
University of New Mexico University of New Mexico

UNM Digital Repository UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

Spring 5-13-2024

Analysis and Computation of Constrained Sparse Coding on Analysis and Computation of Constrained Sparse Coding on

Emerging non-von Neumann Devices Emerging non-von Neumann Devices

Kyle Henke

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

 Part of the Artificial Intelligence and Robotics Commons, Computational Neuroscience Commons,

Numerical Analysis and Scientific Computing Commons, and the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Henke, Kyle. "Analysis and Computation of Constrained Sparse Coding on Emerging non-von Neumann
Devices." (2024). https://digitalrepository.unm.edu/math_etds/206

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM
Digital Repository. It has been accepted for inclusion in Mathematics & Statistics ETDs by an authorized
administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_etds
https://digitalrepository.unm.edu/etds
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/58?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/206?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Kyle Henke
 Candidate

 Mathematics and Statistics

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 Mohammad Motamed, Chairperson

 Frank Gilfeather

 Robyn Miller

 Ben Migliori

 Andrew Sornborger

 Jacob Schroder

Analysis and Computation of
Constrained Sparse Coding on

Emerging non-von Neumann Devices

by

Kyle Garde Henke
B.A., Economics, University of New Mexico, 2015

M.S., Mathematics, University of New Mexico, 2021

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
MATHEMATICS

The University of New Mexico
Albuquerque, NM

May, 2024

iii

Dedication

To the infinite love felt on the fateful night that changed my life forever.

“The first gulp from the glass of natural sciences will turn you into an atheist, but at the
bottom of the glass God is waiting for you.” - Werner Heisenberg

iv

Acknowledgements

Crafting an acknowledgment for my dissertation somehow emerges as the most challeng-
ing task of my academic voyage, underscoring the impossibility of adequately thanking
all the individuals who have stood by me or before me.

Nevertheless, I must first acknowledge the generations who have past. To my ances-
tors and grandfathers I wasn’t old enough to know, you laid the foundation upon which
I stand. Your sacrifices, dreams, and struggles have not gone unnoticed. The path you
paved through your own lives has allowed me to embark on this journey toward under-
standing and discovery. It is upon your shoulders that I stand, with deep respect of the
legacy you’ve passed down. Your resilience and hope are the bedrock of my achievements,
and for that, I am eternally indebted.

To my Mother, Sue, your unwavering support has been my constant. Aunt Sarah, the
meticulous edits you and mom provided along with your passion for teaching mathe-
matics were indispensable. To my sisters, Kayci and Karla, you are the epitome of
unconditional love. To my father, Steve, your diverse motivational tactics have always
spurred me on. My credit extends to Zach Stuart, Kellin Rumsey, and Gabriella Dal-
ton for your fellowship, motivation, and support throughout my graduate studies and
beyond. Dalton Robinson, a friend like no other, your presence in my toughest times
and belief in surpassing limits continue to be invaluable. To my grandmothers, extended
family, and in-laws, your countless acts of kindness were crucial to reaching this milestone.

An immense thanks to my advisor, Professor Mohammad Motamed. Your efforts to
cultivate my passion for neuroscience and mathematics into something rigorous and tan-
gible were truly a blessing. I am honored to have been your first PhD student. Professor
Frank Gilfeather, your encouragement during my undergraduate struggles and ongoing
support have been a beacon of hope and inspiration. My mentors at Los Alamos National
Laboratory—Garrett Kenyon, Ben Migliori, and Andrew Sornborger—your patience and
enthusiasm were instrumental in my growth to become a scientist. Robyn Miller, our
conversations and your willingness to venture into new intellectual territories were vital.

Lastly, to my wife, Makenna, your love and support transcend all else, proving to be
the most precious gift throughout this endeavor.

Thank you all for never giving up on me!

v

Analysis and Computation of Constrained Sparse

Coding on Emerging non-von Neumann Devices

Kyle Garde Henke
B.A., Economics, University of New Mexico, 2015

M.S., Mathematics, University of New Mexico, 2021
Ph.D., Mathematics, University of New Mexico, 2024

Abstract

This dissertation seeks to understand how different formulations of the neurally inspired
Locally Competitive Algorithm (LCA) represent and solve optimization problems. By
studying these networks mathematically through the lens of dynamical and gradient
systems, the goal is to discern how neural computations converge and link this knowledge
to theoretical neuroscience and artificial intelligence (AI). Both classical computers and
advanced emerging hardware are employed in this study. The contributions of this work
include:

1. Theoretical Work: A comprehensive convergence analysis for networks using both
generic Rectified Linear Unit (ReLU) and Rectified Sigmoid activation functions.
Exploration of techniques to address the binary sparse optimization problem, espe-
cially when the problem landscape is non-convex. Non-autonomous systems with
time-varying sigmoid activation that approaches the step function have been pro-
posed due to the challenge of proving step function convergence.

2. Computational Work: Numerical tests on classical computers confirm the theoreti-
cal analysis. In mapping the problem to the spiking domain, it is shown spike rates
can represent continuous valued neuron activations. The binary sparse optimiza-
tion problem is reformulated into a Quadratic Unconstrained Binary Optimization
(QUBO) problem. Solutions are then sought using quantum annealing and spiking
neuromorphic devices.

vi

Contents

1 Introduction 1

2 Constrained Sparse Optimization 4
2.1 Problem Setup . 4
2.2 Non-negative Sparse Optimization . 5
2.3 Binary Sparse Optimization . 5
2.4 Karush-Kuhn-Tucker Conditions and Convex Optimization 6
2.5 Gradient System Approach . 6
2.6 Dynamical Systems . 8
2.7 NSO Transfer Functions . 13
2.8 BSO Transfer Function and Approximating NSO Sequences 15
2.9 Analysis of Gradient System Approach 18

3 Numerical Methods and Results 23
3.1 NSO Process . 24
3.2 Approximating BSO . 24

3.2.1 NSO Solve and Post Process . 24
3.2.2 NSO Non-autonomous System Converging to BSO 25

3.3 Numerical Examples . 26
3.3.1 NSO Numerical Examples . 26
3.3.2 BSO Numerical Examples . 28

3.4 Convergence of NSO to BSO . 29

4 Approximating NSO on a Spiking Neuromorphic Processor 31
4.1 Background . 31
4.2 S-LCA and Convergence to A-LCA . 33
4.3 S-LCA With Excitatory Connections . 34
4.4 Unsupervised Dictionary Learning . 37
4.5 A-LCA Implementation . 40
4.6 S-LCA Loihi Implementation and Modifications 40
4.7 Discussion and Conclusion . 45

5 QUBO 47
5.1 BSO and Relationship to QUBO . 47
5.2 D-Wave Quantum Annealer . 48

vii

5.2.1 Choice of D-Wave Parameters . 49
5.3 Loihi Neuromorphic Chip Implementation 50

5.3.1 Overcoming Local Minima on Loihi 1 50
5.4 Un-normalized Dictionary Learning . 53
5.5 Results . 55

6 Related Published Papers 58
6.1 Machine Learning in a Post Moore’s Law World: Quantum vs. Neuromor-

phic Substrates . 58
6.2 Alien vs. Predator: Brain Inspired Sparse Coding Optimization on Neu-

romorphic and Quantum Devices . 59
6.3 Fast Post-Hoc Normalization for Brain Inspired Sparse Coding on a Neu-

romorphic Device . 60
6.4 Apples-to-spikes: The First Detailed Comparison of LASSO Solutions

Generated by a Spiking Neuromorphic Processor 61
6.5 Sampling Binary Sparse Coding QUBO Models Using a Spiking Neuro-

morphic Processor . 62

7 Future Work 64
7.1 Quantum Evolution Monte Carlo . 64
7.2 Neuromorphic Warm Starting . 65
7.3 Preliminary Results . 66

8 Conclusion 68

A Appendix 71

Bibliography 105

1

Chapter 1

Introduction

The objective of this dissertation is to delve into the intricacies of dynamical and gradient

systems, interpreted as special types of recurrent neural networks, for solving constrained

sparse optimization problems. Specifically, we analyze Hopfield networks where neurons

interact with each other and themselves to self organize into a representation of the

problem’s minimizer. By rigorously analyzing these networks from their mathematical

principles, we aim to connect these concepts together and shed light on convergence

behavior of neural computations in the broader contexts of theoretical neuroscience and

artificial intelligence. We proceed with implementation on classical computers to verify

the analysis and then solve on spiking neural network and quantum hardware.

At their core, dynamical systems are described by state variables and an associated

evolution rule. These rules provide the trajectory the system will follow over time. De-

pending on the parameters and initial conditions, dynamical systems can display various

phenomena, including stability, periodicity, or even chaotic behavior. Gradient systems

are a subset of dynamical systems where the evolution is guided by the gradient (or

steepest descent) of a potential function. The trajectory inherently seeks local minima

of this function, making them pivotal for optimization problems.

A Hopfield network is a fully connected, recurrent neural network and can be viewed

2

as a gradient system. Each configuration of the network corresponds to a specific energy

value. The dynamics of the network push the configurations to those of lower energy,

creating a metaphorical landscape of valleys (attractors) and hills. Patterns are stored

in a Hopfield network by adjusting the weights between neurons. Ideally, each stored

pattern corresponds to a local minimum or an attractor in the energy landscape. When

presented with a noisy or partial version of a stored pattern, the network dynamics lead

it to evolve towards the closest stored pattern, showcasing its capability as an associative

memory.

A specific type of Hopfield network, the locally competitive algorithm, solves the

sparse coding problem of reconstructing input signals from linear combinations of a few

features from a large overcomplete dictionary. Interestingly, the mathematical represen-

tation of these systems correspond to the dynamics of neurons measured in the V1 layer

of the visual cortex in mammals [45]. Each neuron represents one of these features. The

network is fully connected (making it a Hopfield network) and neurons compete by in-

hibiting and exciting other neurons for the lowest energy representation of the input. The

dynamics of the competitive process stabilize into a configuration where only a subset of

neurons are active, representing the input in a sparse manner. Within these networks,

the full dynamics are governed by the non-linear activation functions assigned to each

of the neurons. We aim to analyze the convergence behavior of networks with varying

activations and use the insight as motivation to find solutions to the binary sparse coding

problem where the energy landscapes are non-convex and cannot be directly solved using

the gradient system approach.

To the best of the author’s knowledge, research to date primarily focus more on ad-

dressing the computational aspects of LCA for non-negative sparse optimization using

only unit ReLU activation functions. There have been attempts to address the conver-

gence properties for this class of activation functions, but the analysis is incomplete for

reasons which will be discussed in later sections [27, 49, 45]. The first contribution of

3

this dissertation is a complete analysis of convergence for generic Rectified Linear Unit

(ReLU) (including the unit slope from previous literature) and generic Rectified Sigmoid

activation functions. Next, techniques for solving the binary sparse optimization problem

are analyzed. The lack of provable convergence of step activation functions motivates

the creation of non-autonomous systems comprised of time-varying sigmoidal activation

that converge to the step function. Numerical experiments on classical computers are

then performed to verify the analysis. Finally, numerical experiments are performed on

emerging quantum annealing and spiking neuromorphic non-von Neumann architectures.

The remainder of this dissertation is organized as follows. In Chapter 2 we present a

detailed formal description of the problems of interest. We prove the convergence of the

corresponding dynamical systems with generic Rectified Linear Unit (ReLU) and generic

Rectified Sigmoid activation function. We also present non-autonomous systems for solv-

ing the binary optimization problem. Chapter 3 contains several numerical experiments

performed on CPU to verify our theoretical results. In Chapter 4, we map a network of

unit slope ReLU activation functions from the continuous domain into a domain where

activations of neurons are represented as spike rates. The equivalence of the spiking

approach to its continuous counterpart is demonstrated on a spiking neuromorphic pro-

cessor. In Chapter 5 we will reformulate the binary sparse optimization problem into a

Quadratic Unconstrained Binary Optimization (QUBO) problem. Solutions are found

using quantum annealing and a spiking neuromorphic devices to compare with classical

techniques and our newly developed gradient system approaches. Chapter 6 consists of

a collection of recent related papers published by the author. Finally, we list a few po-

tential future works, motivated by the findings of this dissertation, and summarize our

conclusions in Chapter 7 and Chapter 8, respectively.

4

Chapter 2

Constrained Sparse Optimization

2.1 Problem Setup

Let x ∈ Rm represent a (vector-valued) signal, and let D ∈ Rm×p be a dictionary with

p > m column vectors, typically of unit norm. The general problem that we are interested

in concerns finding a sparse vector a = (a1, . . . , ap) ∈ Rp, referred to as a sparse code, such

that x is as close as possible to D a while constraining the number of nonzero elements

in a. Using the L2 norm for measuring the distance between x and D a, often referred

to as reconstruction error, and the L1 norm as a penalty term to enforce sparsity, we can

formulate the problem as an unconstrained sparse optimization problem:

min
a∈Rp

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1,

where λ > 0 is a scaling or regularization parameter that determines the relative impor-

tance of sparsity compared to the reconstruction error. The above problem is a convex

optimization problem, for which a solution exists. In the statistics and machine learning

literature, this problem is known as LASSO (least absolute shrinkage and selection oper-

ator) or sparse coding [52]. In this dissertation, we will consider two types of constraints,

amounting to two types of constrained sparse optimization problems:

5

• Non-negative sparse optimization;

• Binary sparse optimization.

2.2 Non-negative Sparse Optimization

Non-negative sparse optimization (NSO) constrains the sparse solution values ai ≥ 0 for

all i = 1,, p. Formally we will write

min
a∈Rp

+

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1. (2.1)

It is to be noted that the functional E is convex with respect to its argument a, and

it is quadratic in a when a ∈ Rp
+. NSO is of particular interest when mapping the sparse

coding problem onto neuromorphic hardware. In this case, the outputs of the spiking

processors are constrained to be positive spike rates [28, 21, 24, 23]. More details will be

presented in Section 2.8.

2.3 Binary Sparse Optimization

Binary sparse optimization (BSO) constrains the sparse solution values ai ∈ {0, 1} for

all i = 1,, p. Our formal definition of BSO reads:

min
a∈{0,1}p

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1. (2.2)

It is worth noting the binary constraint makes the L1 norm sparsity penalty equivalent

to an L0 norm, and the functional E becomes non-convex. BSO is of interest because

such a constraint allows us to map the optimization problem onto quantum annealing

devices [23, 20]. Further details will be presented in Chapters 3 and 5.

6

2.4 Karush-Kuhn-Tucker Conditions and Convex Op-

timization

Karush-Kuhn-Tucker (KKT) conditions give necessary and sufficient conditions for the

existence of optimal solutions to convex optimization problems, given in the following

theorem.

Theorem 1. Let E : Rp → R be a convex function. Consider the optimization problem

min
a

E(a), subject to constraints hi(a) ≤ 0, i = 1, . . . , p, where all hi’s are affine

maps, consisting of a linear transformation followed by a translation. Then a∗ ∈ Rp is

an optimal solution to the constrained optimization problem if and only if there exists a

µ∗ ∈ Rp such that the following conditions hold:

1. Stationarity: 0 ∈ ∂E(a∗) +
∑p

i=1 µ
∗
i∇a hi(a

∗).

2. Complimentarity: µ∗
ihi(a

∗) = 0, i = 1, 2, ..., p.

3. Feasibility: hi(a
∗) ≤ 0, µ∗

i ≥ 0 i = 1, 2, ..., p.

Here, ∂E denotes the generalized gradient of E [9].

Proof. For the proof, we refer to [6].

We also refer to [4] for more details on KKT conditions. We note that while NSO is

a convex optimization problem to which the KKT theorem can be applied, BSO is not a

convex optimization problem. Later, we will connect BSO to other convex optimization

problems where we can utilize KKT conditions for convergence studies of BSO.

2.5 Gradient System Approach

After establishing a problem that satisfies the KKT conditions, we now focus on trans-

forming the constrained sparse optimization problem into a dynamical system with a

7

solution flow

u = (u1, . . . , up) : t ∈ R+ 7→ u(t) ∈ Rp.

An important part of the dynamics is the introduction of a transfer function

σ(u(t)) = (σ(u1(t)),, σ(up(t))) =: a(t),

that acts component-wise on the components of the solution flow u(t), outputting a

time-dependent sparse code a whose limit

a = lim
t→∞

a(t),

will be the sparse code a that solves the desired constrained sparse optimization problem.

The dynamical systems that we will obtain are of gradient form, i.e., their force terms

are given as the negative gradient of a real-valued function; see e.g. (2.9). We refer to

this method of computing the sparse code a as the gradient system approach.

To this end, we define

Ẽ(u(t)) := E(σ(u(t))), (2.3)

and instead of solving (2.1) or (2.2) with related constraints in the form NSO or BSO, we

look for a solution flow and an activation function that gives us the sparse code a. This

requires finding a dynamical system with solution flow u(t) that converges to the set of

stationary points of Ẽ(u(t)); see the following discussion for precise definitions. Let us

8

first expand (2.3) before proceeding for clarity.

Ẽ(u(t)) =
1

2
||x−Dσ(u(t))||22 + λ ||σ(u(t))||1

=
1

2
(x−Dσ(u(t)))⊤(x−Dσ(u(t))) + λ||σ(u(t))||1

=
1

2
(x⊤x− x⊤Dσ(u(t))− σ(u(t))⊤D⊤x+ σ(u(t))⊤D⊤Dσ(u(t))) + λ||σ(u(t))||1

=
1

2
(x⊤x− 2x⊤Dσ(u(t)) + σ(u(t))TD⊤Dσ(u(t))) + λ

p∑
i=1

σ(ui(t)) (2.4)

The last equality comes because our constraints make all activations strictly non-negative

in both regimes, turning the norm into a sum.

2.6 Dynamical Systems

We will establish the underlying theory necessary to prove convergence of a dynamical

system to a global minimum and subsequently apply the machinery to various problems

of interest. First we consider a generic system of differential equations for u : R+ → Rp:

u̇(t) = f(u(t)) = (f1(u(t)), · · · , fp(u(t))), (2.5)

where f : Rp → Rp is a p-dimensional vector field, to be determined in this section. We

augment the system (2.5) with an initial condition,

u(0) = u(0), (2.6)

arriving to an initial value problem (IVP).

When f(u(t)) : Rp → Rp is sufficiently smooth, for instance when it is Lipschitz-

continuous, the (local) existence and uniqueness of the solution to the IVP (2.5)-(2.6)

follows from the classical theory, and the solution u is typically continuously differen-

9

tiable; see e.g., [39, 40]. The type of vector fields that we deal with in this section are

however not smooth; they are smooth almost everywhere, with isolated jump disconti-

nuities. Hence, solutions need to be defined in a weaker sense: the equality (2.5) only

holds for almost every t ≥ 0. To this end, we will closely follow [17], which provides a

comprehensive theoretical analysis of systems featuring specific types of discontinuous

vector fields.

We begin by considering specific types of discontinuous vector fields, which adhere to

the following assumption. We note that the vector fields that we derive here satisfy this

assumption.

Assumption. The vector field f(u(t)) : Rp → Rp is locally Lipschitz-continuous in

u(t) except at u(t) = λ1p, with 1p being the p-dimensional vector of 1’s, where it has a

bounded jump discontinuity.

We next define the solution to the IVP (2.5)-(2.6) in weak sense, following Section

4 of [17]. For any piecewise continuous vector-valued function f = f(u) with a set M

(of measure zero) of points of discontinuity, such as a vector field that satisfies the above

assumption, we specify a set F(u) in a p-dimensional space as follows.

• At each point u where f is continuous, the set F(u) consists of one point coinciding

with the value of the function f(u) at that point.

• At each point u where f is discontinuous, the set F(u) is given by the smallest

convex closed set containing all the limit values of f(v) where v ̸∈M and v → u.

A solution of equation (2.5) is then defined as an absolutely continuous vector-valued

function u = u(t) such that u̇(t) ∈ F(u(t)) for almost every t ≥ 0. Such a solution is re-

ferred to as a differential inclusion solution. The IVP (2.5)-(2.6) has a unique differential

inclusion solution, provided the corresponding set-valued function F(u(t)) is nonempty,

compact, and convex. These conditions are referred to as the basic conditions [17] (see

page 76). We refer to Section 7 (Theorem 1) and Section 10 of [17] for details on the

10

existence and uniqueness proofs. We also refer to [47] where the convexity condition is

relaxed.

We denote by U(t,u(0)) the solution to the system (2.5) at time t with the initial

solution u(0) = U(0,u(0)). A set of definitions and theorems follow.

Definition 1. A point u ∈ Rp is a fixed point of the ODE system (2.5) if and only if

f(u) = 0.

Definition 2. A set K ⊆ Rp is positive invariant if for any u(0) ∈ K, the continuous

sequence of points in time (also known as a flow) u(t) = U (t,u(0)) ∈K for all t ≥ 0.

Definition 3. For any set K ⊆ Rp a flow U(t,u(0)) converges to K if

lim
t→∞

dist(U(t,u(0)),K) = lim
t→∞

infy∈K ∥ U(t,u(0))− y ∥2= 0.

Definition 4. B ⊆ Rp is a domain of bounded flows if for each u(0) ∈ B, there exists a

C > 0 such that ∥ U(t,u(0)) ∥2 < C for all t ≥ 0.

When the ODE system (2.5) is defined strongly, such as when the vector field f is

smooth, we have the following well-known result.

Theorem 2. (La Salle) Given a dynamical system (2.5), let K ⊆ Rp be a compact and

positive invariant set, and let Ẽ : Rp → R be a scalar functional of u with continuous

first partial derivatives. Suppose that

˙̃
E(u(t)) = ∇u(t) Ẽ(u(t)) · f(u(t)) =

p∑
i=1

∂ui
Ẽ(u(t))fi(u(t)) ≤ 0, ∀u(t) ∈ Rp.

Then for all u(0) ∈ Rp, the solution U(t,u(0)) to the system (2.5) converges to M , which

is the largest positive invariant set in S =
{
u(t)| ˙̃E(u(t)) = 0

}
.

Proof. For the proof, we refer to [46].

11

For our systems of interest, however, the system (2.5) is not defined strongly. Indeed,

our vector fields are not smooth, and some partial derivatives of Ẽ may not exist. For

example, a partial derivative ∂ui
Ẽ may not exist when σ′(ui(t)) does not exist; see (2.4).

Hence, we need to use an extension of the La Salle Theorem as follows:

Theorem 3. (Modified La Salle) Given a domain K ⊆ Rp of bounded flows that are

closed and positive invariant, suppose there exist scalar functionals Ẽ,W : Rp → R with

Ẽ being continuous and W being upper semicontinous and non-positive for all u(t) ∈ Rp.

Suppose further that

˙̃
E(u(t)) = W (u(t)) ≤ 0, ∀u ∈ Rp, a.e. in [0,∞).

Then for all u(0) ∈K, the solution U (t,u(0)) to the system (2.5) converges to M , which

is the largest positive invariant set in S = {u(t)|W (u(t)) = 0}.

Proof. For the proof, we refer to [49].

Consider the index set

I(t) =
{
i ∈ {1, 2, ..., p} : ∂ui

Ẽ(u(t)) exists
}
. (2.7)

We note that the set I(t) depends on t, that is, a different point in time may give a

different index set I(t). Motivated by Theorem 2 and Theorem 3, we set:

W (u(t)) =

∑

i∈I(t)
∂ui

Ẽ(u(t)) · fi(u(t)) , when I(t) ̸= ∅

0 , when I(t) = ∅.
(2.8)

Assuming the set of time points at which the gradient does not exist is of measure zero,

we will have I(t) = {1, 2, . . . , p} for almost every t ≥ 0. We note that this assumption

holds for the type of transfer functions that we consider in this work. By (2.8) we

12

therefore arrive at
˙̃
E(u(t)) = W (u(t)), a.e. in [0,∞). All that is left to do is to choose

fi(u) such that W ≤ 0 so that Theorem 3 can be utilized. Let Di represent the i-th

column of the dictionary, D. One particular way is to set fi(u) = −∂ui
Ẽ(u), whenever

the partial derivative exists. This brings us to the following formula (see the appendix

for the derivation),

fi(u(t)) =
(
D⊤

i x−D⊤
i Dσ(u(t))− λ

)
σ′(ui(t)), (2.9)

when σ′(ui(t)) exists. When σ′(ui(t)) does not exist, we are free to choose fi(u(t))

because the contribution of fi(u(t)) will be excluded from the sum in the definition of

W (u(t)), preserving the nonpositivity constraint; see (2.8). Nevertheless, for convenience,

we use the same formula (2.9) also in this case, but we replace strong derivatives by weak

derivatives; see details in the forthcoming sections.

The gradient system that we consider here reads

u̇(t) = f(u(t)) = (D⊤x−D⊤Dσ(u(t))− λ1p)⊙ σ′(u(t)), (2.10)

where σ′(u(t)) = (σ′(u1(t)), · · · , σ′(up(t))) is understood in the weak sense. Specific

examples of σ′ can be found in (2.12), (2.14) and (2.18) for activation functions found in

(2.11), (2.13) and (2.17), respectively.

We are now ready to impose our constraints for NSO and a system that asymptotically

converges to BSO by modifying the transfer function to fit our needs.

13

2.7 NSO Transfer Functions

The standard transfer function used in the literature is a shifted unit slope Rectified

Linear Unit (ReLU) function defined as,

ai = σ(ui(t)) =

ui(t)− λ when ui(t) ≥ λ

0 otherwise.

(2.11)

Although the derivative at time points where ui(t) = λ does not exist, motivated by the

flexibility of the choice for σ′ discussed in the previous sections and the notion of weak

derivatives, we set

σ′(ui(t)) =

1 ,when ai ̸= 0

0 ,when ai = 0.

(2.12)

We may then consider the gradient system (2.10) with the activation and its derivative

given in (2.11)-(2.12). It is important to note that the gradient system that we are

considering here is different from the dynamical system used in the literature; see e.g.,

[21, 23, 49],

u̇(t) = D⊤x−D⊤Dσ(u(t))− λ1p = D⊤x− u(t)− (D⊤D − I)σ(u(t)).

This system is obtained under the assumption that σ′ is identically one, independent of

the value of ai, and through a different formulation of W than our formulation in (2.8),

by replacing the index set I(t) in our formulation by A(t) = {i ∈ {1, . . . , p} : ai(t) ̸= 0}.

There is, however, a crucial problem with this formulation: it invalidates the condition

˙̃
E(u(t)) = W (u(t)), a.e. in [0,∞), which is necessary for the result of Theorem 3 to

hold. As a result, the convergence analysis of the optimization problem by the gradient

system method cannot be studied making use of the (modified) La Salle theorem.

It is to be noted that the above approach applies to general transfer functions and

14

is not restricted to the specific form (2.11). Importantly, if we change the form of the

transfer function, our dynamical system changes and so do its fixed points. For example,

we may consider ReLU functions with general positive slopes c > 1:

ai = σc(ui(t)) =

c(ui(t)− λ), when ui(t) ≥ λ

0, otherwise.

(2.13)

In this case, following the discussion above we set

σ′
c(ui(t)) =

c ,when ai ̸= 0

0 ,when ai = 0.

(2.14)

We may then consider the gradient system (2.10) with the activation and its derivative

given in (2.13)-(2.14).

ReLU functions with different slopes can be seen in figure 2.1.

Figure 2.1: ReLU functions with sparsity penalty parameter λ = 0.5 and differ-
ent slopes.

15

2.8 BSO Transfer Function and Approximating NSO

Sequences

The BSO transfer function of interest forces the coefficients to be binary and takes the

form

ai = σ(ui(t)) =

1 when ui(t) ≥ λ

0 otherwise.

(2.15)

The derivative of the activation function (2.15) exists almost everywhere and is zero,

except at time points where ui(t) = λ. This makes all components of the force field

f in (2.10) equal to zero, delivering a trivial dynamical system u̇(t) = 0, and hence,

preventing a direct study of the BSO problem through the gradient system approach.

In order to study the BSO problem by the gradient system approach, we consider a

sequence of problems that “approach” the BSO problem, by considering a sequence of

activation functions that “approach” the binary activation function (2.15). Specifically,

we introduce a more restricted NSO problem,

min
a∈[0,1]p

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1. (2.16)

We then select a sequence of activation functions with the range [0, 1] that converge to the

original BSO activation functions. To this end, we consider two different strategies: one

by defining a time-independent sequence, and one by defining a time-dependent sequence,

as follows.

In the first approach, we consider a sequence of time-independent activation functions,

generated by a family of sigmoid functions, which are strictly increasing,

ai = σk(ui(t)) =

2

1+e−k(ui(t)−λ) − 1, when ui(t) ≥ λ,

0, otherwise.

(2.17)

16

where k ∈ {1, 2, . . . }. We refer to such functions as rectified sigmoid functions. The weak

derivative of the rectified sigmoid function (2.17) can be computed using the product rule

as,

σ′
k(ui(t)) =

2ke−k(ui(t)−λ)

(e−k(ui(t)−λ)+1)2
, ai ̸= 0,

0, ai = 0.

(2.18)

We may then consider the gradient system (2.10) with activation and its derivative given

in (2.17)-(2.18).

We note that as k increases, σk(ui(t)) gets closer to the step function; see figure 2.2.

Hence, one strategy to solve for the BSO problem would be to solve the approximating

autonomous system (2.10) with the derivatives given in (2.18) with a large k (for example

k = 100) and then perform post-processing to force the resulting solution a to be binary.

Figure 2.2: Rectified sigmoids with different decay parameters k and sparsity
penalty parameter λ = 0.5. As the constant k increases, the transfer function ap-
proaches the step function used in BSO.

An alternative approach is to define a sequence of dynamical systems using a sequence

of time-dependent activation functions converging to the step activation function (2.15)

17

as time increases. This would make the force field f an explicit function of both u(t)

and t, and thus amount to a non-autonomous system. Although the convergence theory

of general non-autonomous systems is not well developed (see e.g. [34]), we can still

numerically study their limiting solution as time increases to study the BSO problem.

First, to find the full time-derivative of Ẽ, we differentiate it with respect to time,

∂tẼ(u(t), t) = λ

p∑
i=1

∂tσi(ui(t)(t))− 2x⊤D∂tσ(u(t)) + 2σ(u(t))⊤D⊤D∂tσ(u(t))

= (λ1⊤
p − 2x⊤D + 2σ(u(t))⊤D⊤D)∂tσ(u(t)). (2.19)

Assuming ∂ui(t)Ẽ and ∂tẼ exist a.e. in [0,∞),

˙̃
E(u(t), t) =

p∑
i=1

∂ui(t)Ẽ(u(t), t) u̇i(t) + ∂tẼ(u(t), t) = W (u(t), t) a.e. in [0,∞). (2.20)

If we replace k in (2.17) with a time-dependent function k(t) such that limt→∞ k(t) =∞,

then we will have created a non-autonomous system whose force terms asymptotically

converge to 0 with the step activation function seen in figure 2.2. The general form for

this case becomes

ai = σ(ui(t), t) =

2

1+e−k(t)(ui(t)−λ) − 1 when ui ≥ λ

0 otherwise

(2.21)

with derivative with respect to ui(t) when ai ̸= 0 set as

∂ui(t)σ(ui(t), t) =
2k(t)e−k(t)(ui(t)−λ)

(e−k(t)(ui(t)−λ) + 1)2
, (2.22)

and corresponding time derivative when ai ̸= 0

∂tσ(ui(t), t) =
2(ui(t)− λ)e−k(t)(ui(t)−λ)k′(t)

(e−k(t)(ui(t)−λ) + 1)2
. (2.23)

18

Following the strategy from before, we set the force term equal to zero when ai = 0, and

when ai ̸= 0 to

fi(u(t), t) = −∂ui(t)Ẽ(u(t), t) =(
x⊤Di −D⊤

i (

p∑
k ̸=i

akDk)−D⊤
i Di(

2

1 + e−k(t)(ui(t)−λ)
− 1)− λ

)
2ke−k(t)(ui(t)−λ)

(e−k(t)(ui(t)−λ) + 1)2
.

(2.24)

The partial time-derivative ∂tσ(ui(t), t) in (2.24) vanishes as t → ∞ because the ex-

ponential terms approach zero. Therefore, ∂tẼ(u, t) in (2.19) also vanishes as t → ∞.

Hence, by (2.20), in the limit W (u(t), t) ≤ 0. Motivated by the theory of autonomous

systems (Theorem 3), after integrating the non-autonomous system for a sufficiently long

time, the convergence of the solution flow may be attained.

2.9 Analysis of Gradient System Approach

In this section, we will present the convergence analysis of the gradient system (2.10)

with the activation and its derivative given in either (2.13)-(2.14) or (2.17)-(2.18), for

solving the NSO and BSO problems, respectively.

First a lemma that enables us to use Theorem 3 and show the convergence of our

gradient systems.

Lemma 1. Let Ẽ and W be given respectively by (2.4) and (2.8) with two generic ac-

tivation functions in (2.13) and (2.17), where u(t) = U (t,u(0)), with u(0) ∈ Rp, is the

flow of the gradient system (2.10) with the activation and its derivative given in either

(2.13)-(2.14) or (2.17)-(2.18). Then the following statements hold,

1. Ẽ(u(t)) is continuous.

2. W (u(t)) ≤ 0 is upper semicontinuous.

19

3.
˙̃
E(u(t)) = W (u(t)), a.e. in [0,∞).

4.
˙̃
E(u(t)) ≤ 0.

5. The set K = {u(t)|Ẽ(u(t)) ≤ Ẽ(u(0))} is closed, positive invariant, and a domain

of bounded flows.

Proof.

1. All of the terms in (2.4) are continuous because activation functions of the form

in (2.13) and (2.17) are continuous. Since Ẽ is a linear combination of continuous

functions, it is also continuous.

2. Define an indicator function Ii(u(t)) = 1 if σ(ui(t)) > 0 and 0 otherwise for i =

1, . . . , p. Since we have fi(u(t)) = −∂ui(t)Ẽ(u(t)) with σ′ given in either (2.14) or

(2.18), from (2.8) we get,

W (u(t)) =
∑
i∈I

∂ui
Ẽ(u(t)) · fi(u(t)) =

p∑
i=1

−(fi(u(t)))2Ii(u(t)) ≤ 0.

Since −Ii(u(t)) is upper semicontinuous, so is −(fi(u(t)))2Ii(u(t)), and thus W (u)

is upper semicontinuous because it is the sum of upper semicontinuous functions.

3. This follows directly from the definition of W (u(t)) in (2.8) and noting the activa-

tion functions (2.13) and (2.17) are differentiable almost everywhere.

4. From items 2 and 3 we know
˙̃
E(u(t)) ≤ 0 a.e. in [0,∞). For the points where

˙̃
E(u(t)) ̸= W (u(t)), i.e., the points where the ∂uiẼ(u(t)) doesn’t exist, we set

σ′ = 0, causing the force term fi = 0. Hence, these points do not contribute to

˙̃
E(u(t)), and it remains less than or equal to zero.

5. Let u(0) ∈ Rp be an arbitrary initial point and define Ẽ(u(0)) := e(0). Since Ẽ

is continuous, K is closed because Ẽ−1([0, e(0)]) (the inverse map of Ẽ) is closed.

20

Since
˙̃
E(u(t)) = W (u(t)) ≤ 0 a.e., Ẽ(u(t)) is non-increasing in t . Hence for any

flow corresponding to an arbitrary initial condition, we can say,

Ẽ(U(t,u(0))) ≤ Ẽ(U(0,u(0))) = e(0)

which implies K is positive invariant and bounded. Hence U(t,u(0))→K for any

u(0) ∈ Rp.

Our first main result follows.

Theorem 4. Consider the gradient system (2.10) with the activation and its deriva-

tive given in either (2.13)-(2.14) or (2.17)-(2.18). For all u(0) ∈ K, the solution flow

U(t,u(0)) to the gradient system converges to the fixed points of the system.

Proof. From Lemma 1, we know the hypotheses of Theorem 3 have been satisfied for

both systems. Hence, for any u(0) ∈K for either system, U(t,u(0)) will converge to the

largest positive invariant set M inside the set S = {u(t)|W (u(t)) = 0}. Let F be the set

of fixed points of the system. We will show that M ⊂ F . To this end, we let u∗ ∈M ,

which implies that W (u∗) = 0. Hence, by the definition of W in (2.8) and the definition

of fi in (2.9), we obtain fi(u
∗) = 0 for all i ∈ {1, . . . , p} for which ∂ui

Ẽ(u∗) exists. It

remains to note that we always set fi(u
∗) = 0 for all i ∈ {1, . . . , p} for which ∂ui

Ẽ(u∗)

does not exist, because in such cases we set σ′ = 0. Hence, we get u∗ ∈ F , and the proof

is complete.

Our second main result follows.

Theorem 5. Let C be the set of optimal solutions to (2.1) where ai ∈ [0,∞) or to

(2.16) when ai ∈ [0, 1] for all i ∈ {1, . . . , p}. Let F be the set of fixed points for the

gradient system (2.10) with the activation and its derivative given in either (2.13)-(2.14)

or (2.17)-(2.18). Then the following statements hold:

21

1. If u∗ ∈ F and a∗ = σ(u∗), then a∗ ∈ C, assuming −D⊤
i x + D⊤

i Da∗ ≥ −λ for i

when a∗i = 0;

2. If a∗ ∈ C, then ∃u∗ ∈ F s.t. σ(u∗) = a∗.

Proof. To show 1, let u∗ ∈ F . Then f(u∗) = 0. In order to show a∗ = σ(u∗) ∈ C, we

need to show that the criteria in Theorem 1 are satisfied, with hi(a) = −ai ≤ 0. It suffices

to show that for every i ∈ {1, . . . , p}, there exists µ∗
i ≥ 0 such that 0 ∈ ∂aiE(a∗) − µ∗

i

and µ∗
i a

∗
i = 0, because then all three conditions of Theorem 1 will be satisfied, noting

that hi(a) = −ai ≤ 0. We consider two cases as follows:

Case 1: a∗i > 0. In order to satisfy µ∗
i a

∗
i = 0, we need to take µ∗

i = 0. Moreover, from

fi(u
∗) = 0, noting that σ′(u∗

i) ̸= 0, we obtain D⊤
i x − D⊤

i Da∗ − λ = 0. The desired

condition is then satisfied noting that ∂aiE(a∗)− µ∗
i = −D⊤

i x+D⊤
i Da∗ + λ = 0.

Case 2: a∗i = 0. It can be seen µ∗
i a

∗
i = 0 is satisfied for any µ∗

i ≥ 0. The generalized

derivative of E is

∂aiE(a∗) = −D⊤
i x+D⊤

i Da∗ + λ ∂ai |a∗i | = −D⊤
i x+D⊤

i Da∗ + [−λ, λ].

We need show that there exists λ∗
i ≥ 0 such that ∂aiE(a∗) − λ∗

i contains zero. This is

true when −D⊤
i x+D⊤

i Da∗ ≥ −λ.

To show 2, let a∗ ∈ C. Then by Theorem 1, for all i = {1, . . . , p}, there exists µ∗
i ≥ 0

such that

0 ∈

−D⊤

i x+D⊤
i Da∗ + λ, when a∗i ̸= 0

−D⊤
i x+D⊤

i Da∗ + [−λ, λ]− µi, when a∗i = 0.

(2.25)

We now define u∗ as follows, considering two cases.

Case 1: a∗i ̸= 0. We choose u∗
i = σ−1(a∗i). Hence, a

∗
i = σ(u∗

i) and by (2.25) we will have

fi(u
∗) = −D⊤

i x+D⊤
i Da∗ + λ = 0.

22

Case 2: a∗i = 0. By (2.25) there exists βi ∈ [−λ, λ] such that 0 = −D⊤
i x+D⊤

i Da∗+βi−µi.

Hence, if we choose u∗
i = βi − µi, then we will have u∗

i ≤ λ and hence a∗i = σ(u∗
i) = 0,

noting that µi ≥ 0 and that βi ≤ λ. In this case, we also have fi(u
∗) = 0.

The proof is complete.

It is to be noted that in all the stable numerical examples performed in this work,

the assumption −D⊤
i x +D⊤

i Da∗ ≥ −λ for i when a∗i = 0 is satisfied. This can also be

achieved if, for example, we let σ′ be a very small number (instead of zero) such that

reaching a fixed point with fi(u
∗) = 0 would imply −D⊤

i x+D⊤
i Da∗ + λ = 0.

23

Chapter 3

Numerical Methods and Results

Theorem 4 and Theorem 5 enable the computation of both the NSO problem with the

generic ReLU activation function and restricted NSO problem with the sequence of sig-

moid activation functions (as an approximate BSO problem) by computing the corre-

sponding gradient systems. Specifically, by Theorem 4, we know the solution flows of the

gradient system (2.10), with the activation and its derivative given in either (2.13)-(2.14)

or (2.17)-(2.18), converge to F , the set of fixed points of the gradient system. Hence if

we integrate the gradient system in time and compute the flow at a large terminal time,

we would expect to have an approximation of a fixed point of the system, say u∗. Next,

by Theorem 5, we know that a∗ = σ(u∗) will be an approximate minimizer of the sparse

optimization problems found in (2.1) and (2.16).

It is important to note the IVP of (2.5)-(2.6) for this work is defined in weak sense,

and hence special numerical treatment may be required. However, we ignore jump discon-

tinuities for the initial numerical examples and simply use standard Runge-Kutta (RK)

methods for proof of concept. The implementation of more specified methods, discussed

in the review paper addressing discontinuous right hand sides of IVPs for ODEs [36], will

be the subject of future work.

24

3.1 NSO Process

We can summarize the approach to solving NSO, (2.1), as follows:

1. Define any positive constraints on the solution vector a.

2. Find a strictly increasing activation function σ defined to be 0 when less than λ

and also mapping any input into the constrained range of a .

3. Using σ, define a dynamical system of differential equations f(u(t)) with solution

flow u(t) that converges to the stationary points of (2.3).

4. Numerically solve for u(t).

5. Apply σ to the resulting converged solution flow u(t) to get a final sparse code a.

3.2 Approximating BSO

When solving for BSO, (2.2), we cannot use the gradient system approach directly. There

are two separate procedures for approximation.

3.2.1 NSO Solve and Post Process

One approach is:

1. Define the constraints a ∈ [0, 1]p.

2. Find a strictly increasing activation function σ defined to be 0 when less than λ

and also maps any input into [0,1].

3. Using σ, define a dynamical system of differential equations f(u(t)) with solution

flow u(t) that converges to the stationary points of (2.3).

4. Numerically solve for u(t).

25

5. Apply σ to the resulting converged solution flow u(t) to get final sparse code a.

6. Force any component of solution vector ai > 0 to be exactly 1, or apply some

threshold value in (0,1) where anything below threshold goes to 0 and anything

equal to the threshold or higher is defined to be 1.

We know that this first approach is guaranteed to converge to the solutions of (2.16),

and any post processing should give reasonable results to the BSO problem.

3.2.2 NSO Non-autonomous System Converging to BSO

Alternatively, we can define a non-autonomous, which has a time-dependent activation

function σ(ui(t), t) that converge to the non-differentiable step function. Here we proceed

by,

1. Define the constraints a ∈ [0, 1]p.

2. Find a series of strictly increasing activation functions σ(ui(t), t) defined to be 0

when less than λ and also mapping any input to [0,1]. σ(ui(t), t) must converge to

the step activation function.

3. Using σ(ui(t), t), define a dynamical system of differential equations f(u(t), t) with

solution flow u(t).

4. Numerical solve for u(t) for an extended period of time when the activation func-

tions are likely to be very close to the step function.

5. Apply σ(ui(t), t) to the resulting converged solution flow u(t) to get final sparse

code a.

26

3.3 Numerical Examples

Here we show a few numerical examples of the different techniques to demonstrate their

efficacy. For this work, we solve for a single 7 × 7 pixel patch of a Fashion MNIST [54]

image using a trained dictionary D of size 49 × 64 and set our λ = 1.4. Details can be

found in Chapter 5.

3.3.1 NSO Numerical Examples

First we demonstrate the convergence of our generic ReLU activation function (2.13) for

solving (2.1) where the solution coefficients can be any positive value which can be seen

in Figure 3.1. The original image and final reconstruction of the 16 7× 7 patches can be

seen in Figure 3.2.

27

Figure 3.1: Top Panel: Convergence of reconstruction error and total cost for
(2.1). Middle Panel: Trajectories of the 64 components of the solution flow
in (2.10). Bottom Panel: Histogram of coefficients for active elements. Notice
they are not constrained to be between 0 and 1. There are 6 active features making the
solution 91 percent sparse.

28

Figure 3.2: Original image and final reconstruction of the 16 7 × 7 patches
demonstrating the efficacy of the technique with 90% sparsity on average.

Generic ReLU activation functions converge to the same minimum, but at different

rates and with varying numerical stabilites. The relationship can be seen in Figure 3.3.

Figure 3.3: Relationship between the convergence rate and stability of different
slopes c on the generic ReLU activation functions. All systems converge as in
Figure 3.1. The steeper the slope, the faster the convergence, but less numerically stable.
Points not shown either didn’t converge or became numerically unstable.

3.3.2 BSO Numerical Examples

Next, we will study varying constants k for the autonomous system in (2.17). The

convergence behaviour of the total cost function and potentials for all k values are similar

29

to what is seen in Figure 3.1. In Figure 3.4, we observe that reconstructions remain valid

for various levels of k. With an increase in k, the coefficient distributions tend to be

more binary. Following post processing, both the average values of the cost function and

the average feature activities exhibit a decreasing trend as k ascends. Sequentially from

left to right, the total average cost values stand at 33.17, 32.8, and 9.7, and the average

feature activities from the 64-sized dictionary are at 8.56, 8.44, and 3.75, respectively.

Figure 3.4: Top panel: Reconstruction for different values of k. Bottom panel:
Histograms of active coefficients over 16 patches (zero valued coefficients are
omitted). As k increases, the distribution of coefficients becomes more binary. After
post processing, the average cost function values and average activity of features also
decrease as k increases. In order from left to right, total average cost values are 33.17,
32.8, and 9.7 while the average feature activities out of the size 64 dictionary are 8.56,
8.44, and 3.75.

3.4 Convergence of NSO to BSO

As stated before, we are unable to show convergence for non-autonomous systems of the

form in (2.24). However, the numerical example in Figure 3.5 shows convergence of a

linear function k(t).

30

Figure 3.5: Left Panel: Convergence of fixed Convergence rate of k = 50000
and final solution histogram. Right Panel: Convergence of fixed Convergence
rate of k(t) = 2.5t and final solution histogram. Fixed k does not converge to a
binary solution, but finds the same binary solution as the non-autonomous system (which
always converges to binary) after post processing.

Further numerical experiments show tuned fixed k values do not always get to the

same quality of binary solutions after post processing as the non-autonomous approach

across multiple images. Further details on the comparisons will be shown in Chapter 5

in Figure 5.5.

31

Chapter 4

Approximating NSO on a Spiking

Neuromorphic Processor

4.1 Background

Computational neuroscience frequently delves into understanding how intricate phenom-

ena arise from neural networks. This understanding typically comes from crafting mod-

els that closely depict the physics that control communication within extensive neuronal

systems. For practical applications, a solid mathematical base is essential to offer theo-

retical insight into the convergence and efficiency of synthetic systems. In this context,

we spotlight sparse coding models, known to mirror the response traits and receptive

field patterns of neurons in the primary visual cortex (V1) [41, 45]. The sparse coding

problem described in previous sections has also been described by Rozell et al. [45] as

a recurrent network termed the Locally Competitive Algorithm (LCA) to represent the

local lateral competition that is observed in V1 [8].

Sparse coding models with a biological basis, such as LCA, captivate the neuromor-

phic community due to their capability to emulate significant aspects of biological sensory

processing, as noted by [56, 57]. Additionally, they maintain relevance in machine learn-

32

ing contexts [38, 51]. As spiking implementations on neuromorphic systems often diverge

substantially from non-spiking versions on conventional computing platforms, it is pivotal

to discern these differences, especially when considering critical deployments.

Previously, [48] highlighted that the sparse coding objective function in a simulated

spiking neural network (SNN) with integrate-and-fire neurons converged to the same

solution as NSO when the activation functions are unit slope ReLUs. Following this,

Fair and colleagues showed that a spiking LCA on the TrueNorth neuromorphic platform

[7] aligned closely with its non-spiking counterpart on traditional hardware, albeit under

stringent model conditions [16].

More recently, an LCA demonstration on the Intel’s Loihi neuromorphic processor

was conducted by [15], using leaky-integrate-and-fire (LIF) neurons. Interestingly, their

model solely contained inhibitory connections, in contrast to the non-spiking LCA, which

incorporates both excitatory and inhibitory links. Their findings showed a consistent

decline in the sparse coding objective function when assessing average firing rates as a

neural activity metric. Yet, a direct coefficient comparison between NSO and the spiking

LCA remains unexplored, leading to an unresolved question about the fidelity of spiking

LCA on neuromorphic hardware when applied to intricate, authentic challenges.

In this chapter, we build upon the earlier spiking version of LCA, denoted as S-LCA

[15]. We present an enhanced S-LCA that incorporates both excitatory and inhibitory

lateral connections (illustrated in Figure 4.1). We demonstrate that this modification

aligns closely with the non-spiking, analog LCA (referred to as A-LCA). Undertaking a

detailed neuron-to-neuron analysis, we compared the S-LCA executed on cutting-edge

neuromorphic hardware to the solutions obtained on a CPU, specifically Intel’s Loihi,

against A-LCA on traditional computing platforms (e.g., NSO with unit ReLU on a

CPU). Our findings highlight that our S-LCA rendition closely mirrors A-LCA at both

individual neuron and system scales. This superior resemblance, in comparison to the

earlier S-LCA model, is largely attributed to the addition of excitatory lateral connec-

33

tions.

4.2 S-LCA and Convergence to A-LCA

First, we present an overview of the convergence proof provided by Tang et al. [50] for

a LASSO problem with strictly positive connectivity weights wi,j and extend the result

into a regime where both positive and negative weights are present.

Define the only independent variable in our spiking network as the soma currents

µi(t) for the p neurons, which receive a constant input bias bi = DT
i x and maintain an

internal electric potential vi(t). When an electric potential reaches a firing threshold νf

at a time t = k, the corresponding neuron simultaneously fires a spike to either inhibit

or excite the other p − 1 neurons and resets its potential to νr. Let α = e−t and define

the soma currents of the other neurons to change in the following manner:

µj(t) = µj(t)− wjiα(t− ti,k) (4.1)

Next, define φi(t) =
∑

k δ(t − ti,k) as the sum of Dirac delta functions δ whenever the

neuron spikes over the simulation time. This leads to the final defining equations of soma

currents:

µi(t) = bi −
∑
j ̸=i

wij(α ∗ φj)(t) (4.2)

µ̇i(t) = bi − µi(t)−
∑
j ̸=i

wijφj(t) (4.3)

The instantaneous spike rate ai(t) and average soma current ui(t) are defined as:

ai(t) =
1

t− t0

∫ t

t0

φi(s)ds (4.4)

34

ui(t) =
1

t− t0

∫ t

t0

bi −
∑
i̸=j

wi,j(αu ∗ φj)(s)ds (4.5)

Leading to the spiking analog of our unit slope ReLU NSO system found in equation

(2.13) with c = 1 as:

u̇i = bi − ui −
∑
j ̸=i

wijaj(t)−
(ui(t)− ui(t0))

t− t0
(4.6)

4.3 S-LCA With Excitatory Connections

Here we make a distinction and extend the previous work and summarize a previously

published paper [24]. Originally, only inhibitory connections were allowed in order to

ensure the soma current magnitudes and corresponding average potentials are bounded.

For a strictly inhibitory network, the maximum bound on current is defined as B+ =

maxibi since the largest value obtainable in Equation 12 requires zero inhibition from

other neurons. Moreover, [50] also showed there is a lower bound and the existence of

some R > 0 such that ti,k+1 − ti,k ≥ 1/R for all i = 1, 2, ..., n and k ≥ 0 whenever two

spike times exist. We can leverage this information to show that the soma currents of

our updated model are also bounded above and below. First let A > maxi,j |wi,j| and

B = maxj |bj| since we know the inner product of features and biases are bounded. Using

35

the fact (α ∗ φj)(t) ≤
∑∞

l=0 e
− l

R <∞, we can show:

∥µi(t)∥ =

∥∥∥∥∥bi −∑
j ̸=i

wij(α ∗ φj)(t)

∥∥∥∥∥
≤

∥∥∥∥∥|bi|+∑
j ̸=i

|wij| (α ∗ φj)(t)

∥∥∥∥∥
≤

∥∥∥∥∥maxj |bj|+
∑
j ̸=i

|wij| (α ∗ φj)(t)

∥∥∥∥∥
≤ ∥B + nA(α ∗ φj)(t)∥

≤

∥∥∥∥∥B + nA
∞∑
l=0

e−
l
R

∥∥∥∥∥ <∞, (4.7)

implying the soma currents are bounded from above and below. Equipped with this

knowledge, we can follow the proof by [50] and state u(t) = [u1(t), u2(t), ..., up(t)]
T has

at least one limit point u∗ ∈ Rp such that u(tk) → u∗ as the sequence tk → ∞ when

k →∞ from the Bolzano-Weierstrass theorem [5].

This implies:

lim
t→∞

u̇i(t) = lim
t→∞

1

t− t0
(µi − ui) = 0. (4.8)

Hence σ(u(tk)) → σ(u∗) = a∗, we can conclude the system converges to the same limit

found in A-LCA:

0 = b− u∗ − (DTD − I)a∗. (4.9)

36

Figure 4.1: Our S-LCA implementation on Loihi. A general depiction of the S-LCA
algorithm as implemented on Loihi using a single 8× 8 patch as input. The input drive,
which is the dot product between each neuron’s feature vector and the input patch, is
computed and used to initialize the membrane potentials after subtracting the A-LCA
trade-off parameter λ. At each timestep, each neuron’s membrane potential is charged
up (or down) by the input drive and compared to a spiking threshold νf . Any neuron
whose membrane potential is greater than νf will “spike”, and thus inhibit (red) or
excite (blue) neurons whose features overlap with its own, depending on whether the
features are aligned or anti-aligned, respectively. The previous S-LCA implementation
only contained inhibitory (red) lateral connections. The membrane potential is reset to
zero after every spike. After T iterations, typically only a few neurons remain active. The
average firing rate of each active neuron in the S-LCA model is computed over the last
1,000 timesteps for comparison with the A-LCA model. Our comparisons are performed
on a 56× 56 pixel image, but we use 8× 8 features and a stride of 8, which is the same
process depicted here but with 7× 7 = 49 patches.

37

4.4 Unsupervised Dictionary Learning

The subsequent phase of the optimization procedure entails determining the optimal

dictionary D for the specified dataset. Initially, random features populate the dictionary.

Then, a stochastic gradient descent algorithm combined with a local Hebbian Learning

Rule adjusts the feature vectors of active neurons, enhancing the sparse reconstruction

[19]. First, let us look at the objective function for a sparse coding problem. x ∈ Rm is

the input D ∈ Rmxp is our dictionary and a ∈ Rp is the sparse code:

E(a(t)) =
1

2
||x−Da(t)||22 + λ||a(t)||1.

We expand on the reconstruction error term for purposes of gradient descent because the

sparsity penalty drops after differentiation with respect to D.

E(a(t))∗ =
1

2
||x−Da(t)||22

=
1

2
(x−Da(t))T (x−Da(t))

=
1

2
(xTx− xTDa(t)− (Da(t))Tx+ (Da(t))TDa(t))

=
1

2

m∑
i=1

x2
i − 2

m∑
i=1

(xi

p∑
j=1

Dijaj(t))

+
m∑
i=1

(

p∑
j=1

Dijaj(t))
2).

(4.10)

38

Now we can differentiate E∗ with respect to Dyz to see how each individual dictionary

element changes:

∂E∗

∂Dyz

=
1

2
(−2xyaz(t) + 2(

p∑
j=1

Dyjaj)az(t))

= (

p∑
j=1

Dyjaj(t)− xy)az(t)

= −ryaz(t).

Where ry represents the y’th component of the residual, we can then expand into matrix

form:

∂E

∂D
= −

r1a1(t) r1a2(t) ... r1ap(t)

r2a1(t) . .

. . .

rma1 rmap

(4.11)

= − ra(t)T (4.12)

= − (x−Da(t))a(t)T . (4.13)

The Hebbian learning algorithm [19] given a single input, x, is summarized in Algorithm

1. In practice, a mini-batch (i.e. an average over a fixed number of input samples)

of input samples are used for each update instead of a single input sample. Since our

gradient system is proportional to the derivative of the energy w.r.t D of the NSO prob-

lem, we know the learning process will descend the gradient of our neurophysiological

representation. The final learned dictionary can be seen in figure 4.3.

39

Figure 4.2: Sparse dictionary learning. Sparse coding is often combined with dictio-
nary learning in an alternating fashion. After computing a(t) by minimizing 2.10 with
fixed D, D is then updated as in (4.13). At each update, the dictionary only changes in
the directions of the active neurons.

Algorithm 1 Dictionary Update

Require D ∈ Rm×p, a ∈ Rp, x ∈ Rm, η ∈ R+

Ensure D ∈ Rm×p

update dictionary(D, a, x, η)
recon← D · a
residual← x− recon
∆D ← residual · aT
D ← D + η ·∆D
for i = 1 to p do

Di ← Di

∥Di∥2
end

return D

40

4.5 A-LCA Implementation

To draw a comparison between S-LCA on Loihi and the non-spiking LCA [45], we utilized

PyTorch to implement a single LCA layer through the LCA-PyTorch [42] package. More

precisely, we set up a convolutional LCA layer equipped with valid padding, comprising

450 features of dimensions 8× 8, and 8-stride, and a rectified soft threshold. Employing

this configuration, we refined a dictionary over 5,000 updates (as per Algorithm 1) based

on 50,000 grayscale images, each of 56 × 56 size, sourced from the COCO dataset [35]

on CPU, setting λ at 0.5. This trained dictionary (as illustrated in figure 5.4) was

then incorporated into both the non-spiking A-LCA and the spiking S-LCA models for

benchmarking using reserved images from our COCO selection. To align the sparsity of

S-LCA on Loihi to match A-LCA, we tuned the regularization parameter λ to the value

of 0.73.

4.6 S-LCA Loihi Implementation and Modifications

The previous S-LCA implementation on Loihi that used only inhibitory lateral connec-

tions [article, 15] was structured the following way:

Neurons in the spiking network are driven by a respective bias current b (not a

spiking input) that is calculated once, at the beginning of a run, as the dot product of

the dictionary element and the respective patch and is scaled then scaled to the available

bit space.

The weights in [article, 15] are chosen to be positive definite and made to work via

the construction of an expanded dictionary twice the size of the original, consisting of

strictly positive dictionary elements in the top half of the dictionary and inverted negative

elements in the lower half. This S-LCA implementation converged towards the minimum

of a different objective function in which the feature vectors lacked negative sub-units.

The lack of anti-aligned sub-units prohibited more biologically realistic environments

41

where neurons can also excite one other.

We demonstrate the addition of these excitatory sub-units, in combination with the

inhibitory sub-units, give rise to a dynamical spiking system that behaves more closely to

a conventional non-spiking A-LCA model (Fig. 4.4). Specifically, when features contain

both excitatory and inhibitory sub-units, both positive and negative lateral connections

arise naturally via taking the transpose of the dictionary dotted with itself. A given spik-

ing neuron will now inhibit neurons with similar explanations of the same patch (positive

inner product) but will excite neurons with dissimilar explanations (negative inner prod-

uct). In addition, we re-implemented the ranges of biases, weights and activations such

that there were no longer sign flips (integer overflow) due to the limited bit ranges on

Loihi.

Figure 4.3: The dictionary used by both the S-LCA and A-LCA models in our
experiments. The dictionary (D) is composed of 450 features of size 8× 8.

42

Figure 4.4: Our modified S-LCA model contains excitatory connections as in
A-LCA. Activation when only the neuron best aligned with the input patch receives bias
drive; all other biases were set to zero. A-LCA model (top) and our implementation of
S-LCA on Loihi (bottom right) exhibit activity for neurons with zero input drive, while
the previous S-LCA implementation on Loihi (bottom left) [15] does not excite activity
of other neurons (bottom left), confirming an absence of excitatory connections.

After initializing both the S-LCA and A-LCA models with the dictionary learned in

Section 4.5 (Figure 4.3), both models were run on their respective hardware using the

same test image with the parameters outlined in Sections 4.5 and 4.6.

Our S-LCA exhibits closer dynamics to A-LCA than previous implementations of

S-LCA by allowing only one neuron in each model to receive an input drive while all

other neurons received no input drive. Since earlier S-LCA architectures contained no

43

excitatory lateral connections, we hypothesized that only the neuron receiving input

drive would be active in those models. In contrast, our S-LCA and A-LCA contains

excitatory lateral connections, which should raise the membrane potential of some of

the other neurons above threshold even without input drive. In Figure 4.4, we confirm

this, as both A-LCA (top) and our S-LCA (bottom right) have multiple neurons active,

whereas the previous S-LCA (bottom left) only has one active neuron (the only one with

a non-zero input drive). In both A-LCA and our S-LCA, the same neurons appear to be

active at qualitatively similar activity levels as the system converges.

Figure 4.5: Input drive vs. final activation. Our S-LCA model produces a similar
shape to the A-LCA model. Both models contain a few neurons that became active with
features that were negatively aligned with the input, which was not true for the original
S-LCA model. The distinct levels of final activity for the S-LCA model demonstrate the
bit precision limitation present on the hardware.

Figure 4.5 illustrates the activation of each neuron in the S-LCA model and the A-

44

LCA model as a function of initial input drive. Both our S-LCA and the A-LCA contain

neurons, which are active in the sparse representation despite having negative input drive

(i.e., anti-aligned with the stimulus), whereas the previous S-LCA has only the driven

neuron active since there was no mechanism for excitatory connections to other neurons.

We can also see that our S-LCA provides a reasonable match to A-LCA despite the

quantization that takes place on Loihi. Next, we compare the sparse activation of each

neuron in our S-LCA directly against that in the A-LCA (Figure 4.6).

Figure 4.6: A-LCA vs. S-LCA Matching Coefficient Values The rate code solution
for our S-LCA model is a very close match to the A-LCA solution. Each point represents
a single neuron out of the 450× 8× 8 = 28, 800 neurons in our model. The difference in
scale on each axis is due to how the spikes are integrated.

Here, we can see further evidence that our S-LCA performs similarly to A-LCA, as

the activations lie close to the diagonal indicating that our S-LCA converged to A-LCA.

Finally, we compare our S-LCA model to the A-LCA model by examining the recon-

structions of the input image produced by each model from the sparse representation.

By comparing the reconstructions visually, we validate that our S-LCA produces a sim-

ilar sparse representation to the A-LCA. Figure 4.7 confirms that this is the case, as

the reconstruction produced by our S-LCA model is very close to that produced by the

45

A-LCA model. We can also observe that each model is using a very similar number of

features to represent each patch.

Figure 4.7: The number of active neurons per patch in our S-LCA modelcom-
pared to that in the A-LCA model. The number of neurons active per patch is
laid over the final sparse reconstructions of the S-LCA (left) and A-LCA (right) models,
which illustrates that our S-LCA model closely matches A-LCA both at the image and
patch level.

4.7 Discussion and Conclusion

We have extended the earlier S-LCA model that was restricted to inhibitory lateral

connections between neurons. Our enhanced S-LCA integrates both excitatory and in-

hibitory lateral connections, drawing it closer in behavior to A-LCA. Initially, we vali-

dated that our S-LCA’s behavior aligns with the endpoint observed in A-LCA. Subse-

quently, we deployed our S-LCA on the Loihi neuromorphic processor, aligning its input

and dictionary with an equivalent A-LCA on CPU/GPU setups. Demonstrating for the

first time a detailed neuron-by-neuron analysis, we highlighted that the sparse latent

representation in our S-LCA mirrors that in A-LCA.

Our study stands as one of the rare instances where a spiking algorithm on contem-

porary neuromorphic hardware nearly perfectly aligns with its classical counterpart in

46

a practical scenario. Consequently, the efficacy of our S-LCA rivals or surpasses that

of A-LCA implementations universally. Our approach of S-LCA on Loihi is almost 40x

more energy efficient than its classical counterpart and agrees with similar results using

the device in existing literature [14][15] where faster convergence can also been seen.

Such advancements pave the way for crafting swift, energy-conserving AI designs in con-

texts where A-LCA has showcased its merit, such as serving as a resilient foundation for

convolutional neural networks [51].

However, this study does have its limitations. We have exclusively evaluated the non-

convolutional scenario, adopting a stride equivalent to the patch dimension. While it is

improbable that performance between our S-LCA and A-LCA would deviate dramati-

cally in a convolutional framework, further investigation is necessary. Future endeavors

might also expand our S-LCA into the spatio-temporal realm, potentially employing video

streams or dynamic vision sensor data. This expansion would facilitate the creation and

examination of models resonating even more with biological vision processes.

47

Chapter 5

QUBO

5.1 BSO and Relationship to QUBO

The non convexity of the BSO transfer function allows us to recast the problem into an

Ising-model or equivalently a Quadratic Unconstrained Binary Optimization problem,

known as QUBO. The problem becomes minimizing a function in the following form [23,

20]

H(a;Q,h) =
n∑

i=1

hiai +
∑
i<j

Qijaiaj. (5.1)

In order to see the relationship to our problem, we write out an expanded version of our

optimization function with binary variables:

E(a) =
1

2
x⊤x− x⊤Da+

1

2
a⊤D⊤Da+ λ

p∑
i=1

ai. (5.2)

We can see there are both quadratic and linear terms with respect to a. Hence we can

formulate our sparse coding problem (2.2) into QUBO form via the transformations [20,

23]:

hi = −D⊤
i x+ λ+

1

2
D⊤

i Di (5.3)

48

Q =
1

2
(D⊤D). (5.4)

5.2 D-Wave Quantum Annealer

In classical annealing, a system begins in a randomly selected initial state at a given

temperature. This temperature introduces thermal fluctuations, which allow the system

to cross over local energy barriers, transitioning into different energy states. The prob-

ability of these transitions is determined stochastically by the Boltzmann distribution.

This means that while it is possible for the system to move to a higher energy state, it

is exponentially more probable for it to transition to a lower one. As the temperature

decreases, these annealing systems tend to gravitate towards increasingly lower energy

states. This process is iteratively performed with varying random initial conditions. Out

of all these iterations, the lowest energy state achieved is taken as the computational

result.

Quantum annealing, on the other hand, presents significant differences when com-

pared to its classical counterpart. Instead of initializing in a single, randomly selected

state, a quantum annealing system is set in a state that is a quantum superposition of

all potential states. To exemplify this, consider the D-Wave quantum annealing ma-

chine. Initially, each qubit experiences a transverse magnetic field while no interaction

or coupling occurs between these qubits. Thus, a D-Wave machine with N qubits be-

gins in a state representing the superposition of all 2N possible observable states. One

of the primary reasons for the enhanced computational prowess of quantum annealers

is this ability to begin in a superposition of all potential states, allowing for a more

comprehensive sampling of the entire energy spectrum.

In classical annealing, the temperature is slowly reduced to guide the system towards

its lowest energy state. However, in quantum annealing (using the D-Wave as an ex-

ample), the desired Hamiltonian (specified by the user) is progressively activated while

49

the transverse magnetic field is simultaneously decreased. Instead of overcoming energy

barriers by “hopping” over them as in classical systems, quantum annealing leverages

quantum tunneling to transition to new energy states. Theoretically, this quantum tun-

neling enables quantum annealers to bypass getting trapped in local energy minima.

However, there is a practical challenge when using the physical D-Wave device. Given

its connectivity constraints, physical qubits need to be “chained” together to achieve the

full connectivity demanded by a majority of machine-learning algorithms, and especially

fully connected Hopfield networks. This chaining significantly reduces the number of

“logical” qubits, placing it at least an order of magnitude below the count of “physical”

qubits [23, 22].

5.2.1 Choice of D-Wave Parameters

With newer generations of the D-Wave quantum annealers, more and more features have

been added that allow the user a greater control over the anneal process. The specific

parameters being used are listed in this section.

One necessary consequence of the minor embeddings are the presence of chains, that

is the representation of a logical qubit as a set of physical hardware qubits on the chip.

However, after annealing, it is not guaranteed that reading out chained qubits all take

the same value (either zero or one), although they technically represent the same qubit.

Such a chain is called “broken”. To arrive at a value for the logical qubit in eq. (5.1), we

used the majority vote chain break resolution algorithm [53, 33].

We employ the D-Wave annealer with an annealing time of 100 microseconds, and

we query 1000 samples per D-Wave backend call. To compute the chain strength, we

employ the uniform torque compensation feature with a UTC prefactor of 0.6. The

UTC computation, given a problem QUBO, attempts to compute a chain strength which

will minimize chain breaks while not too greatly disrupting the maximum energy scale

programmed on the device [13].

50

5.3 Loihi Neuromorphic Chip Implementation

Intel’s Loihi 1 is the first generation neuromorphic computing device that draws inspira-

tion from biology to implement spiking neural networks with neurons as the fundamental

processing elements [14]. This section pulls from a previous publication [25].

Figure 5.1: Network connectivity of the variables in eq. (5.1). Connections include
the self interaction terms hi (symmetric weights proportional to the inner product be-
tween features), the inter-neuron connection weights Qij, and the stochastic noise input.
Red is inhibitory connection and blue is excitatory. The network is sampled at different
times and activity is measured for an approximate solution.

5.3.1 Overcoming Local Minima on Loihi 1

Compared to a Boltzmann machine [26], spiking networks allow for transitions between

extreme objective function variable states (see Figure 5.2). Because of the limited time

of activity, or forced refractory period, defined by τ , active neurons are turned off for a

predetermined time, and others, which were inhibited by the active neuron now have a

chance to activate. These periods allow the network to explore non-locally and facilitate

the bypassing of high energy barriers in the optimization landscape [18, 28]. After the

refractory period is over, previously active neurons will likely re-fire because they are

receiving a strong input and a low-energy state will again be found. Figure 5.2 demon-

strates this property through the substantial variation in the energy read outs obtained

51

from Loihi 1 as a function of time. High energy read-outs correspond to refractory pe-

riods of neurons active in the ideal solution, and the repeated lowest energy reflects the

return to lower energy solution states [14]. For the QuboSolver method run on Loihi 1,

a threshold mantissa of 96, weight exponent of 6, and noise mantissa of 0 and exponent

of 7 are used. In order to sample each QUBO on Loihi 1, a total of 2, 000 samples are

measured; 4 simulation times (5000, 10000, 15000, 20000) are varied over, and 5 differ-

ent weight matrix scalings (10, 100, 1000, 10000, 100000) are varied, with each parameter

combination being sampled 100 times (this gives 4 · 5 · 100 = 2000 samples per QUBO).

52

Figure 5.2: Conceptual diagram of how we expect spike-based dynamics to
support the bypassing of high-energy barriers. Energy, e.g., the objective function
evaluation for a set of variable assignments, is given on the y-axis and the x-axis shows
variable assignments where ■ denotes +1 and □ denotes 0 (for the chosen number of
variables of n = 6). In this example, the relatively sparse state of (0, 0, 0, 1, 0, 1) has
the lowest overall energy. When the system is sampled at different time periods T1, T2,
and T3, we are able to bypass the largest energy barrier because the refractory period
automatically shuts off variables 5 and 6 [28].

53

Figure 5.3: Best solutions as a function of simulation run time. QUBO energies
read out at different simulation times (minimum of 10 readouts per simulation time) from
the Loihi 1 neuromorphic processor for a single QUBO patch.

5.4 Un-normalized Dictionary Learning

Sparse coding optimization can be seen as a two-step process, where a dictionary is first

learned in an unsupervised way by using a local Hebbian rule. Typically, when learning a

basis for solving the convex Lasso problem, the algorithm requires the re-normalization of

the columns of the dictionary D after each learning epoch. The normalization is critical

for convergence in the Lasso setting because the values of the sparse vector a are allowed

to take on any value. Previous work has demonstrated the ability to learn a dictionary in

a QUBO regime, but this required the introduction of a new amplification parameter β to

the input [23, 22]. Here, we introduce a new learning technique that allows the algorithm

to find the optimal norm for features based on a predetermined desired average level of

sparsity defined as s ∈ (0, 1). The dictionary is initialized with features drawn from a

normal distribution with random norms below 1 and a small sparsity penalty parameter

λ. After solving the binary sparse coding problem for each sample in the training data,

54

the dictionary is updated. If the average sparsity over the training epoch is above the

desired level s, the penalty parameter λ is increased for the next epoch. Pseudo code for

the algorithm is presented below and the learning results are summarized in Figure 5.4.

We can see the average neuron activity and reconstruction error converge along with the

norms of the learned features.

We applied our technique to a patched version of the standard fashion MNIST (fM-

NIST) data set [54]. Each 28 × 28 image was broken up into 16 7 × 7 patches, and we

selected a dictionary of size 64 in order to partition the problem into sub-problems which

could be implemented on Loihi 1 (the exact number of variables for the sub-problems, is

arbitrary, but fixed). Even with a smaller data structure, it was still necessary to perform

our dictionary learning algorithm using the classical simulated annealing approach when

solving for our sparse code in Step 6 of Algorithm 2. The NSO parameter λ was increased

from 0.1 to 1.4 in increments of 0.1 to adapt to the sparsity of the solution (see the top

right plot in Figure 5.4).

Algorithm 2 Dictionary Update Unormalized

input: D ∈ Rm×n, Train data ∈ Rb×m, η ∈ R+, s ∈ (0, 1), λ > 0, number of epochs N
1 function learn dictionary(D, a, x, η, s,number of epochs)
2 for epoch = 1, 2, . . . , N

3 activity count = 0
4 for i = 1, 2, ..., b
5 x = Train data[i]

Solve for a
recon = Da
residual = x− recon
∆D = residual aT

D = D + η∆D
activity count = activity count+ sum(a)

6 if activity count
n∗b > s then

7 λ = λ+ 0.1
8 end

9 return D

55

Epochs2-Norm2-Norm

Figure 5.4: Unormalized dictionary learning.Randomly initialized dictionary with
norms distributed between .01 and .2. After the training algorithm, norms increase and
an optimal binary dictionary is learned for a fixed average activity of 12 features.

5.5 Results

Figure 5.4 visualizes the successful implementation of un-normalized dictionary feature

learning. Using a local learning rule and a fixed sparsity level, we can see that the

algorithm learns a better basis for reconstruction as the average error of the training

data decreases over training epochs, and it also converges to the desired average sparsity

level.

After successfully training each dictionary with simulated annealing (SA), a total of

16 separate QUBO models are generated. Each QUBO is then sampled using Loihi 1 (see

Section 5.3) and D-Wave. The NSO problem was also solved as a non-autonomous LCA

system. In order to provide a reasonable comparison against existing classical heuristic

algorithms, we also sample each of the 16 QUBO models using simulated annealing. The

simulated annealing implementation we use is a D-Wave SDK implementation [10], using

1000 samples per QUBO and all default settings. Using the best solutions (e.g., the

computed variable assignments with the lowest energy found among all samples) from

56

Loihi 1, D-Wave, simulated annealing, and our non-autonomous LCA, we can recon-

struct the original image from sampling all 16 QUBOs. These reconstructions are shown

in Figure 5.5. Although SA has a lower mean energy, our non-autonomous system LCA

and Loihi 1 are able to find reasonable solutions. D-Wave results for forward annealing

trail significantly. Similar to previous demonstrations of lower power usage for certain

applications [14, 24, 23, 22, 21], Loihi 1 uses an average energy consumption of ∼ 0.0192

joules per sample, per QUBO matrix compared to an average energy consumption of

∼ 0.115 joules per sample for simulated annealing, ∼ .2 joules per sample for D-Wave

(not including cooling overhead), and .34 joules per solve for our NSO approaches. The

simulated annealing and NSO energy consumption was measured using pyRAPL 1 (in-

cluding RAM power usage). The total power usage was computed by subtracting the idle

machine energy consumption (for the same time duration) from the power consumption

when simulated annealing was run. The Loihi 1 power consumption was measured us-

ing the NxSDK power monitoring function. Solution quality is measured by computing

aTQa and is an equivalent to the strictly positive objective function after the transfor-

mation. In Figure 5.5, we can see the reconstruction, solution energy, and sparsity results

for all techniques presented in the manuscript.

1https://pyrapl.readthedocs.io/en/latest/

57

Figure 5.5: Reconstructions from classical SA, Loihi 1, D-Wave, and the two
separate BSO approximations. Full image consists of 16 separate QUBO solves and
the mean energies and sparsity levels are displayed. The sparsity levels are the mean
(across the 16 QUBO models) number of variables in the lowest energy state which were
in the state of +1.

58

Chapter 6

Related Published Papers

As we inch closer to the physical limitations of traditional computational hardware, delv-

ing into innovative computational platforms becomes crucial for the continual progress of

artificial intelligence. The following five papers laid the foundation for the topic of this

dissertation and demonstrate the progress made comparing quantum and neuromorphic

hardware for solving the sparse coding problem. All current publications in the original

forms are available at the end of the manuscript.

6.1 Machine Learning in a Post Moore’s Law World:

Quantum vs. Neuromorphic Substrates

Here we initiated the first comparison between novel hardware options—the D-Wave

quantum annealer and the Intel Loihi 1 spiking processor—applying them to a uniform

machine learning problem. To ensure a fair and valid comparison, we opt for the Fashion

MNIST dataset, subjected to dimensionality reduction via sparse principal component

analysis, while maintaining constant classification performance and a graph-based clus-

tering metric. This approach facilitates a direct mapping of the problem onto both

hardware types.

59

Our analysis spans various metrics, including power consumption, reconstruction

quality, and classification accuracy. When confronted with the same meticulously con-

structed challenge, the two substrates exhibit comparable performance, but ultimately

solve a different problem. Loihi 1 solves NSO with slope ReLU found in Chapter 4 and

D-Wave solves BSO. The initial findings indicate neuromorphic and quantum systems are

at early stages of development, but hold potential as viable solutions for certain classi-

cally formidable problems, such as sparse coding, by capitalizing on the unique attributes

of each substrate.

6.2 Alien vs. Predator: Brain Inspired Sparse Cod-

ing Optimization on Neuromorphic and Quan-

tum Devices

In this work we extend the previous findings by appropriately tuning and learning dictio-

naries for the different substrates to improve the overall performance. The Henze-Penrose

statistic as a measure of classification problem difficulty is demonstrated to show the

utility of dimensionally reduced Fashion-MNIST dataset. Additionally, we generate a

second dataset with inverted signs and append it to the original, aiming to create a sce-

nario where each class possesses a mean zero distribution. This setup results in data that

is not readily separable by linear methods. We introduce an early-stage normalization

technique tailored for Loihi, accompanied by an exploration of optimal parameter set-

tings and unsupervised dictionary learning, applicable across all three data variations.

Figure 6.1 shows the time evolution of the objective function and the motivation for early

normalization.

60

Figure 6.1: Simulation time steps against spike rate, neuron activation, and
objective function. Red dotted line represents where most significant neuron competi-
tion has already occurred and activity is dampened out. Top Panel: Average spike rate
of neurons in network. Middle Panel: A spike raster plot of how often active neurons
are firing over the simulation. Lower Panel: The value of the objective function and the
long regularization time after the initial fit plateau. The vast majority of the reduction
in the loss function occurs early in the simulation.

6.3 Fast Post-Hoc Normalization for Brain Inspired

Sparse Coding on a Neuromorphic Device

Here we extend the normalization technique and compare with solutions derived classi-

cally through the greedy orthogonal matching pursuit (OMP) algorithm executed on a

standard digital processor. A thorough analysis of optimal parameter selection, recon-

struction errors, and unsupervised dictionary learning for both Loihi and its classical

counterpart are presented. By increasing the sparsity parameter λ, and tuning to the

same sparsity level as the final solutions from the full simulation allow for an over 50×

speed up with almost identical solutions. Figure 6.2 demonstrates tuning the full simula-

tion for reconstruction error and then finding the appropriate λ increase for the post-hoc

61

approach to match sparsity levels.

Figure 6.2: Optimal sparsity penalty λ selection. Each graph has reconstruction
error/loss in blue and active feature percentage in red. There is a clear optimal sparsity
level dictated by full simulation Loihi (Top), and post-hoc normalization technique on
Loihi (Bottom) roughly exhibits a monotonic relationship. We can impose the same level
of sparsity as the full time simulation Loihi on the post hoc approach by drastically
increasing the penalty term λ.

6.4 Apples-to-spikes: The First Detailed Compari-

son of LASSO Solutions Generated by a Spiking

Neuromorphic Processor

Prior research applied a spiking version of Locally Competitive Algorithm (S-LCA) on

the Loihi neuromorphic processor, maintaining lateral connections solely in the inhibitory

62

domain, contrasting the analog LCA (A-LCA) which incorporates both excitatory and

inhibitory connections. Without lateral excitatory interactions, the S-LCA implementa-

tion on Loihi was able to deduce sparse representations for image patches that approached

a global minimum, though a detailed analysis of the specific neural activations (i.e., the

solution) was not conducted.

In this study, we initially establish that the limitations imposed on lateral connections

in the prior S-LCA implementation were overly restrictive. Subsequently, we introduce

an enhanced version of S-LCA that integrates both excitatory and inhibitory lateral con-

nections. We executed this advanced S-LCA on the Loihi processor, demonstrating that

the resultant sparse latent representations more accurately mirrored those determined

by A-LCA. More precisely, this research conducts the inaugural comparison of individual

neuron activations between S-LCA and A-LCA, illustrating that the final solution from

our S-LCA closely aligns with that of A-LCA. To the best of our knowledge, this re-

search represents one of the rare instances where a spiking algorithm, when implemented

on contemporary neuromorphic hardware for a practical task, showcases a performance

nearly indistinguishable from its non-spiking analog. Much of this paper can be found in

Chapter 4.

6.5 Sampling Binary Sparse Coding QUBO Models

Using a Spiking Neuromorphic Processor

In this work, we address the problem using an L2 norm for reconstruction error minimiza-

tion and an L0 (or equivalently, L1) norm to impose sparsity on the binary vector, re-

sulting in a Quadratic Unconstrained Binary Optimization (QUBO) problem, a typically

NP-hard challenge. Our contributions are twofold. Initially, we introduce an approach for

unsupervised and unnormalized dictionary feature learning, aimed at optimally aligning

with the data while adhering to a predetermined level of sparsity. Subsequently, we solve

63

the binary sparse coding problem utilizing the Loihi 1 neuromorphic chip, leveraging

stochastic neural networks to navigate the non-convex energy landscape. We evaluate

our solutions in comparison to the traditional heuristic method of simulated annealing.

Our results indicate that neuromorphic computing is a viable option for generating low-

energy solutions in binary sparse coding QUBO models. Although Loihi 1 demonstrates

proficiency in producing highly sparse solutions for QUBO models, there is a necessity

for enhancements in the implementation to achieve competitiveness with simulated an-

nealing. Many of the ideas and figures in Chapter 5 are from this paper.

64

Chapter 7

Future Work

7.1 Quantum Evolution Monte Carlo

In order to improve the results found for D-Wave, we will use the annealer in connection

with so-called Monte Carlo chain of reverse anneals, in which the best solution of any

anneal is encoded as the initial state of the next anneal. This process works on the logical

problem, meaning after unembedding of all chained qubits.

To be precise, a sequence of reverse anneals are chained together in a Monte Carlo-

like process, where each subsequent round of reverse anneals is initialized with a classical

state that is defined by the best solution found at the last set of reverse anneals. This

chain of reverse anneals is initialized with the best solution found from a 100 microsec-

ond forward anneal with 1000 samples. Each reverse annealing step in the chain uses

reinitialize state=True when executing on the D-Wave quantum annealers, which

re-initializes the state of the reverse anneal after each anneal-readout cycle. This tech-

nique has been used many times in other contexts and is referred to as both “iterative

reverse annealing” [55, 3, 2] and “quantum evolution Monte Carlo” (QEMC) [31, 30, 32,

29, 37].

Note that the D-Wave quantum annealer feature h − gain, which specifies a time

65

dependent multiplicative term on all linear terms for all time points over the course of

the anneal, can also be used in order to encode classical states into the anneal [44], and

thereby also allows an iterative h-gain state encoding technique, similar to this reverse

annealing technique, to be used on [43].

For all experiments involving reverse annealing, the reverse annealing schedule used

was given by {[0, 1], [10, s], [90, s], [100, 1]}, where each pair defines a point in time (from

the start to the end of the anneal process) and an anneal fraction s. The anneal fraction

is the normalized time used to control how the quantum Hamiltonian is moved from the

initial superposition of states to the problem QUBO during the anneal [11]. The anneal

schedule is constructed by linear interpolation between those four points. The reverse

anneal schedule we use is symmetric with a pause of 80 microseconds. It has an increasing

and decreasing ramp on either side of a pause of duration 10 microseconds. We vary the

anneal fraction s at which the pause occurs.

Moreover, we employed D-Wave with flag reduce intersample correlation enabled for

all experiments, which adds a pause in-between each anneal in order to reduce correlations

in the data (those correlations may exist in time due to the spin bath polarization effect,

see [1]). Both parameters readout thermalization and programming thermalization were

set to 0 microseconds. The reverse annealing specific parameter reinitialize state was

enabled for all reverse annealing executions, causing the annealer to reapply the initial

classical state after each anneal readout cycle [12].

7.2 Neuromorphic Warm Starting

Motivated by the results found using QEMC, we implement a warm starting technique

on Loihi 2 in order to improve solution quality. For a proper comparison, we ran the

QUBO solver for 100 iterations and used the previous solution as the initial state for the

next run while simultaneously randomly selecting refractory periods for each run.

66

7.3 Preliminary Results

Figure 7.1 demonstrates the different results for the s parameter in QEMC and the

convergence to the exact solver solution when tuned correctly. In the same figure, we can

see the Loihi 2 also benefits from the warm starting technique after several iterations.

Figure 7.2 shows the improvement of both reconstructions over the same set of QUBOs

presented in Chapter 5. We can also see Loihi 2 is able to provide a better initial solution

than both D-Wave and Loihi 1.

Figure 7.1: QEMC and Loihi 2 warm starting over 100 iterations for both
techniques. Loihi 2 initially finds a good solution and sees a slight improvement over
trials. After tuning the parameters, QEMC eventually obtains the same solution as the
exact solver.

67

Figure 7.2: QEMC and Loihi 2 warm starting results over the same 16 patches
from Chapter 5. The D-Wave results are drastically improved. Loihi 2 is much better
than Loihi 1 and also benefits from the warm starting approach.

68

Chapter 8

Conclusion

In this dissertation, we have embarked on a comprehensive exploration of the intricate

dynamics and properties of recurrent neural networks, particularly focusing on dynam-

ical and gradient systems, to address constrained sparse optimization problems. The

focal point of our investigation has been Hopfield networks, distinguished by the inter-

action and self-organization of neurons into configurations that represent the minimizer

of the problem at hand. By delving deep into the mathematical underpinnings of these

networks, we have strived to bridge the gaps between theoretical neuroscience, artificial

intelligence, and neural computations, bringing forth a clearer understanding of their

convergence behaviors in various contexts. This journey of exploration and analysis has

been complemented by practical implementations on classical computers, spiking neural

networks, and quantum hardware, ensuring a holistic and grounded perspective on the

subject matter.

Dynamical systems, characterized by state variables and evolution rules, exhibit a

plethora of behaviors ranging from stability and periodicity to chaos, contingent upon

their parameters and initial conditions. Gradient systems, a subset of dynamical systems,

navigate the trajectory of the system based on the gradient of a potential function, inher-

ently seeking local minima and thereby playing a crucial role in optimization problems.

69

Within this spectrum, the Hopfield network stands out as a fully connected, recurrent

neural network that doubles as a gradient system, directing configurations toward lower

energy states and forming an energy landscape dotted with attractors and valleys. This

unique capability positions it as an associative memory, retrieving stored patterns even

from noisy or incomplete inputs.

Zooming in on a specific variant of the Hopfield network, the Locally Competitive

Algorithm (LCA), we tackled the sparse coding problem, aiming to reconstruct input

signals from a sparse linear combination of features in an overcomplete dictionary. This

problem not only bears significant relevance in signal processing but also finds parallels

in the neural activities of the V1 layer of the mammalian visual cortex, presenting a

fascinating intersection of computational neuroscience and machine learning. In LCA,

neurons are fully interconnected, competing through excitation and inhibition to converge

to a sparse representation of the input.

Our investigation did not stop at the theoretical and computational analysis of these

networks; we took it a step further by addressing the nuances of activation functions

and their implications on convergence behavior. Previous work has predominantly cen-

tered on the computational facets of LCA for non-negative sparse optimization with unit

ReLU activations, leaving gaps in understanding, especially regarding other activation

functions. This dissertation fills these gaps, providing a comprehensive analysis of con-

vergence for generic ReLU and Rectified Sigmoid activation functions, and extending the

exploration to binary sparse optimization problems.

Armed with this understanding, we introduced non-autonomous systems with time-

varying sigmoid activations, converging toward step functions to address binary sparse

optimization problems, a domain where traditional gradient system approaches falter

due to non-convex energy landscapes. Verifying our theoretical insights, we conducted

numerical experiments on classical computers, further solidifying the foundation of our

analysis.

70

The journey did not end there; we embraced the emerging realms of quantum anneal-

ing and spiking neuromorphic computing, demonstrating the relevance and applicability

of our findings in these non-von Neumann architectures. By mapping the continuous do-

main networks to their spiking counterparts and reformulating binary sparse optimization

problems into the form of QUBOs for quantum annealers, we established a bridge between

classical and modern computational paradigms, showcasing the versatility and potential

of our approaches. The ability of spiking neuromrophic processors to solve both the spike

rate approximation of LCA with ReLU activations, as well as QUBOs directly, at signif-

icantly lower power than both classical and quantum annealing computation, provides

enticing evidence for the benefits brought by brain inspired devices.

71

Appendix A

Appendix

A full derivation of (2.9) follows:

∂ui
Ẽ(u) = ∂aiE(a)

∂ai
∂ui

= ∂ai

[
1

2
(

m∑
j=1

x2
j − 2

m∑
j=1

(xj

p∑
i=1

Djiai) +
m∑
j=1

(

p∑
i=1

Djiai)
2) + λ

p∑
i=1

ai

]
∂ai
∂ui

=

[
−

m∑
j=1

xjDji +
m∑
j=1

(

p∑
i=1

Djiai)Dji + λ

]
∂ai
∂ui

=
[
−x⊤D[:,i] +D⊤

[:,i]Da+ λ
] ∂ai
∂ui

=
[
−x⊤D[:,i] +D⊤

[:,i]Da+ λ
]
σ′(ui)

=

[
−x⊤D[:,i] +D⊤

[:,i](

p∑
k ̸=i

akD[:,k]) +D⊤
[:,i]D[:,i]ai + λ

]
σ′(ui). (A.1)

Sampling binary sparse coding QUBO models using a spiking
neuromorphic processor

Kyle Henke
khenke@lanl.gov

Los Alamos National Laboratory, CCS-3 Information
Sciences

Los Alamos, New Mexico, USA

Georg Hahn
ghahn@hsph.harvard.edu

Harvard University, T.H. Chan School of Public Health
Boston, Massachusetts, USA

ABSTRACT
We consider the problem of computing a sparse binary representa-
tion of an image. To be precise, given an image and an overcomplete,
non-orthonormal basis, we aim to find a sparse binary vector indi-
cating the minimal set of basis vectors that when added together
best reconstruct the given input. We formulate this problem with
an 𝐿𝐿2 loss on the reconstruction error, and an 𝐿𝐿0 (or, equivalently,
an 𝐿𝐿1) loss on the binary vector enforcing sparsity. This yields a
so-called Quadratic Unconstrained Binary Optimization (QUBO)
problem, whose solution is generally NP-hard to find. The contri-
bution of this work is twofold. First, the method of unsupervised
and unnormalized dictionary feature learning for a desired sparsity
level to best match the data is presented. Second, the binary sparse
coding problem is then solved on the Loihi 1 neuromorphic chip
by the use of stochastic networks of neurons to traverse the non-
convex energy landscape. The solutions are benchmarked against
the classical heuristic simulated annealing. We demonstrate neuro-
morphic computing is suitable for sampling low energy solutions
of binary sparse coding QUBO models, and although Loihi 1 is
capable of sampling very sparse solutions of the QUBO models,
there needs to be improvement in the implementation in order to
be competitive with simulated annealing.

KEYWORDS
neuromorphic computing, sparse coding, computer vision, spiking
neural networks, unsupervised machine learning, QUBO, Loihi 1

ACM Reference Format:
Kyle Henke, Elijah Pelofske, Georg Hahn, and Garrett T. Kenyon. 2023.
Sampling binary sparse coding QUBO models using a spiking neuromorphic
processor. In International Conference on Neuromorphic Systems (ICONS
2023). ACM, New York, NY, USA, 5 pages.

Elijah Pelofske
epelofske@lanl.gov

Los Alamos National Laboratory, CCS-3 Information
Sciences

Los Alamos, New Mexico, USA

Garrett T. Kenyon
gkenyon@lanl.gov

Los Alamos National Laboratory, CCS-3 Information
Sciences

Los Alamos, New Mexico, USA

1 INTRODUCTION
We are interested in the computation of a sparse binary recon-
struction of an image. This task plays a role whenever an image of
interest is not directly observable and instead must reconstructed
from a limited sample or projection using compressive sensing.
Sparse binary reconstruction is of interest in, for instance, the
fields of radioastronomy and molecular imaging, as well as im-
age compression [11, 15]. Sparse binary coding falls into the class
of Quadratic Unconstrained Binary Optimization (QUBO). QUBO
models are challenging computational problems that are difficult to
solve exactly using classical algorithms due to exponential run time
complexity, in general. QUBO models are a specific type of discrete
combinatorial optimization problems, and in general it is of consid-
erable interest to be able to compute optimal solutions of QUBO
models more efficiently than existing methods. Networks of spiking
neurons with noise have been shown to offer new opportunities
for solving these problems. By programming the constraints into
the architecture of a network of spiking neurons and controlling
the frequency of network states during the resulting stochastic dy-
namics of the network, the exploration of complicated energy (e.g.,
objective function) landscapes describing our problem of interest
can be performed in practical time.

Mathematically, given a signal 𝒙𝒙 ∈ R𝑚𝑚 and an overcomplete and
non-orthonormal basis of 𝑛𝑛 > 𝑚𝑚 vectors 𝑫𝑫 = {𝐷𝐷1, . . . , 𝐷𝐷𝑛𝑛 }, we aim
to infer a sparse representation of the input using few elements
from the dictionary. Here, an overcomplete set is defined as one that
contains more functions than needed for a basis. All basis matrices
as well as the image 𝒙𝒙 are assumed to be of equal dimensions. The
task is to find the minimal set of non-zero activation coefficients 𝒂𝒂
that accurately reconstruct the given input signal 𝒙𝒙, where 𝒂𝒂 ∈ B𝑛𝑛

is a binary vector of length 𝑛𝑛 for B = {0, 1}. We can express the
computation of a sparse binary representation of the image 𝒙𝒙 using
the basis 𝑫𝑫 as the minimization of the energy function

𝐸𝐸 (𝒙𝒙, 𝒂𝒂) = min

1 ∥𝒙𝒙 − 𝑫𝑫𝒂𝒂∥2 + 𝜆𝜆∥𝒂𝒂∥0

l
(1)

𝒂𝒂 2 2

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

ICONS '23, August 1–3, 2023, Santa Fe, NM, USA
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0175-7/23/08.
https://doi.org/10.1145/3589737.3606003

where ∥ · ∥2 is the Euclidean norm and ∥ · ∥0 denotes the number of
nonzero elements. The parameter 𝜆𝜆 > 0 is a Lasso-type parameter
[14] controlling the sparseness of the solution. A large value of 𝜆𝜆
results in a more sparse solution to eq. (1), while smaller values

mailto:khenke@lanl.gov
mailto:ghahn@hsph.harvard.edu
mailto:epelofske@lanl.gov
mailto:gkenyon@lanl.gov
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589737.3606003&domain=pdf&date_stamp=2023-08-28

ICONS 2023, August 1–3, 2023, Santa Fe, NM, USA Henke et al.

𝑛𝑛

∑

yield denser solutions. Therefore, the parameter 𝜆𝜆 allows one to
effectively balance the reconstruction error (the 𝐿𝐿2 norm) and the
number of non-zero activation coefficients (the 𝐿𝐿0 norm). Since
eq. (1) belongs to the class of 0-1 integer programming problems,
finding a sparse representation falls into an NP-hard complexity
class. The objective function of eq. (1) is non-convex and typically
contains multiple local minima.

We investigate a spiking neuromorphic processor to solve the bi-
nary sparse representation problem given by the objective function
in eq. (1). Neuromorphic computing is a proposed computing model
inspired by the human brain, which is able to complete learning
tasks better than classical von Neumann computers [3, 12, 13].

2 METHODS
2.1 Transformation relations
The problem being solved has to be given as a QUBO problem. In
this formulation, the observable states of any neuron is 0 and 1.
We start by reformulating eq. (1) in QUBO form. To this end, we observe that for 𝒂𝒂 ∈ B𝑛𝑛,

reads obtained from Loihi 1 as a function of time. High energy
read outs correspond to refractory periods of neurons active in the
ideal solution, and the repeated lowest energy reflects the return to
lower energy solution states [2]. For the QuboSolver method ran
on Loihi 1, a threshold mantissa of 96, weight exponent of 6, and
noise mantissa of 0 and exponent of 7 are used. In order to sample
each QUBO on Loihi 1, a total of 2, 000 samples are measured; 4
simulation times (5, 000, 10, 000, 15, 000, 20, 000) are varied over, and
5 different weight matrix scalings (10, 100, 1000, 10000, 100000) are
varied, with each parameter combination being sampled 100 times
(this gives 4 · 5 · 100 = 2000 samples per QUBO).

2.2.2 Un-normalized Dictionary Learning. Sparse coding optimiza-
tion can be seen as a two step process where a dictionary is first
learned in an unsupervised way by using a local Hebbian rule. Typ-
ically, when learning a basis for solving the convex Lasso problem,
the algorithm requires the re-normalization of the columns of the
dictionary 𝐷𝐷 after each learning epoch. The normalization is criti-
cal for convergence in the Lasso setting because the values of the

1 2
sparse vector 𝒂𝒂 are allowed to take on any value. Previous work has

𝐸𝐸 (𝒂𝒂) = 2 ∥𝒙𝒙 − 𝐷𝐷𝒂𝒂∥2 + 𝜆𝜆∥𝒂𝒂∥0
1 1 𝑛𝑛

 = 𝒙𝒙⊤𝒙𝒙 − 𝒙𝒙⊤𝐷𝐷𝒂𝒂 + 𝒂𝒂⊤𝐷𝐷⊤𝐷𝐷𝒂𝒂 + 𝜆𝜆 𝑎𝑎𝑖𝑖 .

demonstrated the ability to learn a dictionary in a QUBO regime,
but this required the introduction of a new amplification parameter
𝛽𝛽 to the input [5, 8]. Here, we introduce a new learning technique

2 2 𝑖𝑖=1
that allows the algorithm to find the optimal norm for features
based up on a predetermined desired average level of sparsity de-

As expected, multiplying out eq. (1) yields a quadratic form in
𝒂𝒂, meaning that we can recast our objective function as a QUBO
problem. For this we define the following two transformations:

ℎ𝑖𝑖 = −𝐷𝐷⊤𝒙𝒙 + 𝜆𝜆 + 1 𝐷𝐷⊤𝐷𝐷𝑖𝑖, 𝑄𝑄 =
1 (𝐷𝐷⊤𝐷𝐷). (2)

fined as 𝒔𝒔 ∈ (0, 1). The dictionary is initialized with features drawn
from a normal distribution with random norms below 1 and a small
sparsity penalty parameter 𝜆𝜆. After solving the binary sparse cod-
ing problem for each sample in the training data, the dictionary is

𝑖𝑖 2 𝑖𝑖 2 updated. If the average sparsity over the training epoch is above
Using eq. (2), we can rewrite eq. (1) as a QUBO, given by

𝐻𝐻 (𝒉𝒉, 𝑄𝑄, 𝒂𝒂) =
∑
ℎ𝑖𝑖𝑎𝑎𝑖𝑖 +

∑
𝑄𝑄𝑖𝑖 𝑗𝑗 𝑎𝑎𝑖𝑖 𝑎𝑎 𝑗𝑗 , (3)

the desired level s, the penalty parameter 𝜆𝜆 is increased for the next
epoch. Pseudo code for the algorithm is presented below and the
learning results are summarized in Figure 1. We can see the average

𝑖𝑖=1 𝑖𝑖 < 𝑗𝑗 neuron activity and reconstruction error converge along with the
which is now in suitable form to be solved on Intel’s Loihi neuro-
morphic chip [5, 8]. Network connectivity mapping can be seen in
Figure 2, where 𝑎𝑎𝑖𝑖 denote the neurons, ℎ𝑖𝑖 are the self interactions
on the neurons, and 𝑄𝑄𝑖𝑖 𝑗𝑗 are the inter-neuron connection weights.

2.2 Loihi neuromorphic chip implementation
Intel’s Loihi 1 is the first generation neuromorphic computing de-
vice that draws inspiration from biology to implement spiking neu-
ral networks with neurons as the fundamental processing elements
[2].

2.2.1 Overcoming local minima on Loihi 1. Compared to a Boltz-
mann machine [9], spiking networks allow for transitions between
extreme objective function variable states (see Figure 3). Because of
the limited time of activity, or forced refractory period, defined by
𝜏𝜏, active neurons are turned off for a determined time and others
who were inhibited by the active neuron now have a chance to ac-
tivate. These periods allow the network to explore non-locally and
facilitate the bypassing of high energy barriers in the optimization
landscape [4, 10]. After the refractory period is over, previously
active neurons will likely re-fire because they are receiving a strong
input and a low-energy state will again be found. Figure 3 demon-
strates this property through the substantial variation in the energy

norms of the learned features.
We applied our technique to a patched version of the standard

fashion MNIST (fMNIST) data set [16]. Each 28x28 image was bro-
ken up into 16 7x7 patches and we selected a dictionary of size 64
in order to partition the problem into sub-problems which could be
implemented on Loihi 1 (the exact number of variables for the sub-
problems is arbitrary but fixed). Even with a smaller data structure,
it was still necessary to perform our dictionary learning algorithm
using the classical simulated annealing approach when solving for
our sparse code in step 6 of Algorithm 1. The Lasso parameter 𝜆𝜆
was increased from 0.1 to 1.4 in increments of 0.1 to adapt to the
sparsity of the solution (see the top right plot in Figure 1).

3 RESULTS
Figure 1 visualizes the successful implementation of un-normalized
dictionary feature learning. Using a local learning rule and a fixed
sparsity level, we can see that the algorithm learns a better basis for
reconstruction as the average error of the training data decreases
over training epochs and it also converges to the desired average
sparsity level.

After successfully training each dictionary with simulated an-
nealing (SA), a total of 16 separate QUBO models are generated.

Sampling binary sparse coding QUBO models using a spiking neuromorphic processor ICONS 2023, August 1–3, 2023, Santa Fe, NM, USA

𝑛𝑛∗𝑏𝑏

Figure 1: Randomly initialized dictionary with norms distributed between .01 and .2. After the training algorithm, norms
increase and an optimal binary dictionary is learned for a fixed average activity of 12 features.

Algorithm 1: Dictionary Update

input : 𝑫𝑫 ∈ R𝑚𝑚×𝑛𝑛, 𝑇𝑇 𝑟𝑟𝑎𝑎𝑟𝑟𝑛𝑛_𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 ∈ R𝑏𝑏×𝑚𝑚, 𝜂𝜂 ∈ R+, 𝒔𝒔 ∈ (0, 1),
𝜆𝜆 > 0, number of epochs 𝑁𝑁

1 function learn_dictionary(𝐷𝐷, 𝑎𝑎, 𝑥𝑥 , 𝜂𝜂, 𝑠𝑠,number of epochs)

Figure 2: Network connectivity of the variables in eq. (3).
Connections include the self interaction terms ℎ𝑖𝑖 (symmetric
weights proportional to the inner product between features),
the inter-neuron connection weights 𝑄𝑄𝑖𝑖 𝑗𝑗 , and the stochastic
noise input. Red is inhibitory connection and blue is excita-
tory. Network is sampled at different times and activity is
measured for solution.

Each QUBO is then sampled using Loihi 1 (see Section 2.2). In or-
der to provide a reasonable comparison against existing classical
heuristic algorithms, we also sample each of the 16 QUBO models us-
ing simulated annealing. The simulated annealing implementation
we use is a D-Wave SDK implementation [1], using 1000 samples
per QUBO and all default settings. Using the best solutions (e.g.,
the computed variable assignments with the lowest energy found
among all samples) from both Loihi 1 and simulated annealing, we
can reconstruct the original image from sampling all 16 QUBOs.
These reconstructions are shown in Figure 4. Although SA has a
lower mean energy, Loihi 1 is able to find reasonable solutions at
much lower average sparsity levels. Similar to previous demonstra-
tions of lower power usage for certain applications [3, 5–8], Loihi 1
uses an average power consumption of ∼ 0.0192 joules per sample,

2 for epoch = 1, 2, . . . , 𝑁𝑁
3 𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑎𝑎_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑 = 0;
4 for 𝑟𝑟 = 1, 2, ..., 𝑏𝑏
5 𝑥𝑥 = 𝑇𝑇 𝑟𝑟𝑎𝑎𝑟𝑟𝑛𝑛_𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 [𝑟𝑟]
6 Solve for 𝑎𝑎
7 𝑟𝑟𝑟𝑟𝑎𝑎𝑐𝑐𝑛𝑛 = 𝐷𝐷𝑎𝑎
8 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑑𝑑𝑐𝑐𝑎𝑎𝑟𝑟 = 𝑥𝑥 − 𝑟𝑟𝑟𝑟𝑎𝑎𝑐𝑐𝑛𝑛
9 Δ𝐷𝐷 = 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑑𝑑𝑐𝑐𝑎𝑎𝑟𝑟 𝑎𝑎𝑇𝑇

10 𝐷𝐷 = 𝐷𝐷 + 𝜂𝜂Δ𝐷𝐷
11 𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑎𝑎_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑎𝑎_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑 + 𝑠𝑠𝑐𝑐𝑚𝑚(𝑎𝑎)
12 end
13 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎 𝑦𝑦_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎 > 𝒔𝒔 then

14 𝜆𝜆 = 𝜆𝜆 + 0.1
15 end
16 end
17 end
18 return 𝐷𝐷

The simulated annealing power consumption was measured using
pyRAPL 1 (including RAM power usage). The total power usage
was computed by subtracting the idle machine power consumption
(for the same time duration) from the power consumption when
simulated annealing was run. The Loihi 1 power consumption was
measured using the nxsdk power monitoring function.

per QUBO matrix compared to an average power consumption of
∼ 0.115 joules per sample per QUBO matrix for simulated annealing. 1 https://pyrapl.readthedocs.io/en/latest/

https://pyrapl.readthedocs.io/en/latest/

ICONS 2023, August 1–3, 2023, Santa Fe, NM, USA Henke et al.

Figure 3: Conceptual diagram of how we expect spike-based
dynamics support the bypassing of high-energy barriers. En-
ergy, e.g., the objective function evaluation for a set of vari-
able assignments, is given on the y-axis and the x-axis shows
variable assignments where ■ denotes +1 and □ denotes 0 (for
the chosen number of variables of 𝑛𝑛 = 6). In this example, the
relatively sparse state of (0, 0, 0, 1, 0, 1) has the lowest overall
energy. When the system is sampled at different time peri-
ods T1, T2, and T3, we are able to bypass the largest energy
barrier because the refractory period automatically shuts off
variables 5 and 6 [10].

4 DISCUSSION AND CONCLUSION
In this work, we derived a technique for learning an unmormalized
dictionary for binary sparse coding in an unsupervised manner
when given a desired sparsity level. The trained dictionary was
then used for solving the binary sparse coding problem in the form
of a QUBO using the Loihi 1 spiking neuromorphic processor and
compared against simulated annealing. Measurements taken from
Loihi 1 demonstrate the use of refractory periods and stochasticity
allow the spiking processors to overcome large energy barriers
in the non-convex landscape. The solutions from Loihi 1 are not
of the same quality compared with simulated annealing, but it is
interesting to note that the solutions are considerably sparser, and
use less energy to compute each sample compared to simulated
annealing.

Future work could include comparing the results on Loihi 2, the
second generation of Intel’s spiking processor. Using an iterative
warm start approach with Loihi, where the best solution found at
each iteration is used to initialize the system at the next iteration,
similar to an iterative warm start algorithm in classical optimization,

Figure 4: Reconstructions from classical SA and Loihi 1. Full
image consists of 16 separate QUBO solves and the mean
energies and sparsity levels are displayed. The sparsity levels
are the mean (across the 16 QUBO models) number of vari-
ables in the lowest energy state which were in the state of +1.

Figure 5: QUBO energies read out at different simulation
times (minimum of 10 readouts per simulation time) from
the Loihi 1 neuromorphic processor for a single QUBO patch.

could improve the total space explored and thus the likelihood of
finding a global minimum.

5 ACKNOWLEDGEMENTS
This work was supported by the U.S. Department of Energy through
the Los Alamos National Laboratory. Los Alamos National Labora-
tory is operated by Triad National Security, LLC, for the National
Nuclear Security Administration of U.S. Department of Energy
(with Contract No. 89233218CNA000001). We gratefully acknowl-
edge support from the Advanced Scientific Computing Research
(ASCR) program office in the Department of Energy’s (DOE) Office

Sampling binary sparse coding QUBO models using a spiking neuromorphic processor ICONS 2023, August 1–3, 2023, Santa Fe, NM, USA

of Science, award #77902 along with funding from the NNSA’s Ad-
vanced Simulation and Computing Beyond Moore’s Law Program
at Los Alamos National Laboratory. This work has been assigned
the technical report number LA-UR-23-25877.

REFERENCES
[1] D-Wave. 2022. dwave-simulated-annealing. https://github.com/dwavesystems/

dwave-neal.
[2] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel

Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. 2021. Advancing
Neuromorphic Computing With Loihi: A Survey of Results and Outlook. Proc.
IEEE 109, 5 (2021), 911–934. https://doi.org/10.1109/JPROC.2021.3067593

[3] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. 2021. Ad-
vancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook.
Proc. IEEE 109, 5 (2021), 911–934. https://doi.org/10.1109/JPROC.2021.3067593

[4] Gabriel A. Fonseca Guerra and Steve B. Furber. 2017. Using Stochastic Spik-
ing Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems.
Frontiers in Neuroscience 11 (2017), 1–13. https://doi.org/10.3389/fnins.2017.00714

[5] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. 2020. Machine Learning
in a Post Moore’s Law World: Quantum vs. Neuromorphic Substrates. In 2020
IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). Institute
of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, 74–77. https:
//doi.org/10.1109/SSIAI49293.2020.9094596

[6] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. 2022. Fast Post-Hoc Nor-
malization for Brain Inspired Sparse Coding on a Neuromorphic Device. IEEE
Transactions on Parallel and Distributed Systems 33, 2 (2022), 302–309. https:
//doi.org/10.1109/TPDS.2021.3068777

[7] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. 2022. Fast Post-Hoc Nor-
malization for Brain Inspired Sparse Coding on a Neuromorphic Device. IEEE

Transactions on Parallel and Distributed Systems 33, 2 (2022), 302–309. https:
//doi.org/10.1109/TPDS.2021.3068777

[8] Kyle Henke, Ben Migliori, and Garrett T. Kenyon. 2020. Alien vs. Predator:
Brain Inspired Sparse Coding Optimization on Neuromorphic and Quantum
Devices. In 2020 International Conference on Rebooting Computing (ICRC). Institute
of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, 26–33. https:
//doi.org/10.1109/ICRC2020.2020.00015

[9] Geoffrey E. Hinton. 2007. Boltzmann Machines. https://www.cs.toronto.edu/
~hinton/csc321/readings/boltz321.pdf.

[10] Zeno Jonke, Stefan Habenschuss, and Wolfgang Maass. 2016. Solving Constraint
Satisfaction Problems with Networks of Spiking Neurons. Front Neurosci 10, 118
(2016), 1–16. https://doi.org/10.3389/fnins.2016.00118

[11] Rahul Mohideen, Pascal Peter, and Joachim Weickert. 2021. A systematic eval-
uation of coding strategies for sparse binary images. Signal Processing Image
Communication 99 (2021), 116424.

[12] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. 2019. Towards spike-
based machine intelligence with neuromorphic computing. Nature 575, 7784
(2019), 607–617.

[13] Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell,
Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing
algorithms and applications. Nature Computational Science 2, 1 (2022), 10–19.
https://doi.org/10.1038/s43588-021-00184-y

[14] R. Tibshirani. 1996. Regression Shrinkage and Selection Via the Lasso. J Roy Stat
Soc B Met 58, 1 (1996), 267–288. https://doi.org/10.1111/j.1467-9868.2011.00771.x

[15] M. Ting, R. Raich, and A. Hero. 2006. Sparse Image Reconstruction using Sparse
Priors. In International Conference on Image Processing, Atlanta, GA, USA. Institute
of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, 1261–1264. https:
//doi.org/10.1109/ICIP.2006.312574

[16] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. http://arxiv.
org/abs/1708.07747

https://github.com/dwavesystems/dwave-neal
https://github.com/dwavesystems/dwave-neal
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.1109/SSIAI49293.2020.9094596
https://doi.org/10.1109/SSIAI49293.2020.9094596
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/ICRC2020.2020.00015
https://doi.org/10.1109/ICRC2020.2020.00015
https://www.cs.toronto.edu/%7Ehinton/csc321/readings/boltz321.pdf
https://www.cs.toronto.edu/%7Ehinton/csc321/readings/boltz321.pdf
https://doi.org/10.3389/fnins.2016.00118
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1109/ICIP.2006.312574
https://doi.org/10.1109/ICIP.2006.312574
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

Apples-to-spikes: The first detailed comparison of LASSO
solutions generated by a spiking neuromorphic processor

Kyle Henke∗
khenke@lanl.gov

Los Alamos National Laboratory
Los Alamos, New Mexico, USA

Michael Teti∗
mteti@lanl.gov

Los Alamos National Laboratory
Los Alamos, New Mexico, USA

Garrett T. Kenyon
gkenyon@lanl.gov

Los Alamos National Laboratory
Los Alamos, New Mexico, USA

ABSTRACT

Ben Migliori
ben.migliori@lanl.gov

Los Alamos National Laboratory
Los Alamos, New Mexico, USA

Gerd J. Kunde∗
g.j.kunde@lanl.gov

Los Alamos National Laboratory
Los Alamos, New Mexico, USA

on Neuromorphic Systems (ICONS 2022), July 27–29, 2022, Knoxville, TN, USA.

The Locally Competitive Algorithm (LCA) is a model of simple
cells in the primary visual cortex, based on convex sparse coding
via recurrent lateral competition between neighboring neurons.
Previous work implemented spiking LCA (S-LCA) on the Loihi
neuromorphic processor in which the lateral connections were con-
strained to be inhibitory, unlike non-spiking, analog LCA (A-LCA)
where both excitatory and inhibitory connections are present. In
the absence of lateral excitation, an implementation of S-LCA on
the Loihi neuromorphic processor inferred sparse representations
of image patches that were close to the global minimum, but an ex-
amination of the individual neural activations (i.e. solution) was not
performed. In this work, we first prove that the constraints placed
on the lateral connections in the previous S-LCA implementation
were unnecessarily restrictive, and we develop an S-LCA imple-
mentation with both excitatory and inhibitory lateral connections.
We implemented this improved S-LCA with both inhibitory and
excitatory lateral connections on Loihi and show that the resulting
sparse latent representations were much closer to those inferred by
A-LCA. Specifically, we perform the first comparison of individual
neuron activations between S-LCA and A-LCA and show that the
final solution of our S-LCA converges to that of A-LCA. To date,
this work provides one of the only instances in which a spiking
algorithm implemented on modern neuromorphic hardware and
performing a realistic task has exhibited such close behavior to its
non-spiking counterpart.

KEYWORDS
neuromorphic computing, sparse coding, computer vision, spiking
neural networks

ACM Reference Format:
Kyle Henke, Michael Teti, Garrett T. Kenyon, Ben Migliori, and Gerd J. Kunde.
2022. Apples-to-spikes: The first detailed comparison of LASSO solutions
generated by a spiking neuromorphic processor. In International Conference

∗Equal contribution

This paper is authored by an employee(s) of the United States Government and is in
the public domain. Non-exclusive copying or redistribution is allowed, provided that
the article citation is given and the authors and agency are clearly identified as its
source.
ICONS 2022, July 27–29, 2022, Knoxville, TN, USA
2022. ACM ISBN 978-1-4503-9789-6/22/07.
https://doi.org/10.1145/3546790.3546811

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3546790.3546811

1 INTRODUCTION
Computational neuroscience is often focused on understanding
how complex phenomenon can emerge from networks of neurons.
Often, this is achieved by formulating models that best represent
the underlying physics governing communication within large neu-
ronal networks. For application purposes, it is also crucial to have
rigorous mathematical foundations to provide theoretical guidance
for convergence and performance of artificial systems. Here, we
focus on sparse coding models, which have been shown to approxi-
mate the response characteristics and receptive field statistics of
neurons in the primary visual cortex (V1) [10, 12]. In the sparse
coding problem, the goal is to obtain a faithful but efficient (i.e.
sparse) representation of a given input. A representation which
satisfies these criteria is found by minimizing an energy function
consisting of a term which represents the error between the input
and its reconstruction (which is computed from the representa-
tion), plus a term which represents how sparse the representation
is. When the reconstruction error is measured with the l2 norm and
the sparsity is measured with the l1 norm, the problem is equiva-
lent to LASSO (i.e. l1-penalized regression) [16] and has a global
minimum. Rozell et al. [12] developed a recurrent network termed
the Locally Competitive Algorithm (LCA), which minimizes the
sparse coding energy function by simulating the feature-specific,
local lateral competition that is observed in V1 [2]. LCA can be
expressed in terms of a governing dynamical system of equations
for which there exist a Lyapunov function with a fixed point at-
tractor whose minima correspond to the global minima of a LASSO
optimization problem.

Biologically plausible sparse coding models, such as LCA, are of
great interest to the neuromorphic community because they are
able to model key characteristics of biological sensory processing
[17, 18] while remaining useful in machine learning applications
[9, 15]. Since spiking implementations on neuromorphic hardware
often differ greatly from their non-spiking counterparts on classical
computing hardware, it is necessary to have a deep understanding
of how or if they differ before they can be widely used in potentially
critical applications. First, [13] showed that the sparse coding ob-
jective function converged to that of LASSO in a simulated spiking
neural network (SNN) composed of integrate-and-fire neurons. Fair

mailto:khenke@lanl.gov
mailto:mteti@lanl.gov
mailto:gkenyon@lanl.gov
mailto:ben.migliori@lanl.gov
mailto:g.j.kunde@lanl.gov
https://doi.org/10.1145/3546790.3546811
https://doi.org/10.1145/3546790.3546811
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546790.3546811&domain=pdf&date_stamp=2022-09-07

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Henke et al.

et al. then demonstrated that a spiking LCA implementation on the
TrueNorth neuromorphic system [1] exhibited close dynamics to
non-spiking LCA implemented on classical computing hardware,
but they considered a model with a very constrained input, dic-
tionary, and dynamics [5]. Most recently, [3] implemented LCA
on the Loihi neuromorphic processor using leaky-integrate-and-
fire (LIF) neurons with infinite time constants (i.e. non-leaky), but
their model only contained inhibitory lateral connections, unlike
non-spiking LCA which has both excitatory and inhibitory lateral
connections. They demonstrated that a sparse coding objective
function is monotonically decreasing when using the vector of
average firing rates as a measure of neural activity. However, no
coefficient-by-coefficient comparison between LASSO and spiking
LCA has been performed to date, leaving open the question as to
how closely spiking LCA implemented on neuromorphic hardware
approximates LASSO on more complex, realistic problems.

In this work, we extend the previous spiking implementation
of LCA [3], which we refer to as S-LCA, by developing a modi-
fied S-LCA with both excitatory and inhibitory lateral connections
(Figure 1), which we prove should converge to non-spiking, ana-
log LCA (A-LCA). We then performed the first neuron-by-neuron
comparison between S-LCA implemented on modern neuromor-
phic hardware, namely Intel’s Loihi, and A-LCA implemented on
classical computing hardware (i.e. LASSO). We show that our S-
LCA implementation exhibits a very close match to A-LCA, both at
the individual neuron level and the system level, and it is a better
match than the previous S-LCA implementation due primarily to
the incorporation of excitatory lateral connections.

2 BACKGROUND
2.1 Sparse Coding
Sparse coding is a signal processing technique which models corti-
cal processing of lower-dimensional sensory inputs into a sparse,
higher-dimensional space. Sparse coding models have been shown
to approximate the receptive fields and response characteristics of
V1 simple cells [10, 17]. [12] has shown that sparse coding optimiza-
tion problems can be solved using the dynamics of fully recurrent
neural networks with fixed point attractors when lateral inhibi-
tion is incorporated. This biologically plausible implementation
(from experimental observations of similar connectivity, c.f. rat
whisker barrel cortex) encourages sparse solutions by allowing
neurons to compete with each other for shared representation of
the input, in a model known as a locally competitive algorithm
(LCA). When neural activation is penalized through inhibition in
the cost function, the resulting dynamical system emerges as an
all-to-all connected Hopfield network [7]. The connections rep-
resented through a symmetric weight matrix satisfy a Lyapunov
condition which guarantees the convergence to a fixed point of
lowest energy, the optimal sparse solution.

Input Patch

Feature 1 Feature 2 Feature p

Figure 1: Our S-LCA implementation on Loihi. A general de-
piction of the S-LCA algorithm as implemented on Loihi using
a single 8 × 8 patch as input. The input drive, which is the dot
product between each neuron’s feature vector and the input patch,
is computed and used to initialize the membrane potentials after
subtracting the A-LCA trade-off parameter λ. At each timestep,
each neuron’s membrane potential is charged up (or down) by the
input drive and compared to a spiking threshold νf . Any neuron
whose membrane potential is greater than νf will "spike", and thus
inhibit (red) or excite (blue) neurons whose features overlap with its
own, depending on whether the features are aligned or anti-aligned,
respectively. The previous S-LCA implementation only contained
inhibitory (red) lateral connections. The membrane potential is
reset to zero after every spike. After T iterations, typically only
a few neurons remain active. The average firing rate of each ac-
tive neuron in the S-LCA model is computed over the last 1,000
timesteps for comparison with the A-LCA model. Our comparisons
are performed on a 56 × 56 pixel image, but we use 8 × 8 features
and a stride of 8, which is the same process depicted here but with
7 × 7 = 49 patches.

l2 subject to an l1 constraint on the parameters a in the following
standard LASSO set up:

In this mathematical notation, our input signal x lives in Rm 1 2

and the dictionary D has p > m basis vectors also in Rm . We then
want to approximate x as Da where a ∈ Rp . D is overcomplete or
redundant and an infinite number of solutions to the minimization
problem become possible. Hence, a λ sparsity penalty is introduced
to represent a uniform applied inhibitory field and create a unique
solution. Thus, we are minimizing the reconstruction distance in

E(a(t)) = 2 ||x − Da(t)||2 + λ||(a(t))||1 (1)

2.2 Derivation of Dynamical System
We can derive a system of differential equations proportional to, an
hence with the same fixed point attractors, as the classical LASSO
problem. Given D ∈ Rmxp and x ∈ Rm with λ > 0, solve:

Dictionary
D . . .

. . .
Input Drive

t = 0 t = 1 . . . t = T

 ̂ ̂ ̂

 ̂ ̂ ̂

. .
 .

8
px

. .
 .

. .
 .

8
px

. .
 .

. .
 .

. .
 .

Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

∫

∫ i

λ

L.
k

λ

1 1 A > maxi, j 1wi, j

1
(2) In the limit lim →∞ E(a(t)) = E , the value of the objective

function E will approach the optimal value
biases are bounded. Using the fact (α ∗ σ)(t) ≤
can show:

l =0

R < ∞,

T
∫

1 2
∫ ∞

(3) If the optimal solution a∗ is unique, then u·(t) → u·∗ and
T (u(t)) → T (u(t)∗) = a∗ as t → ∞ E(a(t)) = 2 ||x − Da(t)||2 +

0
(u(t) − Tλ (u(t)))da(t)

1 ∞
= 2 (x − Da(t)) (x − Da(t)) +

0
(u(t) − Tλ (u(t)))da(t)

2.3 S-LCA and Convergence to A-LCA
Here we give an overview of the the convergence proof provided

1 T T T T T T by Tang et al. [14] for a LASSO problem with strictly positive
= 2 (x x − x

∞
Da(t) − a(t) D x + a(t) D Da(t)) connectivity weights wi, j and extend the result into a regime where

both positive and negative weights are present.
+

0
(u(t) − Tλ (u(t)))da(t)

1
First, we define the only independent variable in our spiking

network as the soma currents µi (t) for the p neurons which receive
= 2 (x

T x − 2xT Da(t) + a(t)T DT Da(t)
∞ (2)

a constant input bias bi = DT x and maintain an internal electric
potential v (t). When an electric potential reaches a firing threshold

+
0

(u(t) − Tλ (u(t)))da(t) νf at a time t = k, the corresponding neuron simultaneously fires
a spike to either inhibit or excite the other p − 1 neurons and resets

We take the partial derivative of E(a(t)) with respect to a(t) :

∂E(a(t))
= −xT D + DT Da(t) + u(t) − T (u(t)) (3)

∂a(t)
Now we can define our gradient system as:

its potential to νr . Let α = e−t and define the soma currents of the
other neurons to change in the following manner:

µj (t) = µj (t) − wji α (t − ti,k) (6)

Now, define σi (t) = δ (t − ti,k) as the sum of Dirac delta
functions δ whenever the neuron spikes over the simulation time.

u·(t) ∝ − ∂E(a(t))
∂a(t)

u·(t) =
1 (xT D − DT Da(t) − u(t) + T (u(t))

τ

(4) This leads to the final defining equations of soma currents:

µi (t) = bi − wij (α ∗ σj)(t) (7)

j i

=
1 (xT D − DT Da(t) − u(t) + a(t)) (5)
τ

Here we assume the existence of an input/output transfer func-
µ·i (t) = bi − µi (t) − wij σj (t) (8)

j i

tion a(t) = Tλ (u(t)) with threshold λ. The neuron activation is
represented by the thresholding function T = Tλ and describes the
non-linear activity of how and when signals are sent to the rest

The instantaneous spike rate ai (t) and average soma current
ui (t) are defined as:

 1
∫ t

of the network. To solve a LASSO sparse coding problem, we use
a soft-threshold function ai = Tλ (ui) whose value is ui − λ when ai (t) = t − t0 σi (s)ds (9) t0

ui > λ and 0 otherwise. We can then define the vector function
which applies the same scalar function T to each of the input vectors

ui (t) = 1 ∫ t

bi −

wi, j (αu ∗ σj)(s)ds (10)

components as T : Rp → Rp . t − t0 t0 i j
The sparse coding problem can be described in neurophysiologi- Leading to the spiking analog of differential equation 3 as:

cal terms by letting the p dictionary elements represent p neurons
and their respective receptive fields. The input stimulus received
by each neuron is equivalent to the inner product between the

u·i = bi − ui −

j i

wij aj (t) − (ui (t) − ui (t0))
t − t0

(11)

input signal and the feature it represents, notated as bi = xT Di .
The constant bias drive bi increases (or decreases) the membrane
potential of the neuron-i represented as ui . When ui is above the λ,
neuron-i will then send inhibitory or excitatory signals to the other
p − 1 neurons equal to the product of the activation coefficient ai
and the connection weight wi, j = −DT Dj .

Using the LaSalle invariance principle [14][12], Rozell and others
were able to prove the above system of equations possesses three
distinct characteristics.

(1) If C is the set of optimal LASSO solutions and F = T −1(C) is

C’s inverse mapping under the thresholding function T , then
any arbitrary initial condition u·(0) will always converge to the set F

2.4 S-LCA With Excitatory Connections
Here we make a distinction and extend the previous work. Origi-
nally, only inhibitory connections were allowed in order to ensure
the soma current magnitudes and corresponding average poten-
tials are bounded. For a strictly inhibitory network, the max bound
on current is defined as B+ = maxi bi since the largest value ob-
tainable in equation 12 requires zero inhibition from other neu-
rons. Moreover, [14] also showed there is a lower bound and the
existence of some R > 0 such that ti,k +1 − ti,k ≥ 1/R for all
i = 1, 2, ..., n and k ≥ 0 whenever two spike times exist. We can
leverage this knowledge to show the soma currents of our updated
model are also bounded above and below. First let
and B = maxj 1bj 1 since we know the inner product of features and

t ∗ j
L.∞ − l

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Henke et al.

R

2

\

J

2 2

m

1 1

E(a(t))∗ =
1 ||x − Da(t)||2

1 1
∥µi (t)∥ = 1bi −

wij (α ∗ σj)(t)1 =

1 (x − Da(t))T (x − Da(t))
1 j i 1
1 1 1 1

2
=

1 (xT x − xT Da(t) − (Da(t))T x + (Da(t))T Da(t))

≤
1
|bi | +

j i
1wij 1 (α ∗ σj)(t)

1

2
=

1 (x 2 − 2

p
(xi Dij aj (t))

1 1 1 1 1 1
2 i=1

i
i=1 j =1

≤ 1maxj 1bj 1 + 1wij 1 (α ∗ σj)(t)1 m p (15)
j i 1 + (Dij aj (t))2)

≤ 1B + nA(α ∗ σj)(t)1 i=1 j =1

≤ 1B + nA
∞

l =0
e− l

1 < ∞ (12)
Now we can differentiate E∗ with respect to Dyz to see how each

individual dictionary element changes.

∂E∗ 1 p

Implying the soma currents are bounded from above and below.
Equipped with this knowledge, we can follow the proof by [14]
and state u(t) = [u1(t), u2(t), ..., up (t)]T has at least one limit point

= (−2xy az (t) + 2(
∂Dyz

 p

j =1

Dyj aj)az (t))

u∗ ∈ Rp such that u(tk) → u∗ as the sequence of tk s → ∞ when
k → ∞ from the Bolzano-Weirstrass theorem.

= (Dyj aj (t) − xy)az (t)
j =1

This implies:

lim u·i (t) = lim 1 (µi − ui) = 0 (13)

= −ry az (t)
Where ry represents the yth component of the residual. We can

then expand into matrix form:

t →∞ t →∞ t − t0 r1a1(t) r1a2(t) ... r1ap (t)
 Hence T (u(t)) → T (u∗) = a∗, we can conclude the system ∂E

= −
f
1r2a1(t) . . (16)

k ∂D 1 . . .
converges to the same limit found in A-LCA:

0 = b − u∗ − (DT D − I)a∗ (14)

2.5 Unsupervised Dictionary Learning
The second part of the optimization process involves learning the
best dictionary D for the given data set. Random features were
first selected for the dictionary and a stochastic gradient descent
algorithm with local Hebbian Learning rule was used to update the
feature vectors of any active neurons so as to slightly improve the
sparse reconstruction.

2.6 L2 Differentiation
First, lets look at the objective function for a sparse coding problem.
x ∈ Rm is the input D ∈ Rmxp is our dictionary and a ∈ Rp is the
sparse code.

rma1 rmap

= − raT (t) (17)

= − (x − Da(t))a(t)T (18)

The Hebbian learning algorithm [6] given a single input, x , is
summarized in Algorithm 1. In practice, a mini-batch of input sam-
ples are used for each update instead of a single input sample. Since
our gradient system is proportional to the derivative of the energy
wrt D of the LASSO problem, we know the learning process will
descend the gradient of our neurophysiological representation.

Algorithm 1 Dictionary Update
Input: D ∈ Rm×p , a ∈ Rp , x ∈ Rm , η ∈ R+

Output: D ∈ Rm×p
1: function update_dictionary(D, a, x , η)
2: recon = Da
3: residual = x − recon
4: ∆D = residual aT
5: D = D + η∆D

1 2 6: for i = 1, 2, ..., p do
E(a(t)) = 2 ||x − Da(t)||2 + λ||a(t)||1

We expand on the reconstruction error term for purposes of

gradient descent because the sparsity penalty drops after differenti-
ation wrt D.

7: Di = Di /norm(Di , 2)
8: end for
9: return D

 10: end function

m

Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

Figure 2: Sparse dictionary learning. Sparse coding is often com-
bined with dictionary learning in an alternating fashion. After
computing a(t) by minimizing Equation 1 with fixed D, D is then
updated to minimize Equation 1 with fixed a(t) (Algorithm 1). At
each update, the dictionary only changes in the directions of the
active neurons.

3 METHODS
3.1 A-LCA Implementation
To compare S-LCA on Loihi to non-spiking LCA [12], we imple-
ment a single LCA layer in PyTorch [11] using the LCA-PyTorch
package. Specifically, we create a convolutional LCA layer with
valid padding, 450 features of size 8 × 8, a stride of 8, and a rectified
soft threshold. With this model, we trained a dictionary for 5,000
updates (Algorithm 1) on 50,000 grayscale images of size 56 × 56
selected from the COCO dataset [8] with λ = 0.5. The dictionary
(Figure 3) was then used in both this non-spiking A-LCA model and
the spiking S-LCA model in our comparisons on held out images
from our COCO set. For our comparisons to S-LCA on Loihi, we
use λ = 0.73 in this A-LCA to match the activation sparsity.

3.2 S-LCA Loihi Implementation and
Modifications

The previous S-LCA implementation on Loihi that used only in-
hibitory lateral connections [3][4] was structured the following
way:

Neurons in the spiking network are driven by a respective bias
current b (not a spiking input) that is calculated once, at the be-
ginning of a run, as the dot product of the dictionary element and
the respective patch and is scaled then scaled to the available bit
space. The weights in [3][4] are chosen to be positive definite and
made to work via the construction of an expanded dictionary twice
the size of the original, consisting of strictly positive dictionary

Figure 3: The dictionary used by both the S-LCA and A-LCA
models in our experiments. The dictionary (D) is composed of
450 features of size 8 × 8.

elements in the top half of the dictionary and inverted negative
elements in the lower half. This S-LCA implementation converged
towards a minimum to the LASSO sparse coding objective func-
tion in which the feature vectors lacked negative sub-units. The
lack of anti-aligned sub-units prohibited more biologically realistic
environments where neurons can also excite one other.

Here we demonstrate that the addition of these excitetory sub-
units, in combination with the inhibitory sub-units, gives rise to
a dynamical spiking system that behaves more closely to a con-
ventional non-spiking A-LCA model (Fig. 4). Specifically, when
features contain both excitatory and inhibitory sub-units, both pos-
itive and negative lateral connections arise naturally via taking
the transpose of the dictionary doted with its self. A given spiking
neuron will now inhibit neurons with similar explanations of the
same patch (positive inner product) but will excited neurons with
dissimilar explanations (negative inner product). In addition, we
re-implemented the ranges of biases, weights and activations such
that there were no longer sign flips (integer overflow) due to the
limited bit ranges on Loihi.

4 RESULTS
After initializing both the S-LCA and A-LCA models with the dic-
tionary learned in Section 3.1 (Figure 3), both models were run
on their respective hardware using the same test image with the
parameters outlined in Sections 3.2 and 3.1.

We show that our S-LCA exhibits closer dynamics to A-LCA
than previous implementations of S-LCA by allowing only one
neuron in each model to receive an input drive while all other
neurons received no input drive. Since earlier S-LCA architectures
contained no excitatory lateral connections, we hypothesized that
only the neuron receiving input drive would be active in those

https://github.com/MichaelTeti/lca-pytorch

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Henke et al.

Figure 4: Our modified S-LCA model contains excitatory con-
nections like in A-LCA. Activation when only the neuron best
aligned with the input patch receives bias drive; all other biases
were set to zero. A-LCA model (top) and our implementation of
S-LCA on Loihi (bottom right) exhibit activity for neurons with zero
input drive, while the previous S-LCA implementation on Loihi
(bottom left) [3] doesn’t excite activity of other neurons (bottom
left), confirming an absence of excitatory connections.

models. In contrast, our S-LCA and A-LCA contain excitatory lateral
connections, which should raise the membrane potential of some
of the other neurons above threshold even without input drive.
In Figure 4, we confirm this, as both A-LCA (top) and our S-LCA
(bottom right) have multiple neurons active, whereas the previous
S-LCA (bottom left) only has one active neuron (the only one with
a non-zero input drive). In both A-LCA and our S-LCA, the same
neurons appear to be active at qualitatively similar activity levels
as the system converges.

Figure 5 illustrates the activation of each neuron in the S-LCA
model and the A-LCA model as a function of initial input drive.
Both our S-LCA and the A-LCA contain neurons which are active
in the sparse representation despite having negative input drive (i.e.
anti-aligned with the stimulus), whereas the previous S-LCA has
only the driven neuron active since there was no mechanism for
excitatory connections to other neurons. We can also see that our S-
LCA provides a reasonable match to A-LCA despite the quantization
that takes place on Loihi. Next, we compare the sparse activation of
each neuron in our S-LCA directly against that in the A-LCA (Figure
6). Here, we can see further evidence that our S-LCA performs very
close to A-LCA, as the activations lie close to the diagonal indicating
that our S-LCA converged to A-LCA.

Finally, we compare our S-LCA model to the A-LCA model by
examining the reconstructions of the input image produced by each
model from the sparse representation. By comparing the recon-
structions visually, we validate that our S-LCA produces a similar

Figure 5: Input drive vs. final activation. Our S-LCA model
produces a similar shape to the A-LCA model. Both models contain
a few neurons that became active with features that were negatively
aligned with the input, which was not true for the original S-LCA
model. The distinct levels of final activity for the S-LCA model
demonstrate the bit precision limitation present on the hardware.

sparse representation to the A-LCA. Figure 7 confirms that this
is the case, as the reconstruction produced by our S-LCA model
is very close to that produced by the A-LCA model. We can also
observe that each model is using a very similar number of features
to represent each patch.

5 DISCUSSION
In this work, we improved upon the previous S-LCA model, which
only allowed inhibitory lateral connections between neurons, by
developing an S-LCA model with both excitatory and inhibitory lat-
eral connections that more closely matches A-LCA. Specifically, we
first prove that our S-LCA system converges to the same limit found
in A-LCA. Next, we implemented our S-LCA on the Loihi neuromor-
phic processor and initialized it with the same input and dictionary
as a comparable A-LCA implemented on CPU/GPU hardware. We
then performed the first neuron-by-neuron comparison between
S-LCA and A-LCA and show that the sparse latent representation
in our S-LCA converges to that of A-LCA.

This work is one of a few examples in which a spiking algorithm
implemented on modern neuromorphic hardware exhibits almost
an exact match to the comparable classical implementation under
a realistic task. As a result, the performance of our S-LCA imple-
mentation meets or exceeds that of A-LCA implementations across
the board, as S-LCA implementations on Loihi have already been
shown to require much less power and time to converge [4][3]. This
opens the door for the development of fast, low-power AI models
in applications where A-LCA has already proven to be valuable, for

Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

Figure 6: The rate code solution for our S-LCA model is a
very close match to the A-LCA solution. Each point represents
a single neuron out of the 450 × 8 × 8 = 28, 800 neurons in our
model. The difference in scale on each axis is due to how the spikes
are integrated.

Figure 7: The number of active neurons per patch in our S-
LCA model is very close to that in the A-LCA model. The
number of neurons active per patch is laid over the final sparse
reconstructions of the S-LCA (left) and A-LCA (right) models, which
illustrates that our S-LCA model closely matches A-LCA both at
the image and patch level.

example as a robust frontend for convolutional neural networks
[15].

One limitation of this work is that we have only considered the
non-convolutional case by using a stride equal to the patch size.
Although it is unlikely that our S-LCA and A-LCA will perform
drastically different in the convolutional setting, future work will
need to verify this. In addition, future work can extend our S-LCA

implementation to the spatio-temporal domain, perhaps by using
video inputs or those from a dynamic vision sensor. This will allow
us to develop and test models that are even closer to biological
visual processing.

6 CONCLUSION
We developed an improved spiking LCA algorithm with both in-
hibitory and excitatory lateral connections, contrary to the previous
spiking LCA implementation which only included inhibitory lat-
eral connections. We then implemented our spiking LCA model on
a modern neuromorphic processor, namely Intel’s Loihi, and we
performed the first comparison of individual activations between
spiking LCA on neuromorphic hardware and non-spiking LCA on
CPU/GPU hardware. We show that our spiking LCA implemen-
tation exhibits a closer match to the non-spiking LCA than the
previous spiking implementation, both qualitatively and quanti-
tatively. In addition, our LCA implementation provides a deeper
insight into how non-spiking LCA and spiking-LCA are related
when instantiated on neuromorphic substrates, while providing
one of the few examples in which a spiking algorithm implemented
on neuromorphic hardware performs as well as or better than the
classical implementation across the board.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the Advanced Scientific
Computing Research (ASCR) program office in the Department of
Energy’s (DOE) Office of Science, award #77902 along with funding
from LANL ASC Beyond Moores’s Law program.

REFERENCES
[1] A Cassidy, Jun Sawada, P Merolla, J Arthur, R Alvarez-lcaze, Filipp Akopyan,

B Jackson, and D Modha. 2016. TrueNorth: A high-performance, low-power
neurosynaptic processor for multi-sensory perception, action, and cognition. In
Proceedings of the Government Microcircuits Applications & Critical Technology
Conference, Orlando, FL, USA. 14–17.

[2] Selmaan N Chettih and Christopher D Harvey. 2019. Single-neuron perturbations
reveal feature-specific competition in V1. Nature 567, 7748 (2019), 334–340.

[3] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
Ieee Micro 38, 1 (2018), 82–99.

[4] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh Risbud. 2021. Advancing
Neuromorphic Computing With Loihi: A Survey of Results and Outlook. Proc.
IEEE PP (04 2021), 1–24. https://doi.org/10.1109/JPROC.2021.3067593

[5] Kaitlin L Fair, Daniel R Mendat, Andreas G Andreou, Christopher J Rozell, Justin
Romberg, and David V Anderson. 2019. Sparse coding using the locally competi-
tive algorithm on the TrueNorth neurosynaptic system. Frontiers in Neuroscience
(2019), 754.

[6] Donald Olding Hebb. 2005. The organization of behavior: A neuropsychological
theory. Psychology Press.

[7] John J Hopfield. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of sciences
79, 8 (1982), 2554–2558.

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[9] Sheng Y Lundquist. 2020. Exploring the Potential of Sparse Coding for Machine
Learning. Ph.D. Dissertation. Portland State University.

[10] Bruno A Olshausen and David J Field. 1996. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature 381, 6583
(1996), 607–609.

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

https://doi.org/10.1109/JPROC.2021.3067593

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Henke et al.

[12] Christopher J Rozell, Don H Johnson, Richard G Baraniuk, and Bruno A Olshausen.

2008. Sparse coding via thresholding and local competition in neural circuits.
Neural computation 20, 10 (2008), 2526–2563.

[13] Samuel Shapero, Mengchen Zhu, Jennifer Hasler, and Christopher Rozell. 2014.
Optimal sparse approximation with integrate and fire neurons. International
journal of neural systems 24, 05 (2014), 1440001.

[14] Ping Tak Peter Tang, Tsung-Han Lin, and Mike Davies. 2017. Sparse coding by
spiking neural networks: Convergence theory and computational results. arXiv
preprint arXiv:1705.05475 (2017).

[15] Michael Teti, Garrett Kenyon, Ben Migliori, and Juston Moore. 2022. LCANets:
Lateral Competition Improves Robustness Against Corruption and Attack. In
Proceedings of the 39th International Conference on Machine Learning (Proceedings

of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 21232–
21252. https://proceedings.mlr.press/v162/teti22a.html

[16] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[17] Mengchen Zhu and Christopher J Rozell. 2013. Visual nonclassical receptive field
effects emerge from sparse coding in a dynamical system. PLoS computational
biology 9, 8 (2013), e1003191.

[18] Joel Zylberberg, Jason Timothy Murphy, and Michael Robert DeWeese. 2011.
A sparse coding model with synaptically local plasticity and spiking neurons
can account for the diverse shapes of V1 simple cell receptive fields. PLoS
computational biology 7, 10 (2011), e1002250.

https://proceedings.mlr.press/v162/teti22a.html

302 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

T

Fast Post-Hoc Normalization for Brain Inspired
Sparse Coding on a Neuromorphic Device

Kyle Henke , Garrett T. Kenyon, and Ben Migliori

Abstract—Exploration of novel computational platforms is critical for the advancement of artificial intelligence as we approach the
physical limitations of traditional hardware. Biologically accurate, energy efficient neuromorphic systems are particularly promising for
enabling future breakthroughs because of their ability to process information in parallel and to scale using extremely low power. Sparse
coding is a signal processing technique which has been known to model the information encoding in the primary visual cortex. When
sparse solutions are solved using local neuron competition along with the unsupervised dictionary learning that mimics cortical
development, we can build an end to end, hardware to software, brain inspired solution to a machine learning problem. In this article,
we perform a detailed comparison of sparse coding solutions generated classically by orthogonal matching pursuit (OMP) implemented
on a conventional digital processor with spike-based solutions obtained using the Intel Loihi neuromorphic processor. A novel “post-
hoc” normalization technique to shorten simulation time for Loihi is presented along with analysis of optimal parameter selection,
reconstruction errors, and unsupervised dictionary learning for Loihi approaches and their classical counterparts. Preliminary results
show that both the Loihi full simulation approach and the post-hoc normalization approach are well suited to neuromorphic processors
and operate in a size, weight and power regime that is not accessible by classical approaches. Ultimately, the use of this normalization
technique allows for faster and, often, better solutions than demonstrated previously.

Index Terms—Neuromorphic computing, machine learning, artificial intelligence, neurocomputers, computer vision, signal processing

Ç

1 INTRODUCTION
HE impending end of Moore’s Law has created a need
for new computational substrates if scientists are going

to continue making progress in the pursuit of artificial gen-
eral intelligence (AGI). In this work, we draw inspiration
from neuromorphic computing and “wet” neuroscience as
a potential solution to modern computing limitations with
the end goal of AGI in mind. Specifically, we focus on the
encoding of low-dimensional inputs into a sparse, efficient,
high-dimensional space. This process is known to account
for experimental neurobiological measurements [8], [12]
and to support efficient neuromorphic computation [3].

Sparse coding is a signal processing technique which
models neurobiological sensory input encoding in living
systems. Part of solving the sparse coding problem involves
the unsupervised learning of a dictionary. This dictionary,
technically an overcomplete spanning set, can be done in a
biologically inspired manner using only local information
available at the synapse. Given a dictionary, the algorithm
must choose which elements to apply to reconstruct an
input with the fewest possible active dictionary coefficients.
This approach is particularly interesting for our study as it
enables an end-to-end neuromorphic approach, where both

• The authors are with the Computer, Computational, and Statistical Sciences
(CCS-3), Los Alamos National Laboratory, NM 87545 USA.
E-mail: {khenke, gkenyon, ben.migliori}@lanl.gov.

Manuscript received 2 Sept. 2020; revised 27 Feb. 2021; accepted 8 Mar. 2021.
Date of publication 24 Mar. 2021; date of current version 18 Aug. 2021.
(Corresponding author: Kyle Henke.)
Recommended for acceptance by S. Pakin, C. Teuscher, and C. Schuman.
Digital Object Identifier no. 10.1109/TPDS.2021.3068777

the hardware and algorithm are operating in a bioinspired
manner.

Here, the focus is on a class of algorithms based on Hop-
field networks, which are fully recurrent dynamical neural
circuits governed by fixed point attractors [1]. Specifically,
sparse attractor networks in which a uniform applied field
is used to globally suppress activity, encouraging solutions
consisting of a minimum number of active elements are con-
sidered and possess several properties that make them ideal
for comparing digital and neuromorphic processors [2].
First, sparse attractor networks compute solutions to diffi-
cult optimization problems by settling into low-energy
states that are embedded in complex energy landscapes
containing multiple local minima. Second, by exploiting
local learning rules to sculpt the energy landscape to better
model the input data, such networks are naturally self-orga-
nizing and unsupervised learning emerges. Optimal solu-
tions to sparse coding are NP-hard [2], but many
approaches achieve adequate solutions. The bioinspired
locally competitive algorithm (LCA) [13] implemented by
Intel on Loihi [3] is an excellent example of such an
approach. The full simulation provided from Intel is shown
to allow for unsupervised dictionary learning and construc-
tion of sparse codes. However, the overall stimulated neural
activity shows regions of rapid decay and slow decay that
are not leveraged for any purpose in the Intel implementa-
tion. Here, we utilize a “post-hoc” normalization step that
terminates the simulation at the end of the rapid decay seg-
ment and gives solutions faster and of lower reconstruction
error than the full simulation, albeit at the cost of lower
sparsity.

In this paper, we will first proceed by describing the low
energy Loihi chip and the sparse coding problem in more

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

mailto:khenke@lanl.gov
mailto:gkenyon@lanl.gov
mailto:ben.migliori@lanl.gov
http://www.ieee.org/publications/rights/index.html
https://orcid.org/0000-0002-8705-6693

HENKE ET AL.: FAST POST-HOC NORMALIZATION FOR BRAIN INSPIRED SPARSE CODING ON A NEUROMORPHIC DEVICE 303

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

P

X

tu

detail. Subsequent text will explain the classical orthogonal
matching pursuit (OMP) solution and our new post-hoc
normalization technique to extend Loihi’s capabilities.
Finally, comparisons using similar optimal sparsity levels
suggest OMP still beats the neuromorphic approaches in
terms of reconstruction error and compute time, but at sig-
nificantly higher power consumption.

Notably, our contribution enables researchers to choose

and ui is the firing threshold for each vi. Note all vi’s are ini-
tialized with values less than their respective ui and are
reset to 0 after the spikes occur.

Plugging Equation (1) into Equation (2), we obtain the
differential equation for the ith neuron’s membrane poten-
tial as

where in the parameter space of speed and sparsity they _
1 X

w
ða s ÞðtÞþ b - u s (3)

wish to operate; this has implications for practical applica-
tion of neuromorphic sparse coding.

viðtÞ ¼ -
tv

viðtÞþ
i6¼j

i;j u j i i i

2 PREVIOUS WORK
Intel produced significant work on implementing the spik-
ing LCA sparse coding/LASSO model onto their novel
Loihi chip. We will give a brief overview of their device for
better understanding of the implementation, but encourage
readers to see [3] for more details.

The Loihi neuromorphic computing device implements
spiking neural networks with neurons realized in hardware
as the basic processing elements. Loihi, like its predecessors
SpiNNaker[4] and TrueNorth [5], represents information as
single-bit impulses, or spikes, transmitted at specific times
and directed towards specific targets through programma-
ble connections known as synapses. As a result, time and
parallelism are explicitly incorporated into the representa-
tion and the network operates as a dynamical system com-
municating through these spikes. An implementation of
spike timing dependent plasticity makes Loihi capable of
online learning, in addition to being capable of inference [3].

In the general spiking neural network described on Loihi,
spike trains are formulated as a sequence of Dirac delta
functions of the form sðtÞ ¼ k dðt - tkÞ where tk is the time
of the kth input spike. Each neural unit on the device imple-
ments an asynchronous discrete-time implementation of
Leaky Integrate and Fire (LIF) neurons with internal state
variables consisting of a ui ¼ synaptic response current
and a resulting vi ¼ membrane potential for each neuron
i ¼ 1; 2; . . . :; n [3]. The system evolves in time and propa-
gates information through the specified network graph with
timing and patterns of neural activity defining the computa-
tional tasks. The entire network relationship can be summa-
rized by the following equation for the synaptic response
current for each neuron:

uiðtÞ ¼ wi;jðau sjÞðtÞþ bi; (1)

i6¼j

where auðtÞ¼ð 1 Þexpð-tÞHðtÞ is the synaptic filter impulse

Intel implemented a convolutional Spiking Locally Com-
petitive Algorithm (S-LCA) problem on Loihi and defined
the solutions as the stable, converged average spike rates of
the general solution to the above system of differential
equations. A more detailed explanation can be found in Sec-
tion 3.3, but most notably for our work, they observed a
rapid decrease in the cost function after only a few simula-
tion steps, implying the neurons with the highest initial
excitation are more likely to spike early in time and will
immediately out-compete and inhibit other neurons. How-
ever, this observation was not applied to the Intel S-LCA
solution.

3 METHODS
3.1 Mean Zero Fashion-MNIST Data Set
Fashion-MNIST dataset [6] is a 28 x 28 greyscale labelled
image dataset with ten classes. Fashion-MNIST is signifi-
cantly more difficult than the classical MNIST challenge but
is still tractable for most modern machine learning algo-
rithms. However, the individual images in Fashion-MNIST
are still too large (784 dimensions) to fit on many novel com-
puting substrates studied by the authors (i.e., the D-Wave
quantum annealer) and thus sparse PCA was used to obtain
a reduced dimensional representation. Although Loihi is
capable of scaling to handle datasets of this dimension eas-
ily, we purposefully studied the minimal feasible problem
such that this study may be compared with others in our
research series. To determine the sparse PCA coding, the
Henze-Penrose (HP) [6] statistic for estimating class separa-
bility was used to estimate the minimum dimensionality for
the Fashion-MNIST data set that does not substantially
degrade classification performance [7]. The data set was
reduced via sparse PCA and the HP statistic was calculated
for each reduction. When DHP begins to increase rapidly
(the “HP Rollover Point”) it indicates the dataset compres-
sion is causing large changes in cluster overlap. Using the
elbow criteria heuristic, the critical point for Fashion-
MNIST was found to be 32 dimensions. To confirm that a

response with HðtÞ as the unit step function and bi is a con-
stant bias. Here wij is the synaptic weight from neuron-j to i
and tu is a time constant. We can then describe the mem-
brane potential viðtÞ by the following dynamical system dif-
ferential equation:

32-dimensional fashion MNIST contained a classification
challenge of similarly difficulty to the uncompressed repre-
sentation, we trained SVMs to classify both original and
compressed datasets. The RMS change in the confusion
matrix (where 0 is no accuracy, and 1.0 is perfect accuracy)
between the 784-dimension and 32-dimension representa-

1 v_iðtÞ¼- viðtÞþ uiðtÞ- uisiðtÞ; (2) tion was .007. The SVM and HP metrics together demon-
tv

where vi ¼ membrane potential , tv is a second time con-
stant capturing the leakage of potential out of each neuron,

strate that neither the problem difficulty nor the
classification accuracy significantly changed under com-
pression [7]. The sPCA vectors were then used to recon-
struct reduced dimensional images. Each image was

304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

p

2

EðI; aÞ¼ jjI - fajj
2

þ ,\

divided into an array of 4 x 4 non-overlapping patches,
with each patch 7 x 7 pixels in extent. Each patch was inde-
pendently sparse coded. The resulting sparse reconstruc-
tions of each patch could be reassembled for comparison
with the original image to verify that the sparse encoding
was reasonable.

3.2 Sparse Coding
In mathematical notation, we are trying to solve the two
step optimization problem

• Step 4: Find the feature fp that has the maximum
absolute value of the inner product with current
residual ~r i - 1 i.e., solves

max fp
T ~r i- 1 :

• Step 5: Set column Ai ¼ fp from step 4.
• Step 6: Create projection operator onto the linear

space spanned by A as Pi ¼ AðAT AÞ-1AT
Update r~r~i ¼ ðI - P i Þ I~I~ where I is the Identity

matrix.

~ ~ 1 ~ ~ 2 k~k (4)
• Step 7: If i ¼ k, solve

EðI; aÞ ¼ min½
~a;f

jjI - fajj 2 þ ,\ a 1; minIA~s - I~I~I :
~s

I I
2

where ~I is the input we want to reconstruct, ~a is the
sparse vector being solved for, and f is the set of basis func-
tions (or features/neurons in our interpretation) used for
the reconstruction. When the dictionary f is overcomplete,
meaning there are more features than the length of the
input, an infinite number of solutions to the minimization
problem become possible. Therefor, a ,\ sparsity penalty is
introduced into the cost function to represent the uniform
applied field and create a unique solution. Additionally,
when the dictionary f is of larger size, the process more
closely resembles the human V1 receptive field [8] and we
are able to stay closer to biology. For the interested reader,
we recommend [8], [13]

3.3 Orthogonal Matching Pursuit (OMP)
Orthogonal matching pursuit is a classical iterative greedy
algorithm used for solving the sparse coding problem for
final solution ~a . At each step of the algorithm, the feature in
the dictionary f which is most correlated with the current
error vector, or residual, is selected and placed into the basis
set of features for reconstructing the input image I~I~. Next,
the algorithm updates the residual, or error vector, by pro-
jecting the input image I~I~ onto the linear subspace spanned
by the features that have already been selected in previous
iterations. Since the residual or error vector at each step of
OMP are orthogonal to all of the features previously
selected, no feature is selected twice and the subset of our
dictionary f used for final reconstruction grows at each
step. This process continues until some stopping criteria is
reached. In this work, we iterate until enough features are
selected to match the optimal sparsity level found for the
separate Loihi techniques. Once the basis vectors are
selected, the least squares problem of the selected columns
is solved for non-zero coefficients of the sparse solution.

The OMP algorithm can be precisely stated with the fol-
lowing steps.

• Step 1: normalized the features in the dictionary f so
that kfik2¼ 1 for p ¼ 1; 2; . . . : ;n where n is the num-
ber of features in the dictionary.

• Step 2: Select k as the number of nonzero coefficients
we want in the solution vector.

• Step 3: Initialize residual vector r~0 ¼ I~I~ and pre-allo-
cate the basis set for reconstruction A as a matrix of

Set coefficients of the solution to the above minimi-
zation problem ~s as non-zero coefficients in final cor-
responding sparse solution ~a . Here A is of rank
k « n and we select the k corresponding features of
f that were selected during Step 4 to be active by the
magnitude of the weights in ~s .

Else, set i ¼ i þ 1 and return to Step 4.

3.4 Locally Competitive Algorithm (LCA)
Implementation for Finding Sparse
Representations of Data

In the human brain, individual neurons respond to specific
stimulus at varying degrees of initial activation. After a
period of time, the final encoding of the input is represented
by only a few of the neurons which best characterize the
data.

3.4.1 Lateral Inhibition
Previous work [13] has shown that sparse coding optimization
problems can be solved using the dynamics of neural net-
works incorporating lateral inhibition. This biologically plausi-
ble implementation, known as a locally competitive algorithm,
encourages sparse solutions by allowing neurons to compete
with each other for fractional representation of the input.
When used with a loss function that penalizes neural activa-
tion, the resulting dynamical system will evolve to a sparse
solution. However, such dynamical systems are susceptible to
local minima. They also require inter-layer connectivity, either
directly or through regularizations.

3.4.2 Neuromorphic Hardware for Sparse Attractor

Networks
The neuromorphic implementation of sparse coding sends
binary signals as spikes in response to current flowing from
signals sent by neighboring neurons or inputs which can
either excite or inhibit one another while also decaying
according to a leak of potential over time when there is no
input. The neuromorphic implementation injects current
weighted according to a non-orthonormal basis (fT~I) into a
network of neurons and reads outputs as spike rates ~a . The
sparse coding loss function (Equation (4)) can be approxi-
mated as

zeros of size m x k where m is the length of the input ~ ~ 1 ~ ~ 2
Z

ð~v - T ð~vÞÞ; (5)
image I~I~. Set iteration counter i ¼ 1.

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

EðI; aÞ¼ ðI - faÞ
2

ðI - faÞþ ,\

HENKE ET AL.: FAST POST-HOC NORMALIZATION FOR BRAIN INSPIRED SPARSE CODING ON A NEUROMORPHIC DEVICE 305

where we assume the existence of an input/output trans-
fer function ~a ¼ T, \ ð~vÞ with threshold ,\, the details of which
are determined by the nature of the leaky integrate-and-fire
process. We use this substitution in order to write the
dynamics in terms of the membrane potential ~v .

~ 1 ~ ~ T ~ ~
Z

ð~v - T ð~vÞÞ (6)

1 ~T~ ~T ~ ~T T ~
Z

ð~v - T ð~vÞÞ: (7)
¼ ðI

2
I - 2ðI faÞþ a f faÞþ ,\ Fig. 1. Example of LCA structure in a network of V1 Neurons. Input

image components I1 and I2 are fed into a layer of neurons which repre-
sent the features, or columns of f. Blue lines represent the connection

Taking the gradient of the cost function directly above
with respect to the sparse vector ~a , substituting in T,\ ð~vÞ ¼
~a , we arrive at

@E
¼ -~I T f þ fT fT ð~vÞ þ ~v - T ð~vÞ : (8)

strength between each fi and the input image found by the vectors inner
product. Each fi competes with all other neurons, represented by the
red connections and their respective inner products, to find which sparse
combinations of features best represent the input as the system evolves.

@~a ,\ ,\

Taking the opposite (negative) direction of this gradient,

we obtain the following set of coupled differential equations
defining a non-linear dynamical system for the membrane
potential with t as the appropriate time constants from
Equations (1) and (2)

~_
1

~ T~ T ~ ~ (9) v ¼ ð-v þ f
t

I - f f • T,\ðvÞþ T,\ðvÞÞ

1 ~ T~ T ~ (10)
¼ ð-v þ f

t I - ðf f - IÞ• T,\ðvÞÞ:

Although the precise form of T,\ ð~vÞ is unspecified, we none-
theless anticipate the network of leaky integrate-and-fire
neurons implemented in neuromorphic hardware will tend
to a state of activity that minimizes a sparse reconstruction
objective function of the above form.

The -~v term acts as the decay piece of the system, slowly
decreasing the potential of each neuron over time. If an
active neuron is not continuously excited, it will rapidly fall
below firing threshold and deactivate because of inhibition
and leaking potential. The input stimulus f T ~I term charges
up each of the neurons, exciting neurons whose features
best match the input, and is the reformulation of the con-
stant bias ~b from the vectorized Equation (1). ðfT f - IÞ•
T,\ ð~vÞ is the inhibitory signal corresponding to the original
off diagonal weights wij also from Equation (1), forcing neu-
rons which explain a similar component of the data to com-
pete by inhibiting one another (Fig. 1), making our
formulation a special case of the general form of network
dynamics found in Equation (3). This competition continues
until the equation converges to a stable fixed point sparse
representation of average spike rates of the neurons, and
this fixed point has been shown to be identical to the solu-
tion of the optimization problem [3], [13].

3.5 Post-Hoc Normalization
As the Loihi system evolves through time, the spiking neu-
ral network provides a rapid decrease in error in typically
the first 100 timesteps (Fig. 2). During this period, the most
important neurons immediately dampen out other active,
but less important features. The remainder of the 6,000 steps
of the simulation time are used to slowly achieve an initial

Fig. 2. Simulation time steps are on the x-axis. Red dotted line repre-
sents where most significant neuron competition has already occurred
and activity is dampened out. Top Panel: Average spike rate of neurons
in network. Middle Panel: A spike raster plot of how often active neurons
are firing over the simulation. Lower Panel: The value of the objective
function and the long regularization time after the initial fit plateau. The
vast majority of the reduction in the loss function occurs early in the
simulation.

fit plateau and then to effectively “normalize” the rates of
the neurons corresponding to the most important features
in the final solution. This happens because the final solution
represents the dot product between the spike rate over sim-
ulation time and the corresponding feature vectors associ-
ated with active neurons. As a simulation runs longer,
quiescent neurons have their contribution effectively
diluted by slow but active neurons. This behaves similarly
to feature normalization and allows the final result to scale
to the inputs.

In an attempt to speed up the time to solution, we imple-
ment a post-hoc normalization technique where the simula-
tion is ended after 100 steps and rates are immediately
normalized. As (Fig. 8) and Table 1 suggests, these solutions
are often times even better in terms of final reconstruction
error than their full simulation counter parts and also acti-
vate the same features (Fig. 7). Although post-hoc normaliza-
tion does not yield completely binary solution vectors, we
believe the early normalization provides a better approxi-
mation because the rates of those neurons left over are
much more uniform than if left to longer regularization.

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

I I

306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

TABLE 1
Table of Compute Times, Power Consumption,

and Average Reconstructions

• Step 3: Select image I~I~ f r o m mini-batch.
• Step 4: Solve sparse coding problem for ~a using OMP

or with LCA using a Loihi technique.
Step 5: Calculate error of reconstruction

~r ¼ I~I~- f~a:

Step 6: Take outer product of error with sparse solu-
tion to find error in direction of active features. This
matrix will have zeros down the columns of the inac-
tive features.

Df ¼ ~r~aT :

Standard deviations are in () for available data. There is significantly less
power consumption for Loihi and the post hoc approach allows for faster, more
energy efficient solutions to better approxiate OMP.

More importantly, this post-hoc normalized representation
is closer to a true ‘0 norm. Take the following thought exper-
iment: in a particularly lucky initialization, the only active
neurons in a Loihi simulation are those corresponding to
the optimal sparse solution. Those neurons all fire in a bal-
anced way throughout the simulation, such that at the end,
each has fired an equal number of spikes. When the rate/
dictionary dot product is then taken, the end result is identi-
cal within a scaling factor to that achieved if the first spike of
each neuron was taken and the simulation then stopped.
This thought experiment is, in fact, a binary coding; how-
ever, Loihi does not natively achieve this type of coding. By
limiting our sampling to a region of simulation in which
inhibiting (i.e., active neurons) have not fully quieted non-
active neurons but the loss has dropped to the initial pla-
teau, we achieve a representation in which each active fea-

• Step 7: DfTotal ¼ DfTotal þ Df Return to Step 3 until
done with mini-batch

• Step 8: Update dictionary f with chosen learning
rate h

f1 ¼ f þ hDfTotal:

• Step 9: If kf1 - fk < tolerance, END
• Step 10: f ¼ f1
• Step 11 (Optional): Normalize columns of f
• Step 12: Return to Step 2

3.7 Input Amplification and Optimal Sparsity
As previous work has shown [14], in order to successfully
reconstruct the Fashion-MNIST dataset using overlaid dic-
tionary elements, a b parameter must be introduced into the
cost function to amplify the input away from unit norm and
allow multiple features to be utilized. This creates a modi-
fied cost function used in our scoring,

ture is either present or not without the dilution discussed
above. Thus it is a closer approximation to a true ‘0 norm,
but must be normalized to the correct magnitude to com-

Eð~I; ~aÞ ¼ mina f
1

jjb~I - f~ajj2 þ ,\jjajj
2 1

: (11)

pute the reconstruction and compare it to the input. As the
normalization is a computationally simple step on conven-
tional hardware, we move it outside of the neuromorphic
system and apply it post-hoc. This results in both a speed-
up and a sparse code in which the simulation cannot dilute
certain components away.

3.6 Unsupervised Dictionary Learning
The second part of the optimization process involves learn-
ing the best dictionary f for the given data set. Random fea-
tures were first selected for the dictionary and a stochastic
gradient descent algorithm with local Hebbian Learning
rule was deployed using the both Loihi approaches and
similar sparsity levels using classical Orthogonal Matching
Pursuit [15]. The learning algorithm can be summarized as
follows:

• Step 1: Select a random set of length m image patches
I~I~p for p ¼ 1; 2; . . . ; n. These patches will make up the
initial features of f. Here n >>m to satisfy overcom-
plete requirement. Select subset of all patches for
training.

• Step 2: Select mini-batch of training data and set
DfTotal ¼ 0

The selection of the appropriate b parameter is depen-
dent on specific architectures.

4 RESULTS
Final sparse representations are found through a sequential
process by first tuning the device towards the particular
problem, and then training an optimal dictionary for the
dimensionally reduced Fashion-MNIST data set.

4.1 Beta and Lambda Tuning for Loihi
For selecting the input amplification b term and the sparsity
penalty ,\ we performed hyperparameter optimization and
recorded the reconstruction error, computed as b ~I - f~a
for a subset of images. Figs. 3 and 4 show the full simulation
Loihi requires an input amplification of at least 8 in order to
achieve reasonable reconstructions, and the post-hoc nor-
malization doesn’t require the amplification, but does bene-
fit significantly.

4.2 Unsupervised Dictionary Learning With Sleep
The unsupervised learning algorithm from methods section
F was implemented for the two Loihi techniques and with
OMP using the same sparsity levels. OMP gave clean

 Full Simulation
Loihi

Post hoc
Loihi

OMP •

Avg. Compute Time 13.77 (1.697) .316 (.03) .007
(sec) (.006)

Power (W) 1.07 1.23 18.71 •

Energy (mJ) 101059.8 172.5 17610

Percent Active 9.22 (1.87) 9.33 (2.38) 9.37
Features (.01)

Avg. Reconstruction .393 (.131) .369 (.1574) .178
Error (.08)

HENKE ET AL.: FAST POST-HOC NORMALIZATION FOR BRAIN INSPIRED SPARSE CODING ON A NEUROMORPHIC DEVICE 307

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Reconstruction error/loss plotted as a function of input amplifica-
tion b. These values indicate how far away from unit norm the input must
be for best reconstructions and are a unique characteristic of the distinct
architectures. Full Loihi simulation on our problem has a more clear
necessity to be above unit norm (Top), while the post-hoc approach
starts with relatively good reconstructions and gets consistent improve-
ment the higher the input is amplified (Bottom).

Fig. 4. Optimal sparsity penalty ,\ selection. Each graph has reconstruc-
tion error/loss in blue and active feature percentage in red. There is a
clear optimal sparsity level dictated by full simulation Loihi (Top), and
post-hoc normalization technique on Loihi (Bottom) roughly exhibits a
monotonic relationship. We can impose the same level of sparsity as the
full time simulation Loihi on the post hoc approach by drastically increas-
ing the penalty term ,\.

reductions in overall reconstruction error, but the Loihi
approaches encounter various problems.

Previous work on Loihi [16] shows introducing periodic
normally distributed noisy examples (or sleep) into a learn-
ing algorithm allows for better convergence towards an opti-
mal solution. With this motivation in mind, we initialized the
full simulation Loihi algorithm with random features and
introduced noisy data at set intervals as an amendment to
the learning algorithm presented. Two separate runs were
performed where Step 9 (feature normalization) was either
performed, or skipped. Fig. 5, shows convergence of both
techniques towards an optimal dictionary, but eventually
start overfitting. To alleviate this result, we chose to stop the
algorithm when the reconstruction error for a mini-batch
was larger than the previous 3 batches. While the unnormal-
ized approach results in slightly better reconstructions on the
pure Loihi implementations, the average reconstruction on
Loihi was significantly better when the trained OMP dictio-
nary was fed to the device. The same algorithm was imple-
mented with the post-hoc approach, but no learning was
present, even though the reconstructions were consistently
lower than their full simulation counterpart. A comparison
of dictionary elements optimized for OMP are shown in
Fig. 6 where we can see cleaner edges present after training.

4.3 Reconstructions and Performance
OMP dictionary learning gave best reconstructions for all
techniques and was used for final comparisons. Table 1
shows each of the approaches used the same sparsity level.
Post hoc is able to give better reconstruction almost 50 times
faster and at significantly less energy. OMP uses more
power, but also gives the best reconstructions in less time.
See Fig. 8 for repatched results.

5 DISCUSSION
The LCA implementation for solving the sparse coding
problem was successfully run on the Loihi spiking neuro-
morphic chip and compared to the results from Orthogonal
Matching Pursuit after hyperparameter optimization. Loihi
is able to use weighted amounts of each feature for recon-
struction, but because the solutions are spike rate limited,
they do not have as much resolution as the continuous coef-
ficients of the OMP solutions given the fixed length of the
simulation. However, the post-hoc method is driven by our
desire to converge as quickly as possible. Thus, it has even
less ability to tune neural coefficients to create an accurate
reconstruction as (see Fig. 2) the simulation is terminated
before a subset of neurons can be inhibited and turned off.

308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Stochastic gradient descent with local Hebbian rule dictionary
learning results. Random features are fed into the algorithm and solu-
tions are found using OMP (Bottom) and Loihi simulation (Top). Orange
is no noise and no sleep, blue is the result when dictionary features are
normalized after every epoch with periodic noise, green line represents
when features are not normalized, periodic noise is introduced with stop-
ping criteria, and red is the post hoc unormalized with noise results. All
full time simulation Loihi approaches achieve initial learning before over-
fitting with the un-normalized noisy approach providing best solution.
OMP shows more consistent learning and much lower average recon-
struction error per batch.

Fig. 6. Random patches selected for dictionary and their final form after
the OMP unsupervised dictionary training.

In the full length Loihi simulation, that subset becomes qui-
escent, and the longer run times perform a similar normali-
zation as our “post-hoc” method. This simulation-length
normalization is achieved in Loihi as a consequence of the
method of reconstruction; the reconstruction is given as the
dot product between the dictionary and the spike rates. By
allowing certain neurons to become quiescent and then con-
tinuing to run the simulation, the average spike rate of

Fig. 7. (Top Left) Feature/Neuron activation for a 10 image subset solved
by full time simulation Loihi. (Bottom Left) Post hoc feature/neuron acti-
vation counts are very similar to full simulation. (Right) OMP shows a dif-
ferent distribution of utilized features showing evidence the continuous
coefficients result in different activity.

Fig. 8. Reconstruction comparison between Loihi techniques and similar
sparsity levels with OMP. Average error for 10 images.

some neurons is smoothly driven down. However, our
“post-hoc” normalization step achieves a similar result in a
fraction of the time, while utilizing contributions from all
active neurons (i.e., dictionary elements) in a more uniform
manner. To compare the performance, we constrain the
OMP method, the Loihi method, and the post-hoc Loihi
method to all have similar sparsity (approximately 9.3 per-
cent percent activation). When this comparison is per-
formed, the post-hoc method results in a statistically lower
reconstruction error than the full simulation in less than 5
percent of the time. This result will encourage the use of
post hoc solution when an optimal dictionary has already
been trained because reconstructions are better and feature
activations are relatively the same.

To perform an adequate comparison, the continuous
OMP implementation was forced to have the same sparsity
as the other two methods but had different feature activa-
tions. As a result of the continuous coefficients available to
OMP, this method resulted in the lowest reconstruction
error; however, our analysis of power consumption (Table 1)
shows that this technique consumes significantly more
power and energy.

One of the important observations from these experi-
ments relates to the dictionary learning phase. In the exist-
ing Loihi full length simulation method, dictionary learning
can take place. It is also successful in the OMP methods.
However, in the studies we present here, the use of post-

HENKE ET AL.: FAST POST-HOC NORMALIZATION FOR BRAIN INSPIRED SPARSE CODING ON A NEUROMORPHIC DEVICE 309

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply.

hoc normalization appears to place the system very quickly
into a local minima for a particular dictionary. This can be
seen in Fig. 5, where the post-hoc reconstruction error
remains fixed throughout the epochs studies. Interestingly,
when probed with random dictionary elements, the same
phenomena is observed. This imposes an effective limita-
tion on post-hoc normalization in that it makes the best of a
given dictionary and is not yet amenable to further learning.
We believe this is an artifact of the way in which batches
and post-hoc normalization are computed, and warrants
further study. Because we were able to achieve our initial
objective of significant reconstruction speedup without fur-
ther learning, we did not pursue this further within the
scope of this paper. It should be noted that this could be an
area of further optimization for the technique.

6 CONCLUSION
Our exploration of biologically inspired, energy efficient
neuromorphic systems, for the purposes of continuing the
advancement of machine learning past the limitations of
classical approaches, has illuminated some of the poten-
tially breakthrough advantages of novel computing sub-
strates such as Loihi. By demonstrating significant speedup
for a pre-defined dictionary at similar or better accuracy,
our work indicates yet another route to algorithmically
improve overall system throughput without any hardware
changes. The application of post-hoc normalization allows
computation of sparse representations in less than 5 percent
of the full simulation time once the lambda ,\ (penalty) is
tuned to provide the desired sparsity found in the full simu-
lation. This has significant implications for the practical use
of neuromorphic methods such as Loihi in resource-con-
strained environments where available power and time for
computation are finite. Unlike traditional sparse coding,
manipulations to the cost function are required for optimal
reconstruction when using full length simulation Loihi and
our novel post-hoc normalization as described in the text.
By forcing the sparsity of OMP to match that of what was
optimal for different Loihi techniques, we were able to gen-
erate classical comparisons of this method, albeit at higher
power cost. Although OMP out-performed the Loihi
approaches in terms of raw reconstruction, the Loihi techni-
ques are rate coded solutions with fewer degrees of freedom
and provide competitive results at dramatically lower
power. In addition, the approximately 50 times speed up of
our post-hoc reconstruction compared with the full length
Loihi simulation provides an avenue for the neuromorphic
device to better compete with traditional techniques in
terms of raw computation time. Future work will include
classical and quantum annealing LCA comparisons for the

true binary sparse coding approximation of the post-hoc
solutions, classical LCA to compare with the full simulation,
and classification scores for all methods to demonstrate
impact on downstream machine learning techniques.

REFERENCES
[1] J. J. Hopfield, “Neural networks and physical systems with emer-

gent collective computational properties,” Proc. Nat. Acad. Sci.
USA, vol. 79, pp. 2554–2558, 1982.

[2] B. K. Natarajan, “Sparse approximate solutions to linear systems,”
SIAM J. Comput., vol. 24, pp. 227–234, Apr. 1995.

[3] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb.
2018.

[4] M. M. Khan et al., “SpiNNaker: Mapping neural networks onto a
massively-parallel chip multiprocessor,” in Proc. IEEE Int. Joint
Conf. Neural Netw., 2008, pp. 2849–2856.

[5] A. Cassidy et al., “TrueNorth: A high-performance, low-power
neurosynaptic processor for multi-sensory perception, action, and
cognition,” Comput. Sci., 2016.

[6] N. Henze and M. D. Penrose, “On the multivariate runs test,”
Ann. Statist., vol. 27, no. 1, pp. 290–298, 1999.

[7] Waagen et al., “Fashion MNIST charts for LANL discussions,” Air
Force Research Laboratory (AFRL), 2019.

[8] B. Olshausen and D. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,”
Nature, vol. 381, pp. 607–609, 1996.

[9] K. Boahen, “A neuromorph’s prospectus,” Comput. Sci. Eng., vol.
19, pp. 14–28, Mar. 2017. [Online]. Available: https://aip.
scitation.org/doi/abs/10.1109/MCSE.2017.33?journalCode=csx

[10] V. Kornijcuk et al., “Leaky integrate-and-fire neuron circuit based
on floating-gate integrator,” Front. Neurosci., vol. 23, May 2016,
Art. no. 212.

[11] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,”
2017, arXiv:1708.07747

[12] M. Zhu and C. J. Rozell, “Visual nonclassical receptive field effects
emerge from sparse coding in a dynamical system,” PLoS Comput.
Biol., vol. 9, no. 8, 2013, Art. no. e1003191.

[13] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen,
“Sparse coding viathresholding and local competition in neural
circuits,” Neural Comput., vol. 20, pp. 2526–2563, Oct. 2008.

[14] K. Henke, G. T. Kenyon, and B. Migliori, “Machine learning in a
post moore’s law world: Quantum vs. neuromorphic substrates,”
in Proc. IEEE Southwest Symp. Image Anal. Interpretation, 2020, pp.
74–77.

[15] D. O. Hebb, The Organization of Behavior: A Neuropsychological The-
ory. New York, NY, USA: Wiley, 1949.

[16] Y. Watkins, E. Kim, A. Sornborger, and G. Kenyon, “Using sinu-
soidally-modulated noise as a surrogate for slow-wave sleep to
accomplish stable unsupervised dictionary learning in a spike-
based sparse coding model,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops, 2020, pp. 1482–1487.

[17] T. E. Potok et al., “A study of complex deep learning networks on
high-performance, neuromorphic, and quantum computers,”
ACM J. Emerg. Technol. Comput. Syst., vol. 14, 2018, Art. no. 19.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://aip.scitation.org/doi/abs/10.1109/MCSE.2017.33?journalCode=csx
https://aip.scitation.org/doi/abs/10.1109/MCSE.2017.33?journalCode=csx
http://www.computer.org/csdl

DOI 10.1109/ICRC2020.2020.00015
Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

2020 International Conference on Rebooting Computing (ICRC)

Alien vs. Predator: Brain Inspired Sparse Coding
Optimization on Neuromorphic and Quantum

Devices

Kyle Henke
Computer, Computational,

and Statistical Sciences (CCS-3)
Los Alamos National Laboratory

Los Alamos, United States
Email: khenke@lanl.gov

Ben Migliori
Computer, Computational,

and Statistical Sciences (CCS-7)
Los Alamos National Laboratory

Los Alamos, United States
Email: ben.migliori@lanl.gov

Garrett T. Kenyon
Computer, Computational,

and Statistical Sciences (CCS-3)
Los Alamos National Laboratory

Los Alamos, United States
Email: gkenyon@lanl.gov

Abstract—Machine Learning has achieved immense progress

by exploiting CPUs and GPUs on classical computing hardware.
However, the inevitable end of Moore’s Law on these devices
requires the adaptation and exploration of novel computational
platforms in order to continue these advancements. Biologically
accurate, energy efficient neuromorphic systems and fully en-
tangled quantum systems are particularly promising arenas for
enabling future advances. In this work, we perform a detailed
comparison on a level playing field between these two novel
substrates by applying them to an identical challenge.

We solve the sparse coding problem using the biologically
inspired Locally Competitive Algorithm (LCA) on the D-Wave
quantum annealer and Intel Loihi neuromorphic spiking proces-
sor. The Fashion-MNIST data set was chosen and dimensionally-
reduced by sparse Principal Component Analysis (sPCA). A sign
flipped second data set was created and appended to the original
in order to give each class a mean zero distribution, effectively
creating an environment where the data could not be linearly
separated. An early in time normalization technique for Loihi is
presented along with analysis of optimal parameter selection and
unsupervised dictionary learning for all three variations. Studies
are ongoing, but preliminary results suggest each computational
substrate requires casting the NP-Hard optimization problem in a
slightly different manner to best capture the individual strengths,
and the new Loihi method allows for more realistic comparison
between the two.

I. INTRODUCTION

Throughout the scientific community there is growing con-
cern of our increasingly rapid approach towards the theoretical
limits of classical computation, better known as the end of
Moore’s Law. In spite of this knowledge, reliance on machine
learning and autonomous products has exponentially grown,
and hence, the exploration of novel computational platforms
which can overcome projected deficiencies is needed. The
incredible efficiency of the human mind and powerful opti-
mization potential of entangled quantum systems provides two
avenues where projected limitations may be alleviated.

Additionally, the importance of unsupervised learning has
grown in the AI community as a means of advancing the
field out of the narrow, or weak, AI regime and into a strong
AI, or general intelligence setting. Here, we draw inspiration

from the a human brain’s unmatched ability to generalize
information by solving the sparse coding problem using the
biologically accurate Locally Competitive Algorithm (LCA)
and performing unsupervised dictionary learning using a local
Hebbian rule on the D-Wave quantum annealing device and
the Loihi spiking neuromorphic processor.

a) Analog vs. Digital: Classical computing can be di-
vided into two categories, depending on whether the under-
lying circuits are digital or analog. Digital logic gates are
universal, allowing the construction of computing architectures
capable of running any valid program. Analog computers,
conversely, use the dynamical evolution of a physical system
to perform a given computation. While analog computers can
be extremely fast and power efficient, the noise associated
with the evolution of such systems causes difficulty when
programming and often represents a major limitation.

Neuromorphic processors, drawing inspiration from biolog-
ical brains, comprise a class of ultra low-power analog devices
that are capable of self-organizing in response structured input.
In this sense, neuromorphic processors are able to “program”
themselves, potentially alleviating a major limitation of ana-
log computing devices. As we require computers to exhibit
greater autonomy and intelligence, and the focus of comput-
ing applications shifts toward machine learning and machine
intelligence, analog neuromorphic processors are likely to play
an increasingly prominent role [1].

The question of analog vs. digital systems maps into
the quantum computing regime as well. Like their classical
digital counterparts, quantum logic gates can, in principle,
enable the construction of computers capable of running any
valid program. Also like their classical counterparts, quantum
analog computers, such as quantum annealing machines, are
physical systems in which the dynamical evolution of the
system performs the desired computation. Both analog and
gate-based approaches to quantum computing seek to exploit
quantum entanglement, superposition, and other quantum ef-
fects to solve problems that would otherwise be intractable
using a purely classical approach, a goal known as quantum

978-1-6654-1975-8/20/$31.00 ©2020 IEEE 26

20
20

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

eb
oo

tin
g

Co
m

pu
tin

g
(IC

R
C

) |
97

8-
1-

66
54

-1
97

5-
8/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
RC

20
20

.2
02

0.
00

01
5

mailto:khenke@lanl.gov
mailto:ben.migliori@lanl.gov
mailto:gkenyon@lanl.gov

27

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

'£

supremacy [2]. In this work, we focus on analog quantum
computing entirely.

b) Quantum Annealing: Quantum annealing refers to a
class of quantum analog computers that “compute” by settling
into a low-energy state of a particular Hamiltonian which
describes the quantum system. The design of the first com-
mercially available quantum annealing machines, produced by
D-Wave [3], illustrates the general concept. D-Wave computers
are constructed from superconducting quantum interference
devices (SQUIDS), with each SQUID subject to a local
magnetic field and coupled to neighboring SQUIDS by ad-
justable links comprised of Josephson Junctions. Each SQUID
represents a binary qubit that has two possible observable
states, 0 and 1. In general, each qubit can exist in an entangled
superposition of both states. The user programs a D-Wave
computer by specifying the values of the pairwise coupling
coefficients between qubits along with the local magnetic field
applied individually to each qubit.

In a classical annealing process, the system is prepared
in a randomly chosen initial state at a finite temperature.
Thermal fluctuations cause classical annealing systems to
jump over local energy barriers and into new energy states,
with transitions between states driven stochastically according
to a Boltzmann distribution. Jumps to higher energy states
are possible but exponentially less likely than transitions to
lower energy states. As the temperature is lowered, classical
annealing systems tend to settle into progressively lower
energy states. The annealing process is repeated multiple times
using different randomly chosen initial conditions, with the
lowest final energy state achieved across all annealing runs
representing the answer to the computation.

The implementation of quantum annealing differs from
classical annealing in several important respects. In quantum
annealing, the system is not prepared in a single randomly
chosen state as with a classical annealing process. Rather,
a quantum annealing machine is prepared in an initial state
that consists of a quantum superposition of all possible states.
Using the D-Wave quantum annealing machine as a concrete
example, a transverse magnetic field is applied to each qubit
in the absence of any coupling between qubits. A D-Wave
computer consisting of N qubits is thus prepared in an initial
state that represents the superposition of all 2N possible
observable states. In part, the computing power of quantum
annealing machines derives from the ability to more effectively
sample the entire energy landscape.

Whereas classical annealing involves slowly lowering the
temperature of the system, quantum annealing is implemented
on the D-Wave by gradually turning on the user specified
Hamiltonian while the transverse magnetic field is gradually
turned off. Rather than jumping over local energy barriers,
in quantum annealing a transition to new energy states is
accomplished via quantum tunneling. In theory, quantum
tunneling allows quantum annealers to avoid getting trapped
in local minima. In practice, it is unlikely that any existing
quantum annealing process can maintain quantum coherence
over sufficiently large spatial and temporal regimes to achieve

pure quantum annealing, but this limitation can be partially
alleviated by running the anneal multiple times and sampling
from the underlying Boltzmann distribution where the global
minimum should eventually be present and hence observed.

c) Neuromorphic Computing: Inspired by biology, Intel’s
Loihi neuromorphic computing device implements spiking
neural networks with neurons as the basic processing elements.
Loihi, like its predecessors SpiNNaker [4] and TrueNorth
[5], represents information as single-bit impulses, or spikes,
transmitted at specific times and directed towards specific
targets through connections known as synapses. Effectively,
time and parallelism are explicitly incorporated into the rep-
resentation and the network operates as a dynamical system
communicating through these spikes. Because Loihi has spike
timing dependent plasticity, it is not an inference-only device,
but can also be used for online learning [6].

Users specify input as a sequence of Dirac delta functions
or bias currents of the form σ(t) = k δ(t − tk) where tk is
the time of the k-th input spike. Each neural unit on the device
implements an asynchronous discrete-time implementation of
Leaky Integrate and Fire (LIF) neuron with internal state
variables consisting of a synaptic response current and
a resulting membrane potential [7]. The system evolves in
time and propagates information through the defined network
graph with timing and patterns of neural activity defining the
computational tasks.

The Loihi neuromorphic device we consider employs digital
interconnections between spiking neurons to implement sparse
attractor-based neural networks. A single Loihi chip has a
manycore mesh comprising 128 neuromorphic cores, three
embedded x86 processor cores, and off-chip communication
interfaces that connect the mesh in four directions to other
chips. An asynchronous network-on-chip (NoC) communi-
cates between cores in the form of packetized messages. The
NoC writes, reads requests, reads response messages for core
management and x86-to-x86 messaging, spike messages for
SNN computation, and provides barrier messages for time
coordination between cores. All messages are collected by
an external host CPU or on-chip by the x86 cores. Each
neuromorphic core contains 1,024 basic spiking neural units
grouped into sets of trees creating the neurons. In total, the
basic architecture allows for 4096 on-chip cores and up to
16,384 chips if the messages between chips are formulated in
a hierarchical manner to allow off chip communication over a
second-level network [6].

II. RELATED WORK
An earlier comparison of quantum annealing and neuromor-

phic architectures sampled from a distribution defined by a
Limited Boltzmann Machine whose inter- and intra-layer con-
nectivity was constrained by the topology of the D-Wave while
their neuromorphic implementation demonstrated a low-power
implementation using memristive interconnects [19]. Here, we
use only the lowest energy solution returned by the D-Wave
as an estimate of the optimal binary sparse representation of
the data and seek to solve the same optimization problem

28

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

in neuromorphic hardware. Other work has shown [16] it is
possible to compare performance between multiple non-von-
Neumann substrates on the same task. A crucial result of that
work was the introduction of β parameter in the objective
function to overcome representational constraints imposed by
the use of normalized weights in combination with binary
activations. In this current work, we optimize the cost function
for both the neuromorphic and quantum devices in terms of
both the β and λ parameters, employ a more powerful patch
based representation of the data, and learn dictionary weights.

III. METHODS

A. Mean Zero Fashion-MNIST Data Set

One of the primary challenges with comparing quantum and
neuromorphic systems is the fundamental difference in data-
handling capacity of the two methods. Here, we introduce a
dataset to which both methods can be equally applied.

Fashion-MNIST dataset [8] is a 28 × 28 greyscale labelled
image dataset with ten classes. Fashion-MNIST is significantly
more difficult than the classical MNIST challenge but is
still tractable for most modern machine learning algorithms.
However, the individual images in Fashion-MNIST are still
far too large (784 dimensions) to fit on the D-Wave annealer.
The Henze-Penrose (HP) [9] statistic for estimating class
separability was used to estimate the minimum dimensionality
for the Fashion-MNIST data set that does not substantially
degrade classification performance [10]. The data set was
reduced via sparse Principal Component Analysis (sPCA) and
the HP statistic was calculated for each reduction. To compute
the HP statistic, first the minimum spanning tree between
classes is calculated using the Euclidean distance between
sPCA representations, then the number of transitions between
the classes in this spanning tree is calculated and represented
by the symbol SFR. For a two class system we can express
this statistic in the equation below:

nx + ny

Fig. 1: An example of the HP analysis for two classes and for
the dataset under discussion. Upper panel: An example of two
minimal spanning trees for separable and non-separable data,
showing (left) single transitions between clusters and (right)
many transitions between classes in the non-seperable data.
Lower panel: HP statistic as a function of dimensionality.
Triangles show bounds and circles show the mean. As the
dimensionality is reduced, the HP statistic eventually drops
rapidly, indicating the rollover point. Right inset: Reconstruc-
tion examples of Fashion-MNIST at original dimensionality
(768) and at the HP rollover point (32)
sPCA vectors were then used to reconstruct reduced dimen-
sional images. Each image was divided into an array of 4 × 4
non-overlapping patches, with each patch 7×7 pixels in extent.
Each patch was independently sparse coded. The resulting
sparse reconstructions of each patch could be reassembled
for comparison with the original image to verify that the
sparse encoding was reasonable. The compressed/augmented
Fashion-MNIST dataset was now not linearly separable and

Hxy = 1 − SFR 2nxy
(1) non-liner classification techniques averaged a corresponding

8-10 percent drop in accuracy.
where nx and ny are the number of nodes in the tree for class x
and y respectively. When ΔHP begins to increase rapidly (the
“HP Rollover Point”) it indicates that dataset compression is
causing large changes in cluster overlap. The critical point for
Fashion-MNIST was found to be 32 dimensions. To confirm
that a 32-dimensional fashion MNIST contained a classifi-
cation challenge of similarly difficulty to the uncompressed
representation, we trained linear Support Vector Machines
(SVMs) to classify both original and compressed datasets. The
RMS change in the confusion matrix (where 0 is no accuracy,
and 1.0 is perfect accuracy) between the 784-dimension and
32-dimension representation was .007. The SVM and HP
metrics together demonstrate that neither the problem difficulty
nor the classification accuracy significantly changed under
compression [10]. To remove the linear separability present in
the Fashion-MNIST dataset, we appended a sPCA coefficient-
flipped 2nd data set so that all classes were of mean zero. The

By establishing this challenge with a dimensionality that
would be dramatically smaller in dimension than the limited
number of qubits on the D-Wave annealer, we enable a closer
comparison of the two methods without making extrapolations
required when separate datasets are used.

B. Sparse Coding:
Neural networks represent an increasingly important class of

algorithms in which exact solutions are not necessary and good
solutions are often good enough. Here, the focus is on a class
of algorithms based on Hopfield networks, which are fully
recurrent dynamical neural circuits governed by fixed point
attractors [11]. Specifically, sparse attractor networks in which
a uniform applied field is used to globally suppress activity,
encouraging solutions consisting of a minimum number of
active elements are considered [12]. Sparse attractor networks
possess several properties that make them ideal for comparing

29

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

quantum and neuromorphic processors. First, sparse attractor
networks compute solutions to difficult optimization prob-
lems by settling into low-energy states that are embedded in
complex energy landscapes containing multiple local minima.
Second, by exploiting local learning rules to sculpt the energy
landscape to better model the input data, such networks are
naturally self-organizing.

C. Locally Competitive Algorithm (LCA) Implementation for
Finding Sparse Representations of Data

a) Quantum Annealing for Sparse Attractor Networks:
Given an overcomplete, non-orthonormal basis {φi}, inferring
a sparse representation involves finding the minimal set of
non-zero activation coefficients a that accurately reconstruct
a given input signal I, corresponding to a minimum of the
following energy function:

Fig. 2: A subset of the D-Wave consisting of 32 qubits
arranged into 4 unit cells. Vertical (horizontal) orientations
drawn as blue (white) circles. Interactions occur through the
16 bipartite interactions (blue edges) within a unit cell. Nearest

1 2
neighboring bipartite interactions between each pair of nearest

E(I, a) = min[||I − φa||
{a} 2 + λ||a||0] (2) neighboring unit cells are characterized as black and red edges.

where λ is a trade-off parameter that determines the balance
between reconstruction error and the number of non-zero
activation coefficients. A larger λ will result in a more sparse
solution to Eq. (7). This energy function is non-convex and
contains multiple local minima, so that finding a sparse rep-

(1, 2, 3, ..., Nq). This objective function defines a Quadratic
Unconstrained Binary Optimization (QUBO) problem. We cast
our sparse coding problem, Eq. (7), into QUBO form, Eq. (3),
by the transformations [13] [14]:

resentation falls into an NP-hard complexity class of decision
problems [13] [14]. hi = (−φT

1
I + (λ + 2))i

b) Lateral inhibition: Previous work [15] has shown that
sparse coding optimization problems can be solved using the
dynamics of neural networks incorporating lateral inhibition.
This biologically plausible implementation, known as a locally
competitive algorithm (LCA), encourages sparse solutions by
allowing neurons to compete with each other for fractional
representation of the input. When used with a loss function that
penalizes neural activation, the resulting dynamical system will
evolve to a sparse solution. However, such dynamical systems
are susceptible to local minima. They also require inter-layer
connectivity, either directly or through regularizations.

c) Transformation relations: In a quantum annealing
system, each neuron is mapped to a binary qubit. Because
the observable states of any qubit/neuron are 0 and 1, each
qubit/neuron is treated as a “quantum object” that either fires a
spike (1) or is silent (0). Because each qubit/neuron is a quan-
tum object, the state of any qubit/neuron is described in general
by a superposition of 1 and 0, in which the qubit/neuron is both
active and non-active at the same time, a logical impossibility
for any classical system. If this quantum superposition is
maintained, it is the characteristic which should allow the D-
Wave to explore the entire energy landscape at once.

The D-Wave 2000Q [3] [13] [14] searches for optimal
solutions to a (discrete) Ising system consisting of Nq binary
variables described by the following classical Hamiltonian:

Qij = (φT φ)ij. (4)

In Eq. (4), the bias term h in the Ising model is proportional
to the weighted input φT I while the coupling term Q corre-
sponds to lateral competition (see also [15]) between qubits
given by the interaction matrix φT φ. Note that the sparsity
trade-off parameter λ appears as a uniform applied magnetic
field that encourages all qubits to be in the ai = 0 state [13]
[14].

d) D-Wave 2000Q hardware : The D-Wave 2000Q [3]
consists of 2000 qubits and 5600 couplers arranged into
12x12 unit cells, forming a Chimera structure with dimensions
12x12x8. Sparse interactions between qubits are restricted to
the 16 connections within a unit cell and the 16 connections
between nearest-neighboring unit cells [3] [13] [14] (see
Fig. 2). One qubit can therefore interact with at most 6 other
qubits.

e) Embedding technique: Despite the sparsity of physical
connections on the D-Wave, it is nonetheless possible to con-
struct graphs with arbitrarily dense connectivity by employing
“embedding” techniques. Embedding works by chaining to-
gether physical qubits so as to extend the effective connectivity
but at the cost of reducing the total number of available logical
qubits. The D-Wave API provides a heuristic algorithm that
searches for an optimal embedding that minimizes the number
of physical qubits that are chained together (see Fig. 3 for an

Nq

H(h, Q, a) = hiai
i

Nq

+ Qij
i<j

aiaj (3)

example).
The exact mapping of a spin glass problem onto the phys-

ical D-Wave 2000Q chimera, including defects, can typically
with binary activation coefficients ai = {0, 1} ∀i ∈ contain approximately Nq ∼ 1750 spins (qubits) with > 4000

30

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

4 3

1

5 2

Fig. 3: Embedding example. 5 fully-connected particles (left,
red filled circles connected by 10 black edges) are mapped
onto a single unit cell using 8 qubits (right, 8 blue circles)
and all 16 physical connections (blue edges).

local spin-spin interactions. In contrast, embedding an arbi-
trary QUBO problem onto the same 2000Q chimera typically
allows no more than Nq ∼ 64 nodes (logical qubits) but these
nodes may be fully connected. Thus, embedding effectively
trades qubits for connectivity and is in and of itself an NP
hard optimization problem.

f) Neuromorphic Hardware for Sparse Attractor Net-
works: The neuromorphic implementation of sparse coding
sends binary signals as spikes in response to current flowing
from signals sent by neighboring neurons or inputs which
can either excite or inhibit one another while also decaying
according to a leak of potential over time when there is
no input. The neuromorphic implementation injects current
weighted according to a non-orthonormal basis (φT I) into
a network of neurons and reads outputs as spike rates a. The
sparse coding loss function can be approximated as (Equation
5)

Fig. 4: Example of LCA structure in a network of V1 Neurons.
Input image components I1 and I2 are fed into a layer of
neurons which represent the features, or columns of φ. Blue
lines represent the connection strength between each φi and
the input image found by the vectors inner product. Each
φi competes with all other neurons, represented by the red
connections and their respective inner products, to find which
sparse combinations of features best represent the input as the
system evolves.

active neuron is not continuously excited, it will rapidly fall
below firing threshold and deactivate because of inhibition
and leaking potential. The φT I term charges up each of the
neurons, exciting neurons whose features best match the input.
φT φ·a is the inhibitory signal, forcing neurons which explain
a similar component of the data to compete by inhibiting
one another. This competition continues until the equation
converges to a stable fixed point sparse representation of
average spike rates of the neurons, and this fixed point has
been shown to be identical to the solution of the optimization

E(I, a) = min[
{a}

1 ||I − φa||2 +
2

(u − Tλ(u))] (5) problem [6] [15].

where we assume the existence of an input/output transfer
function a = Tλ(u) with threshold λ, the details of which
are determined by the nature of the leaky integrate-and-fire
process.

Taking the negative gradient of the cost function (Equation
5) with respect to the sparse vector a, we obtain the following
set of coupled differential equations defining a non-linear
dynamical system:

1

g) Post-Hoc Normalization: As the Loihi system evolves
through time, the spiking neural network provides a rapid
decrease in error in the first 100 or so timesteps (figure [5]).
During this period, the most important neurons immediately
dampen out other active but less important features. The
remainder of the 6000 steps of the simulation time are used
to slowly achieve an initial fit plateau and then to normalize
the rates of the most important features in the final solution.
This happens because the final solution represents the dot

u̇ = (−u + φT I − φT φ · a + Tλ(u)) (6)
τ

product between the spike rate over simulation time and the
corresponding feature vectors associated with active neurons.

Although the precise form of Tλ(u) is unspecified, we
nonetheless anticipate that network of leaky integrate-and-
fire neurons implemented in neuromorphic hardware will tend
to a state of activity that minimizes a sparse reconstruction
objective function of the above form. We will later discuss
a normalization technique which can be argued gives an
approximation of the ||a||0 used in the D-Wave cost function.

The −u term acts as the decay piece of the system, slowly
decreasing the potential of each neuron over time. If an

As a simulation runs longer, quiescent neurons have their
contribution effectively diluted by slow but active neurons.
This behaves similarly to feature normalization, and does not
have an analogue in the quantum system under comparison.

In an attempt to speed up the time to solution and produce
a more equal comparison, we implement a post − hoc nor-
malization technique where the simulation is ended after 100
steps and rates are immediately normalized.

2
3

5 1 4 2

4
5

r

31

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

2

Fig. 5: Simulation time steps are on the x-axis. Red dotted
line represents where most significant neuron competition has
already occurred and activity is dampened out. Top Panel:
Average spike rate of neurons in network. Middle Panel: A
spike raster plot of how often active neurons are firing over the
simulation. Lower Panel: The value of the objective function
and the long regularization time after the initial fit plateau.
The vast majority of the reduction in the loss function occurs
early in the simulation.

Fig. 6: Repatched image space reconstructions of the original
sPCA (Top), full Loihi simulation sparse coefficients (Middle),
and post-hoc normalized sparse coefficients (Bottom) for 10
images containing 16 patches each. Average reconstruction
error for post-hoc solutions are better, but solutions are less
sparse (see figure [8]).

IV. RESULTS

A. Input Amplification and Optimal Sparsity
In order to successfully reconstruct our input signals, a β

parameter must be introduced into the cost function to amplify
the input away from unit norm and allow multiple features to
be utilized. This creates a new cost functions [16],

Fig. 7: Reconstruction error/loss plotted as a function of input
amplification β. These values indicate how far away from
unit norm the input must be for best reconstructions and are
a unique characteristic of the distinct architectures. Top: D-
Wave average for 500 images. Bottom Left: Full Loihi average
10 images. Bottom Right: post-hoc normalized Loihi for 64
images.

Figure [7] suggests the different substrates and techniques
require varying levels of optimal input amplification β values,
but all eventually reach some plateau where reconstruction
error doesn’t improve any further. In addition, a clear rela-
tionship between the optimal input amplification β parame-
ter and the sparsity penalty λ value can also be observed.
Intuitively, a larger amplification in the input should require
a stronger lambda value in order to keep the same level of
sparsity required for optimal reconstruction. In contrast to
traditional sparse coding where λ and reconstruction error
have a monotonically increasing relationship because of access
to continuous coefficients in the sparse solution vector a,
there are clear points of minimum optimal sparsity penalties
λ for the D-Wave and full Loihi simulations. The post-hoc
normalization version of Loihi does not provide such a clear
distinction of optimal λ, and resembles what is typically seen
in traditional sparse coding, figure [8].

B. Dictionary Optimizations
Before final solutions were gathered, dictionary optimiza-

tion was performed on the two substrates and different so-
lution techniques. Random features were first selected for
the dictionary and a stochastic gradient descent algorithm
with Hebbian Learning rule was deployed using the classical
Orthogonal Matching Pursuit (OMP) algorithm to lower the
average reconstruction error/loss [17]. After the dictionary was
trained, the same algorithm was run using the solutions from

1 E(I, a) = min[||βI − φa|| + λ||a||] (7) the different machines. Figure [9], shows convergence to a
{a} 2 0,p

better binary sparse coding dictionary on the D-Wave but no
where the penalty term is a 0 norm for D-wave and an

effective standard p norm for Loihi.
change in the reconstruction error for the Loihi techniques.
The lack of learning suggests the dictionary was already opti-

32

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Optimal sparsity penalty λ selection. Each graph has
reconstruction error/loss in blue and active neuron/feature
percentage in red. There is a clear optimal sparsity level
dictated by λ for the D-Wave (Top) and full simulation Loihi
(Bottom Left), but the post-hoc normalization technique on
Loihi (Bottom Right) roughly exhibits a monotonic relation-
ship.

mized for an L-p penalty, and thus, no learning could actually
occur providing more evidence the neuromorphic processor
is not solving a true binary sparse coding problem.We then
initialized Loihi with the same original random features used
to start the OMP training and clear learning was achieved
before eventual overfitting on the full simulation time. To
alleviate the overfitting, we first implemented a sleep schedule
by introducing normally distributed data periodically [18] and
did not normalize the learning features. As can be seen in
figure [9], the learning improved until the the norms of the
features began to blow up creating errors even higher than
without noise and normalization. Hence a stopping criteria was
utilized when the errors started to grow again. Although better
learning was achieved, the final dictionary did not provide
better results than when the OMP dictionary was fed onto the
device. Learning was not seen in the post-hoc normalization
approach with both the OMP dictionary or the random features
and we believe this is a result of having the ability to use
weighted amounts of all the features at all times.

V. DISCUSSION

We successfully ran an LCA implementation for solving the
same sparse coding problem on two fundamentally different
devices, the D-Wave quantum annealing machine and the
Loihi neuromorphic processor. In this work, we identified the
relationship between the optimal λ, which sets the threshold
of how sparse our solutions would be, β, which adjusts the
scale of the input image and how these parameters behaved
as a function of the specific substrates. The D-Wave produces
true binary sparse coding. Loihi, on the other hand, produced
an approximation of binary sparse coding whose fidelity
was inversely dependent on the elapsed simulation time. To

Fig. 9: Stochastic gradient descent with local Hebbian rule
dictionary learning results. Top: Two runs of the algorithm
successfully learn a similar binary dictionary when the OMP
dictionary is fed initially into the D-Wave. Bottom Left:
Random features are fed into algorithm and solutions are found
using Full Simulation Loihi. Blue is result when dictionary
features are normalized after every epoch, and green line
represents when features are not normalized and periodic noise
is introduced. Both approaches achieve initial learning before
overfitting with the un-normalized noisy approach providing
best solution. Bottom Right: post-hoc normalization does not
show any evidence of learning with random features (blue)
and OMP trained dictionary (green).

compensate for this, and to achieve a better comparison with
the D-Wave, we terminated the neuromorphic solution early
and utilized post-hoc normalization to adjust the overall scale
of the reconstruction.

As figure [6] suggests, these solutions are often times even
better in terms of final reconstruction error than their full
simulation counter parts. Although post-hoc normalization
does not yield completely binary solution vectors, we believe
stopping the simulation early provides a better approximation
of the desired binary solution because the rates of those
neurons left over are much more uniform than if left to longer
regularization. More importantly, this post-hoc normalized
representation is closer to a true P0 norm. By limiting our
sampling to a region of simulation in which inhibiting (i.e.,
active neurons) have not fully quieted non-active neurons, we
achieve a representation in which each active feature is either
present or not without the dilution discussed above.

For D-Wave, the requirement of a lower lambda value
for optimal results coupled with a lower input amplification
β suggest only a few features are needed for the optimal
reconstruction. This requirement appears to be the result of
using all or non binary features for the final reconstruction.
In contrast, the Loihi neuromorphic processor is able to use
weighted amounts of each feature for reconstruction. When
comparing the post-hoc normalization parameters with the

33

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply.

traditional long simulation times for Loihi, we believe there is
not an optimal lambda value for the post-hoc version because
the initial number of firing neurons is much greater, and the
more neurons available to use, the better the reconstruction
will be. In other words, for the post-hoc solutions to be
of the lowest reconstruction error, the λ value must be as
small as possible so that portions of all features can be
used. Alternative approaches for implementing LCA on Loihi
which force solutions to be more binary would be a valuable
extension of this research. One possible path is to set a single
spike rate for every active neuron, while a second option would
include a rate threshold which dampens activation to 0 if the
rate is below said value or 1 if above. These additions would
encourage a more sparse neural representation, but it is likely
they would be less biologically-relevant and has thus been less
explored in the neuromorphic community.

VI. CONCLUSION

Our exploration of biologically inspired, energy efficient
neuromorphic systems and fully entangled quantum system,
for the purposes of continuing the advancement of machine
learning past the limitations of classical approaches, has il-
luminated many similarities between the two fundamentally
different substrates. We successfully learned optimal dictio-
naries in an unsupervised manner for each device. Unlike
traditional sparse coding, manipulations to the cost function
of each implementation are required for optimal reconstruc-
tion. Each of the platforms and respective techniques require
amplification β of input, while penalty parameter λ tuning for
quantum annealing and full-simulation-length neuromorphic
methods are necessary. The requirement of λ and β parameter
tuning for non-continuous sparse coefficient solutions sug-
gests there is similar structure between the full Loihi and
D-Wave implementations. This characteristic ,coupled with
the more binary-like and faster post-hoc approach, result
in a strengthened linkage between these emerging non-von
Neumann substrates and create a space where they can be more
directly compared. Future work will include classical high
performance computing, single spike rate Loihi, and binary
rate thresholded Loihi sparse solutions. These approaches,
along with their corresponding classification scores, should be
a more direct comparison with the D-Wave quantum annealer.

REFERENCES

[1] K. Boahen, A neuromorph’s prospectus,Computing in
Science Engineering, vol. 19. pp.14-28, Mar. 2017,
https://aip.scitation.org/doi/abs/10.1109/MCSE.2017.33?journalCode=csx

[2] John Preskill Quantum computing and the entanglement frontier, arXiv,
2012

[3] DWAVE, 2016. [Online]. Available: http://www.dwavesys.com/
[4] M.M. Khan et al,SpiNNaker: Mapping Neural Networks onto a Massively-

Parallel Chip Multiprocessor, 2008 International Joint Conference on
Neural Networks (IJCNN 2008)

[5] A. Cassidy et al.,TrueNorth: A High-Performance, Low-Power Neurosy-
naptic Processor for Multi-Sensory Perception, Action, and Cognition,
Computer Science. 2016

[6] M. Davies et al., Loihi: A Neuromorphic Manycore Processor with On-
Chip Learning, in IEEE Micro, vol. 38, no. 1, pp. 82-99, January/February
2018.

[7] V. Kornijcuk et al., Leaky Integrate-and-Fire Neuron Circuit Based on
Floating-Gate Integrator, Frontiers in Neuroscience, 23 May 2016

[8] H. Xiao,K. Rasul,and R.Vollgraf, Fashion-MNIST:a Novel Image Dataset
for Benchmarking Machine Learning Algorithms, arXiv:1708.07747, [On-
line]. Available: https://github.com/zalandoresearch/Fashion-MNIST

[9] N. Henze and M. D. Penrose, On the multivariate runs test, Ann. Statist.,
vol. 27, no. 1, pp. 290-298, 1999

[10] Waagen et al, Fashion MNIST Charts for LANL Discussions, Air Force
Research Laboratory (AFRL) 2019

[11] Hopfield, J. J., Neural networks and physical systems with emergent
collective computational properties Proc. Nat. Acad. Sci. (USA) 79, 2554-
2558. (1982)

[12] B.K. Natarajan, Sparse Approximate Solutions to Linear Systems, SIAM
Journal on Computing, April 1995

[13] N.T.T. Nguyen and G. T. Kenyon, Solving sparse representation for
object classification using quantum d-wave 2x machine, Proceedings of
The First International Workshop on Post Moore’s Era Supercomputing,
J. S. Vetter and S. Matsuoka, Eds. Future Technologies Group Technical
Report FTGTR-2016-11, November 2016, pp. 43–44.

[14] Nguyen, Nga T.T. and Kenyon, Garrett T. Image Classification Using
Quantum Inference on the,D-Wave 2X,2018 IEEE International Confer-
ence on Rebooting Computing (ICRC), IEEE, 2018,

[15] C.J. Rozell,D.H. Johnson, R.G. Baraniuk, and B.A. Olshausen, Sparse
coding viathresholding and local competition in neural circuits, Neural
Computation, vol. 20, pp.2526–2563, Oct. 2008. [Online]. Available:
http://ieeexplore.ieee.org/document/6796039/

[16] K. Henke, G. T. Kenyon and B. Migliori, Machine Learning in
a Post Moore’s Law World: Quantum vs. Neuromorphic Substrates
2020 IEEE Southwest Symposium on Image Analysis and Inter-
pretation (SSIAI), Albuquerque, NM, USA, 2020, pp. 74-77, doi:
10.1109/SSIAI49293.2020.9094596.

[17] Hebb DO,The organization of behavior: a neuropsychological theory.
Wiley, New York, 1949

[18] Watkins, Yijing and Kim, Edward and Sornborger, Andrew and Kenyon,
Garrett Using Sinusoidally-Modulated Noise as a Surrogate for Slow-
Wave Sleep to Accomplish Stable Unsupervised Dictionary Learning in
a Spike-Based Sparse Coding Model,2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), June
2020

[19] Potok, Thomas E. and Schuman, Catherine and Young, Steven and
Patton, Robert and Spedalieri, Federico and Liu, Jeremy and Yao, Ke-
Thia and Rose, Garrett and Chakma, Gangotree,A Study of Complex Deep
Learning Networks on High-Performance, Neuromorphic, and Quantum
Computers, Association for Computing Machinery, 2018

http://www.dwavesys.com/
http://ieeexplore.ieee.org/document/6796039/

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

Machine Learning in a Post Moore’s Law World:
Quantum vs. Neuromorphic Substrates

Kyle Henke
Computer, Computational,

and Statistical Sciences (CCS-3)
Los Alamos National Laboratory

Los Alamos, United States
Email: khenke@lanl.gov

Garrett T. Kenyon
Computer, Computational,

and Statistical Sciences (CCS-3)
Los Alamos National Laboratory

Los Alamos, United States
Email: gkenyon@lanl.gov

Ben Migliori
Computer, Computational,

and Statistical Sciences (CCS-7)
Los Alamos National Laboratory

Los Alamos, United States
Email: ben.migliori@lanl.gov

Abstract—Although machine learning currently relies on con-

ventional computer architectures, the looming end of Moore’s
Law necessitates exploration of novel computational platforms.
Neuromorphic and quantum systems are a natural path to
pursue; biological neurons are incredibly efficient, and quantum
mechanics provides theoretical foundations for fast solutions
to optimization problems. Here, we make the first comparison
of emerging hardware (D-Wave quantum annealer and Intel
Loihi spiking processor) on an identically-posed machine learning
problem. We implement the bioinspired Locally Competitive
Algorithm (LCA) for solving sparse coding on the different
substrates. To make the comparison valid, our dataset of choice
(Fashion MNIST) is dimensionally-reduced via sparse principal
component analysis, under the constraint that both classifica-
tion performance and a graph-based clustering metric remain
unchanged. This enables the problem to be mapped identically
to both devices. An analysis of several metrics, including power
consumption, reconstruction, and classification accuracy are pre-
sented. When given the same specifically-constructed challenge,
both substrates perform similarly. Our results suggest while
neuromorphic and quantum systems are still in their infancy,
they present a possible route to address certain types of classically
challenging problems, such as sparse coding, in a way that
leverages the unique aspects of the substrates.

Index Terms—quantum annealing; neuromorphic computing;
sparse coding

a challenge does not maximize computational throughput on
either system, it allows direct comparison of results between
the two.

A. Neuromorphic Spiking Processors
Intel’s Loihi neuromorphic computing device implements

spiking neural networks inspired by biology. Like SpiNNaker
[3] and TrueNorth [4], Loihi represents information as single-
bit impulses, transmitted at specific times and to specific tar-
gets. Thus time is explicitly incorporated in the representation,
as is massive parallelism. Loihi has programmable synaptic
learning rules (i.e. spike timing dependent plasticity) and is
thus not an inference-only device.

Users specify input as a sequence of delta functions or
bias currents to a set of target neurons. Each neural unit on
the device implements an asynchronous discrete-time imple-
mentation of Leaky Integrate and Fire (LIF) neuron [5]; this
system evolves in time and propagates information through
the defined network graph. The timing and patterns of neural
activity define the computational tasks.

B. Quantum Annealing

I. INTRODUCTION

Quantum annealing systems and neuromorphic spiking pro-
cessors are fundamentally different computational substrates,
each designed to perform a specific non-Von Neumann task.
Typically, users attempt to maximize the usage of each sub-
strate for experimentation; because of the dramatic difference
in computational capacity, this has prevented a comparison
between the two techniques on level footing. Here, we are
able to cast a Locally Competitive Algorithm (LCA) [1] onto
both pieces of hardware and solve the same NP-Hard sparse
coding problem for the same benchmark dataset. The lowest
common computational constraint is the physical restriction of
the D-Wave quantum annealer, which has significantly fewer
degrees of freedom than typically used in machine learning
challenges. We reduce a common dataset (Fashion-MNIST
[2]) using the Henze-Penrose statistic for class separability and
support vector machines (SVMs) as a metric for dimension-
ality reduction with constant “problem difficulty”. While such

In a classical annealing process, the system is prepared
in a randomly chosen initial state at a finite temperature.
Thermal fluctuations cause classical annealing systems to
jump-over local energy barriers and into new energy states,
with transitions between states driven stochastically according
to a Boltzmann distribution. Jumps to higher energy states
are possible but exponentially less likely than transitions to
lower energy states. As the temperature is lowered, classical
annealing systems tend to settle into progressively lower
energy states. The annealing process is repeated multiple times
using different randomly chosen initial conditions, with the
lowest final energy state achieved across all annealing runs
representing the answer to the computation.

The implementation of quantum annealing differs from
classical annealing in several important respects. In quantum
annealing, the system is not prepared in a single randomly
chosen state as with a classical annealing process. Rather,
a quantum annealing machine is prepared in an initial state
that consists of a quantum superposition of all possible states.

978-1-7281-5745-0/20/$31.00 ©2020 IEEE 74 SSIAI 2020

mailto:khenke@lanl.gov
mailto:gkenyon@lanl.gov
mailto:ben.migliori@lanl.gov

75

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

Using the D-Wave quantum annealing machine as a concrete
example, a transverse magnetic field is applied to each qubit
in the absence of any coupling between qubits. A D-Wave
computer consisting of N qubits is thus prepared in an initial
state that represents the superposition of all 2N possible
observable states. In part, the computing power of quantum
annealing machines derives from the ability to initialize the
system in a superposition of all possible states, which in
turn enables a quantum annealing machine to more effectively
sample the entire energy landscape.

Whereas classical annealing involves slowly lowering the
temperature of the system, quantum annealing is implemented
on the D-Wave by gradually turning on the user specified
Hamiltonian while the transverse magnetic field is gradually
turned off. Rather than jumping over local energy barriers, in
quantum annealing a transition to new energy states is accom-
plished via quantum tunneling. In theory, quantum tunneling
allows quantum annealers to avoid getting trapped in local
minima.

Because of the connectivity limitations of the physical D-
Wave device, physical qubits must be “chained together” to
enable full connectivity as required by most machine-learning
algorithms; this reduces that number of “logical” qubits to at
least an order of magnitude below the number of “physical
qubits”.

C. Sparse PCA Fashion MNIST
We utilize the Fashion-MNIST dataset [2], a 28 by 28

greyscale labelled image dataset with ten classes. Fashion-
MNIST is significantly more challenging than the classical

Fig. 1: Orthogonal Matching Pursuit (OMP) Stochastic Gra-
dient Descent Training Results

the classification accuracy significantly changed under com-
pression [6].

D. The Sparse Coding Problem
Given an overcomplete, non-orthonormal basis {φi}, infer-

ring a sparse representation involves finding the minimal set
of binary activation coefficients a that accurately reconstruct
a given input signal I, corresponding to a minimum of the
following energy function:

MNIST challenge, but is still tractable for many modern - - 1 - 2 - (2)
machine learning algorithms. However, it is still far too large E(I, a) = min[||I − φa||

{a} 2 + λ||a||0]
(784 dimensions) to fit on the D-Wave annealer. The Henze-
Penrose (HP) statistic for estimating class separability was
used to select the appropriate dimensionality for the fashion
MNIST data set. First, the minimum spanning tree between
classes is calculated and then SF R is found as the number of
transitions between the classes. For a two class system we can
express this statistic in the equation below:

where λ is a trade-off parameter that determines the balance
between reconstruction error and the number of non-zero
activation coefficients. A larger λ will result in a more sparse
solution to Eq. (2). This energy function is non-convex and
contains multiple local minima, so finding a sparse repre-
sentation falls into an NP-hard complexity class of decision
problems [7].

Hxy = 1 − SF R
nx + ny

2nxy
(1) E. Dictionary Optimization

Before we gathered results from the various substrates, an
where nx and ny are the number of nodes in the tree for class
x and y respectively. The data set was reduced via sparse
PCA and the HP statistic was calculated for each reduction.
When ∆HP begins to increase rapidly (the “HP Rollover
Point”) it indicates that dataset compression is causing large
changes in clusterability. For our data, the critical point was
found to be 32 dimensions. To confirm that a 32-dimensional
Fashion MNIST contained a similar clustering challenge to
the uncompressed representation, we trained SVMs to classify
both original and compressed datasets. The RMS change in
the confusion matrix between the 784-dimension and 32-
dimension representation was .007 (where 0 is no accuracy,
and 1.0 is perfect accuracy). The SVM and HP metrics
together demonstrate that neither the problem difficulty nor

optimal dictionary φ was trained using stochastic gradient
descent (SGD). For this task, we invoking a local weighted
Hebbian learning rule to move the dictionary in the direction
of the most active features after the classical Orthogonal
Matching Pursuit (OMP) algorithm was used to find the sparse
representations of each image in the mini-batch (Figure 1).

II. SPARSE CODING IMPLEMENTATIONS ON QUANTUM
AND NEUROMORPHIC HARDWARE

A. Sparse Coding as Lateral Inhibition and Competition
Previous work [1] has shown that sparse coding opti-

mization problems can be solved using the dynamics of
neural networks incorporating lateral inhibition, a biologically
plausible implementation of a sparse solver referred to as

76

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

� �

a locally competitive algorithm (LCA). A sparse solution is
found by allowing the resulting dynamical system to evolve
to a minimum energy configuration.

In the neuromorphic implementation of sparse coding, neu-
rons send binary signals as spikes in response to current flow-
ing from signals sent by neighboring neurons or inputs which
can either excite or inhibit one another. The neuromorphic
implementation injects current weighted according to a non-
orthonormal basis (φT x-) into a network of neurons, and reads
outputs as spike rates -a. The sparse coding loss function
(Equation 2) may then be mapped to a dynamical systems
model through substitution [9]:

quantum superposition that allows the D-Wave to explore the
entire energy landscape at once.

The D-Wave 2000Q[10] finds optimal solutions to a (dis-
crete) Ising system consisting of Nq binary variables described
by the following classical Hamiltonian:

Nq Nq

H (h- , Q, -a) = hiai + Qijaiaj (4)
i i<j

with binary activation coefficients ai = {0, 1} ∀i ∈
(1, 2, 3, ..., Nq). This objective function defines a Quadratic
Unconstrained Binary Optimization (QUBO) problem. We cast
our sparse coding problem, Eq. (2), into QUBO form, Eq. (4),

-u̇ = 1 (φT x- − u- − (φT φ − I) · -a) (3)

by the transformations [11]:

τ
The −u term acts as the decay piece of the system, slowly

hi = (−φ T -I + (λ +
1 T

2))i, Qij = (φ φ)ij (5)

decreasing the potential of each neuron over time. If an active
neuron is not continuously excited, it will rapidly fall below
firing threshold and deactivate. The φT x- term charges up each
of the neurons, exciting neurons whose features best match the
input. (φT φ − I) · -a is the inhibitory signal, forcing neurons
which explain a similar component of the data to compete by
inhibiting one another. This competition continues until the
equation converges to a stable sparse representation [1].

Normalization and sparsity: The spiking output of Loihi
represents the output of the LCA process as a vector veca,
which is projected onto the normalized non-orthonormal basis
φ to convert the sparse code into a dense representation.
As Loihi uses spike rates, the number of spikes per basis
neuron is converted into a rate vector that is used in this
projection. Thus for Loihi, time acts as a regularizer; should a
basis vector be overrepresented, the neuron responsible will
be inhibited and stop firing. As the simulation continues,
the effect of that vector is then reduced as the number of
spikes per unit time decreases. However, we are interested in
a binary £0 representation, as expected for true sparse coding.
To approximate this, we interrupt the Loihi simulation after
the first set of spikes occur. In this representation, each basis
vector is represented in binary fashion, as would be required
for £0. However, as the basis vectors sum, this results in the
reconstruction norm blowing up.

To counteract this effect, we introduce a β ∈ Z factor
as a coefficient of the input I- in Equation 3. This term
allows approximately beta overlapping basis vectors to be
summed in a binary fashion without causing a large penalty
in the reconstruction loss (Equation 2). We tune β as a
hyperparameter and choose a value based on convergence of
the reconstruction loss. As will be shown in the next section,
a similar process is required for sparse coding with quantum
annealing.

B. Quantum Annealing for Sparse Attractor Networks

Transformation relations: In a quantum annealing sys-
tem, each neuron is mapped to a binary qubit, with a state
described in general by a superposition of 1 and 0. It is this

In Eq. (5), the bias term h in the Ising model is proportional
to the weighted input φT -I while the coupling term Q corre-
sponds to lateral competition (see also [1]) between qubits
given by the interaction matrix φT φ. Note that the sparsity
trade-off parameter λ appears as a uniform applied magnetic
field that encourages all qubits to be in the ai = 0 state[10].

D-Wave 2000Q Hardware and Embedding: Embedding
an arbitrary QUBO problem onto the 2000Q chimera typically
allows no more than Nq ∼ 64 nodes (logical qubits) but these
nodes may be fully connected. Thus, embedding effectively
trades qubits for connectivity, and is in and of itself an NP
hard optimization problem. In addition, the more overcomplete
our dictionary φ, the better the overall reconstruction are,
but comes at the cost of exponentially growing embedding
times (see Fig 2). Since we have 32 sparse PCA coefficients
(∼ Nq/ 2), each Hamiltonian satisfies the overcomplete
requirement, but when all 64 logical qubits are used, the full
time to solution can take up to 4 minutes per image.

Input Amplification for D-Wave Reconstruction: D-Wave
sums features of the given dictionary to recreate input data.
Since our coefficients in the sparse representation are binary,
the norm of the resulting output explodes as it does in the
neuromorphic case, forcing an all zero solution. Hence we
introduce a parameter β ∈ Z into the cost function (Equation
2, as a coefficient of I-) and tune it until the reconstruction
error is minimized and plateaus. The final reconstruction is
then normalized back to the same length as the original input.

III. RESULTS

Sparse reconstructions for the same subset of Fashion
MNIST sPCA images were found with D-Wave, Loihi, and
a commercial optimization algorithm (GUROBI). The recon-
structions were then classified using ResNets [11]. These
representations, and the metrics for each, are shown in Figure
3. The reconstruction is represented as a polar plot showing
the projection of the sparse code into the basis set. Although
the power consumption of the D-Wave is not readily available,
we show that power consumption of Loihi remains constant at
∼1.2W during computation. An example of a β tuning curve,
as described in the implementation section, is also shown.

77

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:17:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: (left) Single image process to final reconstruction in sPCA space example. This example is characteristic for randomly
selected reconstructions. Reconstructed sPCA coefficient amplitude is shown on the radius, and sPCA coefficient number on
the angular axis. (middle left) Power consumption remains constant during simulation on the Loihi processor. (middle right)
Example of beta tuning to allow for binary reconstruction without normalization. Note that there is a clear plateau. (right)
Reconstruction error for all images and ResNet Classification performance.

with greater likelihood of observing the ground state. Loihi
presents significant size, weight, and power benefits, requiring
only a few watts per processor. This effectively gives Loihi
the ability to be implemented in small devices at the edge, as
opposed to the infrastructure-like nature of the D-Wave.

The best classical algorithm tested (GUROBI) outperformed
these emerging substrates in terms of Root Mean Squared
Error reconstruction loss and final classification, but is difficult
to implement and requires its own tuning process. For future
work, lower dimensional patch-based approaches would allow
for more overcomplete problems and likely lead to better
performances from the emerging substrates while stressing

Fig. 3: Example of how reconstruction loss decreases as
problem gets more over-complete on D-Wave at the cost
of exponentially growing embedding times for 10 randomly
sampled images.

The primary result, shown in the table, is that the bulk

reconstruction performance is similar across all examples
between both computing substrates. Further, the classification
performance of a SVMs and ResNets operating on the sparse
codes are also comparable. These results show that the result-
ing sparse codes are of equal quality, and allow metrics to be
contrasted and compared for the two systems.

IV. CONCLUSION AND FUTURE WORK
We have demonstrated hard problems can be equally im-

plemented on neuromorphic and quantum systems using cal-
ibrated dimensionality reduction. This result represents one
of the only apples-to-apples comparisons of such systems,
and shows that bio-inspired methods and quantum methods
may possess similar underlying structure. By utilizing very
small datasets as proxies for larger, harder datasets, this work
also provides guidance for the application of larger quantum
systems in the future. Although the research presented here did
not fully utilize the Loihi chip, there is reason to believe that
scaling within the D-Wave environment may be significantly
more effective than scaling within Loihi. As larger and more
connected D-Wave chips are produced, the LCA problem
demonstrated here will better match the hardware and may
be accomplished with fewer reads of the annealing device and

classical methods further. Until such problems are specifically
valuable or the novel substrates scale up, it remains important
to consider classical methods in difficult optimization prob-
lems.

REFERENCES
[1] C.J. Rozell,D.H. Johnson, R.G. Baraniuk, and B.A. Olshausen, Sparse

coding viathresholding and local competition in neural circuits, Neural
Computation, vol. 20, pp.2526–2563, Oct. 2008. [Online]. Available:
http://ieeexplore.ieee.org/document/6796039/

[2] H. Xiao,K. Rasul,and R.Vollgraf, Fashion-MNIST:a Novel Image Dataset
for Benchmarking Machine Learning Algorithms, arXiv:1708.07747, [On-
line]. Available: https://github.com/zalandoresearch/fashion-mnist

[3] M.M. Khan et al,SpiNNaker: Mapping Neural Networks onto a Massively-
Parallel Chip Multiprocessor, 2008 International Joint Conference on
Neural Networks (IJCNN 2008)

[4] A. Cassidy et al.,TrueNorth: A High-Performance, Low-Power Neurosy-
naptic Processor for Multi-Sensory Perception, Action, and Cognition,
Computer Science. 2016

[5] V. Kornijcuk et al., Leaky Integrate-and-Fire Neuron Circuit Based on
Floating-Gate Integrator, Frontiers in Neuroscience, 23 May 2016

[6] Waagen et al, Fashion MNIST Charts for LANL Discussions, Air Force
Research Laboratory (AFRL) 2019

[7] B.K. Natarajan, Sparse Approximate Solutions to Linear Systems, SIAM
Journal on Computing, April 1995

[8] M. Davies et al., Loihi: A Neuromorphic Manycore Processor with On-
Chip Learning, in IEEE Micro, vol. 38, no. 1, pp. 82-99, January/February
2018.

[9] DWAVE, 2016. [Online]. Available: http://www.dwavesys.com/
[10] N.T.T. Nguyen and G. T. Kenyon, Solving sparse representation for

object classification using quantum d-wave 2x machine, in Proceedings of
The First International Workshop on Post Moore’s Era Supercomputing,
J. S. Vetter and S. Matsuoka, Eds. Future Technologies Group Technical
Report FTGTR-2016-11, November 2016, pp. 43–44.

[11] K.He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image
Recognition, 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778.

http://ieeexplore.ieee.org/document/6796039/
http://www.dwavesys.com/

105

Bibliography

[1] Tameem Albash and Jeffrey Marshall. “Comparing Relaxation Mechanisms in Quan-
tum and Classical Transverse-Field Annealing”. In: Phys Rev Applied 15.1 (2021).
doi: 10.1103/physrevapplied.15.014029.

[2] Shunta Arai, Masayuki Ohzeki, and Kazuyuki Tanaka. “Mean field analysis of
reverse annealing for code-division multiple-access multiuser detection”. In: Phys
Rev Research 3 (3 2021), p. 033006. doi: 10.1103/PhysRevResearch.3.033006.

[3] Yuki Bando et al. “Breakdown of the Weak-Coupling Limit in Quantum Anneal-
ing”. In: Phys Rev Applied 17 (5 2022), p. 054033. doi: 10.1103/PhysRevApplied.
17.054033.

[4] Ronny Bergmann and Roland Herzog. “Intrinsic Formulation of KKT Conditions
and Constraint Qualifications on Smooth Manifolds”. In: SIAM Journal on Opti-
mization 29.4 (Jan. 2019), pp. 2423–2444. doi: 10.1137/18m1181602. url: https:
//doi.org/10.11372F18m1181602.

[5] Katrina Biele and Greg Oman. “A short proof of the Bolzano-Weierstrass Theo-
rem”. In: The College Mathematics Journal ? (Jan. 2018), ?

[6] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[7] A Cassidy et al. “TrueNorth: A high-performance, low-power neurosynaptic proces-
sor for multi-sensory perception, action, and cognition”. In: Proceedings of the Gov-
ernment Microcircuits Applications & Critical Technology Conference, Orlando,
FL, USA. 2016, pp. 14–17.

[8] Selmaan N Chettih and Christopher D Harvey. “Single-neuron perturbations reveal
feature-specific competition in V1”. In: Nature 567.7748 (2019), pp. 334–340.

[9] Frank H Clarke. “Generalized Gradients of Lipschitz Functionals”. In: Advances in
Mathematics 40.1 (1981), pp. 52–67.

[10] D-Wave. dwave-simulated-annealing. https://github.com/dwavesystems/dwave-
neal. 2022.

[11] D-Wave Systems. D-Wave Ocean Software Documentation: Annealing Implemen-
tation and Controls. https : / / docs . dwavesys . com / docs / latest / c _ qpu _
annealing.html. 2023.

[12] D-Wave Systems. D-Wave Ocean Software Documentation: Solver Parameters. https:
//docs.dwavesys.com/docs/latest/c_solver_parameters.html. 2023.

106

[13] D-Wave Systems. D-Wave Ocean Software Documentation: Uniform Torque Com-

pensation. https://docs.ocean.dwavesys.com/projects/system/en/stable/
reference/generated/dwave.embedding.chain_strength.uniform_torque_
compensation.html. 2018.

[14] Mike Davies et al. “Advancing Neuromorphic Computing With Loihi: A Survey of
Results and Outlook”. In: Proceedings of the IEEE 109.5 (2021), pp. 911–934. doi:
10.1109/JPROC.2021.3067593.

[15] Mike Davies et al. “Loihi: A neuromorphic manycore processor with on-chip learn-
ing”. In: Ieee Micro 38.1 (2018), pp. 82–99.

[16] Kaitlin L Fair et al. “Sparse coding using the locally competitive algorithm on the
TrueNorth neurosynaptic system”. In: Frontiers in Neuroscience (2019), p. 754.

[17] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Dor-
drecht: Kluwer Aacademic Publishers, 1988.

[18] Gabriel A. Fonseca Guerra and Steve B. Furber. “Using Stochastic Spiking Neural
Networks on SpiNNaker to Solve Constraint Satisfaction Problems”. In: Frontiers
in Neuroscience 11 (2017), pp. 1–13. issn: 1662-453X. doi: 10.3389/fnins.2017.
00714. url: https://www.frontiersin.org/articles/10.3389/fnins.2017.
00714.

[19] Donald Olding Hebb. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[20] Kyle Henke, Garrett Kenyon, and Ben Migliori. “Machine Learning in a Post
Moore’s Law World: Quantum vs. Neuromorphic Substrates”. In: Mar. 2020, pp. 74–
77. doi: 10.1109/SSIAI49293.2020.9094596.

[21] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. “Fast Post-Hoc Normalization
for Brain Inspired Sparse Coding on a Neuromorphic Device”. In: IEEE Transac-
tions on Parallel and Distributed Systems 33.2 (2022), pp. 302–309. doi: 10.1109/
TPDS.2021.3068777.

[22] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. “Machine Learning in a Post
Moore’s Law World: Quantum vs. Neuromorphic Substrates”. In: 2020 IEEE South-
west Symposium on Image Analysis and Interpretation (SSIAI). Piscataway, NJ:
Institute of Electrical and Electronics Engineers (IEEE), 2020, pp. 74–77. doi:
10.1109/SSIAI49293.2020.9094596.

[23] Kyle Henke, Ben Migliori, and Garrett T. Kenyon. “Alien vs. Predator: Brain
Inspired Sparse Coding Optimization on Neuromorphic and Quantum Devices”.
In: 2020 International Conference on Rebooting Computing (ICRC). 2020, pp. 26–
33. doi: 10.1109/ICRC2020.2020.00015.

[24] Kyle Henke et al. “Apples-to-Spikes: The First Detailed Comparison of LASSO
Solutions Generated by a Spiking Neuromorphic Processor”. In: Proceedings of the
International Conference on Neuromorphic Systems 2022. ICONS ’22. Knoxville,
TN, USA: Association for Computing Machinery, 2022. isbn: 9781450397896. doi:
10.1145/3546790.3546811. url: https://doi.org/10.1145/3546790.3546811.

http://www.frontiersin.org/articles/10.3389/fnins.2017

107

[25] Kyle Henke et al. Sampling binary sparse coding QUBO models using a spiking

neuromorphic processor. 2023. arXiv: 2306.01940 [cs.NE].
[26] Geoffrey E. Hinton. Boltzmann Machines. https : / / www . cs . toronto . edu /

~hinton/csc321/readings/boltz321.pdf. 2007.

[27] John J Hopfield. “Neural networks and physical systems with emergent collective
computational abilities”. In: Proceedings of the national academy of sciences 79.8
(1982), pp. 2554–2558.

[28] Zeno Jonke, Stefan Habenschuss, and Wolfgang Maass. “Solving Constraint Sat-
isfaction Problems with Networks of Spiking Neurons”. In: Front Neurosci 10.118
(2016), pp. 1–16. doi: 10.3389/fnins.2016.00118.

[29] Paul Kairys et al. “Simulating the Shastry-Sutherland Ising Model Using Quantum
Annealing”. In: PRX Quantum 1 (2 2020), p. 020320. doi: 10.1103/PRXQuantum.
1.020320.

[30] Andrew D. King et al. “Observation of topological phenomena in a programmable
lattice of 1,800 qubits”. In: Nature 560.7719 (2018), pp. 456–460. doi: 10.1038/
s41586-018-0410-x.

[31] Andrew D. King et al. “Quantum Annealing Simulation of Out-of-Equilibrium
Magnetization in a Spin-Chain Compound”. In: PRX Quantum 2.3 (2021). doi:
10.1103/prxquantum.2.030317.

[32] Andrew D. King et al. “Scaling advantage over path-integral Monte Carlo in quan-
tum simulation of geometrically frustrated magnets”. In: Nature Communications
12.1 (2021). doi: 10.1038/s41467-021-20901-5.

[33] Ami S. Koshikawa et al. “Benchmark Test of Black-box Optimization Using D-
Wave Quantum Annealer”. In: Journal of the Physical Society of Japan 90.6 (2021),
p. 064001. doi: 10.7566/JPSJ.90.064001.

[34] M. de Le ón and P.R. Rodrigues. Methods of Differential Geometry in Analytical
Mechanics. ISSN. Elsevier Science, 2011. isbn: 9780080872698. url: https://
books.google.com/books?id=5pCfP8CiSzAC.

[35] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

[36] Luciano Lopez and Luca Dieci. “A Survey of Numerical Methods for IVPs of ODEs
with Discontinuous Right-Hand Side”. In: JOURNAL OF COMPUTATIONAL
AND APPLIED MATHEMATICS 236 (Oct. 2012), pp. 967–3991. doi: 10.1016/
j.cam.2012.02.011.

[37] Alejandro Lopez-Bezanilla et al. Kagome qubit ice. arXiv:2301.01853. 2023.

[38] Sheng Y Lundquist. “Exploring the Potential of Sparse Coding for Machine Learn-
ing”. PhD thesis. Portland State University, 2020.

[39] F. J. Murray and K. S. Miller. Existence Theorems for Ordinary Differential Equa-
tions. Dover Publications, 2007.

108

[40] R. K. Nagle, E. B. Saff, and A. D. Snider. Fundamentals of Differential Equations

and Boundary Value Problems. Addison-Wesley, 2012.
[41] Bruno A Olshausen and David J Field. “Emergence of simple-cell receptive field

properties by learning a sparse code for natural images”. In: Nature 381.6583 (1996),
pp. 607–609.

[42] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learn-
ing library”. In: Advances in neural information processing systems 32 (2019),
pp. 8026–8037.

[43] Elijah Pelofske, Georg Hahn, and Hristo Djidjev. Initial state encoding via reverse
quantum annealing and h-gain features. 2023. arXiv: 2303.13748 [quant-ph].

[44] Elijah Pelofske, Georg Hahn, and Hristo N. Djidjev. “Advanced anneal paths for im-
proved quantum annealing”. In: 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE). IEEE, Oct. 2020. doi: 10.1109/qce49297.
2020.00040. url: https://doi.org/10.1109%2Fqce49297.2020.00040.

[45] Christopher J Rozell et al. “Sparse coding via thresholding and local competition
in neural circuits”. In: Neural computation 20.10 (2008), pp. 2526–2563.

[46] Joseph La Salle and Solomon Lefschetz. Stability by Liapunov’s direct method: With
applications. Acad. Press, 1973.

[47] M. Sandberg. “Convergence of forward Euler method for non-convex differential
inclusions”. In: SIAM J. Numer. Anal. 47.1 (2008), pp. 308–320.

[48] Samuel Shapero et al. “Optimal sparse approximation with integrate and fire neu-
rons”. In: International journal of neural systems 24.05 (2014), p. 1440001.

[49] Ping Tak Peter Tang. “Convergence of LCA Flows to (C)LASSO Solutions”. In:
arXiv preprint arXiv:1603.01644 (2016).

[50] Ping Tak Peter Tang, Tsung-Han Lin, and Mike Davies. “Sparse coding by spiking
neural networks: Convergence theory and computational results”. In: arXiv preprint
arXiv:1705.05475 (2017).

[51] Michael Teti et al. “LCANets: Lateral Competition Improves Robustness Against
Corruption and Attack”. In: Proceedings of the 39th International Conference on
Machine Learning. Ed. by Kamalika Chaudhuri et al. Vol. 162. Proceedings of
Machine Learning Research. PMLR, 17–23 Jul 2022, pp. 21232–21252. url: https:
//proceedings.mlr.press/v162/teti22a.html.

[52] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal
of the Royal Statistical Society. Series B (Methodological) 58.1 (1996), pp. 267–
288. issn: 00359246. url: http://www.jstor.org/stable/2346178 (visited on
04/12/2023).

[53] Davide Venturelli et al. “Quantum Optimization of Fully Connected Spin Glasses”.
In: Phys Rev X 5 (3 2015), p. 031040. doi: 10.1103/PhysRevX.5.031040.

[54] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. 2017. url: http : / /
arxiv.org/abs/1708.07747.

http://www.jstor.org/stable/2346178

109

[55] Yu Yamashiro et al. “Dynamics of reverse annealing for the fully connected p-spin

model”. In: Phys Rev A 100 (5 2019), p. 052321. doi: 10.1103/PhysRevA.100.
052321.

[56] Mengchen Zhu and Christopher J Rozell. “Visual nonclassical receptive field effects
emerge from sparse coding in a dynamical system”. In: PLoS computational biology
9.8 (2013), e1003191.

[57] Joel Zylberberg, Jason Timothy Murphy, and Michael Robert DeWeese. “A sparse
coding model with synaptically local plasticity and spiking neurons can account
for the diverse shapes of V1 simple cell receptive fields”. In: PLoS computational
biology 7.10 (2011), e1002250.

	Analysis and Computation of Constrained Sparse Coding on Emerging non-von Neumann Devices
	Recommended Citation

	Analysis and Computation of Constrained Sparse Coding on Emerging non-von Neumann Devices
	Kyle Garde Henke
	Dedication
	Acknowledgements
	Analysis and Computation of Constrained Sparse Coding on Emerging non-von Neumann Devices
	Abstract

	Contents
	Chapter 1 Introduction
	Chapter 2
	2.1 Problem Setup
	2.2 Non-negative Sparse Optimization
	2.3 Binary Sparse Optimization
	2.4 Karush-Kuhn-Tucker Conditions and Convex Op- timization
	2.5 Gradient System Approach
	2.6 Dynamical Systems
	2.7 NSO Transfer Functions
	2.8 BSO Transfer Function and Approximating NSO Sequences
	2.9 Analysis of Gradient System Approach

	Chapter 3
	3.1 NSO Process
	3.2 Approximating BSO
	3.2.1 NSO Solve and Post Process
	3.2.2 NSO Non-autonomous System Converging to BSO

	3.3 Numerical Examples
	3.3.1 NSO Numerical Examples
	3.3.2 BSO Numerical Examples

	3.4 Convergence of NSO to BSO

	Chapter 4
	4.1 Background
	4.2 S-LCA and Convergence to A-LCA
	4.3 S-LCA With Excitatory Connections
	4.4 Unsupervised Dictionary Learning
	4.5 A-LCA Implementation
	4.6 S-LCA Loihi Implementation and Modifications
	4.7 Discussion and Conclusion

	Chapter 5 QUBO
	5.1 BSO and Relationship to QUBO
	5.2 D-Wave Quantum Annealer
	5.2.1 Choice of D-Wave Parameters

	5.3 Loihi Neuromorphic Chip Implementation
	5.3.1 Overcoming Local Minima on Loihi 1

	5.4 Un-normalized Dictionary Learning
	5.5 Results

	Chapter 6
	6.1 Machine Learning in a Post Moore’s Law World: Quantum vs. Neuromorphic Substrates
	6.2 Alien vs. Predator: Brain Inspired Sparse Cod- ing Optimization on Neuromorphic and Quan- tum Devices
	6.3 Fast Post-Hoc Normalization for Brain Inspired Sparse Coding on a Neuromorphic Device
	6.4 Apples-to-spikes: The First Detailed Compari- son of LASSO Solutions Generated by a Spiking Neuromorphic Processor
	6.5 Sampling Binary Sparse Coding QUBO Models Using a Spiking Neuromorphic Processor

	Chapter 7 Future Work
	7.1 Quantum Evolution Monte Carlo
	7.2 Neuromorphic Warm Starting
	7.3 Preliminary Results

	Chapter 8 Conclusion
	Appendix A Appendix
	Sampling binary sparse coding QUBO models using a spiking neuromorphic processor
	Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor
	Fast Post-Hoc Normalization for Brain Inspired Sparse Coding on a Neuromorphic Device
	Machine Learning in a Post Moore’s Law World: Quantum vs. Neuromorphic Substrates

	Bibliography

