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Abstract

This dissertation seeks to understand how different formulations of the neurally inspired
Locally Competitive Algorithm (LCA) represent and solve optimization problems. By
studying these networks mathematically through the lens of dynamical and gradient
systems, the goal is to discern how neural computations converge and link this knowledge
to theoretical neuroscience and artificial intelligence (AI). Both classical computers and
advanced emerging hardware are employed in this study. The contributions of this work
include:

1. Theoretical Work: A comprehensive convergence analysis for networks using both
generic Rectified Linear Unit (ReLU) and Rectified Sigmoid activation functions.
Exploration of techniques to address the binary sparse optimization problem, espe-
cially when the problem landscape is non-convex. Non-autonomous systems with
time-varying sigmoid activation that approaches the step function have been pro-
posed due to the challenge of proving step function convergence.

2. Computational Work: Numerical tests on classical computers confirm the theoreti-
cal analysis. In mapping the problem to the spiking domain, it is shown spike rates
can represent continuous valued neuron activations. The binary sparse optimiza-
tion problem is reformulated into a Quadratic Unconstrained Binary Optimization
(QUBO) problem. Solutions are then sought using quantum annealing and spiking
neuromorphic devices.
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Chapter 1

Introduction

The objective of this dissertation is to delve into the intricacies of dynamical and gradient

systems, interpreted as special types of recurrent neural networks, for solving constrained

sparse optimization problems. Specifically, we analyze Hopfield networks where neurons

interact with each other and themselves to self organize into a representation of the

problem’s minimizer. By rigorously analyzing these networks from their mathematical

principles, we aim to connect these concepts together and shed light on convergence

behavior of neural computations in the broader contexts of theoretical neuroscience and

artificial intelligence. We proceed with implementation on classical computers to verify

the analysis and then solve on spiking neural network and quantum hardware.

At their core, dynamical systems are described by state variables and an associated

evolution rule. These rules provide the trajectory the system will follow over time. De-

pending on the parameters and initial conditions, dynamical systems can display various

phenomena, including stability, periodicity, or even chaotic behavior. Gradient systems

are a subset of dynamical systems where the evolution is guided by the gradient (or

steepest descent) of a potential function. The trajectory inherently seeks local minima

of this function, making them pivotal for optimization problems.

A Hopfield network is a fully connected, recurrent neural network and can be viewed
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as a gradient system. Each configuration of the network corresponds to a specific energy

value. The dynamics of the network push the configurations to those of lower energy,

creating a metaphorical landscape of valleys (attractors) and hills. Patterns are stored

in a Hopfield network by adjusting the weights between neurons. Ideally, each stored

pattern corresponds to a local minimum or an attractor in the energy landscape. When

presented with a noisy or partial version of a stored pattern, the network dynamics lead

it to evolve towards the closest stored pattern, showcasing its capability as an associative

memory.

A specific type of Hopfield network, the locally competitive algorithm, solves the

sparse coding problem of reconstructing input signals from linear combinations of a few

features from a large overcomplete dictionary. Interestingly, the mathematical represen-

tation of these systems correspond to the dynamics of neurons measured in the V1 layer

of the visual cortex in mammals [45]. Each neuron represents one of these features. The

network is fully connected (making it a Hopfield network) and neurons compete by in-

hibiting and exciting other neurons for the lowest energy representation of the input. The

dynamics of the competitive process stabilize into a configuration where only a subset of

neurons are active, representing the input in a sparse manner. Within these networks,

the full dynamics are governed by the non-linear activation functions assigned to each

of the neurons. We aim to analyze the convergence behavior of networks with varying

activations and use the insight as motivation to find solutions to the binary sparse coding

problem where the energy landscapes are non-convex and cannot be directly solved using

the gradient system approach.

To the best of the author’s knowledge, research to date primarily focus more on ad-

dressing the computational aspects of LCA for non-negative sparse optimization using

only unit ReLU activation functions. There have been attempts to address the conver-

gence properties for this class of activation functions, but the analysis is incomplete for

reasons which will be discussed in later sections [27, 49, 45]. The first contribution of
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this dissertation is a complete analysis of convergence for generic Rectified Linear Unit

(ReLU) (including the unit slope from previous literature) and generic Rectified Sigmoid

activation functions. Next, techniques for solving the binary sparse optimization problem

are analyzed. The lack of provable convergence of step activation functions motivates

the creation of non-autonomous systems comprised of time-varying sigmoidal activation

that converge to the step function. Numerical experiments on classical computers are

then performed to verify the analysis. Finally, numerical experiments are performed on

emerging quantum annealing and spiking neuromorphic non-von Neumann architectures.

The remainder of this dissertation is organized as follows. In Chapter 2 we present a

detailed formal description of the problems of interest. We prove the convergence of the

corresponding dynamical systems with generic Rectified Linear Unit (ReLU) and generic

Rectified Sigmoid activation function. We also present non-autonomous systems for solv-

ing the binary optimization problem. Chapter 3 contains several numerical experiments

performed on CPU to verify our theoretical results. In Chapter 4, we map a network of

unit slope ReLU activation functions from the continuous domain into a domain where

activations of neurons are represented as spike rates. The equivalence of the spiking

approach to its continuous counterpart is demonstrated on a spiking neuromorphic pro-

cessor. In Chapter 5 we will reformulate the binary sparse optimization problem into a

Quadratic Unconstrained Binary Optimization (QUBO) problem. Solutions are found

using quantum annealing and a spiking neuromorphic devices to compare with classical

techniques and our newly developed gradient system approaches. Chapter 6 consists of

a collection of recent related papers published by the author. Finally, we list a few po-

tential future works, motivated by the findings of this dissertation, and summarize our

conclusions in Chapter 7 and Chapter 8, respectively.
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Chapter 2

Constrained Sparse Optimization

2.1 Problem Setup

Let x ∈ Rm represent a (vector-valued) signal, and let D ∈ Rm×p be a dictionary with

p > m column vectors, typically of unit norm. The general problem that we are interested

in concerns finding a sparse vector a = (a1, . . . , ap) ∈ Rp, referred to as a sparse code, such

that x is as close as possible to D a while constraining the number of nonzero elements

in a. Using the L2 norm for measuring the distance between x and D a, often referred

to as reconstruction error, and the L1 norm as a penalty term to enforce sparsity, we can

formulate the problem as an unconstrained sparse optimization problem:

min
a∈Rp

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1,

where λ > 0 is a scaling or regularization parameter that determines the relative impor-

tance of sparsity compared to the reconstruction error. The above problem is a convex

optimization problem, for which a solution exists. In the statistics and machine learning

literature, this problem is known as LASSO (least absolute shrinkage and selection oper-

ator) or sparse coding [52]. In this dissertation, we will consider two types of constraints,

amounting to two types of constrained sparse optimization problems:
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• Non-negative sparse optimization;

• Binary sparse optimization.

2.2 Non-negative Sparse Optimization

Non-negative sparse optimization (NSO) constrains the sparse solution values ai ≥ 0 for

all i = 1, ...., p. Formally we will write

min
a∈Rp

+

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1. (2.1)

It is to be noted that the functional E is convex with respect to its argument a, and

it is quadratic in a when a ∈ Rp
+. NSO is of particular interest when mapping the sparse

coding problem onto neuromorphic hardware. In this case, the outputs of the spiking

processors are constrained to be positive spike rates [28, 21, 24, 23]. More details will be

presented in Section 2.8.

2.3 Binary Sparse Optimization

Binary sparse optimization (BSO) constrains the sparse solution values ai ∈ {0, 1} for

all i = 1, ...., p. Our formal definition of BSO reads:

min
a∈{0,1}p

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1. (2.2)

It is worth noting the binary constraint makes the L1 norm sparsity penalty equivalent

to an L0 norm, and the functional E becomes non-convex. BSO is of interest because

such a constraint allows us to map the optimization problem onto quantum annealing

devices [23, 20]. Further details will be presented in Chapters 3 and 5.
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2.4 Karush-Kuhn-Tucker Conditions and Convex Op-

timization

Karush-Kuhn-Tucker (KKT) conditions give necessary and sufficient conditions for the

existence of optimal solutions to convex optimization problems, given in the following

theorem.

Theorem 1. Let E : Rp → R be a convex function. Consider the optimization problem

min
a

E(a), subject to constraints hi(a) ≤ 0, i = 1, . . . , p, where all hi’s are affine

maps, consisting of a linear transformation followed by a translation. Then a∗ ∈ Rp is

an optimal solution to the constrained optimization problem if and only if there exists a

µ∗ ∈ Rp such that the following conditions hold:

1. Stationarity: 0 ∈ ∂E(a∗) +
∑p

i=1 µ
∗
i∇a hi(a

∗).

2. Complimentarity: µ∗
ihi(a

∗) = 0, i = 1, 2, ..., p.

3. Feasibility: hi(a
∗) ≤ 0, µ∗

i ≥ 0 i = 1, 2, ..., p.

Here, ∂E denotes the generalized gradient of E [9].

Proof. For the proof, we refer to [6].

We also refer to [4] for more details on KKT conditions. We note that while NSO is

a convex optimization problem to which the KKT theorem can be applied, BSO is not a

convex optimization problem. Later, we will connect BSO to other convex optimization

problems where we can utilize KKT conditions for convergence studies of BSO.

2.5 Gradient System Approach

After establishing a problem that satisfies the KKT conditions, we now focus on trans-

forming the constrained sparse optimization problem into a dynamical system with a
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solution flow

u = (u1, . . . , up) : t ∈ R+ 7→ u(t) ∈ Rp.

An important part of the dynamics is the introduction of a transfer function

σ(u(t)) = (σ(u1(t)), ....., σ(up(t))) =: a(t),

that acts component-wise on the components of the solution flow u(t), outputting a

time-dependent sparse code a whose limit

a = lim
t→∞

a(t),

will be the sparse code a that solves the desired constrained sparse optimization problem.

The dynamical systems that we will obtain are of gradient form, i.e., their force terms

are given as the negative gradient of a real-valued function; see e.g. (2.9). We refer to

this method of computing the sparse code a as the gradient system approach.

To this end, we define

Ẽ(u(t)) := E(σ(u(t))), (2.3)

and instead of solving (2.1) or (2.2) with related constraints in the form NSO or BSO, we

look for a solution flow and an activation function that gives us the sparse code a. This

requires finding a dynamical system with solution flow u(t) that converges to the set of

stationary points of Ẽ(u(t)); see the following discussion for precise definitions. Let us
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first expand (2.3) before proceeding for clarity.

Ẽ(u(t)) =
1

2
||x−Dσ(u(t))||22 + λ ||σ(u(t))||1

=
1

2
(x−Dσ(u(t)))⊤(x−Dσ(u(t))) + λ||σ(u(t))||1

=
1

2
(x⊤x− x⊤Dσ(u(t))− σ(u(t))⊤D⊤x+ σ(u(t))⊤D⊤Dσ(u(t))) + λ||σ(u(t))||1

=
1

2
(x⊤x− 2x⊤Dσ(u(t)) + σ(u(t))TD⊤Dσ(u(t))) + λ

p∑
i=1

σ(ui(t)) (2.4)

The last equality comes because our constraints make all activations strictly non-negative

in both regimes, turning the norm into a sum.

2.6 Dynamical Systems

We will establish the underlying theory necessary to prove convergence of a dynamical

system to a global minimum and subsequently apply the machinery to various problems

of interest. First we consider a generic system of differential equations for u : R+ → Rp:

u̇(t) = f(u(t)) = (f1(u(t)), · · · , fp(u(t))), (2.5)

where f : Rp → Rp is a p-dimensional vector field, to be determined in this section. We

augment the system (2.5) with an initial condition,

u(0) = u(0), (2.6)

arriving to an initial value problem (IVP).

When f(u(t)) : Rp → Rp is sufficiently smooth, for instance when it is Lipschitz-

continuous, the (local) existence and uniqueness of the solution to the IVP (2.5)-(2.6)

follows from the classical theory, and the solution u is typically continuously differen-
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tiable; see e.g., [39, 40]. The type of vector fields that we deal with in this section are

however not smooth; they are smooth almost everywhere, with isolated jump disconti-

nuities. Hence, solutions need to be defined in a weaker sense: the equality (2.5) only

holds for almost every t ≥ 0. To this end, we will closely follow [17], which provides a

comprehensive theoretical analysis of systems featuring specific types of discontinuous

vector fields.

We begin by considering specific types of discontinuous vector fields, which adhere to

the following assumption. We note that the vector fields that we derive here satisfy this

assumption.

Assumption. The vector field f(u(t)) : Rp → Rp is locally Lipschitz-continuous in

u(t) except at u(t) = λ1p, with 1p being the p-dimensional vector of 1’s, where it has a

bounded jump discontinuity.

We next define the solution to the IVP (2.5)-(2.6) in weak sense, following Section

4 of [17]. For any piecewise continuous vector-valued function f = f(u) with a set M

(of measure zero) of points of discontinuity, such as a vector field that satisfies the above

assumption, we specify a set F(u) in a p-dimensional space as follows.

• At each point u where f is continuous, the set F(u) consists of one point coinciding

with the value of the function f(u) at that point.

• At each point u where f is discontinuous, the set F(u) is given by the smallest

convex closed set containing all the limit values of f(v) where v ̸∈M and v → u.

A solution of equation (2.5) is then defined as an absolutely continuous vector-valued

function u = u(t) such that u̇(t) ∈ F(u(t)) for almost every t ≥ 0. Such a solution is re-

ferred to as a differential inclusion solution. The IVP (2.5)-(2.6) has a unique differential

inclusion solution, provided the corresponding set-valued function F(u(t)) is nonempty,

compact, and convex. These conditions are referred to as the basic conditions [17] (see

page 76). We refer to Section 7 (Theorem 1) and Section 10 of [17] for details on the
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existence and uniqueness proofs. We also refer to [47] where the convexity condition is

relaxed.

We denote by U(t,u(0)) the solution to the system (2.5) at time t with the initial

solution u(0) = U(0,u(0)). A set of definitions and theorems follow.

Definition 1. A point u ∈ Rp is a fixed point of the ODE system (2.5) if and only if

f(u) = 0.

Definition 2. A set K ⊆ Rp is positive invariant if for any u(0) ∈ K, the continuous

sequence of points in time (also known as a flow) u(t) = U (t,u(0)) ∈K for all t ≥ 0.

Definition 3. For any set K ⊆ Rp a flow U(t,u(0)) converges to K if

lim
t→∞

dist(U(t,u(0)),K) = lim
t→∞

infy∈K ∥ U(t,u(0))− y ∥2= 0.

Definition 4. B ⊆ Rp is a domain of bounded flows if for each u(0) ∈ B, there exists a

C > 0 such that ∥ U(t,u(0)) ∥2 < C for all t ≥ 0.

When the ODE system (2.5) is defined strongly, such as when the vector field f is

smooth, we have the following well-known result.

Theorem 2. (La Salle) Given a dynamical system (2.5), let K ⊆ Rp be a compact and

positive invariant set, and let Ẽ : Rp → R be a scalar functional of u with continuous

first partial derivatives. Suppose that

˙̃
E(u(t)) = ∇u(t) Ẽ(u(t)) · f(u(t)) =

p∑
i=1

∂ui
Ẽ(u(t))fi(u(t)) ≤ 0, ∀u(t) ∈ Rp.

Then for all u(0) ∈ Rp, the solution U(t,u(0)) to the system (2.5) converges to M , which

is the largest positive invariant set in S =
{
u(t)| ˙̃E(u(t)) = 0

}
.

Proof. For the proof, we refer to [46].
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For our systems of interest, however, the system (2.5) is not defined strongly. Indeed,

our vector fields are not smooth, and some partial derivatives of Ẽ may not exist. For

example, a partial derivative ∂ui
Ẽ may not exist when σ′(ui(t)) does not exist; see (2.4).

Hence, we need to use an extension of the La Salle Theorem as follows:

Theorem 3. (Modified La Salle) Given a domain K ⊆ Rp of bounded flows that are

closed and positive invariant, suppose there exist scalar functionals Ẽ,W : Rp → R with

Ẽ being continuous and W being upper semicontinous and non-positive for all u(t) ∈ Rp.

Suppose further that

˙̃
E(u(t)) = W (u(t)) ≤ 0, ∀u ∈ Rp, a.e. in [0,∞).

Then for all u(0) ∈K, the solution U (t,u(0)) to the system (2.5) converges to M , which

is the largest positive invariant set in S = {u(t)|W (u(t)) = 0}.

Proof. For the proof, we refer to [49].

Consider the index set

I(t) =
{
i ∈ {1, 2, ..., p} : ∂ui

Ẽ(u(t)) exists
}
. (2.7)

We note that the set I(t) depends on t, that is, a different point in time may give a

different index set I(t). Motivated by Theorem 2 and Theorem 3, we set:

W (u(t)) =


∑

i∈I(t)
∂ui

Ẽ(u(t)) · fi(u(t)) , when I(t) ̸= ∅

0 , when I(t) = ∅.
(2.8)

Assuming the set of time points at which the gradient does not exist is of measure zero,

we will have I(t) = {1, 2, . . . , p} for almost every t ≥ 0. We note that this assumption

holds for the type of transfer functions that we consider in this work. By (2.8) we
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therefore arrive at
˙̃
E(u(t)) = W (u(t)), a.e. in [0,∞). All that is left to do is to choose

fi(u) such that W ≤ 0 so that Theorem 3 can be utilized. Let Di represent the i-th

column of the dictionary, D. One particular way is to set fi(u) = −∂ui
Ẽ(u), whenever

the partial derivative exists. This brings us to the following formula (see the appendix

for the derivation),

fi(u(t)) =
(
D⊤

i x−D⊤
i Dσ(u(t))− λ

)
σ′(ui(t)), (2.9)

when σ′(ui(t)) exists. When σ′(ui(t)) does not exist, we are free to choose fi(u(t))

because the contribution of fi(u(t)) will be excluded from the sum in the definition of

W (u(t)), preserving the nonpositivity constraint; see (2.8). Nevertheless, for convenience,

we use the same formula (2.9) also in this case, but we replace strong derivatives by weak

derivatives; see details in the forthcoming sections.

The gradient system that we consider here reads

u̇(t) = f(u(t)) = (D⊤x−D⊤Dσ(u(t))− λ1p)⊙ σ′(u(t)), (2.10)

where σ′(u(t)) = (σ′(u1(t)), · · · , σ′(up(t))) is understood in the weak sense. Specific

examples of σ′ can be found in (2.12), (2.14) and (2.18) for activation functions found in

(2.11), (2.13) and (2.17), respectively.

We are now ready to impose our constraints for NSO and a system that asymptotically

converges to BSO by modifying the transfer function to fit our needs.
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2.7 NSO Transfer Functions

The standard transfer function used in the literature is a shifted unit slope Rectified

Linear Unit (ReLU) function defined as,

ai = σ(ui(t)) =


ui(t)− λ when ui(t) ≥ λ

0 otherwise.

(2.11)

Although the derivative at time points where ui(t) = λ does not exist, motivated by the

flexibility of the choice for σ′ discussed in the previous sections and the notion of weak

derivatives, we set

σ′(ui(t)) =


1 ,when ai ̸= 0

0 ,when ai = 0.

(2.12)

We may then consider the gradient system (2.10) with the activation and its derivative

given in (2.11)-(2.12). It is important to note that the gradient system that we are

considering here is different from the dynamical system used in the literature; see e.g.,

[21, 23, 49],

u̇(t) = D⊤x−D⊤Dσ(u(t))− λ1p = D⊤x− u(t)− (D⊤D − I)σ(u(t)).

This system is obtained under the assumption that σ′ is identically one, independent of

the value of ai, and through a different formulation of W than our formulation in (2.8),

by replacing the index set I(t) in our formulation by A(t) = {i ∈ {1, . . . , p} : ai(t) ̸= 0}.

There is, however, a crucial problem with this formulation: it invalidates the condition

˙̃
E(u(t)) = W (u(t)), a.e. in [0,∞), which is necessary for the result of Theorem 3 to

hold. As a result, the convergence analysis of the optimization problem by the gradient

system method cannot be studied making use of the (modified) La Salle theorem.

It is to be noted that the above approach applies to general transfer functions and
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is not restricted to the specific form (2.11). Importantly, if we change the form of the

transfer function, our dynamical system changes and so do its fixed points. For example,

we may consider ReLU functions with general positive slopes c > 1:

ai = σc(ui(t)) =


c(ui(t)− λ), when ui(t) ≥ λ

0, otherwise.

(2.13)

In this case, following the discussion above we set

σ′
c(ui(t)) =


c ,when ai ̸= 0

0 ,when ai = 0.

(2.14)

We may then consider the gradient system (2.10) with the activation and its derivative

given in (2.13)-(2.14).

ReLU functions with different slopes can be seen in figure 2.1.

Figure 2.1: ReLU functions with sparsity penalty parameter λ = 0.5 and differ-
ent slopes.
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2.8 BSO Transfer Function and Approximating NSO

Sequences

The BSO transfer function of interest forces the coefficients to be binary and takes the

form

ai = σ(ui(t)) =


1 when ui(t) ≥ λ

0 otherwise.

(2.15)

The derivative of the activation function (2.15) exists almost everywhere and is zero,

except at time points where ui(t) = λ. This makes all components of the force field

f in (2.10) equal to zero, delivering a trivial dynamical system u̇(t) = 0, and hence,

preventing a direct study of the BSO problem through the gradient system approach.

In order to study the BSO problem by the gradient system approach, we consider a

sequence of problems that “approach” the BSO problem, by considering a sequence of

activation functions that “approach” the binary activation function (2.15). Specifically,

we introduce a more restricted NSO problem,

min
a∈[0,1]p

E(a), E(a) :=
1

2
||x−D a||22 + λ ||a||1. (2.16)

We then select a sequence of activation functions with the range [0, 1] that converge to the

original BSO activation functions. To this end, we consider two different strategies: one

by defining a time-independent sequence, and one by defining a time-dependent sequence,

as follows.

In the first approach, we consider a sequence of time-independent activation functions,

generated by a family of sigmoid functions, which are strictly increasing,

ai = σk(ui(t)) =


2

1+e−k(ui(t)−λ) − 1, when ui(t) ≥ λ,

0, otherwise.

(2.17)



16

where k ∈ {1, 2, . . . }. We refer to such functions as rectified sigmoid functions. The weak

derivative of the rectified sigmoid function (2.17) can be computed using the product rule

as,

σ′
k(ui(t)) =


2ke−k(ui(t)−λ)

(e−k(ui(t)−λ)+1)2
, ai ̸= 0,

0, ai = 0.

(2.18)

We may then consider the gradient system (2.10) with activation and its derivative given

in (2.17)-(2.18).

We note that as k increases, σk(ui(t)) gets closer to the step function; see figure 2.2.

Hence, one strategy to solve for the BSO problem would be to solve the approximating

autonomous system (2.10) with the derivatives given in (2.18) with a large k (for example

k = 100) and then perform post-processing to force the resulting solution a to be binary.

Figure 2.2: Rectified sigmoids with different decay parameters k and sparsity
penalty parameter λ = 0.5. As the constant k increases, the transfer function ap-
proaches the step function used in BSO.

An alternative approach is to define a sequence of dynamical systems using a sequence

of time-dependent activation functions converging to the step activation function (2.15)
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as time increases. This would make the force field f an explicit function of both u(t)

and t, and thus amount to a non-autonomous system. Although the convergence theory

of general non-autonomous systems is not well developed (see e.g. [34]), we can still

numerically study their limiting solution as time increases to study the BSO problem.

First, to find the full time-derivative of Ẽ, we differentiate it with respect to time,

∂tẼ(u(t), t) = λ

p∑
i=1

∂tσi(ui(t)(t))− 2x⊤D∂tσ(u(t)) + 2σ(u(t))⊤D⊤D∂tσ(u(t))

= (λ1⊤
p − 2x⊤D + 2σ(u(t))⊤D⊤D)∂tσ(u(t)). (2.19)

Assuming ∂ui(t)Ẽ and ∂tẼ exist a.e. in [0,∞),

˙̃
E(u(t), t) =

p∑
i=1

∂ui(t)Ẽ(u(t), t) u̇i(t) + ∂tẼ(u(t), t) = W (u(t), t) a.e. in [0,∞). (2.20)

If we replace k in (2.17) with a time-dependent function k(t) such that limt→∞ k(t) =∞,

then we will have created a non-autonomous system whose force terms asymptotically

converge to 0 with the step activation function seen in figure 2.2. The general form for

this case becomes

ai = σ(ui(t), t) =


2

1+e−k(t)(ui(t)−λ) − 1 when ui ≥ λ

0 otherwise

(2.21)

with derivative with respect to ui(t) when ai ̸= 0 set as

∂ui(t)σ(ui(t), t) =
2k(t)e−k(t)(ui(t)−λ)

(e−k(t)(ui(t)−λ) + 1)2
, (2.22)

and corresponding time derivative when ai ̸= 0

∂tσ(ui(t), t) =
2(ui(t)− λ)e−k(t)(ui(t)−λ)k′(t)

(e−k(t)(ui(t)−λ) + 1)2
. (2.23)
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Following the strategy from before, we set the force term equal to zero when ai = 0, and

when ai ̸= 0 to

fi(u(t), t) = −∂ui(t)Ẽ(u(t), t) =(
x⊤Di −D⊤

i (

p∑
k ̸=i

akDk)−D⊤
i Di(

2

1 + e−k(t)(ui(t)−λ)
− 1)− λ

)
2ke−k(t)(ui(t)−λ)

(e−k(t)(ui(t)−λ) + 1)2
.

(2.24)

The partial time-derivative ∂tσ(ui(t), t) in (2.24) vanishes as t → ∞ because the ex-

ponential terms approach zero. Therefore, ∂tẼ(u, t) in (2.19) also vanishes as t → ∞.

Hence, by (2.20), in the limit W (u(t), t) ≤ 0. Motivated by the theory of autonomous

systems (Theorem 3), after integrating the non-autonomous system for a sufficiently long

time, the convergence of the solution flow may be attained.

2.9 Analysis of Gradient System Approach

In this section, we will present the convergence analysis of the gradient system (2.10)

with the activation and its derivative given in either (2.13)-(2.14) or (2.17)-(2.18), for

solving the NSO and BSO problems, respectively.

First a lemma that enables us to use Theorem 3 and show the convergence of our

gradient systems.

Lemma 1. Let Ẽ and W be given respectively by (2.4) and (2.8) with two generic ac-

tivation functions in (2.13) and (2.17), where u(t) = U (t,u(0)), with u(0) ∈ Rp, is the

flow of the gradient system (2.10) with the activation and its derivative given in either

(2.13)-(2.14) or (2.17)-(2.18). Then the following statements hold,

1. Ẽ(u(t)) is continuous.

2. W (u(t)) ≤ 0 is upper semicontinuous.
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3.
˙̃
E(u(t)) = W (u(t)), a.e. in [0,∞).

4.
˙̃
E(u(t)) ≤ 0.

5. The set K = {u(t)|Ẽ(u(t)) ≤ Ẽ(u(0))} is closed, positive invariant, and a domain

of bounded flows.

Proof.

1. All of the terms in (2.4) are continuous because activation functions of the form

in (2.13) and (2.17) are continuous. Since Ẽ is a linear combination of continuous

functions, it is also continuous.

2. Define an indicator function Ii(u(t)) = 1 if σ(ui(t)) > 0 and 0 otherwise for i =

1, . . . , p. Since we have fi(u(t)) = −∂ui(t)Ẽ(u(t)) with σ′ given in either (2.14) or

(2.18), from (2.8) we get,

W (u(t)) =
∑
i∈I

∂ui
Ẽ(u(t)) · fi(u(t)) =

p∑
i=1

−(fi(u(t)))2Ii(u(t)) ≤ 0.

Since −Ii(u(t)) is upper semicontinuous, so is −(fi(u(t)))2Ii(u(t)), and thus W (u)

is upper semicontinuous because it is the sum of upper semicontinuous functions.

3. This follows directly from the definition of W (u(t)) in (2.8) and noting the activa-

tion functions (2.13) and (2.17) are differentiable almost everywhere.

4. From items 2 and 3 we know
˙̃
E(u(t)) ≤ 0 a.e. in [0,∞). For the points where

˙̃
E(u(t)) ̸= W (u(t)), i.e., the points where the ∂uiẼ(u(t)) doesn’t exist, we set

σ′ = 0, causing the force term fi = 0. Hence, these points do not contribute to

˙̃
E(u(t)), and it remains less than or equal to zero.

5. Let u(0) ∈ Rp be an arbitrary initial point and define Ẽ(u(0)) := e(0). Since Ẽ

is continuous, K is closed because Ẽ−1([0, e(0)]) (the inverse map of Ẽ) is closed.
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Since
˙̃
E(u(t)) = W (u(t)) ≤ 0 a.e., Ẽ(u(t)) is non-increasing in t . Hence for any

flow corresponding to an arbitrary initial condition, we can say,

Ẽ(U(t,u(0))) ≤ Ẽ(U(0,u(0))) = e(0)

which implies K is positive invariant and bounded. Hence U(t,u(0))→K for any

u(0) ∈ Rp.

Our first main result follows.

Theorem 4. Consider the gradient system (2.10) with the activation and its deriva-

tive given in either (2.13)-(2.14) or (2.17)-(2.18). For all u(0) ∈ K, the solution flow

U(t,u(0)) to the gradient system converges to the fixed points of the system.

Proof. From Lemma 1, we know the hypotheses of Theorem 3 have been satisfied for

both systems. Hence, for any u(0) ∈K for either system, U(t,u(0)) will converge to the

largest positive invariant set M inside the set S = {u(t)|W (u(t)) = 0}. Let F be the set

of fixed points of the system. We will show that M ⊂ F . To this end, we let u∗ ∈M ,

which implies that W (u∗) = 0. Hence, by the definition of W in (2.8) and the definition

of fi in (2.9), we obtain fi(u
∗) = 0 for all i ∈ {1, . . . , p} for which ∂ui

Ẽ(u∗) exists. It

remains to note that we always set fi(u
∗) = 0 for all i ∈ {1, . . . , p} for which ∂ui

Ẽ(u∗)

does not exist, because in such cases we set σ′ = 0. Hence, we get u∗ ∈ F , and the proof

is complete.

Our second main result follows.

Theorem 5. Let C be the set of optimal solutions to (2.1) where ai ∈ [0,∞) or to

(2.16) when ai ∈ [0, 1] for all i ∈ {1, . . . , p}. Let F be the set of fixed points for the

gradient system (2.10) with the activation and its derivative given in either (2.13)-(2.14)

or (2.17)-(2.18). Then the following statements hold:
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1. If u∗ ∈ F and a∗ = σ(u∗), then a∗ ∈ C, assuming −D⊤
i x + D⊤

i Da∗ ≥ −λ for i

when a∗i = 0;

2. If a∗ ∈ C, then ∃u∗ ∈ F s.t. σ(u∗) = a∗.

Proof. To show 1, let u∗ ∈ F . Then f(u∗) = 0. In order to show a∗ = σ(u∗) ∈ C, we

need to show that the criteria in Theorem 1 are satisfied, with hi(a) = −ai ≤ 0. It suffices

to show that for every i ∈ {1, . . . , p}, there exists µ∗
i ≥ 0 such that 0 ∈ ∂aiE(a∗) − µ∗

i

and µ∗
i a

∗
i = 0, because then all three conditions of Theorem 1 will be satisfied, noting

that hi(a) = −ai ≤ 0. We consider two cases as follows:

Case 1: a∗i > 0. In order to satisfy µ∗
i a

∗
i = 0, we need to take µ∗

i = 0. Moreover, from

fi(u
∗) = 0, noting that σ′(u∗

i ) ̸= 0, we obtain D⊤
i x − D⊤

i Da∗ − λ = 0. The desired

condition is then satisfied noting that ∂aiE(a∗)− µ∗
i = −D⊤

i x+D⊤
i Da∗ + λ = 0.

Case 2: a∗i = 0. It can be seen µ∗
i a

∗
i = 0 is satisfied for any µ∗

i ≥ 0. The generalized

derivative of E is

∂aiE(a∗) = −D⊤
i x+D⊤

i Da∗ + λ ∂ai |a∗i | = −D⊤
i x+D⊤

i Da∗ + [−λ, λ].

We need show that there exists λ∗
i ≥ 0 such that ∂aiE(a∗) − λ∗

i contains zero. This is

true when −D⊤
i x+D⊤

i Da∗ ≥ −λ.

To show 2, let a∗ ∈ C. Then by Theorem 1, for all i = {1, . . . , p}, there exists µ∗
i ≥ 0

such that

0 ∈


−D⊤

i x+D⊤
i Da∗ + λ, when a∗i ̸= 0

−D⊤
i x+D⊤

i Da∗ + [−λ, λ]− µi, when a∗i = 0.

(2.25)

We now define u∗ as follows, considering two cases.

Case 1: a∗i ̸= 0. We choose u∗
i = σ−1(a∗i ). Hence, a

∗
i = σ(u∗

i ) and by (2.25) we will have

fi(u
∗) = −D⊤

i x+D⊤
i Da∗ + λ = 0.
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Case 2: a∗i = 0. By (2.25) there exists βi ∈ [−λ, λ] such that 0 = −D⊤
i x+D⊤

i Da∗+βi−µi.

Hence, if we choose u∗
i = βi − µi, then we will have u∗

i ≤ λ and hence a∗i = σ(u∗
i ) = 0,

noting that µi ≥ 0 and that βi ≤ λ. In this case, we also have fi(u
∗) = 0.

The proof is complete.

It is to be noted that in all the stable numerical examples performed in this work,

the assumption −D⊤
i x +D⊤

i Da∗ ≥ −λ for i when a∗i = 0 is satisfied. This can also be

achieved if, for example, we let σ′ be a very small number (instead of zero) such that

reaching a fixed point with fi(u
∗) = 0 would imply −D⊤

i x+D⊤
i Da∗ + λ = 0.
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Chapter 3

Numerical Methods and Results

Theorem 4 and Theorem 5 enable the computation of both the NSO problem with the

generic ReLU activation function and restricted NSO problem with the sequence of sig-

moid activation functions (as an approximate BSO problem) by computing the corre-

sponding gradient systems. Specifically, by Theorem 4, we know the solution flows of the

gradient system (2.10), with the activation and its derivative given in either (2.13)-(2.14)

or (2.17)-(2.18), converge to F , the set of fixed points of the gradient system. Hence if

we integrate the gradient system in time and compute the flow at a large terminal time,

we would expect to have an approximation of a fixed point of the system, say u∗. Next,

by Theorem 5, we know that a∗ = σ(u∗) will be an approximate minimizer of the sparse

optimization problems found in (2.1) and (2.16).

It is important to note the IVP of (2.5)-(2.6) for this work is defined in weak sense,

and hence special numerical treatment may be required. However, we ignore jump discon-

tinuities for the initial numerical examples and simply use standard Runge-Kutta (RK)

methods for proof of concept. The implementation of more specified methods, discussed

in the review paper addressing discontinuous right hand sides of IVPs for ODEs [36], will

be the subject of future work.
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3.1 NSO Process

We can summarize the approach to solving NSO, (2.1), as follows:

1. Define any positive constraints on the solution vector a.

2. Find a strictly increasing activation function σ defined to be 0 when less than λ

and also mapping any input into the constrained range of a .

3. Using σ, define a dynamical system of differential equations f(u(t)) with solution

flow u(t) that converges to the stationary points of (2.3).

4. Numerically solve for u(t).

5. Apply σ to the resulting converged solution flow u(t) to get a final sparse code a.

3.2 Approximating BSO

When solving for BSO, (2.2), we cannot use the gradient system approach directly. There

are two separate procedures for approximation.

3.2.1 NSO Solve and Post Process

One approach is:

1. Define the constraints a ∈ [0, 1]p.

2. Find a strictly increasing activation function σ defined to be 0 when less than λ

and also maps any input into [0,1].

3. Using σ, define a dynamical system of differential equations f(u(t)) with solution

flow u(t) that converges to the stationary points of (2.3).

4. Numerically solve for u(t).
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5. Apply σ to the resulting converged solution flow u(t) to get final sparse code a.

6. Force any component of solution vector ai > 0 to be exactly 1, or apply some

threshold value in (0,1) where anything below threshold goes to 0 and anything

equal to the threshold or higher is defined to be 1.

We know that this first approach is guaranteed to converge to the solutions of (2.16),

and any post processing should give reasonable results to the BSO problem.

3.2.2 NSO Non-autonomous System Converging to BSO

Alternatively, we can define a non-autonomous, which has a time-dependent activation

function σ(ui(t), t) that converge to the non-differentiable step function. Here we proceed

by,

1. Define the constraints a ∈ [0, 1]p.

2. Find a series of strictly increasing activation functions σ(ui(t), t) defined to be 0

when less than λ and also mapping any input to [0,1]. σ(ui(t), t) must converge to

the step activation function.

3. Using σ(ui(t), t), define a dynamical system of differential equations f(u(t), t) with

solution flow u(t).

4. Numerical solve for u(t) for an extended period of time when the activation func-

tions are likely to be very close to the step function.

5. Apply σ(ui(t), t) to the resulting converged solution flow u(t) to get final sparse

code a.
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3.3 Numerical Examples

Here we show a few numerical examples of the different techniques to demonstrate their

efficacy. For this work, we solve for a single 7 × 7 pixel patch of a Fashion MNIST [54]

image using a trained dictionary D of size 49 × 64 and set our λ = 1.4. Details can be

found in Chapter 5.

3.3.1 NSO Numerical Examples

First we demonstrate the convergence of our generic ReLU activation function (2.13) for

solving (2.1) where the solution coefficients can be any positive value which can be seen

in Figure 3.1. The original image and final reconstruction of the 16 7× 7 patches can be

seen in Figure 3.2.
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Figure 3.1: Top Panel: Convergence of reconstruction error and total cost for
(2.1). Middle Panel: Trajectories of the 64 components of the solution flow
in (2.10). Bottom Panel: Histogram of coefficients for active elements. Notice
they are not constrained to be between 0 and 1. There are 6 active features making the
solution 91 percent sparse.
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Figure 3.2: Original image and final reconstruction of the 16 7 × 7 patches
demonstrating the efficacy of the technique with 90% sparsity on average.

Generic ReLU activation functions converge to the same minimum, but at different

rates and with varying numerical stabilites. The relationship can be seen in Figure 3.3.

Figure 3.3: Relationship between the convergence rate and stability of different
slopes c on the generic ReLU activation functions. All systems converge as in
Figure 3.1. The steeper the slope, the faster the convergence, but less numerically stable.
Points not shown either didn’t converge or became numerically unstable.

3.3.2 BSO Numerical Examples

Next, we will study varying constants k for the autonomous system in (2.17). The

convergence behaviour of the total cost function and potentials for all k values are similar
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to what is seen in Figure 3.1. In Figure 3.4, we observe that reconstructions remain valid

for various levels of k. With an increase in k, the coefficient distributions tend to be

more binary. Following post processing, both the average values of the cost function and

the average feature activities exhibit a decreasing trend as k ascends. Sequentially from

left to right, the total average cost values stand at 33.17, 32.8, and 9.7, and the average

feature activities from the 64-sized dictionary are at 8.56, 8.44, and 3.75, respectively.

Figure 3.4: Top panel: Reconstruction for different values of k. Bottom panel:
Histograms of active coefficients over 16 patches (zero valued coefficients are
omitted). As k increases, the distribution of coefficients becomes more binary. After
post processing, the average cost function values and average activity of features also
decrease as k increases. In order from left to right, total average cost values are 33.17,
32.8, and 9.7 while the average feature activities out of the size 64 dictionary are 8.56,
8.44, and 3.75.

3.4 Convergence of NSO to BSO

As stated before, we are unable to show convergence for non-autonomous systems of the

form in (2.24). However, the numerical example in Figure 3.5 shows convergence of a

linear function k(t).
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Figure 3.5: Left Panel: Convergence of fixed Convergence rate of k = 50000
and final solution histogram. Right Panel: Convergence of fixed Convergence
rate of k(t) = 2.5t and final solution histogram. Fixed k does not converge to a
binary solution, but finds the same binary solution as the non-autonomous system (which
always converges to binary) after post processing.

Further numerical experiments show tuned fixed k values do not always get to the

same quality of binary solutions after post processing as the non-autonomous approach

across multiple images. Further details on the comparisons will be shown in Chapter 5

in Figure 5.5.
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Chapter 4

Approximating NSO on a Spiking

Neuromorphic Processor

4.1 Background

Computational neuroscience frequently delves into understanding how intricate phenom-

ena arise from neural networks. This understanding typically comes from crafting mod-

els that closely depict the physics that control communication within extensive neuronal

systems. For practical applications, a solid mathematical base is essential to offer theo-

retical insight into the convergence and efficiency of synthetic systems. In this context,

we spotlight sparse coding models, known to mirror the response traits and receptive

field patterns of neurons in the primary visual cortex (V1) [41, 45]. The sparse coding

problem described in previous sections has also been described by Rozell et al. [45] as

a recurrent network termed the Locally Competitive Algorithm (LCA) to represent the

local lateral competition that is observed in V1 [8].

Sparse coding models with a biological basis, such as LCA, captivate the neuromor-

phic community due to their capability to emulate significant aspects of biological sensory

processing, as noted by [56, 57]. Additionally, they maintain relevance in machine learn-
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ing contexts [38, 51]. As spiking implementations on neuromorphic systems often diverge

substantially from non-spiking versions on conventional computing platforms, it is pivotal

to discern these differences, especially when considering critical deployments.

Previously, [48] highlighted that the sparse coding objective function in a simulated

spiking neural network (SNN) with integrate-and-fire neurons converged to the same

solution as NSO when the activation functions are unit slope ReLUs. Following this,

Fair and colleagues showed that a spiking LCA on the TrueNorth neuromorphic platform

[7] aligned closely with its non-spiking counterpart on traditional hardware, albeit under

stringent model conditions [16].

More recently, an LCA demonstration on the Intel’s Loihi neuromorphic processor

was conducted by [15], using leaky-integrate-and-fire (LIF) neurons. Interestingly, their

model solely contained inhibitory connections, in contrast to the non-spiking LCA, which

incorporates both excitatory and inhibitory links. Their findings showed a consistent

decline in the sparse coding objective function when assessing average firing rates as a

neural activity metric. Yet, a direct coefficient comparison between NSO and the spiking

LCA remains unexplored, leading to an unresolved question about the fidelity of spiking

LCA on neuromorphic hardware when applied to intricate, authentic challenges.

In this chapter, we build upon the earlier spiking version of LCA, denoted as S-LCA

[15]. We present an enhanced S-LCA that incorporates both excitatory and inhibitory

lateral connections (illustrated in Figure 4.1). We demonstrate that this modification

aligns closely with the non-spiking, analog LCA (referred to as A-LCA). Undertaking a

detailed neuron-to-neuron analysis, we compared the S-LCA executed on cutting-edge

neuromorphic hardware to the solutions obtained on a CPU, specifically Intel’s Loihi,

against A-LCA on traditional computing platforms (e.g., NSO with unit ReLU on a

CPU). Our findings highlight that our S-LCA rendition closely mirrors A-LCA at both

individual neuron and system scales. This superior resemblance, in comparison to the

earlier S-LCA model, is largely attributed to the addition of excitatory lateral connec-
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tions.

4.2 S-LCA and Convergence to A-LCA

First, we present an overview of the convergence proof provided by Tang et al. [50] for

a LASSO problem with strictly positive connectivity weights wi,j and extend the result

into a regime where both positive and negative weights are present.

Define the only independent variable in our spiking network as the soma currents

µi(t) for the p neurons, which receive a constant input bias bi = DT
i x and maintain an

internal electric potential vi(t). When an electric potential reaches a firing threshold νf

at a time t = k, the corresponding neuron simultaneously fires a spike to either inhibit

or excite the other p − 1 neurons and resets its potential to νr. Let α = e−t and define

the soma currents of the other neurons to change in the following manner:

µj(t) = µj(t)− wjiα(t− ti,k) (4.1)

Next, define φi(t) =
∑

k δ(t − ti,k) as the sum of Dirac delta functions δ whenever the

neuron spikes over the simulation time. This leads to the final defining equations of soma

currents:

µi(t) = bi −
∑
j ̸=i

wij(α ∗ φj)(t) (4.2)

µ̇i(t) = bi − µi(t)−
∑
j ̸=i

wijφj(t) (4.3)

The instantaneous spike rate ai(t) and average soma current ui(t) are defined as:

ai(t) =
1

t− t0

∫ t

t0

φi(s)ds (4.4)
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ui(t) =
1

t− t0

∫ t

t0

bi −
∑
i̸=j

wi,j(αu ∗ φj)(s)ds (4.5)

Leading to the spiking analog of our unit slope ReLU NSO system found in equation

(2.13) with c = 1 as:

u̇i = bi − ui −
∑
j ̸=i

wijaj(t)−
(ui(t)− ui(t0))

t− t0
(4.6)

4.3 S-LCA With Excitatory Connections

Here we make a distinction and extend the previous work and summarize a previously

published paper [24]. Originally, only inhibitory connections were allowed in order to

ensure the soma current magnitudes and corresponding average potentials are bounded.

For a strictly inhibitory network, the maximum bound on current is defined as B+ =

maxibi since the largest value obtainable in Equation 12 requires zero inhibition from

other neurons. Moreover, [50] also showed there is a lower bound and the existence of

some R > 0 such that ti,k+1 − ti,k ≥ 1/R for all i = 1, 2, ..., n and k ≥ 0 whenever two

spike times exist. We can leverage this information to show that the soma currents of

our updated model are also bounded above and below. First let A > maxi,j |wi,j| and

B = maxj |bj| since we know the inner product of features and biases are bounded. Using
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the fact (α ∗ φj)(t) ≤
∑∞

l=0 e
− l

R <∞, we can show:

∥µi(t)∥ =

∥∥∥∥∥bi −∑
j ̸=i

wij(α ∗ φj)(t)

∥∥∥∥∥
≤

∥∥∥∥∥|bi|+∑
j ̸=i

|wij| (α ∗ φj)(t)

∥∥∥∥∥
≤

∥∥∥∥∥maxj |bj|+
∑
j ̸=i

|wij| (α ∗ φj)(t)

∥∥∥∥∥
≤ ∥B + nA(α ∗ φj)(t)∥

≤

∥∥∥∥∥B + nA
∞∑
l=0

e−
l
R

∥∥∥∥∥ <∞, (4.7)

implying the soma currents are bounded from above and below. Equipped with this

knowledge, we can follow the proof by [50] and state u(t) = [u1(t), u2(t), ..., up(t)]
T has

at least one limit point u∗ ∈ Rp such that u(tk) → u∗ as the sequence tk → ∞ when

k →∞ from the Bolzano-Weierstrass theorem [5].

This implies:

lim
t→∞

u̇i(t) = lim
t→∞

1

t− t0
(µi − ui) = 0. (4.8)

Hence σ(u(tk)) → σ(u∗) = a∗, we can conclude the system converges to the same limit

found in A-LCA:

0 = b− u∗ − (DTD − I)a∗. (4.9)
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Figure 4.1: Our S-LCA implementation on Loihi. A general depiction of the S-LCA
algorithm as implemented on Loihi using a single 8× 8 patch as input. The input drive,
which is the dot product between each neuron’s feature vector and the input patch, is
computed and used to initialize the membrane potentials after subtracting the A-LCA
trade-off parameter λ. At each timestep, each neuron’s membrane potential is charged
up (or down) by the input drive and compared to a spiking threshold νf . Any neuron
whose membrane potential is greater than νf will “spike”, and thus inhibit (red) or
excite (blue) neurons whose features overlap with its own, depending on whether the
features are aligned or anti-aligned, respectively. The previous S-LCA implementation
only contained inhibitory (red) lateral connections. The membrane potential is reset to
zero after every spike. After T iterations, typically only a few neurons remain active. The
average firing rate of each active neuron in the S-LCA model is computed over the last
1,000 timesteps for comparison with the A-LCA model. Our comparisons are performed
on a 56× 56 pixel image, but we use 8× 8 features and a stride of 8, which is the same
process depicted here but with 7× 7 = 49 patches.
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4.4 Unsupervised Dictionary Learning

The subsequent phase of the optimization procedure entails determining the optimal

dictionary D for the specified dataset. Initially, random features populate the dictionary.

Then, a stochastic gradient descent algorithm combined with a local Hebbian Learning

Rule adjusts the feature vectors of active neurons, enhancing the sparse reconstruction

[19]. First, let us look at the objective function for a sparse coding problem. x ∈ Rm is

the input D ∈ Rmxp is our dictionary and a ∈ Rp is the sparse code:

E(a(t)) =
1

2
||x−Da(t)||22 + λ||a(t)||1.

We expand on the reconstruction error term for purposes of gradient descent because the

sparsity penalty drops after differentiation with respect to D.

E(a(t))∗ =
1

2
||x−Da(t)||22

=
1

2
(x−Da(t))T (x−Da(t))

=
1

2
(xTx− xTDa(t)− (Da(t))Tx+ (Da(t))TDa(t))

=
1

2

m∑
i=1

x2
i − 2

m∑
i=1

(xi

p∑
j=1

Dijaj(t))

+
m∑
i=1

(

p∑
j=1

Dijaj(t))
2).

(4.10)
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Now we can differentiate E∗ with respect to Dyz to see how each individual dictionary

element changes:

∂E∗

∂Dyz

=
1

2
(−2xyaz(t) + 2(

p∑
j=1

Dyjaj)az(t))

= (

p∑
j=1

Dyjaj(t)− xy)az(t)

= −ryaz(t).

Where ry represents the y’th component of the residual, we can then expand into matrix

form:

∂E

∂D
= −



r1a1(t) r1a2(t) ... r1ap(t)

r2a1(t) . .

. . .

rma1 rmap


(4.11)

= − ra(t)T (4.12)

= − (x−Da(t))a(t)T . (4.13)

The Hebbian learning algorithm [19] given a single input, x, is summarized in Algorithm

1. In practice, a mini-batch (i.e. an average over a fixed number of input samples)

of input samples are used for each update instead of a single input sample. Since our

gradient system is proportional to the derivative of the energy w.r.t D of the NSO prob-

lem, we know the learning process will descend the gradient of our neurophysiological

representation. The final learned dictionary can be seen in figure 4.3.
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Figure 4.2: Sparse dictionary learning. Sparse coding is often combined with dictio-
nary learning in an alternating fashion. After computing a(t) by minimizing 2.10 with
fixed D, D is then updated as in (4.13). At each update, the dictionary only changes in
the directions of the active neurons.

Algorithm 1 Dictionary Update

Require D ∈ Rm×p, a ∈ Rp, x ∈ Rm, η ∈ R+

Ensure D ∈ Rm×p

update dictionary(D, a, x, η)
recon← D · a
residual← x− recon
∆D ← residual · aT
D ← D + η ·∆D
for i = 1 to p do

Di ← Di

∥Di∥2
end

return D
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4.5 A-LCA Implementation

To draw a comparison between S-LCA on Loihi and the non-spiking LCA [45], we utilized

PyTorch to implement a single LCA layer through the LCA-PyTorch [42] package. More

precisely, we set up a convolutional LCA layer equipped with valid padding, comprising

450 features of dimensions 8× 8, and 8-stride, and a rectified soft threshold. Employing

this configuration, we refined a dictionary over 5,000 updates (as per Algorithm 1) based

on 50,000 grayscale images, each of 56 × 56 size, sourced from the COCO dataset [35]

on CPU, setting λ at 0.5. This trained dictionary (as illustrated in figure 5.4) was

then incorporated into both the non-spiking A-LCA and the spiking S-LCA models for

benchmarking using reserved images from our COCO selection. To align the sparsity of

S-LCA on Loihi to match A-LCA, we tuned the regularization parameter λ to the value

of 0.73.

4.6 S-LCA Loihi Implementation and Modifications

The previous S-LCA implementation on Loihi that used only inhibitory lateral connec-

tions [article, 15] was structured the following way:

Neurons in the spiking network are driven by a respective bias current b (not a

spiking input) that is calculated once, at the beginning of a run, as the dot product of

the dictionary element and the respective patch and is scaled then scaled to the available

bit space.

The weights in [article, 15] are chosen to be positive definite and made to work via

the construction of an expanded dictionary twice the size of the original, consisting of

strictly positive dictionary elements in the top half of the dictionary and inverted negative

elements in the lower half. This S-LCA implementation converged towards the minimum

of a different objective function in which the feature vectors lacked negative sub-units.

The lack of anti-aligned sub-units prohibited more biologically realistic environments
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where neurons can also excite one other.

We demonstrate the addition of these excitatory sub-units, in combination with the

inhibitory sub-units, give rise to a dynamical spiking system that behaves more closely to

a conventional non-spiking A-LCA model (Fig. 4.4). Specifically, when features contain

both excitatory and inhibitory sub-units, both positive and negative lateral connections

arise naturally via taking the transpose of the dictionary dotted with itself. A given spik-

ing neuron will now inhibit neurons with similar explanations of the same patch (positive

inner product) but will excite neurons with dissimilar explanations (negative inner prod-

uct). In addition, we re-implemented the ranges of biases, weights and activations such

that there were no longer sign flips (integer overflow) due to the limited bit ranges on

Loihi.

Figure 4.3: The dictionary used by both the S-LCA and A-LCA models in our
experiments. The dictionary (D) is composed of 450 features of size 8× 8.
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Figure 4.4: Our modified S-LCA model contains excitatory connections as in
A-LCA. Activation when only the neuron best aligned with the input patch receives bias
drive; all other biases were set to zero. A-LCA model (top) and our implementation of
S-LCA on Loihi (bottom right) exhibit activity for neurons with zero input drive, while
the previous S-LCA implementation on Loihi (bottom left) [15] does not excite activity
of other neurons (bottom left), confirming an absence of excitatory connections.

After initializing both the S-LCA and A-LCA models with the dictionary learned in

Section 4.5 (Figure 4.3), both models were run on their respective hardware using the

same test image with the parameters outlined in Sections 4.5 and 4.6.

Our S-LCA exhibits closer dynamics to A-LCA than previous implementations of

S-LCA by allowing only one neuron in each model to receive an input drive while all

other neurons received no input drive. Since earlier S-LCA architectures contained no
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excitatory lateral connections, we hypothesized that only the neuron receiving input

drive would be active in those models. In contrast, our S-LCA and A-LCA contains

excitatory lateral connections, which should raise the membrane potential of some of

the other neurons above threshold even without input drive. In Figure 4.4, we confirm

this, as both A-LCA (top) and our S-LCA (bottom right) have multiple neurons active,

whereas the previous S-LCA (bottom left) only has one active neuron (the only one with

a non-zero input drive). In both A-LCA and our S-LCA, the same neurons appear to be

active at qualitatively similar activity levels as the system converges.

Figure 4.5: Input drive vs. final activation. Our S-LCA model produces a similar
shape to the A-LCA model. Both models contain a few neurons that became active with
features that were negatively aligned with the input, which was not true for the original
S-LCA model. The distinct levels of final activity for the S-LCA model demonstrate the
bit precision limitation present on the hardware.

Figure 4.5 illustrates the activation of each neuron in the S-LCA model and the A-
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LCA model as a function of initial input drive. Both our S-LCA and the A-LCA contain

neurons, which are active in the sparse representation despite having negative input drive

(i.e., anti-aligned with the stimulus), whereas the previous S-LCA has only the driven

neuron active since there was no mechanism for excitatory connections to other neurons.

We can also see that our S-LCA provides a reasonable match to A-LCA despite the

quantization that takes place on Loihi. Next, we compare the sparse activation of each

neuron in our S-LCA directly against that in the A-LCA (Figure 4.6).

Figure 4.6: A-LCA vs. S-LCA Matching Coefficient Values The rate code solution
for our S-LCA model is a very close match to the A-LCA solution. Each point represents
a single neuron out of the 450× 8× 8 = 28, 800 neurons in our model. The difference in
scale on each axis is due to how the spikes are integrated.

Here, we can see further evidence that our S-LCA performs similarly to A-LCA, as

the activations lie close to the diagonal indicating that our S-LCA converged to A-LCA.

Finally, we compare our S-LCA model to the A-LCA model by examining the recon-

structions of the input image produced by each model from the sparse representation.

By comparing the reconstructions visually, we validate that our S-LCA produces a sim-

ilar sparse representation to the A-LCA. Figure 4.7 confirms that this is the case, as

the reconstruction produced by our S-LCA model is very close to that produced by the
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A-LCA model. We can also observe that each model is using a very similar number of

features to represent each patch.

Figure 4.7: The number of active neurons per patch in our S-LCA modelcom-
pared to that in the A-LCA model. The number of neurons active per patch is
laid over the final sparse reconstructions of the S-LCA (left) and A-LCA (right) models,
which illustrates that our S-LCA model closely matches A-LCA both at the image and
patch level.

4.7 Discussion and Conclusion

We have extended the earlier S-LCA model that was restricted to inhibitory lateral

connections between neurons. Our enhanced S-LCA integrates both excitatory and in-

hibitory lateral connections, drawing it closer in behavior to A-LCA. Initially, we vali-

dated that our S-LCA’s behavior aligns with the endpoint observed in A-LCA. Subse-

quently, we deployed our S-LCA on the Loihi neuromorphic processor, aligning its input

and dictionary with an equivalent A-LCA on CPU/GPU setups. Demonstrating for the

first time a detailed neuron-by-neuron analysis, we highlighted that the sparse latent

representation in our S-LCA mirrors that in A-LCA.

Our study stands as one of the rare instances where a spiking algorithm on contem-

porary neuromorphic hardware nearly perfectly aligns with its classical counterpart in
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a practical scenario. Consequently, the efficacy of our S-LCA rivals or surpasses that

of A-LCA implementations universally. Our approach of S-LCA on Loihi is almost 40x

more energy efficient than its classical counterpart and agrees with similar results using

the device in existing literature [14][15] where faster convergence can also been seen.

Such advancements pave the way for crafting swift, energy-conserving AI designs in con-

texts where A-LCA has showcased its merit, such as serving as a resilient foundation for

convolutional neural networks [51].

However, this study does have its limitations. We have exclusively evaluated the non-

convolutional scenario, adopting a stride equivalent to the patch dimension. While it is

improbable that performance between our S-LCA and A-LCA would deviate dramati-

cally in a convolutional framework, further investigation is necessary. Future endeavors

might also expand our S-LCA into the spatio-temporal realm, potentially employing video

streams or dynamic vision sensor data. This expansion would facilitate the creation and

examination of models resonating even more with biological vision processes.
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Chapter 5

QUBO

5.1 BSO and Relationship to QUBO

The non convexity of the BSO transfer function allows us to recast the problem into an

Ising-model or equivalently a Quadratic Unconstrained Binary Optimization problem,

known as QUBO. The problem becomes minimizing a function in the following form [23,

20]

H(a;Q,h) =
n∑

i=1

hiai +
∑
i<j

Qijaiaj. (5.1)

In order to see the relationship to our problem, we write out an expanded version of our

optimization function with binary variables:

E(a) =
1

2
x⊤x− x⊤Da+

1

2
a⊤D⊤Da+ λ

p∑
i=1

ai. (5.2)

We can see there are both quadratic and linear terms with respect to a. Hence we can

formulate our sparse coding problem (2.2) into QUBO form via the transformations [20,

23]:

hi = −D⊤
i x+ λ+

1

2
D⊤

i Di (5.3)
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Q =
1

2
(D⊤D). (5.4)

5.2 D-Wave Quantum Annealer

In classical annealing, a system begins in a randomly selected initial state at a given

temperature. This temperature introduces thermal fluctuations, which allow the system

to cross over local energy barriers, transitioning into different energy states. The prob-

ability of these transitions is determined stochastically by the Boltzmann distribution.

This means that while it is possible for the system to move to a higher energy state, it

is exponentially more probable for it to transition to a lower one. As the temperature

decreases, these annealing systems tend to gravitate towards increasingly lower energy

states. This process is iteratively performed with varying random initial conditions. Out

of all these iterations, the lowest energy state achieved is taken as the computational

result.

Quantum annealing, on the other hand, presents significant differences when com-

pared to its classical counterpart. Instead of initializing in a single, randomly selected

state, a quantum annealing system is set in a state that is a quantum superposition of

all potential states. To exemplify this, consider the D-Wave quantum annealing ma-

chine. Initially, each qubit experiences a transverse magnetic field while no interaction

or coupling occurs between these qubits. Thus, a D-Wave machine with N qubits be-

gins in a state representing the superposition of all 2N possible observable states. One

of the primary reasons for the enhanced computational prowess of quantum annealers

is this ability to begin in a superposition of all potential states, allowing for a more

comprehensive sampling of the entire energy spectrum.

In classical annealing, the temperature is slowly reduced to guide the system towards

its lowest energy state. However, in quantum annealing (using the D-Wave as an ex-

ample), the desired Hamiltonian (specified by the user) is progressively activated while



49

the transverse magnetic field is simultaneously decreased. Instead of overcoming energy

barriers by “hopping” over them as in classical systems, quantum annealing leverages

quantum tunneling to transition to new energy states. Theoretically, this quantum tun-

neling enables quantum annealers to bypass getting trapped in local energy minima.

However, there is a practical challenge when using the physical D-Wave device. Given

its connectivity constraints, physical qubits need to be “chained” together to achieve the

full connectivity demanded by a majority of machine-learning algorithms, and especially

fully connected Hopfield networks. This chaining significantly reduces the number of

“logical” qubits, placing it at least an order of magnitude below the count of “physical”

qubits [23, 22].

5.2.1 Choice of D-Wave Parameters

With newer generations of the D-Wave quantum annealers, more and more features have

been added that allow the user a greater control over the anneal process. The specific

parameters being used are listed in this section.

One necessary consequence of the minor embeddings are the presence of chains, that

is the representation of a logical qubit as a set of physical hardware qubits on the chip.

However, after annealing, it is not guaranteed that reading out chained qubits all take

the same value (either zero or one), although they technically represent the same qubit.

Such a chain is called “broken”. To arrive at a value for the logical qubit in eq. (5.1), we

used the majority vote chain break resolution algorithm [53, 33].

We employ the D-Wave annealer with an annealing time of 100 microseconds, and

we query 1000 samples per D-Wave backend call. To compute the chain strength, we

employ the uniform torque compensation feature with a UTC prefactor of 0.6. The

UTC computation, given a problem QUBO, attempts to compute a chain strength which

will minimize chain breaks while not too greatly disrupting the maximum energy scale

programmed on the device [13].
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5.3 Loihi Neuromorphic Chip Implementation

Intel’s Loihi 1 is the first generation neuromorphic computing device that draws inspira-

tion from biology to implement spiking neural networks with neurons as the fundamental

processing elements [14]. This section pulls from a previous publication [25].

Figure 5.1: Network connectivity of the variables in eq. (5.1). Connections include
the self interaction terms hi (symmetric weights proportional to the inner product be-
tween features), the inter-neuron connection weights Qij, and the stochastic noise input.
Red is inhibitory connection and blue is excitatory. The network is sampled at different
times and activity is measured for an approximate solution.

5.3.1 Overcoming Local Minima on Loihi 1

Compared to a Boltzmann machine [26], spiking networks allow for transitions between

extreme objective function variable states (see Figure 5.2). Because of the limited time

of activity, or forced refractory period, defined by τ , active neurons are turned off for a

predetermined time, and others, which were inhibited by the active neuron now have a

chance to activate. These periods allow the network to explore non-locally and facilitate

the bypassing of high energy barriers in the optimization landscape [18, 28]. After the

refractory period is over, previously active neurons will likely re-fire because they are

receiving a strong input and a low-energy state will again be found. Figure 5.2 demon-

strates this property through the substantial variation in the energy read outs obtained
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from Loihi 1 as a function of time. High energy read-outs correspond to refractory pe-

riods of neurons active in the ideal solution, and the repeated lowest energy reflects the

return to lower energy solution states [14]. For the QuboSolver method run on Loihi 1,

a threshold mantissa of 96, weight exponent of 6, and noise mantissa of 0 and exponent

of 7 are used. In order to sample each QUBO on Loihi 1, a total of 2, 000 samples are

measured; 4 simulation times (5000, 10000, 15000, 20000) are varied over, and 5 differ-

ent weight matrix scalings (10, 100, 1000, 10000, 100000) are varied, with each parameter

combination being sampled 100 times (this gives 4 · 5 · 100 = 2000 samples per QUBO).
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Figure 5.2: Conceptual diagram of how we expect spike-based dynamics to
support the bypassing of high-energy barriers. Energy, e.g., the objective function
evaluation for a set of variable assignments, is given on the y-axis and the x-axis shows
variable assignments where ■ denotes +1 and □ denotes 0 (for the chosen number of
variables of n = 6). In this example, the relatively sparse state of (0, 0, 0, 1, 0, 1) has
the lowest overall energy. When the system is sampled at different time periods T1, T2,
and T3, we are able to bypass the largest energy barrier because the refractory period
automatically shuts off variables 5 and 6 [28].
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Figure 5.3: Best solutions as a function of simulation run time. QUBO energies
read out at different simulation times (minimum of 10 readouts per simulation time) from
the Loihi 1 neuromorphic processor for a single QUBO patch.

5.4 Un-normalized Dictionary Learning

Sparse coding optimization can be seen as a two-step process, where a dictionary is first

learned in an unsupervised way by using a local Hebbian rule. Typically, when learning a

basis for solving the convex Lasso problem, the algorithm requires the re-normalization of

the columns of the dictionary D after each learning epoch. The normalization is critical

for convergence in the Lasso setting because the values of the sparse vector a are allowed

to take on any value. Previous work has demonstrated the ability to learn a dictionary in

a QUBO regime, but this required the introduction of a new amplification parameter β to

the input [23, 22]. Here, we introduce a new learning technique that allows the algorithm

to find the optimal norm for features based on a predetermined desired average level of

sparsity defined as s ∈ (0, 1). The dictionary is initialized with features drawn from a

normal distribution with random norms below 1 and a small sparsity penalty parameter

λ. After solving the binary sparse coding problem for each sample in the training data,



54

the dictionary is updated. If the average sparsity over the training epoch is above the

desired level s, the penalty parameter λ is increased for the next epoch. Pseudo code for

the algorithm is presented below and the learning results are summarized in Figure 5.4.

We can see the average neuron activity and reconstruction error converge along with the

norms of the learned features.

We applied our technique to a patched version of the standard fashion MNIST (fM-

NIST) data set [54]. Each 28 × 28 image was broken up into 16 7 × 7 patches, and we

selected a dictionary of size 64 in order to partition the problem into sub-problems which

could be implemented on Loihi 1 (the exact number of variables for the sub-problems, is

arbitrary, but fixed). Even with a smaller data structure, it was still necessary to perform

our dictionary learning algorithm using the classical simulated annealing approach when

solving for our sparse code in Step 6 of Algorithm 2. The NSO parameter λ was increased

from 0.1 to 1.4 in increments of 0.1 to adapt to the sparsity of the solution (see the top

right plot in Figure 5.4).

Algorithm 2 Dictionary Update Unormalized

input: D ∈ Rm×n, Train data ∈ Rb×m, η ∈ R+, s ∈ (0, 1), λ > 0, number of epochs N
1 function learn dictionary(D, a, x, η, s,number of epochs)
2 for epoch = 1, 2, . . . , N

3 activity count = 0
4 for i = 1, 2, ..., b
5 x = Train data[i]

Solve for a
recon = Da
residual = x− recon
∆D = residual aT

D = D + η∆D
activity count = activity count+ sum(a)

6 if activity count
n∗b > s then

7 λ = λ+ 0.1
8 end

9 return D
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Epochs2-Norm2-Norm

Figure 5.4: Unormalized dictionary learning.Randomly initialized dictionary with
norms distributed between .01 and .2. After the training algorithm, norms increase and
an optimal binary dictionary is learned for a fixed average activity of 12 features.

5.5 Results

Figure 5.4 visualizes the successful implementation of un-normalized dictionary feature

learning. Using a local learning rule and a fixed sparsity level, we can see that the

algorithm learns a better basis for reconstruction as the average error of the training

data decreases over training epochs, and it also converges to the desired average sparsity

level.

After successfully training each dictionary with simulated annealing (SA), a total of

16 separate QUBO models are generated. Each QUBO is then sampled using Loihi 1 (see

Section 5.3) and D-Wave. The NSO problem was also solved as a non-autonomous LCA

system. In order to provide a reasonable comparison against existing classical heuristic

algorithms, we also sample each of the 16 QUBO models using simulated annealing. The

simulated annealing implementation we use is a D-Wave SDK implementation [10], using

1000 samples per QUBO and all default settings. Using the best solutions (e.g., the

computed variable assignments with the lowest energy found among all samples) from
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Loihi 1, D-Wave, simulated annealing, and our non-autonomous LCA, we can recon-

struct the original image from sampling all 16 QUBOs. These reconstructions are shown

in Figure 5.5. Although SA has a lower mean energy, our non-autonomous system LCA

and Loihi 1 are able to find reasonable solutions. D-Wave results for forward annealing

trail significantly. Similar to previous demonstrations of lower power usage for certain

applications [14, 24, 23, 22, 21], Loihi 1 uses an average energy consumption of ∼ 0.0192

joules per sample, per QUBO matrix compared to an average energy consumption of

∼ 0.115 joules per sample for simulated annealing, ∼ .2 joules per sample for D-Wave

(not including cooling overhead), and .34 joules per solve for our NSO approaches. The

simulated annealing and NSO energy consumption was measured using pyRAPL 1 (in-

cluding RAM power usage). The total power usage was computed by subtracting the idle

machine energy consumption (for the same time duration) from the power consumption

when simulated annealing was run. The Loihi 1 power consumption was measured us-

ing the NxSDK power monitoring function. Solution quality is measured by computing

aTQa and is an equivalent to the strictly positive objective function after the transfor-

mation. In Figure 5.5, we can see the reconstruction, solution energy, and sparsity results

for all techniques presented in the manuscript.

1https://pyrapl.readthedocs.io/en/latest/
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Figure 5.5: Reconstructions from classical SA, Loihi 1, D-Wave, and the two
separate BSO approximations. Full image consists of 16 separate QUBO solves and
the mean energies and sparsity levels are displayed. The sparsity levels are the mean
(across the 16 QUBO models) number of variables in the lowest energy state which were
in the state of +1.
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Chapter 6

Related Published Papers

As we inch closer to the physical limitations of traditional computational hardware, delv-

ing into innovative computational platforms becomes crucial for the continual progress of

artificial intelligence. The following five papers laid the foundation for the topic of this

dissertation and demonstrate the progress made comparing quantum and neuromorphic

hardware for solving the sparse coding problem. All current publications in the original

forms are available at the end of the manuscript.

6.1 Machine Learning in a Post Moore’s Law World:

Quantum vs. Neuromorphic Substrates

Here we initiated the first comparison between novel hardware options—the D-Wave

quantum annealer and the Intel Loihi 1 spiking processor—applying them to a uniform

machine learning problem. To ensure a fair and valid comparison, we opt for the Fashion

MNIST dataset, subjected to dimensionality reduction via sparse principal component

analysis, while maintaining constant classification performance and a graph-based clus-

tering metric. This approach facilitates a direct mapping of the problem onto both

hardware types.
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Our analysis spans various metrics, including power consumption, reconstruction

quality, and classification accuracy. When confronted with the same meticulously con-

structed challenge, the two substrates exhibit comparable performance, but ultimately

solve a different problem. Loihi 1 solves NSO with slope ReLU found in Chapter 4 and

D-Wave solves BSO. The initial findings indicate neuromorphic and quantum systems are

at early stages of development, but hold potential as viable solutions for certain classi-

cally formidable problems, such as sparse coding, by capitalizing on the unique attributes

of each substrate.

6.2 Alien vs. Predator: Brain Inspired Sparse Cod-

ing Optimization on Neuromorphic and Quan-

tum Devices

In this work we extend the previous findings by appropriately tuning and learning dictio-

naries for the different substrates to improve the overall performance. The Henze-Penrose

statistic as a measure of classification problem difficulty is demonstrated to show the

utility of dimensionally reduced Fashion-MNIST dataset. Additionally, we generate a

second dataset with inverted signs and append it to the original, aiming to create a sce-

nario where each class possesses a mean zero distribution. This setup results in data that

is not readily separable by linear methods. We introduce an early-stage normalization

technique tailored for Loihi, accompanied by an exploration of optimal parameter set-

tings and unsupervised dictionary learning, applicable across all three data variations.

Figure 6.1 shows the time evolution of the objective function and the motivation for early

normalization.
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Figure 6.1: Simulation time steps against spike rate, neuron activation, and
objective function. Red dotted line represents where most significant neuron competi-
tion has already occurred and activity is dampened out. Top Panel: Average spike rate
of neurons in network. Middle Panel: A spike raster plot of how often active neurons
are firing over the simulation. Lower Panel: The value of the objective function and the
long regularization time after the initial fit plateau. The vast majority of the reduction
in the loss function occurs early in the simulation.

6.3 Fast Post-Hoc Normalization for Brain Inspired

Sparse Coding on a Neuromorphic Device

Here we extend the normalization technique and compare with solutions derived classi-

cally through the greedy orthogonal matching pursuit (OMP) algorithm executed on a

standard digital processor. A thorough analysis of optimal parameter selection, recon-

struction errors, and unsupervised dictionary learning for both Loihi and its classical

counterpart are presented. By increasing the sparsity parameter λ, and tuning to the

same sparsity level as the final solutions from the full simulation allow for an over 50×

speed up with almost identical solutions. Figure 6.2 demonstrates tuning the full simula-

tion for reconstruction error and then finding the appropriate λ increase for the post-hoc
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approach to match sparsity levels.

Figure 6.2: Optimal sparsity penalty λ selection. Each graph has reconstruction
error/loss in blue and active feature percentage in red. There is a clear optimal sparsity
level dictated by full simulation Loihi (Top), and post-hoc normalization technique on
Loihi (Bottom) roughly exhibits a monotonic relationship. We can impose the same level
of sparsity as the full time simulation Loihi on the post hoc approach by drastically
increasing the penalty term λ.

6.4 Apples-to-spikes: The First Detailed Compari-

son of LASSO Solutions Generated by a Spiking

Neuromorphic Processor

Prior research applied a spiking version of Locally Competitive Algorithm (S-LCA) on

the Loihi neuromorphic processor, maintaining lateral connections solely in the inhibitory
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domain, contrasting the analog LCA (A-LCA) which incorporates both excitatory and

inhibitory connections. Without lateral excitatory interactions, the S-LCA implementa-

tion on Loihi was able to deduce sparse representations for image patches that approached

a global minimum, though a detailed analysis of the specific neural activations (i.e., the

solution) was not conducted.

In this study, we initially establish that the limitations imposed on lateral connections

in the prior S-LCA implementation were overly restrictive. Subsequently, we introduce

an enhanced version of S-LCA that integrates both excitatory and inhibitory lateral con-

nections. We executed this advanced S-LCA on the Loihi processor, demonstrating that

the resultant sparse latent representations more accurately mirrored those determined

by A-LCA. More precisely, this research conducts the inaugural comparison of individual

neuron activations between S-LCA and A-LCA, illustrating that the final solution from

our S-LCA closely aligns with that of A-LCA. To the best of our knowledge, this re-

search represents one of the rare instances where a spiking algorithm, when implemented

on contemporary neuromorphic hardware for a practical task, showcases a performance

nearly indistinguishable from its non-spiking analog. Much of this paper can be found in

Chapter 4.

6.5 Sampling Binary Sparse Coding QUBO Models

Using a Spiking Neuromorphic Processor

In this work, we address the problem using an L2 norm for reconstruction error minimiza-

tion and an L0 (or equivalently, L1) norm to impose sparsity on the binary vector, re-

sulting in a Quadratic Unconstrained Binary Optimization (QUBO) problem, a typically

NP-hard challenge. Our contributions are twofold. Initially, we introduce an approach for

unsupervised and unnormalized dictionary feature learning, aimed at optimally aligning

with the data while adhering to a predetermined level of sparsity. Subsequently, we solve
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the binary sparse coding problem utilizing the Loihi 1 neuromorphic chip, leveraging

stochastic neural networks to navigate the non-convex energy landscape. We evaluate

our solutions in comparison to the traditional heuristic method of simulated annealing.

Our results indicate that neuromorphic computing is a viable option for generating low-

energy solutions in binary sparse coding QUBO models. Although Loihi 1 demonstrates

proficiency in producing highly sparse solutions for QUBO models, there is a necessity

for enhancements in the implementation to achieve competitiveness with simulated an-

nealing. Many of the ideas and figures in Chapter 5 are from this paper.
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Chapter 7

Future Work

7.1 Quantum Evolution Monte Carlo

In order to improve the results found for D-Wave, we will use the annealer in connection

with so-called Monte Carlo chain of reverse anneals, in which the best solution of any

anneal is encoded as the initial state of the next anneal. This process works on the logical

problem, meaning after unembedding of all chained qubits.

To be precise, a sequence of reverse anneals are chained together in a Monte Carlo-

like process, where each subsequent round of reverse anneals is initialized with a classical

state that is defined by the best solution found at the last set of reverse anneals. This

chain of reverse anneals is initialized with the best solution found from a 100 microsec-

ond forward anneal with 1000 samples. Each reverse annealing step in the chain uses

reinitialize state=True when executing on the D-Wave quantum annealers, which

re-initializes the state of the reverse anneal after each anneal-readout cycle. This tech-

nique has been used many times in other contexts and is referred to as both “iterative

reverse annealing” [55, 3, 2] and “quantum evolution Monte Carlo” (QEMC) [31, 30, 32,

29, 37].

Note that the D-Wave quantum annealer feature h − gain, which specifies a time
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dependent multiplicative term on all linear terms for all time points over the course of

the anneal, can also be used in order to encode classical states into the anneal [44], and

thereby also allows an iterative h-gain state encoding technique, similar to this reverse

annealing technique, to be used on [43].

For all experiments involving reverse annealing, the reverse annealing schedule used

was given by {[0, 1], [10, s], [90, s], [100, 1]}, where each pair defines a point in time (from

the start to the end of the anneal process) and an anneal fraction s. The anneal fraction

is the normalized time used to control how the quantum Hamiltonian is moved from the

initial superposition of states to the problem QUBO during the anneal [11]. The anneal

schedule is constructed by linear interpolation between those four points. The reverse

anneal schedule we use is symmetric with a pause of 80 microseconds. It has an increasing

and decreasing ramp on either side of a pause of duration 10 microseconds. We vary the

anneal fraction s at which the pause occurs.

Moreover, we employed D-Wave with flag reduce intersample correlation enabled for

all experiments, which adds a pause in-between each anneal in order to reduce correlations

in the data (those correlations may exist in time due to the spin bath polarization effect,

see [1]). Both parameters readout thermalization and programming thermalization were

set to 0 microseconds. The reverse annealing specific parameter reinitialize state was

enabled for all reverse annealing executions, causing the annealer to reapply the initial

classical state after each anneal readout cycle [12].

7.2 Neuromorphic Warm Starting

Motivated by the results found using QEMC, we implement a warm starting technique

on Loihi 2 in order to improve solution quality. For a proper comparison, we ran the

QUBO solver for 100 iterations and used the previous solution as the initial state for the

next run while simultaneously randomly selecting refractory periods for each run.
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7.3 Preliminary Results

Figure 7.1 demonstrates the different results for the s parameter in QEMC and the

convergence to the exact solver solution when tuned correctly. In the same figure, we can

see the Loihi 2 also benefits from the warm starting technique after several iterations.

Figure 7.2 shows the improvement of both reconstructions over the same set of QUBOs

presented in Chapter 5. We can also see Loihi 2 is able to provide a better initial solution

than both D-Wave and Loihi 1.

Figure 7.1: QEMC and Loihi 2 warm starting over 100 iterations for both
techniques. Loihi 2 initially finds a good solution and sees a slight improvement over
trials. After tuning the parameters, QEMC eventually obtains the same solution as the
exact solver.
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Figure 7.2: QEMC and Loihi 2 warm starting results over the same 16 patches
from Chapter 5. The D-Wave results are drastically improved. Loihi 2 is much better
than Loihi 1 and also benefits from the warm starting approach.
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Chapter 8

Conclusion

In this dissertation, we have embarked on a comprehensive exploration of the intricate

dynamics and properties of recurrent neural networks, particularly focusing on dynam-

ical and gradient systems, to address constrained sparse optimization problems. The

focal point of our investigation has been Hopfield networks, distinguished by the inter-

action and self-organization of neurons into configurations that represent the minimizer

of the problem at hand. By delving deep into the mathematical underpinnings of these

networks, we have strived to bridge the gaps between theoretical neuroscience, artificial

intelligence, and neural computations, bringing forth a clearer understanding of their

convergence behaviors in various contexts. This journey of exploration and analysis has

been complemented by practical implementations on classical computers, spiking neural

networks, and quantum hardware, ensuring a holistic and grounded perspective on the

subject matter.

Dynamical systems, characterized by state variables and evolution rules, exhibit a

plethora of behaviors ranging from stability and periodicity to chaos, contingent upon

their parameters and initial conditions. Gradient systems, a subset of dynamical systems,

navigate the trajectory of the system based on the gradient of a potential function, inher-

ently seeking local minima and thereby playing a crucial role in optimization problems.
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Within this spectrum, the Hopfield network stands out as a fully connected, recurrent

neural network that doubles as a gradient system, directing configurations toward lower

energy states and forming an energy landscape dotted with attractors and valleys. This

unique capability positions it as an associative memory, retrieving stored patterns even

from noisy or incomplete inputs.

Zooming in on a specific variant of the Hopfield network, the Locally Competitive

Algorithm (LCA), we tackled the sparse coding problem, aiming to reconstruct input

signals from a sparse linear combination of features in an overcomplete dictionary. This

problem not only bears significant relevance in signal processing but also finds parallels

in the neural activities of the V1 layer of the mammalian visual cortex, presenting a

fascinating intersection of computational neuroscience and machine learning. In LCA,

neurons are fully interconnected, competing through excitation and inhibition to converge

to a sparse representation of the input.

Our investigation did not stop at the theoretical and computational analysis of these

networks; we took it a step further by addressing the nuances of activation functions

and their implications on convergence behavior. Previous work has predominantly cen-

tered on the computational facets of LCA for non-negative sparse optimization with unit

ReLU activations, leaving gaps in understanding, especially regarding other activation

functions. This dissertation fills these gaps, providing a comprehensive analysis of con-

vergence for generic ReLU and Rectified Sigmoid activation functions, and extending the

exploration to binary sparse optimization problems.

Armed with this understanding, we introduced non-autonomous systems with time-

varying sigmoid activations, converging toward step functions to address binary sparse

optimization problems, a domain where traditional gradient system approaches falter

due to non-convex energy landscapes. Verifying our theoretical insights, we conducted

numerical experiments on classical computers, further solidifying the foundation of our

analysis.
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The journey did not end there; we embraced the emerging realms of quantum anneal-

ing and spiking neuromorphic computing, demonstrating the relevance and applicability

of our findings in these non-von Neumann architectures. By mapping the continuous do-

main networks to their spiking counterparts and reformulating binary sparse optimization

problems into the form of QUBOs for quantum annealers, we established a bridge between

classical and modern computational paradigms, showcasing the versatility and potential

of our approaches. The ability of spiking neuromrophic processors to solve both the spike

rate approximation of LCA with ReLU activations, as well as QUBOs directly, at signif-

icantly lower power than both classical and quantum annealing computation, provides

enticing evidence for the benefits brought by brain inspired devices.
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Appendix A

Appendix

A full derivation of (2.9) follows:
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Ẽ(u) = ∂aiE(a)
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ABSTRACT 
We consider the problem of computing a sparse binary representa- 
tion of an image. To be precise, given an image and an overcomplete, 
non-orthonormal basis, we aim to find a sparse binary vector indi- 
cating the minimal set of basis vectors that when added together 
best reconstruct the given input. We formulate this problem with 
an 𝐿𝐿2 loss on the reconstruction error, and an 𝐿𝐿0 (or, equivalently, 
an 𝐿𝐿1) loss on the binary vector enforcing sparsity. This yields a 
so-called Quadratic Unconstrained Binary Optimization (QUBO) 
problem, whose solution is generally NP-hard to find. The contri- 
bution of this work is twofold. First, the method of unsupervised 
and unnormalized dictionary feature learning for a desired sparsity 
level to best match the data is presented. Second, the binary sparse 
coding problem is then solved on the Loihi 1 neuromorphic chip 
by the use of stochastic networks of neurons to traverse the non- 
convex energy landscape. The solutions are benchmarked against 
the classical heuristic simulated annealing. We demonstrate neuro- 
morphic computing is suitable for sampling low energy solutions 
of binary sparse coding QUBO models, and although Loihi 1 is 
capable of sampling very sparse solutions of the QUBO models, 
there needs to be improvement in the implementation in order to 
be competitive with simulated annealing. 
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1 INTRODUCTION 
We are interested in the computation of a sparse binary recon- 
struction of an image. This task plays a role whenever an image of 
interest is not directly observable and instead must reconstructed 
from a limited sample or projection using compressive sensing. 
Sparse binary reconstruction is of interest in, for instance, the 
fields of radioastronomy and molecular imaging, as well as im- 
age compression [11, 15]. Sparse binary coding falls into the class 
of Quadratic Unconstrained Binary Optimization (QUBO). QUBO 
models are challenging computational problems that are difficult to 
solve exactly using classical algorithms due to exponential run time 
complexity, in general. QUBO models are a specific type of discrete 
combinatorial optimization problems, and in general it is of consid- 
erable interest to be able to compute optimal solutions of QUBO 
models more efficiently than existing methods. Networks of spiking 
neurons with noise have been shown to offer new opportunities 
for solving these problems. By programming the constraints into 
the architecture of a network of spiking neurons and controlling 
the frequency of network states during the resulting stochastic dy- 
namics of the network, the exploration of complicated energy (e.g., 
objective function) landscapes describing our problem of interest 
can be performed in practical time. 

Mathematically, given a signal 𝒙𝒙 ∈ R𝑚𝑚 and an overcomplete and 
non-orthonormal basis of 𝑛𝑛 > 𝑚𝑚 vectors 𝑫𝑫 = {𝐷𝐷1, . . . , 𝐷𝐷𝑛𝑛 }, we aim 
to infer a sparse representation of the input using few elements 
from the dictionary. Here, an overcomplete set is defined as one that 
contains more functions than needed for a basis. All basis matrices 
as well as the image 𝒙𝒙 are assumed to be of equal dimensions. The 
task is to find the minimal set of non-zero activation coefficients 𝒂𝒂 
that accurately reconstruct the given input signal 𝒙𝒙, where 𝒂𝒂 ∈ B𝑛𝑛 

is a binary vector of length 𝑛𝑛 for B = {0, 1}. We can express the 
computation of a sparse binary representation of the image 𝒙𝒙 using 
the basis 𝑫𝑫 as the minimization of the energy function 

𝐸𝐸 (𝒙𝒙, 𝒂𝒂) = min
 

1 ∥𝒙𝒙 − 𝑫𝑫𝒂𝒂∥2 + 𝜆𝜆∥𝒂𝒂∥0 
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where ∥ · ∥2 is the Euclidean norm and ∥ · ∥0 denotes the number of 
nonzero elements. The parameter 𝜆𝜆 > 0 is a Lasso-type parameter 
[14] controlling the sparseness of the solution. A large value of 𝜆𝜆 
results in a more sparse solution to eq. (1), while smaller values 
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yield denser solutions. Therefore, the parameter 𝜆𝜆 allows one to 
effectively balance the reconstruction error (the 𝐿𝐿2 norm) and the 
number of non-zero activation coefficients (the 𝐿𝐿0 norm). Since 
eq. (1) belongs to the class of 0-1 integer programming problems, 
finding a sparse representation falls into an NP-hard complexity 
class. The objective function of eq. (1) is non-convex and typically 
contains multiple local minima. 

We investigate a spiking neuromorphic processor to solve the bi- 
nary sparse representation problem given by the objective function 
in eq. (1). Neuromorphic computing is a proposed computing model 
inspired by the human brain, which is able to complete learning 
tasks better than classical von Neumann computers [3, 12, 13]. 

2 METHODS 
2.1 Transformation relations 
The problem being solved has to be given as a QUBO problem. In 
this formulation, the observable states of any neuron is 0 and 1. 
We start by reformulating eq. (1) in QUBO form. To this end, we observe that for 𝒂𝒂 ∈ B𝑛𝑛, 

reads obtained from Loihi 1 as a function of time. High energy 
read outs correspond to refractory periods of neurons active in the 
ideal solution, and the repeated lowest energy reflects the return to 
lower energy solution states [2]. For the QuboSolver method ran 
on Loihi 1, a threshold mantissa of 96, weight exponent of 6, and 
noise mantissa of 0 and exponent of 7 are used. In order to sample 
each QUBO on Loihi 1, a total of 2, 000 samples are measured; 4 
simulation times (5, 000, 10, 000, 15, 000, 20, 000) are varied over, and 
5 different weight matrix scalings (10, 100, 1000, 10000, 100000) are 
varied, with each parameter combination being sampled 100 times 
(this gives 4 · 5 · 100 = 2000 samples per QUBO). 

2.2.2 Un-normalized Dictionary Learning. Sparse coding optimiza- 
tion can be seen as a two step process where a dictionary is first 
learned in an unsupervised way by using a local Hebbian rule. Typ- 
ically, when learning a basis for solving the convex Lasso problem, 
the algorithm requires the re-normalization of the columns of the 
dictionary 𝐷𝐷 after each learning epoch. The normalization is criti- 
cal for convergence in the Lasso setting because the values of the 

1 2 
sparse vector 𝒂𝒂 are allowed to take on any value. Previous work has 

𝐸𝐸 (𝒂𝒂) = 2 ∥𝒙𝒙 − 𝐷𝐷𝒂𝒂∥2 + 𝜆𝜆∥𝒂𝒂∥0 
1 1 𝑛𝑛

 =  𝒙𝒙⊤𝒙𝒙 − 𝒙𝒙⊤𝐷𝐷𝒂𝒂 +  𝒂𝒂⊤𝐷𝐷⊤𝐷𝐷𝒂𝒂 + 𝜆𝜆 𝑎𝑎𝑖𝑖 . 

demonstrated the ability to learn a dictionary in a QUBO regime, 
but this required the introduction of a new amplification parameter 
𝛽𝛽 to the input [5, 8]. Here, we introduce a new learning technique 

2 2 𝑖𝑖=1 
that allows the algorithm to find the optimal norm for features 
based up on a predetermined desired average level of sparsity de- 

As expected, multiplying out eq. (1) yields a quadratic form in 
𝒂𝒂, meaning that we can recast our objective function as a QUBO 
problem. For this we define the following two transformations: 

ℎ𝑖𝑖 = −𝐷𝐷⊤𝒙𝒙 + 𝜆𝜆 + 1 𝐷𝐷⊤𝐷𝐷𝑖𝑖, 𝑄𝑄 = 
1 (𝐷𝐷⊤𝐷𝐷). (2) 

fined as 𝒔𝒔 ∈ (0, 1). The dictionary is initialized with features drawn 
from a normal distribution with random norms below 1 and a small 
sparsity penalty parameter 𝜆𝜆. After solving the binary sparse cod- 
ing problem for each sample in the training data, the dictionary is 

𝑖𝑖 2 𝑖𝑖 2 updated. If the average sparsity over the training epoch is above 
Using eq. (2), we can rewrite eq. (1) as a QUBO, given by 

𝐻𝐻 (𝒉𝒉, 𝑄𝑄, 𝒂𝒂) = 
∑
ℎ𝑖𝑖𝑎𝑎𝑖𝑖 + 

∑
𝑄𝑄𝑖𝑖 𝑗𝑗 𝑎𝑎𝑖𝑖 𝑎𝑎 𝑗𝑗 , (3) 

the desired level s, the penalty parameter 𝜆𝜆 is increased for the next 
epoch. Pseudo code for the algorithm is presented below and the 
learning results are summarized in Figure 1. We can see the average 

𝑖𝑖=1 𝑖𝑖 < 𝑗𝑗 neuron activity and reconstruction error converge along with the 
which is now in suitable form to be solved on Intel’s Loihi neuro- 
morphic chip [5, 8]. Network connectivity mapping can be seen in 
Figure 2, where 𝑎𝑎𝑖𝑖 denote the neurons, ℎ𝑖𝑖 are the self interactions 
on the neurons, and 𝑄𝑄𝑖𝑖 𝑗𝑗 are the inter-neuron connection weights. 

2.2 Loihi neuromorphic chip implementation 
Intel’s Loihi 1 is the first generation neuromorphic computing de- 
vice that draws inspiration from biology to implement spiking neu- 
ral networks with neurons as the fundamental processing elements 
[2]. 

2.2.1 Overcoming local minima on Loihi 1. Compared to a Boltz- 
mann machine [9], spiking networks allow for transitions between 
extreme objective function variable states (see Figure 3). Because of 
the limited time of activity, or forced refractory period, defined by 
𝜏𝜏, active neurons are turned off for a determined time and others 
who were inhibited by the active neuron now have a chance to ac- 
tivate. These periods allow the network to explore non-locally and 
facilitate the bypassing of high energy barriers in the optimization 
landscape [4, 10]. After the refractory period is over, previously 
active neurons will likely re-fire because they are receiving a strong 
input and a low-energy state will again be found. Figure 3 demon- 
strates this property through the substantial variation in the energy 

norms of the learned features. 
We applied our technique to a patched version of the standard 

fashion MNIST (fMNIST) data set [16]. Each 28x28 image was bro- 
ken up into 16 7x7 patches and we selected a dictionary of size 64 
in order to partition the problem into sub-problems which could be 
implemented on Loihi 1 (the exact number of variables for the sub- 
problems is arbitrary but fixed). Even with a smaller data structure, 
it was still necessary to perform our dictionary learning algorithm 
using the classical simulated annealing approach when solving for 
our sparse code in step 6 of Algorithm 1. The Lasso parameter 𝜆𝜆 
was increased from 0.1 to 1.4 in increments of 0.1 to adapt to the 
sparsity of the solution (see the top right plot in Figure 1). 

 
3 RESULTS 
Figure 1 visualizes the successful implementation of un-normalized 
dictionary feature learning. Using a local learning rule and a fixed 
sparsity level, we can see that the algorithm learns a better basis for 
reconstruction as the average error of the training data decreases 
over training epochs and it also converges to the desired average 
sparsity level. 

After successfully training each dictionary with simulated an- 
nealing (SA), a total of 16 separate QUBO models are generated. 
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Figure 1: Randomly initialized dictionary with norms distributed between .01 and .2. After the training algorithm, norms 
increase and an optimal binary dictionary is learned for a fixed average activity of 12 features. 

 
Algorithm 1: Dictionary Update 

 

input : 𝑫𝑫 ∈ R𝑚𝑚×𝑛𝑛, 𝑇𝑇 𝑟𝑟𝑎𝑎𝑟𝑟𝑛𝑛_𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 ∈ R𝑏𝑏×𝑚𝑚, 𝜂𝜂 ∈ R+, 𝒔𝒔 ∈ (0, 1), 
𝜆𝜆 > 0, number of epochs 𝑁𝑁 

1 function learn_dictionary(𝐷𝐷, 𝑎𝑎, 𝑥𝑥 , 𝜂𝜂, 𝑠𝑠,number of epochs) 
 
 
 
 
 

Figure 2: Network connectivity of the variables in eq. (3). 
Connections include the self interaction terms ℎ𝑖𝑖 (symmetric 
weights proportional to the inner product between features), 
the inter-neuron connection weights 𝑄𝑄𝑖𝑖 𝑗𝑗 , and the stochastic 
noise input. Red is inhibitory connection and blue is excita- 
tory. Network is sampled at different times and activity is 
measured for solution. 

 
 

Each QUBO is then sampled using Loihi 1 (see Section 2.2). In or- 
der to provide a reasonable comparison against existing classical 
heuristic algorithms, we also sample each of the 16 QUBO models us- 
ing simulated annealing. The simulated annealing implementation 
we use is a D-Wave SDK implementation [1], using 1000 samples 
per QUBO and all default settings. Using the best solutions (e.g., 
the computed variable assignments with the lowest energy found 
among all samples) from both Loihi 1 and simulated annealing, we 
can reconstruct the original image from sampling all 16 QUBOs. 
These reconstructions are shown in Figure 4. Although SA has a 
lower mean energy, Loihi 1 is able to find reasonable solutions at 
much lower average sparsity levels. Similar to previous demonstra- 
tions of lower power usage for certain applications [3, 5–8], Loihi 1 
uses an average power consumption of ∼ 0.0192 joules per sample, 

2 for epoch = 1, 2, . . . , 𝑁𝑁 
3 𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑎𝑎_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑 = 0; 
4 for 𝑟𝑟 = 1, 2, ..., 𝑏𝑏 
5 𝑥𝑥 = 𝑇𝑇 𝑟𝑟𝑎𝑎𝑟𝑟𝑛𝑛_𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 [𝑟𝑟] 
6 Solve for 𝑎𝑎 
7 𝑟𝑟𝑟𝑟𝑎𝑎𝑐𝑐𝑛𝑛 = 𝐷𝐷𝑎𝑎 
8 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑑𝑑𝑐𝑐𝑎𝑎𝑟𝑟 = 𝑥𝑥 − 𝑟𝑟𝑟𝑟𝑎𝑎𝑐𝑐𝑛𝑛 
9 Δ𝐷𝐷 = 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑑𝑑𝑐𝑐𝑎𝑎𝑟𝑟 𝑎𝑎𝑇𝑇 

10 𝐷𝐷 = 𝐷𝐷 + 𝜂𝜂Δ𝐷𝐷 
11 𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑎𝑎_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑎𝑎_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑 + 𝑠𝑠𝑐𝑐𝑚𝑚(𝑎𝑎) 
12 end 
13 if 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎 𝑦𝑦_𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎 > 𝒔𝒔 then 

14 𝜆𝜆 = 𝜆𝜆 + 0.1 
15 end 
16 end 
17 end 
18 return 𝐷𝐷 

 
 

 

 
The simulated annealing power consumption was measured using 
pyRAPL 1 (including RAM power usage). The total power usage 
was computed by subtracting the idle machine power consumption 
(for the same time duration) from the power consumption when 
simulated annealing was run. The Loihi 1 power consumption was 
measured using the nxsdk power monitoring function. 

per QUBO matrix compared to an average power consumption of   
∼ 0.115 joules per sample per QUBO matrix for simulated annealing. 1 https://pyrapl.readthedocs.io/en/latest/ 

   

https://pyrapl.readthedocs.io/en/latest/
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Figure 3: Conceptual diagram of how we expect spike-based 
dynamics support the bypassing of high-energy barriers. En- 
ergy, e.g., the objective function evaluation for a set of vari- 
able assignments, is given on the y-axis and the x-axis shows 
variable assignments where ■ denotes +1 and □ denotes 0 (for 
the chosen number of variables of 𝑛𝑛 = 6). In this example, the 
relatively sparse state of (0, 0, 0, 1, 0, 1) has the lowest overall 
energy. When the system is sampled at different time peri- 
ods T1, T2, and T3, we are able to bypass the largest energy 
barrier because the refractory period automatically shuts off 
variables 5 and 6 [10]. 

 
4 DISCUSSION AND CONCLUSION 
In this work, we derived a technique for learning an unmormalized 
dictionary for binary sparse coding in an unsupervised manner 
when given a desired sparsity level. The trained dictionary was 
then used for solving the binary sparse coding problem in the form 
of a QUBO using the Loihi 1 spiking neuromorphic processor and 
compared against simulated annealing. Measurements taken from 
Loihi 1 demonstrate the use of refractory periods and stochasticity 
allow the spiking processors to overcome large energy barriers 
in the non-convex landscape. The solutions from Loihi 1 are not 
of the same quality compared with simulated annealing, but it is 
interesting to note that the solutions are considerably sparser, and 
use less energy to compute each sample compared to simulated 
annealing. 

Future work could include comparing the results on Loihi 2, the 
second generation of Intel’s spiking processor. Using an iterative 
warm start approach with Loihi, where the best solution found at 
each iteration is used to initialize the system at the next iteration, 
similar to an iterative warm start algorithm in classical optimization, 

Figure 4: Reconstructions from classical SA and Loihi 1. Full 
image consists of 16 separate QUBO solves and the mean 
energies and sparsity levels are displayed. The sparsity levels 
are the mean (across the 16 QUBO models) number of vari- 
ables in the lowest energy state which were in the state of +1. 

 

Figure 5: QUBO energies read out at different simulation 
times (minimum of 10 readouts per simulation time) from 
the Loihi 1 neuromorphic processor for a single QUBO patch. 

 

 
could improve the total space explored and thus the likelihood of 
finding a global minimum. 

5 ACKNOWLEDGEMENTS 
This work was supported by the U.S. Department of Energy through 
the Los Alamos National Laboratory. Los Alamos National Labora- 
tory is operated by Triad National Security, LLC, for the National 
Nuclear Security Administration of U.S. Department of Energy 
(with Contract No. 89233218CNA000001). We gratefully acknowl- 
edge support from the Advanced Scientific Computing Research 
(ASCR) program office in the Department of Energy’s (DOE) Office 



Sampling binary sparse coding QUBO models using a spiking neuromorphic processor ICONS 2023, August 1–3, 2023, Santa Fe, NM, USA 
 

 

of Science, award #77902 along with funding from the NNSA’s Ad- 
vanced Simulation and Computing Beyond Moore’s Law Program 
at Los Alamos National Laboratory. This work has been assigned 
the technical report number LA-UR-23-25877. 

REFERENCES 
[1] D-Wave. 2022. dwave-simulated-annealing. https://github.com/dwavesystems/ 

dwave-neal. 
[2] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel 

Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. 2021. Advancing 
Neuromorphic Computing With Loihi: A Survey of Results and Outlook. Proc. 
IEEE 109, 5 (2021), 911–934. https://doi.org/10.1109/JPROC.2021.3067593 

[3] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel 
A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. 2021. Ad- 
vancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook. 
Proc. IEEE 109, 5 (2021), 911–934. https://doi.org/10.1109/JPROC.2021.3067593 

[4] Gabriel A. Fonseca Guerra and Steve B. Furber. 2017. Using Stochastic Spik- 
ing Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems. 
Frontiers in Neuroscience 11 (2017), 1–13. https://doi.org/10.3389/fnins.2017.00714 

[5] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. 2020. Machine Learning 
in a Post Moore’s Law World: Quantum vs. Neuromorphic Substrates. In 2020 
IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). Institute 
of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, 74–77. https: 
//doi.org/10.1109/SSIAI49293.2020.9094596 

[6] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. 2022. Fast Post-Hoc Nor- 
malization for Brain Inspired Sparse Coding on a Neuromorphic Device. IEEE 
Transactions on Parallel and Distributed Systems 33, 2 (2022), 302–309. https: 
//doi.org/10.1109/TPDS.2021.3068777 

[7] Kyle Henke, Garrett T. Kenyon, and Ben Migliori. 2022. Fast Post-Hoc Nor- 
malization for Brain Inspired Sparse Coding on a Neuromorphic Device. IEEE 

Transactions on Parallel and Distributed Systems 33, 2 (2022), 302–309. https: 
//doi.org/10.1109/TPDS.2021.3068777 

[8] Kyle Henke, Ben Migliori, and Garrett T. Kenyon. 2020. Alien vs. Predator: 
Brain Inspired Sparse Coding Optimization on Neuromorphic and Quantum 
Devices. In 2020 International Conference on Rebooting Computing (ICRC). Institute 
of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, 26–33. https: 
//doi.org/10.1109/ICRC2020.2020.00015 

[9] Geoffrey E. Hinton. 2007. Boltzmann Machines. https://www.cs.toronto.edu/ 
~hinton/csc321/readings/boltz321.pdf. 

[10]  Zeno Jonke, Stefan Habenschuss, and Wolfgang Maass. 2016. Solving Constraint 
Satisfaction Problems with Networks of Spiking Neurons. Front Neurosci 10, 118 
(2016), 1–16. https://doi.org/10.3389/fnins.2016.00118 

[11] Rahul Mohideen, Pascal Peter, and Joachim Weickert. 2021. A systematic eval- 
uation of coding strategies for sparse binary images. Signal Processing Image 
Communication 99 (2021), 116424. 

[12]  Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. 2019. Towards spike- 
based machine intelligence with neuromorphic computing. Nature 575, 7784 
(2019), 607–617. 

[13] Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, 
Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing 
algorithms and applications. Nature Computational Science 2, 1 (2022), 10–19. 
https://doi.org/10.1038/s43588-021-00184-y 

[14] R. Tibshirani. 1996. Regression Shrinkage and Selection Via the Lasso. J Roy Stat 
Soc B Met 58, 1 (1996), 267–288. https://doi.org/10.1111/j.1467-9868.2011.00771.x 

[15] M. Ting, R. Raich, and A. Hero. 2006. Sparse Image Reconstruction using Sparse 
Priors. In International Conference on Image Processing, Atlanta, GA, USA. Institute 
of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, 1261–1264. https: 
//doi.org/10.1109/ICIP.2006.312574 

[16] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel 
Image Dataset for Benchmarking Machine Learning Algorithms. http://arxiv. 
org/abs/1708.07747 

https://github.com/dwavesystems/dwave-neal
https://github.com/dwavesystems/dwave-neal
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.1109/SSIAI49293.2020.9094596
https://doi.org/10.1109/SSIAI49293.2020.9094596
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/TPDS.2021.3068777
https://doi.org/10.1109/ICRC2020.2020.00015
https://doi.org/10.1109/ICRC2020.2020.00015
https://www.cs.toronto.edu/%7Ehinton/csc321/readings/boltz321.pdf
https://www.cs.toronto.edu/%7Ehinton/csc321/readings/boltz321.pdf
https://doi.org/10.3389/fnins.2016.00118
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1109/ICIP.2006.312574
https://doi.org/10.1109/ICIP.2006.312574
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747


 

Apples-to-spikes: The first detailed comparison of LASSO 
solutions generated by a spiking neuromorphic processor 

Kyle Henke∗ 
khenke@lanl.gov 

Los Alamos National Laboratory 
Los Alamos, New Mexico, USA 

Michael Teti∗ 
mteti@lanl.gov 

Los Alamos National Laboratory 
Los Alamos, New Mexico, USA 

Garrett T. Kenyon 
gkenyon@lanl.gov 

Los Alamos National Laboratory 
Los Alamos, New Mexico, USA 

 
 
 

 
ABSTRACT 

Ben Migliori 
ben.migliori@lanl.gov 

Los Alamos National Laboratory 
Los Alamos, New Mexico, USA 

Gerd J. Kunde∗ 
g.j.kunde@lanl.gov 

Los Alamos National Laboratory 
Los Alamos, New Mexico, USA 

on Neuromorphic Systems (ICONS 2022), July 27–29, 2022, Knoxville, TN, USA. 

The Locally Competitive Algorithm (LCA) is a model of simple 
cells in the primary visual cortex, based on convex sparse coding 
via recurrent lateral competition between neighboring neurons. 
Previous work implemented spiking LCA (S-LCA) on the Loihi 
neuromorphic processor in which the lateral connections were con- 
strained to be inhibitory, unlike non-spiking, analog LCA (A-LCA) 
where both excitatory and inhibitory connections are present. In 
the absence of lateral excitation, an implementation of S-LCA on 
the Loihi neuromorphic processor inferred sparse representations 
of image patches that were close to the global minimum, but an ex- 
amination of the individual neural activations (i.e. solution) was not 
performed. In this work, we first prove that the constraints placed 
on the lateral connections in the previous S-LCA implementation 
were unnecessarily restrictive, and we develop an S-LCA imple- 
mentation with both excitatory and inhibitory lateral connections. 
We implemented this improved S-LCA with both inhibitory and 
excitatory lateral connections on Loihi and show that the resulting 
sparse latent representations were much closer to those inferred by 
A-LCA. Specifically, we perform the first comparison of individual 
neuron activations between S-LCA and A-LCA and show that the 
final solution of our S-LCA converges to that of A-LCA. To date, 
this work provides one of the only instances in which a spiking 
algorithm implemented on modern neuromorphic hardware and 
performing a realistic task has exhibited such close behavior to its 
non-spiking counterpart. 
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neuromorphic computing, sparse coding, computer vision, spiking 
neural networks 
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1 INTRODUCTION 
Computational neuroscience is often focused on understanding 
how complex phenomenon can emerge from networks of neurons. 
Often, this is achieved by formulating models that best represent 
the underlying physics governing communication within large neu- 
ronal networks. For application purposes, it is also crucial to have 
rigorous mathematical foundations to provide theoretical guidance 
for convergence and performance of artificial systems. Here, we 
focus on sparse coding models, which have been shown to approxi- 
mate the response characteristics and receptive field statistics of 
neurons in the primary visual cortex (V1) [10, 12]. In the sparse 
coding problem, the goal is to obtain a faithful but efficient (i.e. 
sparse) representation of a given input. A representation which 
satisfies these criteria is found by minimizing an energy function 
consisting of a term which represents the error between the input 
and its reconstruction (which is computed from the representa- 
tion), plus a term which represents how sparse the representation 
is. When the reconstruction error is measured with the l2 norm and 
the sparsity is measured with the l1 norm, the problem is equiva- 
lent to LASSO (i.e. l1-penalized regression) [16] and has a global 
minimum. Rozell et al. [12] developed a recurrent network termed 
the Locally Competitive Algorithm (LCA), which minimizes the 
sparse coding energy function by simulating the feature-specific, 
local lateral competition that is observed in V1 [2]. LCA can be 
expressed in terms of a governing dynamical system of equations 
for which there exist a Lyapunov function with a fixed point at- 
tractor whose minima correspond to the global minima of a LASSO 
optimization problem. 

Biologically plausible sparse coding models, such as LCA, are of 
great interest to the neuromorphic community because they are 
able to model key characteristics of biological sensory processing 
[17, 18] while remaining useful in machine learning applications 
[9, 15]. Since spiking implementations on neuromorphic hardware 
often differ greatly from their non-spiking counterparts on classical 
computing hardware, it is necessary to have a deep understanding 
of how or if they differ before they can be widely used in potentially 
critical applications. First, [13] showed that the sparse coding ob- 
jective function converged to that of LASSO in a simulated spiking 
neural network (SNN) composed of integrate-and-fire neurons. Fair 
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et al. then demonstrated that a spiking LCA implementation on the 
TrueNorth neuromorphic system [1] exhibited close dynamics to 
non-spiking LCA implemented on classical computing hardware, 
but they considered a model with a very constrained input, dic- 
tionary, and dynamics [5]. Most recently, [3] implemented LCA 
on the Loihi neuromorphic processor using leaky-integrate-and- 
fire (LIF) neurons with infinite time constants (i.e. non-leaky), but 
their model only contained inhibitory lateral connections, unlike 
non-spiking LCA which has both excitatory and inhibitory lateral 
connections. They demonstrated that a sparse coding objective 
function is monotonically decreasing when using the vector of 
average firing rates as a measure of neural activity. However, no 
coefficient-by-coefficient comparison between LASSO and spiking 
LCA has been performed to date, leaving open the question as to 
how closely spiking LCA implemented on neuromorphic hardware 
approximates LASSO on more complex, realistic problems. 

In this work, we extend the previous spiking implementation 
of LCA [3], which we refer to as S-LCA, by developing a modi- 
fied S-LCA with both excitatory and inhibitory lateral connections 
(Figure 1), which we prove should converge to non-spiking, ana- 
log LCA (A-LCA). We then performed the first neuron-by-neuron 
comparison between S-LCA implemented on modern neuromor- 
phic hardware, namely Intel’s Loihi, and A-LCA implemented on 
classical computing hardware (i.e. LASSO). We show that our S- 
LCA implementation exhibits a very close match to A-LCA, both at 
the individual neuron level and the system level, and it is a better 
match than the previous S-LCA implementation due primarily to 
the incorporation of excitatory lateral connections. 

 
2 BACKGROUND 
2.1 Sparse Coding 
Sparse coding is a signal processing technique which models corti- 
cal processing of lower-dimensional sensory inputs into a sparse, 
higher-dimensional space. Sparse coding models have been shown 
to approximate the receptive fields and response characteristics of 
V1 simple cells [10, 17]. [12] has shown that sparse coding optimiza- 
tion problems can be solved using the dynamics of fully recurrent 
neural networks with fixed point attractors when lateral inhibi- 
tion is incorporated. This biologically plausible implementation 
(from experimental observations of similar connectivity, c.f. rat 
whisker barrel cortex) encourages sparse solutions by allowing 
neurons to compete with each other for shared representation of 
the input, in a model known as a locally competitive algorithm 
(LCA). When neural activation is penalized through inhibition in 
the cost function, the resulting dynamical system emerges as an 
all-to-all connected Hopfield network [7]. The connections rep- 
resented through a symmetric weight matrix satisfy a Lyapunov 
condition which guarantees the convergence to a fixed point of 
lowest energy, the optimal sparse solution. 

 
 

 
Input Patch 
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Figure 1: Our S-LCA implementation on Loihi. A general de- 
piction of the S-LCA algorithm as implemented on Loihi using 
a single 8 × 8 patch as input. The input drive, which is the dot 
product between each neuron’s feature vector and the input patch, 
is computed and used to initialize the membrane potentials after 
subtracting the A-LCA trade-off parameter λ. At each timestep, 
each neuron’s membrane potential is charged up (or down) by the 
input drive and compared to a spiking threshold νf . Any neuron 
whose membrane potential is greater than νf will "spike", and thus 
inhibit (red) or excite (blue) neurons whose features overlap with its 
own, depending on whether the features are aligned or anti-aligned, 
respectively. The previous S-LCA implementation only contained 
inhibitory (red) lateral connections. The membrane potential is 
reset to zero after every spike. After T iterations, typically only 
a few neurons remain active. The average firing rate of each ac- 
tive neuron in the S-LCA model is computed over the last 1,000 
timesteps for comparison with the A-LCA model. Our comparisons 
are performed on a 56 × 56 pixel image, but we use 8 × 8 features 
and a stride of 8, which is the same process depicted here but with 
7 × 7 = 49 patches. 

 
l2 subject to an l1 constraint on the parameters a in the following 
standard LASSO set up: 

In this mathematical notation, our input signal x lives in Rm 1 2 

and the dictionary D has p > m basis vectors also in Rm . We then 
want to approximate x as Da where a ∈ Rp . D is overcomplete or 
redundant and an infinite number of solutions to the minimization 
problem become possible. Hence, a λ sparsity penalty is introduced 
to represent a uniform applied inhibitory field and create a unique 
solution. Thus, we are minimizing the reconstruction distance in 

E(a(t )) = 2 ||x − Da(t )||2 + λ||(a(t ))||1 (1) 

2.2 Derivation of Dynamical System 
We can derive a system of differential equations proportional to, an 
hence with the same fixed point attractors, as the classical LASSO 
problem. Given D ∈ Rmxp and x ∈ Rm with λ > 0, solve: 
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(2) In the limit lim →∞ E(a(t )) = E , the value of the objective 

function E will approach the optimal value 
biases are bounded. Using the fact (α ∗ σ )(t ) ≤ 
can show: 

l =0 

 

R < ∞, 
 

T 
∫ 

 

 

1 2 
∫ ∞ 

(3) If the optimal solution a∗ is unique, then u·(t ) → u·∗ and 
T (u(t )) → T (u(t )∗) = a∗ as t → ∞ E(a(t )) = 2 ||x − Da(t )||2 + 

0  
(u(t ) − Tλ (u(t )))da(t ) 

1 ∞ 
= 2 (x − Da(t )) (x − Da(t )) + 

0  
(u(t ) − Tλ (u(t )))da(t ) 

2.3 S-LCA and Convergence to A-LCA 
Here we give an overview of the the convergence proof provided 

1  T T  T  T T T by Tang et al. [14] for a LASSO problem with strictly positive 
= 2 (x x − x 

∞ 
Da(t ) − a(t ) D x + a(t ) D Da(t )) connectivity weights wi, j and extend the result into a regime where 

both positive and negative weights are present. 
+ 

0 
(u(t ) − Tλ (u(t )))da(t ) 

1 
First, we define the only independent variable in our spiking 

network as the soma currents µi (t ) for the p neurons which receive 
= 2 (x

T x − 2xT Da(t ) + a(t )T DT Da(t ) 
∞ (2) 

a constant input bias bi = DT x and maintain an internal electric 
potential v (t ). When an electric potential reaches a firing threshold 

+ 
0 

(u(t ) − Tλ (u(t )))da(t ) νf at a time t = k, the corresponding neuron simultaneously fires 
a spike to either inhibit or excite the other p − 1 neurons and resets 

We take the partial derivative of E(a(t )) with respect to a(t ) : 

∂E(a(t )) 
= −xT D + DT Da(t ) + u(t ) − T (u(t )) (3) 

∂a(t ) 
Now we can define our gradient system as: 

its potential to νr . Let α = e−t and define the soma currents of the 
other neurons to change in the following manner: 

µj (t ) = µj (t ) − wji α (t − ti,k ) (6) 

Now, define σi (t ) = δ (t − ti,k ) as the sum of Dirac delta 
functions δ whenever the neuron spikes over the simulation time. 

u·(t ) ∝ − ∂E(a(t )) 
∂a(t ) 

u·(t ) = 
1 (xT D − DT Da(t ) − u(t ) + T (u(t )) 

τ 

(4) This leads to the final defining equations of soma currents: 

 
µi (t ) = bi − wij (α ∗ σj )(t ) (7) 

j i 

= 
1 (xT D − DT Da(t ) − u(t ) + a(t )) (5) 
τ 

Here we assume the existence of an input/output transfer func- 
µ·i (t ) = bi − µi (t ) − wij σj (t ) (8) 

j i 

tion a(t ) = Tλ (u(t )) with threshold λ. The neuron activation is 
represented by the thresholding function T = Tλ and describes the 
non-linear activity of how and when signals are sent to the rest 

The instantaneous spike rate ai (t ) and average soma current 
ui (t ) are defined as: 

  1   
∫ t 

of the network. To solve a LASSO sparse coding problem, we use 
a soft-threshold function ai = Tλ (ui ) whose value is ui − λ when ai (t ) = t − t0 σi (s)ds (9) t0 

ui > λ and 0 otherwise. We can then define the vector function 
which applies the same scalar function T to each of the input vectors 

 
ui (t ) =   1   ∫ t 

 
bi − 

 
wi, j (αu ∗ σj )(s)ds (10) 

components as T : Rp → Rp . t − t0  t0 i  j 
The sparse coding problem can be described in neurophysiologi- Leading to the spiking analog of differential equation 3 as: 

cal terms by letting the p dictionary elements represent p neurons 
and their respective receptive fields. The input stimulus received 
by each neuron is equivalent to the inner product between the 

u·i = bi − ui − 
 

 
j i 

wij aj (t ) − (ui (t ) − ui (t0)) 
t − t0 

 
(11) 

input signal and the feature it represents, notated as bi = xT Di . 
The constant bias drive bi increases (or decreases) the membrane 
potential of the neuron-i represented as ui . When ui is above the λ, 
neuron-i will then send inhibitory or excitatory signals to the other 
p − 1 neurons equal to the product of the activation coefficient ai 
and the connection weight wi, j = −DT Dj . 

Using the LaSalle invariance principle [14][12], Rozell and others 
were able to prove the above system of equations possesses three 
distinct characteristics. 

 
(1) If C is the set of optimal LASSO solutions and F = T −1(C) is 

C’s inverse mapping under the thresholding function T , then 
any arbitrary initial condition u·(0) will always converge to the set F 

2.4 S-LCA With Excitatory Connections 
Here we make a distinction and extend the previous work. Origi- 
nally, only inhibitory connections were allowed in order to ensure 
the soma current magnitudes and corresponding average poten- 
tials are bounded. For a strictly inhibitory network, the max bound 
on current is defined as B+ = maxi bi since the largest value ob- 
tainable in equation 12 requires zero inhibition from other neu- 
rons. Moreover, [14] also showed there is a lower bound and the 
existence of some R > 0 such that ti,k +1 − ti,k ≥ 1/R for all 
i = 1, 2, ..., n and k ≥ 0 whenever two spike times exist. We can 
leverage this knowledge to show the soma currents of our updated 
model are also bounded above and below. First let 
and B = maxj 1bj 1 since we know the inner product of features and 

t ∗ j 
L.∞ −  l  
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1   1 1 1 

2 
= 

1 (xT x − xT Da(t ) − (Da(t ))T x + (Da(t ))T Da(t )) 
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1
|bi | + 

j i 
1wij 1 (α ∗ σj )(t )

1
 

2 
= 

1 ( x 2 − 2
 
 

p 
(xi Dij aj (t )) 

1 1 1   1 1 1 
2 i=1 

i 
i=1 j =1 

≤ 1maxj 1bj 1 + 1wij 1 (α ∗ σj )(t )1  m  p (15) 
j i 1 + ( Dij aj (t ))2) 

≤ 1B + nA(α ∗ σj )(t )1 i=1 j =1 

≤ 1B + nA 
∞ 

l =0 
e− l 

1 < ∞ (12) 
Now we can differentiate E∗ with respect to Dyz to see how each 

individual dictionary element changes. 

∂E∗ 1  p
 

Implying the soma currents are bounded from above and below. 
Equipped with this knowledge, we can follow the proof by [14] 
and state u(t ) = [u1(t ), u2(t ), ..., up (t )]T has at least one limit point 

= (−2xy az (t ) + 2( 
∂Dyz 

 p 

 
j =1 

Dyj aj )az (t )) 

u∗ ∈ Rp such that u(tk ) → u∗ as the sequence of tk s → ∞ when 
k → ∞ from the Bolzano-Weirstrass theorem. 

= ( Dyj aj (t ) − xy )az (t ) 
j =1 

This implies: 

 
lim u·i (t ) = lim  1  (µi − ui ) = 0 (13) 

= −ry az (t ) 
Where ry represents the yth component of the residual. We can 

then expand into matrix form: 

t →∞ t →∞ t − t0 r1a1(t )  r1a2(t ) ... r1ap (t ) 
 Hence T (u(t  )) → T (u∗) = a∗, we can conclude the system  ∂E 

= − 
f
1r2a1(t ) . .  (16) 

k ∂D 1 . . . 
converges to the same limit found in A-LCA: 

 
0 = b − u∗ − (DT D − I )a∗ (14) 

 
2.5 Unsupervised Dictionary Learning 
The second part of the optimization process involves learning the 
best dictionary D for the given data set. Random features were 
first selected for the dictionary and a stochastic gradient descent 
algorithm with local Hebbian Learning rule was used to update the 
feature vectors of any active neurons so as to slightly improve the 
sparse reconstruction. 

 
2.6 L2 Differentiation 
First, lets look at the objective function for a sparse coding problem. 
x ∈ Rm is the input D ∈ Rmxp is our dictionary and a ∈ Rp is the 
sparse code. 

rma1 rmap 

= − raT (t ) (17) 

= − (x − Da(t ))a(t )T (18) 

The Hebbian learning algorithm [6] given a single input, x , is 
summarized in Algorithm 1. In practice, a mini-batch of input sam- 
ples are used for each update instead of a single input sample. Since 
our gradient system is proportional to the derivative of the energy 
wrt D of the LASSO problem, we know the learning process will 
descend the gradient of our neurophysiological representation. 

 
Algorithm 1 Dictionary Update  
Input: D ∈ Rm×p , a ∈ Rp , x ∈ Rm , η ∈ R+ 

Output: D ∈ Rm×p 
1: function update_dictionary(D, a, x , η) 
2: recon = Da 
3: residual = x − recon 
4: ∆D = residual aT 
5: D = D + η∆D 

1 2 6: for i = 1, 2, ..., p do 
E(a(t )) = 2 ||x − Da(t )||2 + λ||a(t )||1 

 
We expand on the reconstruction error term for purposes of 

gradient descent because the sparsity penalty drops after differenti- 
ation wrt D. 

7: Di = Di /norm(Di , 2) 
8: end for 
9: return D 

 10: end function  

m 
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Figure 2: Sparse dictionary learning. Sparse coding is often com- 
bined with dictionary learning in an alternating fashion. After 
computing a(t ) by minimizing Equation 1 with fixed D, D is then 
updated to minimize Equation 1 with fixed a(t ) (Algorithm 1). At 
each update, the dictionary only changes in the directions of the 
active neurons. 

 
3 METHODS 
3.1 A-LCA Implementation 
To compare S-LCA on Loihi to non-spiking LCA [12], we imple- 
ment a single LCA layer in PyTorch [11] using the LCA-PyTorch 
package. Specifically, we create a convolutional LCA layer with 
valid padding, 450 features of size 8 × 8, a stride of 8, and a rectified 
soft threshold. With this model, we trained a dictionary for 5,000 
updates (Algorithm 1) on 50,000 grayscale images of size 56 × 56 
selected from the COCO dataset [8] with λ = 0.5. The dictionary 
(Figure 3) was then used in both this non-spiking A-LCA model and 
the spiking S-LCA model in our comparisons on held out images 
from our COCO set. For our comparisons to S-LCA on Loihi, we 
use λ = 0.73 in this A-LCA to match the activation sparsity. 

3.2 S-LCA Loihi Implementation and 
Modifications 

The previous S-LCA implementation on Loihi that used only in- 
hibitory lateral connections [3][4] was structured the following 
way: 

Neurons in the spiking network are driven by a respective bias 
current b (not a spiking input) that is calculated once, at the be- 
ginning of a run, as the dot product of the dictionary element and 
the respective patch and is scaled then scaled to the available bit 
space. The weights in [3][4] are chosen to be positive definite and 
made to work via the construction of an expanded dictionary twice 
the size of the original, consisting of strictly positive dictionary 

Figure 3: The dictionary used by both the S-LCA and A-LCA 
models in our experiments. The dictionary (D) is composed of 
450 features of size 8 × 8. 

 
elements in the top half of the dictionary and inverted negative 
elements in the lower half. This S-LCA implementation converged 
towards a minimum to the LASSO sparse coding objective func- 
tion in which the feature vectors lacked negative sub-units. The 
lack of anti-aligned sub-units prohibited more biologically realistic 
environments where neurons can also excite one other. 

Here we demonstrate that the addition of these excitetory sub- 
units, in combination with the inhibitory sub-units, gives rise to 
a dynamical spiking system that behaves more closely to a con- 
ventional non-spiking A-LCA model (Fig. 4). Specifically, when 
features contain both excitatory and inhibitory sub-units, both pos- 
itive and negative lateral connections arise naturally via taking 
the transpose of the dictionary doted with its self. A given spiking 
neuron will now inhibit neurons with similar explanations of the 
same patch (positive inner product) but will excited neurons with 
dissimilar explanations (negative inner product). In addition, we 
re-implemented the ranges of biases, weights and activations such 
that there were no longer sign flips (integer overflow) due to the 
limited bit ranges on Loihi. 

4 RESULTS 
After initializing both the S-LCA and A-LCA models with the dic- 
tionary learned in Section 3.1 (Figure 3), both models were run 
on their respective hardware using the same test image with the 
parameters outlined in Sections 3.2 and 3.1. 

We show that our S-LCA exhibits closer dynamics to A-LCA 
than previous implementations of S-LCA by allowing only one 
neuron in each model to receive an input drive while all other 
neurons received no input drive. Since earlier S-LCA architectures 
contained no excitatory lateral connections, we hypothesized that 
only the neuron receiving input drive would be active in those 

https://github.com/MichaelTeti/lca-pytorch
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Figure 4: Our modified S-LCA model contains excitatory con- 
nections like in A-LCA. Activation when only the neuron best 
aligned with the input patch receives bias drive; all other biases 
were set to zero. A-LCA model (top) and our implementation of 
S-LCA on Loihi (bottom right) exhibit activity for neurons with zero 
input drive, while the previous S-LCA implementation on Loihi 
(bottom left) [3] doesn’t excite activity of other neurons (bottom 
left), confirming an absence of excitatory connections. 

 
models. In contrast, our S-LCA and A-LCA contain excitatory lateral 
connections, which should raise the membrane potential of some 
of the other neurons above threshold even without input drive. 
In Figure 4, we confirm this, as both A-LCA (top) and our S-LCA 
(bottom right) have multiple neurons active, whereas the previous 
S-LCA (bottom left) only has one active neuron (the only one with 
a non-zero input drive). In both A-LCA and our S-LCA, the same 
neurons appear to be active at qualitatively similar activity levels 
as the system converges. 

Figure 5 illustrates the activation of each neuron in the S-LCA 
model and the A-LCA model as a function of initial input drive. 
Both our S-LCA and the A-LCA contain neurons which are active 
in the sparse representation despite having negative input drive (i.e. 
anti-aligned with the stimulus), whereas the previous S-LCA has 
only the driven neuron active since there was no mechanism for 
excitatory connections to other neurons. We can also see that our S- 
LCA provides a reasonable match to A-LCA despite the quantization 
that takes place on Loihi. Next, we compare the sparse activation of 
each neuron in our S-LCA directly against that in the A-LCA (Figure 
6). Here, we can see further evidence that our S-LCA performs very 
close to A-LCA, as the activations lie close to the diagonal indicating 
that our S-LCA converged to A-LCA. 

Finally, we compare our S-LCA model to the A-LCA model by 
examining the reconstructions of the input image produced by each 
model from the sparse representation. By comparing the recon- 
structions visually, we validate that our S-LCA produces a similar 

Figure 5: Input drive vs. final activation. Our S-LCA model 
produces a similar shape to the A-LCA model. Both models contain 
a few neurons that became active with features that were negatively 
aligned with the input, which was not true for the original S-LCA 
model. The distinct levels of final activity for the S-LCA model 
demonstrate the bit precision limitation present on the hardware. 

 

 
sparse representation to the A-LCA. Figure 7 confirms that this 
is the case, as the reconstruction produced by our S-LCA model 
is very close to that produced by the A-LCA model. We can also 
observe that each model is using a very similar number of features 
to represent each patch. 

5 DISCUSSION 
In this work, we improved upon the previous S-LCA model, which 
only allowed inhibitory lateral connections between neurons, by 
developing an S-LCA model with both excitatory and inhibitory lat- 
eral connections that more closely matches A-LCA. Specifically, we 
first prove that our S-LCA system converges to the same limit found 
in A-LCA. Next, we implemented our S-LCA on the Loihi neuromor- 
phic processor and initialized it with the same input and dictionary 
as a comparable A-LCA implemented on CPU/GPU hardware. We 
then performed the first neuron-by-neuron comparison between 
S-LCA and A-LCA and show that the sparse latent representation 
in our S-LCA converges to that of A-LCA. 

This work is one of a few examples in which a spiking algorithm 
implemented on modern neuromorphic hardware exhibits almost 
an exact match to the comparable classical implementation under 
a realistic task. As a result, the performance of our S-LCA imple- 
mentation meets or exceeds that of A-LCA implementations across 
the board, as S-LCA implementations on Loihi have already been 
shown to require much less power and time to converge [4][3]. This 
opens the door for the development of fast, low-power AI models 
in applications where A-LCA has already proven to be valuable, for 
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Figure 6: The rate code solution for our S-LCA model is a 
very close match to the A-LCA solution. Each point represents 
a single neuron out of the 450 × 8 × 8 = 28, 800 neurons in our 
model. The difference in scale on each axis is due to how the spikes 
are integrated. 

 

 

Figure 7: The number of active neurons per patch in our S- 
LCA model is very close to that in the A-LCA model. The 
number of neurons active per patch is laid over the final sparse 
reconstructions of the S-LCA (left) and A-LCA (right) models, which 
illustrates that our S-LCA model closely matches A-LCA both at 
the image and patch level. 

 
example as a robust frontend for convolutional neural networks 
[15]. 

One limitation of this work is that we have only considered the 
non-convolutional case by using a stride equal to the patch size. 
Although it is unlikely that our S-LCA and A-LCA will perform 
drastically different in the convolutional setting, future work will 
need to verify this. In addition, future work can extend our S-LCA 

implementation to the spatio-temporal domain, perhaps by using 
video inputs or those from a dynamic vision sensor. This will allow 
us to develop and test models that are even closer to biological 
visual processing. 

6 CONCLUSION 
We developed an improved spiking LCA algorithm with both in- 
hibitory and excitatory lateral connections, contrary to the previous 
spiking LCA implementation which only included inhibitory lat- 
eral connections. We then implemented our spiking LCA model on 
a modern neuromorphic processor, namely Intel’s Loihi, and we 
performed the first comparison of individual activations between 
spiking LCA on neuromorphic hardware and non-spiking LCA on 
CPU/GPU hardware. We show that our spiking LCA implemen- 
tation exhibits a closer match to the non-spiking LCA than the 
previous spiking implementation, both qualitatively and quanti- 
tatively. In addition, our LCA implementation provides a deeper 
insight into how non-spiking LCA and spiking-LCA are related 
when instantiated on neuromorphic substrates, while providing 
one of the few examples in which a spiking algorithm implemented 
on neuromorphic hardware performs as well as or better than the 
classical implementation across the board. 
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Fast Post-Hoc Normalization for Brain Inspired 
Sparse Coding on a Neuromorphic Device 

Kyle Henke , Garrett T. Kenyon, and Ben Migliori 

 
Abstract—Exploration of novel computational platforms is critical for the advancement of artificial intelligence as we approach the 
physical limitations of traditional hardware. Biologically accurate, energy efficient neuromorphic systems are particularly promising for 
enabling future breakthroughs because of their ability to process information in parallel and to scale using extremely low power. Sparse 
coding is a signal processing technique which has been known to model the information encoding in the primary visual cortex. When 
sparse solutions are solved using local neuron competition along with the unsupervised dictionary learning that mimics cortical 
development, we can build an end to end, hardware to software, brain inspired solution to a machine learning problem. In this article, 
we perform a detailed comparison of sparse coding solutions generated classically by orthogonal matching pursuit (OMP) implemented 
on a conventional digital processor with spike-based solutions obtained using the Intel Loihi neuromorphic processor. A novel “post- 
hoc” normalization technique to shorten simulation time for Loihi is presented along with analysis of optimal parameter selection, 
reconstruction errors, and unsupervised dictionary learning for Loihi approaches and their classical counterparts. Preliminary results 
show that both the Loihi full simulation approach and the post-hoc normalization approach are well suited to neuromorphic processors 
and operate in a size, weight and power regime that is not accessible by classical approaches. Ultimately, the use of this normalization 
technique allows for faster and, often, better solutions than demonstrated previously. 

 
Index Terms—Neuromorphic computing, machine learning, artificial intelligence, neurocomputers, computer vision, signal processing 

Ç 
 

1 INTRODUCTION 
HE impending end of Moore’s Law has created a need 
for new computational substrates if scientists are going 

to continue making progress in the pursuit of artificial gen- 
eral intelligence (AGI). In this work, we draw inspiration 
from neuromorphic computing and “wet” neuroscience as 
a potential solution to modern computing limitations with 
the end goal of AGI in mind. Specifically, we focus on the 
encoding of low-dimensional inputs into a sparse, efficient, 
high-dimensional space. This process is known to account 
for experimental neurobiological measurements [8], [12] 
and to support efficient neuromorphic computation [3]. 

Sparse coding is a signal processing technique which 
models neurobiological sensory input encoding in living 
systems. Part of solving the sparse coding problem involves 
the unsupervised learning of a dictionary. This dictionary, 
technically an overcomplete spanning set, can be done in a 
biologically inspired manner using only local information 
available at the synapse. Given a dictionary, the algorithm 
must choose which elements to apply to reconstruct an 
input with the fewest possible active dictionary coefficients. 
This approach is particularly interesting for our study as it 
enables an end-to-end neuromorphic approach, where both 

 

• The authors are with the Computer, Computational, and Statistical Sciences 
(CCS-3), Los Alamos National Laboratory, NM 87545 USA. 
E-mail: {khenke, gkenyon, ben.migliori}@lanl.gov. 

Manuscript received 2 Sept. 2020; revised 27 Feb. 2021; accepted 8 Mar. 2021. 
Date of publication 24 Mar. 2021; date of current version 18 Aug. 2021. 
(Corresponding     author:     Kyle     Henke.) 
Recommended for acceptance by S. Pakin, C. Teuscher, and C. Schuman. 
Digital Object Identifier no. 10.1109/TPDS.2021.3068777 

the hardware and algorithm are operating in a bioinspired 
manner. 

Here, the focus is on a class of algorithms based on Hop- 
field networks, which are fully recurrent dynamical neural 
circuits governed by fixed point attractors [1]. Specifically, 
sparse attractor networks in which a uniform applied field 
is used to globally suppress activity, encouraging solutions 
consisting of a minimum number of active elements are con- 
sidered and possess several properties that make them ideal 
for comparing digital and neuromorphic processors [2]. 
First, sparse attractor networks compute solutions to diffi- 
cult optimization problems by settling into low-energy 
states that are embedded in complex energy landscapes 
containing multiple local minima. Second, by exploiting 
local learning rules to sculpt the energy landscape to better 
model the input data, such networks are naturally self-orga- 
nizing and unsupervised learning emerges. Optimal solu- 
tions to sparse coding are NP-hard [2], but many 
approaches achieve adequate solutions. The bioinspired 
locally competitive algorithm (LCA) [13] implemented by 
Intel on Loihi [3] is an excellent example of such an 
approach. The full simulation provided from Intel is shown 
to allow for unsupervised dictionary learning and construc- 
tion of sparse codes. However, the overall stimulated neural 
activity shows regions of rapid decay and slow decay that 
are not leveraged for any purpose in the Intel implementa- 
tion. Here, we utilize a “post-hoc” normalization step that 
terminates the simulation at the end of the rapid decay seg- 
ment and gives solutions faster and of lower reconstruction 
error than the full simulation, albeit at the cost of lower 
sparsity. 

In this paper, we will first proceed by describing the low 
energy Loihi chip and the sparse coding problem in more 
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detail. Subsequent text will explain the classical orthogonal 
matching pursuit (OMP) solution and our new post-hoc 
normalization technique to extend Loihi’s capabilities. 
Finally, comparisons using similar optimal sparsity levels 
suggest OMP still beats the neuromorphic approaches in 
terms of reconstruction error and compute time, but at sig- 
nificantly higher power consumption. 

Notably, our contribution enables researchers to choose 

and ui is the firing threshold for each vi. Note all vi’s are ini- 
tialized with values less than their respective ui and are 
reset to 0 after the spikes occur. 

Plugging Equation (1) into Equation (2), we obtain the 
differential equation for the ith neuron’s membrane poten- 
tial as 

where in the parameter space of speed and sparsity they _ 
1 X 

w 
ða  s ÞðtÞþ b - u s (3) 

wish to operate; this has implications for practical applica- 
tion of neuromorphic sparse coding. 

viðtÞ ¼ -  
tv 

viðtÞþ   
i6¼j 

i;j  u j i i i 

 
2 PREVIOUS WORK 
Intel produced significant work on implementing the spik- 
ing LCA sparse coding/LASSO model onto their novel 
Loihi chip. We will give a brief overview of their device for 
better understanding of the implementation, but encourage 
readers to see [3] for more details. 

The Loihi neuromorphic computing device implements 
spiking neural networks with neurons realized in hardware 
as the basic processing elements. Loihi, like its predecessors 
SpiNNaker[4] and TrueNorth [5], represents information as 
single-bit impulses, or spikes, transmitted at specific times 
and directed towards specific targets through programma- 
ble connections known as synapses. As a result, time and 
parallelism are explicitly incorporated into the representa- 
tion and the network operates as a dynamical system com- 
municating through these spikes. An implementation of 
spike timing dependent plasticity makes Loihi capable of 
online learning, in addition to being capable of inference [3]. 

In the general spiking neural network described on Loihi, 
spike trains are formulated as a sequence of Dirac delta 
functions of the form sðtÞ ¼ k dðt - tkÞ where tk is the time 
of the kth input spike. Each neural unit on the device imple- 
ments an asynchronous discrete-time implementation of 
Leaky Integrate and Fire (LIF) neurons with internal state 
variables consisting of a ui ¼ synaptic response current 
and a resulting vi ¼ membrane potential for each neuron 
i ¼ 1; 2; . . .  :; n [3]. The system evolves in time and propa- 
gates information through the specified network graph with 
timing and patterns of neural activity defining the computa- 
tional tasks. The entire network relationship can be summa- 
rized by the following equation for the synaptic response 
current for each neuron: 

 
uiðtÞ ¼ wi;jðau  sjÞðtÞþ bi; (1) 

i6¼j 
 

where auðtÞ¼ð 1 Þexpð-tÞHðtÞ is the synaptic filter impulse 

Intel implemented a convolutional Spiking Locally Com- 
petitive Algorithm (S-LCA) problem on Loihi and defined 
the solutions as the stable, converged average spike rates of 
the general solution to the above system of differential 
equations. A more detailed explanation can be found in Sec- 
tion 3.3, but most notably for our work, they observed a 
rapid decrease in the cost function after only a few simula- 
tion steps, implying the neurons with the highest initial 
excitation are more likely to spike early in time and will 
immediately out-compete and inhibit other neurons. How- 
ever, this observation was not applied to the Intel S-LCA 
solution. 

3 METHODS 
3.1 Mean Zero Fashion-MNIST Data Set 
Fashion-MNIST dataset [6] is a 28 x 28 greyscale labelled 
image dataset with ten classes. Fashion-MNIST is signifi- 
cantly more difficult than the classical MNIST challenge but 
is still tractable for most modern machine learning algo- 
rithms. However, the individual images in Fashion-MNIST 
are still too large (784 dimensions) to fit on many novel com- 
puting substrates studied by the authors (i.e., the D-Wave 
quantum annealer) and thus sparse PCA was used to obtain 
a reduced dimensional representation. Although Loihi is 
capable of scaling to handle datasets of this dimension eas- 
ily, we purposefully studied the minimal feasible problem 
such that this study may be compared with others in our 
research series. To determine the sparse PCA coding, the 
Henze-Penrose (HP ) [6] statistic for estimating class separa- 
bility was used to estimate the minimum dimensionality for 
the Fashion-MNIST data set that does not substantially 
degrade classification performance [7]. The data set was 
reduced via sparse PCA and the HP statistic was calculated 
for each reduction. When DHP begins to increase rapidly 
(the “HP Rollover Point”) it indicates the dataset compres- 
sion is causing large changes in cluster overlap. Using the 
elbow criteria heuristic, the critical point for Fashion- 
MNIST was found to be 32 dimensions. To confirm that a 

response with HðtÞ as the unit step function and bi is a con- 
stant bias. Here wij is the synaptic weight from neuron-j to i 
and tu is a time constant. We can then describe the mem- 
brane potential viðtÞ by the following dynamical system dif- 
ferential equation: 

32-dimensional fashion MNIST contained a classification 
challenge of similarly difficulty to the uncompressed repre- 
sentation, we trained SVMs to classify both original and 
compressed datasets. The RMS change in the confusion 
matrix (where 0 is no accuracy, and 1.0 is perfect accuracy) 
between the 784-dimension and 32-dimension representa- 

1 v_iðtÞ¼-  viðtÞþ uiðtÞ- uisiðtÞ; (2) tion was .007. The SVM and HP metrics together demon- 
tv 

 

where vi ¼ membrane potential , tv is a second time con- 
stant capturing the leakage of potential out of each neuron, 

strate  that  neither  the  problem  difficulty  nor  the 
classification accuracy significantly changed under com- 
pression [7]. The sPCA vectors were then used to recon- 
struct reduced dimensional images. Each image was 
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divided into an array of 4 x 4 non-overlapping patches, 
with each patch 7 x 7 pixels in extent. Each patch was inde- 
pendently sparse coded. The resulting sparse reconstruc- 
tions of each patch could be reassembled for comparison 
with the original image to verify that the sparse encoding 
was reasonable. 

3.2 Sparse Coding 
In mathematical notation, we are trying to solve the two 
step optimization problem 

• Step 4: Find the feature fp that has the maximum 
absolute value of the inner product with current 
residual ~r i - 1 i.e., solves 

max fp
T ~r i- 1 : 

 
• Step 5: Set column Ai ¼ fp from step 4. 
• Step 6: Create projection operator onto the linear 

space spanned by A as Pi ¼ AðAT AÞ-1AT 
Update r~r~i ¼ ðI - P i Þ I~I~  where I is the Identity 

matrix. 

~ ~ 1 ~ ~ 2  k~k  (4) 
• Step 7: If i ¼ k, solve 

EðI; aÞ ¼ min½ 
~a;f 

jjI - fajj 2 þ ,\ a 1; minIA~s - I~I~I : 
~s 

I I
2 

where ~I is the input we want to reconstruct, ~a is the 
sparse vector being solved for, and f is the set of basis func- 
tions (or features/neurons in our interpretation) used for 
the reconstruction. When the dictionary f is overcomplete, 
meaning there are more features than the length of the 
input, an infinite number of solutions to the minimization 
problem become possible. Therefor, a ,\ sparsity penalty is 
introduced into the cost function to represent the uniform 
applied field and create a unique solution. Additionally, 
when the dictionary f is of larger size, the process more 
closely resembles the human V1 receptive field [8] and we 
are able to stay closer to biology. For the interested reader, 
we recommend [8], [13] 

3.3 Orthogonal Matching Pursuit (OMP) 
Orthogonal matching pursuit is a classical iterative greedy 
algorithm used for solving the sparse coding problem for 
final solution ~a .  At each step of the algorithm, the feature in 
the dictionary f which is most correlated with the current 
error vector, or residual, is selected and placed into the basis 
set of features for reconstructing the input image I~I~. Next, 
the algorithm updates the residual, or error vector, by pro- 
jecting the input image I~I~ onto the linear subspace spanned 
by the features that have already been selected in previous 
iterations. Since the residual or error vector at each step of 
OMP are orthogonal to all of the features previously 
selected, no feature is selected twice and the subset of our 
dictionary f used for final reconstruction grows at each 
step. This process continues until some stopping criteria is 
reached. In this work, we iterate until enough features are 
selected to match the optimal sparsity level found for the 
separate Loihi techniques. Once the basis vectors are 
selected, the least squares problem of the selected columns 
is solved for non-zero coefficients of the sparse solution. 

The OMP algorithm can be precisely stated with the fol- 
lowing steps. 

• Step 1: normalized the features in the dictionary f so 
that kfik2¼ 1 for p ¼ 1; 2; . . .  : ;n where n is the num- 
ber of features in the dictionary. 

• Step 2: Select k as the number of nonzero coefficients 
we want in the solution vector. 

• Step 3: Initialize residual vector r~0 ¼ I~I~ and pre-allo- 
cate the basis set for reconstruction A as a matrix of 

Set coefficients of the solution to the above minimi- 
zation problem ~s as non-zero coefficients in final cor- 
responding sparse solution ~a .  Here A is of rank 
k « n and we select the k corresponding features of 
f that were selected during Step 4 to be active by the 
magnitude of the weights in ~s .  

Else, set i ¼ i þ 1 and return to Step 4. 

3.4 Locally Competitive Algorithm (LCA) 
Implementation for Finding Sparse 
Representations of Data 

In the human brain, individual neurons respond to specific 
stimulus at varying degrees of initial activation. After a 
period of time, the final encoding of the input is represented 
by only a few of the neurons which best characterize the 
data. 

 
3.4.1 Lateral Inhibition 
Previous work [13] has shown that sparse coding optimization 
problems can be solved using the dynamics of neural net- 
works incorporating lateral inhibition. This biologically plausi- 
ble implementation, known as a locally competitive algorithm, 
encourages sparse solutions by allowing neurons to compete 
with each other for fractional representation of the input. 
When used with a loss function that penalizes neural activa- 
tion, the resulting dynamical system will evolve to a sparse 
solution. However, such dynamical systems are susceptible to 
local minima. They also require inter-layer connectivity, either 
directly or through regularizations. 

 
3.4.2 Neuromorphic Hardware for Sparse Attractor 

Networks 
The neuromorphic implementation of sparse coding sends 
binary signals as spikes in response to current flowing from 
signals sent by neighboring neurons or inputs which can 
either excite or inhibit one another while also decaying 
according to a leak of potential over time when there is no 
input. The neuromorphic implementation injects current 
weighted according to a non-orthonormal basis (fT~I ) into a 
network of neurons and reads outputs as spike rates ~a .  The 
sparse coding loss function (Equation (4)) can be approxi- 
mated as 

zeros of size m x k where m is the length of the input ~ ~ 1 ~ ~ 2 
Z 

ð~v - T ð~vÞÞ; (5) 
image I~I~. Set iteration counter i ¼ 1. 



Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:52 UTC from IEEE Xplore. Restrictions apply. 

 

 

EðI; aÞ¼ ðI - faÞ 
2 

ðI - faÞþ  ,\ 

HENKE ET AL.: FAST POST-HOC NORMALIZATION FOR BRAIN INSPIRED SPARSE CODING ON A NEUROMORPHIC DEVICE 305 

where we assume the existence of an input/output trans- 
fer function ~a ¼ T, \ ð~vÞ with threshold ,\, the details of which 
are determined by the nature of the leaky integrate-and-fire 
process. We use this substitution in order to write the 
dynamics in terms of the membrane potential ~v .  

~ 1 ~ ~ T ~ ~ 
Z 

ð~v - T ð~vÞÞ (6) 

1 ~T~ ~T ~ ~T T ~ 
Z 

ð~v - T ð~vÞÞ: (7) 
¼  ðI 

2 
I - 2ðI faÞþ a f faÞþ ,\ Fig. 1. Example of LCA structure in a network of V1 Neurons. Input 

image components I1 and I2 are fed into a layer of neurons which repre- 
sent the features, or columns of f. Blue lines represent the connection 

Taking the gradient of the cost function directly above 
with respect to the sparse vector ~a ,  substituting in T,\ ð~vÞ ¼  
~a ,  we arrive at 

@E 
¼ -~I T  f þ fT fT ð~vÞ þ ~v - T ð~vÞ :  (8) 

strength between each fi and the input image found by the vectors inner 
product. Each fi competes with all other neurons, represented by the 
red connections and their respective inner products, to find which sparse 
combinations of features best represent the input as the system evolves. 

 

@~a  ,\ ,\ 

 
Taking the opposite (negative) direction of this gradient, 

we obtain the following set of coupled differential equations 
defining a non-linear dynamical system for the membrane 
potential with t as the appropriate time constants from 
Equations (1) and (2) 

~_ 
1 

~ T~ T ~ ~  (9) v ¼  ð-v þ f 
t 

I - f f • T,\ðvÞþ T,\ðvÞÞ 
 

1 ~ T~ T ~ (10) 
¼  ð-v þ f 

t I - ðf f - IÞ• T,\ðvÞÞ: 

Although the precise form of T,\ ð~vÞ is unspecified, we none- 
theless anticipate the network of leaky integrate-and-fire 
neurons implemented in neuromorphic hardware will tend 
to a state of activity that minimizes a sparse reconstruction 
objective function of the above form. 

The -~v term acts as the decay piece of the system, slowly 
decreasing the potential of each neuron over time. If an 
active neuron is not continuously excited, it will rapidly fall 
below firing threshold and deactivate because of inhibition 
and leaking potential. The input stimulus f T ~I  term charges 
up each of the neurons, exciting neurons whose features 
best match the input, and is the reformulation of the con- 
stant bias ~b from the vectorized Equation (1). ðfT f - IÞ•  
T,\ ð~vÞ is the inhibitory signal corresponding to the original 
off diagonal weights wij also from Equation (1), forcing neu- 
rons which explain a similar component of the data to com- 
pete by inhibiting one another (Fig. 1), making our 
formulation a special case of the general form of network 
dynamics found in Equation (3). This competition continues 
until the equation converges to a stable fixed point sparse 
representation of average spike rates of the neurons, and 
this fixed point has been shown to be identical to the solu- 
tion of the optimization problem [3], [13]. 

3.5 Post-Hoc Normalization 
As the Loihi system evolves through time, the spiking neu- 
ral network provides a rapid decrease in error in typically 
the first 100 timesteps (Fig. 2). During this period, the most 
important neurons immediately dampen out other active, 
but less important features. The remainder of the 6,000 steps 
of the simulation time are used to slowly achieve an initial 

 
 
 

Fig. 2. Simulation time steps are on the x-axis. Red dotted line repre- 
sents where most significant neuron competition has already occurred 
and activity is dampened out. Top Panel: Average spike rate of neurons 
in network. Middle Panel: A spike raster plot of how often active neurons 
are firing over the simulation. Lower Panel: The value of the objective 
function and the long regularization time after the initial fit plateau. The 
vast majority of the reduction in the loss function occurs early in the 
simulation. 

 
 

fit plateau and then to effectively “normalize” the rates of 
the neurons corresponding to the most important features 
in the final solution. This happens because the final solution 
represents the dot product between the spike rate over sim- 
ulation time and the corresponding feature vectors associ- 
ated with active neurons. As a simulation runs longer, 
quiescent neurons have their contribution effectively 
diluted by slow but active neurons. This behaves similarly 
to feature normalization and allows the final result to scale 
to the inputs. 

In an attempt to speed up the time to solution, we imple- 
ment a post-hoc normalization technique where the simula- 
tion is ended after 100 steps and rates are immediately 
normalized. As (Fig. 8) and Table 1 suggests, these solutions 
are often times even better in terms of final reconstruction 
error than their full simulation counter parts and also acti- 
vate the same features (Fig. 7). Although post-hoc normaliza- 
tion does not yield completely binary solution vectors, we 
believe the early normalization provides a better approxi- 
mation because the rates of those neurons left over are 
much more uniform than if left to longer regularization. 
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TABLE 1 
Table of Compute Times, Power Consumption, 

and Average Reconstructions 

• Step 3: Select image I~I~ f r o m  mini-batch. 
• Step 4: Solve sparse coding problem for ~a using OMP 

or with LCA using a Loihi technique. 
Step 5: Calculate error of reconstruction 

~r ¼ I~I~- f~a:  
 

Step 6: Take outer product of error with sparse solu- 
tion to find error in direction of active features. This 
matrix will have zeros down the columns of the inac- 
tive features. 

 
Df ¼ ~r~aT  : 

 

Standard deviations are in () for available data. There is significantly less 
power consumption for Loihi and the post hoc approach allows for faster, more 
energy efficient solutions to better approxiate OMP. 

 
More importantly, this post-hoc normalized representation 
is closer to a true ‘0 norm. Take the following thought exper- 
iment: in a particularly lucky initialization, the only active 
neurons in a Loihi simulation are those corresponding to 
the optimal sparse solution. Those neurons all fire in a bal- 
anced way throughout the simulation, such that at the end, 
each has fired an equal number of spikes. When the rate/ 
dictionary dot product is then taken, the end result is identi- 
cal within a scaling factor to that achieved if the first spike of 
each neuron was taken and the simulation then stopped. 
This thought experiment is, in fact, a binary coding; how- 
ever, Loihi does not natively achieve this type of coding. By 
limiting our sampling to a region of simulation in which 
inhibiting (i.e., active neurons) have not fully quieted non- 
active neurons but the loss has dropped to the initial pla- 
teau, we achieve a representation in which each active fea- 

• Step 7: DfTotal ¼ DfTotal þ Df Return to Step 3 until 
done with mini-batch 

• Step 8: Update dictionary f with chosen learning 
rate h 

f1 ¼ f þ hDfTotal: 
 

• Step 9: If kf1 - fk < tolerance, END 
• Step 10: f ¼ f1 
• Step 11 (Optional): Normalize columns of f 
• Step 12: Return to Step 2 

3.7 Input Amplification and Optimal Sparsity 
As previous work has shown [14], in order to successfully 
reconstruct the Fashion-MNIST dataset using overlaid dic- 
tionary elements, a b parameter must be introduced into the 
cost function to amplify the input away from unit norm and 
allow multiple features to be utilized. This creates a modi- 
fied cost function used in our scoring, 

ture is either present or not without the dilution discussed 
above. Thus it is a closer approximation to a true ‘0 norm, 
but must be normalized to the correct magnitude to com- 

Eð~I; ~aÞ ¼ mina f 
1 

jjb~I - f~ajj2 þ ,\jjajj 
2 1 

  
: (11) 

pute the reconstruction and compare it to the input. As the 
normalization is a computationally simple step on conven- 
tional hardware, we move it outside of the neuromorphic 
system and apply it post-hoc. This results in both a speed- 
up and a sparse code in which the simulation cannot dilute 
certain components away. 

 
3.6 Unsupervised Dictionary Learning 
The second part of the optimization process involves learn- 
ing the best dictionary f for the given data set. Random fea- 
tures were first selected for the dictionary and a stochastic 
gradient descent algorithm with local Hebbian Learning 
rule was deployed using the both Loihi approaches and 
similar sparsity levels using classical Orthogonal Matching 
Pursuit [15]. The learning algorithm can be summarized as 
follows: 

• Step 1: Select a random set of length m image patches 
I~I~p for p ¼ 1; 2; . . .  ; n. These patches will make up the 
initial features of f. Here n >>m to satisfy overcom- 
plete requirement. Select subset of all patches for 
training. 

• Step 2: Select mini-batch of training data and set 
DfTotal ¼ 0 

The selection of the appropriate b parameter is depen- 
dent on specific architectures. 

4 RESULTS 
Final sparse representations are found through a sequential 
process by first tuning the device towards the particular 
problem, and then training an optimal dictionary for the 
dimensionally reduced Fashion-MNIST data set. 

4.1 Beta and Lambda Tuning for Loihi 
For selecting the input amplification b term and the sparsity 
penalty ,\ we performed hyperparameter optimization and 
recorded the reconstruction error, computed as b ~I  - f~a  
for a subset of images. Figs. 3 and 4 show the full simulation 
Loihi requires an input amplification of at least 8 in order to 
achieve reasonable reconstructions, and the post-hoc nor- 
malization doesn’t require the amplification, but does bene- 
fit significantly. 

4.2 Unsupervised Dictionary Learning With Sleep 
The unsupervised learning algorithm from methods section 
F was implemented for the two Loihi techniques and with 
OMP using the same sparsity levels. OMP gave clean 

  

 Full Simulation 
Loihi 

Post hoc 
Loihi 

OMP • 

Avg. Compute Time 13.77 (1.697) .316 (.03) .007  
(sec)   (.006)  

Power (W) 1.07 1.23 18.71 • 

Energy (mJ) 101059.8 172.5 17610  

Percent Active 9.22 (1.87) 9.33 (2.38) 9.37  
Features   (.01)  

Avg. Reconstruction .393 (.131) .369 (.1574) .178  
Error   (.08)  
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Fig. 3. Reconstruction error/loss plotted as a function of input amplifica- 
tion b. These values indicate how far away from unit norm the input must 
be for best reconstructions and are a unique characteristic of the distinct 
architectures. Full Loihi simulation on our problem has a more clear 
necessity to be above unit norm (Top), while the post-hoc approach 
starts with relatively good reconstructions and gets consistent improve- 
ment the higher the input is amplified (Bottom). 

Fig. 4. Optimal sparsity penalty ,\ selection. Each graph has reconstruc- 
tion error/loss in blue and active feature percentage in red. There is a 
clear optimal sparsity level dictated by full simulation Loihi (Top), and 
post-hoc normalization technique on Loihi (Bottom) roughly exhibits a 
monotonic relationship. We can impose the same level of sparsity as the 
full time simulation Loihi on the post hoc approach by drastically increas- 
ing the penalty term ,\. 

 
reductions in overall reconstruction error, but the Loihi 
approaches encounter various problems. 

Previous work on Loihi [16] shows introducing periodic 
normally distributed noisy examples (or sleep) into a learn- 
ing algorithm allows for better convergence towards an opti- 
mal solution. With this motivation in mind, we initialized the 
full simulation Loihi algorithm with random features and 
introduced noisy data at set intervals as an amendment to 
the learning algorithm presented. Two separate runs were 
performed where Step 9 (feature normalization) was either 
performed, or skipped. Fig. 5, shows convergence of both 
techniques towards an optimal dictionary, but eventually 
start overfitting. To alleviate this result, we chose to stop the 
algorithm when the reconstruction error for a mini-batch 
was larger than the previous 3 batches. While the unnormal- 
ized approach results in slightly better reconstructions on the 
pure Loihi implementations, the average reconstruction on 
Loihi was significantly better when the trained OMP dictio- 
nary was fed to the device. The same algorithm was imple- 
mented with the post-hoc approach, but no learning was 
present, even though the reconstructions were consistently 
lower than their full simulation counterpart. A comparison 
of dictionary elements optimized for OMP are shown in 
Fig. 6 where we can see cleaner edges present after training. 

4.3 Reconstructions and Performance 
OMP dictionary learning gave best reconstructions for all 
techniques and was used for final comparisons. Table 1 
shows each of the approaches used the same sparsity level. 
Post hoc is able to give better reconstruction almost 50 times 
faster and at significantly less energy. OMP uses more 
power, but also gives the best reconstructions in less time. 
See Fig. 8 for repatched results. 

 
5 DISCUSSION 
The LCA implementation for solving the sparse coding 
problem was successfully run on the Loihi spiking neuro- 
morphic chip and compared to the results from Orthogonal 
Matching Pursuit after hyperparameter optimization. Loihi 
is able to use weighted amounts of each feature for recon- 
struction, but because the solutions are spike rate limited, 
they do not have as much resolution as the continuous coef- 
ficients of the OMP solutions given the fixed length of the 
simulation. However, the post-hoc method is driven by our 
desire to converge as quickly as possible. Thus, it has even 
less ability to tune neural coefficients to create an accurate 
reconstruction as (see Fig. 2) the simulation is terminated 
before a subset of neurons can be inhibited and turned off. 
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Fig. 5. Stochastic gradient descent with local Hebbian rule dictionary 
learning results. Random features are fed into the algorithm and solu- 
tions are found using OMP (Bottom) and Loihi simulation (Top). Orange 
is no noise and no sleep, blue is the result when dictionary features are 
normalized after every epoch with periodic noise, green line represents 
when features are not normalized, periodic noise is introduced with stop- 
ping criteria, and red is the post hoc unormalized with noise results. All 
full time simulation Loihi approaches achieve initial learning before over- 
fitting with the un-normalized noisy approach providing best solution. 
OMP shows more consistent learning and much lower average recon- 
struction error per batch. 

 

 
Fig. 6. Random patches selected for dictionary and their final form after 
the OMP unsupervised dictionary training. 

 
In the full length Loihi simulation, that subset becomes qui- 
escent, and the longer run times perform a similar normali- 
zation as our “post-hoc” method. This simulation-length 
normalization is achieved in Loihi as a consequence of the 
method of reconstruction; the reconstruction is given as the 
dot product between the dictionary and the spike rates. By 
allowing certain neurons to become quiescent and then con- 
tinuing to run the simulation, the average spike rate of 

Fig. 7. (Top Left) Feature/Neuron activation for a 10 image subset solved 
by full time simulation Loihi. (Bottom Left) Post hoc feature/neuron acti- 
vation counts are very similar to full simulation. (Right) OMP shows a dif- 
ferent distribution of utilized features showing evidence the continuous 
coefficients result in different activity. 

 

 
Fig. 8. Reconstruction comparison between Loihi techniques and similar 
sparsity levels with OMP. Average error for 10 images. 

 
some neurons is smoothly driven down. However, our 
“post-hoc” normalization step achieves a similar result in a 
fraction of the time, while utilizing contributions from all 
active neurons (i.e., dictionary elements) in a more uniform 
manner. To compare the performance, we constrain the 
OMP method, the Loihi method, and the post-hoc Loihi 
method to all have similar sparsity (approximately 9.3 per- 
cent percent activation). When this comparison is per- 
formed, the post-hoc method results in a statistically lower 
reconstruction error than the full simulation in less than 5 
percent of the time. This result will encourage the use of 
post hoc solution when an optimal dictionary has already 
been trained because reconstructions are better and feature 
activations are relatively the same. 

To perform an adequate comparison, the continuous 
OMP implementation was forced to have the same sparsity 
as the other two methods but had different feature activa- 
tions. As a result of the continuous coefficients available to 
OMP, this method resulted in the lowest reconstruction 
error; however, our analysis of power consumption (Table 1) 
shows that this technique consumes significantly more 
power and energy. 

One of the important observations from these experi- 
ments relates to the dictionary learning phase. In the exist- 
ing Loihi full length simulation method, dictionary learning 
can take place. It is also successful in the OMP methods. 
However, in the studies we present here, the use of post- 
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hoc normalization appears to place the system very quickly 
into a local minima for a particular dictionary. This can be 
seen in Fig. 5, where the post-hoc reconstruction error 
remains fixed throughout the epochs studies. Interestingly, 
when probed with random dictionary elements, the same 
phenomena is observed. This imposes an effective limita- 
tion on post-hoc normalization in that it makes the best of a 
given dictionary and is not yet amenable to further learning. 
We believe this is an artifact of the way in which batches 
and post-hoc normalization are computed, and warrants 
further study. Because we were able to achieve our initial 
objective of significant reconstruction speedup without fur- 
ther learning, we did not pursue this further within the 
scope of this paper. It should be noted that this could be an 
area of further optimization for the technique. 

 
6 CONCLUSION 
Our exploration of biologically inspired, energy efficient 
neuromorphic systems, for the purposes of continuing the 
advancement of machine learning past the limitations of 
classical approaches, has illuminated some of the poten- 
tially breakthrough advantages of novel computing sub- 
strates such as Loihi. By demonstrating significant speedup 
for a pre-defined dictionary at similar or better accuracy, 
our work indicates yet another route to algorithmically 
improve overall system throughput without any hardware 
changes. The application of post-hoc normalization allows 
computation of sparse representations in less than 5 percent 
of the full simulation time once the lambda ,\ (penalty) is 
tuned to provide the desired sparsity found in the full simu- 
lation. This has significant implications for the practical use 
of neuromorphic methods such as Loihi in resource-con- 
strained environments where available power and time for 
computation are finite. Unlike traditional sparse coding, 
manipulations to the cost function are required for optimal 
reconstruction when using full length simulation Loihi and 
our novel post-hoc normalization as described in the text. 
By forcing the sparsity of OMP to match that of what was 
optimal for different Loihi techniques, we were able to gen- 
erate classical comparisons of this method, albeit at higher 
power cost. Although OMP out-performed the Loihi 
approaches in terms of raw reconstruction, the Loihi techni- 
ques are rate coded solutions with fewer degrees of freedom 
and provide competitive results at dramatically lower 
power. In addition, the approximately 50 times speed up of 
our post-hoc reconstruction compared with the full length 
Loihi simulation provides an avenue for the neuromorphic 
device to better compete with traditional techniques in 
terms of raw computation time. Future work will include 
classical and quantum annealing LCA comparisons for the 

true binary sparse coding approximation of the post-hoc 
solutions, classical LCA to compare with the full simulation, 
and classification scores for all methods to demonstrate 
impact on downstream machine learning techniques. 
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Abstract—Machine Learning has achieved immense progress 

by exploiting CPUs and GPUs on classical computing hardware. 
However, the inevitable end of Moore’s Law on these devices 
requires the adaptation and exploration of novel computational 
platforms in order to continue these advancements. Biologically 
accurate, energy efficient neuromorphic systems and fully en- 
tangled quantum systems are particularly promising arenas for 
enabling future advances. In this work, we perform a detailed 
comparison on a level playing field between these two novel 
substrates by applying them to an identical challenge. 

We solve the sparse coding problem using the biologically 
inspired Locally Competitive Algorithm (LCA) on the D-Wave 
quantum annealer and Intel Loihi neuromorphic spiking proces- 
sor. The Fashion-MNIST data set was chosen and dimensionally- 
reduced by sparse Principal Component Analysis (sPCA). A sign 
flipped second data set was created and appended to the original 
in order to give each class a mean zero distribution, effectively 
creating an environment where the data could not be linearly 
separated. An early in time normalization technique for Loihi is 
presented along with analysis of optimal parameter selection and 
unsupervised dictionary learning for all three variations. Studies 
are ongoing, but preliminary results suggest each computational 
substrate requires casting the NP-Hard optimization problem in a 
slightly different manner to best capture the individual strengths, 
and the new Loihi method allows for more realistic comparison 
between the two. 

I. INTRODUCTION 

Throughout the scientific community there is growing con- 
cern of our increasingly rapid approach towards the theoretical 
limits of classical computation, better known as the end of 
Moore’s Law. In spite of this knowledge, reliance on machine 
learning and autonomous products has exponentially grown, 
and hence, the exploration of novel computational platforms 
which can overcome projected deficiencies is needed. The 
incredible efficiency of the human mind and powerful opti- 
mization potential of entangled quantum systems provides two 
avenues where projected limitations may be alleviated. 

Additionally, the importance of unsupervised learning has 
grown in the AI community as a means of advancing the 
field out of the narrow, or weak, AI regime and into a strong 
AI, or general intelligence setting. Here, we draw inspiration 

from the a human brain’s unmatched ability to generalize 
information by solving the sparse coding problem using the 
biologically accurate Locally Competitive Algorithm (LCA) 
and performing unsupervised dictionary learning using a local 
Hebbian rule on the D-Wave quantum annealing device and 
the Loihi spiking neuromorphic processor. 

a) Analog vs. Digital: Classical computing can be di- 
vided into two categories, depending on whether the under- 
lying circuits are digital or analog. Digital logic gates are 
universal, allowing the construction of computing architectures 
capable of running any valid program. Analog computers, 
conversely, use the dynamical evolution of a physical system 
to perform a given computation. While analog computers can 
be extremely fast and power efficient, the noise associated 
with the evolution of such systems causes difficulty when 
programming and often represents a major limitation. 

Neuromorphic processors, drawing inspiration from biolog- 
ical brains, comprise a class of ultra low-power analog devices 
that are capable of self-organizing in response structured input. 
In this sense, neuromorphic processors are able to “program” 
themselves, potentially alleviating a major limitation of ana- 
log computing devices. As we require computers to exhibit 
greater autonomy and intelligence, and the focus of comput- 
ing applications shifts toward machine learning and machine 
intelligence, analog neuromorphic processors are likely to play 
an increasingly prominent role [1]. 

The question of analog vs. digital systems maps into 
the quantum computing regime as well. Like their classical 
digital counterparts, quantum logic gates can, in principle, 
enable the construction of computers capable of running any 
valid program. Also like their classical counterparts, quantum 
analog computers, such as quantum annealing machines, are 
physical systems in which the dynamical evolution of the 
system performs the desired computation. Both analog and 
gate-based approaches to quantum computing seek to exploit 
quantum entanglement, superposition, and other quantum ef- 
fects to solve problems that would otherwise be intractable 
using a purely classical approach, a goal known as quantum 
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supremacy [2]. In this work, we focus on analog quantum 
computing entirely. 

b) Quantum Annealing: Quantum annealing refers to a 
class of quantum analog computers that “compute” by settling 
into a low-energy state of a particular Hamiltonian which 
describes the quantum system. The design of the first com- 
mercially available quantum annealing machines, produced by 
D-Wave [3], illustrates the general concept. D-Wave computers 
are constructed from superconducting quantum interference 
devices (SQUIDS), with each SQUID subject to a local 
magnetic field and coupled to neighboring SQUIDS by ad- 
justable links comprised of Josephson Junctions. Each SQUID 
represents a binary qubit that has two possible observable 
states, 0 and 1. In general, each qubit can exist in an entangled 
superposition of both states. The user programs a D-Wave 
computer by specifying the values of the pairwise coupling 
coefficients between qubits along with the local magnetic field 
applied individually to each qubit. 

In a classical annealing process, the system is prepared 
in a randomly chosen initial state at a finite temperature. 
Thermal fluctuations cause classical annealing systems to 
jump over local energy barriers and into new energy states, 
with transitions between states driven stochastically according 
to a Boltzmann distribution. Jumps to higher energy states 
are possible but exponentially less likely than transitions to 
lower energy states. As the temperature is lowered, classical 
annealing systems tend to settle into progressively lower 
energy states. The annealing process is repeated multiple times 
using different randomly chosen initial conditions, with the 
lowest final energy state achieved across all annealing runs 
representing the answer to the computation. 

The implementation of quantum annealing differs from 
classical annealing in several important respects. In quantum 
annealing, the system is not prepared in a single randomly 
chosen state as with a classical annealing process. Rather, 
a quantum annealing machine is prepared in an initial state 
that consists of a quantum superposition of all possible states. 
Using the D-Wave quantum annealing machine as a concrete 
example, a transverse magnetic field is applied to each qubit 
in the absence of any coupling between qubits. A D-Wave 
computer consisting of N qubits is thus prepared in an initial 
state that represents the superposition of all 2N possible 
observable states. In part, the computing power of quantum 
annealing machines derives from the ability to more effectively 
sample the entire energy landscape. 

Whereas classical annealing involves slowly lowering the 
temperature of the system, quantum annealing is implemented 
on the D-Wave by gradually turning on the user specified 
Hamiltonian while the transverse magnetic field is gradually 
turned off. Rather than jumping over local energy barriers, 
in quantum annealing a transition to new energy states is 
accomplished via quantum tunneling. In theory, quantum 
tunneling allows quantum annealers to avoid getting trapped 
in local minima. In practice, it is unlikely that any existing 
quantum annealing process can maintain quantum coherence 
over sufficiently large spatial and temporal regimes to achieve 

pure quantum annealing, but this limitation can be partially 
alleviated by running the anneal multiple times and sampling 
from the underlying Boltzmann distribution where the global 
minimum should eventually be present and hence observed. 

c) Neuromorphic Computing: Inspired by biology, Intel’s 
Loihi neuromorphic computing device implements spiking 
neural networks with neurons as the basic processing elements. 
Loihi, like its predecessors SpiNNaker [4] and TrueNorth 
[5], represents information as single-bit impulses, or spikes, 
transmitted at specific times and directed towards specific 
targets through connections known as synapses. Effectively, 
time and parallelism are explicitly incorporated into the rep- 
resentation and the network operates as a dynamical system 
communicating through these spikes. Because Loihi has spike 
timing dependent plasticity, it is not an inference-only device, 
but can also be used for online learning [6]. 

Users specify input as a sequence of Dirac delta functions 
or bias currents of the form σ(t) =  k δ(t − tk) where tk is 
the time of the k-th input spike. Each neural unit on the device 
implements an asynchronous discrete-time implementation of 
Leaky Integrate and Fire (LIF) neuron with internal state 
variables consisting of a synaptic response current and 
a resulting membrane potential [7]. The system evolves in 
time and propagates information through the defined network 
graph with timing and patterns of neural activity defining the 
computational tasks. 

The Loihi neuromorphic device we consider employs digital 
interconnections between spiking neurons to implement sparse 
attractor-based neural networks. A single Loihi chip has a 
manycore mesh comprising 128 neuromorphic cores, three 
embedded x86 processor cores, and off-chip communication 
interfaces that connect the mesh in four directions to other 
chips. An asynchronous network-on-chip (NoC) communi- 
cates between cores in the form of packetized messages. The 
NoC writes, reads requests, reads response messages for core 
management and x86-to-x86 messaging, spike messages for 
SNN computation, and provides barrier messages for time 
coordination between cores. All messages are collected by 
an external host CPU or on-chip by the x86 cores. Each 
neuromorphic core contains 1,024 basic spiking neural units 
grouped into sets of trees creating the neurons. In total, the 
basic architecture allows for 4096 on-chip cores and up to 
16,384 chips if the messages between chips are formulated in 
a hierarchical manner to allow off chip communication over a 
second-level network [6]. 

II. RELATED WORK 
An earlier comparison of quantum annealing and neuromor- 

phic architectures sampled from a distribution defined by a 
Limited Boltzmann Machine whose inter- and intra-layer con- 
nectivity was constrained by the topology of the D-Wave while 
their neuromorphic implementation demonstrated a low-power 
implementation using memristive interconnects [19]. Here, we 
use only the lowest energy solution returned by the D-Wave 
as an estimate of the optimal binary sparse representation of 
the data and seek to solve the same optimization problem 



28 

Authorized licensed use limited to: LANL Research Library. Downloaded on October 24,2023 at 17:19:30 UTC from IEEE Xplore. Restrictions apply. 

 

 

in neuromorphic hardware. Other work has shown [16] it is 
possible to compare performance between multiple non-von- 
Neumann substrates on the same task. A crucial result of that 
work was the introduction of β parameter in the objective 
function to overcome representational constraints imposed by 
the use of normalized weights in combination with binary 
activations. In this current work, we optimize the cost function 
for both the neuromorphic and quantum devices in terms of 
both the β and λ parameters, employ a more powerful patch 
based representation of the data, and learn dictionary weights. 

III. METHODS 

A. Mean Zero Fashion-MNIST Data Set 

One of the primary challenges with comparing quantum and 
neuromorphic systems is the fundamental difference in data- 
handling capacity of the two methods. Here, we introduce a 
dataset to which both methods can be equally applied. 

Fashion-MNIST dataset [8] is a 28 × 28 greyscale labelled 
image dataset with ten classes. Fashion-MNIST is significantly 
more difficult than the classical MNIST challenge but is 
still tractable for most modern machine learning algorithms. 
However, the individual images in Fashion-MNIST are still 
far too large (784 dimensions) to fit on the D-Wave annealer. 
The Henze-Penrose (HP ) [9] statistic for estimating class 
separability was used to estimate the minimum dimensionality 
for the Fashion-MNIST data set that does not substantially 
degrade classification performance [10]. The data set was 
reduced via sparse Principal Component Analysis (sPCA) and 
the HP statistic was calculated for each reduction. To compute 
the HP statistic, first the minimum spanning tree between 
classes is calculated using the Euclidean distance between 
sPCA representations, then the number of transitions between 
the classes in this spanning tree is calculated and represented 
by the symbol SFR. For a two class system we can express 
this statistic in the equation below: 

nx + ny 

 

 
 

Fig. 1: An example of the HP analysis for two classes and for 
the dataset under discussion. Upper panel: An example of two 
minimal spanning trees for separable and non-separable data, 
showing (left) single transitions between clusters and (right) 
many transitions between classes in the non-seperable data. 
Lower panel: HP statistic as a function of dimensionality. 
Triangles show bounds and circles show the mean. As the 
dimensionality is reduced, the HP statistic eventually drops 
rapidly, indicating the rollover point. Right inset: Reconstruc- 
tion examples of Fashion-MNIST at original dimensionality 
(768) and at the HP rollover point (32) 
sPCA vectors were then used to reconstruct reduced dimen- 
sional images. Each image was divided into an array of 4 × 4 
non-overlapping patches, with each patch 7×7 pixels in extent. 
Each patch was independently sparse coded. The resulting 
sparse reconstructions of each patch could be reassembled 
for comparison with the original image to verify that the 
sparse encoding was reasonable. The compressed/augmented 
Fashion-MNIST dataset was now not linearly separable and 

Hxy = 1 − SFR  2nxy 
(1) non-liner classification techniques averaged a corresponding 

8-10 percent drop in accuracy. 
where nx and ny are the number of nodes in the tree for class x 
and y respectively. When ΔHP begins to increase rapidly (the 
“HP Rollover Point”) it indicates that dataset compression is 
causing large changes in cluster overlap. The critical point for 
Fashion-MNIST was found to be 32 dimensions. To confirm 
that a 32-dimensional fashion MNIST contained a classifi- 
cation challenge of similarly difficulty to the uncompressed 
representation, we trained linear Support Vector Machines 
(SVMs) to classify both original and compressed datasets. The 
RMS change in the confusion matrix (where 0 is no accuracy, 
and 1.0 is perfect accuracy) between the 784-dimension and 
32-dimension representation was .007. The SVM and HP 
metrics together demonstrate that neither the problem difficulty 
nor the classification accuracy significantly changed under 
compression [10]. To remove the linear separability present in 
the Fashion-MNIST dataset, we appended a sPCA coefficient- 
flipped 2nd data set so that all classes were of mean zero. The 

By establishing this challenge with a dimensionality that 
would be dramatically smaller in dimension than the limited 
number of qubits on the D-Wave annealer, we enable a closer 
comparison of the two methods without making extrapolations 
required when separate datasets are used. 

B. Sparse Coding: 
Neural networks represent an increasingly important class of 

algorithms in which exact solutions are not necessary and good 
solutions are often good enough. Here, the focus is on a class 
of algorithms based on Hopfield networks, which are fully 
recurrent dynamical neural circuits governed by fixed point 
attractors [11]. Specifically, sparse attractor networks in which 
a uniform applied field is used to globally suppress activity, 
encouraging solutions consisting of a minimum number of 
active elements are considered [12]. Sparse attractor networks 
possess several properties that make them ideal for comparing 
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quantum and neuromorphic processors. First, sparse attractor 
networks compute solutions to difficult optimization prob- 
lems by settling into low-energy states that are embedded in 
complex energy landscapes containing multiple local minima. 
Second, by exploiting local learning rules to sculpt the energy 
landscape to better model the input data, such networks are 
naturally self-organizing. 

C. Locally Competitive Algorithm (LCA) Implementation for 
Finding Sparse Representations of Data 

a) Quantum Annealing for Sparse Attractor Networks: 
Given an overcomplete, non-orthonormal basis {φi}, inferring 
a sparse representation involves finding the minimal set of 
non-zero activation coefficients a that accurately reconstruct 
a given input signal I, corresponding to a minimum of the 
following energy function: 

 

 

Fig. 2: A subset of the D-Wave consisting of 32 qubits 
arranged into 4 unit cells. Vertical (horizontal) orientations 
drawn as blue (white) circles. Interactions occur through the 
16 bipartite interactions (blue edges) within a unit cell. Nearest 

1 2 
neighboring bipartite interactions between each pair of nearest 

E(I, a) = min[ ||I − φa|| 
{a}  2 + λ||a||0 ] (2) neighboring unit cells are characterized as black and red edges. 

where λ is a trade-off parameter that determines the balance 
between reconstruction error and the number of non-zero 
activation coefficients. A larger λ will result in a more sparse 
solution to Eq. (7). This energy function is non-convex and 
contains multiple local minima, so that finding a sparse rep- 

 
(1, 2, 3, ..., Nq). This objective function defines a Quadratic 
Unconstrained Binary Optimization (QUBO) problem. We cast 
our sparse coding problem, Eq. (7), into QUBO form, Eq. (3), 
by the transformations [13] [14]: 

resentation falls into an NP-hard complexity class of decision 
problems [13] [14]. hi  =  (−φT 

1 
I + (λ + 2 ))i 

b) Lateral inhibition: Previous work [15] has shown that 
sparse coding optimization problems can be solved using the 
dynamics of neural networks incorporating lateral inhibition. 
This biologically plausible implementation, known as a locally 
competitive algorithm (LCA), encourages sparse solutions by 
allowing neurons to compete with each other for fractional 
representation of the input. When used with a loss function that 
penalizes neural activation, the resulting dynamical system will 
evolve to a sparse solution. However, such dynamical systems 
are susceptible to local minima. They also require inter-layer 
connectivity, either directly or through regularizations. 

c) Transformation relations: In a quantum annealing 
system, each neuron is mapped to a binary qubit. Because 
the observable states of any qubit/neuron are 0 and 1, each 
qubit/neuron is treated as a “quantum object” that either fires a 
spike (1) or is silent (0). Because each qubit/neuron is a quan- 
tum object, the state of any qubit/neuron is described in general 
by a superposition of 1 and 0, in which the qubit/neuron is both 
active and non-active at the same time, a logical impossibility 
for any classical system. If this quantum superposition is 
maintained, it is the characteristic which should allow the D- 
Wave to explore the entire energy landscape at once. 

The D-Wave 2000Q [3] [13] [14] searches for optimal 
solutions to a (discrete) Ising system consisting of Nq binary 
variables described by the following classical Hamiltonian: 

Qij = (φT φ)ij. (4) 

In Eq. (4), the bias term h in the Ising model is proportional 
to the weighted input φT I while the coupling term Q corre- 
sponds to lateral competition (see also [15]) between qubits 
given by the interaction matrix φT φ. Note that the sparsity 
trade-off parameter λ appears as a uniform applied magnetic 
field that encourages all qubits to be in the ai = 0 state [13] 
[14]. 

d) D-Wave 2000Q hardware : The D-Wave 2000Q [3] 
consists of 2000 qubits and 5600 couplers arranged into 
12x12 unit cells, forming a Chimera structure with dimensions 
12x12x8. Sparse interactions between qubits are restricted to 
the 16 connections within a unit cell and the 16 connections 
between nearest-neighboring unit cells [3] [13] [14] (see 
Fig. 2). One qubit can therefore interact with at most 6 other 
qubits. 

e) Embedding technique: Despite the sparsity of physical 
connections on the D-Wave, it is nonetheless possible to con- 
struct graphs with arbitrarily dense connectivity by employing 
“embedding” techniques. Embedding works by chaining to- 
gether physical qubits so as to extend the effective connectivity 
but at the cost of reducing the total number of available logical 
qubits. The D-Wave API provides a heuristic algorithm that 
searches for an optimal embedding that minimizes the number 
of physical qubits that are chained together (see Fig. 3 for an 

Nq 

H(h, Q, a) = hiai 
i 

Nq 

+ Qij 
i<j 

 
aiaj (3) 

example). 
The exact mapping of a spin glass problem onto the phys- 

ical D-Wave 2000Q chimera, including defects, can typically 
with binary activation coefficients ai =  {0, 1} ∀i ∈ contain approximately Nq ∼ 1750 spins (qubits) with > 4000 
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Fig. 3: Embedding example. 5 fully-connected particles (left, 
red filled circles connected by 10 black edges) are mapped 
onto a single unit cell using 8 qubits (right, 8 blue circles) 
and all 16 physical connections (blue edges). 

 
local spin-spin interactions. In contrast, embedding an arbi- 
trary QUBO problem onto the same 2000Q chimera typically 
allows no more than Nq ∼ 64 nodes (logical qubits) but these 
nodes may be fully connected. Thus, embedding effectively 
trades qubits for connectivity and is in and of itself an NP 
hard optimization problem. 

f) Neuromorphic Hardware for Sparse Attractor Net- 
works: The neuromorphic implementation of sparse coding 
sends binary signals as spikes in response to current flowing 
from signals sent by neighboring neurons or inputs which 
can either excite or inhibit one another while also decaying 
according to a leak of potential over time when there is 
no input. The neuromorphic implementation injects current 
weighted according to a non-orthonormal basis (φT I) into 
a network of neurons and reads outputs as spike rates a. The 
sparse coding loss function can be approximated as (Equation 
5) 

 
Fig. 4: Example of LCA structure in a network of V1 Neurons. 
Input image components I1 and I2 are fed into a layer of 
neurons which represent the features, or columns of φ. Blue 
lines represent the connection strength between each φi and 
the input image found by the vectors inner product. Each 
φi competes with all other neurons, represented by the red 
connections and their respective inner products, to find which 
sparse combinations of features best represent the input as the 
system evolves. 

 
 
 
 

active neuron is not continuously excited, it will rapidly fall 
below firing threshold and deactivate because of inhibition 
and leaking potential. The φT I term charges up each of the 
neurons, exciting neurons whose features best match the input. 
φT φ·a is the inhibitory signal, forcing neurons which explain 
a similar component of the data to compete by inhibiting 
one another. This competition continues until the equation 
converges to a stable fixed point sparse representation of 
average spike rates of the neurons, and this fixed point has 
been shown to be identical to the solution of the optimization 

E(I, a) = min[ 
{a} 

1 ||I − φa||2 + 
2 

(u − Tλ(u))] (5) problem [6] [15]. 

where we assume the existence of an input/output transfer 
function a = Tλ(u) with threshold λ, the details of which 
are determined by the nature of the leaky integrate-and-fire 
process. 

Taking the negative gradient of the cost function (Equation 
5) with respect to the sparse vector a, we obtain the following 
set of coupled differential equations defining a non-linear 
dynamical system: 

1 

g) Post-Hoc Normalization: As the Loihi system evolves 
through time, the spiking neural network provides a rapid 
decrease in error in the first 100 or so timesteps (figure [5]). 
During this period, the most important neurons immediately 
dampen out other active but less important features. The 
remainder of the 6000 steps of the simulation time are used 
to slowly achieve an initial fit plateau and then to normalize 
the rates of the most important features in the final solution. 
This happens because the final solution represents the dot 

u̇ = (−u + φT I − φT φ · a + Tλ(u)) (6) 
τ 

product between the spike rate over simulation time and the 
corresponding feature vectors associated with active neurons. 

Although the precise form of Tλ(u) is unspecified, we 
nonetheless anticipate that network of leaky integrate-and- 
fire neurons implemented in neuromorphic hardware will tend 
to a state of activity that minimizes a sparse reconstruction 
objective function of the above form. We will later discuss 
a normalization technique which can be argued gives an 
approximation of the ||a||0 used in the D-Wave cost function. 

The −u term acts as the decay piece of the system, slowly 
decreasing the potential of each neuron over time. If an 

As a simulation runs longer, quiescent neurons have their 
contribution effectively diluted by slow but active neurons. 
This behaves similarly to feature normalization, and does not 
have an analogue in the quantum system under comparison. 

In an attempt to speed up the time to solution and produce 
a more equal comparison, we implement a post − hoc nor- 
malization technique where the simulation is ended after 100 
steps and rates are immediately normalized. 

2 
3 

5 1 4 2 
 

4 
5 

r 
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Fig. 5: Simulation time steps are on the x-axis. Red dotted 
line represents where most significant neuron competition has 
already occurred and activity is dampened out. Top Panel: 
Average spike rate of neurons in network. Middle Panel: A 
spike raster plot of how often active neurons are firing over the 
simulation. Lower Panel: The value of the objective function 
and the long regularization time after the initial fit plateau. 
The vast majority of the reduction in the loss function occurs 
early in the simulation. 

 

Fig. 6: Repatched image space reconstructions of the original 
sPCA (Top), full Loihi simulation sparse coefficients (Middle), 
and post-hoc normalized sparse coefficients (Bottom) for 10 
images containing 16 patches each. Average reconstruction 
error for post-hoc solutions are better, but solutions are less 
sparse (see figure [8]). 

 
IV. RESULTS 

A. Input Amplification and Optimal Sparsity 
In order to successfully reconstruct our input signals, a β 

parameter must be introduced into the cost function to amplify 
the input away from unit norm and allow multiple features to 
be utilized. This creates a new cost functions [16], 

Fig. 7: Reconstruction error/loss plotted as a function of input 
amplification β. These values indicate how far away from 
unit norm the input must be for best reconstructions and are 
a unique characteristic of the distinct architectures. Top: D- 
Wave average for 500 images. Bottom Left: Full Loihi average 
10 images. Bottom Right: post-hoc normalized Loihi for 64 
images. 

 
 

Figure [7] suggests the different substrates and techniques 
require varying levels of optimal input amplification β values, 
but all eventually reach some plateau where reconstruction 
error doesn’t improve any further. In addition, a clear rela- 
tionship between the optimal input amplification β parame- 
ter and the sparsity penalty λ value can also be observed. 
Intuitively, a larger amplification in the input should require 
a stronger lambda value in order to keep the same level of 
sparsity required for optimal reconstruction. In contrast to 
traditional sparse coding where λ and reconstruction error 
have a monotonically increasing relationship because of access 
to continuous coefficients in the sparse solution vector a, 
there are clear points of minimum optimal sparsity penalties 
λ for the D-Wave and full Loihi simulations. The post-hoc 
normalization version of Loihi does not provide such a clear 
distinction of optimal λ, and resembles what is typically seen 
in traditional sparse coding, figure [8]. 

B. Dictionary Optimizations 
Before final solutions were gathered, dictionary optimiza- 

tion was performed on the two substrates and different so- 
lution techniques. Random features were first selected for 
the dictionary and a stochastic gradient descent algorithm 
with Hebbian Learning rule was deployed using the classical 
Orthogonal Matching Pursuit (OMP) algorithm to lower the 
average reconstruction error/loss [17]. After the dictionary was 
trained, the same algorithm was run using the solutions from 

1 E(I, a) = min[ ||βI − φa|| + λ||a|| ] (7) the different machines. Figure [9], shows convergence to a 
{a}  2 0,p 

better binary sparse coding dictionary on the D-Wave but no 
where the penalty term is a 0 norm for D-wave and an 

effective standard p norm for Loihi. 
change in the reconstruction error for the Loihi techniques. 
The lack of learning suggests the dictionary was already opti- 
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Fig. 8: Optimal sparsity penalty λ selection. Each graph has 
reconstruction error/loss in blue and active neuron/feature 
percentage in red. There is a clear optimal sparsity level 
dictated by λ for the D-Wave (Top) and full simulation Loihi 
(Bottom Left), but the post-hoc normalization technique on 
Loihi (Bottom Right) roughly exhibits a monotonic relation- 
ship. 

 
 

mized for an L-p penalty, and thus, no learning could actually 
occur providing more evidence the neuromorphic processor 
is not solving a true binary sparse coding problem.We then 
initialized Loihi with the same original random features used 
to start the OMP training and clear learning was achieved 
before eventual overfitting on the full simulation time. To 
alleviate the overfitting, we first implemented a sleep schedule 
by introducing normally distributed data periodically [18] and 
did not normalize the learning features. As can be seen in 
figure [9], the learning improved until the the norms of the 
features began to blow up creating errors even higher than 
without noise and normalization. Hence a stopping criteria was 
utilized when the errors started to grow again. Although better 
learning was achieved, the final dictionary did not provide 
better results than when the OMP dictionary was fed onto the 
device. Learning was not seen in the post-hoc normalization 
approach with both the OMP dictionary or the random features 
and we believe this is a result of having the ability to use 
weighted amounts of all the features at all times. 

V. DISCUSSION 

We successfully ran an LCA implementation for solving the 
same sparse coding problem on two fundamentally different 
devices, the D-Wave quantum annealing machine and the 
Loihi neuromorphic processor. In this work, we identified the 
relationship between the optimal λ, which sets the threshold 
of how sparse our solutions would be, β, which adjusts the 
scale of the input image and how these parameters behaved 
as a function of the specific substrates. The D-Wave produces 
true binary sparse coding. Loihi, on the other hand, produced 
an approximation of binary sparse coding whose fidelity 
was inversely dependent on the elapsed simulation time. To 

 
Fig. 9: Stochastic gradient descent with local Hebbian rule 
dictionary learning results. Top: Two runs of the algorithm 
successfully learn a similar binary dictionary when the OMP 
dictionary is fed initially into the D-Wave. Bottom Left: 
Random features are fed into algorithm and solutions are found 
using Full Simulation Loihi. Blue is result when dictionary 
features are normalized after every epoch, and green line 
represents when features are not normalized and periodic noise 
is introduced. Both approaches achieve initial learning before 
overfitting with the un-normalized noisy approach providing 
best solution. Bottom Right: post-hoc normalization does not 
show any evidence of learning with random features (blue) 
and OMP trained dictionary (green). 

 
 

compensate for this, and to achieve a better comparison with 
the D-Wave, we terminated the neuromorphic solution early 
and utilized post-hoc normalization to adjust the overall scale 
of the reconstruction. 

As figure [6] suggests, these solutions are often times even 
better in terms of final reconstruction error than their full 
simulation counter parts. Although post-hoc normalization 
does not yield completely binary solution vectors, we believe 
stopping the simulation early provides a better approximation 
of the desired binary solution because the rates of those 
neurons left over are much more uniform than if left to longer 
regularization. More importantly, this post-hoc normalized 
representation is closer to a true P0 norm. By limiting our 
sampling to a region of simulation in which inhibiting (i.e., 
active neurons) have not fully quieted non-active neurons, we 
achieve a representation in which each active feature is either 
present or not without the dilution discussed above. 

For D-Wave, the requirement of a lower lambda value 
for optimal results coupled with a lower input amplification 
β suggest only a few features are needed for the optimal 
reconstruction. This requirement appears to be the result of 
using all or non binary features for the final reconstruction. 
In contrast, the Loihi neuromorphic processor is able to use 
weighted amounts of each feature for reconstruction. When 
comparing the post-hoc normalization parameters with the 
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traditional long simulation times for Loihi, we believe there is 
not an optimal lambda value for the post-hoc version because 
the initial number of firing neurons is much greater, and the 
more neurons available to use, the better the reconstruction 
will be. In other words, for the post-hoc solutions to be 
of the lowest reconstruction error, the λ value must be as 
small as possible so that portions of all features can be 
used. Alternative approaches for implementing LCA on Loihi 
which force solutions to be more binary would be a valuable 
extension of this research. One possible path is to set a single 
spike rate for every active neuron, while a second option would 
include a rate threshold which dampens activation to 0 if the 
rate is below said value or 1 if above. These additions would 
encourage a more sparse neural representation, but it is likely 
they would be less biologically-relevant and has thus been less 
explored in the neuromorphic community. 

VI. CONCLUSION 

Our exploration of biologically inspired, energy efficient 
neuromorphic systems and fully entangled quantum system, 
for the purposes of continuing the advancement of machine 
learning past the limitations of classical approaches, has il- 
luminated many similarities between the two fundamentally 
different substrates. We successfully learned optimal dictio- 
naries in an unsupervised manner for each device. Unlike 
traditional sparse coding, manipulations to the cost function 
of each implementation are required for optimal reconstruc- 
tion. Each of the platforms and respective techniques require 
amplification β of input, while penalty parameter λ tuning for 
quantum annealing and full-simulation-length neuromorphic 
methods are necessary. The requirement of λ and β parameter 
tuning for non-continuous sparse coefficient solutions sug- 
gests there is similar structure between the full Loihi and 
D-Wave implementations. This characteristic ,coupled with 
the more binary-like and faster post-hoc approach, result 
in a strengthened linkage between these emerging non-von 
Neumann substrates and create a space where they can be more 
directly compared. Future work will include classical high 
performance computing, single spike rate Loihi, and binary 
rate thresholded Loihi sparse solutions. These approaches, 
along with their corresponding classification scores, should be 
a more direct comparison with the D-Wave quantum annealer. 
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Abstract—Although machine learning currently relies on con- 

ventional computer architectures, the looming end of Moore’s 
Law necessitates exploration of novel computational platforms. 
Neuromorphic and quantum systems are a natural path to 
pursue; biological neurons are incredibly efficient, and quantum 
mechanics provides theoretical foundations for fast solutions 
to optimization problems. Here, we make the first comparison 
of emerging hardware (D-Wave quantum annealer and Intel 
Loihi spiking processor) on an identically-posed machine learning 
problem. We implement the bioinspired Locally Competitive 
Algorithm (LCA) for solving sparse coding on the different 
substrates. To make the comparison valid, our dataset of choice 
(Fashion MNIST) is dimensionally-reduced via sparse principal 
component analysis, under the constraint that both classifica- 
tion performance and a graph-based clustering metric remain 
unchanged. This enables the problem to be mapped identically 
to both devices. An analysis of several metrics, including power 
consumption, reconstruction, and classification accuracy are pre- 
sented. When given the same specifically-constructed challenge, 
both substrates perform similarly. Our results suggest while 
neuromorphic and quantum systems are still in their infancy, 
they present a possible route to address certain types of classically 
challenging problems, such as sparse coding, in a way that 
leverages the unique aspects of the substrates. 

Index Terms—quantum annealing; neuromorphic computing; 
sparse coding 

a challenge does not maximize computational throughput on 
either system, it allows direct comparison of results between 
the two. 

A. Neuromorphic Spiking Processors 
Intel’s Loihi neuromorphic computing device implements 

spiking neural networks inspired by biology. Like SpiNNaker 
[3] and TrueNorth [4], Loihi represents information as single- 
bit impulses, transmitted at specific times and to specific tar- 
gets. Thus time is explicitly incorporated in the representation, 
as is massive parallelism. Loihi has programmable synaptic 
learning rules (i.e. spike timing dependent plasticity) and is 
thus not an inference-only device. 

Users specify input as a sequence of delta functions or 
bias currents to a set of target neurons. Each neural unit on 
the device implements an asynchronous discrete-time imple- 
mentation of Leaky Integrate and Fire (LIF) neuron [5]; this 
system evolves in time and propagates information through 
the defined network graph. The timing and patterns of neural 
activity define the computational tasks. 

B. Quantum Annealing 

I. INTRODUCTION 

Quantum annealing systems and neuromorphic spiking pro- 
cessors are fundamentally different computational substrates, 
each designed to perform a specific non-Von Neumann task. 
Typically, users attempt to maximize the usage of each sub- 
strate for experimentation; because of the dramatic difference 
in computational capacity, this has prevented a comparison 
between the two techniques on level footing. Here, we are 
able to cast a Locally Competitive Algorithm (LCA) [1] onto 
both pieces of hardware and solve the same NP-Hard sparse 
coding problem for the same benchmark dataset. The lowest 
common computational constraint is the physical restriction of 
the D-Wave quantum annealer, which has significantly fewer 
degrees of freedom than typically used in machine learning 
challenges. We reduce a common dataset (Fashion-MNIST 
[2]) using the Henze-Penrose statistic for class separability and 
support vector machines (SVMs) as a metric for dimension- 
ality reduction with constant “problem difficulty”. While such 

In a classical annealing process, the system is prepared 
in a randomly chosen initial state at a finite temperature. 
Thermal fluctuations cause classical annealing systems to 
jump-over local energy barriers and into new energy states, 
with transitions between states driven stochastically according 
to a Boltzmann distribution. Jumps to higher energy states 
are possible but exponentially less likely than transitions to 
lower energy states. As the temperature is lowered, classical 
annealing systems tend to settle into progressively lower 
energy states. The annealing process is repeated multiple times 
using different randomly chosen initial conditions, with the 
lowest final energy state achieved across all annealing runs 
representing the answer to the computation. 

The implementation of quantum annealing differs from 
classical annealing in several important respects. In quantum 
annealing, the system is not prepared in a single randomly 
chosen state as with a classical annealing process. Rather, 
a quantum annealing machine is prepared in an initial state 
that consists of a quantum superposition of all possible states. 
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Using the D-Wave quantum annealing machine as a concrete 
example, a transverse magnetic field is applied to each qubit 
in the absence of any coupling between qubits. A D-Wave 
computer consisting of N qubits is thus prepared in an initial 
state that represents the superposition of all 2N possible 
observable states. In part, the computing power of quantum 
annealing machines derives from the ability to initialize the 
system in a superposition of all possible states, which in 
turn enables a quantum annealing machine to more effectively 
sample the entire energy landscape. 

Whereas classical annealing involves slowly lowering the 
temperature of the system, quantum annealing is implemented 
on the D-Wave by gradually turning on the user specified 
Hamiltonian while the transverse magnetic field is gradually 
turned off. Rather than jumping over local energy barriers, in 
quantum annealing a transition to new energy states is accom- 
plished via quantum tunneling. In theory, quantum tunneling 
allows quantum annealers to avoid getting trapped in local 
minima. 

Because of the connectivity limitations of the physical D- 
Wave device, physical qubits must be “chained together” to 
enable full connectivity as required by most machine-learning 
algorithms; this reduces that number of “logical” qubits to at 
least an order of magnitude below the number of “physical 
qubits”. 

C. Sparse PCA Fashion MNIST 
We utilize the Fashion-MNIST dataset [2], a 28 by 28 

greyscale labelled image dataset with ten classes. Fashion- 
MNIST is significantly more challenging than the classical 

 

 
 

Fig. 1: Orthogonal Matching Pursuit (OMP) Stochastic Gra- 
dient Descent Training Results 

 
the classification accuracy significantly changed under com- 
pression [6]. 

D. The Sparse Coding Problem 
Given an overcomplete, non-orthonormal basis {φi}, infer- 

ring a sparse representation involves finding the minimal set 
of binary activation coefficients a that accurately reconstruct 
a given input signal I, corresponding to a minimum of the 
following energy function: 

MNIST challenge, but is still tractable for many modern - - 1 - 2 - (2) 
machine learning algorithms. However, it is still far too large E(I, a) = min[ ||I − φa|| 

{a}  2 + λ||a||0 ] 
(784 dimensions) to fit on the D-Wave annealer. The Henze- 
Penrose (HP ) statistic for estimating class separability was 
used to select the appropriate dimensionality for the fashion 
MNIST data set. First, the minimum spanning tree between 
classes is calculated and then SF R is found as the number of 
transitions between the classes. For a two class system we can 
express this statistic in the equation below: 

where λ is a trade-off parameter that determines the balance 
between reconstruction error and the number of non-zero 
activation coefficients. A larger λ will result in a more sparse 
solution to Eq. (2). This energy function is non-convex and 
contains multiple local minima, so finding a sparse repre- 
sentation falls into an NP-hard complexity class of decision 
problems [7]. 

Hxy = 1 − SF R 
nx + ny 

2nxy 
(1) E. Dictionary Optimization 

Before we gathered results from the various substrates, an 
where nx and ny are the number of nodes in the tree for class 
x and y respectively. The data set was reduced via sparse 
PCA and the HP statistic was calculated for each reduction. 
When ∆HP begins to increase rapidly (the “HP Rollover 
Point”) it indicates that dataset compression is causing large 
changes in clusterability. For our data, the critical point was 
found to be 32 dimensions. To confirm that a 32-dimensional 
Fashion MNIST contained a similar clustering challenge to 
the uncompressed representation, we trained SVMs to classify 
both original and compressed datasets. The RMS change in 
the confusion matrix between the 784-dimension and 32- 
dimension representation was .007 (where 0 is no accuracy, 
and 1.0 is perfect accuracy). The SVM and HP metrics 
together demonstrate that neither the problem difficulty nor 

optimal dictionary φ was trained using stochastic gradient 
descent (SGD). For this task, we invoking a local weighted 
Hebbian learning rule to move the dictionary in the direction 
of the most active features after the classical Orthogonal 
Matching Pursuit (OMP) algorithm was used to find the sparse 
representations of each image in the mini-batch (Figure 1). 

II. SPARSE CODING IMPLEMENTATIONS ON QUANTUM 
AND NEUROMORPHIC HARDWARE 

A. Sparse Coding as Lateral Inhibition and Competition 
Previous work [1] has shown that sparse coding opti- 

mization problems can be solved using the dynamics of 
neural networks incorporating lateral inhibition, a biologically 
plausible implementation of a sparse solver referred to as 
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a locally competitive algorithm (LCA). A sparse solution is 
found by allowing the resulting dynamical system to evolve 
to a minimum energy configuration. 

In the neuromorphic implementation of sparse coding, neu- 
rons send binary signals as spikes in response to current flow- 
ing from signals sent by neighboring neurons or inputs which 
can either excite or inhibit one another. The neuromorphic 
implementation injects current weighted according to a non- 
orthonormal basis (φT x- ) into a network of neurons, and reads 
outputs as spike rates -a. The sparse coding loss function 
(Equation 2) may then be mapped to a dynamical systems 
model through substitution [9]: 

quantum superposition that allows the D-Wave to explore the 
entire energy landscape at once. 

The D-Wave 2000Q[10] finds optimal solutions to a (dis- 
crete) Ising system consisting of Nq binary variables described 
by the following classical Hamiltonian: 

Nq Nq 

H (h- , Q, -a) = hiai + Qijaiaj (4) 
i i<j 

with binary activation coefficients ai = {0, 1} ∀i ∈ 
(1, 2, 3, ..., Nq). This objective function defines a Quadratic 
Unconstrained Binary Optimization (QUBO) problem. We cast 
our sparse coding problem, Eq. (2), into QUBO form, Eq. (4), 

-u̇ = 1 (φT x- − u- − (φT φ − I) · -a) (3) 
 

by the transformations [11]: 

τ 
The −u term acts as the decay piece of the system, slowly 

hi = (−φ T -I + (λ + 
1 T 

2 ))i, Qij = (φ φ)ij (5) 

decreasing the potential of each neuron over time. If an active 
neuron is not continuously excited, it will rapidly fall below 
firing threshold and deactivate. The φT x- term charges up each 
of the neurons, exciting neurons whose features best match the 
input. (φT φ − I) · -a is the inhibitory signal, forcing neurons 
which explain a similar component of the data to compete by 
inhibiting one another. This competition continues until the 
equation converges to a stable sparse representation [1]. 

Normalization and sparsity: The spiking output of Loihi 
represents the output of the LCA process as a vector veca, 
which is projected onto the normalized non-orthonormal basis 
φ to convert the sparse code into a dense representation. 
As Loihi uses spike rates, the number of spikes per basis 
neuron is converted into a rate vector that is used in this 
projection. Thus for Loihi, time acts as a regularizer; should a 
basis vector be overrepresented, the neuron responsible will 
be inhibited and stop firing. As the simulation continues, 
the effect of that vector is then reduced as the number of 
spikes per unit time decreases. However, we are interested in 
a binary £0 representation, as expected for true sparse coding. 
To approximate this, we interrupt the Loihi simulation after 
the first set of spikes occur. In this representation, each basis 
vector is represented in binary fashion, as would be required 
for £0. However, as the basis vectors sum, this results in the 
reconstruction norm blowing up. 

To counteract this effect, we introduce a β ∈ Z factor 
as a coefficient of the input I- in Equation 3. This term 
allows approximately beta overlapping basis vectors to be 
summed in a binary fashion without causing a large penalty 
in the reconstruction loss (Equation 2). We tune β as a 
hyperparameter and choose a value based on convergence of 
the reconstruction loss. As will be shown in the next section, 
a similar process is required for sparse coding with quantum 
annealing. 

B. Quantum Annealing for Sparse Attractor Networks 

Transformation relations: In a quantum annealing sys- 
tem, each neuron is mapped to a binary qubit, with a state 
described in general by a superposition of 1 and 0. It is this 

In Eq. (5), the bias term h in the Ising model is proportional 
to the weighted input φT -I while the coupling term Q corre- 
sponds to lateral competition (see also [1]) between qubits 
given by the interaction matrix φT φ. Note that the sparsity 
trade-off parameter λ appears as a uniform applied magnetic 
field that encourages all qubits to be in the ai = 0 state[10]. 

D-Wave 2000Q Hardware and Embedding: Embedding 
an arbitrary QUBO problem onto the 2000Q chimera typically 
allows no more than Nq ∼ 64 nodes (logical qubits) but these 
nodes may be fully connected. Thus, embedding effectively 
trades qubits for connectivity, and is in and of itself an NP 
hard optimization problem. In addition, the more overcomplete 
our dictionary φ, the better the overall reconstruction are, 
but comes at the cost of exponentially growing embedding 
times (see Fig 2). Since we have 32 sparse PCA coefficients 
(∼ Nq/ 2), each Hamiltonian satisfies the overcomplete 
requirement, but when all 64 logical qubits are used, the full 
time to solution can take up to 4 minutes per image. 

Input Amplification for D-Wave Reconstruction: D-Wave 
sums features of the given dictionary to recreate input data. 
Since our coefficients in the sparse representation are binary, 
the norm of the resulting output explodes as it does in the 
neuromorphic case, forcing an all zero solution. Hence we 
introduce a parameter β ∈ Z into the cost function (Equation 
2, as a coefficient of I-) and tune it until the reconstruction 
error is minimized and plateaus. The final reconstruction is 
then normalized back to the same length as the original input. 

III. RESULTS 

Sparse reconstructions for the same subset of Fashion 
MNIST sPCA images were found with D-Wave, Loihi, and 
a commercial optimization algorithm (GUROBI). The recon- 
structions were then classified using ResNets [11]. These 
representations, and the metrics for each, are shown in Figure 
3. The reconstruction is represented as a polar plot showing 
the projection of the sparse code into the basis set. Although 
the power consumption of the D-Wave is not readily available, 
we show that power consumption of Loihi remains constant at 
∼1.2W during computation. An example of a β tuning curve, 
as described in the implementation section, is also shown. 
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Fig. 2: (left) Single image process to final reconstruction in sPCA space example. This example is characteristic for randomly 
selected reconstructions. Reconstructed sPCA coefficient amplitude is shown on the radius, and sPCA coefficient number on 
the angular axis. (middle left) Power consumption remains constant during simulation on the Loihi processor. (middle right) 
Example of beta tuning to allow for binary reconstruction without normalization. Note that there is a clear plateau. (right) 
Reconstruction error for all images and ResNet Classification performance. 

with greater likelihood of observing the ground state. Loihi 
presents significant size, weight, and power benefits, requiring 
only a few watts per processor. This effectively gives Loihi 
the ability to be implemented in small devices at the edge, as 
opposed to the infrastructure-like nature of the D-Wave. 

The best classical algorithm tested (GUROBI) outperformed 
these emerging substrates in terms of Root Mean Squared 
Error reconstruction loss and final classification, but is difficult 
to implement and requires its own tuning process. For future 
work, lower dimensional patch-based approaches would allow 
for more overcomplete problems and likely lead to better 
performances from the emerging substrates while stressing 

Fig. 3: Example of how reconstruction loss decreases as 
problem gets more over-complete on D-Wave at the cost 
of exponentially growing embedding times for 10 randomly 
sampled images. 

 
The primary result, shown in the table, is that the bulk 

reconstruction performance is similar across all examples 
between both computing substrates. Further, the classification 
performance of a SVMs and ResNets operating on the sparse 
codes are also comparable. These results show that the result- 
ing sparse codes are of equal quality, and allow metrics to be 
contrasted and compared for the two systems. 

IV. CONCLUSION AND FUTURE WORK 
We have demonstrated hard problems can be equally im- 

plemented on neuromorphic and quantum systems using cal- 
ibrated dimensionality reduction. This result represents one 
of the only apples-to-apples comparisons of such systems, 
and shows that bio-inspired methods and quantum methods 
may possess similar underlying structure. By utilizing very 
small datasets as proxies for larger, harder datasets, this work 
also provides guidance for the application of larger quantum 
systems in the future. Although the research presented here did 
not fully utilize the Loihi chip, there is reason to believe that 
scaling within the D-Wave environment may be significantly 
more effective than scaling within Loihi. As larger and more 
connected D-Wave chips are produced, the LCA problem 
demonstrated here will better match the hardware and may 
be accomplished with fewer reads of the annealing device and 

classical methods further. Until such problems are specifically 
valuable or the novel substrates scale up, it remains important 
to consider classical methods in difficult optimization prob- 
lems. 
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