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GLOBAL SEAWATER REDOX TRENDS DURING THE LATE DEVONIAN 
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ABSTRACT 

 The Late Devonian extinction ranks as one of the ‘big five’ Phanerozoic 

extinctions affecting up to 80% of marine species and occurred during five distinct 

pulses spanning <3 My.  The leading hypotheses explaining the pulsed extinctions 

are global cooling and/or widespread marine anoxia.  We test the marine anoxia 

hypothesis by analyzing uranium isotopes (δ238U) across a ~7 My interval of well-

dated Upper Devonian marine carbonates from the Devil’s Gate Limestone in 

Nevada, USA. 

 The measured δ238U curve shows no co-variation with local anoxic facies, 

water-depth dependent facies changes, redox-sensitive metals, TOC, or diagnostic 

elemental ratios indicating the δ238U curve was not controlled by local depositional 

or diagenetic processes and represents global seawater redox conditions.  Two 

negative δ238U shifts (indicating more reducing seawater) are observed with 

durations of ~3.8 My (late Frasnian) and ~1.1 My (early Famennian), respectively.  
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Steady-state modeling of the observed -0.2 to -0.3‰ shifts in δ238U points to a ~5-

15% increase in the total area of anoxic seafloor during these excursions.  The late 

Frasnian negative shift is broadly coincident with the first extinction pulse (late 

rhenana Zone or lower Kellwasser event), whereas the early Famennian negative 

shift (lower-middle triangularis zones) does not coincide with the most intense 

Frasnian-Famennian boundary (F-F) extinction pulses (upper Kellwasser event). 

Compilations of local sediment redox conditions from Upper Devonian marine 

deposits with conodont zone-level age control indicates that the extinction pulses 

were coincident with widespread anoxic deposits accumulating in subtropical 

epeiric sea and some open-ocean settings supporting previous interpretations that 

widespread marine anoxia had an important influence on the Late Devonian 

extinction.  The temporal relationships between global ocean redox trends 

represented by the δ238U curve and the newly compiled subtropical marine redox 

sediment trends indicates Late Devonian global oceans and epeiric seas were in 

relatively good redox communication for the majority of the study interval except 

for a brief interval (<500 ky) spanning the F-F boundary. 

  



vi 
 

TABLE OF CONTENTS 

 

1.0 INTRODUCTION ...................................................................................................... 1 

2.0 BACKGROUND .......................................................................................................... 2 

2.1. Late Devonian extinction, paleogeography, and paleoclimate  ........ 2 

2.2. U isotope systematics  ........................................................................................ 5 

3.0 METHODS ................................................................................................................... 6 

4.0 RESULTS ...................................................................................................................... 8 

4.1. U isotopes ................................................................................................................ 8 

4.2. Additional geochemical analysis  .................................................................. 9 

5.0 DISCUSSION ............................................................................................................ 10 

5.1. Evaluating depositional and diagenetic influences  ............................ 10 

5.2. Extinction versus anoxic sediment and global ocean δ238U curve 

 ............................................................................................................................................ 14 

5.3. U-cycle modeling  ............................................................................................... 18 

6.0 CONCLUSIONS ....................................................................................................... 19 

7.0 REFERENCES .......................................................................................................... 21 

8.0 SUPPLEMENTARY INFORMATION ............................................................. 36 

8.1. Redox interpretations of compiled Upper Devonian marine 

deposits  .......................................................................................................................... 36 

8.2. Modeling seawater U cycling  ....................................................................... 37 

9.0 SUPPLEMENTARY INFORMATION REFERENCES ............................... 41 

10.0 FIGURE CAPTIONS ........................................................................................... 44 

11.0 SUPPLEMENTARY FIGURE CAPTIONS .................................................. 46 

12.0 FIGURES ................................................................................................................. 48 

13.0 TABLES ................................................................................................................... 57 

 

 

  



1 

1.0 INTRODUCTION 

The Late Devonian extinction ranks as one of the ‘big five’ Phanerozoic faunal 

crises with over 80% of benthic, planktonic, and nektonic marine species affected 

with terrestrial plants and animals influenced as well (McGhee, 1996, 2001; Hallam 

and Wignall, 1997; Racki, 2005; Bond and Grasby, 2016). The leading hypotheses 

explaining the extinction involve two brief, global cooling pulses occurring during 

an overall long-term warming trend (Copper, 1986; Joachimski and Buggisch, 2002) 

and/or widespread ocean anoxia generated by increased nutrient flux and resultant 

enhanced productivity and dissolved oxygen demands (Algeo et al., 1995; Algeo and 

Scheckler, 1998).     

To test the influence of marine anoxia driving the Late Devonian extinction, 

we utilize U isotopes from marine carbonates to evaluate globally integrated ocean 

redox trends.  Unlike traditional marine redox proxies, such as the occurrence of 

typical anoxic marine facies, framboidal pyrite size, distribution, δ34Spyrite, and redox 

sensitive trace metal (RSM) abundances, which are sensitive to local depositional 

conditions, U isotopes of marine carbonates can provide a globally-integrated 

estimate of ocean redox conditions. U isotopes are sensitive to marine redox 

conditions because the reduction of soluble U(VI) to insoluble U(IV), which is 

sequestered into anoxic sediments, is associated with a large isotope fractionation 

(Weyer et al., 2008).  This signal propagates globally because the ocean residence 

time of U (~400 ky; Ku et al., 1977) is significantly longer than ocean mixing times 

(<1 ky), and thus open-ocean seawater and the carbonates, which precipitate from 
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seawater, should record a homogenous U-isotope value representative of globally-

averaged ocean redox conditions. The utility of U isotopes as a global-ocean redox 

proxy is documented by previous studies from the Neoproterozoic through 

Cenozoic (Montoya-Pino et al., 2010; Brennecka et al., 2011; Dahl et al., 2014; Hood 

et al., 2016; Lau et al., 2016; Lau et al., 2017; Elrick et al., 2017, Song et al., 2017). 

The specific objectives of this study are to 1) describe and interpret Late Devonian 

U- isotopic and trace element trends, and 2) discuss relationships among U-isotope 

trends, extinction records, and global and epeiric sea redox records.  

2.0 BACKGROUND 

2.1 Late Devonian extinction, paleogeography, and paleoclimate 

The five distinct Late Devonian extinction pulses occur in the late Frasnian 

(rhenana conodont Zone often termed the lower Kellwasser event; LKW) followed 

by four extinctions clustered near the Frasnian-Famennian (F-F) boundary (upper 

Kellwasser event; UKW) (Fig. 1; Hallam and Wignall, 1997; McGhee, 1996, 2001; 

Bond and Grasby, 2016). In the marine realm, benthic, planktonic, and nektonic 

organisms were all affected with tropical stromatoporid-coral reef ecosystems 

particularly devastated (Copper, 2002; Kiessling et al., 2000; Kiessling and Simpson, 

2011).  Recent studies have suggested that this biocrisis was a function of reduced 

speciation rather than elevated extinction rates (Sepkoski, 1996; Bambach et al., 

2004; Stigall, 2010).  Nevertheless, biodiversity loss patterns indicate that 1) low-

latitude regions experienced greater loss than higher-latitudes, 2) surviving groups 

experienced post-extinction latitudinal compression, and 3) shallow-water marine 
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benthic organisms experienced more severe losses than deep-water organisms.  

Coincident with the extinction pulses is the occurrence of widespread organic-rich 

marine facies (including the German organic-rich Kellwasser deposits) which was 

used to suggest that marine anoxia controlled extinction trends (e.g. Goodfellow et 

al., 1989; Buggisch, 1991; Joachimski and Buggisch, 1993).  

Late Devonian global paleogeography is characterized by Laurentia 

straddling the paleoequator and separated from Gondwana by the narrow and 

closing Rheic ocean (Fig. S1). Globally high sea levels resulted in extensive 

continental flooding and the development of vast epeiric seas that comprised ~15% 

of the global ocean seafloor area.  The Devonian climate records a transition from 

long-term greenhouse to an icehouse with oxygen isotopic evidence for glacio-

eustasy occurring as early as the Middle Devonian (Elrick et al., 2009, Elrick and 

Witzke, 2016) and glacial tillites accumulating in South America by the Famennian 

(Caputo, 1985, 2008; Frakes et al., 2005; Isaacson et al., 2008).  

The westward-deepening continental margin of western Laurentia 

accumulated up to 7.5 km of Proterozoic through Upper Devonian siliciclastic and 

carbonate passive-margin deposits.  In the Late Devonian, convergence related to 

the Antler orogeny along western Laurentia resulted in the development of a 

foreland basin and forebulge atop the passive-margin succession (Giles and 

Dickenson, 1995; Morrow and Sandberg, 2008). In the central Nevada study area 

(Devil’s Gate section), the transition between passive- and convergent-margin 

tectonics includes deposition of the Upper Devonian upper member of the Devil’s 
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Gate Limestone which accumulated in slope, and outer and middle ramp 

environments (Table S1). At this location, the Devil’s Gate Limestone has excellent 

age control through detailed conodont biostratigraphy (Sandberg and Poole, 1977; 

Sandberg et al., 1988; 2003) and established δ13C trends (Joachimski et al., 2002). 

Six depositional facies are recognized in the ~140 m-thick studied succession and 

they stack to form six My-scale depositional sequences (each ~15-30 m thick).  

Conodont biozone age control combined with inter- and intracontinental 

correlations document that three of the sequences correspond to My-scale eustatic 

sea-level cycles termed T-R cycles IId-2, IId-3, and IIe by Johnson et al. (1985) and 

Morrow and Sandberg (2008) (Fig. 1).   

In the study area, the upper Devil’s Gate Limestone is dominated by hemi-

pelagic lime mudstone and siliciclastic mudstone interbedded with outer ramp- and 

slope-derived carbonate debris-flow conglomerates (Fig. 1; Table S1).  Although 

these deposits accumulated in suboxic/oxic through anoxic predominately deep-

water environments, the detrital lime mud was originally generated in oxic shallow-

water environments and transported downslope (along with fine siliciclastic grains) 

by gravity-flow processes.  An original shallow-water origin (deposited in <few tens 

of meters) for the lime mud is particularly important for this study because 

geochemical analysis of the carbonate fraction is interpreted to reflect prevailing 

surface seawater conditions rather than deeper water conditions along the outer 

ramp and slope.   
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2.2 U-isotope systematics 

Weathering of the continental crust represents the primary source of U to the 

global ocean and the main sinks are suboxic and anoxic continental margin 

sediments, altered oceanic crust, and biogenic carbonates (Morford and Emerson, 

1999; Tissot and Dauphas, 2015).  In oxidizing marine waters, U primarily occurs as 

U(VI) in the uranyl ion (UO22+) which readily forms soluble carbonate complexes 

(Weyer et al., 2008).  Under anoxic conditions, U(VI) is microbially reduced to 

relatively insoluble U(IV) and is sequestered into anoxic sediments (Klinkhammer 

and Palmer, 1991; Morford and Emerson, 1999). There are three naturally occurring 

U isotopes:  238U (~99.3%), 235U (~0.7%), and 234U (~0.005%). During reduction of 

U(VI) to U(IV), U isotopes are fractionated due to the nuclear field shift effect 

(Bigeleisen, 1996) with 238U preferentially incorporated into the reduced species 

(Weyer et al., 2008; Stylo et al., 2015). Because the ocean residence time of U is 

significantly longer than ocean mixing times (<1 ky), the U isotopic composition of 

seawater is uniform throughout the oceans, therefore limestones precipitated from 

oxic surface seawaters (<~100 meters) can track global seawater redox conditions 

(e.g. Brennecka et al., 2011; Dahl et al., 2014; Lau et al., 2016; Elrick et al., 2017).  

During intervals of increased anoxic sediment accumulation, seawater 238U/235U 

ratios decrease due to sequestration of 238U into anoxic sediments. Carbonate 

minerals precipitated from seawater can record changes in the seawater 238U/235U. 

U isotopes are reported in standard delta notation:  

δ238U (‰) = [(238U/235Usample)/(238U/235Ustandard)-1] x 1000 
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where the standard is CRM-112A, which has a 238U/235U ratio of 137.832 ± 0.026 

(Cheng et al., 2013). 

3.0 METHODS 

 In the study area, the upper member of the Devil’s Gate Limestone was 

described and sampled within a sequence stratigraphic framework (Fig. 1).  Samples 

were collected every 1-5 m spanning ~7 My of the Late Devonian (late hassi through 

crepida conodont zones).  Samples were powdered from bulk limestone chips free of 

secondary calcite veins and leached in 10% HCl for ~10 minutes to remove surface 

contaminants.  To evaluate potential isotopic differences between primary skeletal 

calcite versus coeval bulk carbonate values, a low Mg-calcite rugose coral fragment 

was analyzed and compared to its host bulk carbonate. 

For δ238U analysis, ~1.5 g of sample powder was digested by adding 20 mL of 

1M HNO3 followed by the slow addition of 3 mL of concentrated HNO3 to replace 

spent acid.  The 1M HNO3 concentration was used to avoid the dissolution of non-

carbonate material and contamination by detrital phases (i.e. organic matter, clay 

minerals).  Following digestion, samples were centrifuged to separate the 

supernatant from insoluble residues, treated with a solution of 0.3 mL 32% H2O2 

and 2 mL concentrated HNO3, and fluxed at ~100 °C for one hour to drive off 

residual organic matter.  After a final dry down, the samples were dissolved in a 

solution of 3M HNO3 in preparation for column chemistry. 

Major and trace element concentrations were determined from sample 

aliquots to prepare sample solutions containing at least 250 ng U to be spiked with 
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233U-236U double spike (IRMM-3636, Verbruggen et al., 2008).  Addition of the 233U-

236U double spike was performed to correct for isotope fractionation during sample 

preparation and instrumental mass bias.  Spiked samples underwent column 

chemistry to isolate and collect U following the UTEVA resin method of Weyer et al. 

(2008).  Collected U samples were treated with a solution of 32% H2O2 and 

concentrated HNO3 twice after column chemistry to remove any organic material 

contaminants from the UTEVA resin then measured for their U-isotopic values and 

final U concentrations on a Thermo Neptune MC-ICP-MS at Arizona State University 

(W.M. Keck Foundation Laboratory for Environmental Biogeochemistry).   

Samples were measured for their whole-rock elemental content to 

characterize local redox signals (via redox-sensitive trace metals and Mn/Sr ratios), 

detrital input (Al, K), and potential dolomitization (Mg/Ca ratios).  For whole-rock 

analysis, 1 M HCl was added to approximately 1 g of powdered bulk limestone until 

no further reaction was observed.  Samples were then centrifuged and the 

supernatant collected.  Concentrated HNO3 (35 mL) and HF (9 mL) was added to the 

remaining insoluble residue and fluxed at ~80 °C for >24 hours.  Samples were then 

dried down and further dissolved with concentrated HNO3 (10 mL) and HCl (10 mL) 

until all material was in solution.  Samples were then recombined with their 

carbonate fraction solutes, dried down, and dissolved in 2% HNO3 for ICP-MS 

analysis at the UNM Earth & Planetary Science Analytical Geochemistry Lab. 

For total organic carbon (TOC) analysis, ~4 mg of sample powder was placed 

in silver capsules and placed in an evaporative 10% HCl acid wash for >24 hours.  
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Additional volumes of 5% HCl were added until no reaction was observed.  Samples 

were then dried down and analyzed for their TOC content and carbon isotope ratios 

with a Costech ECS 4010 Elemental Analyzer coupled to a Thermo Finnigan Delta 

Plus mass spectrometer at the UNM Center for Stable Isotopes. To evaluate any 

influences of detrital input, weight percent (wt%) insoluble residues were 

determined.  Approximately 1.5 g of sample was digested with 1M HCl until no 

reaction was observed, insoluble residues filtered, dried down, and reweighed. 

Carbon and oxygen isotope ratios were determined using the method 

described by Spotl and Vennemann (2003).  Approximately 0.5 mg of sample was 

loaded in 12 mL borosilicate tubes, flushed with He, then reacted for 12 hours with 

H3PO4 at 50 °C.  Carbon and oxygen isotope measurements of the evolved CO2 were 

made by continuous flow Isotope Ratio Mass Spectrometry using a Gasbench device 

coupled to a Thermo Fisher Scientific Delta V Plus Isotope Mass Spectrometer at the 

UNM Center for Stable Isotopes.  Results are reported using the standard delta 

notation, versus V-PDB.  Based on measurements of a laboratory standard (Carrara 

Marble), reproducibility for δ13C and δ18O was better than 0.1‰ for all but five 

samples, whose SD values range from 0.1‰ to 0.27‰.  The laboratory standard 

was calibrated versus NBS 19, for which the δ13C is 1.95‰ and δ18O is -2.2‰. 

4.0 RESULTS 

4.1 U-isotopes 

Measured δ238U values range from -0.13‰ to -0.75‰ (Table S2).  Each 

sample was analyzed in triplicate with an average 2σ error of 0.07‰ and analysis of 
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standards yielded an internal precision (2σ) of 0.1‰. The rugose coral fragment is 

0.12‰ lower than coeval bulk limestone supporting previous reports by 

Romaniello et al. (2013) that post-depositional cementation shifts bulk limestone to 

higher values.  Two negative isotopic excursions are observed and labeled D1 and 

D2 (Fig. 1).  The D1 event begins near the jamieae – lower rhenana zone boundary 

and ends in the mid-linguiformis Zone with a ~0.2‰ negative shift.  The D2 

excursion starts in the lower triangularis Zone and ends in the middle of the upper 

triangularis Zone with a ~0.3‰ negative shift.  Using biostratigraphically and 

radiometrically (Becker et al., 2012) controlled average sedimentation rates (~13-

33 m/My) calculated for the Devil’s Gate section, the approximate duration of the 

event D1 is 3.8 My and D2 is 1.1 My. 

4.2 Additional geochemical analysis 

Selected whole rock and carbonate fraction elemental concentrations are 

shown in Table S2.  No significant correlations among δ238U and measured 

elemental concentrations are observed (Fig. 2, Fig. S2). Wt% insoluble residues 

range from 7% to 28% with an average of 14% and show no co-variance with δ238U 

values (Fig. S2).  TOC values are low, ranging from 0.13% to 0.77% with an average 

of 0.26% and a cross plot of δ238U against TOC shows no correlation (Fig. 2). 

δ13C values range from -1.4‰ to 3.7‰ and δ18O values between -13.5‰ to -

5.3‰ (Fig. 1; Table S2).  The measured δ13C trends are similar to those reported by 

Joachimski et al. (2002) for the Devil’s Gate location with two positive excursions 

peaking in the upper rhenana and lower to middle triangularis zones.  These two 
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excursions correspond to other previously reported Late Devonian positive 

excursions across the globe (Fig. 1; McGhee et al., 1986; Buggisch, 1991; Joachimski 

and Buggisch, 1993; Joachimski et al., 2002; Stephens and Sumner, 2003). The older 

δ13C excursion (late rhenana Zone) records a ~2‰ positive shift, overlaps in time 

with, but is shorter than, the D1 negative δ238U excursion, and coincides with the 

late Frasnian extinction (LKW) pulse.  The younger δ13C excursion begins in the 

linguiformis Zone, records a ~+4‰ shift that is coincident with the four main F-F 

extinction pulses (UKW), and it begins before the onset and peak of the D2 negative 

δ238U excursion (Fig. 1).  There is no co-variation between δ13C and δ238U values 

(Fig. S2). δ18O values are uniformly low (average = -7.8‰; Fig. S2, Table S2) and 

show no systematic stratigraphic trends with δ13C, δ238U, or extinction pulses 

suggesting that the low values represent overprinting by elevated temperatures 

during burial diagenesis.  The fact that U-isotope shifts are maintained despite clear 

overprinting of δ18O values suggests that δ238U values may be fairly resistant to 

diagenetic alteration. 

5.0 DISCUSSION 

5.1 Evaluating depositional and diagenetic influences  

 We evaluate potential local influences on the measured δ238U curve using 

relationships between observed facies and comparisons among elemental, δ13C, 

TOC, and wt% insoluble residues. The D1 and D2 negative δ238U excursions do not 

systematically coincide with Devil’s Gate anoxic facies or with recognized 

transgressive-regressive facies patterns (Fig. 1).  For example, moderately anoxic 
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limestone-marl rhythmite facies forming the transgressive systems tract and 

maximum flooding zones for all six of the depositional sequences record the lowest 

as well as the highest δ238U values (Fig. S3).  Likewise, facies deposited during high 

δ238U values (indicating more oxic conditions) near the F-F boundary and upper 

triangularis Zone are anoxic to moderately anoxic (Fig. 1).  In addition, the D1 and 

D2 negative intervals cross cut sequence boundaries (D1) or start and end in mid 

sequence (D2) indicating no relationship with water-depth changes.  RSM, TOC, and 

Mn/Sr ratios were analyzed to assess local redox conditions in bottom waters or 

pore waters and no co-variance is observed indicating δ238U values do not reflect 

local conditions (Figs. 2, S2, S4).  These relationships indicate that the δ238U trends 

are not influenced by local bottom water or pore water redox conditions or water-

depth changes.  

To test for influences from local detrital siliciclastic sediment or riverine 

water input, we compare δ238U values to Al, U, and Th concentrations in whole rock 

(for detrital sediment influence) and carbonate fractions (for riverine water 

influence) and to wt% insoluble residues (Fig. 2, Fig. S2).  Of these various proxies, 

only a weak co-variance with Al and Mo is observed (p = 0.167 and p = 0.105, 

respectively). Finally, no evidence for subaerial exposure during shallowing facies 

trends was observed in the studied deeper water succession and Mg/Ca ratios from 

all samples are less than 0.1 indicating the deposits have not been dolomitized 

(Table S2).  
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The δ238U enrichment of 0.12‰ of the bulk carbonate compared to the 

coeval low-Mg calcite rugose coral fragment (Table S2) supports earlier studies of 

Romaniello et al. (2013) and Chen et al. (submitted) who report a 0.1‰ to 0.4‰ 

enrichment of modern and Neogene carbonates due to the addition of secondary 

calcite precipitated from low-oxygen pore waters.  We argue that this diagenetic 

overprinting was relatively uniform over the 140 m-thick succession because the 

samples were all derived from micrite-dominated facies and record consistently low 

δ18O values which indicate uniform geothermal gradients and burial depths. The 

interpretation of the preservation of original secular seawater trends is supported 

by previous studies reporting similar δ238U trends among globally separated Upper 

Permian-Lower Triassic successions all of which experienced diverse diagenetic 

histories (Brennecka et al., 2011; Lau et al., 2016; Elrick et al., 2017). The measured 

Late Devonian δ13Ccarb trends are similar to those reported from geographically 

widespread locations (Joachimski and Buggisch, 1993; Joachimski et al., 2002; 

Godderis and Joachimski, 2004; van Geldern et al., 2006; Song et al., 2017) which 

also supports the interpretation that the δ238U curve preserves a global seawater 

signal. In summary, given the results from comparisons among facies and 

stratigraphic trends, elemental, TOC, wt% insoluble proxies, and the δ13C trends, we 

interpret that the measured δ238U curve represents a record of global-ocean redox 

variations.    

Recently, Song et al. (2017) report δ238U trends from carbonates spanning 

<4.5 My of the Late Devonian from Baisha, South China.  Average isotopic values 

from South China  (-0.26‰) are slightly enriched compared to average Devil’s Gate 
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values (-0.39‰) and three negative δ238U excursions are identified with 

magnitudes of shift of <-0.3‰ (Fig. S5).  Two of the negative excursions, which are 

defined by only one to three data points, partly overlap in time with the D1 and D2 

excursions (upper rhenana and middle triangularis zones) with the remaining 

negative excursion reaching its lowest value in the linguiformis Zone when the 

Devil’s Gate curve is shifting back to higher isotopic values.  The overlap in timing 

between two of the negative excursions (though apparently briefer in South China) 

supports interpretations that this portion of the δ238U curves represent global 

seawater redox trends.  The apparent mismatch in δ238U trends between the two 

Late Devonian study sites during the upper rhenana through lower linguiformis 

zones may be due to increased tectonic subsidence in the South China pull-apart 

basin which induced basin deepening, restricted current circulation and oxygen-

depletion as well as upwelling of hydrothermal fluids (Chen et al., 2001; 2006), and 

uncertainties in the precise position of their conodont zonal boundaries. Moreover, 

a portion of the Late Devonian δ238U shifts occur within a single conodont zone, 

therefore the exact timing of the shift within that zone cannot be determined. If the 

apparent mismatch in δ238U trends between this study and South China were due to 

overprinting by local depositional or diagenetic processes, then the original δ238U 

values would increase rather than decrease. This is because detrital sediment or 

riverine waters are enriched in δ238U as are cements from oxygen-depleted pore 

waters.  Given this, δ238U curves with lower values more likely represent original 

seawater redox conditions. Ultimately, additional δ238U studies of this time interval 
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from other contemporaneous sections are required to unravel the apparent 

mismatch. 

Song et al. (2017) report a mostly positive relationship between measured 

δ238U and δ13C values and therefore infer that increased ocean anoxia was linked to 

climatically controlled, lower surface water productivity.  In contrast, δ238U and δ13C 

relationships in this study do not show co-varying trends (Fig. S2).  For example, the 

onset and duration of both Devil’s Gate positive δ13C excursions do not coincide with 

the onset and full duration of D1 and D2 δ238U events which implies that the 

processes controlling organic carbon sequestration were temporally, and perhaps 

spatially, decoupled from those controlling ocean anoxia. Similar temporal 

decoupling between δ238U and δ13C records over a range of geologic time periods is 

reported by Brennecka et al. (2011), Dahl et al. (2014), Lau et al. (2016), Elrick et al. 

(2017), and Bartlett et al. (in review). 

5.2 Extinction versus anoxic sediment and global ocean δ238U curve 

To evaluate relationships between Late Devonian extinction pulses and local 

seawater anoxia, we compile the occurrence and timing of marine facies defined as 

anoxic, intermittently anoxic, and oxic/suboxic from available Upper Devonian data 

with conodont zonation-level age control (Fig. 3; see discussion in Supplementary 

Information). The compilation is dominated by successions composed of deeper-

water facies accumulating below wave base so as to minimize the effects of local 

shallow-water oxygenation by simple diffusion/wave mixing with atmospheric 

oxygen. We acknowledge that not all organic-rich mudrocks are indicative of 
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sustained bottom water anoxia and not all sediments deposited in anoxic bottom 

waters are ‘black shales’ (for example, turbidites or organic-rich limestone); 

however, we agree with Melchin et al. (2013) that this approach provides a 

sufficient first-order proxy to identify anoxic depositional conditions. It is important 

to emphasize that except for rare occasions (cf., Dopieralska et al., 2006; Carmichael 

et al., 2014), available Devonian marine deposits accumulated in epeiric seas or 

flooded continental margins rather than on oceanic crust in open-ocean settings 

(which have since been subducted). Given this, our compiled sediment record 

represents dominantly low-latitude epeiric sea anoxia trends which may or may not 

track the conditions in open-ocean seawaters.  The compiled sediment redox data 

spans the studied ~7 My time interval and is derived from five different 

paleocontinents, an island arc, and an accretionary complex located in tropical to 

subtropical paleolatitudes (Fig. S1). These epeiric seas were, however, presumably 

where the bulk of Late Devonian benthic organisms lived and biodiversity records 

from these deposits provide a robust record of Devonian extinction trends.  

The late Frasnian extinction pulse (LKW) occurs during a time when nearly 

half (45%) of the compiled epeiric sea sites accumulated anoxic or intermittently 

anoxic deposits (Fig. 3; see SI for discussion on calculating epeiric sea areas). The F-

F extinction pulses (UKW) overlap in time with anoxic or moderately anoxic 

deposition in ~70% of the compiled sites including the Asian island arc and 

Thailand accretionary complex (Fig. 3).  These results support previous 

interpretations that anoxic conditions in epeiric seas and more open-ocean 

locations were associated with the Late Devonian extinction pulses.  This 
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comparison, however, does not address the relationships between the global 

seawater signal afforded by the δ238U curve and low-latitude epeiric sea sediment 

records.  

The comparison between the compiled subtropical dominantly epeiric sea 

sediment redox record and the global-ocean δ238U curve indicates that the two 

records generally track each other except during the main F-F extinction interval 

(Fig. 3). Beginning at the base of the section, just prior to the D1 excursion (upper 

hassi-jamieae zones) when δ238U trends suggest more oxic global seawaters, >60% 

of the subtropical locations also accumulated oxic/suboxic deposits indicating that 

epeiric seas redox conditions were generally coupled with the global oceans. During 

the D1 anoxic event, 45% of the epeiric sea locations accumulated anoxic deposits 

and the remaining 55% of locations record oxic/suboxic conditions indicating 

partial coupling of the two seawater masses.  The short time interval between the 

D1 and D2 excursions during the most intense Late Devonian extinction pulses 

(UKW), global oceans were more oxic; however, ~70% of the epeiric sea and more 

open-ocean locations were accumulating anoxic to moderately anoxic deposits 

indicating the two seawater masses were decoupled.  Interestingly, during this same 

time interval, the South China δ238U curve also records increasing and higher 

isotopic values suggesting increasingly oxic seawaters (Fig. S5).  During the D2 

excursion, ~55% of the sites record anoxic conditions indicating the two seawater 

masses were partially coupled; whereas after the D2 excursion (latter half of upper 

triangularis Zone), ~65% of the sites record oxic/suboxic conditions indicating 

general coupling between the two seawater masses.  In summary, over the ~7 My 
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study interval, subtropical epeiric seas were coupled to partially coupled with 

contemporaneous global oceans except for short interval (<500 ky) straddling the F-

F boundary (UKW).  This pattern of overall seawater redox coupling provides 

compelling evidence that shallow epeiric seas were in communication to partial 

communication with Late Devonian open-ocean seawater and is further supported 

by numerous studies reporting similar Late Devonian δ13Ccarb and δ18Oapatite trends 

among geographically widespread epeiric sea locations (e.g., Joachimski et al., 2002; 

Elrick et al., 2009).  

The brief interval of time during the UKW event when the δ238U curve and 

sediment redox compilation do not match cannot be explained by eustatic sea-level 

fall and resultant restricted circulation between epeiric seas and the global oceans 

because both the more open-ocean sites (Thailand and Asian island arc) also record 

moderately anoxic conditions.  Furthermore, the UKW event occurred during the T-

R IId-3 eustatic sea-level rise rather than fall, which should have facilitated 

exchange between the water masses.  It might be argued that the eustatic flooding 

resulted in extensive epeiric seaway development and those relatively shallow 

subtropical waters were prone to warmer temperatures and lower dissolved oxygen 

concentrations which resulted in local anoxic conditions separate from the rest of 

the global oceans.  Again, the fact that the more open sites also record moderately 

anoxic conditions argues against oxygen solubility-temperature controls. Local 

temperature-controlled seawater oxygen solubility changes are also not supported 

by Late Devonian δ18O trends (Fig. S5; Joachimski and Buggisch, 2002). At present it 

is unclear why both the Devil’s Gate and South China sections record increasing and 
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higher δ238U values when the majority of subtropical compiled sediment sites 

accumulated anoxic/moderately anoxic deposits.   

5.3 U-cycle modeling   

From a range of global paleogeographic reconstruction maps, we estimate 

that about 15% of the entire Late Devonian ocean was comprised of epeiric seas.  If 

we assume that between one quarter to one half of the epeiric sea area, namely the 

warm subtropical paleolatitudes, accumulated anoxic deposits and sequestered U, 

then that area would be about 4% to 7.5% of the total Late Devonian seafloor.  For 

comparison, the modern ocean has <0.2% of seafloor accumulating anoxic deposits 

(Tissot and Dauphas, 2015).  This simple visual estimation suggests that anoxia in 

epeiric seas alone represents 18 to 37 times more area of anoxic sediment 

accumulation than the modern ocean and implies that global Devonian ocean δ238U 

signatures should have been significantly more depleted than modern oceans.  The 

~-0.39‰ average Devil’s Gate δ238U values include the effects of cement 

precipitated from poorly oxygenated pore waters (cf., Romaniello et al., 2013).  If we 

remove these diagenetic effects (using a constant 0.27‰ correction factor; see 

diagenetic factor discussion in SI) from the measured curve, the ‘corrected’ Late 

Devonian curve would average -0.7‰, which is significantly lower than modern 

seawater values of ~-0.4‰ and supports the hypothesis that Late Devonian 

seawaters were characteristically more reducing than modern seawaters. 

To quantitatively estimate changes in area of anoxic seafloor and the flux of 

seawater U into anoxic sediments, we use a steady-state mass balance model (see SI 
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for model details and output). The modeling results suggest that during the peak of 

the D1 excursion there was a ~5% increase (from Late Devonian background 

values) in the total seafloor accumulating anoxic sediments, whereas at D2 there 

was a ~15% increase (from background values) in the total area of anoxic seafloor 

(Fig. S6).  The modeling also estimates that during the D1 peak, 65% of seawater U 

was sequestered into anoxic sediments, whereas during the D2 peak, 82% of 

seawater U was sequestered into sediments (Fig. S6). Similar modeling ranges of U 

sequestered into Paleozoic anoxic sediments is reported by Brennecka et al. (2011), 

Lau et al. (2016), and Elrick et al. (2017) during the Late Permian mass extinction 

and by Song et al. (2017) for the Late Devonian extinction. Regardless of the exact 

percentages of U sequestration during the negative excursions, it is apparent that 

there was substantial U drawdown during anoxic events which has implications for 

decreasing U residence times from the modern value of ~400 ky. The results of our 

model suggest that Late Devonian events D1 and D2 reflect ~40% and ~60% 

decreases in U residence time, respectively.  

6.0 CONCLUSIONS 

1) A high-resolution δ238U curve across ~7 My of the Late Devonian was developed 

to test the hypothesis that widespread marine anoxia was coincident with Late 

Devonian extinction pulses (the late Frasnian lower Kellwasser and the Frasnian-

Famennian boundary upper Kellwasser events). The measured δ238U curve shows 

no co-variation among local anoxic facies, transgressive-regressive facies trends, 

redox-sensitive metals, TOC, Mg/Ca and Mn/Sr ratios, or detrital elements and 
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insoluble residue proxies indicating that δ238U variabilities were not controlled by 

local depositional or diagenetic processes and represent global-ocean redox 

conditions.  

2) Two negative excursions, termed D1 (late Frasnian) and D2 (early Famennian), 

indicating more reducing global seawater conditions are recorded with magnitudes 

of -0.2‰ to -0.3‰, respectively.  The onset and demise of both excursions are 

gradual with the D1 spanning ~3.8 My and D2 spanning ~1.1 My.  Steady-state mass 

balance modeling of the δ238U trends suggest that there was a ~5% to 15% increase 

(from background Late Devonian values) in total ocean seafloor area accumulating 

anoxic deposits and a ~65% to 82% increase in the flux of seawater U to anoxic 

deposits during the D1 and D2 anoxic events, respectively. 

3) The redox characteristics of well-dated Upper Devonian marine deposits from 

subtropical deeper water epeiric sea and more open-ocean sites were compiled to 

compare with the measured δ238U curve and the main Late Devonian extinction 

pulses.  The overlap in timing between subtropical epeiric sea and open-ocean 

anoxic sediment accumulation and the main extinction pulses support earlier 

interpretations that anoxia played an important role in the Late Devonian 

biodiversity crisis.  Comparisons between the timing of anoxic epeiric sea and open-

ocean deposits and the global seawater δ238U redox curve indicates overall coupling 

between the two seawater masses for much of the studied time interval, except for a 

brief interval (<500 ky) of decoupling during the main F-F extinction event (UKW).  
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8.0 SUPPLEMENTARY INFORMATION 

8.1 Redox interpretations of compiled Upper Devonian marine deposits 

Our sediment compilations documenting the occurrence of Upper Devonian 

anoxic, moderately or intermittently anoxic, or oxic to suboxic deposits are derived 

from published stratigraphic columns or written descriptions (references cited in 

Figure 3 caption).  The following sediment types were grouped into the three redox 

categories. 

Anoxic deposits:  black shales; calcareous, siliceous, or dolomitic dark shale; 

laminated siliceous shale, laminated dark chert; dark gray mudrocks lacking benthic 

skeletal fauna; bituminous dark limestone, lithologies containing pyrite framboid 

sizes and distributions interpreted by respective authors as anoxic/euxinic bottom 

waters. 

Intermittently or moderately anoxic deposits: rhythmically interbedded 

limestone and shale/marl (rhythmites) with even to nodular bedding and laminated 

limestone layers, intervals with alternating anoxic and oxic/suboxic characteristics 

(e.g., bioturbated lime mudstones interbedded with laminated dark mudrocks 

lacking benthic skeletal fauna), lithologies containing pyrite framboid sizes and 

distributions interpreted by respective authors as ‘dysoxic’ bottom waters, micrite-

dominated limestones with low-diversity benthic fauna and lacking bioturbation. 

Oxic to suboxic deposits: light gray mudrocks, nodular to strongly bioturbated 

units, deposits containing benthic skeletal fauna and well bioturbated.  
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8.2 Modeling seawater U cycling 

To quantitatively evaluate the effects of Late Devonian redox changes, we use 

a steady state mass balance model based in part on previous models of Arnold et al. 

(2004) and Montoya-Pino et al. (2010) to estimate the fraction of U removed to 

anoxic facies (fAnox flux) and the area of anoxic seafloor (fAnox area) based on the 

measured δ238U values.  Seawater δ238U is controlled by the isotopic compositions 

and relative sizes of the two main sinks (oxic/suboxic sediments and anoxic/euxinic 

sediments): 

𝛿𝑅𝑖𝑣𝑒𝑟 = (𝑓𝐴𝑛𝑜𝑥 𝑓𝑙𝑢𝑥 )(𝛿238𝑈𝐴𝑛𝑜𝑥) + (1 − 𝑓𝐴𝑛𝑜𝑥 𝑓𝑙𝑢𝑥)(𝛿238𝑈𝑂𝑥𝑖𝑐) 

Using the isotopic fractionation (Δ) between seawater and U sinks, this equation can 

be expressed in terms of δ238Useawater using the following substitutions for anoxic and 

oxic sink δ238U values: 

𝛿238𝑈𝑂𝑥𝑖𝑐 = 𝛿238𝑈𝑆𝑒𝑎𝑤𝑎𝑡𝑒𝑟 + Δ𝑂𝑥𝑖𝑐 

𝑈𝐴𝑛𝑜𝑥 = 𝛿238𝑈𝑆𝑒𝑎𝑤𝑎𝑡𝑒𝑟 + Δ𝐴𝑛𝑜𝑥 

Rearranging this equation, the fraction of U removed to anoxic sediments can be 

determined: 

𝑓𝐴𝑛𝑜𝑥 𝑓𝑙𝑢𝑥 =
𝛿238𝑈𝑅𝑖𝑣𝑒𝑟 − 𝛿238𝑈𝑆𝑒𝑎𝑤𝑎𝑡𝑒𝑟 − Δ𝑂𝑥𝑖𝑐

Δ𝐴𝑛𝑜𝑥 − Δ𝑂𝑥𝑖𝑐
 

Once the fraction of U removed to anoxic sediments is calculated, we can then use 

these values in conjunction with rate constants that express estimated metal (U) 

burial rates (𝑘𝑂𝑥𝑖𝑐 and 𝑘𝐴𝑛𝑜𝑥) to model the area of anoxic seafloor based on seawater 

(1) 

(3) 

(4) 

(2) 
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δ238U.  Sink U burial rates (Joxic and Janox) can be expressed in moles/year by the 

equations: 

𝐽𝑂𝑥𝑖𝑐 = 𝑘𝑂𝑥𝑖𝑐𝐴𝑂𝑥𝑖𝑐(𝑁𝑈/𝑉𝑂𝑐𝑒𝑎𝑛) 

𝐽𝐴𝑛𝑜𝑥 = 𝑘𝐴𝑛𝑜𝑥𝐴𝐴𝑛𝑜𝑥(𝑁𝑈/𝑉𝑂𝑐𝑒𝑎𝑛) 

where NU is the number of moles of U in the ocean, AOxic and AAnox represent the area 

of oxic and anoxic U sinks, respectively, and VOcean is the volume of the ocean.  

Because our model recognizes only two U sinks (oxic and anoxic) we know the sum 

of oxic and anoxic seafloor must equal the total seafloor area and we can define the 

area of U sink fractions as: 

𝑓𝑂𝑥𝑖𝑐 𝑎𝑟𝑒𝑎 =
𝐴𝑂𝑥𝑖𝑐

𝐴𝑂𝑐𝑒𝑎𝑛
= 1 − 𝑓𝐴𝑛𝑜𝑥 𝑎𝑟𝑒𝑎 

𝑓𝐴𝑛𝑜𝑥 𝑎𝑟𝑒𝑎 =
𝐴𝐴𝑛𝑜𝑥

𝐴𝑂𝑐𝑒𝑎𝑛
 

The same relationship can be used to express previously calculated anoxic U sink 

fractions (fAnox flux) in terms of sink metal burial rates: 

𝑓𝐴𝑛𝑜𝑥 𝑓𝑙𝑢𝑥 =
𝐽𝐴𝑛𝑜𝑥

𝐽𝐴𝑛𝑜𝑥 + 𝐽𝑂𝑥𝑖𝑐
 

Lastly, substituting equations 5 and 6 and rearranging this expression we can solve 

for the fraction of anoxic seafloor area: 

𝑓𝐴𝑛𝑜𝑥 𝑎𝑟𝑒𝑎 =
𝑓𝐴𝑛𝑜𝑥 𝑓𝑙𝑢𝑥 𝑘𝑂𝑥𝑖𝑐

𝑘𝐴𝑛𝑜𝑥 + 𝑓𝐴𝑛𝑜𝑥 𝑓𝑙𝑢𝑥(𝑘𝑂𝑥𝑖𝑐 − 𝑘𝐴𝑛𝑜𝑥)
 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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 Our steady-state model requires assumptions be made to simplify calculating 

the fraction of U removal to anoxic sediments and the area of anoxic seafloor.  These 

assumptions include: 1) constant U isotopic composition for the riverine source, 2) 

constant fractionation factors for oxic/suboxic and anoxic/euxinic sinks, 3) constant 

U burial rates, and 4) constant diagenetic correction factor to account for 238U 

enrichment during the formation of secondary carbonate phases in poorly 

oxygenated pore waters.   

 Recent studies characterizing the marine uranium cycle can be used to help 

identify the range and appropriate parameter values for steady state modeling of U.  

Andersen et al. (2016) report modern δ238River as -0.27(±0.16)‰, with a range of -

0.72‰ to 0.06‰.  For our calculations, we utilize an average continental crust 

δ238U value of -0.29‰ (Tissot and Dauphas, 2015) as this estimate displays 

significantly less isotopic variability than reported riverine values.  Reported 

estimates of ΔAnox range from 0.5‰ (Weyer et al., 2008) to 0.77‰ (Stirling et al., 

2015).  We utilize a value of 0.77‰ in our model calculations based on the most 

recent data from Kyllaren Fjord, Norway (Noordmann et al., 2015) and laboratory 

experiments (Stirling et al., 2015) estimating ΔAnox values in this range.  Model 

parameters were set to 0‰ for ΔOxic based on recent laboratory experiments by 

Chen et al. (2016) that show primary marine calcite incorporates U from oxic waters 

with no observed fractionation.  We utilize U burial rates (kAnox and kOxic) of 629 

m/year and 29 m/year for anoxic and oxic settings, respectively, based on median 

values of compiled data from Zheng et al. (2002), Dunk et al. (2002), and McManus 

et al. (2006).  Romaniello et al. (2013) first reported that shallow-buried (<40 cm) 
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modern carbonate sediments were isotopically enriched by 0.2‰ and 0.4‰.  This 

range of diagenetic effects has been refined using Neogene drill core data from the 

Bahamas Drilling Project (Unda, Clino, and site 1006) which suggest an average 

diagenetic correction factor for these fully lithified platform top and basin deposits 

of 0.27‰ +/- 0.14‰ (Chen et al., submitted). For our model calculations, we 

assume this diagenetic correction factor of +0.27‰.  Larger enrichment effects are 

less likely once the buried and partially cemented sediments move out of 

communication with bottom waters and U diffusion.  

 To characterize the effects parameter uncertainty has on model output, we 

ran sensitivity tests in which model parameters were varied independently across a 

range of reported values; those sensitivity runs with output U removal fluxes of 

>100% were deemed unreasonable. Varying δ238URiver between -0.29‰ to -0.5‰ 

yields anoxic seafloor area estimates ranging from 3% to 8% for event D1 and 5% to 

17% for D2.  ΔAnox values between 0.63‰ and 0.77‰ return estimates of 8% to 

15% anoxic seafloor areas for event D1 and 17% to 99% anoxic seafloor areas for 

event D2, respectively.  Variation of oxic metal burial rates (kOxic) between 20 

m/year and 60 m/year results in estimates of 6% to 15% anoxic seafloor area for 

event D1, and 12% to 31% for event D2.  Anoxic U burial rates between 300 m/year 

and 900 nmol m/year for kAnox produce ranges of 5% to 15% anoxic seafloor area 

for the D1 event, and 12% to 30% for the D2 event.  Lastly, varying the diagenetic 

correction factor from 0.25‰ to 0.4‰ results in a range of 7% to 17% for event D1 

and between 14% and 77% for event D2.   
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10.0 FIGURE CAPTIONS 

Figure 1.  Stratigraphic, depositional sequence, δ238U, and δ13Ccarb records of the 

Upper Devonian upper Devil’s Gate Limestone from central Nevada with onsets of 

global transgressive-regressive cycles (T-R cycles of Johnson et al., 1985), and five 

Late Devonian extinction pulses (black triangles; McGhee, 2001). UKW and LKW 

refer to the upper and lower Kellwasser events. Conodont biostratigraphy by 

Sandberg et al. (1988, 2003).  Gray shaded events D1 and D2 refer to negative δ238U 

excursions described in text. Vertical lines with numbers 1-6 refer to recognized 

My-scale depositional sequences discussed in text.  Curves smoothed using LOWESS 

smoothing procedure.  Congl. = conglomerate, MST = mudstone, WK = wackestone, 

calc. = calcareous. 

Figure 2.  Cross plots of δ238U against Alwr, Uwr, Mowr, and total organic carbon 

(TOC).  The lack of co-variation in elemental proxies for detrital input, bottom water 

and pore water redox conditions indicate local depositional or diagenetic conditions 

were not responsible for δ238U trends. 

Figure 3. Comparisons among Late Devonian δ238U trends, extinction pulses, and 

contemporaneous anoxic (black), moderate or intermittently anoxic (gray), and or 

oxic/suboxic (white) deposits accumulating in subtropical epeiric seas, shallow-

water island arc (central Asia), and accretionary complex (Thailand). The 

stratigraphic records of 15 Late Devonian sites were used to characterize 9 regions: 

western U.S., eastern and mid U.S., western Canada, southern Europe, Morocco, 

South China, Australia, Thailand accretionary complex, and a central Asian island 



45 

arc. Five different time intervals were defined before, during, and after the D1 and 

D2 negative δ238U excursions and the percentage of regions accumulating anoxic to 

moderately anoxic sediments was utilized to generate the % anoxic seafloor plot. 

We define ‘anoxic’ seafloor as anoxic or moderately anoxic deposits occurring at that 

site for ≥50% of the targeted time interval.  The term ‘coupled’ or ‘decoupled’ refers 

to a comparison between δ238U trends (indicating more oxic or more reducing 

global seawater) and the % anoxic seafloor.  The redox sediment record is compiled 

from: Appalachian Basin/Oklahoma (Oklahoma, Over, 2002; Tennessee, Over, 2007; 

New York, Bond and Wignall, 2008); Michigan (Michigan Basin, Gutschick and 

Sandberg, 1991; Alpena, Michigan, Over, 2002; central Michigan Basin, Formolo et 

al., 2014); Iowa (Day and Witzke, 2017); western Utah (Sandberg et al., 1997; 

Bratton et al., 1999); Nevada (this study); Section C, western Canada, Whalen et al., 

2017; Germany (Steinbruch Benner section, Bond et al., 2004); France (La Serre, 

Montagne Noire, Feist, 1985; Bond et al., 2004); Poland (Kowala Quarry, Joachimski 

et al., 2002; Bond et al., 2004); Morocco (Bou Tchrafine section, Tafilalt Basin, 

Wendt and Belka, 1991); South China (Yangdi section, Ji, 1994; Ma et al., 2016; 

Nandong section, Ma and Bai, 2002); Australia (Horse Spring Range, Canning Basin, 

George et al., 2014), Belgium (Sinsin section, Kaiho et al., 2013), central Asian island 

arc (Carmichael et al., 2014), and the Thailand accretionary complex (Mai Sariang, 

Konigshof et al., 2012). 
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11.0 SUPPLEMENTARY FIGURE CAPTIONS 

Figure S1. A) Late Devonian global paleogeography showing location of anoxic, 

intermittently to moderately anoxic, or oxic/suboxic sediment types during the late 

Frasnian (LKW) and F-F extinction (UKW) intervals.  Note that the majority of sites 

are located in southern subtropical epeiric seas and mainly within the narrow Rheic 

Ocean. On maps, white = open ocean, light gray = shallow epeiric seas, dark gray = 

land.  Modified from Blakey (http://deeptimemaps.com/wp-

content/uploads/2016/05/380_Ma_Dev_GPT-1.png). B) Late Devonian North 

America (Laurentia) paleogeography showing location of study area in central 

Nevada with a black square (modified from Blakey http://deeptimemaps.com/wp-

content/uploads/2016/05/NAM_key-375Ma_LDev.png). 

Figure S2.  Cross plots of δ238U versus Vwr, Mn/Sr, Thcarb, weight % insoluble 

residue, δ13Ccarb, and δ18Ocarb showing no co-variations between δ238U values and 

proxies for detrital input, bottom water or pore water redox conditions, and burial 

diagenesis. 

Figure S3.  Comparison between δ238U values and facies type (described in Table 

S1).  Note that a wide range of δ238U values are measured within a single facies type 

indicating δ238U values are not controlled by local depositional environments or 

water depth.  Monomict and polymict limestone conglomerate facies were not 

sampled because clasts and matrix were transported to studied location and may 

not represent redox conditions during that specific sampled time interval.  Calc. = 

calcareous, MST = mudstone, WK = wackestone, skel. = skeletal. 

http://deeptimemaps.com/wp-content/uploads/2016/05/380_Ma_Dev_GPT-1.png
http://deeptimemaps.com/wp-content/uploads/2016/05/380_Ma_Dev_GPT-1.png
http://deeptimemaps.com/wp-content/uploads/2016/05/NAM_key-375Ma_LDev.png
http://deeptimemaps.com/wp-content/uploads/2016/05/NAM_key-375Ma_LDev.png
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Figure S4.  Stratigraphic comparison among δ238U trends and redox sensitive 

metals (RSM) in the whole rock fraction. Note that no significant enrichment of 

redox sensitive trace metals is observed indicating no links between local anoxic 

conditions and δ238U values derived from the carbonate fraction.  

Figure S5. Comparison between Devil’s Gate, Nevada δ238U and δ13Ccarb (this study) 

and Baisha, South China δ238U and δ13Ccarb (plotted as green points, Song et al., 

2017).  Conodont apatite δ18Oapatite trends from Joachimski and Buggisch (2002) 

showing relationships of surface seawater temperature changes (higher δ18O values 

indicating cooler temperatures) and other proxy data. Shading and symbols the 

same as Figure 1. 

Figure S6.  Modeling results of fanox (fraction of seawater U removed to anoxic 

facies) and anoxic seafloor area (% of total seafloor) using measured Late Devonian 

δ238U curve.  

Table S1.  Facies description and depositional environment interpretations of 

upper Devil’s Gate Limestone at the Nevada study site. 

Table S2.  Data table of δ238U, δ13Ccarb, δ18Ocarb, whole rock, detrital, and carbonate 

fraction elemental concentrations, and sample lithology. 
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12.0 FIGURES 
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Figure 3 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 
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13.0 TABLES 

Table S1.  Facies description and depositional environment interpretations of upper Devil’s Gate 

Limestone at the study site. 

Facies Lithology Sedimentary 
structures 

Biota Depositional 
environment 

     

Peloid 
grainstone 
 

Grainstone Planar mechanical 
laminations 

Barren High-energy shallow 
subtidal (oxic) 

Skeletal 
mudstone/ 
wackestone 

Mudstone/ 
wackestone 

Massive Sparse rugose coral, 
crinoids, brachiopods, 
gastropods, skeletal 
fragments, well 
bioturbated 
 

Shallow subtidal 
(oxic) 

Polymict 
limestone 
conglomerate 

Matrix- to clast- 
supported 
limestone 
conglomerate. 
Clasts composed of 
massive lime MST 
to argillaceous 
lime MST 
 

Massive lenticular 
beds, moderately 
rounded, pebble to 
cobble-size clasts 

Sparse skeletal fragments 
in matrix and clasts 
including rugose coral, 
brachiopods, gastropods, 
rare nautiloid 
 

Debris flow deposits 
Intermediate to deep 
subtidal 
(suboxic) 

Monomict 
limestone 
conglomerate 

Matrix- to clast-
supported 
limestone 
conglomerate. 
Clasts composed of 
laminated to 
massive lime 
MST/WK, matrix 
composed of lime 
MST to 
argillaceous lime 
MST 
 

Massive lenticular 
beds, moderately 
rounded pebble- to 
cobble-size clasts 

Fine skeletal debris in 
clasts and matrix, 
occasional bioturbation 

Debris flow deposits 
deep subtidal 
(suboxic to anoxic) 

Limestone-
marl 
rhythmites 

Lime mudstone 
interbedded with 
argillaceous lime 
mudstone (marl) 
 

Even to nodular 
bedded, both layers 
contain common 
suspension laminae, 
sparse graded layers, 
common 
syndepositional 
folding, rare flame 
structures 
 

Rare fine skeletal debris, 
occasional bioturbation 

Deep subtidal 
(suboxic to anoxic) 

Calcareous 
mudstone 
w/interbedded 
lime mudstone 

Calcareous 
(terrigenous) 
mudstone with 
sparse interbedded 
lime MST 

Suspension laminae in 
both layers 

Barren Deepest subtidal 
(anoxic) 
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Table S2.  Data table of δ238U, δ13Ccarb, δ18O, whole rock, detrital, and carbonate fraction elemental concentrations, and sample lithology. 

Sample Meter δ238U 2SD δ13C δ18O 
Uwr 

(ppm) 
Mowr 

(ppm) 
Vwr 

(ppm) 
Alwr 

(ppm) 
% 

insol. 
Thcarb %TOC 

Ucarb. 

(ppm) 
Mocarb. 

(ppm) 
Vcarb. 

(ppm) 
Mg/Ca Mn/Sr Lithology 

DVG 0 0 -0.27 0.12 0.63 -9.61 0.58 0.45 2.66 2081 13 0.36 0.15 0.39 - 1.76 0.006 1.16 micrite/wacke 

DVG 5.5 5.5 -0.4 0.10 1.62 -6.38 - - - - - 0.30 0.18 0.36 0.01 1.01 0.007 0.60 micrite/wacke 

DVG 7.5 7.5 -0.18 0.10 1.45 -6.66 0.74 0.64 2.74 4978 19 0.81 0.15 0.36 0.00 1.32 0.022 0.53 micrite/wacke 

DVG 10.5 10.5 -0.23 0.03 1.08 -7.01 - - - - - 0.11 0.25 0.44 0.01 1.67 0.007 0.37 micrite/wacke 

DVG 16 16 -0.29 0.10 - - 0.88 0.78 1.77 793 8 0.18 0.16 0.68 0.04 1.25 0.008 0.66 micrite/wacke 

DVG 18 18 -0.15 0.09 - - - - - - - 0.12 - 0.37 - 1.15 0.005 0.33 micrite/wacke 

DVG 20 20 -0.34 0.08 1.52 -8.84 1.37 1.85 7.33 5606 19 0.92 0.27 0.78 - 1.59 0.009 0.40 micrite 

DVG 23.5 23.5 -0.37 0.08 1.51 -6.92 - - - - - - 0.24 - - - - - micrite 

DVG 25.3 25.3 - - 1.21 -7.54 0.77 0.49 3.04 2160 10 0.34 0.21 - - - - - micrite 

DVG 26 26 -0.33 0.07 1.34 -7.15 - - - - - - 0.24 - - - - - micrite 

DVG 27.2 27.2 -0.52 0.14 1.79 -7.94 - - - - - 0.76 0.34 0.66 0.03 0.66 0.009 0.20 micrite 

DVG 28.8 28.8 -0.49 0.11 1.24 -13.6 1.02 0.64 9.23 3648 13 0.58 0.19 0.58 - 4.28 0.006 0.83 micrite 

DVG 32 32 -0.55 0.02 1.14 -6.98 - - - - - - 0.23 - - - - - micrite 

DVG 33 33 - - -1.17 -7.18 - - - - - - 0.30 - - - - - micrite 

DVG 39.8 39.8 -0.54 0.05 1.72 -8.05 1.40 0.92 7.55 8584 23 1.41 0.37 0.41 0.13 1.21 0.068 1.22 micrite 

DVG 44.5 44.5 -0.51 0.07 2.05 -8.76 - - - - - - 0.27 - - - - - micrite 

DVG 46.3 46.3 - - 2.64 -7.53 - - - - - - 0.13 - - - - - grainstone 

DVG 46.5 46.5 -0.38 0.12 2.71 -8.31 - - - - - - - - - - - - grainstone 

DVG 50.1 50.1 -0.47 0.05 2.18 -7.15 - - - - - - 0.32 - - - - - micrite 

DVG 52 52 -0.29 0.04 1.37 -9.16 3.08 1.49 12.95 1396 20 0.89 0.26 1.71 0.02 4.15 0.009 0.21 micrite 

DVG 53.3 53.3 -0.42 0.08 0.77 -8.59 - - - - - 0.29 0.13 0.62 - 1.71 0.009 0.12 micrite 

DVG 54.1 54.1 -0.44 0.01 -0.60 -9.90 2.14 0.84 8.43 2631 11 0.50 0.21 1.52 0.05 4.01 0.012 0.15 micrite 

DVG 56.7 56.7 -0.49 0.06 1.05 
-

10.10 - - - - - 0.16 0.21 0.24 0.00 3.70 0.006 0.12 micrite 

EDG 1.3 63.3 -0.49 0.05 -0.41 -7.28 1.28 1.87 5.26 3496 13 0.57 0.26 0.76 0.18 2.35 0.012 0.29 micrite 

EDG 3 65 -0.47 0.10 -1.41 -7.00 0.62 0.83 1.31 1175 12 0.42 0.26 0.40 0.06 0.67 0.010 0.13 micrite 
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Sample Meter δ238U 2SD δ13C δ18O 
Uwr 

(ppm) 
Mowr 

(ppm) 
Vwr 

(ppm) 
Alwr 

(ppm) 
% 

insol. 
Thcarb %TOC 

Ucarb. 

(ppm) 
Mocarb. 

(ppm) 
Vcarb. 

(ppm) 
Mg/Ca Mn/Sr Lithology 

EDG 5 67 -0.24 0.02 1.94 -6.72 0.56 1.02 4.81 6423 15 0.88 0.30 0.20 0.01 0.72 0.026 0.91 micrite 

EDG 6 68 -0.19 0.05 2.71 -7.29 0.55 1.08 3.08 4251 17 0.73 0.25 0.27 0.03 0.58 0.017 0.71 micrite 

EDG 7.3 69.3 -0.33 0.05 2.52 -6.87 0.46 0.90 2.31 2289 12 0.51 0.36 0.26 - 0.68 0.016 0.70 micrite 

EDG 8.5 70.5 -0.43 0.12 3.18 -7.15 0.74 1.58 4.17 3791 23 0.87 0.56 0.52 0.04 0.85 0.017 0.72 micrite 

EDG 9.6 71.6 -0.33 0.07 3.21 -7.33 - - - 1909 21 0.33 0.77 0.46 0.03 0.57 0.007 0.41 micrite 

EDG 10 72 -0.27 0.04 3.23 -7.01 0.91 0.99 2.45 2277 18 0.47 0.58 0.74 0.05 0.68 0.008 0.61 micrite 

DVG 73 73 -0.39 0.04 0.36 -6.21 - - - - - - - - - - - - micrite 

DVG 75.3 75.3 -0.27 0.08 3.80 -7.65 - - - - - - 0.15 - - - - - micrite 

EDG 16.3 78.3 -0.32 0.06 1.80 -5.34 - - - - - - 0.19 - - - - - micrite 

EDG 17.8 79.8 -0.48 0.10 1.96 -9.26 1.95 - 3.28 881 9 0.17 0.19 1.44 0.04 1.08 0.006 0.53 micrite 

EDG 18.8 80.8 -0.55 0.03 2.05 -9.41 0.57 1.18 1.02 1220 13 0.29 0.17 0.51 0.05 0.61 0.008 0.43 micrite 

EDG 20.3 82.3 -0.56 0.06 3.39 -6.96 - - - - - 0.70 0.24 0.23 0.30 0.65 0.013 0.36 micrite 

EDG 22 84 -0.75 0.04 3.11 -7.05 - - - - - 0.58 0.30 0.50 0.07 1.35 0.021 0.40 micrite 

EDG 23.6 85.6 -0.61 0.01 3.74 -6.38 0.36 0.70 1.02 999 8 0.33 0.22 0.26 0.13 0.49 0.013 0.17 micrite 

EDG 25.7 87.7 -0.52 0.03 2.91 -5.89 - - - - - 0.51 0.77 0.28 0.26 0.82 0.018 0.16 micrite 

EDG 31.5 93.5 -0.65 0.01 2.92 -7.12 0.70 1.99 3.14 2061 13 0.38 0.21 0.42 0.08 0.92 0.011 0.13 micrite 

EDG 35 97 -0.59 0.08 2.31 -7.74 1.24 1.85 2.86 2078 18 0.32 0.19 0.87 0.13 1.01 0.009 0.20 micrite 

EDG 36.9 98.9 -0.47 0.11 2.48 -7.77 0.44 1.12 1.83 1148 - 0.22 - - - - - - micrite 

EDG 37.7 99.7 -0.45 0.05 - - - - - - - 0.19 - 0.31 0.09 0.71 0.008 0.09 micrite 

EDG 39.5 101.5 -0.46 0.04 3.24 -7.60 0.38 1.13 1.71 1696 - 0.25 0.20 0.20 0.05 0.54 0.010 0.07 micrite 

EDG 43.6 105.6 -0.38 0.10 2.13 -5.58 0.13 0.57 0.57 694 9 0.12 0.14 0.08 0.01 0.20 0.010 0.05 micrite 

EDG 49.5 111.5 -0.47 0.09 2.04 -7.96 0.65 1.51 3.32 2939 10 0.40 0.20 0.40 0.14 1.19 0.008 0.20 micrite 

EDG 51.4 113.4 -0.39 0.03 2.04 -7.32 - - - - - 0.62 0.27 0.22 0.66 0.96 0.013 0.20 micrite 

EDG 53.7 115.7 -0.13 0.08 2.35 -7.64 - - - - - 0.75 0.21 0.32 0.06 0.95 0.015 0.16 micrite 

EDG 56.5 118.5 -0.3 0.05 1.62 -7.32 0.29 1.20 3.95 5615 13 0.88 0.19 0.17 0.47 1.18 0.025 0.20 micrite 

EDG 60.8 122.8 -0.43 0.05 0.99 -6.85 - - - - - 0.42 0.18 0.16 0.00 0.70 0.007 0.25 micrite 

EDG 65 127 -0.25 0.09 1.51 -7.36 0.41 0.84 1.51 3162 13 0.37 0.14 0.21 0.01 0.61 0.009 0.12 micrite 

EDG 66.3 128.3 - - 1.28 -7.50 - - - - - 0.48 0.14 - - - - - micrite 

EDG 71.3 133.3 -0.19 0.06 -0.52 -8.60 - - - - - 0.58 0.21 0.74 0.16 2.13 0.015 0.17 micrite 
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Sample Meter δ238U 2SD δ13C δ18O 

Uwr 
(ppm) 

Mowr 
(ppm) 

Vwr 
(ppm) 

Alwr 

(ppm) 
% 

insol. 
Thcarb %TOC 

Ucarb. 

(ppm) 
Mocarb. 

(ppm) 
Vcarb. 

(ppm) 
Mg/Ca Mn/Sr Lithology 

EDG 75.1 137.1 -0.30 0.04 - - - - - - - 0.59 - 0.37 0.04 1.31 0.018 0.19 micrite 

EDG 76.5 138.5 -0.31 0.07 -0.65 -8.36 1.18 1.63 5.11 8986 28 0.91 0.22 0.68 0.10 1.09 0.029 0.60 micrite 

EDG 77 139 -0.27 0.07 - - - - - - - 0.87 - 0.67 0.09 1.02 0.029 0.60 micrite 

Matrix 18 -0.13 0.09 - - - - - - - - - - - - - - micrite/wacke 

Rugose 18 -0.25 0.02 - - - - - - - - - - - - - - micrite/wacke 
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