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Foreword 
 

 

For all the suggested subjects options we present grading 

scales, solutions, problems solving suggestions and complete 

answers, depending on the difficulty and the specificity of each 

problem. 

We also inform you that each test has been organized 

according to the models of the subjects given at recent high 

school entrance exams and are thus structured so that the entire 

The present book tries to offer students and teachers 

knowledge evaluation tools for all the chapters from the 

current Romanian mathematics syllabus. 

In the evolution of teenagers, the phase of admission 

in high schools mobilizes particular efforts and emotions. 

The present workbook aims to be a permanent advisor in the 

agitated period starting with the capacity examination and 

leading to the admittance to high school.  

The tests included in this workbook have a 

complementary character as opposed to the many materials 

written with the purpose to support all those who prepare for 

such examinations and they refer to the entire subject matter 

included in the analytical mathematics syllabus of arithmetic 

in Romania, algebra and geometry from the lower secondary 

grades.   

These tests have been elaborated with the intention to 

offer proper support to those who use the workbook, 

assuring them the success and extra preparation for future 

exams. 
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examination syllabus is covered and the school workbooks are 

thus rhythmically covered.  

At the end of the workbook, we have included the 

subjects given at the mathematics examination in the years 1991-

1997. 

We would like to thank all those who have shown a 

special receptivity for the emergence of this workbook and have 

made its publication possible. 

The authors 
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Tests Enunciations 

Test no.1  
 

I. 1. Determine the natural numbers 𝑎, 𝑏, 𝑐, knowing that: 

 
2. Determine the natural numbers 𝑎 , 𝑏 , 𝑐 , 𝑑  with the 

properties: 

 
3. Determine the set:  

 

II. 1. Let 𝑎 = √45 − 2√22 − 12  and 𝑏 =

√25𝑛+1: 52𝑛+1 + √12, 𝑛 ∈ ℕ. Determine the smallest value of 𝑝, 

natural number for which (𝑏 − 𝑎 − √12)
𝑝
∈ ℕ. 

2. Show that: 

 
3. Let: 

 

the graphic of which contains the point 𝑀(√3 − 1; 3) . 

Determine the point with both coordinates as natural numbers, that 

belongs to the graphic of the function. 

III. Solve the following equation: 
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2. The triangle 𝐴𝐵𝐶 has 𝐴𝐵 = 2𝑐𝑚 , 𝐵𝐶 = 4𝑐𝑚  and 

𝑚(∢𝐴𝐵𝐶) = 30°. The projection of this triangle on a plane 𝛼 is a 

triangle 𝐴,𝐵,𝐶 ,  with 𝑚(∢𝐵,𝐴,𝐶 ,) = 90°  and the area of 3𝑐𝑚2 . 

Calculate: 

a) The area of the triangle 𝐴𝐵𝐶. 

b) The sides of the triangle 𝐴,𝐵,𝐶 ,. 

c) The dihedral angle from situated between planes (𝐴𝐵𝐶) 

and 𝛼. 

3. Let there be the triangle 𝐴𝐵𝐶 and 𝐺 its’ center of mass. A 

random straight line traced through 𝐺 intersects 𝐴𝐵 in 𝑀 and 𝐴𝐶 in 

𝑁 . Let 𝐵𝐸 ∥ 𝐴𝐼 ∥ 𝐶𝐹  so that the points 𝐶, 𝐺, 𝐸  are collinear, 

𝐵, 𝐺, 𝐹 collinear and 𝐵𝐸, 𝐴𝐼. 𝐶𝐹 are situated in the same semiplane 

with 𝐴 determined by 𝐵𝐶, 𝐼 being the center of 𝐵𝐶. Show that: 

a) 
𝑀𝐵

𝑀𝐴
+
𝑁𝐶

𝑁𝐴
= 1 

b) 𝐵𝐸 + 𝐶𝐹 ≥ 4. 𝐺𝐼; when does the equality take place? 

 

Grading scale:   1 point ex officio 

I.  1) 1p  2) 1p  3) 1p 

II.  1) 1p  2) 2p  3) 1p 

III.  1) 2p  2) 2p  3) 1p 
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Test no.2 
I. 1. Calculate: 

 
2.  Show that: 

 
II. 1. Determine the set 𝐴, if: 

 
2. In the triangle 𝐴𝐵𝐶  we trace the height 𝐴𝐷(𝐷 ∈ 𝐵𝐶) . 

Calculate 𝐵𝐷 in relation to the sides of the triangle 𝐵𝐶 = 𝑎; 𝐴𝐶 =

𝑏; 𝐴𝐵 = 𝑐. 

III. 1. The base of a straight parallelepiped is a rhombus with 

the side measuring 8 and an angle of 60°. The lateral area of the 

parallelepiped is 512. Determine the volume of the parallelepiped. 

2. Determine at which distance from the top of a cone with 

the radius of the base being 4 and the height being 5, we have to 

trace a parallel plane with the base so that this cone will be divided 

in two parts having the same volume.  

 

Grading scale:   1 point ex officio 

I. 1) 1p  2) 1p   

II.  1) 1p  2) 2p   

III.  1) 2p  2) 2p   
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Test no.3 
I. 1. a) Calculate: 

 
b) Divide number 6 in parts directly proportional with the 

numbers 0, (3) and 0,1(6). 

2. Solve in ℝ the system: 

 
II. Determine: 

 
and write down the result as an irreducible fraction. 

2. By dividing a polynomial 𝑃(𝑋) by 𝑋3 + 3, we obtain a 

remainder equal to the quotients’ square. Determine this remainder 

knowing that 𝑃(−1) + 𝑃(1) + 5 = 0. 

III. 1. The regular square pyramid 𝑉𝐴𝐵𝐶𝐷 has the base side 

𝐴𝐵 = 10 𝑐𝑚 and the height 𝑉𝑂 = 5 𝑐𝑚. 

a) Calculate the lateral area and the volume of the pyramid 

b) Determine the measure, in degrees, of the angles of the 

planes (𝑉𝐵𝐶)and (𝐴𝐵𝐶) 

c) Considering that on 𝑉𝑂  there is the point 𝑃 , equally 

positioned in relation to the 5 points of the pyramid, determine 𝑃𝑉. 

2.  In a straight circular cylinder with the radius √2  and the 

height of 4 𝑐𝑚, [𝐴𝐵] is the diameter and [𝐴𝐴,] and [𝐵𝐵,] are the 

generators: 

a) Determine the total area and the volume of the cylinder 

b) Let 𝐸  be on the circle of diameter [𝐴𝐵] , so that 𝑚 =

(𝐵𝐸) = 60°̂ . State the measure in degrees of the angle formed by 

the straight lines 𝐴𝐸 and 𝐴,𝐵. 
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Grading scale:  1 point ex officio 

I.  1) a) 0,5p  b) 0,5p  2) 1p 

II.  1) 1p  2) 1p   

III.  1) a) 1p  b) 1p  c) 1p    

2) a) 1p  b) 1p 
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Test no.4 
I. 1. Solve: 

 

 

 
2. Given the sets: 

 
Calculate: 𝐴 ∪ 𝐵; 𝐴 ∩ 𝐵; 𝐴);  𝐴\𝐵. 

II. 1. Solve the equation: 𝑚(𝑥 + 1) − 𝑚2𝑥 = 1. Discussion. 

2. Show that, if 𝑎, 𝑏, 𝑐, 𝑥, 𝑦 ∈ ℝ, 𝑎. 𝑏 ≠ 0 so that 𝑎𝑥 + 𝑏𝑦 =

𝑐, then: 𝑥2 + 𝑦2 ≥
𝑐2

𝑎2+𝑏2
. 

III. 1. Determine the area of a triangle, knowing that, if its 

length is decreased by 10% and its height is augmented by 10%, its 

area will decrease by 20 𝑐𝑚2. 

2. The isosceles right triangle 𝐴𝐵𝐶 is given, with 𝑚(∢𝐵) =

90°, 𝐴𝐵 = 𝐴𝑐 = 𝑎. In point 𝑂, the middle of the line segment 𝐴𝐶, 

we raise a perpendicular on the plane of the triangle on which we 

designate a point 𝐷 so that 𝐷𝑂 = 𝑏. Let 𝐴𝑀 ⊥ 𝐵𝐷, 𝑀 ∈ (𝐵𝐷). 

a) Show that 𝐶𝑀 ⊥ 𝐷𝐵 

b) Calculate the area of the triangle 𝐴𝑀𝐶. 

 

Grading scale:  1 point ex officio 

I.  1) a) 0,5p  b) 0,5p  c) 0,5p  2) 1p 

II.  1) 1,5p  2) 1p   

III.  1) 2p   2) a) 1p  b) 1p 

 



Possible Subjects for Examination, Grades V-VIII 

21 

 

Test no.5 
I. 1. Calculate the integer part of the number 𝑎, where: 

 
2.  Let 𝑝 be a two-digit natural number, prime, that has equal 

digits. Determine the set 𝐴: 

 
3. The natural numbers 𝑎, 𝑏, 𝑐, not equal to zero, with 0 <

𝑎 < 𝑏 < 𝑐  are directly proportional to 4, 5, 𝑑 , 𝑑 ∈ ℕ∗ . If 𝑐2 ≤

(2𝑏 − 𝑎)2 what percentage of (𝑎 + 𝑐) does 𝑏 represent? 

II. Calculate: 

 
where 𝑎, 𝑏 ∈ ℚ, so that: 

 
2. Determine 𝐴, knowing that: 

 
3. Represent graphically the function 𝑓:ℝ ⟶ ℝ , 𝑓(𝑥) =

𝑎𝑥 + 𝑏, where 𝑎 and 𝑏 are prime numbers, 𝑐 ∈ ℤ, so that:  

 
III. 1. The trapezoid 𝐴𝐵𝐶𝐷  has 𝐴𝐵 ∥ 𝐶𝐷 , 𝐴𝐵 = 12 𝑐𝑚 , 

𝐶𝐷 = 4 𝑐𝑚, 𝐴𝐵 ⊂ 𝛼 ad 𝐶 ∉ 𝛼, 𝐷 ∉ 𝛼. Let: 

 
If 𝑇 and 𝑅 belong to the plane 𝛼, so that 𝑀𝑇 ∥ 𝑁𝑅, calculate 

the length of 𝑇𝑅. 

2. On the plane of the triangle 𝐴𝐵𝐶 , with 𝑚(∢𝐴) = 90°, 

𝑚(∢𝐵) = 15° , 𝐵𝐶 = 16 𝑐𝑚 , the perpendicular 𝐴𝑉 = 4 𝑐𝑚  is 

raised.  
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Calculate: 

a) the distance from point 𝐴 to the plane (𝑉𝐵𝐶); 

b) the measure of the dihedral angle formed by the planes 

(𝐴𝐵𝐶) and (𝑉𝐵𝐶). 
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Test no.6 
I. 1. Determine the following set: 

 
2. Calculate: 

 
3. Decompose in factors: 

 

 
II. 1. Represent graphically the following function: 

 
2. Determine the area of an equilateral triangle knowing the 

sum of the distances from a point 𝑀 that belongs to the interior of 

the triangle, to its sides, in relation to the length of the triangle’s 

side. 

3. A cube with the side measuring 20 is given. Determine the 

distance between one of the cube’s diagonals and a lateral edge it 

does not intersect.  

III. The base of a pyramid is the right triangle 𝐴𝐵𝐶  with 

𝐴𝐵 + 𝐴𝐶 + 8 𝑐𝑚  and the edge (𝑆𝐴)  perpendicular on the base, 

𝑆𝐴 = 6 𝑐𝑚. Calculate: 

a) The total area of the pyramid 

b) The measure of the dihedral angle formed by the faces 

(𝑆𝐵𝐶) and [𝐴𝐵𝐶] 

c) The volume of the pyramid [𝑆𝐴𝐵𝐶]. 

 

Grading scale:  1 point ex officio 

I.  1) 1p 2) 1p  3) 1p 

II.  1) 1p 2) 1p  3) 1p 

III.  a) 1p   b) 1p  c) 1p 
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Test no. 7 
I. 1. Calculate:  

 

2. Explain: │𝑥 − 1│ + 2│ − 3│. 

II. 1. Let 𝐴𝐵𝐶  be an isosceles triangle ([𝐴𝐵] = [𝐴𝐶]) and 

𝐴𝐷 the bisector of the angle 𝐴, 𝐷 ∈ (𝐵𝐶). Let: 

 
Show that 𝐵𝐹𝐸𝐶 is an isosceles trapezoid.  

2. Determine the set: 

 
III. 1. The right triangle 𝐴𝐵𝐶 (𝑚∢𝐴) = 90° rotates around 

the cathetus 𝐴𝐶. Knowing that 𝐴𝐵 = 4, 𝐴𝐶 = 3, calculate the area 

and the volume of the body that is obtained. 

2. Let 𝐴𝐵𝐶𝐷be a square with the side measuring 3 𝑐𝑚. In 𝐴 

and 𝐵  the perpendiculars 𝐴𝐴, = 4 𝑐𝑚  and 𝐵𝐵, = 6 𝑐𝑚  are raised 

on the plane 𝐴𝐵𝐶𝐷 . If 𝐸 ∈ 𝐴,𝐵,  so that (𝐴,𝐸) ≡ (𝐸𝐵,) and 𝐹 ∈

𝐴𝐵  so that (𝐴𝐹) ≡ (𝐹𝐷) , calculate the volume of the pyramid 

𝐸𝐴𝐵𝐶𝐷. 

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   

II.  1) 1,5p  2) 1,5p 

III.  1) 1,5p   2) 1,5p 
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Test no. 8 
I. 1. Calculate: 

 
2. Enumerate the elements of the sets: 

 

 
3. Determine the quotient and the remainder of the division 

of the polynomial: 

 
II. 1. Prove that in any right triangle the sum of the 

diameters of the inscribed and circumscribed circles of that triangle 

is equal to the sums of the catheti.  

2. Solve the system: 

 
3. Bring the following expression to its simplest form: 

 
III. In the regular tetrahedron [𝑂𝐴𝐵𝐶] where 𝑂𝐴 ⊥ 𝑂𝐵 ⊥

𝑂𝐴, 𝑂𝐴 = 𝑂𝐵 = 𝑂𝐶 = 8 𝑐𝑚 is given. 

a) Calculate the area of the triangle 𝐴𝐵𝐶 

b) Calculate the total area of the tetrahedron [𝑂𝐴𝐵𝐶] 

c) Calculate the volume of the tetrahedron [𝑂𝐴𝐵𝐶] 

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   3) 1p 

II.  1) 1p  2) 1p   3) 1p 

III.  a) 1p   b) 1p   c) 1p 
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Test no. 9 
I. 1. Determine the elements of the sets 𝑋 and 𝑌 knowing 

that the following conditions are simultaneously met: 

a) 𝑋 ∩ 𝑌 = {3,4} 

b) 𝑋 ∪ 𝑌 = {3, 4, 4, 6, 7} 

c) The sum of 𝑌’s elements is an even number 

2. a) Show that 𝐸(𝑋) = 𝑋4 − 4𝑋3 + 12𝑋 − 9 is divisible by 

𝑋 − 1 and 𝑋 − 3 

b) Decompose in indivisible factors 𝐸(𝑋) 

3. Solve the equation: |2𝑥 − 3| + |4𝑥 − 6| = 0 

II. 1. Let 𝐴𝐵𝐶 be a triangle and 𝐷 the middle of (𝐵𝐶). Show 

that 𝐴𝐷 <
𝐴𝐵+𝐴𝐶

2
 

2. Solve the inequation: 
4−𝑥

𝑥2+4𝑥+5
< 0 

3. Determine the real numbers 𝑥  and 𝑦  that verify the 

relation: 𝑥2 + 𝑦2 + 2𝑥 + 2𝑦 + 2 = 0. 

III. A rectangular parallelepiped 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷,  has the 

dimensions: 𝐴𝐵 = 4 𝑐𝑚 , 𝐴𝐴, = 4√3 𝑐𝑚  and 𝐵𝐶 = √33𝑐𝑚 . 

Calculate: 

a) the measure of the parallelepiped’s diagonal 

b) the measure of the angle between the planes (𝐵,𝐶 ,𝐷,) and 

(𝐵𝐴𝐶) 

c) the volume of the parallelepiped 

d) the total area of the parallelepiped 

 

Grading scale:   1 point ex officio 

I.  1) 1p     2) 1p    3) 1p 

II.  1) 1p     2) 1p    3) 1p 

III.  a) 0,75p     b) 0,75p   c) 0,75p         d) 0,75p 
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Test no.10 
I. 1. Compare the numbers 

777…75

777…78
 and 

888…85

888…89
 , if each 

number from the numerator and the denominator has 𝑛 digits, 𝑛 ∈

ℕ, 𝑛 > 2. 

2. Calculate : 1 −
1

2
. (0,1. 102 − √81): 2−1 

3. Solve the system: 

 

4. If 𝑛 ∈ ℕ∗ , prove that the number √𝑛 + √𝑛 + 1  is 

irrational. 

II. 1. Solve the equation: 

 
2. If 𝑥2 + 𝑦2 + 𝑧2 = 1, prove that: 

 
3. A parallel to the median (𝐴𝐷) of the triangle 𝐴𝐵𝐶  cuts 

𝐴𝐵 and 𝐴𝐶 in 𝐸 and 𝐹, respectively. Show that 
𝐴𝐸

𝐴𝐹
=
𝐴𝐵

𝐴𝐶
. 

III. Given a right circular cone with the length of the base’s 

diameter of 12 𝑐𝑚 and the length of the height being equal to 2/3 

of the diameter’s length: 

a) determine the volume of the cone 

b) the lateral area of the cone 

c) The lateral surface of the cone is displayed thus obtaining 

a sector of the circle. What is the measure of the angle of this sector 

of the circle? 

Grading scale:  1 point ex officio 

I.   1) 0,75p   2) 0,75p  3) 0,75p 4) 0,75p 

II.  1) 1p        2) 1p       3) 1p 

III. a) 1p       b) 1p       c) 1p 
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Test no. 11 
I. 1. Calculate: 

 

 
2. Let there be the function 𝑓:ℝ → ℝ, described by 𝑓(𝑥) =

2𝑥 + 𝑚. 

a) Determine the value of the parameter "𝑚"  so that the 

graphic passes through the point 𝐴(2; 5); 

b) Represent graphically the determined function. 

3. Solve the equation: 

 
II. 1. If 𝑝 > 3 is a prime number, show that 𝑝2 divided by 

24 will give the remainder 1. 

2. If: 

 
prove that 𝑃(𝑏) ≥ 0, irrespective of the what 𝑏 ∈ ℝ is. 

3. Let 𝑂 represent the point of intersection of a trapezoid. 

Prove that the straight line determined by the point 𝑂 and by the 

intersection point of the un-parallel sides of the trapezoid goes 

through the middle of the trapezoid’s bases. 

III. In a cylinder whose axial section is a square with the side 

of 6 𝑐𝑚 a sphere is inscribed. Calculate: 

a) The total area and the volume of the cylinder 

b) The rapport between the volume of the sphere and that of 

the cylinder’s. 

 

 Grading scale:  1 point ex officio 

I.  1) a) 0,50p   b) 0, 50p  2) a) 0,50p b) 0,50p  3) 1p 

II. 1) 1p        2) 1p       3) 1p 

III.  a) 1p            b) 1p   
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Test no. 12 
I. 1. Show that for ∀𝑛 ∈ ℕ, the expression: 

 
is divisible by 7.  

2. Determine the digits 𝑎 and 𝑏 so that the fraction 
52𝑎

1𝑏75
 can 

be simplified by 17. 

3. Calculate:  

 
II. 1. Effectuate: 

 
2. Justify why the equation: 

 
doesn’t have real solutions. 

3. Simplify the fraction: 

 
III. 1. The measure of an angle is 7/8 from its supplement. 

Show that 2/3 from the measure of the bigger angle is 1° bigger 

than 3/4 from the measure of the small angle. 

2. Three parallel planes are given: 𝛼, 𝛽, 𝛾 and the points 𝐴, 𝐵 

in 𝛼 and 𝐶, 𝐷 in 𝛽. The straight lines 𝐴𝐶, 𝐵𝐶, 𝐵𝐷 and 𝐴𝐷 cut the 

plane 𝛾 in 𝐸, 𝐹, 𝐺 and 𝐻. Prove that 𝐸𝐹𝐺𝐻 is a parallelogram. 

3. On the plane of the parallelogram 𝐴𝐵𝐶𝐷  the 

perpendicular 𝐴𝐸  is raised. Calculate the distances from 𝐸  to the 

straight lines 𝐵𝐷, 𝐵𝐶 and 𝐶𝐷, knowing that: 

 
Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   3) 1p 

II.  1) 1p  2) 1p   3) 1p 

III.  1) 1p    2) 1p   3) 1p 
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Test no. 13 
I. 1. Find the natural number 𝑛, so that: 

 
is divisible by 5.  

2. Prove that: 

 

3. Knowing that 
𝑥

𝑦
=
3

4
, find the value of the rapport 

5𝑦−7𝑥

6𝑦−8𝑥
. 

II. 1. Solve in ℤ the equation: 

 
2. Show that the following number is a perfect square: 

 
3. Solve the equation system: 

 
III. 1. Two adjacent angles have parallel bisectors. Determine 

the measure of each angle, knowing that the measure of one of 

them is five time bigger than the measure of the other. 

2. Show that, if the diagonals of a rectangular trapezoid are 

perpendicular to one another, then the length of the perpendicular 

side on the bases is the geometric mean of the bases lengths. 

3. Let 𝐴, 𝐵, 𝐶, 𝐷  be four points that are not coplanar. We 

note 𝐸  and 𝐹  the projections of point 𝐴  on the bisectors ∢𝐴𝐵𝐷 

and ∢𝐴𝐶𝐷 respectively. Prove that 𝐸𝐹 ∥ (𝐵𝐶𝐷). 

 

Grading scale:  1 point ex officio 

I.  1) 0,75p 2) 1p    3) 1,25p 

II.  1) 1p  2) 0,75p  3) 1,25p 

III.  1) 0,75p  2) 1p    3) 1,25p 
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Test no. 14 
I. 1. Determine the consecutive digits 𝑎, 𝑏, 𝑐, 𝑑 in the base 

10 knowing that 𝑎𝑏̅̅ ̅ = 𝑐𝑑. 

2. Given 𝐴 = √
2𝑥+5

𝑥−1
, determine 𝑥 ∈ ℤ, knowing that 𝐴 ∈ ℕ. 

3. Show that the following fraction is irreducible: 

 
II. 1. Determine the set: 

 
2. Represent graphically the following function: 

 

3. Determine 𝑥  from the proportion: 
𝑎

𝑥
=
4993

0,25
, where 𝑎 =

21990 − 21989 − 21988. 

III. 1. Show that in a right angle 𝐴𝐵𝐶 with 𝑚(∢𝐴) = 90°, 

the following inequality takes place: 𝐵. sin 𝐶 ≤ sin 30°. When does 

the inequality take place? 

2. Let 𝐴, 𝐵, 𝐶, 𝐷 be for points that are not coplanar, so that: 

 
Show that if 𝑀 and 𝑁 are the middles of the segments 𝐴𝐵 

and 𝐶𝐷 respectively, then 𝑀𝑁 is the common perpendicular of the 

straight lines 𝐴𝐵 and 𝐶𝐷.  

3. The theorem of the three perpendiculars: enunciation and 

demonstration. 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1,25p          3) 0,75p 

II.  1) 1,25p  2) 0,75p          3) 1p 

III.  1) 1,25p    2) 1,25p          3) 0,50p 
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Test no. 15 
I. 1. Given the numbers: 

 
Prove that 3|(𝑎 + 𝑏). 

2. Find the form of the natural number 𝑛 knowing that: 

 
3. Show that the following number is subunitary (⩝)𝑛 ∈ ℕ∗: 

 
II. 1. No matter what 𝑛 ∈ ℕ is, is the following number a 

perfect square? 

 
2. Determine the function 𝑓:ℝ → ℝ, with the property: 

 
irrespective of what 𝑥 ∈ ℝ is and 𝑓(𝑥)- linear function. 

3. Given: 

 
show that 𝑃(−1992) = 1. 

III. 1. In ∆𝐴𝐵𝐶 we consider that 𝑚(∢𝐴) = 60° and 𝐴𝐵 =

2. 𝐴𝐶. Find the measures ∢𝐵 and ∢𝐶. 

2. Prove that in any ∆𝐴𝐵𝐶 the following relation takes place: 

 
where 𝑎, 𝑏, 𝑐 represent the lengths of the sides of ∆𝐴𝐵𝐶, and 

ℎ𝐴. ℎ𝐵. ℎ𝐶  the heights corresponding to the tops 𝐴, 𝐵  and 𝐶 

respectively. 
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3. A right regular pyramid has the side of the base of 6√3 

and the apothem of the pyramid equal to 5𝑚. Determine the lateral 

area and the volume of the pyramid. 

 

Grading scale:  1 point ex officio 

I.  1) 0,75p   2) 1p         3) 1,25p 

II.  1) 1p   2) 1p         3) 1p 

III.  1) 1,25p  2) 0,75p        3) 1p 
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Test no. 16 
I. 1. Knowing that 𝑎 + 𝑏 = 3 and 𝑎 + 𝑐 = 5, calculate 𝑎2 +

𝑎𝑐 + 5𝑏. 

2. If 
𝑥

𝑦
=
4

3
, determine the rapport: 

𝑥𝑦−𝑦2

𝑥𝑦+𝑦2
 

3. Given the expression: 

 
where 𝑝  is an integer number, show that if 𝐸(2)  or 𝐸(3)  are 

divisible by 6, then 𝐸(5) is divisible by 6. 

II. 1. Write as union of intervals the set: 

 
2. Solve the equation: 

 
3. For what values of 𝑚 and 𝑛 are the following equations 

equivalent? 

 
III. 1. In a triangle 𝐴𝐵𝐶 we know: 

 
Calculate the acute angle formed by the bisector of the angle 

𝐵 with the height raised from 𝐴. 

2. In the cube 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷,, let 𝑄 be the projection of the 

top 𝐷 on the diagonal 𝐴𝐶 ,. Determine the value of the rapport 
𝐴𝑄

𝐴𝐶 ,
. 

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   3) 1p 

II.  1) 1p  2) 1,5p   3) 1,5p 

III.  1) 1p    2) 1p  
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Test no. 17 
I. 1. Show that: 

 

2. If 
𝑎

𝑏
=
13

12
, show that 

3𝑎−𝑏

4𝑎+𝑏
 is a perfect cube.  

3. Using:  

 
show that 𝑆 < 1/3 where: 

 
II. 1. Solve in ℤ × ℤ the equation:  

 
2. Given:  

 
Order in ascending order the numbers:  

 
3. Given the polynomial: 

 
𝑘 ∈ ℕ  and 𝑏 ∈ ℤ , determine 𝑎  and 𝑏  so that the sum of the 

coefficients is 0. 

III. 1. Show that if in a ∆𝐴𝐵𝐶, the side {𝐴𝐶}, the bisector 

∢𝐵  and the median of the side [𝐵𝐶]  are concurrent, then 

𝑚(∢𝐵) = 2𝑚(∢𝐶). 

2. In  ∆𝐴𝐵𝐶 we know that 𝐴𝐵 = 9 𝑐𝑚 , 𝐵𝐶 = 10 𝑐𝑚 and 

𝑚(∢𝐵) = 60°. Calculate the length of the segment 𝐴𝐵. 

3. A sphere, a circular right cylinder with a square axial 

section and a cube have the same area. Compare their volumes. 
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Grading scale:  1 point ex officio 

I.  1) 1p      2) 0,75p   3) 1,25p 

II.  1) 1p      2) 1p   3) 1p 

III.  1) 0,75p     2) 1,25p   3)1p 
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Test no. 18 
I. 1. Determine 𝑎 so that: 

 
2. Show that the following numbers are smaller than 2: 

 
3. Solve the system: 

 
II. 1. Determine 𝑥 knowing that: 

 
2. Given the real numbers 𝑥, 𝑦, 𝑧, show that: 

 
b) if 𝑥 + 𝑦 + 𝑧 = 1, deduce that 𝑥2 + 𝑦2 + 𝑧2 ≥ 1/3. 

III. 1. Let 𝐴𝐵𝐶 be a triangle, with the sides’ lengths 𝐴𝐵 = 𝑎, 

𝐴𝐶 = 𝑎√2 , 𝐵𝐶 = 𝑎√3 . We note with 𝑃  the foot of the height 

from 𝐴 on 𝐵𝐶 and with 𝑀,𝑁 the projections of 𝑃on the sides 𝐴𝐵 

and 𝐴𝐶  respectively. Calculate the length of the segment 𝑀𝑁  in 

relation to 𝑎. 

2. Let 𝐴𝐵𝐶 be a right isosceles triangle. The hypotenuse 𝐵𝐶 

is situated in a plane 𝛼 and the plane of the triangle makes a 45° 

angle with the plane 𝛼. Determine the angles that the catheti 𝐴𝐵 

and 𝐴𝐶 form with the plane 𝛼.  

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p    3) 1p 

II.  1) 1p  2) a) 1p  b) 1,5p 

III.  1) 1,5p   2) 1p   
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Test no. 19 
I. 1. Given: 

 
and knowing that 𝑎0, 𝑎1, … , 𝑎100  are natural numbers, calculate 

𝑆𝑚𝑖𝑛 + 𝑆𝑚𝑎𝑥. Show that, generally, 𝑆 ≠ 0. 

2. Determine the natural numbers 𝑥  and 𝑦  so that the 

geometric mean of the numbers 4𝑥 and 8𝑦 is 64. 

3. Prove that the numbers 𝑎4. 𝑎6 + 1 are perfect squares, 

irrespective of the number 𝑎. 

II. 1. Given:  

 

 
calculate 𝐴 ∩ 𝐵. 

3. Given: 

 
and 𝑃(𝑋): (𝑋 + 1) gives the remainder 2, determine 𝑚 and 𝑛. 

III. 1. In ∆𝐴𝐵𝐶, with 𝑚(∢𝐶) = 60°, the bisectors (𝐴𝐾 and 

(𝐵𝐸, where 𝐾 ∈ 𝐵𝐶, 𝐸 ∈ 𝐴𝐶 intersect in 𝑂. Show that 𝑂𝐾 = 𝑂𝐸. 

2. Given the square 𝐴𝐵𝐶𝐷 and 𝑀 a point in the interior of 

 ∆𝐴𝐵𝐶, show that 𝑀𝐷 > 𝑀𝐵. 

3. A regular square pyramid has the side of the base of 

16 𝑐𝑚 and the height of 6 𝑐𝑚. Calculate the lateral area and the 

lateral edge of the pyramid.  

 

Grading scale:  1 point ex officio 

I. 1) 1p 2) 1p    3) 1p 

II.  1) 1p  2) a) 1p  b) 1p 

III.  1) 1,25p  2) 1,25p   3) 0,50p 
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Test no. 20 
I. 1. Given the sets: 

 
determine 𝑛 ∈ ℕ so that 𝐴 ∪ 𝐵 has five elements.  

2. Knowing that 
𝑥

𝑦
=
3

4
, calculate 

2𝑥−𝑦

3𝑦−𝑥
. 

II. 1. Calculate:  

 
2. In the triangle 𝐴𝐵𝐶  we know that 𝐴𝐵 = 6 𝑐𝑚 , 𝐴𝐶 =

14 𝑐𝑚  and 𝑚(∢𝐵) = 60° . Calculate 𝐵𝐶  and the lengths of the 

triangle’s heights. 

III. 1. Calculate the equations: 

 

 
2. In a rights triangle 𝐴𝐵𝐶  (𝑚(∢𝐴) = 90°) we know that 

𝐴𝐵 = 12 𝑐𝑚 and that the length of the median𝐴𝑚 = 10 𝑐𝑚 (𝑀 ∈

𝐵𝐶). In the point 𝑀 a perpendicular 𝑀𝑁 is raised on the plane of 

the triangle. If 𝑀𝑁 = 8 𝑐𝑚, calculate: 

a) the angle between the planes (𝑁𝐴𝐵) and (𝐴𝐵𝐶); 

b) cos∢[(𝑁𝐵𝐶), (𝐴𝑀𝑁)]; 

c) the distance from point 𝐴 to the straight line 𝑁𝐵; 

d) the area and the volume of the pyramid 𝑁𝐴𝐵𝐶. 

 

Grading scale:  1 point ex officio 

I.  1) 0,50p   2) 0,50p   

II.  1) 0,50p   2) 2p (4. 0,50p) 

III.  1) 1p+ 0,50p 2) 0,75p + 1p + 1p + 1, 25p 
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Test no. 21 
I. 1. Effectuate: 

 

 

 

2. a) Calculate the value of the rapport 
3𝑎+𝑏

3𝑎−𝑏
 knowing that 

2𝑎

3𝑏
=
1

5
. 

b) After two consecutive price raises, the price of an object 

raised from 3500 𝑙𝑒𝑖 to 3969 𝑙𝑒𝑖. Knowing that the second raise 

was by 5%, determine the percent of the first raise. 

II. 1. Solve in 𝑄 the equation: 

 
2. Solve in ℝ the inequation: 

 
3. A vehicle has covered 150 𝑘𝑚 in 3 hours. In the passing 

towns, the average speed was 40 𝑘𝑚/ℎ  and outside the towns, 

70 𝑘𝑚/ℎ. How much time did he spend crossing the towns? 

4. Determine the remainder of the division of the 

polynomial:  

 
with 𝑋 − 1 , if by dividing the polynomial 𝑃(𝑋)  with 𝑋 + 2 , the 

remainder is −3. 

5. Represent graphically the function: 
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III. 1. Considering the right triangle 𝐴𝐵𝐶  with 𝑚(∢𝐴) =

90° , 𝑂  the middle of [𝐵𝐶] , 𝐴𝐷 ⊥ 𝐵𝐶 , 𝐵𝐶 = 50 𝑐𝑚  and 𝑂𝐷 =

7 𝑐𝑚. Calculate the measures of the segments [𝐴𝐵] and [𝐴𝐶]. 

2. Let 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, be a rectangular parallelepiped and 𝑀 

the middle of [𝐴,𝐷,]. Knowing that 𝐴𝐵 = 4𝑎 , 𝐵𝐶 = 2𝑎 and that 

the area of the triangle 𝑀𝐵𝐶 is equal to 5𝑎2, calculate: 

a) the volume of the parallelepiped 

b) the distance from 𝐵, to 𝐴𝑀 

c) the distance from 𝐴 to (𝑀𝐵𝐶) 

3. In a cone with the dimensions 𝑅 = 8 and ℎ = 6 we cut a 

section with a parallel plane with the plane of the base, situated at a 

distance from the top of 1/3  from the height of the cone. 

Determine: 

a) the area and the volume of the cone 

b) the area and the volume of the body of the obtained cone. 

 

Grading scale: 1 point ex officio 

I. 1) a) 0,50p b) 0,50p  c) 0,50p 

2. a) 0,75p  b) 0,75p 

II.  1) 0,6p 2) 0,6p  3) 0,6p   4)0,6p   5) 0,6p 

III.  1) 1p    2) 1p     3) 1p 
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Test no. 22 
I. 1. The difference between two numbers is 100. If we 

divide the big number to the small number, we obtain the quotient 

3 and the remainder 20. What are the two numbers? 

2.  Knowing that 
𝑎−13

𝑏
=

𝑎

𝑏+7
, where 𝑎, 𝑏 ∈ ℕ∗ determine 

𝑎

𝑏
.  

3. Calculate the value of the expression: 

 
where 𝑛 ∈ ℕ∗. 

II. 1. Solve the equation: 𝑚𝑥 + 1 = 𝑥 +𝑚 , where 𝑚  is a 

real parameter. 

2. Given: 

 
Knowing that 𝐸(𝑥) ∈ ℤ, 𝑥 ∈ ℤ, determine the value of 𝑥.  

3. Knowing that 𝑥 = √11 − 6√2 and 𝑦 = 3 − √2, calculate 

𝑎 = (−1)𝑛. (𝑥 + 𝑦) =?, where 𝑛 ∈ ℕ. 

III. 1.  The measures of the angles 𝐴, 𝐵, 𝐶  of the triangle 

∆𝐴𝐵𝐶  are proportional to 5, 6, 7 , respectively. Determine the 

height of the angle formed by the height of 𝐴 and the bisector ∢𝐶. 

2. Let 𝐴𝐵𝐶𝐷  be a orthodiagonal quadrilateral inscribed in 

the center circle 𝑂. If 𝑆 is the projection of 𝑂 on 𝐶𝐷, then 𝑂𝑆 =
1

2
𝐴𝐵. 

3. Let 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷,  be a cube with the edge 𝑎 and 𝑀 the 

middle of the segment 𝐴𝐵 and 𝑂 the center of the square 𝐵𝐶𝐶 ,𝐵,. 

Show that 𝐷,𝑂 ⊥ (𝐶𝑂𝑀). 

Grading scale:   1 point ex officio 

I.  1) 0,50p 2) 1,75p   3) 0,75p 

II.  1) 0,75p 2) 1,25p   3) 1p    

III.  1) 0,25p  2) 1,25p   3) 1,25p 
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Test no. 23 
I. 1. Given: 

 
Prove that: 

 

2. Determine the numbers 𝑎𝑏  in the 10 base, so that 

√𝑎𝑏 + 𝑏𝑎 ∈ ℕ. 

3. Determine the real numbers 𝑥, 𝑦 and 𝑧 for which: 

 
II. 1. Given the polynomial: 

 
show that 𝑃(𝑋) is divided by (𝑋 − 1)2. 

2. Solve in ℝ the system of equations: 

 
3. Calculate: 

 
III. 1. In ∆𝐴𝐵𝐶 the parallels through 𝐵 and 𝐶 to the bisector 

𝐴𝐷(𝐷 ∈ 𝐵𝐶) intersect the straight lines 𝐴𝐶 and 𝐴𝐵, respectively, in 

𝐸, 𝐹. Prove that [𝐵𝐶] ≡ [𝐸𝐹]. 

2. In ∆𝐴𝐵𝐶, let 𝑀 be the middle of the side 𝐵𝐶 and 𝑃 and 𝑄 

the feet of the perpendiculars traced from 𝑀  on 𝐴𝐵  and 𝐴𝐶 , 

respectively. Show that 
𝑀𝑃

𝑀𝑄
=
𝐴𝐶

𝐴𝐵
. 

3. In the top 𝐴 of a ∆𝐴𝐵𝐶, 𝐴𝐷 ⊥ (𝐴𝐵𝐶) is raised. Let 𝐶𝐸 ⊥

𝐴𝐵, 𝐸 ∈ 𝐴𝐵 and 𝐸𝐹 ⊥ 𝐵𝐷, 𝐹 ∈ 𝐵𝐷. Show that (𝐵𝐶𝐷) ⊥ (𝐶𝐸𝐹). 

Grading scale:   1 point ex officio 

I.  1) 0,75p 2) 0,50p   3) 1,75p 

II.  1) 1,50p 2) 1p        3) 0,50p    

III.  1) 1p      2) 1p        3) 1p 



Possible Subjects for Examination, Grades V-VIII 

 

44 

 

Test no. 24 
I. 1. Let: 

 
Determine the sets: 

 

2. Determine the natural numbers 𝑛 for which 
15

2𝑛+1
∈ ℕ. 

3. If 𝑥 + 𝑦 = 𝑠 and 𝑥𝑦 = 𝑝 calculate 𝑥3 + 𝑦3  and 𝑥4 + 𝑦4 

in relation to 𝑠 and 𝑝. 

II. 1. Determine the smallest common multiple of the 

polynomials: 

 

2. Determine 
𝑎

𝑏
 knowing that 

3𝑎−2𝑏

5𝑎−3𝑏
=
1

5
. 

3. Show that: 

 
III. 1. A rhombus has an angle of 120°; the small diagonal is 

of 7 𝑐𝑚. Its perimeter is required.  

2. Given the trapezoid 𝐴𝐵𝐶𝐷 , where 𝐴𝐷||𝐵𝐶  and 𝐴𝐵 =

𝐴𝐷 = 𝐷𝐶 , 𝐴𝐵 = 𝑎  and 𝐵𝐶 = 2𝑎 . The diagonals 𝐴𝐶  and 𝐵𝐷 

intersect in 𝑂. In 𝑂 we raise the perpendicular on the plane of the 

trapezoid and we designate 𝑆 so that: 𝑆𝑂 =
𝑎

2
. 

a) Show that the acute angles of the trapezoid have 60° each 

and that 𝐴𝐶 is perpendicular on 𝐴𝐵, and that 𝐵𝐷 is perpendicular 

on 𝐷𝐶. 

b) Show that the triangle 𝑆𝐴𝐵 is right triangle. 

c) Determine the dihedral angle formed by the plane (𝑆𝐴𝐷) 

with the plane of the trapezoid. 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   3) 1p 

II.  1) 1p  2) 1p   3) 1p    

III.  1) 0,5p   2) a) 1p  b) 0,5p  c) 1p 
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Test no. 25 
I. 1. Calculate the sum: 

 
2. We consider the integer number: 

 
Determine 𝑥 from the proportion: 

 
3. Show that if: 

 
then: 

 
II. 1. Determine 𝑛 ∈ ℕ∗ so that the following polynomial is 

divisible by 𝑄(𝑋) = 2𝑋 − 1: 

 
2. Solve the equation: 

 
3. Solve in ℕ the system of inequations: 

 

III. 1. In ∆𝐴𝐵𝐶  with 𝐴𝐵 =
2

3
𝐴𝐶  and 𝑚(∢𝐵𝐴𝐶) = 60° we 

trace the median 𝐶𝑀, where 𝑀 ∈ (𝐴𝐵). Show that 𝐶𝑀 = 𝐵𝐶. 

2. In ∆𝐴𝐵𝐶  we have 𝐴𝐵 = 𝐴𝐶 = 12 𝑐𝑚  and 𝐵𝐶 = 8 𝑐𝑚 . 

At what distance from the base 𝐵𝐶 do we have to trace the parallel 

𝐵𝐶 so that the perimeter of the formed trapezoid measures 20 𝑐𝑚? 
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3. In the top 𝐴 of ∆𝐴𝐵𝐶 equilateral, we trace 𝐴𝐷 ⊥ (𝐴𝐵𝐶). 

Let 𝐶𝐸 ⊥ 𝐴𝐵 and 𝐸𝐹 ⊥ 𝐵𝐷. Prove that 𝐷𝐵 ⊥ (𝐶𝐸𝐹). 

 

Grading scale:  1 point ex officio 

I.  1) 0,50p  2) 1p     3) 1,50p 

II.  1) 1,25p  2) 1,25p   3) 0,50p    

III.  1) 0,75p  2) 1,25p   3) 1p 
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Test no. 26 
I. 1. Show that: 

 
2. Calculate the sum: 

 
3. If 𝑎 and 𝑏 are rational numbers, inversely proportional to 

𝑐 and 𝑑 then: 

 
II. 1. For what values of 𝑚 and 𝑛 does the equation 𝑥2 +

𝑚𝑥 + 𝑛 = 0 admit the solutions 4 and −3? 

2. Simplify: 

 
3. Is it true that: 

 
III. 1. A trapezoid 𝐴𝐵𝐶𝐷(𝐴𝐵||𝐶𝐷) is circumscribed to a 

circle having the center 𝑂. Show that: 𝐶𝑂 ⊥ 𝑂𝐵 and 𝐴𝑂 ⊥ 𝐷𝑂. 

2. 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, is a rectangular parallelepiped with 𝐴𝐵 =

9 𝑐𝑚 , 𝐴𝐷 = 15 𝑐𝑚  and 𝐴𝐴, − 20 𝑐𝑚 . Determine the distance 

from 𝐵, to the diagonal 𝐴𝐷,. 

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1,50p 3) 1,50p 

II.  1) 1p  2) 1p 3) 1p    

III.  1) 1p   2) 1p 
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Test no. 27 
I. 1. Determine 𝑥, 𝑦, 𝑧 ∈ ℕ that verify the equalities: 

 
2. The arithmetic mean of two numbers is 15  and their 

geometric mean is 10√2. Determine the harmonic mean of the two 

numbers. 

3. Show that the remainder of the division of a perfect 

square by 16 is also a perfect square. 

II. 1. Solve the system: 

 
2. Determine the rational numbers 𝑥  and 𝑦  that verify the 

relation: 

 
3. Simplify the fractions: 

 

 
III. 1. Having the drawing of a 13° angle, explain how we 

can obtain a 1° angle using only a ruler and a compass.  

2. In ∆𝐴𝐵𝐶  we have the medians 𝐴𝐴, , 𝐴, ∈ (𝐵𝐶)and 𝐵𝐵, , 

𝐵, ∈ (𝐴𝐶) and 𝐴𝐴, = 7,5 𝑐𝑚 , 𝐵𝐵, = 6 𝑐𝑚  and 𝐵𝐶 = 5 𝑐𝑚 . 

Determine the perimeter of ∆𝐴𝐵𝐶  and the length of the height 

from 𝐴 of ∆𝐴𝐵𝐶. 

3. If 𝐴𝐵𝐶𝐷 is a regular tetrahedron and 𝑀 is a point in the 

interior of the tetrahedron so that 𝑀𝐴 = 𝑀𝐵 = 𝑀𝐶 = 3𝑎  and 

𝑀𝐷 = 𝑎√3, determine 𝐴𝐵. 
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Grading scale:  1 point ex officio 

I.  1) 1p  2) 0,50p 3) 1,50p 

II.  1) 1,25p 2) 0,75p 3) 1p    

III.  1) 1p   2) 1p   3) 1p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Possible Subjects for Examination, Grades V-VIII 

 

50 

 

Test no. 28 
I. 1. A three-digit number has the sum of the digits equaling 

7. Show that if the number is divided by 7, then the digit of the 

decimals is equal to the digit of unities.  

2. What is the truth value of the proposition: 

 
3. The numbers 𝑎, 𝑏 and 𝑐  are distinct. Determine the real 

solutions of the equation: 

 
II. 1. Simplify: 

 
2. Let 𝑎, 𝑏, 𝑐, 𝑑  be real positive numbers with 𝑎𝑏𝑐𝑑 = 1 . 

Then the following inequality takes place: 

 
3. Calculate: 

 
III. 1. Let 𝐴𝐵𝐶 be a random triangle with 𝐴𝐵 > 𝐴𝐶. If 𝐶𝐹 

and 𝐵𝐸 are the medians that correspond to the sides 𝐴𝐵 and 𝐴𝐶 

respectively, 𝐸 ∈ (𝐴𝐶), 𝐹 ∈ (𝐴𝐵), prove that 𝐵𝐸 > 𝐶𝐹. 

2. 𝐴𝐵𝐶𝐴,𝐵,𝐶 , is considered a regular triangular prism where 

𝐴𝐵 = 𝐴𝐴, = 𝑎. Calculate: 

a) The distance from the top 𝐴, to the edge 𝐵𝐶; 

b) The distance from the top 𝐵,  to the middle line of the 

base that is parallel to 𝐴𝐵. 

 

Grading scale:  1 point ex officio 

I.  1) 1,50p   2) 1p    3) 0,50p 

II.  1) 1p   2) 1,50p   3) 0,50p    

III.  1) 1p    2) 2p   
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Test no. 29 
I. 1. Solve in ℕ the equation: 𝑥𝑦 − 𝑥 + 𝑦 = 18. 

2. Determine 𝑎𝑏 knowing that: 

 
3. State the value of truth of the proposition {𝑥/𝑥 ∈ ℤ, |𝑥| <

−10} has one element. 

II. 1. Show that for any 𝑘 ∈ ℕ, 𝑘 uneven, the number 𝑁 =

103𝑘 + 23𝑘 is divided by 7. 

2. Decompose in factors: 

 
III. 1. Let 𝐴𝐵𝐶 be a right triangle in 𝐴 with ∢𝐵 > ∢𝐶. We 

note with 𝐷 the middle of the hypotenuse 𝐵𝐶. The perpendicular in 

𝐷 on 𝐵𝐶 intersects the cathetus 𝐴𝐶 in 𝐸. 

a) Prove that 𝑚(∢𝐴𝐷𝐸) = 𝑚(∢𝐵) −𝑚(∢𝐶) 

b) Determine the measures of the angles of the triangle 𝐴𝐵𝐶, 

knowing that (𝐴𝐸) ≡ (𝐸𝐷). 

2. A triangular pyramid with congruent lateral edges has a 

right triangle as base. Show that the plane of one of the lateral faces 

is perpendicular to the plane of the base. 

 

Grading scale:   1 point ex officio 

I.  1) 1p  2) 1,50p   3) 0,50p 

II.  1) 1,50p 2) 1,50p   

III.  1) 2p   2) 1p   
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Test no. 30 
I. 1. Calculate: 

 
2. Determine the natural numbers 𝑛, for which: 

 
3. Show that, if 𝑃(1 + 𝑥) = 𝑃(1 − 𝑥), (⩝)𝑥 ∈ ℝ, then the 

polynomial 𝑃(𝑋) = 𝑋2 + 𝑎𝑋 + 1 is the square of a binomial.  

II. 1. Let there be 𝑎, 𝑏, 𝑐 integer, uneven numbers. Show that 

there doesn’t exist any 𝑥 ∈ ℚ that verifies the relation: 

 
2. Let there be 𝑎, 𝑏, 𝑐 three integer, positive not equal to zero 

numbers, so that 𝑎𝑏 < 𝑐. Show that 𝑎 + 𝑏 ≤ 𝑐. 

III. 1. In the triangle 𝐴𝐵𝐶 (𝐴𝐵 ≡ 𝐴𝐶) we note with 𝑀,𝑁, 𝑃 

the middles of the sides 𝐴𝐵, 𝐵𝐶  and 𝐴𝐶  respectively. If ∢𝐴𝐵𝐶 =

30° and 𝐴𝑀 = 4 𝑐𝑚 , calculate the perimeter of the quadrilateral 

𝐴𝑀𝑁𝑃. 

2. Let 𝐴𝐵𝐶𝐷 be a random tetrahedron and 𝑀 a point on the 

edge of 𝐴𝐷. Show that the rapport 𝐴𝑀/𝑀𝐷 is equal to the rapport 

of the areas of the triangles 𝐴𝐵𝐶  and 𝐷𝐵𝐶 , if and only if 𝑀  is 

equally distanced from the faces 𝐴𝐵𝐶 and 𝐷𝐵𝐶.  

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   3) 1p 

II.  1) 1,50p 2) 1,50p   

III.  1) 1p   2) 2p   
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Test no. 31 
I. 1. Calculate: 

 
2. Determine three numbers, knowing that they are directly 

proportional to 2, 3, 4 and that the difference between the biggest 

and the smallest one is 5. 

3. Solve the equation: 

 
II. 1. Let 𝐴𝐵𝐶 be a random triangle and 𝑂 the center of the 

circle circumscribed to the triangle. Let 𝐴𝐷 ⊥ 𝐵𝐶 , 𝐷 ∈ 𝐵𝐶 . 

Calculate the measure of the angle ∢𝐷𝐴𝑂 in relation to the angles 

of the triangle 𝐴𝐵𝐶. 

2. Prove that in a trapezoid, the intersection point of the un-

parallel sides with the middles of the bases are three collinear 

points. 

III. 1. Let 𝛼1 and 𝛼2be two perpendicular planes and 𝑑 their 

intersection straight line. Let 𝐴 ∈ 𝛼1  and 𝐵 ∈ 𝑑  so that 𝐴𝐵 ⊥ 𝑑 . 

Let 𝑎 ⊂ 𝛼2  a random straight line. What can be said about the 

straight lines 𝐴𝐵 and 𝑎? 

2. Let there be the equilateral triangle 𝐴𝐵𝐶, with the side 𝑎 

and 𝑀 ∈ (𝐴𝐶)  so that [𝐴𝑀] ≡ [𝐵𝑀]  and [𝐴𝑁] ≡ [𝑁𝐶] . The 

triangle is bent along the line of 𝑀𝑁  until (𝐴𝑀𝑁) ⊥ (𝐵𝑀𝐶) . 

Calculate the measure of the dihedral angle of the planes (𝐴𝐵𝐶) 

and (𝐵𝑀𝐶). 

 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1p    3) 1p 

II.  1) 1,50p   2) 2p   

III.  1) 1p    2) 1,50p   
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Test no. 32 
I. 1. Calculate: 

 
2. Determine the natural numbers 𝑛 for which:  

 
3. We have four faucets. The first faucet fills a basin in one 

hour, the second in two hours, the third in three hours and the 

forth in four hours.  In how many hours do the four faucets 

combined fill the basin? 

II. 1. Show that the triangle with sides of the lengths 𝑎, 𝑏, 𝑐, 

where 2(𝑎 − 𝑏)(𝑎 + 𝑐) = (𝑎 − 𝑏 + 𝑐)2, is a right-angled triangle. 

2. Let there be the random triangle 𝐴𝐵𝐶  and 𝐴,, 𝐵,, 𝐶 , 

tangency points of the inscribed circle with the sides 𝐵𝐶, 𝐶𝐴 and 

𝐴𝐵 respectively. Calculate the lengths of the segments 𝐴𝐶 ,, 𝐵𝐴, and 

𝐶𝐵,. 

III. 1. On the plane of the square 𝐴𝐵𝐶𝐷 (𝐴𝐵 = 𝑎) we raise 

the perpendicular 𝐵𝐵, = 𝑎 . Let 𝑁  be the middle of 𝐵,𝐷 , 𝑀  the 

middle of 𝐴𝐵 and 𝑃  the middle of 𝐵𝐶 . Calculate the area of the 

triangle 𝑀𝑁𝑃 and show that 𝐵,𝐷 ⊥ (𝑀𝑁𝑃). 

2. The height of a right circular cone is 15 and the sum of 

the generating line and the radius is 25. Calculate the lateral area 

and the volume of the cone. 

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   3) 1,50p 

II.  1) 1p  2) 1,50p   

III.  1) 2p   2) 1p   
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Test no. 33 
I. 1. Calculate: 

 
2. The following equation is given: 

 
Solve and determine 𝑚 ∈ ℤ so that the solution is an integer 

number.  

3. The sum of three natural consecutive numbers is 1209. 

Determine these three numbers. 

II. 1. Two adjacent angles have perpendicular bisectors. 

Determine the measure of each angle knowing that one measures 

five times as much as the other. 

2. Let 𝐴𝐵𝐶𝐷 be a rhombus and 𝐸 a random point on one of 

the diagonals. If 𝑀,𝑁, 𝑃, 𝑄 are the feet of the perpendiculars from 

𝐸 on the straight lines 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 and 𝐷𝐴 respectively, show that 

the quadrilateral 𝑀𝑁𝑃𝑄 is unwritable. 

III. 1. A straight line 𝑎 contained in the plane 𝛼 is parallel to 

a different plane 𝛽. Determine the truth value of the proposition: 

“The plane 𝛼 is parallel to plane 𝛽.” 

2. Let 𝐴, 𝐵, 𝐶, 𝐷  be four points that are not coplanar. 

Through a point 𝑀 situated on the segment 𝐴𝐵 we trace a parallel 

plane to 𝐴𝐶  and 𝐵𝐷 . This plane intersects 𝐵𝐶  in 𝑄 , 𝐶𝐷  in 𝑃  and 

𝐴𝐷 in 𝑁. Prove that 𝑀𝑁𝑃𝑄 is a parallelogram.  

 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1,50p   3) 1p 

II.  1) 1,50p   2) 2p   

III.  1) 1p    2) 1p   
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Test no. 34 
I. 1. Determine the value of 𝑥 from the equality: 

 
2. In a road trip, Ioana spends 3/4 of her savings, which 

represents: 240 000 lei. What sum did Ioana have? 

3. Calculate: 

 
knowing that: 

 
II. 1. Let 𝑓 and 𝑔 be two linear functions. Determine these 

functions knowing that: 

 
for any 𝑥 ∈ ℝ. 

2. Determine the measures of a triangle’s angles, knowing 

that they are directly proportional to the numbers: 1/2, 1/3 and 

1/6. 

III. 1. Let 𝐴𝐵𝐶𝐷  be a rectangle. In 𝐷  we raise the 

perpendicular on the regular plane on which we take point 𝑀. Let 𝑃 

and 𝑄  be the projections of the points 𝐴 and 𝐶 , respectively, on 

𝑀𝐵. If 𝐴𝐵 = 6 𝑐𝑚, 𝐵𝐶 = 4𝑐𝑚 and 𝑃𝑄 = 3𝑐𝑚, calculate: 𝑀𝐵. 

2. Given a cube 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, with the edge 𝑎: 

a) Calculate the distance from point the 𝐴 to the diagonal 

𝐵𝐷, ; 

b) Prove that 𝐵𝐷, ⊥ (𝐴𝐵,𝐶) 

   

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1p    3) 1p 

II.  1) 1,50p   2) 1p   

III.  1) 1,50p   2) 2p   
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Test no. 35 
I. 1. Calculate: 

 
2. In two boxes there are a total of 120 crayons. Determine 

the number of crayons from each box knowing that if we take 15 

crayons from the first box and we put them in the second box, then 

the two boxes will contain the same number of crayons.  

3. Show that: 

 
if and only if 𝑥 = 1, 𝑦 = 2 and 𝑧 = 3. 

II. 1. Calculate the area of the isosceles trapezoid 

𝐴𝐵𝐶𝐷where 𝐴𝐵||𝐶𝐷 knowing that 𝐴𝐵 = 26, 𝐷𝐶 = 16 and 𝐴𝐶 ⊥

𝐶𝐵. 

2. Prove that the sum of the distances of a triangle to a 

straight line exterior to the triangle is equal to the sum of the 

distances of the middles of the triangle’s sides to the same straight 

line. 

III. 1. Given a regular quadrilateral prism 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, . 

The side of the square’s base has 2𝑐𝑚, and the diagonal 𝐴𝐶 , has 

4𝑐𝑚. 

a) Prove that the triangle 𝐴𝐶𝐶 , is isosceles. 

b) Calculate the total area of the prism. 

2. A cube 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, is inscribed in a sphere with the 

radius of 𝑎 cm. Determine the volume of the cube. 

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1p   3) 1,50p 

II.  1) 1p  2) 1,50p   

III.  1) 1p   2) 2p   

 



Possible Subjects for Examination, Grades V-VIII 

 

58 

 

Test no. 36 
I. 1. The price of an object was 2500 lei at the beginning. 

After two consecutive price reductions with the same number of 

percentages, the price dropped to 2025 lei. With what per cent did 

the price of the object went down with each reduction? 

2. Calculate the sum: 𝑆 = 1 + 3 + 5 +⋯+ 1995 +

1997 + 1999. 

3. Show that 𝑥6 + 𝑥4 − 2𝑥3 − 2𝑥2 + 2 ≥ 0, indifferent of 

what 𝑥 ∈ ℝ. 

II. 1. Simplify the expression: 

  
2. Show that the parallel 𝐸𝐹 traced to the bases of trapezoid 

𝐴𝐵𝐶𝐷 through the point 𝑀  of intersection of the diagonals is 

divided in two equal parts in relation to this point.  

III. 1. In the body of a cone 𝑅 = 13𝑐𝑚, 𝑟 = 5𝑐𝑚, and the 

generating line is inclined on the base with an angle of 45° . 

Determine the lateral area, the total area and the volume of the 

cone’s body. 

2. Determine the volume of a regular tetrahedron with the 

edge 𝑎. 

 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1,50p   3) 1p 

II.  1) 1p  2) 1,50p   

III.  1) 1p   2) 2p   
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Test no. 37 
I. 1. Solve: 

 
2. Solve the equation: 

 
3. Let there be three integer numbers so that each represents 

the arithmetic mean of the other two. Show that the three numbers 

are equal. 

II. 1. Determine the 1st grade function (linear) whose graphic 

passes through the points 𝐴(3,1) and 𝐵(1,3). 

2. Compare the numbers: √7 − 3 and √11 − 4. 

III. 1. In the isosceles triangle 𝐴𝐵𝐶 ([𝐴𝐵] ≡ [𝐴𝐶]) we take 

the segments [𝐵𝑀] ≡ [𝐶𝑀]  (𝑀  between 𝐴  and 𝐵 , 𝑁  on the 

extension of [𝐴𝐶). Prove that the straight line 𝐵𝐶 passes through 

the middle of [𝑀𝑁]. 

2. In the straight parallelepiped 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷,  we know 

that 𝐴𝐴, = 𝑎 , 𝐴𝐵 = 𝑏  and 𝐴𝐷 = 𝑐 . The diagonal of the 

parallelepiped forms with the three faces where it is traced angles 

with the measures 𝛼, 𝛽, 𝛾, Prove that: 

 
 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1p       3) 1,50p 

II.  1) 1p   2) 1p   

III.  1) 1,50p  2) 2p   
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Test no. 38 
I. 1. Let: 

 
a) Write, using intervals, the sets 𝐴 and 𝐵. 

b) Calculate: 

 
where ℤ represents the set of the integer numbers. 

2. Let there be the functions: 

 
Determine the coordinates of the intersection point of the graphics 

of the two functions. 

3. Solve the equation: 𝑚𝑥 − 3 = 3𝑚 − 𝑥, where 𝑚 is a real 

parameter. 

II. 1. Bring to a simpler form the equation: 

 
2. Show that the middles of a random triangle’s sides and the 

foot of one of the triangle’s heights are the tops of an isosceles 

triangle. 

III. 1. A pyramid has as base an equilateral triangle with the 

side 𝑎 . Determine the volume of this pyramid knowing that its 

height is twice as big as the height of the base triangle. 

2. Let there be the tetrahedron 𝑉𝐴𝐵𝐶, where 𝑉𝐵 ≡ 𝑉𝐶. The 

edges 𝑉𝐴, 𝐴𝐵 and 𝐴𝐶 are divided in three equal parts and are noted 

with 𝑀,𝑁, 𝑃 the points closest to 𝐴. Show that the triangle 𝑀𝑁𝑃 is 

the ninth part from the area of the face 𝑉𝐵𝐶. 

  Grading scale:  1 point ex officio 

I.  1) 1p  2) 1,50p      3) 1,50p 

II.  1) 1p  2) 1p   

III.  1) 1p   2) 2p   
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Test no. 39 
I. 1. Calculate: 

 
2.  Determine 𝑥, 𝑦, 𝑧 knowing that: 

 
3. Show that: 

 
and determine all the integer numbers 𝑥 so that: 

 
II. Bring to a simpler form the expression: 

 
2. Let there be the quadrilateral 𝐴𝐵𝐶𝐷 , where 𝑚(∢𝐴) =

𝑚(∢𝐶). The bisector of the angle 𝐵 cuts the sides 𝐷𝐶 and 𝐴𝐷 in 

the points 𝐸 and 𝐹. Prove that the triangle 𝐷𝐸𝐹 is isosceles. 

III. 1. On the plane of the square 𝐴𝐵𝐶𝐷with the side 𝑎 we 

raise the perpendiculars 𝐴𝑀 =
𝑎√6

6
 and 𝐶𝑃 =

𝑎√6

2
. We unite 𝑃 with 

𝑀 . Prove that the planes of the triangles 𝑀𝐵𝐷  and 𝑃𝐵𝐷  are 

perpendicular. 

2. Given a right circular cone with the diameter of the base 

of 12 cm and the height equal to 2/3 of the diameter, determine the 

lateral area, the total area and the volume of the cone. 

 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1 p            3) 1,50p 

II.  1) 1,50p   2) 1,50p   

III.  1) 1,50p  2) 1p 
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Test no. 40 
I. 1. Calculate: 

 

 
2. At a show, 320 tickets are distributed, some costing 300 

lei per ticket, others costing 400 lei a ticket. How many tickets from 

each category should be sold in order to obtain 100 000 lei? 

3. Solve the following system of inequations, in relation to 

the values of the real parameter 𝑚: 

 
II. 1. Simplify the fraction: 

 
2. Let there be the rectangular triangle 𝐴𝐵𝐶(∢ = 90°) 

where we know the lengths of the catheti  𝐴𝐵 = 𝑐  si 𝐴𝐶 = 𝑏 . 

Determine the areas of the triangles 𝐴𝐵𝐷  and 𝐵𝐷𝐶  obtained by 

tracing the bisector of the angle 𝐵 (𝐷 ∈ 𝐴𝐶). 

III. 1. We consider an angle ∢𝐴𝑂𝐵 measuring 120°. On the 

bisector of this angle we take a point 𝑃 so that 𝑂𝑃 = 6 𝑐𝑚. In 𝑃 

we raise a perpendicular on the plane of the angle on which we 

consider the point 𝑄 so that 𝑃𝑄 = 4 𝑐𝑚. Determine the distances 

from 𝑄 to the triangles’ sides. 

2. Given a regular tetrahedron with the edge 𝑎, determine 

the height, the apothem and the value of the cosine of the dihedral 

angle of two faces of the tetrahedron. 

Grading scale:  1 point ex officio 

I.  1) 1p  2) 1,50 p         3) 1,50p 

II.  1) 1p  2) 1,50p   

III.  1) 1p   2) 1,50p 
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Test no. 41 
I. 1. Determine 

𝑎

𝑏
 knowing that: 

 
2. Determine 𝑛 ∈ ℕ  so that the following equality takes 

place: 

 
3. Solve in ℤ the inequation: 

 
II. 1. Determine 𝑎 and 𝑏 so that by dividing the polynomial:  

 
to 𝑋 − 2 the remainder will be 5 and by dividing it to 𝑋 + 3 the 

remainder will be 1. 

2. Solve the following system, where 𝑎, 𝑏 are real parameters 

not equal to zero: 

 
III. 1. In the parallelogram 𝐴𝐵𝐶𝐷 , 𝐴𝐵 = 2. 𝐵𝐶  and 

𝑚(∢𝐴) = 60°. Let 𝑀  be the middle of the side 𝐶𝐷 . Let {𝐸} =

𝐴𝑀 ∩ 𝐵𝐷. 

a) Prove that the triangle 𝐵𝐶𝑀 is equilateral. 

b) Prove that 𝐴𝐵𝑀𝐷  is a trapezoid inscribed in the circle 

with the diameter 𝐴𝐵. 

2. A circular sector of 120°  with the area of 12𝜋 𝑐𝑚2  is 

wrapped in such a way as to form the lateral surface of a cone. It is 

required to: 

a) Determine the total area of the cone and its volume. 

b) determine the area of the sphere inscribed in the cone. 
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Grading scale:  1 point ex officio 

I.  1) 1p  2) 1 p      3) 1,50p 

II.  1) 1p  2) 1,50p   

III.  1) 1,50p 2) 1,50p 
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Test no. 42 
I. 1. Solve the equation: 

 
2. Determine the geometric mean of the numbers 7 and 10 

with two exact decimals.  

3. Three numbers are inversely proportional to the numbers 

4, 9  and 16 . Determine what percent does the second number 

represent from the arithmetic mean of the other two. 

II. 1. Determine the quotient and the remainder of the 

division of the polynomial: 

 
to 𝑋2 + 1. 

2. Find the smallest natural number that divided 

consecutively to 3, 5, 7 will always give the same remainder 1 and 

the quotient different from 0. 

III. 1. Given a cube with the length of the diagonal 𝑎 , 

determine its volume. 

2. In a pyramid having the base a rectangular trapezoid 

𝐴𝐵𝐶𝐷 we have: 

 
The big diagonal 𝐵𝐷 is divided by the small diagonal 𝐴𝐶 in 

the rapport: 
3

10
. The height of the pyramid is 𝑉𝑂 = 40 𝑐𝑚 , 𝑂 

representing the intersection point of the diagonals of the base. 

Determine the perimeter of the triangle 𝑉𝑂𝐷 and the volume of the 

pyramid. 

 

Grading scale:  1 point ex officio 

I.  1) 1,50p   2) 1 p             3) 1,50p 

II.  1) 0,50p   2) 1,50p   

III.  1) 1p    2) 2p 
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Test no. 43 
I. 1. Calculate the value of the expression 𝐸 = 2𝑎 − 2𝑏 +

𝑐 − 2𝑑 for: 

 
2. What hour of the day is it if there is 1/7 of the day left 

from what has already passed? (The day has 24 hours and it begins 

at 12 midnight). 

3. Let 𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏. Show that no matter what 𝑡1, 𝑡2 ∈

(0,1) is, with the property 𝑡1 + 𝑡2 = 1, then 𝑡1. 𝑎 + 𝑡2. 𝑏 ∈ (𝑎, 𝑏). 

II. 1. Prove that the triangle the sides of which verify the 

equality: 

 
is equilateral. 

2. Prove that the polynomial: 

 
is divisible by 𝑋 − 1, 𝑛 ∈ ℕ∗. 

III. The body of a right circular cone has the radiuses of the 

bases 9 and 15, and the generating line 10. Determine the lateral 

area and the volume of the cone that the body of the cone comes 

from. 

 

Grading scale:  1 point ex officio 

I.  1) 1 p   2) 1,50 p   3) 2p 

II.  1) 2p   2) 1p   

III.  1,50p  
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Test no. 44 
I. 1. Solve: 

 

 
2. The sum of two prime numbers is 39 . Determine the 

numbers. 

3. Simplify the fraction: 

 
II. 1. Determine the relation between the natural numbers 𝑚 

and 𝑛 so that the following polynomials will divide by 𝑋2 − 1: 

 
2. Solve the equation 2𝑚𝑥 = 𝑥 + 4𝑚 − 2  making a 

discussion around the values of the real parameter 𝑚.  

III. 1. The angles of the triangle 𝐴𝐵𝐶  are directly 

proportional to 14, 12  and 10 . The bisector ∢𝐴𝐵𝐶, [𝐵𝑁](𝑁 ∈

𝐴𝐶)  intersects the segment [𝐴𝑀] , the symmetrical of [𝐴𝐵]  in 

relation to the height [𝐴𝐷] in the point 𝑃. Determine the measures 

of the quadrilateral 𝑃𝑀𝐶𝑁. 

2. Determine the volume of a cube inscribed in a sphere with 

the radius 𝑟. 

 

Grading scale:  1 point ex officio 

I.  1) a) 0,50p   b) 0,50 p   2) 1,50p  3) 1p 

II.  1) 1,50p   2) 1,50p   

III.  1) 1p    2) 1,50p 
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Test no. 45 
I. 1. Solve: 

 

 
2.  Decompose in factors the polynomial: 

 
3. The father is 28 years old today and the son is 8. In how 

many years the age of the father will be three times bigger than the 

son’s? 

II. 1. Solve the system: 

 
2. Let 𝑎, 𝑏 ∈ ℝ. Prove the inequality: 

 
III. 1. Let 𝐴𝐵𝐶 be a random triangle and 𝐴𝐷 the bisector of 

the angle ∢𝐵𝐴𝐶 (𝐷 ∈ 𝐵𝐶). On [𝐵𝐴 let there be the point 𝐸 so that 

𝐴 ∈ (𝐵𝐸) abd [𝐴𝐸] ≡ [𝐴𝐶]. Prove 𝐴𝐷||𝐸𝐶. 

2. Let 𝐴𝐵𝐶𝐷 and 𝐷𝐶𝐸𝐹  be two squares situated in 

perpendicular planes. We note with 𝑀,𝑁, 𝑃  the middles of the 

segments 𝐸𝐹, 𝐴𝐷, 𝐴𝐵. 

a) Show that the triangle 𝑀𝑁𝑃 is a right triangle. 

b) Calculate the tangent of the dihedral angle formed by the 

planes (𝑀𝑁𝑃) and (𝐴𝐵𝐶). 
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Grading scale:  1 point ex officio 

I.  1) a) 0,50p    b) 0,50p 2) 1,50p   3) 1p 

II.  1) 1p     2) 1,50p   

III.  1) 1p     2) 2p 
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Test no. 46 
I. 1. Calculate the arithmetic mean of the numbers 𝑎 and 𝑏, 

where: 

 
2. Divide the number 49 in three equal parts so that if we 

add to the first part 1/3 from the sum of the other two, to the 

second one 1/4 from the sum of the other two and to the third 

1/5 from the sum of the other two, we obtain equal numbers.  

3. Solve the system of inequations: 

 
II. 1. Determine the area of the triangle formed by the 

coordinates’ axis and the graphic of the function 𝑓:ℝ → ℝ, 𝑓(𝑥) =

𝑥 − 5. 

2. Prove that, irrespective of what the real, non-equal to zero 

number 𝑥 is: 

 
3. Decompose in factors the polynomial: 

 
III. 1. Let 𝐴𝐵𝐶𝐷be a random triangle and 𝐷 a point situated 

on the extension of 𝐴𝐶 so that ∢𝐵𝐴𝐶 ≡ ∢𝐶𝐵𝐷. Prove that 𝐵𝐷 is a 

proportional mean between 𝐴𝐷 and 𝐶𝐷. 

2. A straight circular cylinder has the radius of the base of 

1,5 𝑐𝑚 and the area of the axial section of 12 𝑐𝑚.  
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Determine: 

a) The diagonal of the axial section. 

b) The lateral area, the total area and the volume of the 

cylinder. 

c) The diagonal of the deployment of the lateral face of the 

cylinder. 

 

Grading scale:  1 point ex officio 

I.  1) 1 p    2) 1 p   3) 1p 

II.  1) 1,50p  2) 1,50p   3) 1p 

III.  1) 1p  2) 1p 
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Test no. 47 
I. 1. Determine 𝑥 from the equality: 

 
2. Show that the sum of the squares of three consecutive 

numbers raised by 1 is a number divisible by 3. 

3. Determine all the pairs of natural numbers that have the 

geometric mean (proportional) equal to 11. 

II. 1. Trace the graphic of the function: 

 
2. Show that if 𝑎, 𝑏, 𝑐 ∈ ℝ so that (𝑎 + 𝑏 + 𝑐)2 = 3(𝑎2 +

𝑏2 + 𝑐2), then 𝑎 = 𝑏 = 𝑐. 

III. 1. A triangle 𝐴𝐵𝐶 is given, where 𝐴𝐵 = 𝐴𝐶 = 6𝑐𝑚 and 

∢𝐴 = 120°. Let 𝑂 be the center of the circle circumscribed to this 

triangle and 𝐷 the point diametrically opposed to 𝐴. 

a) Prove that the triangle 𝐵𝐶𝐷 is equilateral. 

b) Let 𝑑 be a perpendicular straight line in 𝑂 on the plane of 

the triangle 𝐵𝐶𝐷 and 𝑀 a random point situated on 𝑑. Prove that 

𝑀𝐵 = 𝑀𝐶 = 𝑀𝐷 

c) Show that 𝑀𝐵 ⊥ 𝐶𝐷. 

d) Calculate the volume of the tetrahedron 𝑀𝐵𝐶𝐷 knowing 

that 𝑀𝐵 = 6√3𝑐𝑚. 

Grading scale:  1 point ex officio 

I.  1) 1 p    2) 1,50 p           3) 1,50p 

II.  1) 1,50p  2) 1,50p   

III.  1) 2p   
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Test no. 48 
I. 1. Compare the numbers: a) (0,1)10  and (0,1)11 ; b) 

(0,1)5 and (0,01)5. 

2. The difference between two natural numbers is 46. Deter-

mine the two numbers knowing that by dividing the biggest one to 

the smallest one we obtain the quotient 3 and the remainder 2. 

3. Determine 𝑥 ∈ ℝ knowing that: 

 
II. 1. The measures of an quadrilateral’s angles are directly 

proportional to 3, 6, 12 and 15. Determine the measures of these 

angles.  

2. The polynomial 𝑃(𝑋) = 𝑋3 + 𝑎𝑋2 + 𝑏𝑋 + 1 is divisible 

by 𝑋2 − 1 . Determine 𝑎  and 𝑏  then decompose in factors the 

polynomial for the determined 𝑎 and 𝑏. 

III. 1. Let D be a random point on the base 𝐵𝐶 of a triangle 

𝐴𝐵𝐶. Through 𝐵 and 𝐶 we trace parallels to 𝐴𝐷. These meet the 

extensions of 𝐴𝐶  in 𝑀  and of 𝐴𝐵  in 𝑁 . Prove that 𝑀𝐵 ∙ 𝐷𝐶 =

𝑁𝐶 ∙ 𝐷𝐵. 

2. Let there be the square 𝐴𝐵𝐶𝐷 and 𝑀 a point in space so 

that 𝑀𝐴 ⊥ (𝐴𝐵𝐶) . Prove there exists a point in space equally 

distanced from 𝐴, 𝐵, 𝐷 and 𝑀. 

 

Grading scale:  1 point ex officio 

I.  1) a) 0,50p    b) 0,50p   2) 1p   3) 1p 

II.  1) 1p     2) 1,50p   

III.  1) 1,50p    2) 2p 
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Test no. 49 
I. 1. Knowing that 𝑎 −

1

𝑎
= 5, where 𝑎 ∈ ℝ\{0}, calculate 

𝑎2 +
1

𝑎2
 and 𝑎3 +

1

𝑎3
. 

2. 20 m of fabric cost 140 000 𝑙𝑒𝑖. How much will 8 𝑚 of 

the same fabric cost? 

3. Determine 𝑥  from the proportion 
𝑥

2
=
5𝑎5̅̅ ̅̅ ̅̅

3
, where 𝑎  is a 

digit having the property that the number 5𝑎5̅̅ ̅̅ ̅ is divisible by 9. 

II. 1. Demonstrate that in any triangle the half of the 

perimeter is bigger than any side. 

2. Solve in ℤ the system of inequations: 

 
III. 1. In the triangle 𝐴𝐵𝐶 we trace a parallel to the median 

𝐴𝐷 that cuts the sides 𝐴𝐵, 𝐴𝐶 in 𝐸, 𝐹, respectively. Prove that:  

 
2.  Let there be the plane 𝛼  and the semi-straight line 

𝑂𝑋(𝑂 ∈ 𝛼)  that makes with the plane 𝛼  a 30°  angle. A point 𝐴 

situated on the same of the plane 𝛼 with 𝑂𝑋 projects on 𝛼 in 𝐵 and 

on 𝑂𝑋 in 𝐶. It is required: 

a) To calculate 𝐵𝐶  if 𝑂𝐴 = 17 𝑐𝑚, 𝑂𝐵 = 8 𝑐𝑚, 𝑂𝐶 =

12 𝑐𝑚. 

b) Let 𝐶 , be the projection of 𝐶 on 𝛼 and 𝑀 the middle of 

𝑂𝐶 ,. Prove that 𝑀𝐴 ⊥ 𝑂𝐶 ,. 

 

Grading scale:  1 point ex officio 

I.  1)1,50 p   2) 1p    3) 1p 

II.  1) 1p    2) 1p   

III.  1) 1,50p   2) 2p 
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Test no. 50 
I. 1. Calculate the sum: 

 
2.  10 workers can finish a project in 10 days by working 10 

hours a day. In how many days will 5 workers finish the project if 

they work 5 hours a day? 

3. There exists 𝑥, 𝑦 ∈ ℝ so that: 

 
II. 1. Determine 𝑚 ∈ ℝ  so that 3  is the solution to the 

equation: 

 
2. The quotients of the division of a polynomial 𝑃(𝑋) 

through 𝑋 − 𝑎, 𝑋 − 𝑏 are: 

 
Determine 𝑎 and 𝑏 and the polynomial knowing that the free term 

of the polynomial is 1. 

III. Let 𝑀  be a point on the diagonal 𝐴𝐶  of a random 

quadrilateral 𝐴𝐵𝐶𝐷 . We trace 𝑀𝑃||𝐴𝐵  and 𝑀𝑄||𝐶𝐷  where 𝑃 ∈

𝐵𝐶 and 𝑄 ∈ 𝐴𝐷. Prove that: 

 
2. Let 𝐴 and 𝐵 be two points situated in two planes 𝛼 and 𝛽, 

perpendicular one to the other. We consider 𝐴𝐴,  and 𝐵𝐵,  the 

perpendiculars from 𝐴 and 𝐵 on the intersection of the planes. We 

note 𝐴𝐴, = 𝑎 , 𝐵𝐵, = 𝑏 , 𝐴,𝐵, = 𝑐 . Calculate the length of the 

segment 𝐴𝐵 and the tangents of the angles formed by 𝐴𝐵 with the 

planes 𝛼 and 𝛽. 

Grading scale:  1 point ex officio 

I.  1)1,50 p   2) 1p    3) 1p 

II.  1) 1p    2) 1,50p   

III.  1) 1,50p   2) 1,50p 
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Test no. 51 
I. 1. Calculate: 

 
2. Knowing that: 

 
prove that: 

 

3. For what values of 𝑛 ∈ ℕ is the number √1000 − 25√𝑛 

a natural number? 

II. 1. Solve the system: 

 
2. Let there be the function: 

 
Find a point situated on the graphic of the function that has equal 

coordinates. 

III. 1. The side of an equilateral triangle measures8 𝑐𝑚 . 

Calculate the radius of a circle whose area is a quarter from the 

triangle’s area. 

2. A cone is sectioned by a parallel plane with the base at a 

distance equal to 1/3 of the height in relation to the top of the 

cone. The body of the cone thus obtained has a volume of 52 𝑐𝑚2. 

Determine the volume of the cone. 

 Grading scale:  1 point ex officio 

I.  1)1,50p   2) 1p        3) 2p 

II.  1) 1p   2) 1,50p   

III.  1) 1 p   2) 1,50p 
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Test no. 52 
I. 1. a) Determine a number knowing that 3/4 of it is 30. 

b) From 45 𝑘𝑔 of seawater 500 𝑔 of salt are obtained. What 

quantity of seawater is required in order to obtain 20 𝑘𝑔 of salt? 

2. The arithmetic mean of three natural numbers is 20. The 

first number is three times smaller than the second. The arithmetic 

mean of the second and the third is 25 . determine the three 

numbers. 

3. Divide the number 4200 in parts directly proportional to 

the numbers 5, 9, 12 and 14. 

II. 1. Write the expression 𝑥6 − 2𝑥3 as a difference of 

squares. 

2. Determine the area of a triangle with the sides measuring 

6, 8 and 10. 

III. 1. Let 𝑀 and 𝑁 be the middles of the non-parallel sides 

of a trapezoid and 𝑃 and 𝑄 the middles of its’ diagonals. Show that 

the segments 𝑀𝑁 and 𝑃𝑄 have the same middle. 

2. Let 𝐴𝐵𝐶 be a right triangle in 𝐴 and let 𝐷 be a point of 

the perpendicular traced in 𝐵 on the plane of the triangle. We note 

with 𝑀 and 𝑁 the projections of the point 𝐴 on the straight lines 

𝐵𝐶 and 𝐶𝐷 and with 𝑃 and 𝑄 the projections of the point 𝐵 on the 

straight lines 𝐴𝐷 and 𝐶𝐷. Prove that the planes (𝐴𝑀𝑁) and (𝐵𝑄𝑃) 

are parallel and that the triangles 𝐴𝑀𝑁 and 𝐵𝑃𝑄 are also parallel. 

 

Grading scale:  1 point ex officio 

I.  1) a) 0,50p    b) 0,50p   2) 1p    3) 1p 

II.  1) 1p     2) 1p   

III.  1) 2p    2) 2 p 
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Test no. 53 
I. 1. a) Determine 𝑛 ∈ ℕ so that: 

 
b) Determine the arithmetical mean of the numbers: 

 
2. Determine the integer values of the real parameter 𝑚 so 

that the solution to the following equation is a strictly positive 

number: 

 
3. In a classroom there are 32 students. What percent of the 

girls’ number do the boys represent, knowing that the number of 

girls is 16 times higher than that of the boys? 

II. 1. Let there be the linear function: 

 
Prove that:  

 
2. Simplify the fraction: 

 
III. 1. Prove that in an equilateral triangle the sum of the 

distances from one point in the interior of the triangle to the sides is 

equal to the height of the equilateral triangle. 

2. Let 𝐴𝐵𝐶𝐷  be a square with the center 𝑂  and 𝑑1, 𝑑2 the 

perpendiculars traced from 𝐴 and 𝐶 on the plane of the square. Let 

𝑀 ∈ 𝑑1 and 𝑁 ∈ 𝑑2 so that 𝑀𝑁 ⊥ 𝑂𝑀. Prove that 𝑀𝑁 ⊥ (𝐵𝑀𝐷). 

Grading scale:  1 point ex officio 

I.  1) a) 1 p  b) 1 p   2) 1p   3) 1p 

II.  1) 1 p    2) 1p   

III.  1) 1,50 p   2) 1,50 p 
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Test no. 54 
I. 1. Compare the numbers: 

 
2. For what values of 𝑥  does the equality |𝑥| = 𝑥 + 0take 

place? 

3. Does the equation: 

 
and the inequation: 

 
have common solutions? 

II. 1. Let there be the linear function: 

 
Prove that, irrespective of what real  𝑥 is, : 

 
2. Let there be the polynomials: 

 
Prove that the polynomial 𝑄(𝑋) divides the polynomial 𝑃(𝑋). 

III. 1. Prove that in a right triangle, the median and the 

height traced from the top of the right angle form between them an 

angle equal to the difference of the acute angles of the triangle. 

2. Let there be the trapezoid 𝐴𝐵𝐶𝐷  with 𝐴𝐵||𝐶𝐷, 𝐴𝐷 =

𝐴𝐵 + 𝐷𝐶. We consider 𝐸 ∈ 𝐵𝐶 so that 𝐶𝐸 = 𝐵𝐸. In the point 𝐷 

we trace the perpendicular 𝐷𝐹 on the plane of the trapezoid so that 

𝐷𝐹 = 𝐴𝐸. Prove that 𝐹𝐸 = 𝐴𝐷 and 𝐹𝐸 ⊥ 𝐴𝐸. 

 

Grading scale:  1 point ex officio 

I.  1) 1 p   2) 1p   3) 1p 

II.  1) 1 p  2) 1p   

III.  1) 2 p   2) 2 p 
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Test no. 55 
I. 1. Two numbers have a rapport of 1/4  and their 

geometric mean is 15. Determine the numbers. 

2. Calculate: 

 
3. Compare the numbers: 

 
II. 1. One person deposits his savings at the C.E.C with a 

rate of 10% per year. What sum did the person deposit if after two 

year he has 121 000 𝑙𝑒𝑖? 

2. Let there be the function: 

 
Determine 𝑚 ∈ ℝ, knowing that the point 𝐴(3,19) belongs to the 

graphic of the function. 

III. 1. Determine the sides of a right triangle, knowing that 

the difference of the catheti is 1and the length of the hypotenuse is 

5. 

2. The lateral area of the body if a right circular cone is equal 

to 225𝜋, the generating line 25 and the height 24. Calculate the 

volume of the body of the cone. 

 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p        3) 1,50p 

II.  1) 1,50p   2) 1p   

III.  1) 1p    2) 2p 
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Test no. 56 
I. 1. Effectuate: 

 
2. Three workers can finish a project in 4 days. The first, 

working alone, can finish it in 10 days and the second in 12 days. 

In how many days can the third one finish it? 

3. Determine 𝑚 ∈ ℝ so that the following equation does not 

admit real solutions: 

 
II. 1. Solve the following inequation, where 𝑚 is a random 

real parameter: 

 
2. Given the following polynomials, where 𝑚, 𝑛 ∈ ℝ , 

determine 𝑚 and 𝑛 so that 𝑄 divides 𝑃: 

 
III. 1. Let 𝐻 be the intersection point of the heights traced 

on the sides 𝐴𝐶  and 𝐴𝐵  of the triangle 𝐴𝐵𝐶  and 𝑀  and 𝑁  the 

intersections of the bisector of the angle 𝐴 with these heights. Prove 

that the triangle 𝐻𝑀𝑁 is an isosceles. 

2. The side of a regular hexagonal pyramid measures 6 𝑐𝑚, 

and the lateral edge forms with the plane of the base a 45° angle. 

Determine the volume of the pyramid. 

 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1,50p          3) 1,50p 

II.  1) 1,50p   2) 1,50p   

III.  1) 1p    2) 1p 
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Test no. 57 
I. 1. Calculate: 

 
2. Determine 𝑥 from the equality: 

 
3. Let: 

 
Calculate 𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵, 𝐴\𝐵 and 𝐵\𝐴. 

II. 1. Prove that any uneven number can be written as the 

difference of the squares of two natural numbers. 

2. Determine the linear function 𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑎𝑥 + 𝑏 

with the property that 𝑓(𝑥 + 1) = 5𝑥 + 2, no matter what real 𝑥 

is. 

III. 1. Let 𝐴𝐵𝐶 be a triangle inscribed in a circle, 𝐷 the point 

where the perpendicular from 𝐴  on 𝐵𝐶  cuts the circle and 𝐸  the 

point diametrically opposed to the top 𝐴 . Prove that the angles 

∢𝐵𝐴𝐸 and ∢𝐷𝐴𝐶 are congruent.  

2. A cone having the length of the radius of the base 𝑎 has 

the generating line equal to the diameter of the base. Calculate the 

volume and the area of the sphere circumscribed to the cone. 

 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p           3) 1p 

II.  1) 1,50p   2) 1,50p   

III.  1) 1,50p   2) 1,50p 
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Test no. 58 
I. 1. Prove that the product of any three consecutive natural 

numbers is divisible by 3. 

2.  The rapport between the sum and the difference of 

numbers 𝑥 and 𝑦 is 
9

5
. Determine the value of the rapport 

𝑥

𝑦
. 

3. Solve the system of inequations: 

 
II. 1. Show that in any right triangle the height lowered from 

the right top is equal at most to half of the hypotenuse.  

2. Decompose in factors the polynomial: 

 
III. 1. Let 𝐴𝐵𝐶 be a triangle inscribed in a circle, 𝐵𝐷 and 𝐶𝐸 

two heights of the triangle, 𝐻  their intersection and 𝐺  the point 

diametrically opposed to 𝐴. What kind of quadrilateral is 𝐵𝐺𝐶𝐻? 

2. We consider a sphere with the radius of 3 𝑐𝑚  that is 

nickelated by coating it with a thick layer of nickel of 1 𝑚𝑚 . 

Determine the volume of the required quantity of nickel.  

 

Grading scale:  1 point ex officio 

I.  1) 1,50p   2) 1p    3) 1p 

II.  1) 1,50p   2) 1,50p   

III.  1) 1,50p   2) 1,50p 
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Test no. 59 
I. 1. Prove the identity: 

 
2. Let 𝑎, 𝑏  be two natural numbers so that 𝑎 + 𝑏  is an 

uneven number. Prove that 𝑎 ∙ 𝑏 is an even number. 

3. Show that the number √5 is an irrational number. 

II. 1. Simplify the fraction: 

 
2. Prove that the polynomial 𝑄(𝑋) = 𝑋2 + 𝑋  divides the 

polynomial (𝑋 + 1)𝑛 − 𝑋𝑛 − 1 for 𝑛 ∈ ℕ, 𝑛 uneven. 

III. 1. Prove that the bisectors of two joined angles of a 

quadrilateral are perpendicular. 

2. We consider a pyramid that has as base an isosceles right 

triangle and whose height congruent with a cathetus of the base (=

𝑎) falls in the top of an acute angle of the base. Determine the 

lengths of the side edges and the volume of the pyramid. 

 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p    3) 2p 

II.  1) 1,50p   2) 1,50p   

III.  1) 1p    2) 1p 
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Test no. 60 
I. 1. Determine all the natural numbers of the form 8𝑥1𝑦̅̅ ̅̅ ̅̅ ̅ 

divisible by 15. 

2. A ball rises with 5/7 from the heights from which it falls. 

From what height did it fall the first time if the third time it rose at 
1250

343
 𝑚? 

3. The following sets are given: 

 
Determine 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵, 𝐴\𝐵, 𝐵\𝐴 and 𝐴 × 𝐵. 

II. 1. Solve the inequation: 

 
2. Prove that any two heights of a triangle are inversely 

proportional with the sides upon which they fall. 

III. 1. Let 𝐴𝐵𝐶𝐷 be a parallelogram with 𝐴𝐵 = 2𝑎, 𝐴𝐷 = 𝑎 

and 𝑚(∢𝐷𝐴𝐵) = 60°. On the same side with the plane (𝐴𝐵𝐶) we 

raise perpendiculars on the plane in 𝐴, 𝐵, 𝐶  and 𝐷 . On the 

perpendicular 𝐵 we take 𝐵𝑀 = 2𝑎, on the perpendicular 𝐷 we take 

𝐷𝑁 = 3𝑎 and on the perpendicular 𝐶 we take 𝑃 so that 𝑀𝑃 = 𝑁𝑃. 

a) Calculate 𝐶𝑃. 

b) The perpendicular in 𝐴  on the plane (𝐴𝐵𝐶𝐷)  cuts the 

plane (𝑀𝑁𝑃) in 𝑄. Calculate the length of 𝐴𝑄. 

c) Calculate the distances from 𝑃 and 𝑄 to the straight line 

𝐵𝐷. 

2. Determine the volume of a regular tetrahedron inscribed 

in a sphere with the radius 𝑟. 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p    3) 1p 

II.  1) 1,50p   2) 1p   

III.  1) 1,50p   2) 2p 



Possible Subjects for Examination, Grades V-VIII 

 

86 

 

Test no. 61 
I. 1. Determine the minimum 𝑛 ∈ ℕ so that: 

 
2. State the value of truth of the proposition: 

 
3. Study the monotony of the function: 

 
II. 1. Prove that for any 𝑛 ∈ ℕ the following expression is 

divisible by 8: 

 
2. Determine 𝑎, 𝑏, 𝑐 ∈ ℝ, so that the polynomial: 

 
is divisible by the polynomial: 

 
3. Show that, if 𝑎, 𝑏 ∈ ℝ and 𝑎 + 𝑏 = 1, then: 

 
III. 1. Let 𝐴𝐵𝐶 be a random triangle. The straight line that 

passes through 𝐵 and is parallel to the tangent in 𝐴  at the 

circumscribed circle ∆𝐴𝐵𝐶 intersects 𝐴𝐶 in 𝐷. Prove that: 

 
2. A triangle 𝐴𝐵𝐶  with the sides 𝐴𝐵 = 8 𝑐𝑚, 𝐵𝐶 =

5 𝑐𝑚, 𝐴𝐶 = 7 𝑐𝑚 has the side 𝐵𝐶 included in a plane 𝛼. Determine 

the area of the triangle’s projection on the plane knowing that the 

projection is a right triangle. 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p    3) 1p 

II.  1) 1p    2) 1p    3) 1p 

III.  1) 1p    2) 2p 
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Test no. 62 
I. 1. If 𝑎, 𝑏, 𝑐 ∈ ℕ and 2𝑎 − 3𝑏 + 8𝑐 = 0 then 6|𝑏(𝑎 + 𝑐). 

2. A bank gives an annual interest of 5%. What sum will a 

person who deposited 100$ in 3 years? 

3. Determine 𝑎, 𝑏, 𝑐 ∈ ℕ∗, so that: 

 

II. 1. Determine the natural numbers 𝑎𝑏𝑐̅̅ ̅̅ ̅ so that the sum of 

its’ digits squares is the square of a prime number with the form: 

 
2. Show that the following number is divisible by 27: 

 
III. 1. In the right triangle 𝐴𝐵𝐶  in 𝐴 , 𝐴𝐵 = 6 𝑐𝑚, 𝐴𝐶 =

8 𝑐𝑚, 𝐷 is the foot of 𝐴’s height, and 𝑂 is the center of the circle 

circumscribed to the triangle 𝐴𝐵𝐶 . Calculate the length of the 

segment 𝐷𝑂. 

2. The volume of a cone is 𝑉. The cone is divided in three 

bodies through two parallel planes that pass through points of the 

height that divide it in three congruent segments. Calculate the 

volume of the middle body. 

 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1p   3) 1p 

II.  1) 2p   2) 1p   

III.  1) 1p   2) 2p 
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Test no. 63 
I. 1. Simplify: 

 
2. a) If 𝑥 and 𝑦 are positive numbers, show that: 

 
b) If 𝑥 + 𝑦 = 𝑘 then the heighest value of the product 𝑥𝑦 is 

𝑘2

4
. 

3. Determine 𝑎 and 𝑏, real, so that the following polynomials 

will divide: 

 
II. 1. Let 𝑥, 𝑦 ∈ ℝ∗ and 𝑥 + 𝑦 = 1. Show that: 

 
2. Prove that the following number divides by 6, (⩝)𝑛 ∈ ℕ∗: 

 
III. 1. Let 𝐴𝐵𝐶  be a random triangle, 𝐴𝐴, ⊥ 𝐵𝐶  and 𝑅 the 

radius of the circle circumscribed to the triangle. Prove that: 

 

 
2. The total area of a regular quadrilateral pyramid is 𝑆 and 

the lateral face has the top angle equal to 60°. Calculate the height 

of the pyramid. 

 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p    3) 1p 

II.  1) 2p    2) 1p   

III.  1) a) 1p  b) 1p  2) 1p 
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Test no. 64 
I.1. Show that the following numbers are perfect squares: 

 

 

2. Let there be the sequence of rapports 
𝑎

3
=
𝑏

5
=
𝑐

7
. Knowing 

that 𝑎𝑏𝑐 = 840, determine 𝑎, 𝑏, 𝑐. 

II. 1. The sum of a three-digit number is 12. If we add 99 to 

this number, we obtain a number from the same digits inversely 

ordered. Knowing that the sum of the decimals is a prime number, 

determine the number. 

2. The rapport between the area and the length of a circle is 

1/2. Calculate the lengths of the sides and the apothems of the 

equilateral triangle, the square and the regular hexagon inscribed in 

this circle. 

III. 1. Let: 

 
Determine 𝑚 and 𝑛 so that the remainder of the division of 𝑃(𝑋) 

to 𝑋2 − 3𝑋 + 4 will be −5𝑋 + 4. 

2. The apothem of a regular quadrilateral pyramid makes 

with the plane of the base a 45° angle. Knowing that the length of 

this apothem is equal to 6√2 𝑐𝑚, calculate: 

a) the lateral area and the total area of the pyramid; 

b) the volume of the pyramid; 

c) we cut a section with a plane parallel to the base at a 

distance equal to 2/3 of the height in relation to the base. Calculate 

the area of the section; 

d) calculate the rapport between the volume of the newly 

formed pyramid and the volume of the initial pyramid; 

e) calculate, in two ways, the volume of the obtained pyramid 

body. 
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Grading scale:  1 point ex officio 

I.  1) a) 0,75p  b) 0,75p     2) 1,25p   

II.  1) 0,75p    2) 1,25p   

III.  1) 0,75p    2) 1p + 0,5p + 0,5p +  

0,5p + 1p 
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Test no. 65 
I. 1. Determine the numbers 𝑥2𝑦̅̅ ̅̅ ̅ , knowing that 𝑥2𝑦̅̅ ̅̅ ̅ =

51𝑦 − 50𝑥 + 20. 

2. The prices of four merchandise assortments are inversely 

proportional to 
2

5
;  
3

4
;  
1

6
;  
6

7
. Knowing that the four assortments cost 

1980 𝑙𝑒𝑖, determine the price of each assortment. 

II. 1. Given the numbers: 

 

 
Calculate: 𝑎2 − 𝑏2. 

2. In the triangle 𝐴𝐵𝐶 we know: 𝐴𝐵 = 5 𝑐𝑚, 𝐵𝐶 = 10 𝑐𝑚 

and 𝑚(∢𝐶) = 30°. Let 𝑀 be the symmetrical of 𝐴 in relation to 

𝐵𝐶. Show that 𝐵𝑀 ⊥ 𝑀𝐶. 

III. 1. Determine 𝑥 ∈ ℝ so that: 

 
2. In a regular quadrilateral pyramid with the height of 

16 𝑐𝑚 and the side of the base of 24 𝑐𝑚, we make a section with a 

plane parallel to the base at 3/4 from the height in relation to the 

base. Calculate: 

a) the sine of the angle formed by a lateral face with the 

plane of the base; 

b) the tangent of the angle formed by an edge with the pane 

of the base; 

c) the lateral area of the pyramid’s body obtained by 

sectioning the initial pyramid; 

d) the area of the section made in the pyramid’s body 

through a plane that pass through two parallel diagonals of the base. 
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Grading scale:  1 point ex officio 

 I.  1) 0,50p   2) 0,75p   

II.  1) 1,50p    2) 0,75p   

III.  1) 2p    2) 0,75p + 0,75p + 1p + 1p 
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Test no. 66 
I. 1. Calculate: 

 

 
2. The rapport of two numbers is 0,3 and their difference is 

35. Determine the numbers. 

3. Solve the system: 

 
II. 1. Show that the following is a perfect square: 

 
2. Determine the area of a right triangle that has the sum of 

the catheti 14 𝑐𝑚, and their difference 2 𝑐𝑚. 

3. The arithmetic mean of 3 numbers is 3. Determine the 

numbers knowing that the arithmetic mean of the other two is 11
1

2
. 

III. Let there be the isosceles triangle 𝐴𝐵𝐶 , 𝐴𝐵 = 𝐴𝐶 =

10 𝑐𝑚, 𝐵𝐶 = 16 𝑐𝑚. On the plane of the triangle we raise 𝐵𝑀, 

perpendicular to it, 𝐵𝑀 = 6 𝑐𝑚. 

a) Determine the area of the triangle 𝑀𝐵𝐴. 

b) Determine the distance from 𝐶 to the plane 𝑀𝐵𝐴. 

c) Determine the volume of the tetrahedron 𝐴𝐵𝐶𝑀. 

 

Grading scale:  1 point ex officio 

I.  1) a) 0,50p  b) 0,50p   2) 1p   3) 1p 

II.  1) 1 p     2) 1p  3) 1p   

III.  a) 1p  b) 1p  c) 1p 
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Test no. 67 
I. 1. Determine what is the biggest number of the form 𝑎𝑏̅̅ ̅ 

that fulfills the condition: 

 
2. Determine 𝑥 and 𝑦 natural prime numbers so that: 

 
II. 1. Show that: 

 

 
2. The lengths of two sides of a triangle are of 3 𝑐𝑚 and 

6 𝑐𝑚. Prove that the bisector of the angle between them in not 

bigger than  4 𝑐𝑚. 

III. 1. Simplify the fraction: 

 
2. In the body of a regular quadrilateral pyramid with the 

volume of 5920 𝑐𝑚2, the side of the big base is 20 𝑐𝑚, the side of 

the little base is 2 𝑐𝑚; determine: 

a) the height, the apothem and the lateral edge of the 

pyramid’s body; 

b) the lateral area and the total area of the body; 

c) the volume and the lateral area of the pyramid that 

generates the body; 

d) the measure of the angle formed by the lateral edge with 

the plane of the big base of the pyramid’s body. 

Grading scale:  1 point ex officio 

  I.  1) 0,50p  b) 0,75p   

II.  1) 1,75p    2) 1p    

III.  1) 1p     2) 1p + 1p+ 1p + 1p 
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Test no. 68 
I. 1. Effectuate: 

 

 

 
2. During a vacation a student had to solve 240 problems, 

but he solved 15%  more. How many problems did the student 

solve? 

II. 1. Effectuate: 

 

 
2. Prove that, in a trapezoid, the difference of the bases is 

bigger than the difference of the non-parallel sides. 

III. 1. Determine the remainder of the division of the 

polynomial 𝑃(𝑋) = 𝑋2 − 𝑎𝑋 + 3  to 𝑋 − 2 , knowing that by 

dividing it to 𝑋 − 1 the remainder is 3; 𝑎 ∈ ℝ. 

2. In a straight triangle 𝐴𝐵𝐶 (𝑚(∢𝐴) = 90°)  we know 

𝐴𝐵 = 9 𝑐𝑚, 𝐴𝐶 = 12 𝑐𝑚. Let 𝐵𝑃 (𝑃 ∈ 𝐴𝐶) be the bisector of the 

angle 𝐵. In the point 𝑃 er raise a perpendicular on the plane of the 

triangle, 𝑀𝑃 = 10 𝑐𝑚. Calculate: 

a) the tangent of the angle between the planes (𝑀𝐵𝐶) and 

(𝐴𝐵𝐶); 

b) the distance from point 𝐴 to the plane (𝑀𝑃𝐵); 

c) the sine of the angle between the straight line 𝑀𝐵 and the 

plane (𝑀𝑃𝐷), where 𝑃𝐷 ⊥ 𝐵𝐶 (𝐷 ∈ 𝐵𝐶); 

d) the area and the volume of the prism that has as base the 

triangle 𝑃𝐵𝐶 and the height 𝑀𝑃. 
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Grading scale:  1 point ex officio 

 I.  1) 0,25p + 0,25p +0,25p   2) 0,50p   

II.  1) 0,50p + 0,25p   2) 1p    

III.  1) 1p     2) 1p + 1p+ 1p+ 2p 
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Test no. 69 
I. 1. Determine the smallest natural number that, once 

divided by 12 will give the remainder 7, divided by 8 will give the 

remainder 3 and divided by  18 will give the remainder 13. 

2. Calculate: 

 
II. 1. Determine 𝑥 ∈ ℤ  for which the expression 𝐸  is an 

integer number: 

 
2. Determine the area of a parallelogram whose diagonals 

measure 10 𝑐𝑚 and 16 𝑐𝑚, and the angle between them has 30°. 

III. 1. Determine the remainder of the division of the 

polynomial: 

 
to 𝑎𝑋 + 𝑏, knowing that it is divisible by (𝑋 − 1)(𝑋 + 1). 

2. Let 𝐴𝐵𝐶 be an isosceles triangle with 𝐴𝐵 + 𝐴𝐶 +

8 𝑐𝑚,𝑚(∢𝐴) = 120° and 𝐴𝐷 ⊥ 𝐵𝐶(𝐷 ∈ 𝐵𝐶). In the point 𝐷 we 

raise a perpendicular on the plane of the triangle, 𝐷𝑀 = 4 𝑐𝑚 . 

Calculate: 

a) the distance from the point 𝐷 to the plane (𝑀𝐴𝐶); 

b) the angle between the straight line 𝑀𝐷  and the plane 

(𝑀𝐴𝐶); 

c) the area and volume of the pyramid 𝑀𝐴𝐵𝐶. 

 

Grading scale:   1 point ex officio 

I.  1) 1,25p   2) 0,75p   

II.  1) 1p    2) 1p    

III.  1) 1,50p   2) 1p + 1p+ 1,50p 
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Test no. 70 
I. 1. Knowing that: 

 
Calculate: 

 
2. Three workers dig a ditch in 3 hours. How many workers 

dig the same ditch in half an hour? 

II. 1. Show that the following numbers are natural: 

 

 
2. Let 𝐴𝐵𝐶  be a triangle having the lengths of the sides 

𝐴𝐵 = 3 𝑐𝑚, 𝐴𝐶 = 3√2, 𝐵𝐶 = 3√3 . Let 𝑃  be the foot of the 

height from 𝐴 on the side 𝐵𝐶 , and 𝑀 and 𝑁 the projections of 𝑃 

on the sides 𝐴𝐵 , 𝐴𝐶 , respectively. Calculate the length of the 

segment 𝑀𝑁. 

III. 1. Let 𝑃(𝑋) be a polynomial of a degree bigger than 2. 

Knowing that divided at 𝑋 − 1 it will give the remainder 1, divided 

at 𝑋 − 2, it will give the remainder −1 and divided at 𝑋 − 3 it will 

give the remainder 2, determine the remainder of dividing 𝑃(𝑋) at 

(𝑋 − 1)(𝑋 − 2)(𝑋 − 3). 

2. A trapezoid 𝐴𝐵𝐶𝐷 (𝐴𝐵||𝐶𝐷)  has 𝐴𝐵 = 30 𝑐𝑚, 𝐷𝐶 =

10 𝑐𝑚  and the non-parallel sides 𝐴𝐷 = 12 𝑐𝑚, 𝐵𝐶 = 16 𝑐𝑚 . In 

the point 𝐵 we raise a perpendicular on the plane of the trapezoid, 

𝐵𝑀 = 10 𝑐𝑚. Calculate: 

a) the distance from the point 𝑀 to the straight line 𝐴𝐷; 

b) the value of one of the trigonometric functions of the 

angle formed by the straight line 𝐴𝐷 with the plane (𝑀𝐵𝐷); 

c) the angle between the planes (𝑀𝐴𝐵) and (𝑀𝐷𝐶); 

d) the area and the volume of the pyramid 𝑀𝐴𝐵𝐶𝐷. 
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Grading scale:  1 point ex officio 

   I.  1) 0,75p   2) 0,25p   

II.  1) 1p    2) 1,25p    

III.  1) 1,50p   2) 1p + 1p+ 1,25p 
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Test no. 71 
I. 1. Calculate: 

 
2. Two children deposited at C. E. C sums in the ratio of 

2/3. What sum did every child deposit knowing that 3/5 from the 

sum deposited by the second one, raised by 30%  of the sum 

deposited by the first one is with 156 000lei smaller than the sum 

of the two children combined? 

3. Determine the values of 𝑥 ∈ ℝ for which the following 

expression is defined: 

 
II. 1. Solve the following equation, where 𝑚  is a real 

parameter: 

 
2. Does there exist a linear function whose graphic contains 

the points 𝐴(−1,−1), 𝐵(3, 3) and 𝐶(0, 2)? 

III. 1. On the sides 𝐴𝐵  and 𝐴𝐶  of an equilateral triangle 

𝐴𝐵𝐶  we consider the points 𝐷  and 𝐸  respectively, so that 𝐴𝐷 =

𝐶𝐸 . Let 𝑀  be the intersection of the straight lines 𝐵𝐸  and 𝐶𝐷 . 

Calculate 𝑚(∢𝐵𝑀𝐶). 

2. In a cylinder, the radius of the base has 4 𝑐𝑚  and the 

height 14 𝑐𝑚 . Determine the radius of a sphere whose area is 

equivalent to the total area of the cylinder. 
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Grading scale:  1 point ex officio 

I.  1) 1p   2) 1,50p          3) 1,50p   

II.  1) 1,50p   2) 1p    

III.  1) 1,50p   2) 1p  
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Test no. 72 
I. 1. Calculate: 

 
2. At an auction the price of an object rose by 20% then by 

1% of the new price. Thus, the object sold with 264 000 𝑙𝑒𝑖. What 

was the starting price of the object? 

3. 𝑥 being a random real number, determine: 

 
II. 1. Determine the intersections with the coordinates’ axis 

of the function 𝑓:ℝ → ℝ, 𝑓(𝑥) = 2𝑥 − 3, then trace the graphic 

of the function. 

2. Solve the system of inequations: 

 
III. 1. Let 𝐴𝐵𝐶  be an isosceles triangle 𝐴𝐵𝐶 (𝐴𝐵 = 𝐴𝐶) 

inscribed in a circle. In 𝐴 and 𝐶 we trace the tangents to the circle 

and we note with 𝑇 their intersection. Prove that: 

 
2. The planes of two joined lateral faces of a regular 

quadrilateral pyramid form a 120° angle. Calculate the volume of 

the pyramid if the side of the base has the length 𝑎. 

 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1,50p   3) 1p   

II.  1) 1p    2) 1p    

III.  1) 1,50p   2) 2p  
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Test no. 73 
I. 1. Calculate: 

 
2. Prove that: 

 
irrespective of what 𝑎, real number is. 

3. Bring to a simpler form the expression: 

 
II. 1. Determine the positive real numbers 𝑥 that satisfy the 

inequality: 

 
2. Determine 𝑎, 𝑏, 𝑐 ∈ ℝ, so that the polynomial: 

 
can be written as: 

 
III. 1. Let there be a circle with the center 𝑂 and 𝐵𝑂 a radius 

perpendicular on a diameter. We unite 𝐵  with a point 𝐴  of the 

diameter and we note with 𝑃 the intersection between 𝐵𝐴 and the 

circle. The tangent in 𝑃  cuts the extension of the diameter in 𝐶 . 

Prove that 𝐶𝐴 = 𝐶𝑃. 

2. Calculate the radius of the sphere circumscribed in a right 

circular cone with the generating line of 50 𝑐𝑚 and the radius of 

the base of 30 𝑐𝑚. 

 

Grading scale:  1 point ex officio 

I.  1) a) 0,5p   b) 0,5p   2) 1p    3) 1p   

II.  1) 1,50p    2) 2p    

III.  1) 2p     2) 1,50p 
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Test no. 74 
I. 1. What sign do the following differences have: 2√11 − 6; 

3√2 − 2√3? 

2.  We know that 𝑥 + 𝑦 = 𝑠 and 𝑥𝑦 = 𝑝. Calculate 𝑥2 + 𝑦2 

and 𝑥3 + 𝑦3. 

3. Determine the total area of a rectangle knowing that if we 

raise the length 9/5 times and we reduce the width 1/3 times, the 

area of the rectangular surface will shrink with 120 𝑐𝑚2. 

II. 1. Solve the following system, where 𝑎 and 𝑏 are random 

real parameters, 𝑎 ≠ 𝑏, 𝑎 ≠ −𝑏: 

 
2. Determine the quotient and the remainder of the division 

of the polynomial: 

 
to the polynomial: 

 
III. 1. The rapport of a right triangle’s catheti is 3/4 and the 

length of the hypotenuse is 175 𝑐𝑚. Determine the length of the 

two catheti and the difference between the two segments 

determined on the hypotenuse by the height that originates in top 

of the right angle. 

2. The sides of a regular triangular pyramid body’s bases are 

6 𝑐𝑚 and 16 𝑐𝑚 long. The lateral face forms with the plane of the 

base an angle of 60°. Calculate the volume and the lateral area of 

the pyramid’s body. 
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Grading scale:  1 point ex officio 

I.  1) 1p    2) 1,50p   3) 1p   

II.  1) 1,50p   2) 1p    

III.  1) 1,50p   2) 1,50p 
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Test no. 75 
I. 1. Calculate: 

 
where 𝑚, 𝑛, 𝑝 are random natural numbers. 

2. Determine what the price of a book was before two price 

reductions, knowing that the first reduction was 5%, the second 

15 % and that the actual price is 12 920 𝑙𝑒𝑖. 

3. Prove that irrespective of what the natural number 𝑛 ≠ 1 

is, the following fraction isn’t an integer number. 

II. 1. Determine the linear functions 𝑓 and 𝑔 knowing that, 

irrespective of real  𝑥: 

 
2. Let there be the polynomial: 

 

Calculate 𝑃(√3 − √2). 

III. 1. In a circle we inscribe a random triangle 𝐴𝐵𝐶 . The 

perpendicular taken from 𝐴  on 𝐴𝐶  cuts the circle in 𝑀 , and the 

perpendicular traced from 𝐴 on 𝐴𝐵 cuts the circle in 𝑁. Prove that 

the straight lines 𝑀𝑁 and 𝐵𝐶 are parallel. 

2. A regular triangular pyramid has the side of the base 𝑎 and 

the lateral edge. Determine the lateral area and the volume of the 

pyramid. 

 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p            3) 1,50p   

II.  1) 1,50p   2) 1p    

III.  1) 1,50p   2) 1,50p 
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Test no. 76 
I. 1. Let 𝑎, 𝑏, 𝑐 be three random real numbers. If 𝑎 < 𝑏 does 

it follow that: 𝑎 ∙ 𝑐 < 𝑏 ∙ 𝑐? 

2. Prove that the following number is divisible by 15, for any 

𝑛 , natural number: 

 
3. Prove that, for any  𝑛, non-equal to zero, natural number: 

 
II. 1. Let there be the polynomial: 

 
Determine the real constants 𝑎  and 𝑏  so that the sum of the 

polynomial’s coefficients is 2  and that 𝑃(𝑋)  is divisible by the 

polynomial 𝑋 + 1. 

2. Prove that, if 𝑎, 𝑏, 𝑐 are the lengths of a triangle’s sides, 

then: 

 
III. 1. Let 𝐴𝐵𝐶𝐷 be an isosceles trapezoid (𝐴𝐵||𝐶𝐷), where 

𝐵𝐶 = 𝐶𝐷 = 𝐷𝐴 = 𝑎 , and 𝐴𝐵 = 2𝑎 . Calculate the area of the 

trapezoid. 

2. We consider a quadrilateral pyramid where one of the 

lateral faces is an equilateral triangle and its plane is perpendicular 

with the plane of the base. Knowing that the side of the base has 

length 𝑎, calculate the lengths of the lateral edges, the volume of the 

pyramid and the angles formed by the lateral edges with the plane of 

the base. 

 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1,50p   3) 1,50p   

II.  1) 1p   2) 1,50p    

III.  1) 1p   2) 1,50p 
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Test no. 77 
I. 1. If 𝑎, 𝑏  are two random real numbers, so that 𝑎 < 𝑏 , 

then:  

2. Prove that if between the pairs of numbers (𝑎, 𝑏)  and 

(𝑐, 𝑑)  there exists a direct proportionality, then the following 

equality takes place: 

 
3. Determine the smallest natural number that, divided, in a 

row by 3, 4, 5 will give the same remainder. 

II. 1. The following equation is given: 

 
Solve and determine 𝑚 ∈ ℤ  so that the solution is an integer 

number. 

2. Determine the sum of the following polynomial’s 

coefficients: 

 
III. 1. Let 𝐴𝐵𝐶𝐷  be a parallelogram and 𝑁 ∈ (𝐶𝐷),𝑀 ∈

(𝐵𝐶). Through 𝐶  we trace 𝐶𝑃||𝐴𝑀 and 𝐶𝑄||𝐴𝑁 (𝑃 ∈ (𝐴𝐷), 𝑄 ∈

(𝐴𝐵)). Prove that the straight lines 𝑃𝑀,𝑄𝑁 and 𝐸𝐹 are concurrent 

{𝐸} = 𝐶𝑃 ∩ 𝐴𝑁, {𝐹} = 𝐶𝑄 ∩ 𝐴𝑀). 

2. We consider a prism 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, that has a square as a 

base and where the projection of the top 𝐴, on the plane of the base 

is the top 𝐶 . Knowing that 𝐴𝐵 = 𝑎, 𝐴𝐴, = 2𝑎 , determine the 

volume of the prism, the angle formed by a lateral edge with the 

plane of the base and the angles of the lateral faces. 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p           3) 1,50p   

II.  1) 1p    2) 1,50p    

III.  1) 1,50p   2) 1,50p 
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Test no. 78 
I. 1. a) If 𝑥2 = 𝑦2 does it follow that 𝑥 = 𝑦? 

b)If 𝑥 < 0, calculate √𝑥2. 

2. If from a number we subtract, one a time 2, 4, 8, 16, we 

obtain four numbers that when added, give the double of the 

respective number. Determine that number. 

3. Determine the real parameter 𝑚  so that the following 

equation does not admit real solutions: 

 
II. 1. Determine the linear function 𝑓:ℝ → ℝ  with the 

property that, for any real 𝑥: 

 
2. Prove that if a polynomial 𝑃(𝑋) is divisible by 𝑋 − 𝑎 and 

𝑋 − 𝑏, then it is divisible with the polynomial (𝑋 − 𝑎)(𝑋 − 𝑏) (we 

made the presupposition that 𝑎 ≠ 𝑏). 

III. 1. Let 𝐴𝐵𝐶 be a right triangle (∢𝐴 = 90°), 𝐷 is the foot 

of the height traced from 𝐴 and 𝐸, 𝐹the projections of the point 𝐷 

on the catheti. Prove that: 

 
2. The axial section of a cone is an equilateral triangle with 

the area 9√3𝑐𝑚2. Determine the total area and the volume of the 

cone. 

 

Grading scale:  1 point ex officio 

I.  1) a) 0,50p  b) 0,50p  2) 1p  3) 1,50p   

II.  1) 1,50p         2) 2p    

III.  1) 1p          2) 1p 

 

 

 



Possible Subjects for Examination, Grades V-VIII 

 

110 

 

Test no. 79 
I. 1. Verify the equality: 

 
2. Determine 𝑥 from the equality: 

 
3. Prove that, by adding to a number 8 times the sum of its’ 

digits, we obtain a number divisible by 3. 

II. 1. Decompose in factors the polynomial: 

 
2. Solve the following system of inequations: 

 
III. 1. We consider a convex quadrilateral with parallel 

diagonals. Let 𝑂  be their intersection point. Show that 𝑂 ’s 

projections on the quadrilateral’s sides are the tops of a writable 

quadrilateral. 

2. In a regular quadrilateral pyramid we inscribe a cube so 

that four of its’ tops are situated on the lateral edges of the pyramid, 

and the other four tops, on the plane of the base. Determine the 

volume of the cube if the side of the pyramid’s base is 𝑎 and the 

height of the pyramid is ℎ. 

 

Grading scale:   1 point ex officio 

I.  1) 1p   2) 1p   3) 1,50p   

II.  1) 1p   2) 1p    

III.  1) 2p   2) 1,50p 

 



Possible Subjects for Examination, Grades V-VIII 

111 

 

Test no. 80 
I. 1. Calculate: 

 
2. Solve the equation |𝑥 − 4| = 5. 

3. In a cellar there are 7 full barrels, 7 half full barrels abd 7 

empty barrels. Divide these barrels in three equal groups so that 

there is the same number of barrels in each group and the same 

quantity of liquid. 

II. 1. Solve the following system, where 𝑎, 𝑏  are real 

parameters: 

 
2. Let there be the function 𝑓:ℝ → ℝ , 𝑓(𝑥) = 𝑎𝑥 + 𝑏 . 

Determine 𝑎 and 𝑏 so that: 

 
for any real 𝑎. 

III. 1. Show that the length of the tangent common to two 

exterior tangent circles is the proportional mean between the 

diameters of the two circles. 

2. A pyramid 𝑉𝐴𝐵𝐶 has congruent and perpendicular lateral 

edges (𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶, 𝑉𝐴 ⊥ 𝑉𝐵 ⊥ 𝑉𝐶 ⊥ 𝑉𝐴) . Determine the 

total area and the volume of the pyramid, knowing that 𝑉𝐴 =

𝑉𝐵 = 𝑉𝐶 = 𝑎. 

 

Grading scale:  1 point ex officio 

I.  1) 1p    2) 1p        3) 2p   

II.  1) 1,50p   2) 1p    

III.  1) 1p    2) 1,50p 
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Test no. 81 
I. 1. A set 𝐴 has 11 elements and a set 𝐵 has 10 elements. If 

𝐴 ∪ 𝐵 has 13 elements, how many elements does 𝐴 ∩ 𝐵? 

2. Solve in 𝑄 the equations: 

 

 
II. 1. Calculate the arithmetic, geometric and harmonic mean 

of the numbers 𝑎 and 𝑏 where: 

 
2. The lengths of a triangle’s sides are 𝐴𝐵 = 13 𝑚, 𝐵𝐶 =

21 𝑚, 𝐶𝐴 = 20 𝑚. Determine the heights of the triangle. 

III. 1. Represent graphically the function 𝑓: ℝ → ℝ, defined 

through: 

 
2. Let 𝐴𝐵𝐶𝐷 be a rectangle with 𝐵𝐶 = 5 𝑐𝑚,𝑚(∢𝐵𝑂𝐶) =

60° ({𝑂} = 𝐴𝐶 ∩ 𝐵𝐷). In the point 𝐴 we raise a perpendicular on 

the plane of the rectangle, 𝐴𝑀 = 5 𝑐𝑚. Calculate: 

a) the tangent formed by the planes (𝑀𝐵𝐷)and (𝐴𝐵𝐶); 

b) the angle between the straight line 𝑀𝐴 and (𝑀𝐵𝐷); 

c) the distance from point 𝐴 to the plane (𝑀𝐵𝐶); 

d) the angle between the planes (𝑀𝐴𝐵) and (𝑀𝐷𝐶); 

e) the area and the volume of the pyramid 𝑀𝐴𝐵𝐶𝐷. 

Grading scale:  1 point ex officio 

I.  1) 0,25p   2) 0,50p   

II.  1) 0,75p   2) 1p    

III.  1) 1,25p   2) 1p + 1p + 1p +1p + 1,25p 
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Test no. 82 
I. 1. We consider the sets:  

 
Effectuate: 

 
2. The number 132 is divided in parts, directly proportional 

with the numbers 3
1

2
, 2

1

3
, 5

1

6
. What are the numbers? 

II. 1. Solve the equations: 

 

 
2. In a circle we trace the diameter 𝐴𝐵. Let 𝑀 be a point of 

the circle and 𝑁  its’ projection on 𝐴𝐵 . The following are given: 

𝐴𝑁 = 12 𝑐𝑚,𝑁𝐵 = 3 𝑐𝑚. Determine the lengths of the segment 

𝑀𝑁 and the chords of 𝐴𝑀 and 𝐵𝑀. 

III. 1. Effectuate: 

 

 

 

 

 
2. An equilateral triangle 𝐴𝐵𝐶 has the length of the middle 

line 𝑀𝑁 (𝑀 ∈ 𝐴𝐵,𝑁 ∈ 𝐴𝐶)  equal to 4 𝑐𝑚 . In the point 𝑀  we 

raise a perpendicular 𝑀𝐷 = 2 𝑐𝑚 on the plane of the triangle. 

Calculate: 

a) the distance from 𝐵 to the plane (𝐷𝐴𝐶); 

b) the angle between the planes (𝐷𝐴𝐶) and (𝐴𝐵𝐶); 
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c) the angle between the straight line 𝐴𝐶  and the plane 

(𝐷𝐴𝐵); 

d) the area and the volume of the pyramid with the top in 𝐷 

and the base 𝑀𝑁𝐶. 

 

Grading scale:  1 point ex officio 

I.  1) 0,25p   2) 0, 50p   

II.  1) 0,75p + 0,5p   2) 0, 75 p    

III.  1) 1,25p   2) 1p + 1p + 1p + 1,25p 
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Test no. 83 
I. 1. Calculate: 

 

 
2. The sum of three consecutive powers of the number 3 is 

351. Determine these numbers. 

3. At a sport race, a certain number of students had to 

participate. 15% more students registered, reaching a total of 69 

children. How many students were due to participate at the race? 

II. 1. Solve the system: 

 
2. In the triangle 𝐴𝐵𝐶(𝑚(∢𝐴) = 90°) we trace the height 

𝐴𝐷(𝐷 ∈ 𝐵𝐶), Prove that: 

 

 
III. 1. Let: 

 
a) Determine 𝑓(𝑥); 

b) Does the point 𝐴(0, 2)  belong to the graphic of the 

function 𝑓(𝑥)? 

2. Let 𝐴𝐵𝐶𝐷  be a parallelogram with 𝐴𝐵 =

10 𝑐𝑚,𝑚(∢𝐴𝐵𝐷) = 60°  and 𝐵𝐷 = 16 𝑐𝑚 . In the point 𝐵  we 

raise a perpendicular on the parallelogram’s plane, 𝐵𝑀 = 10 𝑐𝑚. 

Calculate: 

a) the tangent of the angle between the planes (𝑀𝐴𝐶) and 

(𝐴𝐵𝐶); 
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b) the distance from point 𝐴 to the plane (𝑀𝐵𝐷); 

c) the angle between the straight line 𝑀𝐶  and the plane 

(𝑀𝐴𝐷); 

d) the area and the volume of the pyramid 𝑀𝐴𝐵𝐶𝐷. 

 

Grading scale:   1 point ex officio 

I.  1) 1p   2) 0,50p   3) 0,50p 

II.  1) 1p   2) 1,25p    

III.  1) 1p   2) 1p + 1p + 1p + 1,25p 
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Test no. 84 
1. The number 𝐴 = 52 − [(42)2]0 is equal to : 

 
2. The solution of the inequation 2(𝑥 + 3) + 4 = 30 is: 

 
3. The area of a right triangle with the catheti of 

8 𝑐𝑚, 10 𝑐𝑚 is: 

 

4. The value of the fraction 𝐹(𝑥) =
2𝑥−1

𝑥+1
 for 𝑥 = 1 is: 

 
5. The volume of a cube with a 10 𝑐𝑚 edge is: 

 
6. The domain of existence of the expression 𝐸(𝑥) =

√𝑥 − 4 − 7 is: 

 
7. We consider 𝐴𝐵𝐶𝐷 (right) with 𝐴𝐵 = 𝑚,𝐵𝐶 = 𝑛,𝑚 >

𝑛. Let 𝑀 be the middle of [𝐴𝐵] and 𝑁 the middle of [𝐵𝐶]. What 

relation is there between 𝑚 and 𝑛 so that ∆𝑁𝐷𝑀is right? 

 
8. The solution of the system: 

 
is: 

 
9. The simplest form of the expression: 

 
is: 
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10. In a right circular cone with 𝑅 = 5 𝑐𝑚, ℎ = 12 𝑐𝑚 we 

cut a section parallel to the base, having the area equal to 4𝜋. Show 

that 𝐴1 and 𝑉 the issuing cone body is: 

 

 

 
 

Grading scale:   1 point ex officio 

1) 0, 75p;  

2) 0, 75p;  

3) 0, 75p;  

4) 0, 75p;  

5) 1p;  

6) 1p;  

7) 1p;  

8) 1p;  

9) 1p;  

10) 1p 
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Test no. 85 
1. The value of the number: 

 
is: 

 
2. Given the powers 230 and 810 we have: 

 
3. If we effectuate: 

 
we have: 𝐴: 2; 𝐵: 3; 𝐶: 0. 

4. If 
𝑥

𝑦
=
4

5
 then the value of the rapport 

2𝑥−𝑦

𝑥+3𝑦
 is: 

 
5. The solution to the system of inequations: 

 
is: 

 
6. Effectuate the division: 

 
and obtain the remainder: 

 
7. Two adjacent angles have their uncommon sides in 

extension. The angle of their bisector has the measure: 

 

8. If a rectangle has 𝑙 = 5 𝑐𝑚, 𝐿 = 5√3, then the angle of 

the diagonals is: 
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9. If 𝐴 = {2, 3, 5}, 𝐵 = {1, 4, 5}, then card. 𝐴 ∪ 𝐵 is: 

 
10. In a regular quadrilateral pyramid’s body 𝐿 =

100 𝑐𝑚, 𝑙 = 6 𝑐𝑚, ℎ = 2 𝑐𝑚 . Determine the lateral area and the 

volume of the body and the pyramid where it comes from. 

 

Grading scale:  1 point ex officio 

1) 1p;  

2) 1p;  

3) 0,5p;  

4) 1p;  

5) 0,5p;  

6) 0,75p;  

7) 0,75p;  

8) 1p;  

9) 0,5p;  

10) 0,5p+ 0,5p + 0,5p+ 0,5p 
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Test no. 86 
1. 
2

5
 from 2 𝑚 is: 

 
2. The value of the expression: 

 
is: 

 
3. The number of elements of the subset: 

 
is: 

 
4. The value of the expression 𝐸 = 3(𝑥2 − 1) +

𝑥(𝑥 − 2) − 4𝑥(𝑥 − 1) − 2𝑥 + 2 is: 

 
5. The solution of the system: 

 
is: 

 

6. 
3

𝑥−2
> 0 for: 

 
7. The value of the polynomial 𝑃(𝑋) = 𝑋4 − 3𝑋2 + 5𝑋 −

7 for 𝑋 = −1 is: 

𝐴: 2; 𝐵:−4; 𝐶: −14. 

8. If two complementary angles have the rapport 
2

7
, then 

their measures are: 

𝐴: 10° 𝑎𝑛𝑑 35°; B: 40° 𝑎𝑛𝑑 140°; 𝐶: 20° 𝑎𝑛𝑑 70°. 
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9. If a cube has the edge of 10 𝑐𝑚, then its’ diagonal is: 

𝐴: 30 𝑐𝑚;𝐵: 10√3 𝑐𝑚; 𝐶: 50 𝑐𝑚. 

10. A cone has 𝐺 = 10 𝑐𝑚 and the angle between it and the 

plane of the base is 60 °. Determine: the height, the volume, the 

total area and the angle of the circular sector that comes from the 

extension. 

 

Grading scale:  1 point ex officio 

1) 1p;  

2) 1p;  

3) 0,75p;  

4) 1p, 0,75p;  

5) 0,75p;  

6) 0,5p;  

7) 1p;  

8) 0,75p;  

9) 1p;  

10) 0,5p 
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Test no. 87 
1. The value of the expression 𝐸 =

2

3
∙ (
5

2
−
5

9
) :

4

3
 is: 

𝐴: 1; 𝐵: 10; 𝐶:
35

36
. 

2. The solution of the equation 
5

9
∙ 𝑥 = 8  is: 

𝐴:
1

2
; 𝐵:

5

72
; 𝐶:

72

5
. 

3. The value of the expression |3√2 − 2√5| − 2(√5 + √2) 

is 𝐴: √3; 𝐵: √2; 𝐶:−5√2. 

4. How many natural values of 𝑥  verify the relation 
2

3
<

𝑥+2

5
≤
2

7
? 𝐴: 3; 𝐵: 0; 𝐶: 2. 

5. The system {
𝑥 + 𝑦 = 3
2𝑥 + 2𝑦 = 6

 is: 

𝐴:  compatible, determined; 𝐵:  incompatible; 𝐶 : compatible, 

undetermined. 

6. Let 𝑓:ℝ → ℝ, 𝑓(𝑥) = 2𝑥 + 1. The function is: 

𝐴: constant; 𝐵: strictly increasing; 𝐶: strictly decreasing. 

7.  The area of the equilateral triangle inscribed in the circle 

with the radius of 5 𝑐𝑚 has the value: 

 
8. If in a rhomb a diagonal has the same length as its’ side, 

then the acute angle of the rhomb is: 

 
9. If a regular quadrilateral pyramid has ℎ = 9 𝑐𝑚, the side 

of the base 6 𝑐𝑚, then its’ total area is: 
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Grading scale:  1 point ex officio 

1) 1p;  

2) 0,5p;  

3) 1p;  

4) 1p;  

5) 1p;  

6) 1p;  

7) 1p;  

8) 1p;  

9) 1,5p 
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Test no. 88 
1. For what value of 𝑥 the following equality verifies: 

 

 
2. How many three digit numbers divided by 12 will give the 

remainder 5? 

 
3. A student has the sum of 18 000 𝑙𝑒𝑖 in an equal number 

of banknotes of 500 and 1000 𝑙𝑒𝑖. How many banknotes of each 

type does the student have? 

 
4. The number: 

 

 
5. If the angle formed by a rhomb’s diagonal with one of its’ 

sides has 36°, then an angle of the rhomb can have: 

 
6. In the graphic below, 𝑎, 𝑏, 𝑐, 𝑑  are equidistant parallels. 

The measures 𝑥, 𝑦 are: 

 

 
7. The trapezoid above has the area of: 
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8.  The side 𝐴𝐵 of ∆𝐴𝐵𝐶  with 𝐴𝐶 = 7, and 𝐵𝐶 = 19 can 

have the measure belonging to the interval: 

 
9. In the figure below, the pair (𝑥, 𝑦) is: 

 

 
10. The equilateral triangle 𝐵𝐶𝐷  and the isosceles triangle 

𝐴𝐵𝐶 with 𝑚(∢𝐴) = 90° are situated in perpendicular planes. Let 

𝐺  be the center of mass of ∆𝐴𝐵𝐶  and 𝑀𝑁||𝐵𝐶,𝑀 ∈ (𝐴𝐵),𝑁 ∈

(𝐴𝐶). If 𝐸 is the middle of [𝐵𝐶] and 𝐵𝐶 = 12 𝑐𝑚, determine: 

a) the area of ∆𝐷𝑀𝑁; 

b) 𝑑(𝐸, (𝐷𝑀𝑁)); 

c) 𝑡𝑔 𝜃, 𝜃 = 𝑚(∢(𝐴𝐵𝐶), (𝐷𝐴𝐵)). 

 

Grading scale:  1 point ex officio 

1: 0,75p;  

2: 0,75p;  

3. 1p;  

4: 0,75p;  

5: 0,75p;  

6: 0,75p;  

7: 0,75p;  

8: 0,75p;  

9: 1p;  

10: 0,75p. 
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Test no. 89 
1. Which of the following inequalities is false: 

 
2. if the first number is 3 times smaller than the second one, 

the second is 3 times smaller than the sum of the other two and 5 

times smaller than the third one, then the numbers are: 

 
3. A square shaped table has a perimeter of 48 𝑑𝑚. If  1 𝑚2 

of melanin cost 6250 𝑙𝑒𝑖, then to cover the superior side of the 

table cost: 

 
4. After a price reduction of 12% and one of 10%, a suit 

costs 79200 𝑙𝑒𝑖. What is the initial price? 

 
5. Which sentence is true: 

A. The straight line of equation 𝑥 = 3 is parallel with the 

axes of the  abscissae. 

B.  The straight line of equation 𝑦 − 2 = 0 is parallel with 

the axes of the ordinates.  

C. The straight lines 2𝑥 = 3 and 2𝑦 = 3 are parallel. 

6. Let 𝐴𝐵𝐶𝐷 be a square,  ∆𝐴𝐵𝐸 equilateral in its’ interior 

and ∆𝐵𝐶𝐹 equilateral in the exterior of the square. If 𝐴𝐵 = 5 𝑐𝑚, 

then the affirmation is false: 

A. The points 𝐷, 𝐸, 𝐹 collinear. 

B. The straight lines 𝐸𝐵, 𝐵𝐹perpendicular. 

C. 𝐸𝐹 = 5√2 𝑐𝑚;𝐷: 𝐸𝐶 ≤ 2, 5 𝑐𝑚. 

7.  Let there be the expression: 

 
The following affirmation is wrong: 
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8. If: 

 
then the following affirmation is true: 

 
9. If 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, is a cube and 𝐼, 𝐽, 𝐾 the middles of the 

edges [𝐴𝐵], [𝐴𝐴,], [𝐵,𝐶 ,], which affirmation is false: 

A. ∆𝐼𝐽𝐾 isosceles 

B. ∆𝐾𝐵𝐼 right 

C. 𝐵, 𝐶 ,, 𝐷 are equidistant from 𝐼 and 𝐽 

D. ∆𝐵𝐾𝐴, equilateral 

10. In the interior of a square’s plane, we build, in the 

exterior, equilateral triangles with sides of 10 𝑐𝑚. Determine: 

a) if the 4 triangles and the square can form the faces of a 

pyramid; 

b) the area and the volume of the pyramid obtained. 

 

Grading scale:  1 point ex officio 

1: 0,75 p;  

2: 1 p;  

3. 0,75 p;  

4: 1 p;  

5: 0,5 p;  

6: 1 p;  

7: 1 p;  

8: 1 p;  

9: 1 p;  

10: 1 p. 
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Test no. 90 
I. 1. Calculate: 

 
2. Is 2 a solution for the equation: 

 
3. In what type of triangles are two middle lines congruent? 

II. 1. Can the following numbers form a proportion: 4, 8, 9 

and 18. 

2. Determine the parallelogram in which the diagonals can 

determine with the sides four congruent triangles. 

3. Draw a rectangle that can be split into two squares. Can it 

be split into three isosceles triangles? 

III. 1. Determine the area of the trapezoid here below: 

 
2.  An equilateral triangle forms with a plane a 60° angle. 

Determine its’ side if the area of its’ projection on the plane is 

8√3𝑐𝑚2. 

3. A right parallelepiped has the sides of the base of 

4 𝑐𝑚, 6 𝑐𝑚 and the height of 5 𝑐𝑚. Is it true that the sum of all the 

edges is 60 𝑐𝑚? 

 

Grading scale:  1 point ex officio 

I.  1) a) 0, 2 p b) 0, 2 p  c) 0, 2 p d) 0, 4 p 

2) 1 p  3) 1 p 

II.  1) 1 p   2) 1 p   3) 1p 

III.  1) 1 p  2) 1 p   3) 1 p 
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Test no. 91 
1. The solution of the equation: 

 

 
2. If: 

 
the geometric mean is: 

 
3. The value of the expression: 

 

 
4. If the side of an equilateral triangle is 12, then its’ area is: 

 
5. If the length of a circle is 24𝜋, its’ area is: 

 
6. The sides of a triangle are 6, 8, 12. A similar triangle has 

the perimeter 78. Its’ sides are: 

 
7. The length of a rectangle is three times bigger than its’ 

width. If its area is 27 𝑐𝑚2, then the perimeter will be: 

 
8. A linear function that satisfies the relation 2𝑓(𝑥) + 𝑥 =

𝑓(3 − 𝑥), has the value 𝑓(3) equal to: 

 
9. Given the functions: 
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10. We consider 𝐴𝐵𝐶𝐷, 𝐴,𝐵,𝐶 ,𝐷, situated in different planes, 

parallelograms. Let 𝑀,𝑁, 𝑃, 𝑄  be the middles of 

[𝐴𝐴,], [𝐵𝐵,], [𝐶, 𝐶 ,], [𝐷𝐷,]. Prove that 𝑀𝑁𝑃𝑄 is a parallelogram. 

 

Grading scale:  1 point ex officio 

1: 0,5p;  

2: 0,5p;   

3: 0,75p;  

4: 0,5p;  

5: 0,5p;  

6: 1p;  

7: 1p;  

8: 1p;  

9: 1p;  

10: 2,25p 
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Test no. 92 
1. Making the calculations: 

 
we obtain: 

 
2. Effectuate: 

 
We obtain: 

 

3. The arithmetic mean of the numbers 
1

2
,
1

3
,
1

6
 is: 

 
4. The graphic of 𝑓:ℝ → ℝ, 𝑓(𝑥) = 2𝑥 − 1  contains the 

point 𝐴(𝑎, 7). Then 𝑎 is: 

𝐴: 2; 𝐵: 3; 𝐶: 4. 

4. Eight faucets with the same debit can fill a tank in 6 hours. 

In how many hours do 3 faucets fill the tank? 

𝐴: 16 ℎ𝑜𝑢𝑟𝑠; 𝐵: 2
1

4
 ℎ𝑜𝑢𝑟𝑠; 𝐶: 3 ℎ𝑜𝑢𝑟𝑠. 

6. Let: 

 
The remainder of the division to 𝑋 + 3 is: 

 
7. The area of the equilateral triangle inscribed in the circle 

with the radius 𝑅 = 2 𝑐𝑚 is: 

 
8. The measures of the angles ∆𝐴𝐵𝐶  are proportional to 

2, 3, 7. Then they can be: 
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9. The volume of the regular tetrahedron with the side of 

2 𝑐𝑚 is: 

 
10. The volume of a right circular cone whose section is a 

triangle with congruent sides of 5 𝑐𝑚, and the third side of 8 𝑐𝑚, 

is: 

 
 

Grading scale:  1 point ex officio 

1: 0, 75 p;  

2: 1 p;   

3: 1 p;  

4: 0, 75 p;  

5: 1 p;  

6: 0, 75 p;  

7: 0, 75 p;  

8: 1 p;  

9: 1 p;  

10: 1 p. 
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Test no. 93 
1. Let 𝐴 = {−2,−1, 0, 1, 2}. How many of its’ subsets have 

the sum of the elements equal to zero? 

 
2. If 𝑛 ∈ ℕ∗ then 93𝑛 ∙ 34𝑛 admits only one of the values: 

 
3. The rapport between the price of a notebook and that of a 

book is 2/5 and the double price of the book plus the triple price 

of the notebook is 6400 𝑙𝑒𝑖 . The price of the book and the 

notebook is: 

 
4. Two circles are cut in 𝐴  and 𝐵 . If 𝐵𝐷  and 𝐵𝐶  are 

diameters, what measure does ∢𝐶𝐴𝐷 has? 

 
5. 𝐴, 𝐵, 𝐶, 𝐷 , three random non-collinear are given. The 

parallel through 𝐴  at 𝐵𝐶  cuts 𝐵𝐷  in 𝑀 , the parallel through 𝐵  at 

𝐴𝐷 cuts 𝐴𝐶 in 𝑁. The position of the straight lines 𝑀𝑁 and 𝐷𝐶 is: 

𝐴: perpendicular; 𝐵: parallel; 𝐶: different situation. 

6. Let 𝐴𝐵𝐶𝐷  be a square with 𝑂  the center, and 𝑀,𝑁  the 

symmetricals of 𝐴 in relation to 𝐵 and of 𝐷 in relation to 𝐴. The 

triangle 𝑀𝑂𝑁 is: 

𝐴: right; 𝐵: right isosceles; 𝐶: equilateral. 

7. If  
𝑥

𝑦
= 0, 4, then 

5𝑥−2𝑦

3𝑥−7𝑦
 is: 

 
8. The solution of the system: 
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9. Let: 

 
Is not defined for: 

 
10. Given the body of a regular triangular pyramid with 𝐿 =

12, 𝑙 = 6 and 𝑉 = 63√3. Determine: 

a) the height and the apothem; 

b) the lateral area 𝐴1; 

c) the volume of the pyramid where it comes from. 

 

Grading scale:  1 point ex officio 

1: 0, 5 p;  

2: 0, 5 p;   

3: 1 p;  

4: 0, 5 p;  

5: 1 p;  

6: 1 p;  

7: 1 p;  

8: 1 p;  

9: 1 p;  

10: 1, 5 p. 
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Test no. 94 
1. The coordinates of the intersection point of the graphics 

of the functions 𝑓, 𝑔: ℝ → ℝ, 𝑓(𝑥) = 2𝑥 − 3, 𝑔(𝑥) = 𝑥 + 2 are: 

 
2. The solution to the equation: 

 

 
3. In the random ∆𝐴𝐵𝐶 , 𝐴𝐵 = 10 𝑐𝑚, 𝐴𝐶 = 16 𝑐𝑚  and 

𝑚(∢𝐴) = 60°. The area of ∆𝐴𝐵𝐶 is: 

 
4. The measure of two supplementary angles are in the 

rapport of 2/3. The measures are: 

 

5. The catheti of a right triangle are 10√3 and 24. The side 

of an equivalent equilateral triangle is: 

 
6. Knowing that: 

 
show that 𝑎, 𝑏, 𝑐 are: 

 
7. The solution of the system: 

 

 
8. We consider the inequation: 

 
Its solution is: 
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9. From a quantity of cotton 24% fiber are obtained. How 

much cotton is needed in order to obtain 240 𝑘𝑔 of fiber? 

 
10. Let ∆𝐴𝐵𝐶 be equilateral. On [𝐴𝐵] and [𝐴𝐶] we take 𝐸 

and 𝐹 so that 𝐴𝐸 = 2 ∙ 𝐵𝐸 and 𝐶𝐹 = 2 ∙ 𝐴𝐹. The straight lines 𝐵𝐹 

and 𝐶𝐸  intersect in 𝐷 . On the perpendicular in 𝐴  on (𝐴𝐵𝐶)  we 

take 𝑀 so that 𝐴𝑀 = 𝑀𝐵 = 30. Requirements: 

a) show that (𝐸𝐹𝑀) ⊥ (𝐹𝐴𝑀); 

b) calculate 𝑑(𝑀, 𝐸𝐹), 𝑑(𝑀, 𝐶𝐸). 

 

Grading scale:  1 point ex officio 

1: 1 p;  

2: 0, 5 p;   

3: 1 p;  

4: 1 p;  

5: 1 p;  

6: 1 p;  

7: 0, 75 p;  

8: 0, 25 p;  

9: 0, 75 p;  

10: 1, 75 p 
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Test no. 95 
I. 1. Calculate: 

 

2. Calculate √13 with two exact decimals and test it.  

3. Divide no. 1  in parts, inversely proportional to the 

numbers: 
1

2
; 0(3); 4. 

II. 1. Solve the system of inequations: 

 
2. Determine the function 𝑓:ℝ → ℝ whose graphic contains 

𝐴(2,−5), 𝐵(5, 2). 

3. Bring to the simplest form the expression: 

 
III. 1. In a triangle 𝐴𝐵𝐶 (𝐴𝐵 = 𝐴𝐶 = 10 𝑐𝑚)  and 

𝑚(∢𝐴) = 120°. Determine the heights corresponding to the side 

𝐴𝐶. 

2. On the plane of the rectangle 𝐴𝐵𝐶𝐷 we raise the 

perpendicular 𝑀𝐷  so that 𝑀𝐴 = 15√2 𝑐𝑚,𝑀𝐵 = 5√34 𝑐𝑚  and 

𝑀𝐶 = 25 𝑐𝑚. Determine its’ sides and the distance from diagonal 

𝐴𝐶 to the point 𝑀. 

3. The axial section of a right circular cone is an equilateral 

triangle whose side is 8 𝑐𝑚. Calculate the total area and the volume 

of the cone. 

 

Grading scale:  1 point ex officio 

I.  1) 1 p   2) 1p   3) 1p 

II.  1) 1 p   2) 1p   3) 1p 

III.  1) 1 p   2) 1p   3) 1p 
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Test no. 96 
I. Calculate: 

 

 

 
II. 1. Solve in ℝ: 

 

 
2. Determine 𝑎, 𝑏 ∈ ℝ  if 𝑃(𝑋) = 𝑎𝑋3 + 3𝑋2 − 𝑏𝑋  is 

divisible to 𝑋 − 1 and 𝑋 + 2. 

3. The following expression is given: 

 
a) Determine the set of existence of the expression 

b) Write 𝐸(𝑥) as an irreducible fraction. 

III. 1. Calculate the area of a right triangle with a cathetus of 

8 𝑐𝑚 and an hypotenuse of 10 𝑐𝑚. 

2. The area of the parallelogram 𝐴𝐵𝐶𝐷 is 30 𝑐𝑚2, 𝐵𝐶 = 5. 

Determine the distance from 𝐵 to 𝐴𝐷. 

3. In a regular quadrilateral pyramid the base apothem is 

6 𝑐𝑚 and the pyramid apothem is 10 𝑐𝑚. Calculate: 

a) the lateral edge 

b) the lateral area, the total area and the volume 

c) the angle between the plane of the base and a lateral face. 
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Grading scale:  1 point ex officio 

I.  1) 1 p     2) 1p   3) 1p 

II.  1) 0, 5 p + 0, 5 p   2) 1p    

3) 0, 25p + 0, 75 p 

III.  1) 1 p     2) 0, 5 p   

3) 0,5p  + 0,5p  + 0,5p   
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Test no. 97 
I. 1. Calculate: 

 

 

 
2. Show that: 

 

3. Given 
𝑎

𝑏
= 0,8, calculate: 

2𝑎+3𝑏

3𝑏
 

II. 1. Solve in ℝ: 

 

 
2. 7 workers finish a project in 18 days. In how many days 

do 9 workers finish the same project? 

3. Calculate the area of ∆𝐴𝐵𝐶  that has 𝐴𝐵 = 5 𝑐𝑚, 𝐴𝐶 =

12 𝑐𝑚, 𝐵𝐶 = 13 𝑐𝑚. 

III. Represent graphically in the same system of coordinates 

the graphics of the functions: 

 
2. A triangle 𝐴𝐵𝐶 has 𝐵𝐶 contained in 𝛼. If 𝐴 ∉ 𝛼 and 𝑀 ∈

𝐴𝐵,𝑁 ∈ 𝐴𝐶 , establish the position of the straight line 𝑀𝑁  in 

relation to 𝛼, if: 

 

 
Grading scale:  1 point ex officio 

I.  1) 0, 5 p  + 0, 5 p  + 0, 5 p  2) 0, 75p  3) 0, 75p 

II.  1) 0, 25 p + 0, 75 p      2) 1p      3) 1 p 

III.  1) 1, 50 p      2) 0, 75 p + 0, 75 p 
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Test no. 98 
I. 1. Effectuate: 

 
2. The sum of two consecutive natural numbers is 11 . 

Determine the numbers. 

3. Given 𝐴 = {−2, 0, 2}, 𝐵 = {−3, 0, 3}, calculate: 

 
II. 1. Solve the system: 

 
2. Determine the quotient and the remainder of the division 

of the polynomial: 

 
3. Simplify the fraction: 

 
III. 1. Determine the area and the perimeter of an equilateral 

triangle with the side of 12 𝑐𝑚. 

2. Let there be cube with the edge of 10 𝑐𝑚. Determine its 

diagonal, area and volume. 

3. The lateral area of a right circular cone is 544 𝜋 𝑐𝑚2 and 

𝐺 = 34 𝑐𝑚. Determine: 

a) the area and the volume of the cone 

b) the volume of the cone body obtained by sectioning the 

cone with a plane parallel to the base, taken through the middle of 

the cone’s height. 

Grading scale:  1 point ex officio 

I.  1) 1 p   2) 1p   3) 1p 

II.  1) 1 p   2) 1p   3) 1p 

III.  1) 1 p  2) 1p   3) 0, 5 p + 0, 5 p 
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Test no. 99 
I. 1. Given the sets: 

 
determine 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵, 𝐴 − 𝐵. 

2. Determine 𝑥 from: 

 
3. Trace the graphic of the function: 

 
II. 1. Find the solution 𝑥 ∈ ℤ of the system: 

 
2. A rhomb 𝐴𝐵𝐶𝐷has 𝐴𝐵 = 4 𝑐𝑚 and 𝑚(∢𝐴) = 60°. In 𝐷 

we raise a perpendicular on the plane so that 𝑀𝐷 = 4 𝑐𝑚. Let 𝑃 be 

the middle of 𝑀𝐷 and 𝑄 the middle of 𝑀𝐵. Determine: 

a) the distance from 𝑀 to the straight line 𝐵𝐶 

b) the distance from 𝑀 to the straight line 𝐴𝐶 

c) the angle formed by (𝐴𝑃𝑄) and (𝐴𝐵𝐶) 

3. Determine 𝑥 ∈ ℤ, so that 𝑥2 = 𝑎, where: 

 
III. 1. Determine the height and the area of ∆𝐴𝐵𝐶 equilateral 

with 𝐴𝐵 = 10. 

2. An angle is equal to 2/3 from its’ complement. Determine 

the angles. 

3. Determine the rapport between the lowest common 

denominator and the least common multiple of the numbers 144 

and 720. 
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Grading scale:  1 point ex officio 

I.  1) 1 p    2) 1p          3) 0, 50 p 

II.  1) 0, 50 p   2) 0, 75p       3) 1p 

III.  1) 1 p    2) 0, 50 p      3) 0, 75 p  
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Test no. 100 
I. 1. Calculate: 

 
2. A number is 12, 56 times smaller than another. Determine 

the numbers knowing that their sum is 1356. 

3. Solve and discuss the equation in relation to the parameter 

𝑚 ∈ ℝ: 

 
II. 1. In ∆𝐴𝐵𝐶 , the bisectors of the angles formed by the 

median [𝐴𝑀] with the side [𝐵𝐶] intersects the other two sides on 𝑃 

and 𝑄. Prove that 𝑃𝑄||𝐵𝐶. 

2. Determine the function: 

 
and then trace the graphic of the function if it passes through 

𝑀(3,3). 

3. Let 𝐴, 𝐵, 𝐶, 𝐷  be four non coplanar points, with 𝐴𝐵 =

𝐴𝐶 = 𝐴𝐷 = 𝐵𝐶 = 𝐶𝐷 = 𝐵𝐷. On the segments [𝐴𝐵], [𝐵𝐶], [𝐶𝐷] 

and [𝐴𝐷] we consider 𝑀,𝑁, 𝑃, 𝑄  so that 𝐴𝑀 = 𝐵𝑁 = 𝐶𝑃 = 𝐷𝑄 . 

If the point 𝑂 is the middle of [𝑁𝑄], show the 𝑁𝑄 ⊥ (𝑀𝑂𝑃). 

III. 1. Calculate the arithmetic and geometric mean of the 

numbers: 

 
2. Determine the rapport between the area of a square with 

the side 𝑎  and the area of the square that has the first’s square 

diagonal as its side.  

3. Calculate the area of a trapezoid where the middle line has 

12 𝑐𝑚 and the height of 6 𝑐𝑚. 

Grading scale:  1 point ex officio 

I.  1) 0, 75 p   2) 0, 75 p   3) 0, 75 p 

II.  1) 1, 25 p   2) 1, 25 p  3) 1, 25 p 

III.  1) 1 p    2) 1 p    3) 1 p 
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Test no. 101 
1. If: 

 
the solution of the equation is: 

 
2. If: 

 
the geometric mean of the numbers is: 

 
3. If: 

 
(𝑥 + 𝑦)2 is: 

 

4. In ∆𝐴𝐵𝐶 acute angled, 𝐴𝐷 the height and 
𝐷𝐶

𝐷𝐵
=
1

2
. If the 

parallel through 𝐶  at 𝐴𝐵  intersects 𝐴𝐷  in 𝐸 . Then the parallel 

through 𝐸 passes through: 

𝐴: 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝐵 , 𝐵:𝑁 ∈ (𝐵𝐶)  where 𝐶𝑁 =
1

4
𝐵𝐶 ; 

𝐶: 𝑃 ∈ (𝐵𝐶) so that 
𝐵𝑃

𝐵𝐶
=
1

5
. 

5.On the plane of ∆𝐴𝐵𝐶  equilateral we raise the 

perpendicular 𝐷𝐴 = 12. We trace 𝐶𝐸 ⊥ 𝐴𝐵, 𝐸 ∈ (𝐴𝐵) and 𝐸𝐹 ⊥

𝐷𝐵, 𝐹 ∈ (𝐷𝐵). If 𝐴𝐵 = 12, then the area ∆𝐶𝐸𝐹 is: 

 
6. The graphic of: 

 
𝐴:  finite set of points; 𝐵:  semiright; 𝐶:  a reunion of 

segments.  
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7. Let 𝐴𝐵𝐶𝐷regular (𝐴𝐵 = 10, 𝐵𝐶 = 8) and 𝑂𝐴 ⊥ (𝐴𝐵𝐶) 

with 𝑂𝐴 = 6. We note with 𝐸 the middle of 𝑂𝐶. Then the distance 

from 𝑂 to (𝐴𝐵𝐸) is: 

 
8. A set 𝑋 has 10 elements, 𝑌 has 8 elements. If 𝑋 ∪ 𝑌 has 

12 elements, then 𝑋 ∩ 𝑌 has: 

𝐴: 10 elements; 𝐵: 6 elements; 𝐶: 8 elements. 

9. The biggest common denominator of the numbers 1450,

144, 6006 is: 

 
10. The bisector of supplement of the 45° angle determines 

with its sides angles of: 

 
 

Grading scale:  1 point ex officio 

1) 1 p   

2) 1 p   

3) 1 p  

4) 1 p   

5) 1p   

6) 1p  

7) 1 p   

8) 1 p   

9) 0, 5 p   

10) 1, 5 p 
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Test no. 102 
1. If 𝑚 = 0, 4 and 𝑛 = 2, 5 then their arithmetic mean is:  

 

2. The solution of the equation: 

 

 
3. Determine the value of 𝑚 ∈ ℝ  if 𝑀(2, 3 − 𝑚) ∈ 𝐺𝑓 

where: 

 

 
4. If the hypotenuse of a right triangle is 13 and one of the 

cathetus has 5 𝑐𝑚, then the projection of the other cathetus on the 

hypotenuse is: 

 
5. Let 𝐴𝐵𝐶𝐷  be right ( 𝐴𝐵 = 8, 𝐵𝐶 = 6)  and 𝑀𝐶 ⊥

(𝐴𝐵𝐶),𝑀𝐶 =
24

5
. The distance from 𝑀 to 𝐵𝐷 is: 

 
6. Let 𝐴𝐵𝐶𝐷  be a rhombus, 𝐴, ∉ (𝐴𝐵𝐶) . If the angles 

formed by 𝐴𝐴, with 𝐴𝐷 and 𝐴𝐵 are congruent and 𝐴,𝑃 ⊥ (𝐴𝐵𝐶), 

then the points 𝐴, 𝑃, 𝐶 are: 

𝐴:colinear; 𝐵: non-colinear. 

7. The solution of the system: 
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8. Compare 𝑚 = 917 and 𝑛 = 2711. Then: 

 
9. If the angles of a triangle are proportional to 4, 5, 9, then 

the triangle is: 

𝐴: equilateral; 𝐵: isosceles; 𝐶: right. 

10. A set 𝐴 has 12 elements, another set 𝐵 has 10 elements 

and 𝐴 ∩ 𝐵 has 5 elements. Then 𝐴 ∪ 𝐵 has: 

 
 

Grading scale:  1 point ex officio 

1) 0, 5 p   

2) 1 p   

3) 1 p  

4) 1 p   

5) 1p   

6) 1p  

7) 1 p   

8) 1 p   

9) 1 p   

10) 0, 5 p 
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Test no. 103 
1. The product of all the integer numbers between −100 

and +100 is: 

𝐴:  a very large number that cannot be calculated; 

𝐵: 0; 𝐶: 129 560. 

2. √2 with an approximation of a thousand is: 

 
3. The decomposition in factors of the polynomial: 

 

 
4. The smallest natural number, not equal to zero, that, once 

divided to 2, 3, 5 gives the same remainder, different to zero is: 

 
5. The graphic of the function: 𝑓:ℝ → ℝ, 𝑓(𝑥) = 2𝑥 + 3 

intersects the axis 𝑂𝑋 in the abscissa point: 

 

 

 
7. If a right circular cone has 𝑉 = 100𝜋 𝑐𝑚3  and ℎ =

12 𝑐𝑚 then the total area is: 

 

8. The area of the triangle with the sides 2√3 𝑐𝑚, 2 𝑐𝑚 and 

4 𝑐𝑚 is: 

 
9. The quadrilateral that has the tops in the middles of the 

sides of a rhombus is: 

𝐴: right; 𝐵: square; 𝐶: parallelogram. 



Possible Subjects for Examination, Grades V-VIII 

151 

 

10. Let there be the cube 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, with the side 𝐴𝐵 =

10 𝑐𝑚. Calculate: 

a) the total area and the volume of the cube 

b) the area and the volume of the pyramid 𝐵,𝐴,𝐵𝐶 , 

c) one of the trigonometric function of the angle formed by 

𝐵𝐵, with the plane 𝐴,𝐵𝐶 ,. 

 

Grading scale:  1 point ex officio 

1) 0, 75 p   

2) 0, 75  p   

3) 1 p  

4) 1 p   

5) 0, 5 p   

6) 1p  

7) 0, 75  p   

8) 0, 75  p   

9) 0, 5 p   

10) a) 0, 5 p  b) 1 p   c) 0, 5 p 
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Test no. 104 
1. Making the calculations: 

 
we obtain: 

 
2. In the interval (−4,2] we find: 

𝐴: 6 integer numbers; 𝐵: an infinity of integer numbers; 𝐶: 5 

integer numbers. 

3. The equation: 

 
𝐴:  a single solution; 𝐵:  two solutions; 𝐶:  an infinity of 

solutions. 

 

 
5. In a right triangle the cathetus that opposes the 30° angle 

is: 

𝐴: half of the hypotenuse; 𝐵: a quarter of the hypotenuse; 𝐶: 

congruent with the other cathetus. 

6. The area of the equilateral triangle with the side of 3 𝑐𝑚 

is: 

 
7: The system: 

 
has the solution: 

 
8. The remainder of the division of the polynomial: 
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9. If 𝐴 = {1, 2, 3}, 𝐵 = {0, 1, 2, 3, 4} then card (𝐴 × 𝐵) is: 

 
10. Let 𝑉𝐴𝐵𝐶  be a regular triangular pyramid with 𝐴𝐵 =

6 𝑐𝑚, 𝑉𝐴 = 5𝑐𝑚. Calculate: 

a) the total area and the volume of the pyramid; 

b) the area ∆𝑉𝐴𝑀 where 𝑀 is the middle of 𝐵𝐶 

c) a trigonometric function of the angle between the lateral 

edge and the plane of the base. 

 

Grading scale:  1 point ex officio 

1) 0,5p   

2) 0,5p   

3) 0,75p  

4) 0,75p   

5) 0,5p   

6) 1p  

7) 1p   

8) 1 p   

9) 1p   

10) a) 1p  b) 0,5p  c) 0,5p 
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Test no. 105 
I. 1. Calculate: 

 
2. Divide the no. 180  in three parts so that: the second 

number is half of the first and 2/3 of the third. 

3. Rationalize: 

 
II. 1. Given the fraction: 

 

a) Show that 𝐹9𝑥) = 2 −
6

𝑥+1
; 

b) For what real values 𝑥, 𝐹(𝑥) is defined; 

c) For what integer values of 𝑥, 𝐹(𝑥)is integer. 

2. Let there be the function 𝑓:ℝ → ℝ , given by 𝑓(𝑥) =

𝑎𝑥 + 𝑏 , whose graphic passes through the points 𝐴(1,0)  and 

𝐵(0,1) . Determine the form of the function and represent it 

graphically. 

III. 1. In a right triangle 𝐴𝐵𝐶 with 𝑚(∢𝐴) = 90° we know 

the catheti 𝐴𝐵 = 6 𝑐𝑚, 𝐴𝐶 = 8 𝑐𝑚 . Calculate the height 

corresponding to the hypotenuse, the area of the triangle and the 

radius of the circumscribed circle. 

2. The body of a regular quadrilateral pyramid has the 

diagonal of 9 𝑚  and the sides of the bases of 7 𝑚  and 5 𝑚 . 

Calculate the lateral area, the total area and the volume of the body. 

 

Grading scale:  1 point ex officio 

I.  1) 1 p       2) 1p    3) 1p 

II.  1) a) 1 p; b) 0, 50 p; c) 0, 40 p   2) 1 p 

III. 1) 1, 50 p     2) 1, 50 p 
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Test no. 106 
I. 1. Calculate: 

 

 
2. Determine the numbers 𝑥, 𝑦, 𝑧, knowing that: 

 
3. Let there be the numbers: 

 
Calculate the arithmetic, geometric and harmonic means. 

II. 1. We consider the following number: 

 
a) Show that 𝑎2 ∈ ℚ; 

b) For what values of the real parameter 𝑚, the polynomial: 

 
2. Let 𝐴𝐵𝐶𝐷 be a parallelogram. We consider 𝑀,𝑁, 𝑃, 𝑄 the 

middles of the sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐴.  

The straight lines 𝐴𝑁, 𝐵𝑃, 𝐶𝑄, 𝐷𝑀  determine a paral-

lelogram.  

What is the rapport between the area of this parallelogram 

and the area of the initial one? 

III. 1. On the plane of the right triangle 𝐴𝐵𝐶 , with the 

catheti 𝐴𝐵 = 3 𝑐𝑚, 𝐴𝐶 = 4𝑚  we raise a perpendicular 𝐴𝑀 =

24 𝑚. Calculate the distance from 𝑀 to 𝐵𝐶 and the measure of the 

angle corresponding to the dihedral angle formed by the planes 

𝐴𝐵𝐶 and 𝑀𝐵𝐶. 

2. In a right circular cone with the diameter of the base of 

12√2 𝑐𝑚 and the height equal to 6 𝑐𝑚, we inscribe a cube, in such 
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a way that one of its’ bases will be in the interior of the cone’s plane 

and the tops of the other base will be situated on the conic layer: 

a) Calculate the lateral area and the volume of the cone 

b) Calculate the volume of the cube. 

 

Grading scale:  1 point ex officio 

I. 1) a) 0, 50 p b) 0, 50 p     2) 1p    3) 1p 

II.  1) a) 0, 75 p; b) 0, 75 p; c) 0, 40 p   2) 1, 50 p 

III.  1) 1, 50 p     2) 1, 50 p 
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Test no. 107 
1. Let: 

 
Specify if: 

 
2. Determine card (𝑋 ∪ 𝑌) if: 

 
The result is: 𝐴: 9; 𝐵: 8; 𝐶: 4. 

3. The harmonic mean of the numbers: 

 

 
𝐴: 2, 5; 𝐵: 4; 𝐶: 2. 

4. If 
𝑥

2
=
𝑦

3
 the value of the rapport 

6𝑥−4𝑦+3𝑧

3𝑥−2𝑦+𝑧
 is: 

𝐴:
3

2
; 𝐵: 8; 𝐶: 3. 

5. The solution of the equation 2(𝑥 − 1) =
7𝑥−3

2
 is: 

𝐴: 
1

3
; 𝐵: −

1

3
; 𝐶: 3. 

6. What term should be added to the expression 𝑥2 +
1

25
 to 

obtain the square of a binomial? 

𝐴:
2𝑥

5
; 𝐵: 

𝑥2

5
; 𝐶: 

1

5
. 

7. The lengths of a triangle’s sides are: 10, 24, 26 𝑐𝑚 . Its 

area is: 

 
8. An angle is 28° smaller than its complement. How much 

do they measure? 
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9. In a n equilateral triangle with the side 10 𝑐𝑚, the height 

corresponding to a side is: 

 
10. A body is shaped like a 40 𝑐𝑚 long cylinder, continued 

with two hemispheres at each ending, of the same radius as the 

cylinder. If 𝑅 = 30 𝑐𝑚, the total area is:  

 
 

Grading scale:  1 point ex officio 

1) 1p   

2) 1p   

3) 1p  

4) 1p   

5) 0,75p   

6) 0,75p  

7) 0,75 p   

8) 0, 5p   

9) 1p   

10) 1p  
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Test no. 108 
1. Calculate: 

 
The right answer is:  

 
2. Calculate: 

 
We obtain: 

 
3. The system: 

 
has the solution: 

 
4. From 20 𝑘𝑔 of grapes 12 𝑙 of wine are produced. How 

much wine can be produced from 5100 𝑘𝑔? 

 
5. If: 

 
𝑛 ∈ ℝ is divisible by 𝑋 + 1, then 𝑛 is: 

 
6. Let: 

 
Knowing that its graphic passes through 𝐴(1, 3), then 𝑚 is: 

 
7. An isosceles trapezoid has the bases of 12 and 6 𝑐𝑚, the 

acute angle measuring 60°. Its perimeter is: 
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8. The triangle 𝐴𝐵𝐶  has the area 168 𝑐𝑚2 . If 𝐴𝑀  is a 

median, the area ∆𝐴𝑀𝐵 is: 

 
9. The total area of a right circular cylinder is 132𝜋 𝑐𝑚2, and 

the lateral area 96𝜋 𝑐𝑚2. Its volume is: 

 
10. The diagonal of a right parallelepiped with the 

dimensions 12, 10 and  6 𝑐𝑚 is: 

 
 

Grading scale:  1 point ex officio 

1) 1p   

2) 0,75p   

3) 1p  

4) 1p   

5) 1p   

6) 0,75p  

7) 1p   

8) 0,75p   

9) 1p   

10) 0,75p  
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Test no. 109 
1. If 𝐴 − 𝐵 has 5 elements, 𝐵 − 𝐴 has 7 elements and 𝐴 ∪ 𝐵 

has 14 elements, how many elements does 𝐴 ∩ 𝐵 have? 

 
2. In a classroom there are 40 students out of which 55% 

are girls. How many boys are there in the classroom? 

 
3. An angle is 28° smaller than its complement. How much 

do they measure? 

 
4. The solution of the equation: 

 

 
5. In a triangle 𝐴𝐵𝐶: 

 

 
The side 𝐴𝐶 measures: 

 
6. Knowing that the difference between the radius of the 

circumscribed circle and the radius of the inscribed circle in the 

equilateral triangle is 15 𝑐𝑚, its side is: 

 
7. The elements of the set: 

 

 
8. Show that the polynomials 𝑃(𝑋), 𝑄(𝑋)  that verify the 

relation: 

 
and are of first degree are: 
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9. The weighted arithmetic mean of the numbers 

25, 36, 52, 48  with the weights 3, 6, 2 and 4 is: 

 

10. A regular triangular pyramid with the height 4√3 𝑐𝑚 and 

the angle formed by a lateral face and the plane of the base of 60°, 

has the lateral area and the volume: 

 
 

Grading scale:  1 point ex officio 

1) 0,75p   

2) 0,75p   

3) 0,75p  

4) 0,75p   

5) 1p   

6) 1p  

7) 1p   

8) 1p   

9) 1p   

10) 1p  
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Test no. 110 
1. The simple form of the fraction: 

 

 
2. The triangle 𝐴𝐵𝐶  has the area 168 𝑐𝑚2  and 𝐴𝑀  the 

median. What is the area of ∆𝐴𝑀𝐵? 

 
3. By calculating: 

 
we obtain: 

 
4. We mix water of 70°  with water of 20° . What is the 

rapport of the quantities used so that the mixture has 40°? 

 

5. A parallelogram 𝐴𝐵𝐶𝐷 has the area 120√3 𝑐𝑚2 and the 

sides 𝐴𝐵, 𝐴𝐷 have the lengths 15 and 16 𝑐𝑚. What is 𝑚(∢𝐴)? 

 
6. The result of the division: 

 

 
7. The graphic of the function: 

 
𝐴: a segment; 𝐵: a straight line; 𝐶: a semi-straight line. 

8. A right circular cylinder has 𝑅 = 5 𝑐𝑚, ℎ = 8 𝑐𝑚 . The 

area of the axial section is: 
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9. The sum of the digits of the number: 

 

 
10. A right circular cone has 𝑅 = 15 𝑐𝑚, ℎ = 36 𝑐𝑚. 

a) Determine the total area of the cone 

b) At what distance from the top do we section with a 

parallel plane to the base so that the generating line of the body has 

26 𝑐𝑚? 

c) Determine the rapport of the volumes of the two bodies. 

 

Grading scale:  1 point ex officio 

1) 0, 5 p   

2) 0, 5  p   

3) 1 p  

4) 1, 5 p   

5) 1 p   

6) 1 p  

7) 1  p   

8) 1  p   

9) 0, 5 p   

10) 1, 5 p  
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Test no. 111 
I. Calculate: 

 

 

 

II. 1. Determine the numbers 𝑥 ∈ ℤ for which 
6

𝑥−2
∈ ℤ. 

2. Determine 𝐴 = {𝑥 ∈ ℝ||𝑥| < 3}. 

3. Let: 

 
If (91,−2) ∈ 𝐺𝑓, determine 𝑚 ∈ ℝ. 

III. 1. If the sides of a triangle are directly proportional to 

3, 4, 5 and its perimeter is 48 𝑐𝑚, determine the area of the triangle. 

2. Calculate 2/3 out of 540. 

3. A right parallelepiped has 𝐿 = 10 𝑐𝑚 , 𝑙 = 8 𝑐𝑚, ℎ =

12 𝑐𝑚. Determine the volume, the total area and its diagonal. 

 

Grading scale:  1 point ex officio 

I.  1) 0, 50 p  2) 1p     3) 1p 

II.  1) 1 p;   2) 1 p    3) 1 p 

III.  1) 1 p    2) 0, 50 p  3) 0, 50 p; 1 p; 0, 50 p 
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Test no. 112 
I. Effectuate: 

 

 

 
II. 1. Let there be the sets: 

 
Determine 𝑥 ∈ ℕ so that 𝐴 = 𝐵. 

2. Determine the remainder of the division of: 

 
3. Show that, for any 𝑥 ∈ ℝ: 

 
III. 1. In ∆𝐴𝐵𝐶  isosceles, 𝐴𝐵 = 𝐴𝐶 = 30 𝑐𝑚  and 𝐵𝐶 =

12√5 𝑐𝑚. Determine the lengths of the heights. 

2. Determine three numbers directly proportional to 4, 5, 6 

that have the arithmetic mean 25. 

3. A regular triangular pyramid has the height 12 𝑐𝑚 and the 

angle between the lateral edge and the plane of the base is 30°. 

Determine: the volume, the total area, the sine of the angle between 

a lateral face and the base, the distance from one top of the base to 

the opposite face. 

 

Grading scale:  1 point ex officio 

I.  1) 1 p   2) 1p     3) 0, 50 p 

II.  1) 1 p;   2) 0, 50  p   3) 0, 50  p 

III.  1) 1 p    2) 1 p    3) 0, 5 p +  

     1 p+0, 5 p + 0, 5 p 
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Test no. 113 
I. Effectuate: 

 

 

 
II. Determine the unknown number: 

 
III. 1. Effectuate: 

 
2. In a right triangle, a cathetus has 8 𝑐𝑚  and the 

hypotenuse 10 𝑐𝑚 . Determine the height corresponding to the 

hypotenuse and the area of the triangle.  

3. Determine the volume and the total area for a regular 

triangular prism knowing that it has the height of 10 𝑐𝑚 and the 

side of the base of 4 𝑐𝑚. 

 

Grading scale:  1 point ex officio 

I.  1) 0, 50  p  2) 0, 50 p    3) 1 p 

II.  1) 0, 50  p; 2) 0, 50  p   3) 1  p 

III.  1) 1 p   2) 2 p    3) 2 p 
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Test no. 114 
I. 1. Calculate: 

 
2. Let there be the sets: 

 
Calculate 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵. 

3. If 
𝑎

𝑏
=
2

3
, calculate 

2𝑎+3𝑏

5𝑎−𝑏
. 

II. 1. Determine 𝑎, 𝑏 prime numbers, so that 2𝑎 + 3𝑏 = 21. 

2. Let there be the polynomial: 

 
a) Find 𝑚 ∈ ℝ, knowing that the remainder of the division 

of 𝑃(𝑋) to 𝑋 + 2 is 7; 

b) For 𝑚 determined, determine the sum of the coefficients. 

3. Given the function: 

 
a) Represent the function graphically; 

b) Determine 𝑎 ∈ ℝ , so that 𝐴(−1, 𝑎)  belongs to the 

graphic. 

III. 1. We consider 𝐴𝐵𝐶𝐷  a rhombus and 𝑀,𝑁, 𝑃, 𝑄  the 

middles of its’ sides. 

a) Establish the nature of 𝑀𝑁𝑃𝑄; 

b) Determine the rapport of the areas of 𝐴𝐵𝐶𝐷 and 𝑀𝑁𝑃𝑄. 

2. Let 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, be a cube with the side of 6 𝑐𝑚 and 

𝑀,𝑁 the middles of the segments 𝐴𝐴, and 𝐵𝐷,. 

a) Calculate the total area and the volume of the cube; 

b) Where is 𝑀𝑁 situated in relation to 𝐵𝐷? 

3. Given a right circular cone with 𝑅 = 3 𝑐𝑚  and 𝐻 =

4 𝑐𝑚, determine: 

a) The lateral area; 

b) The volume of the cone. 
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Grading scale:  1 point ex officio 

I.  1) 1p   2) 1p     3) 1p 

II.  1) 1p;   2) 0,5p + 0,5p   3) 0,5p + 0,5p   

III.  1) 0,5p + 0,5p   2) 0,5p + 0,5p   3) 0,5p + 0,5p   
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Test no. 115 
1. By calculating: 

 
we obtain: 

 

2. √(√2 − √7)
2
 is equal to: 

 
3. The number 2100 − 299 − 298 is equal to: 

𝐴: 298; 𝐵: 2−97; 𝐶: cannot be calculated. 

4. If card 𝐴 = 3, card 𝐵 = 5 and 𝐴 ∩ 𝐵 = ∅, then card 𝐴 ∪

𝐵 is: 

 

5. If 
𝑎

𝑏
=
5

8
 then 

2𝑎+3𝑏

7𝑎+𝑏
 is: 

 
6. We consider the polynomial: 

 

Then, 𝑃(√2) is: 

 
7. A right circular cone has 𝐴𝑡 = 90𝜋, 𝐴𝑙 = 65𝜋. Its height 

is: 

 
8. The area of a parallelogram 𝐴𝐵𝐶𝐷  with 𝐴𝐵 =

5 𝑐𝑚, 𝐴𝐷 = 3 𝑐𝑚 and 𝑚(∢𝐴) = 45° is: 

 
9.  The perimeter of an isosceles trapezoid 𝐴𝐵𝐶𝐷with the 

bases 𝐴𝐵 = 10 𝑐𝑚, 𝐶𝐷 = 4 𝑐𝑚 and 𝑚(∢𝐴) = 60° is: 
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10. The total area of a right parallelepiped with the sides 

3 𝑐𝑚, 5 𝑐𝑚, 7 𝑐𝑚 is: 

 
 

Grading scale:  1 point ex officio 

1) 1 p  

2) 1 p    

3) 1 p  

4) 0, 75 p;  

5) 1 p   

6) 1 p  

7) 0, 75 p   

8) 0, 75 p  

9) 1 p  

10) 0, 75 p 
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Test no. 116 
1. The set of solutions of the equation 3(𝑥 − 2) = 2𝑥 + 7 

is: 

 
2. Effectuating the product (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2)  we 

obtain: 

𝐴: 𝑥3 + 𝑦3; 𝐵: 𝑥3 − 𝑦3; 𝐶: grade II polynomial. 

 

 
4. Given the sets : 

 

 
5. The system: 

 
𝐴: one solution; 𝐵: no solution; 𝐶: an infinity of solutions. 

6. A right parallelepiped with the lengths of the sides of 

2, 3, 4 𝑐𝑚 has the volume: 

 
7. 𝑉𝐴𝐵𝐶𝐷 regular quadrilateral pyramid with the side of the 

base 4 𝑐𝑚  and the apothem 4 𝑐𝑚 . The measure of the dihedral 

angle of two opposing lateral faces is: 

𝐴: 90°; 𝐵: 60°; 𝐶: another solution. 

8. We consider the triangle 𝐴𝐵𝐶 and 𝐴𝐷 the height. If 𝐵𝐷 =

4 𝑐𝑚, 𝐶𝐷 = 2 𝑐𝑚, 𝐴𝐷 = 3𝑐𝑚, then the distance from 𝐶 to 𝐴𝐷 is: 

 
9. Let there be the rhombus 𝐴𝐵𝐶𝐷  with 𝐴𝐵 = 5 𝑐𝑚  and 

𝑚(∢𝐴) = 60°. Then the length of the diagonal 𝐴𝐶 is: 

 
10. Consider the polynomial: 
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The sum of its coefficients is: 

𝐴: a number that cannot be counted; 𝐵: 0; 𝐶: 8. 

 

Grading scale:  1 point ex officio 

   1) 1 p  

2) 0, 75 p   

3) 0, 75 p  

4) 1 p;  

5) 0, 5 p   

6) 1 p  

7) 1 p   

8) 1 p  

9) 1 p  

10) 1p 
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Test no. 117 
I. 1. Effectuate: 

 
2. Determine the numbers 𝑎, 𝑏, 𝑐  knowing that they are 

directly proportional to the numbers 4, 6, 12 and that their product 

is 360. 

3. Rationalize the denominator: 

 
II. 1. Show that the following inequality takes place: 

 
2. Let there be the polynomial: 

 
a) Determine the remainder of the division of the polynomial 

through 𝑋 + 2 and 𝑋 − 4 without making the divisions 

b) Simplify: 

 
III. 1. The un-parallel sides 𝐵𝐶  and 𝐴𝐷  of the trapezoid 

𝐴𝐵𝐶𝐷  intersect in the point 𝑀 . Calculate the lengths of the 

segments 𝑀𝐴,𝑀𝐵,𝑀𝐶 and 𝑀𝐷 knowing that 𝐴𝐵 = 20 𝑐𝑚, 𝐵𝐶 =

6 𝑐𝑚, 𝐶𝐷 = 15 𝑐𝑚 and 𝐷𝐴 = 8 𝑐𝑚. 

2. In a regular triangular pyramid, we know that the side of 

the base is 5√3 𝑐𝑚 and the height is 6 𝑐𝑚. Calculate: 

a) the lateral area, the total area and the volume of the 

pyramid 

b) the area and the volume of the cone circumscribed to this 

pyramid. 
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Grading scale:  1 point ex officio 

I.  1) 1 p   2) 1 p      3) 1 p 

II.  1) 1 p    2) a) 1 p  b) 1 p    

III.  1) 1 p    2) a) 1 p  b) 1 p 
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Test no. 118 
I. 1. Effectuate: 

 
2. Knowing that three numbers are directly proportional to 

5, 7 and 11 and that the difference between the biggest and the 

smallest number is 42, determine the three numbers. 

3. Calculate: 

 
II. 1. Show that the following inequality takes place: 

 
2. If the polynomial: 

 
is divisible with: 

 
show that the first is the square and the second the cube of a 

binomial.  

3. Given the function: 

 
determine 𝑚  and 𝑛  knowing that 𝑓  passes through the points 

𝐴(1, 2), 𝐵(−1, 0) and make the graphic representation. 

III. 1. The diagonals of a trapezoid 𝐴𝐵𝐶𝐷(𝐴𝐵||𝐶𝐷) 

intersect in the point 𝑁 . Determine the lengths of the segments 

𝑁𝐴,𝑁𝐵, 𝑁𝐶  and 𝑁𝐷  knowing that 𝐴𝐵 = 20 𝑐𝑚, 𝐶𝐷 =

10 𝑐𝑚, 𝐴𝐶 = 21 𝑐𝑚 and 𝐵𝐷 = 12 𝑐𝑚. 

2. The total area of a regular quadrilateral pyramid is 

14, 76 𝑐𝑚2 and the total area is 18 𝑐𝑚2. Calculate the volume of 

the pyramid. 
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3. Calculate the area and the volume of the sphere that has 

area of the big circle 9 𝜋 𝑐𝑚2. 

 

Grading scale:  1 point ex officio 

I.  1) 1  p  2) 1 p    3) 1 p 

II.  1) 1  p   2) 1 p   3) 1 p    

III.  1) 1  p   2) 1 p   3) 1 p 
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Test no. 119 
I. 1. Effectuate: 

 
2. The arithmetic mean of three numbers is 20. The first 

number is three times smaller than the second and the arithmetic 

mean between the second and the third is 25 . Determine the 

numbers. 

3. Calculate: 

 
II. 1. Verify if the following inequality takes place for 𝑥𝑦 =

1: 

 
2. a) Show that the polynomial: 

 
is divisible by the polynomials 𝑄(𝑋) = 𝑋 − 2 and 𝑅(𝑋) = 𝑋 + 2. 

b) Simplify the function: 

 
III. 1. In a right triangle with the hypotenuse of 2 𝑑𝑚, the 

measure of the angle btween the height and the median, traced from 

the top of the right angle is 30°. Determine the length of the height 

traced from the top of the right angle. 

2. A pyramid with the base 𝐴𝐵𝐶𝐷  rectangle, with 𝐴𝐵 =

2𝑎, 𝐵𝐶 = 𝑎, the height 𝑆𝐷 = 2𝑎. On the edge 𝑆𝐵we take the point 

𝑃 at the middle. 

a) Show that the triangle 𝐴𝑃𝐶 is isosceles and calculate its 

area. 

b) Calculate the lateral area of the pyramid and its volume. 
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  Grading scale:  1 point ex officio 

I.  1) 1 p  2) 1 p     3) 1 p 

II.  1) 1 p   2) a) 1 p  b) 1 p    

III.  1) 1 p   2) a) 1 p  b) 1 p    
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Test no. 120 
I. 1. Effectuate: 

 
2. Determine three numbers that are directly proportional to 

7, 4, 12 and knowing that the sum of the two biggest ones is 380. 

3. Calculate: 

 
II. 1. Solve the system of inequations: 

 
2. Given the polynomial: 

 
Determine 𝑚, 𝑛, 𝑝 , knowing that 𝑃(𝑋)  divides by 𝑋 −

1, 𝑋 − 2 and 𝑋 − 3, then solve the equation 𝑃(𝑋) = 0. 

3. In a right triangle the projections of the catheti on the 

hypotenuse have 7 𝑐𝑚  and 63 𝑐𝑚 . Determine the length of the 

height traced from the top of the right angle. 

III. 1. Calculate the lateral area, the total area and the volume 

of the cube whose diagonal has 10√3 𝑐𝑚. 

2. A pyramid has as base a right trapezoid 

𝐴𝐵𝐶𝐷 (𝐴𝐵||𝐵𝐶, ∢𝐴 = 90° = ∢𝐵), 𝐴𝐷 = 𝑎, 𝐵𝐶 = 2𝑎, 𝐴𝐵 = 2𝑎 . 

The height 𝑉𝑂 falls in 𝑂 the middle of 𝐴𝐵, and 𝑉𝑂 = 𝑎. Calculate: 

a) the areas of the triangles 𝑉𝐴𝐵, 𝑉𝐴𝐷 and 𝑉𝐵𝐶. 

b) the volume of the pyramid. 

Grading scale:  1 point ex officio 

I.  1) 1  p   2) 1 p     3) 1 p 

II.  1) 1  p    2)  1 p    3) 1 p    

II. 1) 1  p    2) a) 1 p  b) 1 p   
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Test no. 121 
I. 1. Effectuate: 

 
2. A jacket costs 576.000 𝑙𝑒𝑖. After two consecutive sales 

the price of the jacket got to 400.000 𝑙𝑒𝑖. Knowing that the sales 

have been proportional to the new prices, calculate the price of the 

jacket after the first sale. 

 3. Calculate: 

 
II. 1. Solve the system of inequations: 

 
2. Determine the set of values of the real parameter 𝑎 for 

which the following polynomials are prime one to the other: 

 
3. Determine the length of the height from the top of the 

right angle in the right triangle with the hypotenuse of 13 𝑐𝑚 and 

the rapport of the catheti 4/9. 

III. 1. On the plane of the rhombus 𝐴𝐵𝐶𝐷, with the side 

equal to 18 𝑐𝑚  and 𝑚(∢𝐷) = 120°  we raise the perpendicular 

𝐴𝑃 = 9 𝑐𝑚. Determine the distances from the point 𝑃 to 𝐵𝐶, 𝐵𝐷 

and 𝐶𝐷. 

2. A pyramid has congruent lateral edges and forms with the 

plane of the base 45° angles. The base is an isosceles trapezoid with 

the acute angles of 60° and the bases 6 and 8 𝑐𝑚. Calculate: 

a) the radius of the circle circumscribed to the trapezoid 

b) the volume of the pyramid. 
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Grading scale:  1 point ex officio 

I.  1) 1  p  2) 1 p    3) 1 p 

II.  1) 1  p   2)  1 p   3) 1 p    

III.  1) 1  p   2) a) 1 p  b) 1 p   
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Test no. 122 
I. 1. Effectuate: 

 

2. If 
3𝑎

5𝑏
=
2

7
, calculate 

7𝑎−2𝑏

7𝑎+2𝑏
. 

3. Calculate: 

 

 

II. 1. Determine the values of 𝑥 that simultaneously simplify 

the inequations: 

 

 
2. a) Given the polynomial: 

 
Calculate 𝑃(−1). 

b) Simplify the fraction: 

 
III. 1. On the plane of the rectangle 𝐴𝐵𝐶𝐷  with 𝐴𝐵 =

16 𝑐𝑚, 𝐵𝐶 = 12 𝑐𝑚  we raise the perpendicular 𝑀𝐷 = 12 𝑐𝑚 . 

Determine: 

a) The distance from the point 𝑀 to the straight line 𝐴𝐵 and 

𝐵𝐶 

b) The distance from 𝐷 to the plane (𝑀𝐵𝐶) 

2. The axial section of a cone is an isosceles triangle with a 

18 𝑐𝑚  perimeter and the lengths of the segment that unites the 
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middles of the un-parallel sides of 4 𝑐𝑚. In it we make a section 

parallel to the plane of the base at 2/3 from the height in relation to 

the top. Calculate: 

a) the total area and the volume of the cone 

b) the total area and the volume of the cone body 

 

Grading scale:  1 point ex officio 

I.  1) 1 p  2) 1 p    3) a) 0, 50 p  b) 0, 50 p 

II.  1) 1 p  2) a) 1 p  b) 1 p    

III.  1) a) 0, 75 p  b) 0, 75 p  2 a) 0, 75 p  b) 0, 75 p   
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Test no. 123 
I. 1. Effectuate: 

 

2. Knowing that 
𝑥

𝑦
= 0, (3) , calculate the value of the 

expression: 

 
3. Calculate: 

 
II. 1. Determine the elements of the set: 

 
2. Show that (𝑋 − 1)2 divides 𝑃(𝑋) = 𝑋4 − 3𝑋 + 3. 

3. Solve the system: 

 
III. 1. A parallelepiped 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷,  has the dimensions 

𝐴𝐵 = 3 𝑐𝑚, 𝐵𝐶 = 4 𝑐𝑚 and 𝐴𝐴, = 12 𝑐𝑚. Calculate: 

a) the length of the diagonal of the parallelepiped, its area 

and its volume 

b) the distance from 𝐶 to 𝐴𝐶 , 

2. The body of a cone has the generating line of the base of 

26 𝑐𝑚 , the radius of the big base of 15 𝑐𝑚  and the height of 

24 𝑐𝑚. 

a) Determine the lateral area and the volume of the cone 

body 

b) Calculate the volume of the cone where the body issues 

from 
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Grading scale:  1 point ex officio 

I.  1) 1  p  2) 1 p    3) 1 p 

II.  1) 1  p   2)  1 p   

III.  1) a) 0, 75 p  b) 0, 75 p  2 a) 0, 75 p  b) 0, 75 p   
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Test no. 124 
1. The numbers 𝑎 = 246, 𝑏 = 331 − 915 have the relation: 

 
2. Which of the equalities is false? 

 

 
3. Which of the inequalities is false? 

 
4. Knowing that 𝑥, 𝑥 − 2, 𝑥 + 2 can be the sides of a right 

triangle, then its hypotenuse can be: 

 
5. In the figure below, 𝑥 measures: 

 

 
6. Given the polynomial 𝑃(𝑋) = 4𝑋2 − 𝑎𝑋 + 𝑏, if 𝑃(1) =

𝑃(2) = 1, then the equation 
𝑃(𝑋)

2𝑋−3
= 1 has the solution: 

 
7. Let: 

 
The values 𝑎 for which 𝐸(𝑎) ∈ ℤ are: 
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8. On the plane of ∆𝐴𝐵𝐶  equilateral we raise 𝑀𝐴,𝑁𝐶 , 

perpendicular, with 𝑀𝐴 = 2𝑁𝐶. The following affirmation is false: 

𝐴: ∆𝑀𝑁𝐶 right; 𝐵:𝑀𝐴 ⊥ 𝐵𝐶 ; 𝐶: [𝑀𝐵] ≡ [𝑀𝐶]; 𝐷:𝑁𝐴 =

𝑁𝐵. 

9. In a conic glass with the top at the bottom, with the radius 

 6 𝑐𝑚  and the height 8 𝑐𝑚 , we introduce a ball with the radius 

1 𝑐𝑚 and we pour water until the ball is covered and no more. The 

height of the water is: 

 
10. If 𝐴𝐵𝐶𝐷  is a regular tetrahedron, and 𝐼, 𝐽, 𝐾, 𝐿  the 

middles of the edges [𝐴𝐶], [𝐴𝐷], [𝐵𝐶], [𝐵𝐷] , the following 

affirmation is false: 

𝐴: 𝐼𝐽𝐿𝐾  rhombus; 𝐵: 𝐶𝐷 ⊂  in the mediating plane [𝐴𝐵] ; 

𝐶: 𝐵𝐶 ⊥ 𝐴𝐷; 𝐷:𝐾𝐼||𝐵𝐷. 

 

Grading scale:  1 point ex officio 

1) 1 p  

2) 1 p   

3) 1 p  

4) 1 p;  

5) 0, 5 p   

6) 1 p  

7) 1 p   

8) 0, 5 p  

9) 1 p  

10) 1p 
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Test no. 125 
1. The number: 

 
has the value: 

 
2. If: 

 
then (𝑥, 𝑦, 𝑧) is: 

 

 
3. What is the probability that by randomly replacing 𝑛 with 

a number, the number 
8

𝑛
 is a natural number? 

 

4. The number −√2 belongs to the interval: 

 
5. In the triangle below, the measures of the angles 𝑥 and 𝑦 

are: 

 

 
6. The following proposition is false: 

𝐴: The equation straight line 𝑥 + 5 = 0 is perpendicular on 

𝑂𝑥; 
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𝐵: The equation straight line 𝑦 = −1is perpendicular on 𝑂𝑦; 

𝐶:  The straight lines 2𝑥 = 3  and 3𝑦 − 1 = 0  are 

perpendicular; 

𝐷:  The straight lines 𝑦 = 2𝑥 + 3  and 𝑦 = 2𝑥 − 3  are 

perpendicular. 

7. If ∆𝐴𝐵𝐶, ∆𝐴𝐶𝐷, ∆𝐴𝐷𝐵  right and isosceles 

(𝐴, 𝐵, 𝐶, 𝐷 non-coplanar), and 𝐼 is the middle of [𝐵𝐶], then 𝐷𝐼 has: 

 
8. In three identical cones there is liquid up to the heights 

ℎ, 2ℎ, 3ℎ (starting from the top). Their volumes can be: 

 
9. Let 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻  be a cube with 

𝐼, 𝐽, 𝐾, 𝐿,𝑀,𝑁, 𝑂, 𝑃, 𝑅, 𝑆, 𝑇  the middles of 

𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐴, 𝐴𝐸, 𝐵𝐹, 𝐶𝐺, 𝐷𝐻, 𝐸𝐹, 𝐹𝐺, 𝐺𝐻, 𝐻𝐸 . The following 

straight lines are not perpendicular: 

𝐴: 𝐴𝐸 and 𝑁𝑂; 𝐵: 𝐸𝐹 and 𝑂𝐽; 𝐶: 𝐴𝐻 and 𝐼𝐹; 𝐷:𝑀𝑁 and 𝑆𝐼. 

10. In 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻  parallelepiped, 𝐴𝐵𝐶𝐷  a square with 

𝐴𝐵 = 10 and the height 𝐴𝐸 = 𝑥. If 𝑚(∢𝐸𝐵𝑂) = 60°, 𝑥 will be: 

 
 

Grading scale:  1 point ex officio 

   1) 0, 75 p  

2) 0, 75 p   

3) 1 p  

4) 0, 50 p;  

5) 1 p   

6) 1 p  

7) 1 p   

8) 0, 5 p  

9) 1 p  

10) 1p 
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Test no. 126 
I. 1. Let : 

 
Calculate : 

 
2. Solve : 

 

 
3. Determine 𝑥 ∈ ℤ so that: 

 
II. 1. A student reaches school in 15 minutes if he walks, in 

6 minutes with the bicycle and 2 minutes with the taxi. If, on foot, 

the speed of the student is 6 𝑘𝑚/ℎ, determine the average distance 

with the bicycle and the taxi. 

2. In 𝐴𝐵𝐶𝐷  right trapezoid (𝑚(∢𝐴) = 𝑚(∢𝐷) =

90°), AC = 10 cm, BD = 8√2 cm. If AC  and 𝐵𝐷  intersect in 𝑜 , 

determine the distance from 𝑂 to 𝐴𝐷 when 𝐴𝐵 = 8 𝑐𝑚. 

3. Let there be the sets: 

 
a) Represent graphically: 

 
b) Cross out 𝐵 and establish which of the following points 

belong to 𝐵: 
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c) Verify that: 

 
III. 1. In ∆𝐴𝐵𝐶,𝑚(∢𝐵) = 45°,𝑚(∢𝐶) = 60°, 𝐴𝐷 ⊥

𝐵𝐶, 𝐷 ∈ (𝐵𝐶), 𝐶𝐸 ⊥ 𝐴𝐵, 𝐸 ∈ (𝐴𝐵) . If 𝐵𝐷 = 6 𝑐𝑚 , determine 

sin 𝐴 cos 𝐴 . 

2. On the plane ∆𝐴𝐵𝐶 we raise 𝐴𝐴,, 𝐵𝐵, perpendiculars. If 

𝐴𝐵 = 6 𝑐𝑚, 𝐴𝐴, = 8 𝑐𝑚, determine 𝐵𝐵, = 𝑥 , so that ∆𝐴,𝐵,𝐶 , 

right in 𝐴,. 

3. Let 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻 be a right parallelepiped with the base 

𝐴𝐵𝐶𝐷a square, 𝐴𝐵 = 10 𝑐𝑚/ 

a) If 𝐴𝐶 ∩ 𝐵𝐷 = {0}, then 𝑂𝐸 ⊥ 𝐵𝐷; 

b) If 𝐴𝐸 = 10 𝑐𝑚, calculate sin∢𝐴𝑂𝐸 and cos∢𝐸𝐵𝑂. 

c) If 𝑚(∢𝐴𝑂𝐸) = 60°, determine 𝐴𝐸. 

d) If 𝐴𝐸 = 8 𝑐𝑚, determine the sum of all the edges, the 

area and the volume of the parallelepiped. 

 

Grading scale:  1 point ex officio 

I.  1) 1p   2) 1p    3) 1p 

II.  1) 1p   2) 1p   3) 1p 

III.  1) 1p  2)  1p   3) 1p   
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Entry examination in the 9th grade, 
high school  

Session: July 1991 

I. 1. Calculate: 

 
2. Given the sets: 

 
Write the set 𝐵 as a reunion of intervals and then effectuate 𝐴 ∩ 𝐵. 

3. Solve the inequation: 

 
4. a) What is the condition that a sum of non-negative 

numbers is zero? 

b) Solve the equation: 

 
II. 1. Let there be the functions: 

 
a) Decide if the point 𝐴(−2,−1) belongs to one of the 

graphics of the functions 𝑓 or 𝑔; 

b) Represent graphically, in the same system of coordinate 

axes the functions 𝑓 or 𝑔; 

c) For 𝑥 ∈ [−5, 2) ∩ [2,5], solve the system of equations: 

 
2. Simplify the fraction: 
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III. 1. Let 𝐴𝐵𝐶𝐷 be a rhombus with the side equal to 𝑎 and 

the acute angle 𝐴 = 60°. In the point 𝐴 we raise the perpendicular 

𝐴𝑀 =
3𝑎

2
 on the plane (𝐴𝐵𝐶). Determine: 

a) the volume of the right prism with the rhombus 𝐴𝐵𝐶𝐷 as 

base and the height equal to 𝐴𝑀; 

b) the plane angle of the dihedral formed by the planes 

(𝐴𝐵𝐶) and (𝐵𝑀𝐷); 

c) the distance from the point 𝑀 to the straight line 𝐵𝐶; 

d) the volume of the pyramid with the top in 𝐵 and the base 

𝐴𝑀𝐷. 
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Entry examination in the 9th grade, 
high school  

Session: July 1992 

I. Calculate: 

 

 
II. 1. Solve the equation: 

 

2. Given 
𝑎

𝑏
= 0,6, calculate 

2𝑎+3𝑏

3𝑏
. 

3. Solve in ℝ the system of equations: 

 
III. Given the following sets, determine 𝐴 ∩ 𝐵 and 𝐴 ∪ 𝐵: 

 
IV. We consider the linear function: 

 
Show that: 

 
V. Show that for any 𝑎 ∈ ℝ , the following number is a 

perfect square: 

 
VI. Effectuate: 
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VII. In the rectangle 𝐴𝐵𝐶𝐷  with 𝐴𝐵 = 4 𝑐𝑚  and 𝐵𝐶 =

3𝑐𝑚  we trace the diagonal 𝐴𝐶 . Determine the height 𝐷𝐼  of the 

triangle 𝐴𝐷𝐶 and the cosine of the angle ∢𝐶𝐷𝐼. 

VIII. The base of the pyramid 𝑉𝐴𝐵𝐶𝐷  is the rhombus 

𝐴𝐵𝐶𝐷  with 𝐴𝐵 = 𝑎√3, 𝐵𝐷 = 2𝑎  and the height 𝑉𝐷 =
2𝑎√2

3
. 

Calculate: 

1) the total area and the volume of the pyramid; 

2) the angle formed by the planes (𝑉𝐵𝐶) and (𝐴𝐵𝐶); 

3) the distance from the top 𝐷 to the face (𝑉𝐵𝐶). 
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Entry examination in the 9th grade, 
high school  

Session: July 1993 

I. Calculate: 

 

 

 
d) the biggest divisor of the polynomials: 

 
e) the area of the equilateral triangle 𝐴𝐵𝐶, knowing that 

𝐴𝐵 = 8√3 𝑐𝑚. 

2. Solve: 

 

 

 
3. Given: 

 

a) Verify if 𝐸(𝑥) =
7−𝑥

𝑥−3
; 

b) Write the real numbers for which 𝐸(𝑥) hasn’t a defined 

value. 

4. The cube 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, has the side measuring 20 𝑐𝑚 

and 𝑀 is the middle of [𝐶𝐶 ,]. 

a) Calculate the total area and the volume of the cube; 

b) Calculate the volume of the pyramid 𝐷,𝐴𝐵𝐷; 

c) Calculate the area of the triangle 𝐷,𝑀𝐴; 

d) Calculate the distance from the point 𝑀 to the plane 

determined by the point 𝐷, and the straight line 𝐵𝐷. 
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Grading scale:  1 point ex officio 

1. a) 0,50p  b) 0,50p    c) 0,50p   d) 0,75p   e) 0,75p 

2. a) 0,50p  b) 0,50p    c) 0,50p 

3. a) 0,75p  b) 0,75p 

4. a) 0,50p  b) 0,50p    c) 0,50p   d) 0,50p 
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Entry examination in the 9th grade, 
high school  

Special Session: June 1994 

I. Calculate: 

 

 

 
II. 1. A right circular cone and a right circular cylinder have 

equal radiuses and heights. Determine the value of the rapport of 

the volumes of the two figures. 

2. The square 𝐴𝐵𝐶𝐷 is given, with 𝐴𝐵 = 4 𝑐𝑚. Let there be 

the points 𝑀 and 𝑁  on the segments [𝐴𝐵] and [𝐷𝐶] respectively, 

so that 𝐴𝑀 = 𝐶𝑁 = 3 𝑐𝑚. Calculate: a) the area of the quadrilateral 

𝑀𝐵𝑁𝐷; b) the distance from point 𝐵 to the straight line 𝑀𝐷. 

III. 1. Given the function: 

 
a) Represent the given function graphically; 

b) Determine the numbers 𝑚 ∈ ℝ, for which 𝑓(𝑚) ≤
1−𝑚

−2
. 

2. The polynomial 𝑃(𝑋) is divided by the polynomial 𝑋2 − 4 

and we obtain the quotient (𝑋3 = 𝑋 + 1) . Determine the 

polynomial 𝑃(𝑋) knowing that 𝑃(2) = 6 and 𝑃(−2) = 2. 

IV. 1. A regular quadrilateral pyramid has the side of the base 

of 8 𝑐𝑚 and the height 3 𝑐𝑚.  

Calculate:  

a) the volume of the pyramid;  

b) the lateral area of the pyramid. 

2. A regular triangular prism has the lateral edge of  9 𝑐𝑚 

and the edge of the base is 2/3 of the height.  
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Calculate:  

a) the lateral area of the prism;  

b) the volume of the prism;  

c) the distances from the center of one of the lateral faces to 

the other faces of the prism. 

 

Grading scale:  1 point ex officio 

I.  a) 1p    b) 0,50p    c) 0,5p;   

II.  1. For expressing the volumes (0,5p),  

    end result (0,5p); 

2. a) 0, 75 p   b) 0, 25 p  ; 

III.  1. a) 1 p   b) 1 p; 

2. For the schema of the theorem of division  

(0,25p), end result (0,25p); 

IV.  1. a) The figure (0, 25 p), end result (0, 5 p)    

    b) 0, 50 p 

2. a) 0,50p           b) 0,15p           c)4-0,15p=0,60p 
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Entry examination in the 9th grade, 
high school  

Session: July 1994 

I. 1. Calculate: 

 

 
2. In a plane reported to a system of orthogonal axes 𝑥𝑂𝑦, 

represent graphically the function: 

 
3. Given the following sets, calculate 𝐴 ∩ 𝐵: 

 

 
4. In the right triangle 𝐴𝐵𝐶 with the right angle in 𝐴, 𝐴𝐵 =

6 𝑐𝑚, 𝐴𝐶 = 8 𝑐𝑚 . a) Calculate the lengths of the hypotenuses 

[𝐵𝐶], of the height [𝐴𝐷] and of the segment [𝐵𝐷]; b) If the parallel 

through 𝐷 to the straight line 𝐴𝐶 intersects the cathetus [𝐴𝐵] in 𝐸, 

determine the rapport of the areas of the triangle 𝐵𝐸𝐷 and 𝐵𝐴𝐶. 

II. 1. Show that: 

a) the following number is integer: 

 

b) the following numbers have the sum 2√3 and the product 

2: 

 
2. The arithmetic mean of three numbers is 7. Determine 

one of these numbers knowing that the arithmetic mean of the 

other two is 5, 50. 



Possible Subjects for Examination, Grades V-VIII 

 

202 

 

3. Determine the radius, the height, the volume and the 

lateral area of a right circular cone, for which the deployment of the 

lateral surface is a disk sector with a 120° angle and a radius of 

9 𝑐𝑚. 

III. 1. Let there be the polynomial: 

 
Determine 𝑎, 𝑏 ∈ ℤ so that 𝑃(𝑋) is divisible by 𝑋 − 1. 

2. Simplify: 

 
3. Calculate the volume of a regular quadrilateral pyramid 

knowing that its height is ℎ = 6 𝑐𝑚 and the rapport between the 

lateral area and the area of the base is 𝑘 = 3. 

Grading scale: 1 point ex officio 

𝐼. 1) 0, 50  𝑝  2) 0, 75 𝑝   3) 0, 75 𝑝  4) 1𝑝 

𝐼𝐼. 1) 1, 25  𝑝  2)  1 𝑝  3) 0, 75𝑝 

𝐼𝐼𝐼. 1) 0, 50 𝑝 2)  0, 75 𝑝  3) 1, 75𝑝   

 

Grading and notation scale : 

I. 1. 𝑎) 0, 25 𝑝  𝑏) 0, 25 𝑝 

2. The table of values of the Ist order function (0, 50𝑝); 

Graphic representation (0, 25𝑝). 

3. Writing the set 𝐴 as a real numbers interval (0, 25𝑝); 

Writing the set 𝐵 as a real numbers interval (0, 25𝑝); 

𝐴 ∩ 𝐵(0, 25𝑝) 

 
b) ∆𝐵𝐸𝐷~∆𝐵𝐴𝐶 and the rapport of similarity (0, 25𝑝); 

the rapport of the areas of the two triangles (0, 25𝑝); 

II. 1. a) 𝑛 = 0(0, 75𝑝)  b) the sum (0, 25𝑝);  c) the product 

(0, 25𝑝);   
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2. The formula of the arithmetic mean of three numbers 

(0, 50𝑝); 

The sum of two numbers is the double of the arithmetic 

mean and replacing the three numbers in the arithmetic mean 

(0, 25𝑝); 

Solving the equation (0, 25𝑝); 

3. The radius of the cone (0, 25𝑝), the height (0, 20𝑝), the 

volume (0, 20𝑝), the lateral area (0, 10𝑝); 

III. 1. Calculating 𝑃(1)(0, 15𝑝) , writing the sum of the 

squares equal to zero (0, 25𝑝), determining 𝑎, 𝑏 (0, 20𝑝); 

2. Decomposing the nominator in irreducible factors 

(0, 25𝑝), of the denominator (0, 25𝑝), simplification (0, 25𝑝). 

 
the rapport of the two areas (0, 25𝑝). 

 
determining the apothem and the volume of the pyramid (0, 50𝑝). 
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Entry examination in the 9th grade, 
high school  

Session: July 1995 

I. 1. Calculate: 

 

 

 
2. A rectangle with the perimeter of 153, 6 𝑐𝑚  has the 

dimensions proportional to the numbers 7 and 9. Determine the 

dimensions of the rectangle. 

3. We consider the right triangle 𝐵𝐴𝐶(𝑚(∢𝐴) = 90°) , 

having 𝐴𝐵 = 6 𝑐𝑚 and 𝐴𝐶 = 8 𝑐𝑚. Through the middle 𝑀 of the 

cathetus [𝐴𝐵]  we trace a parallel to 𝐴𝐶  that intersects the 

hypotenuse in 𝑁. Determine: 

a) the height of the triangle 𝐴𝐵𝐶𝐷  corresponding to the 

hypotenuse; 

b) what per cent of the 𝐴𝐵𝐶  triangle’s area represents the 

area of the triangle 𝑀𝐵𝑁. 

4. Determine the volume of a right circular cone that has the 

total area of 96𝜋 𝑐𝑚2 and the lateral area 60𝜋 𝑐𝑚2. 

II. 1. Determine the irreducible fraction that it can be 

brought to: 

 
2. Consider the function: 
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a) Determine 𝑚  so that the point 𝐴(𝑚, 3)  belongs to the 

graphic of the function 𝑓; 

b) Represent graphically the function 𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑥 +

2. 

3. Determine the elements of the set: 

 
III. 1. The remainder of the division of the polynomial 𝑃(𝑋) 

by 𝑋3 − 2 is equal to the square of the quotient. Determine this 

remainder knowing that: 

 
2. We consider the regular triangular pyramid 𝑆𝐴𝐵𝐶 having 

the height of √2 𝑐𝑚 , the edge of the base of 2√3 𝑐𝑚  and the 

points 𝑀,𝑁, 𝑃  respectively, the middles of the edges 

[𝐴𝐵], [𝐵𝐶], [𝐶𝐴] of the base. 

a) Calculate the lateral area and the volume of the pyramid; 

b) If 𝑆𝑀 ⊥ 𝑆𝑁 show that 𝑆𝑃 ⊥ (𝑆𝑀𝑁). 

 

Grading and notation scale: 

I. 1. a) 0, 50 p b) 0, 50 p c) 0, 50 p 

2. The formula of the rectangle’s perimeter and the 

proportionality (0, 25𝑝); end result (0, 25𝑝); 

3. a) The hypotenuse (0, 25𝑝), the height corresponding to 

the hypotenuse (0, 25𝑝); 

b) (0, 25𝑝); 

4. The radius of the base (0, 10𝑝) , the generating line 

(0, 15𝑝), the height (0, 25𝑝), the volume (0, 25𝑝); 

II. 1. Decomposing the nominator in factors and the 

denominator of the first fraction (0, 25𝑝), the smallest common 

multiple and the amplification (0, 25𝑝) , the calculations of the 
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denominator of the obtained fraction from the brakets (0, 25𝑝);, 

end result (0, 25𝑝);  

 
(𝑚 − 1)(𝑚 + 3) = 0 (0, 25𝑝) , solving the equation 

(0, 25𝑝). b) the pair of points (0, 25𝑝), the graphic (0, 25𝑝). 

3. Eliminating the first radical and the square (0, 25𝑝), 

writing the number under the second radical as a square (0, 25𝑝), 

eliminating the radical and the square, reducing the similar terms 

(0, 25𝑝), the solution of the equation and the end result (0, 25𝑝). 

 

 

 

 

 

 
the expression of 𝑄2(𝑋)(0, 15𝑝) 
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Entry examination in the 9th grade, 
high school  

Session: August-September 1995 

I. 1. Calculate: 

 

 
2. Solve in ℝ the equation: 

 
3. Determine a natural number knowing that 7%  of it 

represents 28. 

4. A right circular cylinder with the radius of 6 𝑐𝑚 has the 

lateral area of 156𝜋 𝑐𝑚2 . Determine the generating line of the 

cylinder. 

II. 1. Calculate: 

 
2. We consider the sets: 

 
Determine the sets 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵. 

3. Effectuate and simplify, as much as possible, the result: 

 
4. In the right triangle 𝐴𝐵𝐶, ( 𝑚(∢𝐴) = 90°), with 𝐴𝐵 =

6𝑐𝑚, 𝐵𝐶 = 10 𝑐𝑚, we note with 𝐷 the foot of the height from 𝐴 

on the hypotenuse. The parallel through 𝐷 to 𝐴𝐵 intersects [𝐴𝐶] in 

𝐸. Determine 𝐵𝐷 and 𝐸𝐶. 
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III. 1. Determine 𝑚,𝑚 ∈ ℝ knowing that the polynomial: 

 
gives the remainder 2  by division to 𝑋 − 1  and the 

remainder 5 by division to 𝑋 − 3. 

2. Simplify the fraction: 

 
3. A regular triangular pyramid 𝑉𝐴𝐵𝐶 has the height of 6 𝑐𝑚 

and the apothem of 4√3. Calculate: 

a) the lateral area and the volume of the pyramid; 

b) what distance from the top is point 𝑃  located, on the 

height of the pyramid so that the triangle 𝑉𝑃𝐵 is isosceles with the 

base [𝑉𝐵]. 

 

Grading scale: 1 point ex officio 

𝐼. 1) 𝑎) 0, 50  𝑝 𝑏) 0, 75 𝑝 ; 2) 1 𝑝;  3) 0, 75 𝑝  4) 1𝑝 

𝐼𝐼. 1) 𝑎) 0, 50 𝑏) 0, 50 𝑝;   𝑝  2)  0, 75 𝑝;   3) 0, 50𝑝; 4) 0, 75 𝑝  

𝐼𝐼𝐼. 1) 0, 50 𝑝 2)  0, 50 𝑝  3) 𝑎) 0, 50𝑝  𝑏) 0, 50 𝑝   
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Entry examination in the 9th grade, 
high school  

Session: August-September 1995 

I. 1. Calculate: 

 

 
2. In the classroom there are 18 girls, which represents 60% 

of the students from the class. How many students are in the class? 

3. Determine the smallest natural number that divided, in 

turn by 12, 18, 40, gives the same remainder 7 every time. 

II. 1. Solve in the naturals numbers set: 

 
2. Let there be the function: 

 
a) Trace the graphic of the function 𝑓; 

b) Determine the points of the graphic of function 𝑓 that 

have the abscissa equal to the ordinate. 

3. Decompose in irreducible factors: 

 
4. Let there be the polynomial: 

 
a) Calculate 𝑃(1) and 𝑃(2); 

b) Determine the remainder of the division of the 

polynomial 𝑃(𝑋) to (𝑋 − 1)(𝑋 − 2). 

III. 1. In ∆𝐴𝐵𝐶 , we have 𝑚(∢𝐴𝐵𝐶) = 90°,𝑚(∢𝐴𝐶𝐵) = 30°) 

and 𝐴𝐷 ⊥ 𝐵𝐶, 𝐷 ∈ 𝐵𝐶. Prove that the area of the triangle 𝐴𝐵𝐷 is 

equal to a third of the area of the triangle 𝐴𝐶𝐷. 
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2. The cube 𝐴𝐵𝐶𝐷𝐴,𝐵,𝐶 ,𝐷, has the edge of 

√2 𝑐𝑚. Determine: 

a) the total area, the volume and the diagonal of the cube; 

b) the angle of the straight lines 𝐴𝐵, and 𝐵𝐷; 

c) the angle of the straight line 𝐴𝐵, with the plane (𝐵𝐷𝐷,). 

3. The body of a right circular cone has the lateral area equal 

to 100𝜋 𝑐𝑚2, the height of 8 𝑐𝑚 and the generating line of 10 𝑐𝑚. 

Determine: 

a) the volume of the cone body; 

b) the volume of the cone where the body comes from. 

 

Grading and notation scale: 1p ex officio 

𝐼. 1) 𝑎) 0, 75  𝑝 𝑏) 0, 50 𝑝 ; 𝑐) 0, 25 𝑝  

2) 0, 75 𝑝;  

3) for 𝑥 − 7 is the least common multiple of the numbers 

12, 18 and 40 is granted (0, 25 𝑝), end result (0, 25 𝑝)  

𝐼𝐼. 1) 𝑎) 0, 75 b) for 𝑥 ≤ 3 are granted (0, 40 𝑝), end result 

(0, 10 𝑝) 

 
3) 0, 50𝑝;  

 
b) for the theorem of the division with remainder are granted 

(0, 20 𝑝), end result (0, 25 𝑝).  
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Entry examination in the 9th grade, 
high school  

Session: July 1997 

I. 1. Calculate: 

 
2. Effectuate: 

 
and approximate the result with a decimal by adding. 

3. After having spent 1/3 of the sum he had one day, and 

the second day 1500 𝑙𝑒𝑖, a student is left with 25% of the total 

sum. What sum did the student initially have? 

II. 1. We consider the sets: 

 

 
Determine 𝐴 ∩ 𝐵, 𝐵\𝐴. 

III. 1. Let 𝑀 be a point inside an equilateral triangle with the 

side 2√3. Calculate the sum of the distances from 𝑀 to the sides of 

the triangle. 

2. We consider the regular quadrilateral pyramid 𝑉𝑀𝑁𝑃𝑄 

with the side of the base 𝑀𝑁 = 10 𝑐𝑚 and the height 𝑉𝑂 = 5√2. 

Determine: 

a) the lateral area and the volume of the pyramid; 

b) the position of the point 𝑇 on the edge 𝑉𝑁, for whom 

𝑀𝑇 + 𝑃𝑇 is minimal and the value of this minimum. 

3. The axial section of a right circular cone’s body is an 

isosceles trapezoid with the bases of 6 𝑐𝑚  and 18 𝑐𝑚  and with 

perpendicular diagonals. Determine: 
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a) the lateral area and the volume of the body; 

b) the volume of the cone where the body comes from. 

 

Grading and notation scale:   1 p ex officio 

 

 

 

 

 

 

 

 

 

 

 

 
according to the theory of Bezout −1, 0  or 1  are roots of the 

denominator (0, 30𝑝), end result (0, 30𝑝) 
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Entry examination in the 9th grade, 
high school  

Session: August 1997 

I. 1. Effectuate: 

 

 

 
2. Solve: 

 

 

 
II. 1. a) Effectuate the function: 

 
whose graphic intersects the coordinate axes in the points 𝐴(0, 2) 

and 𝐵(2, 0), respectively. 

b) Represent graphically the following function, then 

determine the real values of 𝑎 for which |𝑓(𝑎) ≤ 5: 

 
2. The following expression is given: 

 
a) Bring it to the simplest form; 

b) Specify the real values of 𝑥 for which 𝐸(𝑥) makes sense; 

c) Determine the set: 
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III. 1. Given an isosceles trapezoid with the big base of 

5 𝑐𝑚 , the little base of 3 𝑐𝑚  and the acute sides 2 𝑐𝑚  each 

determine: 

a) the area of the trapezoid; 

b) the radius circumscribed to this trapezoid. 

2. The axial section of a cone is an equilateral triangle with 

the side of 6 𝑐𝑚. Determine: 

a) the total area and the volume of the cone; 

b) the measure of the circle’s sector angle, obtained by 

deploying the lateral surface of the cone. 

3. The body of a regular quadrilateral pyramid has the areas 

of the bases of 100  𝑐𝑚2 and 36 𝑐𝑚2, and the lengths of the lateral 

edges of 10√2 𝑐𝑚 each. Determine: 

a) the lateral area and the volume of the body; 

b) the height of the pyramid where the body comes from; 

c) the distance from the center of the big base to the plane of 

a lateral face of the body. 

 

Grading and notation scale: 1 𝑝 ex officio 

I. 1. a) The calculation of the terms (0, 40 𝑝), end result 

(0, 10 𝑝); 

b) The division (0, 25 𝑝), the subtraction (0, 25 𝑝); 

c) The calculation from the straight brackets (0, 30 𝑝), end 

result (0, 20 𝑝). 

2. a) Finding the value of 𝑥(0, 50 𝑝); 

b) Determining the solution of the system (0, 50 𝑝); 

c) Determining the result correctly (with justification) 

(0, 50 𝑝); 

II. 1. a) Determining the function (0, 50 𝑝); 

b) Graphic representation (0, 50 𝑝), | − 𝑎 + 2| ≤ 5 and the 

end result (0, 50 𝑝). 
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2. a) Making the calculations from the equation (0, 40 𝑝), 

simplification and end result (0, 35 𝑝); 

b) Specifying the values of 𝑥 (0, 25 𝑝); 

c) Determining the set 𝑀 (0, 25 𝑝). 

III. 1. a) The calculation of the height of the trapezoid 

(0, 25 𝑝), determining the area of the trapezoid (0, 25 𝑝); 

b) Determining the radius (0, 50 𝑝). 

2. The total area (0, 25 𝑝), the volume (0, 25 𝑝); 

b) Determining the angle of the circular sector (0, 25 𝑝). 

3. a) Determining the apothem of the body (0, 15 𝑝) , 

determining the height of the body (0, 15 𝑝) , the lateral area 

(0, 20 𝑝), the volume (0, 20 𝑝); 

b) Locating the height of the pyramid where the body comes 

from (0, 30 𝑝); 

c) Determining the distance from the center of the big base 

to the plane of a lateral face (0, 50 𝑝). 
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Tests Solutions 

Test no. 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Possible Subjects for Examination, Grades V-VIII 

 

218 
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2. a) Using the method of reductio ad absurdum we prove that ∆𝐴𝐵𝐶 

is right in 𝐴 . We assume that 𝑚(∢𝐶𝐴𝐵) ≠ 90° . Let 𝑃  be the 

symmetric of 𝐵  in relation to 𝐴𝐶 . ∆𝑃𝐶𝐵 isosceles with 

𝑚(∢𝑃𝐶𝐵) = 60° ⇒ ∆𝑃𝐶𝐵 𝑒𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 ⇒ 𝑃𝐵 = 4 𝑐𝑚 ⇒ 𝑀𝐵 =

2 𝑐𝑚. In ∆𝐴𝑀𝐵; 𝑀𝐵 = 𝐴𝐵(𝐹) 

 

 

b) The right angle ∢𝐵𝐴𝐶 is projected after the right angle 

∢𝐵,𝐴,𝐶 , . Then we have two cases: 
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b) We easily prove that: 

 
We use the inequality: 

 

 

The equality would take place if 𝑎 = 𝑏 ⇔
1

𝐵𝐸
=

1

𝐶𝐹
⇒ 𝐵𝐸 =

𝐶𝐹 ⇒ 𝐵𝐶𝐹𝐸  parallelogram with the center 𝐺  and 𝐸𝐹  is a parallel 

traced to 𝐵𝐶 throught the middle of 𝐴𝐺. 
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Test no. 2 
 

 

 

 

 
2. We distinguish three cases: 

 

 

 

 

 
2. Noting with 𝑑 the required distance it follows that: 
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Test no. 3 

 

 

 

 

 

 

 

 

 
b) ∢𝑉𝑀𝑂 is the angle associated plane and (∢𝑉𝑀𝑂) = 45° 

c) 𝑃𝑉 = 7,5 𝑐𝑚 
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Test no. 4 

 

 

 
II. 1. The equation is written: 

 
If 𝑚 ≠ 0 and 𝑚 ≠ 1 the equation admits the solution 𝑥 =

1/𝑚. 

If 𝑚 = 0 the equation doesn’t admit solutions. 

If 𝑚 = 1 the equation has solutions any real number. 

2. The inequality is written: 

 
and after the calculations and reducing the similar terms it becomes: 

 
III. 1. The required area is 2000 𝑐𝑚2  

a) ∆𝐴𝐷𝐵 = ∆𝐶𝐷𝐵(being isosceles triangles even) 

b) From ∆𝐴𝐷𝐵, using the areas we calculate: 

 
As 𝐴𝑀 = 𝑀𝐶 from the isosceles triangle 𝐴𝑀𝐶 we can calculate: 

 
Because 𝑀𝑂 is a height in ∆𝐴𝑀𝐶, we obtain: 
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Test no. 5 
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Test no. 6 

 

 

 

 

 

 

 

 

 

 

 

 
We note ℎ- the height of the triangle with “𝑎” the triangle side, then 

from (1) it follows that: 
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so the sum of the distances from the interior of ∆𝐴𝐵𝐶 equilateral at 

the sides is equal to the height of the equilateral triangle. But: 

 
3. Let 𝐵𝐷, be the considered diagonal and 𝐵,𝐶 , indicated in 

the problem.  

 

 
the length of the perpendicular lowered from a random point of the 

straight line 𝐵,𝐶 , on the plane (𝐵𝐴,𝐷,). 

 

 

 

 

 
represents the distance from the straight line 𝐵,𝐶 ,  to the straight 

line 𝐵𝐷,. 
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Test no. 7 

 

 

 

 

 

 

 
From: 

 
and applying the reciprocal T. Thales ⇒ 𝐸𝐹||𝐵𝐶 . So 𝐵𝐹𝐸𝐶 = 

isosceles trapezoid. 
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Test no. 8 

 

 

 
II. 1. it is known that the tangents traced from an exterior 

point to a circle are congruent, so: 

 

Let 𝑂 be the center of the circle inscribed in ∆𝐴𝐵𝐶 right angled and 

𝑇1, 𝑇2, 𝑇3the tangent points, then the quadrilateral 𝑂𝑇1𝐴𝑇3 is a 

square. 

 

 

 

The diameter of the circle circumscribed to the right triangle is 

[𝐵𝐶], so: 

 

 

 

 
III. a) From the isosceles right triangle 𝐴𝑂𝐵, with (𝑂𝐴) ≡

(𝑂𝐵) we obtain 𝐴𝐵 = 8√2 𝑐𝑚. 
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Test no. 9 
I. 1. The problem has the following solutions: 

 

 

 

 

 

 
II. 1. We extend (𝐴𝐷 with the segment (𝐷𝐸) ≡ (𝐴𝐷). From 

the fact that (𝐵𝐷) ≡ (𝐷𝐶)  and (𝐴𝐷) ≡ (𝐷𝐸)  it follows that 

𝐴𝐵𝐸𝐶 = parallelogram ⇒ (𝐴𝐵) = (𝐸𝐶). 

 
 

 

 

 

 

 

 
𝑌 = −1. 
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Test no. 10 
I. 1. We note with 𝑎 = 11111…1⏟      

𝑛 𝑡𝑖𝑚𝑒𝑠

 and we compare the 

numbers 
7𝑎−2

7𝑎+1
 and 

8𝑎−3

8𝑎+1
 making their difference. 

 

 
3. For 𝑥 ≠ 3 and 𝑦 ≠ −1 the system is: 

 
4. We assume the number is rational, so there exists: 

 

 

 

 

 
II. 1. We obtain the equation: 

 

 

 

 

 
3. 𝐴𝐷 =median, 𝐺𝐹||𝐴𝐷 
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III. a) From the problem it follows that 𝑅 = 6; ℎ = 8; 𝐺 =

10 the elements of the cone.  

 

 
c) By deploying the lateral surface of the cone we obtain a 

sector of circle with the radius of 10 𝑐𝑚 and the length of the arch 

(𝐴𝐴,) is equal to 2𝜋𝑅 = 12𝜋. Using cross-multiplication we obtain: 
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Test no. 11 

 

 

 

 

 

 

 

 

 
II. 1. From 𝑝 > 3, prime, it follows that 𝑝 = 2𝑘 + 1, 𝑘 > 1. 

It follows that: 

 
so the remainder of the division of 𝑝2 to 8 is 1. From 𝑝 prime it 

follows that 𝑝 can be of the form: 

 

 
so the remainder of the division of 𝑝2 to 24 is 1. 
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The equality takes place for 𝑎 = 0 and 𝑏 = 0. 

3.  Let 𝐼 be the intersection point of the nonparallel sides of 

the trapezoid, 𝑃 and 𝑄 the intersection of the straight line 𝑂𝐼 to the 

bases. 

 
We trace through 𝑂 the parallel 𝐸𝐹 to the bases of the trapezoid. 

We have the equalities: 

 
We also have the equalities: 

 

 

 
III. a) The length of the cylinder radius is 3 𝑐𝑚  and the 

length 𝐺 of the cylinder’s generating line is 6 𝑐𝑚. The length of the 

inscribed sphere is 3 𝑐𝑚. 
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Test no. 12 
 

 

 

2. The given fraction is simplified by 17  if and only if 

17|52𝑎̅̅ ̅̅ ̅ and 17|1𝑏75̅̅ ̅̅ ̅̅ ̅, which leads to: 

 

 

 

 

 

 

 

 

 

 

 

 
III. 1. Let 𝑥 be the measure of the angle’s supplement. So: 
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2. We apply the theorem: Two parallel planes are intersected 

by a second plane after two straight parallel lines. In this way we 

show that the opposite sides of the quadrilateral 𝐸𝐹𝐺𝐻 are parallel 

and so it is a parallelogram. 

3. Because 𝐴𝐵 = 𝐴𝐷 = 𝐴𝐵𝐶𝐷 −rbombus and the diagonals 

are perpendicular between themselves ⇒ 
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Test no. 13 
I. 1. Establishing the last digit of each term we notice that for 

any uneven number 𝑛 we obtain 𝐴 ⋮ 5. 

 

 

 

So, if 
𝑥

𝑦
=
3

4
 the rapport 

5𝑦−7𝑥

6𝑦−8𝑥
 doesn’t exist. 

 

 

 

 

 
3. We know that [𝑥] −  the integer part of 𝑥 , |𝑥| −  the 

module of 𝑥, {𝑥} − the decimal part of 𝑥. The system becomes: 

 
III. 1. They are angles adjacent to the bisectors perpendicular 

between them ⇒ they are supplementary angles. Let their measures 

be: 
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3. The plane 𝐴𝐸𝐹  intersects the straight lines 𝐵𝐷  and 𝐶𝐷 

respectively in the points 𝑃 and 𝑄. In ∆𝐴𝐵𝑃, [𝐵𝐸] is bisector and 

height ⇒ ∆𝐴𝐵𝑃  is isosceles ⇒ [𝐵𝐸]  and median ⇒ 𝐴𝐸 = 𝐸𝑃 . 

Analogously 𝐴𝐹 = 𝐹𝑄 . In ∆𝐴𝑃𝑄 , according to the reciprocal of 

Thales’ theorem: 
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Test no. 14 
 

 

 

 

 

 

2. Obviously 
2𝑥+5

𝑥−1
 has to be a perfect square ⇒ 

 

 

But 
2𝑥+5

𝑥−1
 is a perfect square only for 𝑥 ∈ {−6,2}. 

 

 

II. 1. We know min(𝑎, 𝑏) = {
𝑎 𝑓𝑜𝑟 𝑎 ≤ 𝑏
𝑏 𝑓𝑜𝑟 𝑎 > 𝑏

. So: 

 

 

 

 

 

 

 
We assign real values to 𝑥 and we obtain the two points necessary 

for the graphical interpretation. 
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3. Obviously: 

 
So: 

 

 

 
Observation: 

 

 

 

 
Obviously, if 𝐴𝐶 = 𝐴𝐵 ⇒ ∆𝐴𝐵𝐶 right and isosceles ⇔

sin𝐵 . sin 𝐶 = sin 30°  q.e.d. 

2. We apply the theory of the median in ∆𝐴𝐵𝐶: 

 
We apply the theory of the median in ∆𝐷𝐴𝐵: 

 
From (1) and (2) ⇒ ∆𝐶𝑀𝐷 isosceles, but 𝐶𝑁 = 𝑁𝐷 ⇒

𝑀𝑁 ⊥ 𝐶𝐷  (𝐼). We apply the theory of the median in ∆𝐴𝐶𝐷 and 

∆𝐵𝐶𝐷 and we obtain 𝐴𝑁 = 𝐵𝑁 ⇒ ∆𝐴𝐵𝑁 isosceles, but 𝐵𝑀 =

𝑀𝐴 ⇒ 𝑀𝑁 ⊥ 𝐴𝐵 (𝐼𝐼). From (1) and (2) ⇒ 𝑀𝑁 is the common 

nperpendicular of the straight lines 𝐴𝐵 and 𝐶𝐷 q.e.d 
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Test no. 15 
I. It is obvious that: 

 
and so: 

 
2. Making the calculations for 𝑛 = 2𝑘  and 𝑛 = 2𝑘 + 1 

where 𝑛 ∈ ℕ we obtain that the equality takes place for 𝑛 = 2𝑘. 

3. It is obvious that: 

 

as (obs.) 
1

𝑛+1
> 0 and we will have: 

 
II. 1. We note: 

 
so: 

 
so 𝑎 is a perfect square. 

2. We give to 𝑥 the values 0 and 1 and we obtain the system: 

 
As 𝑓(𝑥) is linear ⇒ 𝑓(𝑥) = 𝑎𝑥 + 𝑏.  (2) 

From (1) and (2) ⇒ 𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑥 − 2. 

 
 

 
It is obvious that: 
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Possible Subjects for Examination, Grades V-VIII 

249 

 

Test no. 16 
 

 

 

 

 

 

 
3. We must have: 

 
III. 1. Let 𝐷  be the foot of the height and ∢𝐵𝐸𝐷  the 

required angle. We calculate the measures of the angles 𝐴𝐵𝐷 and 

𝐸𝐵𝐷 ⇒ 𝑚(∢𝐵𝐸𝐷) = 57°. 
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Test no. 17 
I. 1. We notice that: 

 

 

 

 
3. Making the calculations we obtain: 

 
Using this, we will obtain: 

 

 
So 𝑆 < 1/3 q.e.d. 

 

 

 
2. It is obvious that: 

 

 
We immediately have: 

 
and from here the immediate ordering.  

3. It is obvious that: 
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2. In ∆𝐴𝐵𝐶 we construct the height 𝐶𝐷, so 𝐶𝐷 ⊥ 𝐴𝐵. Using 

the two right triangles thus obtained 𝐵𝐶𝐷  and 𝐴𝐶𝐷  we will 

determine the lengths of the segments 𝐴𝐷 and 𝐵𝐷 and so: 

 
is obtuse. 

3. We note with 𝑅 − the radius of the sphere, 𝑟 −the radius 

of the cylinder and 𝑎 − the edge of the cube. We have: 
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Test no. 18 

 

 

 

3. We note 
1

𝑥
= 𝑎,

1

𝑦
= 𝑏; the system becomes: 

 

 

 

 

 

 

 

 
III. 1. We observe that: 

 

 
So the triangle 𝐴𝐵𝐶  is right in 𝐴 . We immediately deduce that 

𝐴𝑁𝑀𝑃 is right and so: 
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2. Let 𝐷 be the foot of the perpendicular traced from 𝐴 on 

𝐵𝐶; 𝐵𝐷 = 𝐷𝐶. 
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Test no. 19 
I. 1. For all the odd exponents: 

 
For all the even exponents: 

 
So: 

 
In general, −101 ≤ 𝑆 ≤ 101. As they are an odd number of terms 

⟹ 𝑆 ≠ 0. 

2. From the geometric mean ⇒ 

 

 

 

 

 

 

 

 
So 𝐴 ∩ 𝐵 = ∅. 
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III. 1. From 𝑉 we build: 

 

 

 

 

 

 

 

 

 

 

 
3. From the calculations we will find the apothem of the 

pyramid equal to 10 𝑐𝑚 and so: 
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Test no. 20 

 

 

 

 

 
c) We use the equality of the products between the bases and 

the heights in the triangle 𝐴𝐵𝑁 or using the theorem of the three 

perpendiculars by building: 
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Test no. 22 
I. 1. Let 𝑎 and 𝑎 + 100 be the two numbers; obviously 𝑎 +

100 = 3𝑎 + 20 . So 𝑎 = 40  small number and 140  the large 

number. 

 

 

 
3. For 𝑛 − even number ⇒ 𝐸 = 0. 

For 𝑛 − uneven number ⇒ 𝐸 =
1

𝑛
. 

 

 

 
2. By making the calculations we have: 

 

 

 
So: 

 
We study the two cases 𝑛 − even number and 𝑛 − uneven 

number and we obtain two values of the repetitive expression: 

 

 
III. 1. From the data in the problem we have: 
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2. Let 𝐴𝐵𝐶𝐷 be an orthodiagonal quadrilateral inscribed in 

the circle with the center 𝑂. If 𝑆 is the projection of 𝑂 on 𝐶𝐷, then 

𝑂𝑆 = 𝐴𝐵/2. Let 𝐸 be a point, diametrically opposed to 𝐷. [𝑆𝑂] is 

a middle line in ∆𝐷𝐶𝐸 and so: 

 

 

 
3. Using Pythagoras' theorem in the right triangles formed 

we obtain: 
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Test no. 23 
 

 

 

 

 
2. It is obvious that: 

 

 
3. We observe that: 

 

 

 
So we have a sum of positive numbers ≥ 12, the minimum value 

12 will be taken when each square will take the minimum value i.e. 

zero. So: 

 

 

 

 
2. The given system is written: 
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or we use the formula of the double radicals. 

III. 1. Obviously: 

 

 

 

 

 
3. Because 𝐷𝐸 ⊥ 𝐶𝐸 , by using the theorem of the three 

perpendiculars ⇒ 𝐶𝐸 ⊥ (𝐴𝐵𝐷). As 𝐸𝐹 ⊥ 𝐵𝐷 ⇒ 𝐶𝐹 ⊥ 𝐵𝐷. As 𝐸𝐹 

and 𝐶𝐹  are not parallel ⇒ 𝐵𝐷 ⊥ (𝐸𝐶𝐹) , but 𝐵𝐷 ⊂ (𝐵𝐶𝐷) ⟹

(𝐵𝐶𝐷) ⊥ (𝐶𝐸𝐹). 
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Test no. 24 
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Test no. 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Possible Subjects for Examination, Grades V-VIII 

 

264 

 

 

 
3. Immediate solution through calculation: 
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Test no. 26 
 

 

 

 

 
II. 1. 4 and −3 being soultions of the equation 𝑥2 +𝑚𝑥 +

𝑛 = 0 we have: 

 

 

 
3. Yes. 

III. 1. 𝑂𝐵  and 𝑂𝐶  are the bisectors of the supplementary 

angles ∢𝐴𝐵𝐶 and ∢𝐵𝐶𝐷, it follows that: 
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We calculate 𝐴𝐵,, 𝐵,𝐷,  and 𝐴𝐷,  from the right triangles ∆𝐴𝐷𝐷,  

with Pythagoras’s theorem and then 𝐴(𝐴𝐵,𝐷,)  with the Heron 

formula. 
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Test no. 27 

 
We obtain the triplets: 

 
2. Let 𝑎 and 𝑏 be the two numbers; we have: 

 
3. The perfect squares have one of the forms: 

a) 4k or 

b) 8k+1 

From the theorem of the division with remainder we have: 

 
𝑟 is a perfect square. 

 
𝑟 is a perfect square. 

II. 1. Solving the system will yield: 

 
Discussion:  

1) if 𝑚 ≠ ±2 – system compatible and determined with the 

solution (1) 

2) if 𝑚 = ±2 – incompatible system 

2. The given relation ⇔ 
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III. 1. Let 𝑚[∢(𝑥0𝑦)] = 13°. We build: 

 
and in the point 𝑂 we raise: 

 
2. We use the formula: 

 
𝑚𝑎is the length of the median corresponding to the side 𝐵𝐶, and 

𝑎, 𝑏, 𝑐 are the lengths of the sides ∆𝐴𝐵𝐶(see the geometry manual, 

grade VII, the 1993 edition, page 37). 

Because 𝑀𝐴 = 𝑀𝐵 = 𝑀𝐶 ⇒ 𝑀  is situated on the 

perpendicular from the center of the circumscribed circle ∆𝐴𝐵𝐶 on 

its plane, so 𝑀 ∈ (𝐷𝑂) where 𝐷𝑂 ⊥ (𝐴𝐵𝐶); 𝐷𝑂- the height of the 

tetrahedron 𝐴𝐵𝐶𝐷 . Expressing 𝐴𝑂  and 𝑂𝑀  according to 𝐴𝐵  by 

using Pythagoras’s theorem in the right triangle 𝑂𝐴𝑀 we will obtain 

𝐴𝐵 = 3√2. 𝑎. 
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Test no. 28 

 

 

 

 

 

 

 

 

 
because only takes place for 𝑥 = 𝑎 = 𝑏 = 𝑐, the equation doesn’t 

have real solutions. 

II. 1. Let 𝑥2 − 1 = 𝑎; the expression becomes: 

 
2. We have: 

 

 

 
Adding these four inequalities member by member, we obtain: 

 

 
III. 1. With the theorem of the median we have: 
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b) Let 𝑀𝑁  be a middle line and 𝑃  the foot of the 

perpendicular lowered from 𝐵, on 𝑀𝑁. So 𝐵,𝐵 ⊥ (𝑁𝐵𝑀). 
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Test no. 29 
 

 

 

 

 

 
3. Because |𝑥| ≥ 0 ⇒ the truth value is false. 

 

 

 
The following formulas have been used: 

 

 

 

 

 
III. 1. a) Because 𝐴𝑀 is a median relative to the hypotenuse 

in the triangle 𝐴𝐵𝐶, the triangles 𝐴𝐷𝐶 and 𝐴𝐷𝐵 are isosceles. So: 

 

 
The angle ∢𝐷𝐸𝐶 being exterior to the the triangle 𝐴𝐷𝐸, we have: 
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In ∆𝐴𝐵𝐶  and 𝐷𝐸𝐶 , the angles ∢𝐴𝐵𝐶  and ∢𝐷𝐸𝐶  have the same 

complement (∢𝐴𝐶𝐵), so: 

 
From (1), (2) and (3) ⇒ 
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Test no. 30 

 
The number of terms in brackets is equal to the number of terms of 

the sum 3 + 5 +⋯+ 101  which is 50 . So the sum is 1998 +

50 = 2048. 

 

 

 
II. 1. We assume that: 

 
which verifies the relation:𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 , 𝑎, 𝑏, 𝑐  uneven. By 

replacing, we obtain 𝑎𝑚2 + 𝑏𝑚𝑛 + 𝑐𝑛2 = 0 which is impossible 

because the left number is odd. In conclusion, there is no 𝑥 ∈ ℚ 

that verifies the relation from the enunciation.  

2. The natural numbers 𝑎 and 𝑏, being non equal to zero ⇒ 

 

 
According to the hypothesis 𝑎𝑏 < 𝑐  and so: 𝑎 + 𝑏 < 𝑐 + 1 . As 

𝑎, 𝑏, 𝑐 are natural ⇒ 𝑎 + 𝑏 ≤ 𝑐. 
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2. Writing in two ways the volume of the tetrahedron 𝑀𝐴𝐵𝐶 

and 𝑀𝐵𝐶𝐷 we have: 
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Test no. 31 
 

We analyze the cases 𝑥 < 1  and 𝑥 > 1 . If 𝑥 < 1  the 

equation doesn’t have real solutions. If 𝑥 > 1, then, any number 

from the interval (1,∞) is a solution to the equation. 

II. 1. Let 𝐸 be the point diametrically opposed to 𝐴. 

 

 

 

 

 

 

 

 

 

 
III. 1. 𝐴𝐵 ⊥ 𝑎. 

2. 45° because the triangle 𝐴𝑄𝑃 is right isosceles (we have 

noted with 𝑄 the middle of 𝑀𝑁 and with 𝑃 the middle of 𝐵𝐶). 
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Test no. 32 

 

 

 
3. Let 𝑥 represent the capacity of the tank and 𝑡 the time it 

takes for the 4 faucets to fill the tank (𝑡 measured in minutes). In a 

minute the first faucet fills the 60𝑡ℎ part of the tank, the second the 

120𝑡ℎ part, the third, the 180𝑡ℎ part and the fourth, the 240𝑡ℎ 

part. 

 

 

 

 

 

 

where 𝑎, 𝑏, 𝑐 are the sides of the triangle and 𝑝 =
𝑎+𝑏+𝑐

2
. 

 

 

 

 

 

 

  



Possible Subjects for Examination, Grades V-VIII 

277 

 

Test no. 33 
I. 1. If 𝑚 ≠ 3, the equation has a unique solution, 𝑥 =

5𝑚+1

𝑚−3
. 

If 𝑚 = 3, the equation has no solutions. 𝑥 ∈ ℤ ⇒ 𝑚 − 315𝑚 + 1. 

But 𝑚 − 315𝑚 − 15 ⇒ 𝑚 − 31(5𝑚 + 1) − (5𝑚 − 15) ⇒ 𝑚 −

3116 ⇒ 𝑚 − 3 ∈ {−16,−8,−4,−2,−1, 1, 2, 4, 8, 16} ⇒ 𝑚 ∈

[−13,−5,−1, 1, 2, 4, 5, 7, 11, 17]. 

3. 402, 403 and 404. 

II. 1. It should be proven that the two angles are additional. 

One finds the measures: 300 and 1500. 

2. Using the fact that a point situated on the bisector of an 

angle is equally situated from the sides of the angle ⇒ 𝐸𝑀 = 𝐸𝑄 

and 𝐸𝑃 = 𝑃𝑁 . ∢𝑃𝐸𝑄 = ∢𝑀𝐸𝑁  (opposite) ⟺ ∆𝑀𝐸𝑁 =

∆𝑄𝐸𝑃 ⇒ 𝑀𝑁 = 𝑃𝑄. ∆𝐴𝑄𝑀 and ∆𝐶𝑃𝑁 are isosceles ⇒ 𝐴𝐶 ⊥ 𝑃𝑁 

and 𝐴𝐶 ⊥ 𝑀𝑄 ⇒ 𝑃𝑁 ∥ 𝑀𝑄 . Therefore, 𝑀𝑁𝑃𝑄  is an isosceles 

trapezoid ⇒  𝑀𝑁𝑃𝑄 is an inscriptible quadrilateral. 

III. 1. The proposition is false. 

2. One uses the fact that the intersection of a plane parallel 

to a plane containing the line is another line that is parallel to the 

given line. 
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Test no. 34 

 
II. 1. Forming with the two equalities a system with the 

unknowns 𝑓(𝑥 + 1)  and 𝑔(𝑥 − 1) , we get: 𝑓(𝑥 + 1) = 2𝑥 + 6 

and 𝑔(𝑥 − 1) = −2𝑥 + 2 . Let 𝑓(𝑥) = 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ ℝ ⇒

𝑓(𝑥 + 1) = 𝑎𝑥 + 𝑎 + 𝑏.  Therefore 𝑎𝑥 + 𝑎 + ℎ = 2𝑥 + 6 , 

irrespective of 𝑥 ∈ ℝ ⇒ 𝑎 = 2  and 𝑎 + 𝑏 = 6 ⇒ 𝑎 = 2, 𝑏 = 4 . 

Analogously, one determines 𝑔(𝑥) = −2𝑥, 2, 900, 600 and 300. 

 
applying cathetus theorem in the triangle 𝑀𝐴𝐵 ⇒ 𝐴𝐵2 = 𝑃𝐵 ∙ 𝑀𝐵. 

Therefore,  

 

 

2. a) 
𝑎√6

3
; b) 𝐵𝐴 = 𝐵𝐵′ = 𝐵𝐶 = 𝑎 ⇒ 𝐵  is situated on the 

perpendicular taken in the middle of the circle circumscribed to 

∆𝐴𝐵′𝐶  on the plane of this triangle. 𝐷𝐴 = 𝐷𝐵′ = 𝐷𝐶 =

𝑎√2𝑐𝑚 ⇒ 𝐷′  is also situated on the perpendicular taken in the 

middle of the circle circumscribed to the triangle ∆𝐴𝐵′𝐶  on the 

plane of this triangle. Therefore, 𝐵𝐷′ ⊥ (𝐴𝐵′𝐶). 
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Test no. 35 
I. 1. 26; 2. 45 pencils and 75 pencils.  

 

 
II. 1. We take 𝐷𝐷′ ⊥ 𝐴𝐵 and 𝐶𝐶′ ⊥ 𝐴𝐵. 

 
Height theorem applied in the rectangular triangle 

𝐴𝐶𝐵 (∢𝐶 = 900), one gets: 

 

 
2. One uses the fact that in a trapezoid the middle line has 

equal length with half sum of the bases. 

III. 1. a) In the right triangle 𝐴𝐶𝐵 (𝐴𝐵 = 𝐵𝐶 = 2cm) one 

calculates 𝐴𝐶 = 2√2cm . Therefore ∆𝐴𝐶𝐶′  is isosceles (𝐴𝐶 =

𝐶𝐶′). b) 8 + 16√2 cm. 

2. The diagonal of the cube is the sphere diameter. Denoting 

by 𝑥 the cube side, one gets:  

 
 

 

 

 

 

 



Possible Subjects for Examination, Grades V-VIII 

 

280 

 

Test no. 36 

 

II. 1. 𝐸(𝑎, 𝑏) =
2𝑎

𝑏
 . 

2. Let 𝐴𝐵  and 𝐶𝐷  the trapezoid bases. 𝐸 ∈ 𝐴𝐷, 𝐹 ∈ 𝐵𝐶 . 

From the similarity of triangles 𝐷𝐸𝑀 and 𝐷𝐴𝐵, it follows 
𝐸𝑀

𝐴𝐵
=
𝐷𝑀

𝐷𝐵
. 

Analogously 
𝑀𝐹

𝐴𝐵
=
𝐶𝑀

𝐴𝐶
 . But 

𝐷𝑀

𝐷𝐵
=
𝐶𝑀

𝐴𝐶
 (obtained from the similarity 

of triangles 𝐷𝑀𝐶 and 𝐵𝑀𝐴, then using derivatives proportions. 

Therefore 
𝐸𝑀

𝐴𝐵
=
𝐷𝑀

𝐷𝐵
⇒ 𝐸𝑀 = 𝐹𝑀. 
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Test no. 37 
I. 
1

5
. 26; 2. 𝑥 = 3; 3. Let 𝑎, 𝑏, 𝑐 the three numbers 𝑎 =

𝑏+𝑐

2
 , 

𝑏 =
𝑎+𝑐

2
 , 𝑐 =

𝑎+𝑏

2
 . Replacing 𝑎 =

𝑏+𝑐

2
 in the last two equalities and 

effectuating the calculus, we get 𝑏 = 𝑐 ⇒ 𝑎 = 𝑏 ⇔ 𝑎 = 𝑏 = 𝑐. 

II. 1. Let   

From hypothesis, we get the relations 3𝑎 + 𝑏 = 1, 𝑎 = 𝑏 − 3 ⇒

𝑎 = −1, 𝑏 = 4. 

2. We suppose that 

 

 
(false). Therefore: 

 

III. 1. Applying Menelaus theorem in the triangle AMN cut 

by the secant BC. 

2. Let 𝛼  the angle formed by the diagonal 𝐴𝐶′  with the 

facet 𝐴𝐵𝐵′𝐴′, 𝛽 the angle formed with the facet 𝐴𝐵𝐶𝐷, and 𝛾 the 

angle formed with the facet 𝐴𝐷𝐷′𝐴′: 
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Test no. 38 

 
2. Solving the equation system,   we obtain 𝑃(2,5). 

 
3. If: 

 
it is the only solution of the equation. 

If 𝑚 = −1 ⇒ any real number is a solution of the equation. 

 
2. 𝐴′𝐵′𝐶′𝐷′ is an isosceles trapezoid. 
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Test no. 39 

 

 

 
But 

 
Therefore 

 
is isosceles. 

 

III. 1. Let 𝑂 the middle of 𝐵𝐷. The triangles 𝑀𝐵𝐷 and 𝑃𝐵𝐷 being 

isosceles ⇒ 𝑀𝑂 ⊥ 𝐵𝐷 and 𝑃𝑂 ⊥ 𝐵𝐷.Therefore, the dihedral angle 

of planes (𝑀𝐵𝐷) and (𝑃𝐵𝐷) is 𝑀𝑂𝑃. Calculate 𝑀𝑂 and 𝑃𝑂 in the 

rectangular triangles 𝑀𝐴𝑂  and 𝑃𝐴𝑂 . Then, calculate 𝑀𝑃  in 

trapezoid 𝐴𝐶𝑃𝑀 . According to the reciprocal of Pythagoras 

Theorem, ∢𝑀𝑂𝑃 = 900. 
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Test no. 40 
I.    1.  a) If 𝑛 is an even number: −1; if 𝑛 is an odd number: 1. 

b) 0 if 𝑛 is odd, and 2 ∙ 3𝑛 if 𝑛 is even. 

      2.  280 tickets costing 300 lei and 40 tickets costing 400 lei. 

      3.  If 𝑚 ≥ 0 , the solution is 𝑥 ∈ [0,∞) . If 𝑚 < 0 , the 

solution is 𝑥 ∈ (−2, 0]. 

II.  1. We get 𝑥 − 2. 

      2. We take: 
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Test no. 41 

 

 

 
III.  1.  a) ∆𝐵𝐶𝑀 is an isosceles triangle having an angle 

of 600, so it is an equilateral triangle. 

  b) It is obvious that 𝐴𝐵𝑀𝐷  is an isosceles 

trapezoid. Let 𝑁 be the middle of 𝐴𝐵 . 𝑀𝑁𝐵𝐶  is a parallelogram. 

Therefore: 

 

 
From the fact that the angles’ sum in triangle 𝐴𝑀𝐵 is 1800, 

 
therefore ∢𝐴𝑀𝐵 = 900. 

2.  a) Sector’s area is equal to the third part of the 

area of the circle from which it is derived. Therefore, circle’s area is 

36𝜋 cm2 ⇒  the radius of the circle from which the sector was 

derived is 6 cm. This radius will be the generator of the cone. The 

length of the part from the circle situated into the sector is the third 

part from the length of the arc from which the sector was derived, 

so it is equal to 4𝜇 cm. But this length is also the length of the basic 

arc of the cone, so the radius of the basic circle of the cone is 2 cm. 

Therefore, 𝑅 = 2 cm and 𝐺 = 6 cm ⇒ the height of the cone ℎ =

√32 = 4√2 cm. We calculate 𝐴1 = 16𝜋 cm2. 𝑉 =
16√2

3
𝜋 cm3. 

 b) We obtain the radius of the sphere, of length 

√2 cm. 𝐴 = 8𝜋 cm2. 
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Test no. 42 

 

II.  1. The quotient is 4𝑥2 − 3𝑥 − 2, and the rest is 2𝑥 + 3. 

 2. 106. 
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Test no. 43 

 
2. Let’s suppose it is 𝑥 o’clock. Therefore, 𝑥 hours passed by. There 

are (24 − 𝑥) hours left. So: 24 − 𝑥 =
1

7
𝑥 ⇒ 𝑥 = 21. The result is 

9 pm. 

3. We have to prove that: 

 

 
True, because: 1 − 𝑡1 > 0 and 𝑏 − 𝑎 > 0. 

II. 1. The enunciated equality is equivalent with: 

 
The triangle is equilateral. 

 
III. We consider a axial section 𝑉𝐴𝐵 in the cone from which the 

truncated cone 𝐴𝐵𝐵′𝐴′ was derived. 
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Test no. 44 
I.  1.  a) 72. 

  b) -104  

 2.  37 and 2. 

 3. 
𝑥−2

2𝑥2
+ 5𝑥 + 7. 

 
So 𝑚 = −𝑛. 

 2. If 𝑚 ≠
1

2
⇒ 𝑥 = 2 is the unique solution. If 𝑚 =

1

2
⇒ 

any natural number is a solution to the equation. 

 
2. The cube’s diagonal is the sphere’s diameter. Let 𝑥  the edge 

length of the cube. 
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Test no. 45 

 

 
3. Let 𝑥 be the number of years when the father’s age will be three 

times bigger than son’s age. 3(8 + 𝑥) = 28 + 𝑥 ⇒ 𝑥 = 2. 

 

 

 
True. 

III. 1. The triangle 𝐴𝐸𝐶 is isosceles. 

 
But: 

 
2. a) We denote by 𝑎  the length of the squares’ side. Let 𝑄  the 

middle of 𝐷𝐶 . The triangle 𝑀𝑄𝑃  is an isosceles and rectangular 

triangle.  

 

 
We observe that 𝑁𝑃2 +𝑁𝑀2 = 𝑀𝑃2. It follows that the triangle 

𝑃𝑁𝑀 is rectangular in 𝑁. 

b) 𝑁𝑄 ∥ 𝐴𝐶,𝑁𝑃 ∥ 𝐵𝐷 , but 𝐵𝐷 ⊥ 𝐴𝐶 ⇒ 𝑁𝑄 ⊥ 𝑁𝑃 , and because 

𝑁𝑀 ∥ 𝑁𝑃 ⇒ the required angle is ∢𝑀𝑁𝑄. Therefore: 
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Test no. 46 

 

 

 

true. 

 
III. 1. ∆𝐵𝐷𝐶 − ∆𝐴𝐷𝐵 (because they have two congruent angles) 
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Test no. 47 

 
2. Let 𝑛 − 1 and 𝑛 + 1 the three numbers: 

 

 

3. Let 𝑚, 𝑛 ∈ ℕ such that √𝑚𝑛 = 11 ⇒ 𝑚𝑛 = 121 or 𝑚 = 1 and 

𝑛 = 121, or 𝑚 = 11 and 𝑛 = 111, or 𝑚 = 121 and 𝑛 = 1. 

 
III. a) AO is the mediator of [𝐵𝐶]. But 𝐴𝐵𝐶 is an isosceles triangle, 

so it follows that AO is the bisector of the angle ∢𝐵𝐴𝐶 ⇒

∢𝐵𝐴𝐷 ≡ ∢𝐶𝐴𝐷 = 600.  But ∢𝐷𝐵𝐶 ≡ ∢𝐶𝐴𝐷  and ∢𝐷𝐶𝐵 ≡

∢𝐵𝐴𝐷  because the quadrilateral 𝐴𝐵𝐶𝐷  is inscriptible. Therefore 

∢𝐷𝐵𝐶 ≡ ∢𝐷𝐶𝐵 = 600 ⇒ ∢𝐵𝐷𝐶 = 600.  Therefore the triangle 

𝐵𝐷𝐶 is equilateral. 

 
c) 𝐶𝐷 ⊥ 𝑂𝑀 , but 𝐶𝑂 ⊥ 𝑂𝐵  (OB is the mediator of the segment 

CD because O is the center of the circle circumscribed to the 

triangle BCD). Therefore 𝐶𝐷 ⊥ (𝐵𝑂𝑀) ⇒ 𝐶𝐷 ⊥ 𝐵𝑀. 
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Test no. 48 

 

2. Let 𝑂 be the middle of the segment 𝑀𝐶. We show that 𝑂𝐴 ≡

𝑂𝐵 ≡ 𝑂𝐷 ≡ 𝑂𝑀. 

 
Analogously, 𝑀𝐵 ⊥ 𝐵𝐶. 

Because the triangle MDC is rectangular (∢𝑀𝐷𝐶 = 900) and DO 

is the median corresponding to hypotenuse, it follows that 𝐷𝑂 =
𝑀𝐶

2
 . Analogously, 𝑂𝐵 =

𝑀𝐶

2
 . 

 
Because Ao is the median corresponding to hypotenuse, it follows 

that 𝐴𝑂 =
𝑀𝐶

2
 . Therefore: 
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Test no. 49 

 

 
- true. 

Analogously,  

 
III. 1. Let 

 
Multiplying member by member the two equalities, we obtain: 
𝐴𝐶

𝐴𝐹
∙
𝐴𝐸

𝐵𝐸
=
𝐶𝐷

𝐵𝐺
 . But: 

𝐵𝐸

𝐴𝐵
=
𝐵𝐺

𝐵𝐷
 . 

Multiplying this two new equalities, we get: 

 
 2. a) In: 

 
b) ∆𝑂𝐵𝐶’ is isosceles, because 𝑂𝐵 = 𝐵𝐶’ = 8; 𝐵𝑀 median ⇒ 
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Test no. 50 

 
2. Let 𝐴𝐴′ and 𝐵𝐵′ the perpendiculars on the planes intersection, 

In the rectagular triangle 𝐵𝐵′𝐴, we have: 

 
From rectangular triangle 𝐵𝐵′𝐴, we get: 

 
 

Test no. 51 
I.  1.  

1

2
 ; 2.  𝑎 =

3

13
 , 𝑏 =

4

13
 , 𝑐 =

12

13
 and they are replaced 

in relation 𝑎2 + 𝑏2 + 𝑐2 = 1. 

 
- it is a perfect square, and n is also a perfect square: 

 
II.  1. 𝑥 ∈ 𝜑. (The system has no solution.) 

 2. 𝑃(−3,−3). 

 
2. v = 2 cm3, V = 54 cm3. 
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Test no. 52 

 

       2. Notice that the triangle is rectangular, 𝐴 =
6∙8

2
= 24. 

III. 1. Let 𝑂  the middle of 𝑃𝑄 . 𝑀𝑃 ≡ 𝑄𝑁 =
1

2
𝐷𝐶 , DC being a 

trapezoid base. Prove that the points 𝑀,𝑃, 𝑄 and 𝑁 are collinear. 

𝑂𝑀 = 𝑂𝑃 + 𝑃𝑀  and 𝑂𝑁 = 𝑂𝑄 + 𝑄𝑁 . As 𝑂𝑃 ≡ 𝑂𝑄  and 𝑃𝑀 ≡

𝑄𝑁 ⇒ 𝑂𝑀 ≡ 𝑂𝑁 ⇒ 𝑂 is the middle of 𝑀𝑁. 

        2. From 𝐵𝐷 ⊥ (𝐴𝐵𝐶) and 𝐴𝐵 ⊥ 𝐴𝐶 ⇒ 𝐴𝐷 ⊥ 𝐴𝐶. 

 
because 𝐴𝐷 ⊂ (𝐴𝐵𝐷) and 𝐴𝐷 ⊥ (𝐴𝐵𝐶). 

 
Analogously, 

 

 
From planes’ parallelism, it follows that 𝐴𝑁 ∥ 𝑃𝑄 and 𝑀𝑁 ∥ 𝑄𝐵 , 

therefore ∢𝐴𝑁𝑀′ ≡ ∢𝐵𝑄𝑃.  So, the rectangular triangles are 

similar. 
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Test no. 53 

 
From (1) and (2) 

 

 
Because 𝑛 ∈ ℕ, 

 
II.      1. Check by direct calculation. 

 
III.     1. Let 𝐴𝐵𝐶 an equilateral triangle, and 𝑀 a point inside the 

triangle, 𝐴’, 𝐵’, 𝐶’ being its projections on 𝐵𝐶, 𝐴𝐶, and respectively 

𝐴𝐵. 𝐷 is the height feet from 𝐴. 
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Test no. 54 
I.  1.  𝑎 > 𝑏. 

 2.  𝑥 ∈ (−∞,0]. 

 3.  𝑥 = 1 is a common solution. 

II.  1. Check by direct calculation. 

 2.  Effectuate the division; the rest is 0. 

III. 1.  We draw a rectangular triangle 𝐴𝐵𝐶 (∢𝐴 = 900), 

where 𝐴𝐷 ⊥ 𝐵𝐶, 𝐷 ∈ 𝐵𝐶 and 𝐸 is the middle of [𝐵𝐶]. 

 
 2. Let 𝐺 be the middle of 𝐴𝐷. 

 
It is easy to prove that 𝑚(∢𝐴𝐸𝐷) = 900. 

In the rectangular triangle: 

 
Because: 

 

 
from (1), (2) and (3) 𝐹𝐸 ⊥ 𝐴𝐸. 
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Test no. 55 
I.  1. 6 and 24. 

 

 

 

 

 
Therefore, 𝑅 = 8, 𝑟 = 1. The volume is 

 
 

Test no. 56 
I.  1.  𝑥2 + 1. 

 2.  15 days. 

 
For 𝑚 = −3 the equation has no real solutions. 

 

 
III.  1. Let 

 

 

 

 

 
Therefore, ∢𝐻𝑁𝑀 ≡ ∢𝐻𝑀𝑁 ⇒ ∆𝐻𝑀𝑁 is isosceles. 

2. V = 162 cm3. 
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Test no. 57 

 

 

 

 

 

 

 
III. Let 

 
because 𝐴𝐸 is a diameter.  

 
Therefore: 
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Test no. 58 
I.  1.  Let 𝑛 − 1, 𝑛 and 𝑛 + 1 the three numbers. We have to 

prove that (𝑛 − 1) ∙ 𝑛 ∙ (𝑛 + 1) ⋮ 3.  (1) Dividing the natural 

number 𝑛 by 3, we can have the rests 0, 1 or 2. Therefore, 𝑛 can be 

3𝑘, 3𝑘 + 1, 3𝑘 + 2, where 𝑘 ∈ ℕ. Replacing 𝑛 with one of those, 

one can easily get the conclusion. 

  
II.  Let 𝑎, 𝑏  the catheti’s length, ℎ  the length of the height 

taken from the right vertex, and 𝑐  the length of hypotenuse. We 

have to prove that the following is true: 

 

 
We have equality in the case of a right isosceles triangle. 

 
III.  1. Because AEHD is an inscriptible quadrilateral, 

 
Because ABGC is also an inscriptible quadrilateral, 

 
From (1) and (2),  

 
But 

 
and because  

 
it follows that 𝐵𝐻𝐶𝐺  is a quadrilateral with congruent opposite 

angles, therefore it is a parallelogram. 
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Test no. 59 
I.  1. Direct calculation.  

2. 𝑎 + 𝑏 – odd ⇒ 𝑎 – even and 𝑏 – odd or 𝑎 – odd and 𝑏 

– even. Both cases, 𝑎 ∙ 𝑏 is an even number. 

3. We assume by absurd that √5 ∈ 𝑄 ⇒ there exist 𝑚, 𝑛 ∈

ℤ, 𝑚, 𝑛 prime numbers such that 
𝑚

𝑛
= √5 ⇒

𝑚2

𝑛2
= 5 ⇒ 

 

 
But 5|𝑚 – is in contradiction with (𝑚, 𝑛) = 1. Therefore 

√5 ∉ 𝑄. 

 
III.  1. Let E be the intersection of bisectors taken from vertices 

𝐴 and 𝐵 of the parallelogram 𝐴𝐵𝐶𝐷. 

 

 
Therefore, 𝐴𝐸 ⊥ 𝐵𝐸. 

 2. We have the pyramid 𝑉𝐴𝐵𝐶 with the base 𝐴𝐵𝐶 (∢𝐴 =

900, 𝐴𝐵 ≡ 𝐴𝐶). 
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Test no. 60 

 
We find the numbers: 

 

 

 

 

 

 

 
II.  1. The inequations has no solutions. 

 2. The area of a triangle is the demi-product between the 

height and the side on which the height falls. 

III.  1. a) Ne denote CP – 𝑥. From the rectangular trapezoids 

BCPM and CDNP we get: 

 

 
Because 𝑀𝑃 ≡ 𝑁𝑃, 

 

 

 
        c) Let 
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Analogously, 

 
2. The side of the tetrahedron has the value of 
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Test no. 61 

 
        2. False, because: 

 
         3. 𝑓(𝑥) is increasing on ℝ. 

 

 

 

 

 

 

 
2. Let 𝐴’ the projection of 𝐴 on the plane 𝛼. In rectangular triangles 

𝐴𝐴’𝐵  and 𝐴𝐴’𝐶 , we have 𝐴’𝐵2 = 82 − 𝐴𝐴′2  and 𝐴’𝐶2 = 72 −

𝐴𝐴′2, from where we get: 

 
Also, in triangle 𝐵𝐴’𝐶, we have 

 
From the two relations, we get: 
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Test no. 62 
 

 

 

 

 
         2. The sum after every year represents 105% = 1,05 form 

previous year. After 3 years, the sum becomes: 

 

 

 

 
II. Let 𝐴2 = 𝑎2 + 𝑏2 + 𝑐2; because a, b, c are numbers, it follows 

that: 

 
Consequently,  

 
However, A being of form 3k + 2, we still have the possibilities 

 
Considering each case, we find the solutions: 200, 269, 296, 304, 

340, 403, 430, 500, 629, 667, 676, 766, 792, 926, 962. 

III.  1. BC = 10 cm.  
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The center of the circle circumscribed to the triangle is at the 

middle of BC, and then OA = OB = OC = 5. Expressing triangle’s 

area in two ways, we get the relation: 

 
From ∆𝐴𝐷𝑂, we get: 

 
2. We denote: 

 

 
Obviously, 

 

 
But 

 

 
 



Possible Subjects for Examination, Grades V-VIII 

 

308 

 

Test no. 63 

 

 
- true. 

 

 

 
P(X) divides by Q(X) if P(1)=0, P(4)=0, from where we have 

the system: 

 

 
The inequality transcribes equivalently: 

 
Inequality is easily obtained from the means’ inequality: 

 
        2. The product 𝑘(𝑘 + 1)(𝑘 + 2) is divided by 6, as a product 

of a three consecutive natural numbers. Then, 𝑁 being the sum of 𝑛 

divisible products by 6, it follows 𝑁|6. 
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b) The triangles ABA’ and ADC are similar, and then: 

 

 
   2. Let VABCD a regular quadrilateral pyramid. VO is the height 

of the pyramid and 𝑂𝑀 ⊥ 𝐵𝐶 . From the theorem of the three 

perpendiculars, it follows that 𝑉𝑀 ⊥ 𝐵𝐶. We denote by 𝑎 the base, 

and we have: 

 

 

The triangle VBC is equilateral, and then 𝑉𝑀 =
𝑎√3

2
. Replacing in 

the above relation, we get 

 𝑎 = √
𝑆

√3+1
; 

Calculate in the triangle VOM: 

𝑉𝑂 = √
𝑆

√6+√2
 . 
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Test no. 64 

 

 

 

 

 

 

 
c) We denote by 𝑙4

′  the square side, and we have: 
𝑙4

12
=
1

3
;  𝑙4 = 4 cm; section area = 16 cm2. 

 

e) 𝑉 =  277
1

3
 cm3. 
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Test no. 65 
I.  1.  123 and 329. 

 2. 450, 240, 1080, 210. 

II.  1.  𝑎 = 1, 𝑏 = −2√2; 𝑎2 − 𝑏2 = −7. 

 2.  Observe that the triangle ABC is rectangular 

(𝑚∢𝐴 = 900), and that the triangles ABC and MBC are congruent. 

 

III.  1. a) 𝑥 ∈ (
1

2
, 2). b) 𝑥 ∈ ℝ − (1, 2). 

 2. a) Build 𝑂𝑀 ⊥ 𝐵𝐶 and, according to the theorem of the 

three perpendiculars, 𝑉𝑀 ⊥ 𝐵𝐶, therefore the dihedral angle can be 

measured through the angle OMV, so: sin∢𝑂𝑀𝑉 =
𝑉𝑂

𝑉𝑀
, and in 

triangle VOM (𝑉𝑂 ⊥ 𝑉𝑀), 𝑉𝑀2 = 𝑉𝑂2 + 𝑂𝑀2 ⇒ 𝑉𝑀 = 20 cm, 

consequently sin∢𝑂𝑀𝑉 =
4

5
 . 

    b) The angle formed by an edge with the base plane is 

e.g. ∢𝑉𝐴𝑂, and 

 
     c) Still have to find the small base side. VO and VM 

determine a plane in the triangle VOM (𝑚∢𝑂 = 900). 

 

 
The lateral sides are trapezoids, having the bases of 24 cm 

and 6 cm, and the height NM = 15 cm. 
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    d) The section is the trapeze ACC’A’, with bases: 

 
and the height: 

 
 

 

 

Test no. 66 

 

 

 

 

 

 

III.    1. The area of MBA is 
𝐵𝑀∙𝐵𝐴

2
= 30 cm2. 

         2. 𝑀𝐵 ⊥ (𝐴𝐵𝐶) ⇒ (𝑀𝐵𝐴) ⊥ (𝐴𝐵𝐶) ⟹ 𝐶𝑃 ⊥  the right of 

intersection of the two planes. 𝐴𝐵 ⊥ (𝑀𝐵𝐴) . Calculate 𝐶𝑃  by 

writing the area of triangle ABC in two ways ⟹ 𝐶𝑃 = 9.6. 
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Test no. 67 
I.  1. 48. 2. 𝑥 = 7, 𝑦 = 5. 

II. 1. a) Start from (𝑥 − 𝑦)2 ≥ 0. 

 
2. Build 𝐷𝐸 ∥ 𝐴𝐵. The triangle ADE is isosceles. Observe 

that the triangles CED and CAB are similar, and it follows that - 

from the fundamental theorem of similarity: 𝑎 = 2 . Then use 

inequalities between the sides of triangle ADE. 
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Test no. 68 

 

 
         2. Build 𝐶𝐸 ∥ 𝐴𝐷 (𝐸 ∈ 𝐴𝐵) and use inequalities between the 

sides of triangle CEB. 

 
III.  1. 5.  2. Build 𝑃𝐷 ⊥ 𝐵𝐶 ⇒ 𝑀𝐷 ⊥ 𝐵𝐶. 
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Test no. 69 

 

 

 
  b) Let 
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Test no. 70 
I.  1. a) 24;   b) 1285. 

 2. 18 workers. 

II.  1. 𝑎 = 5, 𝑏 = 1. 

 2. Observe that the triangle ABC is rectangular, and 

ANPM is a rectangle, so 𝑀𝑁 = 𝐴𝑃 = √6 cm. 

 

III.  1. 
5

2
𝑥2 −

19

2
𝑥 + 8. 

 2.  a) Let 
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Test no. 71 
I.  1. −1. 

 2. 120.000 lei and 180.000 lei. 

 3. 𝑥 ∈ (−∞,−1] ∪ (1,∞). 

II.  1. If 𝑚 = −5 , the equation admits as solution any real 

number. If 𝑚 = 3, the equation does not have real solutions. If 

𝑚 ∈ ℝ ∖ {−5, 3}, the equation has as unique solution 𝑥 =
1

𝑚−3
 . 

 2. No. 

 
because: 
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Test no. 72 

 

 

 

 
        2. Let 𝑉𝐴𝐵𝐶𝐷 be the pyramid having its vertex in V and the 

base 𝐴𝐵 = 𝑎. We draw 𝐴𝐹 ⊥ 𝑉𝐵 ⇒ 𝐶𝐹 ⊥ 𝑉𝐵. The triangle AFC is 

isosceles; also: 

 

 
Let G the middle of AB. ∆𝑉𝐺𝐵 ∼ ∆𝐴𝐹𝐵 
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Test no. 73 

 
            b) Direct calculation. 

 

 
III.    1. Prove using ∢𝐴𝑃𝐶 ≡ ∢𝐶𝐴𝑃. 

         2.  
45

2
 cm. 

 

 

 

Test no. 74 

 

 

 

II.  1. We take 
𝑥

𝑎+𝑏
 and 

𝑦

𝑎−𝑏
, and we get: 𝑥 =

𝑎

𝑎−𝑏
 , 𝑦 =

𝑏

𝑎+𝑏
 . 

 2. The quotient is 2𝑥2 − 4𝑥 − 1, and the rest is 0. 

III.  1. 140, 105 and 49 cm. 
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Test no. 75 
I.  1. −1 if 𝑝 is odd and 1 if 𝑝 is even. 

 2. 16.000 lei. 

 3. Suppose there is 𝑛 ∈ ℕ, 𝑛 ≠ 1 such that the fraction to 

be an integer number. 

 

 

 

 
Therefore, any 𝑛 ∈ ℕ, 𝑛 ≠ 1, the fraction 

 

II.  1. 𝑓(𝑥) = 𝑥, for any 𝑥 ∈ ℝ and 𝑔(𝑥) = −
1

2
𝑥 +

1

2
, for any 

𝑥 ∈ ℝ. 

 
III.  1. Unite M with C and N with B. 
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Test no. 76 
I.  1. Not always. 

 

 

 

 

 
- true for any 𝑛 ∈ ℕ. 

 

 

 
- true. 
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Test no. 77 
I.  1. Not always. For example, −3 < −1 , but (−3)2 >

(−1)2. 

 
3. 60. 

 
If 𝑚 = 2 ⇒  the equation has no real solutions. If 𝑚 ≠ 2 ⇒  the 

equation has the solution: 

 
2. The sum of polynomial coefficients  

 
is: 

 
In our case, 𝑃(1) = 3. 

III.  1. Use the fact that in a parallelogram the diagonals are 

halved. 

 2. 𝑉 = 𝑎3√2. The angle created by an edge with the base 

plane is 450. The facets angels have the value of 600 and 1200. 
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Test no. 78 
I.  1. a) Not necessarily. E.g., (−5)2 = 52, but −5 ≠ 5. 

    b) √𝑥2 = |𝑥|. 

 2. 15. 

 3. 𝑚 = −1. 

 
         2. Apply the theorem of dividing with rest to polynomials, 

 

 

 
From (1) and (2), it follows that 

 
But  

 

 
Therefore, 
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Test no. 79 
I.  1. Calculate every member of the equality. 

 2. 𝑥 = 4/9. 

 3. Let 

 
The number  

 

 

 

 
       2. The system has no real solutions. 

III.  1. Let M, N, P, Q be the projections of O on the sides AB, 

BC, CD, and respectively DA. 

 
Taking into account that: 

 

 
It follows that 

 
-  the quadrilateral is inscriptible. 
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Test no. 80 
I.  1. 1.  

2. The solutions are 9 and −1.  

 3. A group with two full barrels, three barrels half-full and 

two empty barrels; another group with three full barrels, one only 

half full and three empty barrels; and one more group with two full 

barrels, three half-full barrels and two empty barrels. 

 
         2. 𝑎 = 0 , and 𝑏 ∈ ℝ . Therefore, we obtain the function 

𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑏 for any 𝑥 ∈ ℝ. 

III.    1. Let O1 and O2 be the centers of the two circles, r1 and r2 be 

their radii, and A, B the contact points of circles O1 and O2 with 

their common tangent. In the rectangular triangle O1CO2, we have: 

 

 
         2. The base length is 6 cm. 
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Test no. 81 
I.  1. 8 elements. 

 2. a) −2/3. b) If 𝑚 = 3, 𝑥 ∈ 𝑄; if 𝑚 ≠ 3, 𝑥 = 1. 

 

 
         2. Applying the Pythagorean theorem in triangles 𝐴𝐷𝐵  and 

𝐴𝐷𝐶, we get 𝐵𝐷 = 5 cm. In this way, we can calculate 𝐴𝐷 = 12 

cm, 𝐵𝐸 =
63

5
 cm, 𝐶𝐹 =

252

13
 cm. 
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where 
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Test no. 82 

 
         2. In the rectangular triangle AMN, one applies the height 

theorem and the cathetus theorem, and finds out: 
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Test no. 83 
I.  1. a) 

5

2
 ; b) 

3

8
 . 

 2. 27; 81; 243. 

 3. 60 pupils. 

II.  1. S(-1, 1). 

 2. Observe that the triangles DBA and DAC are similar 

and apply the fundamental theorem of similarity. 

 

 
        c) Express the volume of pyramid MADC in two ways. Let 

𝐶𝐶’ ⊥ (𝑀𝐴𝐷); 𝑠𝑖𝑛∢𝐶𝑀𝐶′ = 0,339. 
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Test no. 84 

 

 

Test no. 85 

 

 

 

Test no. 86 

 

 

Test no. 87 

 

 

Test no. 88 
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Test no. 89 

 

 

Test no. 90 
I. 1. a) 1; b) 3/8; c) 3; d) 1.   2. Yes.   3. Isosceles. 

II. 1 Yes. 2. Rhombus, square. 

 

 

 

Test no. 91 

 

 

Test no. 92 

 

 

Test no. 93 
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Test no. 94 

 

 

Test no. 95 

 

 

Test no. 96 

 

 

Test no. 97 

 
2. Formulas. 

 
2. 14 days. 3. 30 cm2. 

 



Possible Subjects for Examination, Grades V-VIII 

333 

 

Test no. 98 

 

 

Test no. 99 

 

Test no. 100 
I. 1, 2, 100 and 1256. 

 

 

Test no. 101 

 

 

Test no. 102 
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Test no. 103 

 

 

Test no. 104 

 

 

Test no. 105 
I. 1. -2; 2. We denote the parts with 𝑥, 𝑦, 𝑧. 

 

 

 

2. The section formed by diagonals is an isosceles trapezoid with 

the bases congruent with the diagonals. 
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Test no. 106 

 

 

 

 

 

 

 

Test no. 107 

 

 

Test no. 108 
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Test no. 109 

 

 

Test no. 110 

 

 

Test no. 111 

 

 

Test no. 112 

 

 

Test no. 113 
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Test no. 114 

 
  III. 1. a) rectangle 

 

 

Test no. 115 

 

 

Test no. 116 

 

 

Test no. 117 

 

 



Possible Subjects for Examination, Grades V-VIII 

 

338 

 

Test no. 118 

 

 

Test no. 119 

 

 

 

Test no. 120 
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Test no. 121 
I. 1. 14, 14. 2. We denote by 𝑥 the cost of the jacket after the first 

sale. The jacket costs 400.000 after the new sale: 

 

 

III. 1. The three distances are equal: 18 cm. 

 

 

Test no. 122 

 

 

 

Test no. 123 
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Test no. 124 

 

 

Test no. 125 

 

 

Test no. 126 
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The present book tries to offer students and teachers 

knowledge evaluation tools for all the chapters from the 

current Romanian mathematics syllabus. 

In the evolution of teenagers, the phase of admission 

in high schools mobilizes particular efforts and emotions. 

The present workbook aims to be a permanent advisor in 

the agitated period starting with the capacity examination 

and leading to the admittance to high school.  

The tests included in this workbook have a 

complementary character as opposed to the many materials 

written with the purpose to support all those who prepare 

for such examinations and they refer to the entire subject 

matter included in the analytical mathematics syllabus of 

arithmetic in Romania, algebra and geometry from the 

lower secondary grades.   

These tests have been elaborated with the intention to 

offer proper support to those who use the workbook, 

assuring them the success and extra preparation for future 

exams. 
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