provides the best
linear fit for multiple data sets simultaneously.

The calculations used for the model development as described in this section were com-
pleted using MATLAB [34].

3.2. Regressor List Reduction Procedure

Increasing the list of regressors used in a model of a VPG correlation often results in di-
minishing returns, such that adding more regressors does not improve the fit quality so the
increase in model complexity is not justified. In this study, a procedure informed by the
Mean Squared Error (MSE) for systematically removing regressors from a list of regressors
with little impact on the fit quality is used. In this procedure, only budget terms from the
Reynolds stress transport equations, referred to as "primary regressors" in this work, will
be considered for removal. Balance error terms, also referred to as "secondary regressors"
in this study, are not considered for removal in the reduction procedure. Relevant balance
error terms are added after the list of primary regressors is established.

MSE between two vectors, a and b, each of length n is defined as:

MSE(a, b) △=
1
N

n∑︂
i=1

(ai − bi)2 . (3.8)

Note that MSE takes the square of each error, meaning it heavily weighs large errors, so
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poor agreement between the two vectors will be more visible.

In the present application, the regressor list reduction procedure should be informed by
errors in models from multiple data sets simultaneously to reduce the errors in the universal
model. Therefore, we introduce a parameter,Ω(s), defined as the sum of the MSEs resulting
from removing regressor s from the list of regressors over all data sets. Symbolically, this
can be expressed as:

Ω(s) △=
D∑︂

j=1

MSE
(︂
Θ( j), ŷ( j)

R∼s

)︂
, (3.9)

where: s = parameter being considered for removal from regressor list
D = total number of data sets
MSE(a,b) = mean squared error between vectors a and b
Θ( j) = observed variable vector from jth data set
R = list of regressors
ŷ( j)

R∼s = MLR model obtained with the regressor list R where regressor
s is removed, using data set j.

Note that all MLR models, ŷ( j)
R∼s, have different coefficients as they are fit individually

to Θ( j) vectors from different data sets. The parameter Ω(s) is beneficial in this application
because it takes into account model deficiencies from all data sets simultaneously, giving
increased attention to outliers. In the future, it will also be interesting to use the absolute
value, or the "Manhattan distance", between the model and prediction as a metric instead
of the MSE, but this is not explored in this study.

Then, the regressor, r, in the regressor list, R, that minimizes Ω(s):

r = argmin
s∈R

Ω(s). (3.10)

is removed from the list.

Now, a rigorous procedure must be established to determine how many regressors
should be removed from a list. For this reason, the LSLS loss metric, L, is defined as
follows:

L =

∑︁D
j=1

∑︁N
i=1(Θ( j)

i − ax( j)
1i − bx( j)

2i − cx( j)
3i − · · · )

2∑︁D
j=1

∑︁N
i=1

(︂
Θ

( j)
i

)︂2 , (3.11)
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where: D = total number of data sets
N = number of entries in each vector, i.e. length of the vectors
a, b, c, · · · = constant coefficients corresponding to each regressor in the

LSLS model
x( j)

ri = ith entry of rth regressor from jth data set
Θ

( j)
i = ith entry of observed variable vector from jth data set.

This loss metric quantifies the agreement between the LSLS model and the data for all
data sets, so as the model complexity is reduced through the reduction of the regressors list
it is expected that L increases. When all regressors are removed from the model, the value
of L is 1. Note that the parameter L is based on the agreement between the LSLS model
and the data, whereas the parameter Ω(s) is based on the agreement between individual
MLR fits and the data. The stepwise reduction procedure is stopped once L is large (as
defined in the Results section), which implies that the model no longer describes the data
appropriately. In a later study, it will be interesting to use L as the regressor reduction
parameter instead of Ω(s).

The calculations used for the model development as described in this section were com-
pleted using MATLAB [34].
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4. RESULTS

4.1. LSLS Applied to Modeling Πxy

This section describes the application of the LSLS method to modelling theΠxy VPG corre-
lation. The full set of regressors was determined in a preliminary study and includes other
VPG correlations as well as turbulent and molecular diffusion terms in the RANS equations
for all Reynolds stresses, for a total of 11 regressors.

The initial model forΠxy with the full set of primary regressors obtained using the LSLS
procedure described in the previous section takes the following form:

Πxy = −0.780Πxx − 0.162Πyy + 0.357Πzz − 0.239DT
xy − 0.015DT

xx+

0.465DT
yy + 0.491DT

zz + 0.281DM
xy − 0.014DM

xx − 0.069DM
yy + 0.029DM

zz .
(4.1)

(a) (b)

Figure 4.1: Results from model (4.1): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

Figure 4.1 demonstrates that this LSLS model is indeed a good fit for the VPG correla-
tion Πxy at various strain values. However, the residual distributions are heteroscedastic at
all considered strain values.

As the next step, the list of regressors was increased by adding the error terms (sec-
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ondary regressors). At the same time, the coefficients from model (4.1) for the primary
regressors remain unchanged. Note the coefficients for the secondary regressors are found
using MLR at each strain value individually. The coefficients for these fits at each strain
value are presented in Table 4.1.

Table 4.1: Values of coefficients on secondary regressors corresponding to model (4.1)

Errxy Errxx Erryy Errzz

Unstrained -1.628 -0.149 3.134 0.765
0.002 -1.395 -0.077 -2.081 -0.106
0.281 1.294 0.266 -0.973 0.196
0.365 0.679 0.190 -0.449 -0.310
0.675 -0.810 -0.135 0.555 -0.756
0.772 -0.912 -0.158 1.824 -1.097

The resulting fits for these models are shown in Figure 4.2. The results show that
the models with the error terms added to the regressors list have improved the residual
distribution, especially in the near-wall region, but also outside. The residual distributions
become more homoscedastic for all strain values.

(a) (b)

Figure 4.2: Results from model (4.1) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

Now, it is of interest to simplify the model as much as possible by reducing the regres-
sors from the list. This step will be done using the stepwise reduction procedure outlined
in Section 3.2. Note again that the reduction procedure is only implemented to the primary
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regressors. The secondary regressors included in the model are adjusted later based on the
remaining primary regressors.

The values of Ω(s) for the full set of regressors are shown in Table 4.2:

Table 4.2: Ω(s) values corresponding to regressors in model (4.1)

s Πxx Πyy Πzz DT
xy DT

xx DT
yy

Ω(s) 1.965e-6 0.876e-6 0.942e-6 1.223e-6 0.942e-6 0.836e-6

s DT
zz DM

xy DM
xx DM

yy DM
zz

Ω(s) 0.848e-6 0.895e-6 0.863e-6 0.959e-6 0.864e-6

From the table, the term with the smallest Ω(s) value is DT
yy, meaning that the removal

of this term will have the least immediate impact on the fit based on the MSE of the MLR
models at each strain value. Therefore, in the next step, the LSLS procedure is used on the
original set of regressors removing DT

yy, to obtain the following model:

Πxy = −0.898Πxx − 0.465Πyy + 0.372Πzz − 0.349DT
xy − 0.016DT

xx+

1.088DT
zz + 0.342DM

xy − 0.015DM
xx + 0.317DM

yy + 0.031DM
zz .

(4.2)

This procedure will be iteratively repeated until a satisfactory model is found. Results
from model (4.2) are shown in Figure 4.3. The residual distribution for model (4.2) is
noticeably worse than that of model (4.1), but the model still shows acceptable agreement
with the DNS data (Figure 4.3(a)).
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(a) (b)

Figure 4.3: Results from model (4.2): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

Similar to the previous step, the relevant balance errors were added to the list of regres-
sors to generate the models in Table 4.3.

Table 4.3: Values of coefficients on secondary regressors corresponding to model (4.2)

Errxy Errxx Erryy Errzz

Unstrained -1.756 -0.400 1.832 0.841
0.002 -0.997 0.149 -2.601 -0.900
0.281 1.024 0.189 -0.290 0.221
0.365 0.513 0.098 0.125 -0.250
0.675 -0.872 -0.070 2.290 -1.407
0.772 -1.097 0.114 2.620 -1.858

The results for these models are shown in Figure 4.4. Again, the addition of the sec-
ondary regressors to the regressors list is beneficial to the fit, as the residual magnitudes
and scedasticities improved for all strain values.
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(a) (b)

Figure 4.4: Results from model (4.2) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

Now, to reduce the model again, a similar procedure is done as before. The Ω(s) are
shown in Table 4.4:

Table 4.4: Ω(s) values corresponding to regressors in model (4.2)

s Πxx Πyy Πzz DT
xy DT

xx

Ω(s) 0.281e-3 0.274e-3 0.284e-3 0.290e-3 0.272e-3

s DT
zz DM

xy DM
xx DM

yy DM
zz

Ω(s) 0.271e-3 0.270e-3 0.295e-3 0.292e-3 0.299e-3

The results in the table indicate DM
xy is the next term to be removed from the regressors

list. The new model generated with the updated regressors list is:

Πxy = −0.934Πxx − 0.490Πyy + 0.327Πzz − 0.349DT
xy−

0.0250DT
xx + 1.027DT

zz − 0.026DM
xx + 0.231DM

yy + 0.059DM
zz .

(4.3)

Results from model (4.3) are shown in Figure 4.5. Figure 4.5 indicates that this removal
step has very little impact on the fit, as the result is very similar to that from model (4.2).
Further, the effect is only slighty noticeable in the residual distribution (4.5(b)).
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(a) (b)

Figure 4.5: Results from model (4.3): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

Now, adding the relevant secondary regressors and fitting these terms with MLR gen-
erates the models in Table 4.5:

Table 4.5: Values of coefficients on secondary regressors corresponding to model (4.3)

Errxy Errxx Erryy Errzz

Unstrained -1.503 -0.485 2.101 0.855
0.002 -0.585 0.191 -2.326 -1.071
0.281 0.809 0.149 -0.418 0.248
0.365 0.210 0.035 -0.053 -0.166
0.675 -1.246 -0.161 2.244 -1.339
0.772 -1.440 0.032 2.460 -1.866

The results for these models are shown in Figure 4.6.
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(a) (b)

Figure 4.6: Results from model (4.3) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

Model (4.3) as well as the models with errors added still agree with the DNS data, so
the reduction procedure can be implemented again. The Ω(s) values at this step are shown
in Table 4.6, and indicate that the regressor DT

zz can be removed.

Table 4.6: Ω(s) values corresponding to regressors in model (4.3)

s Πxx Πyy Πzz DT
xy DT

xx

Ω(s) 0.281e-3 0.278e-3 0.302e-3 0.311e-3 0.273e-3

s DT
zz DM

xx DM
yy DM

zz

Ω(s) 0.271e-3 0.295e-3 0.299e-3 0.299e-3

Following the reduction procedure then implementing LSLS generates the following
model, with results shown in Figure 4.7:

Πxy = −0.929Πxx − 0.414Πyy + 0.224Πzz − 0.214DT
xy − 0.017DT

xx − 0.016DM
xx

−0.030DM
yy + 0.046DM

zz .
(4.4)
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(a) (b)

Figure 4.7: Results from model (4.4): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

From this figure we see that this removal step resulted in a noticeable increase in het-
eroscedasticity, but the residual magnitude stays similar (note the change in the vertical
axis of the residual plots). Adding errors to the list of regressors as before results in the
models shown in Table 4.7:

Table 4.7: Values of coefficients on secondary regressors corresponding to model (4.4)

Errxy Errxx Erryy Errzz

Unstrained -5.612 -0.628 0.451 3.702
0.002 -0.951 0.737 -5.147 -1.931
0.281 1.694 0.308 0.346 0.155
0.365 1.748 0.558 2.491 -1.939
0.675 0.944 -0.267 1.833 -0.623
0.772 -2.514 -0.494 1.052 -1.810

The results of these models (Figure 4.8) show an improvement in the residual scedastic-
ity when the error terms are added. Interestingly, the residual magnitude reduces noticeably
for terms at later strain values. This implies that the models actually perform better at con-
ditions where the flow complexities are further developed.
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(a) (b)

Figure 4.8: Results from model (4.4) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

At this point in the modeling, the fits still agree well with the DNS data, as indicated by
Figure 4.7, so the reduction process is continued for another iteration. The Ω(s) values for
this step are shown in Table 4.8, and indicate that the regressor DT

xx can be removed.

Table 4.8: Ω(s) values corresponding to regressors in model (4.4)

s Πxx Πyy Πzz DT
xy

Ω(s) 0.285e-3 0.279e-3 0.313e-3 0.312e-3

s DT
xx DM

xx DM
yy DM

zz

Ω(s) 0.273e-3 0.341e-3 0.344e-3 0.344e-3

The resulting model, with four terms removed and results shown in Figure 4.9, is as
follows:

Πxy = −1.025Πxx − 0.552Πyy + 0.165Πzz − 0.211DT
xy − 0.005DM

xx

+0.070DM
yy + 0.018DM

zz .
(4.5)
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(a) (b)

Figure 4.9: Results from model (4.5): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

At this point, the fits are noticeably different from the DNS data for all strain values.
Now, adding error terms to the list of regressors results in the models shown in Table 4.9:

Table 4.9: Values of coefficients on secondary regressors corresponding to model (4.5)

Errxy Errxx Erryy Errzz

Unstrained -6.040 -0.793 0.101 3.760
0.002 -1.281 0.563 -4.916 -1.496
0.281 2.030 0.474 1.009 -0.367
0.365 1.974 0.652 2.603 -2.107
0.675 0.594 -0.108 1.912 -1.059
0.772 -2.314 -0.279 0.998 -1.974

The results for these models are shown in Figure 4.10. Adding error terms to the list
of regressors again significantly improved the fits over all strain values. Additionally, the
residual distributions have similar magnitude to those in the previous model with error
terms, implying that the negative effects of this removal step can be mitigated by the addi-
tion of error terms to the regressors.
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(a) (b)

Figure 4.10: Results from model (4.5) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

Continuing the reduction procedure one more step produces a model with results shown
in Figure 4.11. The results indicate that the performance of this model is noticeably worse
for all strain values. Therefore, model (4.4) is the final universal model for this VPG
correlation.

(a) (b)

Figure 4.11: Results from model with 5 terms removed: a) comparison of model (lines) and DNS
data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – ,
A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

Now the LSLS loss, L, is used to establish a rigorous stopping point for the reduction
procedure for other correlations. The stepwise procedure of removing regressors is contin-
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ued (not shown) until all regressors are removed from the list. The resulting values of L
are shown in Table 4.10 and Figure 4.12 below. Note that the row with 11 terms removed
describes the metricL for the model with no regressors, which predicts 0 at all points. This
serves as a lower bound for model performance and therefore corresponds to 100% loss.

The loss is calculated for the models with secondary regressors as well:

LErr =

∑︁D
j=1

∑︁N
i=1(Θ( j)

i − ax( j)
1i − bx( j)

2i − cx( j)
3i − · · · − α

( j) E( j)
1i −β

( j) E( j)
2i −γ

( j) E( j)
3i − · · · )

2∑︁D
j=1

∑︁N
i=1(Θ( j)

i )2

(4.6)

where: D = total number of data sets,
N = number of entries in each vector, i.e. length of the vec-

tors,
a, b, c, · · · = constant coefficients corresponding to each regressor in

the LSLS model,
α( j), β( j), γ( j),· · · = constant coefficients corresponding to each secondary re-

gressor in the model for jth dataset,
E( j)

ri = ith entry of rth secondary regressor from jth data set,
x( j)

ri = ith entry of rth regressor from jth data set,
Θ

( j)
i = ith entry of observed variable vector from jth data set.

and is also shown in Table 4.10 and Figure 4.12 as LErr.
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Table 4.10: Table showing values of L and LErr for Πxy corresponding to the number of terms
removed.

Model # of terms removed L(%) LErr(%)
(4.1) 0 0.14 0.07
(4.2) 1 0.17 0.09
(4.3) 2 0.18 0.10
(4.4) 3 0.29 0.13
(4.5) 4 0.33 0.17

5 0.74 0.47
6 3.49 2.58
7 3.79 2.96
8 3.91 3.09
9 11.23 6.32
10 15.31 13.24
11 100 100

Figure 4.12: Values of L (shown as – –) and LErr (shown as – –) for Πxy vs. number of terms
removed.

As evidenced by Table 4.10 and Figure 4.12, L provides similar information as LErr

while being simpler to calculate. Therefore in future sections, L is used to determine the
threshold for determining when to stop the reduction procedure. The results for Πxy shown
in Figures 4.1-4.11 indicate that the model performance reduces significantly after five
terms are removed. Hence, the proposed threshold for L is 0.5%.
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4.2. LSLS Applied to Modeling Πxx

This section consists of an analysis similar to that in the previous section, but for the VPG
correlation in the streamwise direction, Πxx. First a model is generated using the LSLS
procedure, then a model is generated keeping the regressors and coefficients from the pre-
vious model and adding the relevant balance error terms to the list of regressors. If the
generated models describe the data well, the model is reduced using the reduction proce-
dure described in Section 3.2. These steps are repeated until an obtained model is no longer
satisfactory, and the last satisfactory model is kept as the final fit.

The original set of regressors includes the VPG correlations in the other flow directions
and the turbulent and molecular diffusion terms found in the Reynolds Stress Transport
Equation. The original model found using this set of regressors and LSLS is:

Πxx = −0.968Πxy − 0.560Πyy + 0.224Πzz − 0.324DT
xy − 0.015DT

xx+

0.078DT
yy + 0.914DT

zz + 0.055DM
xy − 0.015DM

xx − 0.784DM
yy + 0.039DM

zz .
(4.7)

The results for this model are shown in Figure 4.13. The residual distributions indicate that
the fits can model the data with an acceptable degree of accuracy, but that all models are
heteroscedastic. Additionally, there is a consistent trend for the model to overpredict in
regions near the channel axis (y+ > 300).

(a) (b)

Figure 4.13: Results from model (4.7): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .
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One possible explanation for this overprediction trend in the models is errors in the data
itself. This serves as additional motivation for adding the set of relevant balance errors to
the list of regressors, which generates the fits in Table 4.11, with results shown in Figure
4.14.

Table 4.11: Values of coefficients on secondary regressors corresponding to model (4.7)

Errxy Errxx Erryy Errzz

Unstrained -0.613 -0.366 2.566 0.311
0.002 -0.408 -0.058 -1.541 -0.836
0.281 1.170 0.383 0.225 -0.528
0.365 0.347 0.152 -0.155 -0.407
0.675 -1.725 -0.069 1.769 -1.508
0.772 -1.299 0.113 2.154 -1.756

(a) (b)

Figure 4.14: Results from model (4.7) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

The residual distribution indicates that the models perform significantly better in the
regions between the wall and the channel axis. However, the underprediction trend is still
present even with the addition of the balance errors as regressors, indicating that it would
be beneficial to add a regressor with different characteristics.

Since the model had acceptable accuracy, the reduction procedure is implemented to
obtain the next fit. The values for Ω(s) of each regressor are shown in Table 4.12.
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Table 4.12: Ω(s) values corresponding to regressors in model (4.7)

s Πxy Πyy Πzz DT
xy DT

xx DT
yy

Ω(s) 0.162e-5 0.139e-5 0.056e-5 0.181e-5 0.065e-5 0.054e-5

s DT
zz DM

xy DM
xx DM

yy DM
zz

Ω(s) 0.047e-5 0.054e-5 0.063e-5 0.062e-5 0.066e-5

Following Table 4.12, the next model should have the DT
zz term removed. The model

generated with this set of regressors is as follows:

Πxx = −1.037Πxy − 0.334Πyy + 0.148Πzz − 0.195DT
xy − 0.015DT

xx+

0.494DT
yy − 0.149DM

xy − 0.014DM
xx + 0.447DM

yy + 0.045DM
zz .

(4.8)

(a) (b)

Figure 4.15: Results from model (4.8): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

Model (4.8) has very similar performance to model (4.7), but with a slight decrease in
accuracy in the unstrained flow (shown as red dots).

Adding errors to the list of regressors results in the fits shown in Table 4.13.
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Table 4.13: Values of coefficients on secondary regressors corresponding to model (4.8)

Errxy Errxx Erryy Errzz

Unstrained -2.001 -0.261 3.390 1.377
0.002 -0.709 0.096 -2.132 -0.622
0.281 1.810 0.560 0.011 -0.732
0.365 1.030 0.447 0.298 -1.222
0.675 -1.144 -0.203 0.151 -0.760
0.772 -1.827 -0.356 0.928 -1.200

The results from these fits are shown in Figure 4.16. The results show that again, the
addition of the error terms as regressors improves the fits in the middle region between the
channel wall and axis, but makes little difference outside this region.

(a) (b)

Figure 4.16: Results from model (4.8) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

Now, visual inspection of the residuals indicates the model accuracy is acceptable, so
the reduction procedure can be repeated for another step. The Ω(s) values for the set of
regressors are shown in Table 4.14.
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Table 4.14: Ω(s) values corresponding to regressors in model (4.8)

s Πxy Πyy Πzz DT
xy DT

xx DT
yy

Ω(s) 0.440e-3 0.428e-3 0.418e-3 0.424e-3 0.448e-3 0.475e-3

s DM
xy DM

xx DM
yy DM

zz

Ω(s) 0.455e-3 0.481e-3 0.527e-3 0.482e-3

From the Ω(s) table, the next regressor to be removed is Πzz. The model generated with
the LSLS procedure using these regressors is as follows:

Πxx = −0.891Πxy − 0.446Πyy − 0.167DT
xy − 0.015DT

xx+

0.330DT
yy − 0.375DM

xy − 0.014DM
xx + 1.093DM

yy + 0.052DM
zz .

(4.9)

The resulting model fit and residual values are shown in Figure 4.17.

(a) (b)

Figure 4.17: Results from model (4.9): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

The residual distribution for this model is very similar to that of preceding models
implying that the removal of this term did not have a large effect on the fit quality. Now,
adding relevant balance errors to the set of regressors results in the fits in Table 4.15, with
plot results shown in Figure 4.18.
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Table 4.15: Values of coefficients on secondary regressors corresponding to model (4.9)

Errxy Errxx Erryy Errzz

Unstrained -1.318 -0.327 3.115 1.061
0.002 -0.155 0.139 -1.522 -0.828
0.281 1.422 0.554 0.423 -1.083
0.365 0.558 0.380 0.312 -1.268
0.675 -1.650 -0.277 0.240 -0.739
0.772 -2.165 -0.392 0.632 -1.184

(a) (b)

Figure 4.18: Results from model (4.9) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

The results again show that the model benefits from the addition of errors as regressors,
and there is no significant penalty in fit quality as a result of removing a term. The model
still has acceptable results, so the reduction procedure is continued for another step, with
Ω(s) values shown in Table 4.16.

Table 4.16: Ω(s) values corresponding to regressors in model (4.9)

s Πxy Πyy DT
xy DT

xx DT
yy

Ω(s) 0.447e-3 0.428e-3 0.426e-3 0.448e-3 0.478e-3

s DM
xy DM

xx DM
yy DM

zz

Ω(s) 0.505e-3 0.566e-3 0.586e-3 0.583e-3
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The Ω(s) values in in Table 4.16 indicate that the next regressor for removal is DT
xy. The

LSLS model (results shown in Figure 4.19) with this updated regressors list is as follows:

Πxx = −0.933Πxy − 0.373Πyy − 0.011DT
xx+

0.415DT
yy − 0.233DM

xy − 0.011DM
xx + 2.049DM

yy + 0.037DM
zz .

(4.10)

(a) (b)

Figure 4.19: Results from model (4.10): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

At this step, the residual plot indicates a slight decrease in the fit quality near the wall
since the residual values there are larger in magnitude. However, the model performs simi-
larly for the rest of the flow as previous models. Now, adding relevant balance errors to the
list of regressors results in the models shown in Table 4.17, with results shown in Figure
4.20.

Table 4.17: Values of coefficients on secondary regressors corresponding to model (4.10)

Errxy Errxx Erryy Errzz

Unstrained -1.662 0.790 3.445 1.936
0.002 -1.054 -0.329 -1.858 1.195
0.281 1.178 0.392 -0.203 -0.616
0.365 0.146 0.242 0.198 -1.199
0.675 -1.666 -0.618 0.188 -0.231
0.772 -2.929 -0.836 0.818 -1.122
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(a) (b)

Figure 4.20: Results from model (4.10) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

The addition of balance errors to the set of regressors resulted in reduced residual mag-
nitudes for all strain values in the region of the channel between the wall region and the
axis. This is expected because the error terms are small in magnitude near the axis and
the wall, which implies that their contribution to a model will be small in this region. The
models are still performing at an acceptable level, so the reduction procedure is repeated
for another step, generating the Ω(s) values in Table 4.18.

Table 4.18: Ω(s) values corresponding to regressors in model (4.10)

s Πxy Πyy DT
xx DT

yy

Ω(s) 0.682e-3 0.557e-3 0.534e-3 0.482e-3

s DM
xy DM

xx DM
yy DM

zz

Ω(s) 0.514e-3 0.567e-3 0.588e-3 0.583e-3

These Ω(s) values indicate that DT
yy should be removed from the regressors list in the

next step. The fit with this new set of regressors, with results shown in Figure 4.21, is as
follows:

Πxx = −0.876Πxy − 0.544Πyy − 0.008DT
xx

−0.146DM
xy − 0.006DM

xx + 1.900DM
yy + 0.029DM

zz .
(4.11)
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(a) (b)

Figure 4.21: Results from model (4.11): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

Model 4.11 performs similarly to the previous models, implying that the removal of
DT

yy is not detrimental to performance. Adding balance error terms to the list of regressors
results in the fits shown in Table 4.19, with results shown in Figure 4.22.

Table 4.19: Values of coefficients on secondary regressors corresponding to model (4.11)

Errxy Errxx Erryy Errzz

Unstrained -3.911 0.735 1.093 3.655
0.002 -0.946 0.070 -3.754 0.457
0.281 1.388 0.340 0.699 -0.386
0.365 0.883 0.397 2.046 -1.885
0.675 -0.260 -0.572 1.599 -0.399
0.772 -3.399 -0.814 0.819 -1.712
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(a) (b)

Figure 4.22: Results from model (4.11) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

The resulting fit still has an acceptable level of accuracy; therefore, the reduction pro-
cedure is implemented again, producing the Ω(s) values in Table 4.20.

Table 4.20: Ω(s) values corresponding to regressors in model (4.11)

s Πxy Πyy DT
xx

Ω(s) 0.149e-3 0.073e-3 0.054e-3

s DM
xy DM

xx DM
yy DM

zz

Ω(s) 0.053e-3 0.058e-3 0.060e-3 0.060e-3

At this point the reduction procedure is continued until all terms are removed, producing
the values for L and LErr shown in Table 4.21and Figure 4.23.
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Table 4.21: Table showing value of L and LErr for Πxx corresponding to the number of terms
removed.

Model # of terms removed L(%) LErr(%)
(4.7) 0 0.15 0.09
(4.8) 1 0.18 0.10
(4.9) 2 0.19 0.13

(4.10) 3 0.24 0.15
(4.11) 4 0.28 0.15

5 0.28 0.15
6 0.28 0.16
7 0.28 0.17

(4.12) 8 0.29 0.22
9 0.56 0.46
10 2.76 2.28
11 100 100

Figure 4.23: Values of L (shown as – –) and LErr (shown as – –) for Πxx vs. number of terms
removed.

The plot and table indicate that stopping the reduction procedure when 8 regressors are
removed from the original list satisfies the previously established 0.5% threshold for L.

The resulting model after completing 8 steps of the reduction procedure is as follows:

Πxx = −0.872Πxy − 0.551Πyy + 2.015DM
yy. (4.12)
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The results for this model are shown in Figure 4.24. Now, adding the relevant secondary
regressors to the regressors list as before produces the model coefficient values in Table
4.22. The results for these models are shown in Figure 4.25.

Table 4.22: Values of coefficients on secondary regressors corresponding to model (4.12)

Errxy Erryy

Unstrained 1.327 3.222
0.002 -0.671 -2.975
0.281 -0.123 -0.052
0.365 0.688 0.349
0.675 3.439 1.083
0.772 3.105 1.522

(a) (b)

Figure 4.24: Results from model (4.12): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .
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(a) (b)

Figure 4.25: Results from model (4.12) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

The final model for this VPG correlation is model (4.12). In all models, the addition
of the secondary regressors to the list of regressors resulted in improved performance. The
model has heteroscedastic residual distributions for all strain values and struggles to predict
Πxx in the unstrained channel in the near-wall region. Despite the model limitations, the
results of this section indicate that this VPG correlation can be modeled with 3 terms.

4.3. LSLS Applied to Modeling Πyy

This section describes the application of the LSLS method to modeling the Πyy VPG corre-
lation using VPG correlations in the other directions and diffusion terms from the Reynolds
Stress Transport Equation as regressors. The original model using the full list of regressors
is as follows:

Πyy = −0.225Πxy − 0.626Πxx + 0.012Πzz − 0.354DT
xy − 0.001DT

xx

−0.969DT
yy + 1.593DT

zz + 0DM
xy − 0.001DM

xx + 1.003DM
yy + 0.008DM

zz .
(4.13)

The results for this model are shown in Figure 4.26.
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(a) (b)

Figure 4.26: Results from model (4.13): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

Adding the relevant secondary regressors to the list of regressors results in the fits in
Table 4.23, with results plots shown in Figure 4.27:

Table 4.23: Values of coefficients on secondary regressors corresponding to model (4.13) without
DM

xy.

Errxy Errxx Erryy Errzz

Unstrained 1.327 -0.496 -1.172 -0.547
0.002 1.535 0.316 0.019 -1.523
0.281 0.520 0.255 2.953 -1.105
0.365 0.253 -0.032 1.270 -0.056
0.675 -1.189 0.450 4.434 -2.628
0.772 -0.129 1.100 2.235 -2.369

67



(a) (b)

Figure 4.27: Results from model (4.13) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

The models with secondary regressors included perform noticeably better than model
(4.13), as indicated by the reduced residual magnitude. The zero-value of the coefficient for
DM

xy indicates that this regressor will be the first term to be removed in the reduction process.
Visual comparison of figures 4.26 and 4.27 to those of previous correlations suggest that
model (4.13), which is an upper bound for performance in this model framework for this
VPG correlation, has poor performance. This suggestion is validated by the large loss
values, L and LErr, of 0.97% and 0.58%, respectively, for this model. These loss values are
above the 0.5% quality threshold, implying that a model of similar performance to that of
previous sections cannot be obtained with this set of regressors for the Πyy correlation. The
remaining loss values for this VPG correlation are shown in Table 4.24 and Figure 4.28.
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Table 4.24: Table showing value of L and LErr for Πyy corresponding to the number of terms
removed.

Model # of terms removed L(%) LErr(%)
(4.13) 0 0.97 0.58
(4.14) 1 0.97 0.58

2 2.08 1.37
3 2.41 1.26
4 3.11 1.18
5 4.64 1.55
6 10.37 5.69
7 14.93 7.60
8 15.37 8.91
9 17.83 12.41

10 25.34 19.66
11 100 100

Figure 4.28: Values of L (shown as – –) and LErr (shown as – –) for Πyy vs. number of terms
removed.

In light of the poor performance of the original model, the modeling process for this
correlation will not include a reduction procedure. Therefore, the final model for Πyy is
Model 4.13 without the DM

xy term:
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Πyy = −0.225Πxy − 0.626Πxx + 0.012Πzz − 0.354DT
xy − 0.001DT

xx

−0.969DT
yy + 1.593DT

zz − 0.001DM
xx + 1.003DM

yy + 0.008DM
zz .

(4.14)

4.4. LSLS Applied to Modeling Πzz

This section describes the application of the LSLS method to modeling the Πzz VPG corre-
lation using VPG correlations in the other directions and diffusion terms from the Reynolds
Stress Transport Equation as regressors. The original model using the full list of regressors
(results plots shown in Figure 4.29) is as follows:

Πzz = −1.352Πxy + 0.685Πxx + 0.033Πyy + 0.499DT
xy + 0.009DT

xx

−0.479DT
yy − 1.565DT

zz − 1.421DM
xy + 0.008DM

xx + 2.472DM
yy + 0.015DM

zz .
(4.15)

(a) (b)

Figure 4.29: Results from model (4.15): a) comparison of model (lines) and DNS data (dots), b)
residual distribution plots. A22t = 0 – , A22t = 0.020 – , A22t = 0.281 – , A22t = 0.365 – ,
A22t = 0.675 – , A22t = 0.772 – .

The model performs well in the regions of the flow between the wall region and the
axis; however, its performance struggles otherwise. There is a noticeable underprediction
trend in the residuals near the channel axis for all strain values. As before, balance errors
are now added to the list of regressors, generating the models in Table 4.25, with results
shown in Figure 4.30:
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Table 4.25: Values of coefficients on secondary regressors corresponding to model (4.15)

Errxy Errxx Erryy Errzz

Unstrained 2.538 0.015 -2.341 -0.7622
0.002 2.850 0.220 3.618 -0.278
0.281 -2.163 -0.115 1.766 -1.672
0.365 -1.990 -0.151 0.643 -0.796
0.675 -0.854 -0.475 -2.406 1.907
0.772 -1.407 -0.747 -4.269 1.855

(a) (b)

Figure 4.30: Results from model (4.15) with error terms in regressors list: a) comparison of model
(lines) and DNS data (dots), b) residual distribution plots. A22t = 0 – , A22t = 0.020 – ,
A22t = 0.281 – , A22t = 0.365 – , A22t = 0.675 – , A22t = 0.772 – .

All models perform noticeably better with the addition of errors as residuals, but the
underprediction trend near the axis persists. It is expected that trends near the axis and wall
regions remain unchanged with the addition of the error terms as regressors because of the
small magnitude of these terms in these regions. The reduction procedure was continued
to generate the values for L and LErr shown in Table 4.26 and Figure 4.31.
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Table 4.26: Table showing value of L and LErr for Πzz corresponding to the number of terms
removed.

Model # of terms removed L(%) LErr(%)
(4.15) 0 0.85 0.62

1 0.89 0.66
2 1.63 1.07
3 1.70 0.95
4 2.62 1.69
5 2.71 1.70
6 2.79 2.13
7 6.77 5.67
8 8.33 7.23
9 8.54 7.73
10 15.31 12.94
11 100 100

Figure 4.31: Values of L (shown as – –) and LErr (shown as – –) for Πzz vs. number of terms
removed.

Table 4.26 and Figure 4.31 indicate that all LSLS models for Πzz produce loss val-
ues exceeding the previously established threshold of 0.5%. Therefore, the original set of
regressors cannot be reduced, and the final model for the Πzz correlation is model (4.15).
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CONCLUSIONS

The results of the study demonstrate that the velocity pressure-gradient (VPG) correla-
tions in a channel flow can be accurately represented by linear models generated using the
Multiple Linear Regression (MLR) method. It was shown that the residual magnitudes and
scedasticities can be used as metrics to quantify the performance of generated models. The
residual magnitudes and scedasticities informed the model development; therefore, the pro-
posed method provides a mathematically rigorous and efficient framework for generating
such models.

It was demonstrated that it is also possible to develop accurate linear universal models
for VPG correlations with unchanging coefficients in an adverse pressure-gradient channel
flow (flow with separation) using the Least Sum of Least Squares (LSLS) method. In
contrast to the MLR method, the LSLS method optimizes model coefficients for multiple
data sets simultaneously. To evaluate the accuracy of such models and to reduce their
complexity, the loss metric was proposed and used.

The regressors lists used for modeling the Πxy and Πxx correlations were reduced ac-
cording to the loss metric, and the resulting models are more accurate than the models for
the Πyy and Πzz correlations, which employed the entire regressors list.

Finally, for all considered models and methods, it was shown that the addition of bal-
ance error terms as regressors to the linear models produces more accurate models for all
channel strain values. This suggests that future data-driven modeling approaches using this
DNS data set should incorporate the balance errors in some form.
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FUTURE WORK

Future research should include modeling the VPG correlations using data sets from
other DNS and exploring generalizing the models beyond only channel flow. Additionally,
it will be pertinent to analyze the coefficient values in the generated models to extract
physical interpretation from the models. It will be interesting to assess the performance of
LSLS models for the Πyy and Πzz correlations with a regressors list containing production
and diffusion terms in the Reynolds transport equation budgets, similar to that used for the
traditional MLR models in the unstrained case.

74



BIBLIOGRAPHY

[1] A. N. Kolmogorov, “Equations of turbulent motion of an incompressible fluid,”
Izvestiya Academii Nauk USSR: Physics, vol. 6, no. 1-2, pp. 56–58, 1942.

[2] D. C. Wilcox, “Formulation of the k-ω turbulence model revisited,” AIAA Journal,
vol. 46, no. 11, pp. 2823–2838, 2008. doi: 10.2514/1.36541.

[3] K. Hanjalić, “Two-dimensional asymmetrical turbulent flow in ducts,” Ph.D. disser-
tation, University of London, 1970.

[4] W. P. Jones and B. Launder, “The prediction of laminarization with a two-equation
model of turbulence,” International Journal of Heat and Mass Transfer, vol. 15,
no. 2, pp. 301–314, 1972. doi: 10.1016/0017-9310(72)90076-2.

[5] P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic
flows,” La Recherche Aérospatiale, no. 1, pp. 5–21, 1994, (DOI is of later copy). doi:
10.2514/6.1992-439.

[6] NASA Langley Research Center, Turbulence Modeling Resource. [Online]. Avail-
able: https://turbmodels.larc.nasa.gov/index.html.

[7] T. J. Craft, B. E. Launder, and K. Suga, “Development and application of a cubic
eddy-viscosity model of turbulence,” International Journal of Heat and Fluid Flow,
vol. 17, no. 2, pp. 108–115, 1996. doi: 10.1016/0142-727X(95)00079-6.

[8] S. B. Pope, Turbulent Flows. Cambridge University Press, 2000, isbn: 9780521598866.

[9] A. V. Johansson and M. Hallback, “Modelling of rapid pressure-strain in Reynolds-
stress closures,” Cambridge University Press, vol. 269, pp. 143–168, 1994. doi: 10.
1017/S0022112094001515.
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