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Dedication

Being polite or reasonable is the key to success for all mathematicians. Everyone has a

strong interest in describing and understanding the world since it is so full of complex

occurrences but also has such breathtaking beauty and grace. We have made constant

attempts to establish striking connections between occurrences in order to understand both

the interactions that we can see and the ones that are not visible to us since we have an

inherent peculiarity to discover or understand something. From the smallest particle to the

big picture, we have accomplished remarkable technological feats that have at least given us

a peek at the reality of the inner workings of the universe. These achievements have all

been made possible by special logical dialects referred to as Mathematics. As a result, we are

compelled to accept the existence of a supernatural force that operates independently of us

and outside the realm of reason and understanding. Inborn belief in supernatural forces that

defy human comprehension permeates all sentient beings. They are required by conscience

to have this viewpoint.
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Abstract

The 3-space, 1-time dimensional scalar wave equation, or 3+1 wave equation, describes the

propagation of scalar or acoustic waves. The unforced homogeneous equation admits a class

of outgoing solutions relative to a chosen fixed center, so called “multipole” solutions. This

thesis examines near-to-far signal propagation in the context of these multipole solutions.

Given a time-series (history of values) for a multipole solution recorded at a radius r1, near-

to-far signal propagation recovers the corresponding time-series at larger radius r2 ≫ r1.

This propagation takes into account both the appropriate time delay r2− r1 and corrections

to the wave shape. Mathematically, the propagation is described by a Laplace convolution

v



involving the time-series at r1 and a “kernel” which is a weighted sum of time-dependent

exponential functions. This thesis studies the Alpert-Greengard-Hagstrom [5] algorithm for

rational approximation. It applies the algorithm, with some improvements not considered

in [4], to approximation of a near-to-far kernel for l = 64 (a moderately large l). As an

exercise, it also considers approximation of the scaled Bessel function J1(t)/t. Precisely, the

thesis considers approximation of its Laplace transform as a rational function.
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Chapter 1

Introduction

Wave phenomena appear in many guises in nature. Perhaps the characteristic feature of

waves is that they can propagate long distances without dispersal. Tsunamis, giant water

waves created by undersea seismic events, move great distances across oceans. Long-distance

propagation of electromagnetic waves supports modern communication. Gravitational waves

generated by astrophysical events propagate many light-years across space. Mathematical

description and approximation of the long-distance propagation of waves is therefore of

considerable applied interest.

This work studies sphere-to-sphere propagation [1, 2, 6, 3, 4] of wave data for the ordinary

three-space dimensional wave equation

(
−∂2t + ∂2x + ∂2y + ∂2z

)
ψ(t, x, y, z) = 0.

To describe sphere-to-sphere propagation, we introduce spherical polar coordinates

x = r sin θ sinϕ, y = r sin θ cosϕ, z = r cos θ,

where r is the radius, θ is the polar angle, and ϕ is the azimuthal angle. Given a particular

spherical harmonic [7] angular function Yℓm(θ, ϕ), we define the ”radial mode”

Ψℓm(t, r) = r

∫ 2π

0

∫ π

0

Ȳℓm(θ, ϕ)ψ(t, r sin θ sinϕ, r sin θ cosϕ, r cos θ) sin θdθdϕ.

Consider two radial values r1 < r2. The references above examine recovery of the time-series

solution, or ”signal”, Ψℓm (t, r2) from the time-series Ψℓm (t, r1). Since in practice we assume
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Chapter 1. Introduction

r2 ≫ r1, such recovery is also referred to as near-to-far (NtF) signal propagation. It is known

(and we review the derivation below) that

Ψℓm (t+ (r2 − r1) , r2) =

∫ t

0

Φℓ (t− t′, r1, r2)Ψℓm (t′, r1) dt
′ +Ψℓm (t, r1) ,

where the NtF propagation kernel

Φℓ (t, r1, r2) =
ℓ∑

k=1

aℓk (r1, r2) e
bℓkt/r1 . (1.1)

The numbers aℓk (r1, r2) and bℓk are complex and lie in the left-half plane. Since the NtF

kernel is a sum of ℓ exponential terms, its Laplace transform

Φ̂ℓ (s, r1, r2) =
ℓ∑

k=1

aℓk (r1, r2)

s− bℓk/r1
. (1.2)

is a sum of ℓ (simple) poles.

A key problem with the representations of aℓk (r1, r2) in (1.49), first clearly identified in [3],

is that in modulus the residues become exponentially large as ℓ grows, this is |aℓk (r1, r2)| ∝

eCℓ. For large ℓ the residues in modulus

{|aℓk (r1, r2)| : k = 1, · · · , ℓ} ,

vary in size over many orders of magnitude. Thus, if the numbers aℓk (r1, r2) are approxi-

mated as double precision numbers, then the above sums are plagued by inaccuracy due to

finite-precision effects. To some extent, this problem can be mitigated through quadruple

precision representation, but as ℓ increases eventually inaccuracies will also arise even with

extended precision.

The purpose of this thesis is to examine the above kernels for large ℓ, with the sole focus on

ℓ = 64 as a key example. It studies approximation of Φ̂64 (s, r1, r2) as a smaller pole sum

Φ̂64 (s, r1, r2) ≃
d∑

k=1

αk

s− βk
,

2



Chapter 1. Introduction

where d ≤ 64. Due to finite-precision effects, these smaller poles sums can, perhaps para-

doxically, yield more accurate representations of Φ̂64 (s, r1, r2) than is achievable by a full

64-term pole sum. One goal here is to understand how accurately Φ̂64 (s, r1, r2) can be repre-

sented as a sum of d-poles, assuming that the d residues {αk}dk=1 and locations {βk}dk=1 are

stored as double precision numbers. Note, however, that the computer code which produce

the residues and locations utilizes quadruple precision (with subsequent truncation of the

results to double precision representation).

The outline of this thesis is as follows. Chapter 1 deals with the derivation of the radial

wave equation (RWE) from the 3+ 1 wave equation in spherical polar coordinates that sup-

ports our demonstration of multipole solutions of the RWE. Using the Laplace transform

it examines the structure of near-to-far propagation kernels. Chapter 2 considers the ap-

proximation of functions, using the theoretical results and some implementations (numerical

algorithms). It considers both polynomial and proper rational approximation. Chapter 3

focuses on numerical examples. A final section summarizes our results and conclusions.

3



Chapter 2

Near-to-far signal propagation for the wave equation

2.1 Multipole solutions for the radial wave equation

This subsection gives a quick derivation of radial wave equation (RWE) from the 3 + 1

wave equation in spherical polar coordinates, and proves a multipole expansion formula for

solutions to the RWE. Part of this background chapter parallel the results given in [8].

Let us consider the 3−space, 1−time dimensional wave equation given by:

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− ∂2ψ

∂t2
= 0. (2.1)

The Laplacian has the following form in spherical polar coordinates:

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
, (2.2)

where θ is the polar and ϕ is the azimuthal angle. We also write

∇2ψ =
∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂ψ

∂θ

]
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
. (2.3)

Therefore, the wave equation expressed in spherical polar coordinates is:

∂2ψ

∂t2
=
∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂ϕ2

]
. (2.4)

Let (
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
= A, (2.5)

4



Chapter 2. Near-to-far signal propagation for the wave equation

where A is the Laplace operator on the unit-radius sphere. A as defined has negative eigen-

values. Then, we have:

∂2ψ

∂t2
=
∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

1

r2
Aψ. (2.6)

We assume a multipole expansion for the wave field of the form:

ψ(t, x, y, z) =
∞∑
l=0

l∑
m=−l

1

r
Ψlm(t, r)Ylm(θ, ϕ), (2.7)

where x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ and

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ (2.8)

is the standard spherical harmonic, with Pm
l (cos θ) the associated Legendre function. This

is a formula in [7]. The eigenfunctions Ylm(θ, ϕ) obey the identity:

AYlm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ). (2.9)

It is sufficient to examine a single mode to derive the radial wave equation (RWE). Therefore,

set ψ(t, x, y, z) = Ψ(t,r)
r
Ylm(θ, ϕ), and substitute (2.9) into formula from (2.4), then we have:

1

r

∂2Ψ

∂t2
=

1

r2
∂

∂r
r2
∂

∂r

(
Ψ

r

)
− ℓ(ℓ+ 1)

r2
Ψ

r
. (2.10)

We also have:

1

r

∂

∂r
r2
∂

∂r

(
Ψ

r

)
=
1

r

∂

∂r
(rΨ′ −Ψ)

=Ψ′′ +
Ψ′

r
− Ψ′

r
= Ψ′′,

and therefore,

∂2Ψ

∂t2
=
∂2Ψ

∂r2
− l(l + 1)

r2
Ψ. (2.11)

5



Chapter 2. Near-to-far signal propagation for the wave equation

This is known as the radial wave equation, and it has an ”effective potential”, i.e.

V (r) =
l(l + 1)

r2
. (2.12)

When l = 0, the equation is

∂2Ψ

∂t2
=
∂2Ψ

∂r2
, (2.13)

the simple 1 + 1 wave equation describing waves moving on, say, a string or wire. A general

solution to equation (2.13) is given by the superposition,

Ψ(t, r) = g(t+ r) + f(t− r), (2.14)

of incoming g(t+ r) and outgoing f(t− r) waves. Our goal now is to write down a formula

for l ̸= 0 which is analogous to the outgoing solution f(t−r). A formula generalizing g(t+r)

could also be given, but we are only interested in the outgoing solution. Since we are now

concerned with how the solution Ψ depends on l, we adorn Ψl with an index l. Our goal

now is to prove the following result.

Claim 2.1.1. For any sufficiently smooth function f, the following expression is an outgoing

solution to the RWE.

Ψl(t, r) =
l∑

k=0

Clk

rk
f (l−k)(t− r), Clk =

1

2k
(l + k)!

k!(l − k)!
. (2.15)

As an example, for l = 3, we have

Ψ3(t, r) = f ′′′(t− r) +
6

r
f ′′(t− r) +

15

r2
f ′(t− r) +

15

r3
f(t− r), (2.16)

which solves

∂2Ψ3

∂t2
=
∂2Ψ3

∂r2
− 12

r2
Ψ3. (2.17)

The proof of the claim follows from two lemmas.

6



Chapter 2. Near-to-far signal propagation for the wave equation

Lemma 2.1.2. The formula (2.15) obeys the following identity:

Ψl(t, r) = D+
l Ψl−1(t, r), where D+

l = − ∂

∂r
+
l

r
. (2.18)

Proof. Using (2.15) with l replaced by l − 1, we have

Ψl−1 =
l−1∑
k=0

1

rk
Cl−1,kf

(l−1−k)(t− r). (2.19)

Now, applying D+
l to the last formula, we get:

D+
l Ψl−1 =

[
− ∂

∂r
+
l

r

][ l−1∑
k=0

1

rk
Cl−1,kf

(l−1−k)(t− r)

]

=− ∂

∂r

[
l−1∑
k=0

Cl−1,k

rk
f (l−1−k)(t− r)

]
+
l

r

l−1∑
k=0

Cl−1,k

rk
f (l−1−k)(t− r). (2.20)

We find

term 1 =
l−1∑
k=0

Cl−1,k

rk
f (l−k)(t− r) +

l−1∑
k=0

k

rk+1
Cl−1,kf

(l−1−k)(t− r)

=Cl−1,0f
(l)(t− r) +

l−1∑
k=1

Cl−1,k

rk
f (l−k)(t− r)

+
l−1∑
k=0

k

rk+1
Cl−1,kf

(l−1−k)(t− r) (2.21)

For the second term of this term 1, let k = p+ 1, then

l−1∑
k=1

Cl−1,k

rk
f (l−k)(t− r) =

l−2∑
p=0

Cl−1,p+1

rp+1
f (l−1−p)(t− r). (2.22)

Combining the above expression and reindexing after also expanding the last term, we have

term 1 =Cl−1,0f
(l)(t− r) +

l−2∑
k=0

Cl−1,k+1

rk+1
f (l−1−k)(t− r)

+
l−2∑
k=0

k

rk+1
Cl−1,kf

(l−1−k)(t− r) +
(l − 1)Cl−1,l−1

rl
f(t− r). (2.23)

7



Chapter 2. Near-to-far signal propagation for the wave equation

Using the same approach, we find

term 2 =
l

r

l−1∑
k=0

Cl−1,k

rk
f (l−1−k)(t− r)

=
l−2∑
k=0

l

rk+1
Cl−1,kf

(l−1−k)(t− r) +
l

rl
Cl−1,l−1f(t− r). (2.24)

Then the two terms in (2.20) combine to

D+
l Ψl−1 =term 1 + term 2

=Cl−1,0f
(l)(t− r)

+
l−2∑
k=0

[Cl−1,k+1 + kCl−1,k + lCl−1,k]
1

rk+1
f (l−1−k)(t− r) (2.25)

+ [(l − 1)Cl−1,l−1 + lCl−1,l−1]
1

rl
f(t− r)

Now with Cl−1,0 =1, (2l − 1) Cl−1,l−1 = Cl,l, and

Cl,k+1 =Cl−1,k+1 + (k + l)Cl−1,k,

we see that (2.25) may be written as follows:

D+
l Ψl−1 =f

(l)(t− r) +
l−1∑
p=1

Cl−1,p

rp
f (l−p)(t− r) +

Cll

rl
f(t− r) (2.26)

=
l∑

p=0

Clp

rp
f (l−p)(t− r). (2.27)

Adding up the results, one finds

Ψl = D+
l Ψl−1. (2.28)

Lemma 2.1.3. The expression (2.15) solves (2.11)

8



Chapter 2. Near-to-far signal propagation for the wave equation

Proof. We proceed by induction. We have already noted that f(t−r) solves the l = 0 RWE.

Now assume Ψl−1 obeys:

∂2Ψl−1

∂t
=

∂2

∂r2
Ψl−1 −

l(l − 1)

r2
Ψl−1, (2.29)

then we want to show that Ψ = D+
l Ψl−1 solves (2.11)

To do so, we apply the raising operator D+
l on (2.29) to get

∂2

∂t2
D+

l = D+
l

∂2

∂r2
Ψl−1 − l(l − 1)Dl +

1

r2
Ψl−1 (2.30)

Next, a long calculation shows that

∂2

∂t2
D+

l Ψl−1 =
∂2

∂r2
D+

l Ψl−1 −
l(l − 1)

r2
D+

l Ψl−1 −
2l

r2
D+

l Ψl−1. (2.31)

Finally, because l(l − 1) + 2l = l(l + 1), we have

∂2Ψ

∂t2
=
∂2Ψ

∂r2
− l(l + 1)

r2
Ψ. (2.32)

2.2 Laplace transform

Our goal here is to find the Laplace transforms of the outgoing solutions (2.15). To do this,

we first define the Laplace transform:

Ψ̂(s) =

∫ ∞

0

e−stΨ(t) dt. (2.33)

We will need the following lemma.

9



Chapter 2. Near-to-far signal propagation for the wave equation

Lemma 2.2.1. Let f ∈ C∞(R) obey f(u) = 0 for u /∈ [−B,−A], where u = t− r is retarded

time and r > B. Then

L{f(· − r)} =

∫ ∞

0

e−stf(t− r) dt

=e−sra(s), (2.34)

where the function a(s) is independent of r.

Proof. letting u = t− r; via change of variable,∫ ∞

0

e−stf(t− r) dt = e−sr

∫ ∞

−r

e−suf(u) du. (2.35)

When t = 0, u = −r and when t → ∞, u → ∞. Then, a(s) =
∫∞
−r
e−suf(u) du or a(s) =∫ −A

−B
e−suf(u) du.

Clearly, a(s) is independent of r because the function f(u) is only supported on the

interval [−B,−A] which is independent of r. Notice that, a(s) is an entire function, because

the integral above is convergent for any s ∈ C.

This lemma is proved in [8].

Claim 2.2.2. Let f as in lemma 1.2.1, then, we have∫ ∞

0

e−stf (p)(t− r) dt = a(s)spe−st, (2.36)

for any s ∈ C. Let I be the integral on the left, since the function f is only supported on

[−B,−A] and is C∞(R), we may integrate by parts with vanishing boundary terms. Our

integral becomes,

I = s

∫ ∞

0

e−stf (p−1)(t− r) dt. (2.37)

10



Chapter 2. Near-to-far signal propagation for the wave equation

Clearly, by induction∫ ∞

0

e−stf (p−1)(t− r) dt = e−srspa(s). (2.38)

The previous two lemmas show that the Laplace transform of (2.15) is:

L{Ψl(·, r)} = Ψ̂l(s, r) =a(s)e
−sr

l∑
k=0

Clk
sl−k

rk

=a(s)sle−sr

l∑
k=0

Clk
1

(sr)k
.

Otherwise expressed,

Ψ̂l(s, r) = a(s)sle−srWl(sr), Wl(z) =
l∑

k=0

Clk

zk
. (2.39)

2.3 NtF kernels

This section examines the structure of near-to-far propagation kernels. Mostly adhering

to the presentation from the preceding section (1.2), it uses equation (2.39) to derive an

expression for a ”kernel” which describes mapping the solution Ψ̂l(s, r1) at r1 to Ψ̂l(s, r2) at

r2 > r1. In the Laplace frequency s−domain, each kernel will be finite sum of simple poles in

the complex s−plane. The function Wl(z) is closely related to the modified Bessel function

known as MacDonald’s function. Indeed, by [7], we have√
π

2z
Kl+ 1

2
(z) =

( π
2z

)
e−zWl(z). (2.40)

It is known that Kl+1/2(z), and so Wl(z), has l simple zeros located in the left-half plane.

Also, let us denote these zeros by {blj : j = 1, · · · , l}. For example, when l = 1,

W1(z) = 1 +
1

z
. (2.41)

11



Chapter 2. Near-to-far signal propagation for the wave equation

So b11 = −1, when l = 1. When l = 2,

W2(z) = 1 +
3

z
+

3

z2
, (2.42)

and then {b21, b22} are the roots of the quadratic equation

z2+3z + 3 = 0.

Therefore, b21 = −3

2
+
i
√
3

2
, b22 = −3

2
− i

√
3

2
.

We will also consider the residues of the NtF kernel. The NtF kernel will afford us a

procedure for converting a signal Ψ(t, r1) recorded at r = r1 to the one Ψ(t, r2) recorded at

r = r2 with r2 > r1. As mentioned, our interest lies with a procedure in the time-domain,

but its derivation uses the frequency domain. From equation (1.39), we have already seen

that

Ψ̂l(s, r1) =a(s)s
le−z1Wl(z1),

Ψ̂l(s, r2) =a(s)s
le−z2Wl(z2), (2.43)

where z1 = sr1, z2 = sr2. When we assume that r2 > r1 > support of the initial data. The

relationship between the solution at different radii can be expressed as

Ψ̂l(s, r2) = e−s(r2−r1)

(
Wl(sr2)

Wl(sr1)

)
Ψ̂l(sr1). (2.44)

When the terms are rearranged, we have

e(z2−z1)Ψ̂l(s, r2) =

[
Wl(z2)

Wl(z1)
− 1

]
Ψ̂l(s, r1) + Ψ̂l(s, r1). (2.45)

Now, we define

Φ̂l(s, r1, r2) :=

[
Wl(sr2)

Wl(sr1)
− 1

]
, (2.46)

and then we have

es(r2−r1)Ψ̂l(s, r2) = Φ̂l(s, r1, r2)Ψ̂l(s, r1) + Ψ̂l(s, r1). (2.47)

12



Chapter 2. Near-to-far signal propagation for the wave equation

Remark 2.3.1. Here the −1 factor ensures that the kernel Φ̂l(s, r1, r2) decays for large s,

and this ensure the existence of the inverse Laplace transform.

We can verify that Φ̂l(s, r1, r2) = 0 as s→ ∞, and as r2 → ∞ that

Φ̂l(s, r1, r2) =
1−Wl(sr1)

Wl(sr1)
. (2.48)

Reference [8] has shown that

Φ̂l(s, r1, r2) =
l∑

j=1

alj(r1, r2)

s− blj/r1
,

where the blj are the roots considered in (2.42) and the residues are given by [4],

alj(r1, r2) =
Wl(bljr2r

−1
1 )

r1W ′
l (blj)

. (2.49)

Therefore, by using the well-known properties of the Laplace transforms, then the inverse

Laplace transform of (2.47) is:

Ψl(t+ (r2 − r1), r2) =

∫ t

0

Φl(t− t′, r1, r2)Ψl(t
′, r1) dt

′ +Ψl(t, r1). (2.50)

where the time-domain kernel is a sum of exponentials [4, 6],

Φl(t1, r1, r2) =
l∑

k=1

alk(r1, r2)e
(blk/r1)t. (2.51)
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Chapter 3

Approximation of functions

3.1 Polynomial Approximation (warm-up)

We start with the following classical problem.

3.1.1 Theoretical results

Problem 3.1.1. Given f ∈ C[a, b] either non-polynomial or a polynomial of degree ≫ d,

find the polynomial p of degree d which minimizes

∥f − p∥2L2[a,b]
=

∫ b

a

|f(ξ)− p(ξ)|2dξ. (3.1)

Remark 3.1.2. The optimal polynomial (solution to the problem) is characterized by the

Galerkin Condition: f − p is orthogonal to all polynomials of degree d or less. That is, for

any polynomial q of degree d or less, we have:∫ b

a

q(ξ)[f(ξ)− p(ξ)]dξ = 0. (3.2)

Since it is more closely related to the numerical approximations considered later, we now

describe a discrete version of the problem. Introduce the grid a = ξ1 < ξ2 < · · · < ξN = b

on [a, b]. Here,

ξk = a+
(k − 1)

(N − 1)
(b− a), for k = 1, 2, · · · , N. (3.3)

14



Chapter 3. Approximation of functions

Assume N ≫ d. Define the vectors

h⃗j = (hj(1), hj(2), · · · , hj(N))⊤ , (3.4)

by hj(k) = ξj−1
k . Then for example,

h⃗1 =


1

1
...

1

 , h⃗2 =


ξ1

ξ2
...

ξN

 , h⃗3 =


ξ21

ξ22
...

ξ2N

 , etc. (3.5)

We also use the notations

ξ⃗0 = (1, 1, · · · , 1)⊤ (3.6)

ξ⃗1 =
(
ξ⃗1, ξ⃗2, · · · , ξ⃗N

)⊤
(3.7)

ξ⃗2 =
(
ξ⃗21 , ξ⃗

2
2 , · · · , ξ⃗2N

)⊤
(3.8)

...

ξ⃗d =
(
ξ⃗d1 , ξ⃗

d
2 , · · · , ξ⃗dN

)⊤
, (3.9)

that is h⃗j = ξ⃗j−1.

Claim 3.1.3. For d ≤ N − 1 the set
{
h⃗1, h⃗2, . . . , h⃗d+1

}
is linearly independent.

Proof. Consider

d+1∑
j=1

cjh⃗j = 0. (3.10)

This equation can be written in matrix form

V c⃗ = 0⃗, (3.11)

15
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where

V =


1 ξ1 ξ21 · · · ξd1

1 ξ2 ξ22 ξd2
...

...
...

...

1 ξN ξ2N ξdN

 ∈ RN×(d+1). (3.12)

The equation V c⃗ = 0⃗ implies V̂ c⃗ = 0⃗, where V̂ ∈ R(d+1)×(d+1) arises from V after truncation

of all but the first d+1 rows. If d = N − 1, then no truncation is required. It is known that

det V̂ =
∏

1≤i<j≤d+1

(ξj − ξi) ̸= 0 [7].Therefore, V c⃗ = 0⃗ is only solved by c⃗ = 0⃗.

A discrete version of the continuum problem stated in Problem 3.1.1 is as follows.

Problem 3.1.4. (discrete problem): Assume d+ 1 < N.

Given f⃗ ∈ RN not in span
(
h⃗1, h⃗2, . . . , h⃗d+1

)
, find p⃗ ∈ span

(
h⃗1, h⃗2, . . . , h⃗d+1

)
which mini-

mizes

∥f⃗ − p⃗∥2 =
N∑
k=1

|f(k)− p(k)|2. (3.13)

Theorem 3.1.5. The optimal

p⃗ =
d+1∑
j=1

cjh⃗j

obeys hTl (f − p), for all l = 1, 2, · · · , d+ 1.

Proof. Consider

p⃗ =
[
h⃗1, h⃗2, . . . , h⃗d+1

]
c1
...

cd+1

 . (3.14)

If V is the matrix
(
h⃗1, . . . , h⃗d+1

)
, then p⃗ = V c⃗, where c⃗ = (c1, . . . , cd+1)

⊤, and the stated

Galerkin condition is V ⊤(f⃗ − V c⃗) = 0⃗, equivalent to the normal equations V ⊤V c⃗ = V ⊤f⃗ .
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Since the columns of V are linearly independent, V ⊤V ∈ R(d+1)×(d+1) is nonsingular. Let

c⃗LS ( LS for least squares) be the unique solution to the normal equations. For any c⃗, write

c⃗ = c⃗LS + (c⃗− c⃗LS) := c⃗LS + e⃗. Then

∥f⃗ − p⃗∥2 = ∥f⃗ − V c⃗∥2

=
∥∥∥f⃗ − V (c⃗LS + e⃗)

∥∥∥2
=
(
f⃗ − V c⃗LS − V e⃗

)⊤ (
f⃗ − V c⃗LS − V e⃗

)
=
(
f⃗ − V c⃗LS

)⊤ (
f⃗ − V c⃗LS

)
+ (V e⃗)⊤V e⃗+ 2(V e⃗)⊤

(
f⃗ − V c⃗LS

)
=
∥∥∥f⃗ − V c⃗LS

∥∥∥2 + ∥V e⃗∥2 + e⊤
(
V ⊤f⃗ − V ⊤V c⃗LS

)
=
∥∥∥f⃗ − V c⃗LS

∥∥∥2 + ∥V e⃗∥2, (3.15)

where the last equality used the normal equations.

Now ∥V e⃗∥2 ≥ 0, with equality only if e⃗ is the zero vector. This shows that p⃗ = V c⃗LS is the

unique minimizer.

Theorem 3.1.6. At the minimizer the gradient
(
∇c⃗∥f⃗ − p⃗∥2

) ∣∣∣∣
c⃗=c⃗LS

= 0⃗ vanishes.

Indeed, for any l = 1, 2, · · · , d+ 1

∂

∂cl
∥f⃗ − p⃗∥2 = ∂

∂cl

N∑
k=1

∣∣∣f(k)− d+1∑
j=1

cjhj(k)
∣∣∣2

= −2
N∑
k=1

(
f(k)−

d+1∑
j=1

cjhj(k)

)
hl(k)

= −2⟨f⃗ − p⃗, h⃗l⟩. (3.16)

To find the optimal p⃗, we first produce an orthogonal basis {g⃗1, g⃗2, . . . g⃗d+1}.
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For span
(
h⃗1, h⃗2, · · · , h⃗d+1

)
, we also want nested spans in the sense that

span(g⃗1) = span(⃗h1)

...

span (g⃗1, g⃗2, . . . , g⃗d+1) = span(⃗h1, h⃗2, . . . , h⃗d+1). (3.17)

Assume that we have produced such an orthogonal basis. Then

p⃗ =
d+1∑
j=1

αj g⃗j for αj =
⟨f⃗ , g⃗j⟩
⟨g⃗j, g⃗j⟩

, (3.18)

is the solution to the discrete problem. Indeed, we show that

f⃗ − p⃗ = f⃗ −
d+1∑
j=1

αj g⃗j, (3.19)

is orthogonal to all g⃗1, g⃗2, · · · , g⃗d+1 and so all h⃗1, h⃗2, · · · , h⃗d+1. The justification is as follows.

⟨f⃗ − p⃗, g⃗l⟩ = ⟨f⃗ , g⃗l⟩ − ⟨p⃗j, g⃗l⟩ (3.20)

= ⟨f⃗ , g⃗l⟩ −
d+1∑
j=1

αj⟨g⃗j, g⃗l⟩

= αℓ − αℓ

= 0,

where we have used

⟨g⃗j, g⃗l⟩ = δjl⟨g⃗j, g⃗j⟩. (3.21)

Since by assumption any of the vectors in {h⃗1, h⃗2, . . . , h⃗d+1} can be expanded in terms of the

{g⃗1, g⃗2, . . . , g⃗d+1}, then it follows that ⟨f⃗ − p⃗, h⃗l⟩ = 0 for l = 1, 2, . . . , d+ 1.
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3.1.2 Implementation

The algorithm for constructing the {g⃗1, g⃗2, . . . , g⃗d+1} basis is given in Algorithm 1. It

relies on the Gram-Schmidt process and an underlying three-term recurrence specific to the

problem at hand.This is a discrete version of the process which is starting with the monomial

basis for polynomials, gives rise to the Legendre polynomials.

Algorithm 1 Discrete polynomial approximation of f⃗ .

Input: fixed vector f⃗ /∈ span{h⃗1, . . . , h⃗d+1}

Output: α⃗ ∈ Rd+1, c ∈ R(d+1)×2

Description: Generates an orthogonal basis {g⃗1, . . . , g⃗d+1} for span{h⃗1, . . . , h⃗d+1} and com-

putes as output the expression

p⃗ =
d+1∑
j=1

αj g⃗j,

where p⃗ is the optimal approximation of f⃗ in the least squares sense. Since p⃗ ∈

span{h⃗1, . . . , h⃗d+1}, its components are pj ∈ p(ξj), where p(ξ) is a polynomial of degree

d. Algorithm 1 also computes the list of inner products c which can be used to evaluate

p(ξ) at arbitrary point ξ (not necessarily one of the grid points ξj)
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1: α = 0(d+1)×1

2: c = 0(d+1)×2

3: g⃗old = 0N×1

4: g⃗now = 0N×1

5: g⃗new = 0N×1, g⃗new(:) = 1

6: α1 = ⟨f⃗ , g⃗new⟩/⟨g⃗new, g⃗new⟩

7: g⃗old = g⃗now

8: g⃗now = g⃗new

9: v⃗ = ξ⃗. ∗ g⃗now ∈ span(⃗h1, . . . , h⃗k+1) = span(g⃗1, . . . , g⃗k+1)

10: c21 = ⟨v⃗, g⃗now⟩/⟨g⃗now, g⃗now⟩

11: c22 = 0

12: g⃗new = v⃗ − c21g⃗now − c22g⃗old

13: α2 = ⟨f, g⃗new⟩/⟨g⃗new, g⃗new⟩

14: for k = 2 up to d do

15: v⃗ = ξ⃗. ∗ g⃗now, v⃗ is candidate for gk+1

16: v⃗ = βg⃗k+1 + c21g⃗k + c22g⃗k−1 + nothing else

17: ck+1,1 = ⟨v⃗, g⃗now⟩/⟨g⃗now, g⃗now⟩

18: ck+1,2 = ⟨v⃗, g⃗old⟩/⟨g⃗old, g⃗old⟩

19: g⃗new = v⃗ − ck+1,1g⃗now − ck+1,2g⃗old

20: αk+1 = ⟨f⃗ , g⃗new⟩/⟨g⃗new, g⃗new⟩

21: g⃗old = g⃗now

22: g⃗now = g⃗new

23: end for

From Algorithm 1, the component pk =
d+1∑
j=1

cjhj(k) is a polynomial function p(ξk) eval-

uated on the grid points. However, we also want to evaluate p(ξ) and p′(ξ) at a value of ξ
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which is not necessary equal to one of the grid points ξj. This is achieved with the following

algorithm.

Algorithm 2 Input: α⃗ ∈ Rd+1, c ∈ R(d+1)×2 from Algorithm 1, and ξ ∈ R. Output:

p = p(ξ) and dp = p′(ξ)

1: gold = 1

2: gnow = ξ − c21gold

3: dgold = 0

4: dgnow = dgold

5: p = α1gold + α2gnow

6: dp = α1dgold + α2dgnow

7: for k = 2 : n do

8: gnew = ξgnow − ck+1,1gnow − ck+1,2gold

9: dgnew = ξdgnow + gnow − ck+1,1dgnow − ck+1,2dgold

10: p = p+ αk+1gnew

11: dp = dp+ αk+1dgnew

12: gold = gnow

13: gnow = gnew

14: dgold = dgnow

15: dgnow = dgnew

16: end for

Remark 3.1.7. We could have the Algorithm 1 generate and store all g⃗j, but instead, only

three such vectors are stored at a time. The process relies on a three-term recurrence.
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3.2 Rational Approximation

Rational approximation of a function f expresses the function as the ratio of two polynomials

f(s) ≃ P (s)

Q(s)
, (3.22)

where for our applications s is the complex variable which arises in the Laplace transform.

The approximation will be valid for s values in a region of the complex plane. For our

approximations, we will demand that deg(Q) = d = deg(P ) − 1, so that P (s)/Q(s) is a

proper rational function. Before discussing how to construct rational approximations, we

first describe the class of functions we shall consider.

3.2.1 Complex-valued functions with the parity property

The constructed approximations will be valid on s = x + iy, where x = ε > 0 is a small

positive number, and in some cases x = 0 is also allowed. To focus on the y-dependence,

introduce the notation

F(y) = f(x+ iy), P(y) = P (x+ iy), Q(y) = Q(x+ iy).

Definition 3.2.1. We say that a complex function h(y) = hR(y) + ihI(y) has the parity

property provided its real part hR(y) has even parity in y and its imaginary part hI(y) has

odd parity.

As an example, consider the function f(s) = 1/
√
1 + s2, viewed as a function F(y) =

1/
√

1 + (ε+ iy)2 of y.
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Figure 3.1: Real and imaginary parts of F(y) = 1/
√

1 + (ε+ iy)2 for ε = 10−2 = 0.01,
showing that F(y) obeys the parity property.

This function is the Laplace transform of J0(t) [7]. The basic variable s = x + iy has

the parity properity, and we conclude by induction that any power sj = (x+ iy)j does too.

Provided the coefficients pj, qj ∈ R for all j = 0, 1, . . . , d− 1, the polynomials

P(y) = P (x+ iy) =
d−1∑
j=0

pj(x+ iy)
j, Q(y) = Q(x+ iy) =

d−1∑
j=0

qj(x+ iy)
j+(x+ iy)d (3.23)

both have the parity property, since they are linear combinations of functions each with the

property.

Lemma 3.2.2. Let µ(y) > 0 be a positive weight function which also has even parity in y,

and define the inner product

⟨h, g⟩µ =

∫ ymax

−ymax

h(y)ḡ(y)µ(y)dy.

If h and g both have the parity property, then this inner product is a real number.
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Proof. In detail the inner product in question is

⟨h, g⟩µ =

∫ ymax

−ymax

{[
hR(y)gR(y) + hI(y)gI(y)

]
+ i
[
hI(y)gR(y)− hR(y)gI(y)

]}
µ(y)dy.

Since
[
hI(y)gR(y)− hR(y)gI(y)

]
µ(y) is of odd parity, and the integration is symmetric

about y = 0, we see that

⟨h, g⟩µ =

∫ ymax

−ymax

[
hR(y)gR(y) + hI(y)gI(y)

]
µ(y)dy ∈ R.

3.2.2 Nonlinear problem and its linearization

The polynomials appearing in our approximations will arise as

Popt, Qopt = argmin
P,Q

∫ ymax

−ymax

∣∣∣∣P (x+ iy)

Q(x+ iy)
− f(x+ iy)

∣∣∣∣2 dy,
as indicated with deg(Q) = d = deg(P )−1. In practice, the integral should be discretized in

a fashion similar to the first subsection on polynomial approximation. However, we bypass

these details for now and proceed with the continuum formulation. Anticipating that F(y)

with have the parity property, we have choosen symmetric integration limits here.

The problem above is nonlinear, and would be difficulty to solve directly. We therefore

trade it for a sequence of linear minimizations

P
(k+1)
opt , Q

(k+1)
opt = argmin

P (k+1),Q(k+1)

∫ ymax

−ymax

∣∣P (k+1)(x+ iy)−Q(k+1)f(x+ iy)
∣∣2 µk(y)dy

where µk(y) =
1

|Q(k)(x+iy)|2 .
(3.24)

This procedure requires an initial degree-d polynomial Q0(s) in order to define the initial

weight function µ0. The procedure is a form of fixed-point iteration, but we shall not address

its convergence as k → ∞. Rather we will confirm in numerical experiments that P (k+1) and

Q(k+1) ”settle down” for k sufficiently large.
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Adopting the notation (3.23), the linear problem (3.24) amounts to finding P,Q as described

which minimize the following cost function:

C(P,Q) := C (p0, . . . , pd−1, q0, . . . , qd−1) =

∫ ymax

−ymax

|P(y)−Q(y)F(y)|2µ(y)dy

=

∫ ymax

−ymax

|P (x+ iy)−Q(x+ iy)f(x+ iy)|2µ(y)dy.

(3.25)

Theorem 3.2.3. Define the functions

hn(y) =

(x+ iy)(n−2)/2 for n = 2, 4, . . . , 2d

(x+ iy)(n−1)/2f(x+ iy) for n = 1, 3, . . . , 2d− 1.

Then, because F(y) has the parity property by assumption, the optimal choice of P,Q is

characterized by the conditions

⟨−P +QF , hn⟩µ = 0

for all n = 1, 2, 3, . . . , 2d− 1, 2d.

Proof. Let ∆P(y) − ∆Q(y)F(y) arise as any linear combination with real coefficients of

the functions hn(y) for all n = 1, 2, 3, . . . , 2d − 1, 2d. Then ∆P(y) − ∆Q(y)F(y) will have

the parity property. Consider the cost function (3.25), now associated with P(y) + ∆P(y)

and Q(y) + ∆Q(y) . Since ∆Q(y) does not include the top degree-d term, the expressions

P(y)−Q(y)F(y) and [P(y) + ∆P(y)]− [Q(y) + ∆Q(y)]F(y) have the same form. We may
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then consider the cost

C(P +∆P,Q+∆Q) =

∫ ymax

−ymax

|P(y)−Q(y)F(y) + ∆P(y)−∆Q(y)F(y)|2µ(y)dy

=

∫ ymax

−ymax

|P(y)−Q(y)F(y)|2µ(y)dy

+

∫ ymax

−ymax

|∆P(y)−∆Q(y)F(y)|2µ(y)dy

+

∫ ymax

−ymax

[P(y)−Q(y)F(y)][∆P(y)−∆Q(y)F(y)]µ(y)dy

+

∫ ymax

−ymax

[∆P(y)−∆Q(y)F(y)][P(y)−Q(y)F(y)]µ(y)dy.

(3.26)

Now using the definition (3.25) and Lemma 3.2.2 to conclude that the inner products

encountered here are real, we find that

C(P +∆P,Q+∆Q) = C(P,Q) + 2(P −QF ,∆P −∆QF⟩µ

+

∫ ymax

−ymax

|∆P(y)−∆Q(y)F(y)|2µ(y)dy.
(3.27)

The last term in this expression cannot be properly expressed as C(∆P,∆Q), since, as noted

above, ∆Q does not contain a top degree-d term. If P,Q are chosen to ensure that −P+QF

is orthogonal to all hn, then

C(P +∆P,Q+∆Q) = C(P,Q) +

∫ ymax

−ymax

|∆P(y)−∆Q(y)F(y)|2µ(y)dy. (3.28)

This confirms that the described characterization of P,Q indeed minimizes the cost function.

Remark 3.2.4. One reaches the same conclusion of the last theorem via formal partial

differentiation of the cost function C(p0, . . . , pd−1, q0, . . . , qd−1) with respect to the pj and qj.

We have characterized the P,Q which solve the relevant linear minimization problem. To

actually solve the problem, we follow a procedure similar to the described Gram-Schmidt

procedure used to solve the simple least squares problem studied in Subsection 3.2.1. To

describe this procedure, we introduce a new notation.
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Chapter 3. Approximation of functions

Remark 3.2.5. Given a function of y, say F , use sF to denote the function of y with values

(x+ iy)F(y). Likewise, use sjF to denote the function of y with values (x+ iy)jF(y).

With Theorem 2.2 in mind, we orthogonalize the 2d+ 1 functions

F , 1, sF , s, . . . , sd−1F , sd−1, sdF . (3.29)

The result is a family {gn : n = 1, . . . , 2d} of orthogonal functions, with the last member

g2d+1 the sought for solution −P +QF from Theorem 3.2.3. The following is proved in [9]

Theorem 3.2.6. The orthogonalization is iteratively computed as follows:

gn(y) =


F(y) for n = 1

1− c21F(y) for n = 2

(x+ iy)gn−2(y)−
∑min[4,n−1]

j=1 cnjgn−j(y) for n = 3, . . . , 2d+ 1,

(3.30)

where the real constants cnj are given by

cnj =


⟨1,F⟩k
⟨F ,F⟩k

for n = 2 and j = 1

⟨(sgn−2),gn−j⟩k
⟨gn−j ,gn−j⟩k

for n = 3, . . . , 2d+ 1 and j = 1, . . . ,min{4, n− 1}.
(3.31)

Here we use the notation (sgn−2) (y) for the function (x + iy)gn−2(y), as mentioned above.

Also, the inner product ⟨, ⟩k is the inner product ⟨, ⟩µ with the kth weight µk(y).

3.2.3 Evaluation of P and Q and their derivatives

The algorithm for evaluation of P (s), P ′(s), Q(s), and Q′(s) at an arbitrary complex point

s is analogous to the one given in Algorithm 2 for evaluation of the optimal polynomial p(ξ)

and its derivative p′(ξ) stemming from the least squares problem. Theorem 2.2.6 describes

orthogonalization of the set (2.29) which results in the coefficients {cnj : n = 1, . . . , 2d+ 1

and j = 1, · · · ,min{4, n− 1}} which define g2d+1 = −P +QF . To evaluate P (s) and Q(s),
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Chapter 3. Approximation of functions

the recursion described in the theorem is performed with the precomputed cnj on the set

Γ, δ, sΓ, sδ, . . . , sd−1Γ, sd−1δ, sdΓ. If Γ = F and δ = 1, then this is the set (2.29). To generate

P (s), the recursion is performed with the fixed cnj on the set with Γ = 0 and δ = −1. To

generate Q(s), the recursion is performed on the set with Γ = 1 and δ = 0. Generation of

P ′(s) and Q′(s) is similar.
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Chapter 3. Approximation of functions

Algorithm 3 Evaluation of P , Q and their derivatives

Data: Coefficients Cnj : n = 1, · · · , 2d+ 1 and j = 1, 2, 3, 4 and complex s

Result: Evaluation of P (s) and P ′(s)

Initialization for P and P ′ :

1: A−1 = 0 dA−1 = 0

2: A0 = 0 dA0 = 0

3: A1 = 0 dA1 = 0

4: A2 = −1 dA2 = 0

5: for n = 3 to 2d+ 1 do

6: An = sAn−2 −
4∑

j=1

CnjAn−j

7: dAn = An−2 + sdAn−2 −
4∑

j=1

CnjdAn−j

8: end for

9: Q(s) = A2d+1, P
′(s) = dA2d+1

Result: Evaluation of Q(s) and Q′(s)

Initialization for Q and Q′ :

10: B−1 = 0 dB−1 = 0

11: B0 = 0 dB0 = 0

12: B1 = 1 dB1 = 0

13: B2 = −C21 dB2 = 0

14: for n = 3 to 2d+ 1 do

15: Bn = sBn−2 −
4∑

j=1

CnjBn−j

16: dBn = Bn−2 + sdBn−2 −
4∑

j=1

CnjdBn−j

17: end for

18: Q(s) = B2d+1, Q
′(s) = dB2d+1
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Newton’s methods can then be used to find the roots {βj : j = 1, . . . , n} of Q(s), and then

we have the residues αj =

[
(s− βj)P (s)/ Q(s)

]∣∣∣∣
s=βj

. Then

P (s)

Q(s)
=

d∑
j=1

αj

s− βj
.

However, due to special form of Q(s) and P (s) with real coefficients, this pole sum will have

the form

P (s)

Q(s)
=

dpair∑
j=1

(
mj

s− kj
+

m̄j

s− k̄j

)
+

dsing∑
j=1

µj

s− κj
,

where d = 2dpair + dsing and the µj, κj ∈ R. We can confirm that such a pole sum will have

the parity property. For example,

mj

s− kj
=

mR
j + imI

j(
x− kRj

)
+ i
(
y − kIj

)
=

[
mR

j

(
x− kRj

)
+mI

j

(
y − kIj

)]
+ i
[
mI

j

(
x− kRj

)
−mR

j

(
y − kIj

)](
x− kRj

)2
+
(
y − kIj

)2
m̄j

s− k̄j
=

mR
j − imI

j(
x− kRj

)
+ i
(
y + kIj

)
=

[
mR

j

(
x− kRj

)
−mI

j

(
y + kIj

)]
− i
[
mI

j

(
x− kRj

)
+mR

j

(
y + kIj

)](
x− kRj

)2
+
(
y + kIj

)2
Then real part

mR
j

(
x− kRj

)
+mI

j

(
y − kIj

)(
x− kRj

)2
+
(
y − kIj

)2 +
mR

j

(
x− kRj

)
−mI

j

(
y + kIj

)(
x− kRj

)2
+
(
y + kIj

)2
of sum is even, and the imaginary part

mI
j

(
x− kRj

)
−mR2

j

(
y − kIj

)(
x− kRj

)2
+
(
y − kIj

)2 −
mI

j

(
x− kRj

)
+mR

j

(
y + kIj

)(
x− kRj

)2
+
(
y + kIj

)2
of the sum is odd. Also µj/ ((x− κj) + iy) has the parity property. Note if

1√
s2 + 1

≃
dpair∑
j=1

(
mj

s− kj
+

m̄j

s− k̄j

)
+

dsing∑
j=1

µj

s− κj
,
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Chapter 3. Approximation of functions

then

J0(t) ≃
dpair∑
j=1

(
mje

kjt + m̄je
k̄jt
)
+

dsing∑
j=1

µje
κjt,

which can also be expressed in terms of sine, cosine, and purely decaying exponentials.
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Numerical Examples

The numerical investigations in this chapter rely on a FORTRAN implementation of the

AGH alogorithm, rather than the Matlab implementation. The FORTRAN implementation

incorporates the following improvements.

1. Calculations in quadrupole precision.

2. Adaptivity in the numerical quadrature used in the Gram-Schmidt orthogonalizaton.

3. Re-orthgonalization in the Gram-Schmidt process.

Regarding 1, while the numerical approximation of a profile function f(s) as a rational

function P (s)/Q(s) is performed in extended precision, we mainly report and work with a

double-precision format for the table of pole locations {βj}nj=1 and residues {αj}nj=1 for a

pole sumP (s)/Q(s) ≃
∑d

j=1 αj/ (s− βj). Such a table is computed ”once for all time”, and

so the cost of its construction is not so important.

Regarding 2, we start with an approximation interval T−1 + i [−ymax, ymax], which can be

halved to T−1 + i[0, ymax] because of the parity property discussed earlier. For T = ∞ this

interval is a portion of the imaginary axis in the complex s = x+ iy plane. For simplicity in

this description, let us just work with the interval s ∈ iJ = i [0, ymax]. Next, we test whether

f(s) is slowly varying on iJ , for the time-being postponing what ”slowly varying” means.

If the answer is YES, then we accept iJ as the approximation interval. If the answer is

NO, then iJ is divided into two subintervals i
[
0, 1

2
ymax

]
and i

[
1
2
ymax, ymax

]
, and f(s) is now
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Chapter 4. Numerical Examples

tested for slow variation on each subinterval, with subsequent halving if NO is encountered.

Continuation of this process yields a binary tree of subintervals, and on the leaves of the tree

f(s) is slowly varying. The quadrature in the approximation is based on the introduction

of quadrature nodes and weights on the leaves of the binary tree. Although we will not

describe the details, in words the test for whether f(s) is slowing varying on a particular

interval is as follows. We expand f(s(y)) ≃
∑K

k=0 ckTk(ξ(y)) as a Chebyshev series over the

interval, where K is typically 20 to 30 . If cK/
(∑K−1

k=0 |ck|
)
is small (relative to some chosen

tolerance), meaning the coefficients have decayed sufficiently, then we declare f(s) to be

slowly varying. Otherwise, f(s) is not slowly varying and an interval division is necessary.

Regarding 3, while the Gram-Schmidt process produces exactly orthogonal vectors in ex-

act arithmetic, numerically orthogonality can be lost. Numerically, improved orthogonality

results from re-orthgonalization (essentially subsequent passes through the Gram-Schmidt

process). The FORTRAN code implements re-orthogonalization, and it has a profound effect

on the final approximations.

We consider two separate errors associated with approximation of a function f(s) :

errP,Q(f) = sup
s∈T−1+i[−ymax,ymax]

∣∣∣∣f(s)− P (s)/Q(s)

f(s)

∣∣∣∣
errα,β(f) = sup

s∈T−1+i[−ymax,ymax]

∣∣∣∣∣f(s)−
∑d

k=1 αk/ (s− βk)

f(s)

∣∣∣∣∣ .
(4.1)

In exact arithmetic

P (s)/Q(s) =
d∑

k=1

αk

s− βk
,

and so the two errors should be the same. However, the two behave differently in finite

precision arithmetic and number storage. Note the evaluation of P (s)/Q(s) relies on the

coefficients {cnj : n = 2, · · · , 2d + 1 and j = 1, . . . ,min{4, n − 1}} described in Theorem

2.2.6, while evaluation of
∑d

k=1
αk

s−βk
of course relies on the pole locations {βk}dk=1 and residues

{αk}dk=1. Note that computation of the pole sum relies on Newton’s method to first find the
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Chapter 4. Numerical Examples

roots of Q(s). Therefore, computation of the (αk, βk) relies on the cnj.

In our experiments, both the cnj and the (αk, βk) are computed in quadruple precision

arithmetic. However, we experiment with storage of the these arrays in both quadruple

precision and double precision formats. Our aim is to study the accuracy of the double

precision format. Each of the errors (4.1) can then be evaluated with the approximation

corresponding to either double precision or quadruple precision formats. For example,

errquadα,β (f) = sup
s∈T−1+i[−ymax,ymax]

∣∣∣∣∣∣
f(s)−

∑d
k=1 α

quad
k /

(
s− βquad

k

)
f(s)

∣∣∣∣∣∣ (4.2)

if the (αk, βk) are stored in quadruple precision format. Therefore, we consider four errors:

errquadP,Q (f), errdbleP,Q (f), err
quad
α,β (f), errdbleα,β (f).

4.1 Bessel function J1(t)/t

As an example of the described rational approximation scheme, this subsection constructs

approximations of f(s) =
√
s2 + 1− s along s = x+ iy for x = 1/T > 0. Note x > 0 avoids

branch singularities in f(s).

Remark 4.1.1.
√
s2 + 1 − s is the Laplace transform of J1(t)/t. Note, J1(t)/t → 1/2 as

t→ 0+, as shown in [7].

Owing to the remark, our sum-of-poles approximations for f(s) will correspond to sum-

of-exponential approximations of J1(t)/t. This subsection also presents results on these

time-domain approximations.

Table 4.1 presents results for a number of sum-of-pole approximations Â(s) =
∑d

k=1 αk/(s−

βk) to f(s) =
√
s2 + 1 − s. Each block corresponds to a particular choice of T ; again

the approximations Â(s) are constructed along s = T−1 + i [−ymax, ymax]. All table entries

correspond to the choice ymax = 100. The T = 108, d = 73 table entry involved a binary
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T = 104

d tol
30 10−6

40 10−8

50 10−10

60 10−12

T = 106

d tol
43 10−6

57 10−8

71 10−10

T = 108

d tol
54 10−6

73 10−8

91 10−10

Table 4.1: Number of poles requires to achieve errα,β(f) < tol

tree of subintervals with 33 levels, with levels added around y = ±1 in order to resolve the

nearby singularities of f(s). The tables list the number of poles needed to achieve

errα,β(f) < tol, (4.3)

in terms of the error measure listed in (3.1). For these approximations, the pole locations

and residues can be stored in double precision format without affecting the table results. In

fact, whether we use
(
αdble
k , βdble

k

)
or
(
αquad
k , βquad

k

)
in computing the errors, the results are

the same.

Figure 3.1 shows the pole locations {βk}dk=1 for one approximation, where d = 54 and

T = 108 . Notice that the location appear to lie on a semicircle of radius 1 , and they

cluster near the singularities at s = ±i; however, in fact all poles lie in the proper left-

half s-plane (each location has a strictly negative real part). Our final studies focus on the

sum-of-exponential approximation

A(t) =
d∑

k=1

αke
βkt

corresponding to our rational approximation Â(s) of f(s) =
√
s2 + 1 − s. As mentioned,

the time domain function A(t) approximates J1(t)/t. Figure 4.2 corresponds to the choices
T = 104, d = 60. The top pane shows that over the t-interval [0, 300] both f(t) and A(t)
are identical to the eye. The corresponding pointwise error is shown in the bottom pane.
It shows that A(t) agrees with f(t) to nearly double precision accuracy. Figure 3.3 exam-
ines the long-time behavior of our approximations. Here the approximations correspond to
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the T = 108 results in Table 1, and we represent the approximations with
(
αdble
k , βdble

k

)
in double-precision format. The figure depicts the pointwise error |A(t)− J1(t)/t| masked
by the function max(1,

√
πt/2). Enhancement of the error by this factor incorporates the

asymptotic decay of J1(t). If instead of the adopted mask, we were to use max(1,
√
πt3/2),

then the scaled errors grow linearly with time. Note that t−3/2 captures the full decay of the
envelope for J1(t)/t.

Figure 4.1: Plots the location {βk}dk=1 for d = 54, T = 108 approximation of
√
s2 + 1 − s.

Notice that the locations accumulate near s = ±i, which are the singularities of f(s).
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Figure 4.2: Corresponds to the choices T = 104, d = 60.
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Figure 4.3: Error results long-time test.

4.2 Near-to-far propagation kernel

In this section, we will consider

f(s) = Φ̂l(s, r1, r2) = −1 +
Wl (sr2)

Wl(sr1)
, (4.4)

for l = 64 and r2 = 240. According to [4], let us consider r1 = 15, 30, 60, 120. The exact

kernel Φ̂64(s, r1, 240) is a sum of 64 poles, but it is known that in modulus the largest residue

grows exponentially with l. For l = 64 the exact pole sum cannot be accurately used in

double precision arithmetic. Here, we evaluate the kernel along s = iy via an alternative

method, and then approximate the kernel by a smaller pole sum.

We now describe our alternate approach for evaluation of the profiles Re Φ̂l (iy, r1, r2)

and Im Φ̂l (iy, r1, r2) for y ∈ R. As mentioned, Ref. [3] has described stable evaluation of the
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time-domain kernel Φl (t, r1, r2).

Our approach is based on the following expression for an NtF kernel:

Φ̂l (s, r1, r2) = −1 + exp

[∫ r2

r1

Ω̂l(s, η)

η
dη

]
, (4.5)

and

exp

[∫ r2

r1

Ω̂l(s, η)

η
dη

]
= Wl (sr2) /Wl (sr1) , (4.6)

where we have introduced an auxiliary function

Ω̂l(s, r) ≡ sr
W ′

l (sr)

Wl(sr)
=

l∑
k=1

blk/r

s− blk/r
, (4.7)

with the prime indicating differentiation in argument. With Steed’s algorithm [9] the kernel

Ω̂l(s, r) is accurately computed via the known continued fraction expansion

z
W ′

l (z)

Wl(z)
= − l(l + 1)

2(z + 1)+

(l − 1)(l + 2)

2(z + 2)+
· · · 2(2l − 1)

2(z + l − 1)+

2l

2(z + l)
. (4.8)

This formula follows from recurrence relations obeyed by MacDonald functions [10]. Given

the ability to compute Ω̂l(iy, r), computation of (4.5) can be carried out using numerical

quadrature. Due to the structure of Re Ω̂l(iy, r) and Im Ω̂l(iy, r), the numerical integrations

involve no cancellation errors (i.e. the sums involve only positive or negative values at each

fixed yj grid point).

We could instead work with the equivalent kernel Φ64(s, 1, 16), but focus on r1 = 15 and

r2 = 240 as this kernel appears in [4]. In fact, Φ̂64(s, 15, 240) is exactly a sum of 64 poles,

but its known that the largest residue (in modulus) of Φ̂l (s, r1, r2) grows exponentially with

l. Already for l = 64, in modulus the maximum residue is about 1015 whereas the smallest

one is about 20; see [4]. Double precision storage of the pole locations and residues results

in loss of precision. Nonetheless, here we approximate Φ̂64(s, 15, 240) as a smaller pole sum,

with the goal of finding the best double-precision storage pole-sum approximation.
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For a given r1, say r1 = 15, we shall consider sum-of-poles approximations to Φ̂64(s, r1, 240),

for sequence of d values, starting around d = 30 and increasing. These sum-of-poles approx-

imations stem from double precision formatted tables (the Matlab-compatible tables out-

putted from the Fortran code are in this format). The key question is what is the optimal

value of d for the best approximation to the profiles. If the computer performed arithmetic

exactly, the error would go down as d was increases up to d = 64, at which point the error

would be zero. This does not happen numerically. For d = 46 the pole sum error is at a

minimum. This is the best practical sum-of-poles approximations to the profiles (accurately

generated with (4.5)).

Figure 3.4 depicts the kernel Φ̂64(s, 15, 240).

d errquadP,Q errdbleP,Q errquadα,β errdbleα,β

30 1.5886E− 07 1.5886E− 07 1.5886E− 07 1.5888E− 07
38 1.3196E− 09 1.3195E− 09 1.3196E− 09 1.3236E− 09
46 3.3095E− 12 3.0465E− 12 3.3095E− 12 4.9992E− 10
54 1.9925E− 14 3.4432E− 13 2.0070E− 14 8.6415E− 10
62 3.6985E− 16 2.4559E− 12 2.1901E− 15 2.1468E− 09
64 4.3222E− 17 2.9317E− 12 7.3939E− 15 1.4739E− 08

Table 4.2: Errors in rational approximations of Φ̂64(s, 15, 240).

Table 4.2 shows the results; for these errors T−1 = 0. Notice that the fundamental

P (s)/Q(s) approximation, relying on quadruple representation of the coefficients cnj, be-

comes more accurate as d is increased. However, the other representations degrade as d

increases. The pole-sum approximation relying on double-precision representation of the

poles locations βdble
k and residues αdble

k clearly degrades most rapidly.
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Figure 4.4: Depicts the real and imaginary profile of the kernel Φ̂64(s, 15, 240) along s = iy.

Figure 4.5: Shows the double-precision pole-sum for a d = 28 approximation.
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Conclusion

Lastly, we will wrap up by emphasizing a few of this thesis’s most crucial points. Chapter

1 described multipole solutions to the radial wave equation (RWE) which arises from 3 + 1

wave equation upon spherical harmonic transformation. In terms of these multipole solutions,

the solution to the 3+1 wave equation is the expansion

ψ(t, x, y, z) = ψ(t, r sin θ cosϕ, r sin θ sinϕ, r cos θ) =
∞∑
l=0

l∑
m=−l

1

r
Ψlm(t, r)Ylm(θ, ϕ).

By claim 2.1.1, lemma 2.1.2 and 2.1.3, we derived an outgoing multipole solution Ψl(t, r) to

the radial wave equation (RWE). The encountered formulas do not feature m, and so this

index has been suppressed. We examined the structure of near-to-far propagation kernels

used to map the solution Ψℓ(t, r1) at r1 to the one Ψℓ(t, r2) at r2 > r1. These kernels have

the form

Φl(t1, r1, r2) =
l∑

j=1

alj(r1, r2)e
(blj/r1)t,

where [3]

aij(r1, r2) =
Wl(bljr2r

−1
1 )

r1W ′
l (blj)

.

Here the {blj : j = 1, . . . , l} are the zeros of the MacDonald function Kl+1/2(z) which lie in

the left-half plane.

Chapter 2 has considered the classical problem of polynomial approximation as a warm-

up for rational approximation via the Alpert-Greengard-Hagstrom algorithm [5]. Chapter 2

considers approximation of a function f(s), where s = x + iy. For x fixed, we view f(s) as
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a function of y, assuming that the real part of f is even in y and the imaginary part of f is

odd in y (the “parity property”). The AGH algorithm described in Chapter 3 then allows

for an approximation of the form

f(s) ≃ P (s)

Q(s)
=

d∑
j=1

αj

s− βj
=

dpair∑
j=1

(
mj

s− kj
+

m̄j

s− k̄j

)
+

dsing∑
j=1

µj

s− κj
,

where d = 2dpair + dsing and µj, κj ∈ R. We presented a Matlab code/implementation of the

approximation scheme (collected in the Appendix).

Chapter 3 considered numerical examples. First, it studied approximation of f(s) =
√
s2 + 1− s which is the Laplace transform of J1(t)/t. This example served to confirm that

a Fortran implementation of the AGH algorithm works, and to understand the limits of this

implementation. The second half of Chapter 3 has examined approximation of Φ̂64(s, r1, r2)

as a smaller pole sum of d terms, that is as

Φ̂64(s, r1, r2) ≃
d∑

k=1

αk

s− βk
,

where d ≤ 64. Due to finite-precision effects, these smaller poles sum may in practice yield

more accurate representations of Φ̂64(s, r1, r2) than is achievable by a full 64-term pole sum.

The origin of this phenomena is that, as first shown in [3], the residues alj grow exponentially

with l. Future work should address the following question. For a desired accuracy, say single-

precision accuracy, what is the largest possible l-value such that Φ̂l(s, r1, r2) admits a d-pole

approximation stored in double-precision format. This largest value of l is beyond 64, but

we believe not much beyond.
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