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ABSTRACT

In this dissertation, three primary issues are explored. The first sub-

ject exposes who-saw-from-whom pathways in post-specific dissemination

networks in social media platforms. We describe a network-based ap-

proach for temporal, textual, and post-diffusion network inference. The

conditional point process method discovers the most probable diffusion

network. The tool is capable of meaningful analysis of hundreds of post

shares. Inferred diffusion networks demonstrate disparities in information

distribution between user groups (confirmed versus unverified, conserva-

tive versus liberal) and local communities (political, entrepreneurial, etc.).

A promising approach for quantifying post-impact, we observe discrepan-

cies in inferred networks that indicate the disproportionate amount of au-

tomated bots. Determine the most common organizational, political, and

ideological dissemination pathways on Twitter. More misleading postings

are followed by relatives and friends. The second theme is phylogenetics-

related. In phylogenetics, likelihood techniques utilize a vast and diverse

parameter space, which makes model selection more of a classification
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difficulty than an estimation one. We present a rooted triple approach

for evolutionary tree inference that uses inter-taxon distances and k-fold

cross-validation to assess if each triplet is tree-like. This new classification

algorithm may be used to statistically infer level-1 networks. The final

point pertains to temporal fairness. Customers in a service queue (such as

a 311 call center) anticipate reasonable response times, particularly when

there is no need to interrupt the first-come, first-served order. A tempo-

rally fair system delivers statistically equivalent service durations across

sensitive population groups while permitting temporal fluctuations. We

demonstrate that 311 service lines have treated demographic groups un-

evenly. We demonstrate that actual data are temporally unfair. Using our

method, we slightly tweak the data in order to preserve statistical parity

across groups and service times.
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Chapter 1

Introduction

In this thesis, we organized our work into three main chapters. In the second chapter,

we infer a post-specific information diffusion tree on a social media platform. The

third chapter is related to distinguishing a tree from a network in phylogenetic network

data, and the fourth chapter pertains to learning temporal fairness in machine learning

across protective attributes such as race. A Brief introduction to these chapters has

been discussed below.

1.1 Inferring Post-specific Diffusion Network

The flow of information diffusion in social media is very important to address be-

cause in social media it is very easy to spread misinformation, rumors, or hate speech.

Early detection can prevent a probable riot, ruining a business’s reputation, and hurt

large-scale campaigns (such as vaccination, voting campaign, etc). There are a lot

of natural disasters happening continuously in the world. Indeed, social media plat-

forms became an important medium for the flow of information in today’s world.

From earthquakes to epidemics through social media dynamics, people’s real-time
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posting, ideas, and opinions are becoming more valuable for predicting and analyzing

human behavior, community detection, viral marketing, public opinion, and social

marketing campaigns, which are extremely important to a large population. There-

fore, researchers found useful and relevant insights into the real-world impact of events

through the lens of social media. Numerous research projects have been conducted so

far to track the flow of information from one person to another on social media plat-

forms [37] [5] [39] [75]. Information spreads through different ways both from internal

and external sources. Internal connections are the peer-to-peer connections, and ex-

ternals are different users such as celebrities, politicians, media, bloggers, and so on

who play a significantly vital role in the information spreading process. Information

flow on the online platform system creates a cascade over the network which follows a

power-law after a burst [26] [42]. For modeling and applications, a variety of methods

have been proposed including the independent cascade model (ICM) [88], threshold

models (both linear and general) [65], epidemic models such as SIS and SIR, proba-

bilistic models, etc. All these existing works are based on mostly spreading together

of many tweets, blogs, or articles, etc. The Post-specific diffusion network elucidates

the who-saw-from-whom paths of a post on social media. A diffusion network for

a specific post can reveal trustworthy and/or incentivized connections among users.

Unfortunately, such a network is not observable from available information from so-

cial media platforms; hence an inference mechanism is needed.

In this paper, we propose an algorithm to infer the diffusion network of a post,

exploiting temporal, textual, and network modalities. The proposed algorithm iden-

tifies the maximum likely diffusion network using a conditional point process. The

algorithm can scale up to thousands of shares from a single post and can be imple-

mented as a real-time analytical tool. We analyze inferred diffusion networks and

show discernible differences in information diffusion within various user groups (i.e.

verified vs. unverified, conservative vs. liberal) and across local communities (polit-
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ical, entrepreneurial, etc.). We discover differences in inferred networks showing the

disproportionate presence of automated bots, a potential way to measure the true im-

pact of a post. We discover organizational, political, and ideological diffusion paths

on the Twitter network that are significantly more frequent than others. We discover

that misinforming posts more commonly follow the trusted network of family and

friends.

1.2 Topological phylogenetic networks

Chapter three deals with phylogenetic networks, which explain the evolutionary his-

tory of extant species and their ancestors. In general, evolution is a process where

species evolve through the mutation of genes over time. Any evolutionary relationship

between species from a common ancestor can be shown in a species tree. Topological

phylogenetic networks at the species level can be inferred from gene trees, and evo-

lutionary trees estimated at different loci. Therefore, this evolution can be inferred

by analyzing the gene trees which can be estimated from DNA sequence analysis of

species.

However, in phylogenetics, the topology of the phylogenetic network consists of

the root, nodes, and leaves with branches. Here, leaves play the role of extant species,

nodes as common ancestors which can be either extinct species, or other ancestral

species that eventually gave rise to the extant species represented by the leaves, or

other internal nodes. Figure 1.1 is an example of a phylogenetic network. The node

r indicates the root, s1 through s8 are speciation nodes, h1 is the hybridization node,

and A through H are the leaves. Conceptually, branch lengths are edge weights

that represent the time between speciation events. By studying branching patterns

on evolutionary trees, evolutionary biologists can infer the evolutionary history of

ancestral species and how they have changed over time.

3
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Figure 1.1: Example of a Phylogenetic network

A

B

D

E

Figure 1.2: Example of an unrooted tree

In a phylogenetic tree, the root is the common ancestor of all species of a tree. It

is possible to have a tree without a root which is referred to as an unrooted tree. If

the tree contains a root, it is called a rooted tree. Figure 1.2 shows an example of an

unrooted tree and figure 1.3 shows a rooted tree with 4 leaves.

It is recommended to collect multiple copies of samples (genes or alleles) per

population for inferring a phylogenetic network. One of the reasons is that gene trees

4



A DCB

Figure 1.3: Example of a rooted tree

may differ from species trees due to Incomplete Lineage Sorting (ILS) [34] [62]. In

coalescences theory, ILS is defined as a failure of lineages to have a common ancestral

gene copy in their most recent ancestral population [17]. When ILS, also called deep

coalescence, happens, it is difficult to trace back the lineages to the common ancestor

in inferring phylogenetic tree [12]. Another reason for sampling multiple genes is that

during the evolutionary process, reticulation may happen within the populations.

Coalescence models are used to tackle this type of situation [58] which are usually

probabilistic methods. Multiple populations involving coalescence models are called

multispecies coalescent models. However, so far several statistical inference methods

have been used under the multispecies coalescent model to infer species networks.

For example, combinatorial [23] [44] [45] [6], maximum likelihood [52] [98], pseudo

likelihood [78] [101] [110], parsimony [97] [92] [59] and Bayesian [90] [89] [104] ap-

proaches are popular methods for inferring the network. Combinatorial or Parsimony

approaches use a minimum number of hybridization or reticulations to infer the net-

work which includes all the input of gene trees. The disadvantage of this method

is that it does not have a clear criterion for identifying the number of hybridization

nodes. The likelihood and pseudo-likelihood methods have the luxury to determine

the number of reticulations and introduce an inheritance parameter γ to each hy-

bridization node to quantify how species evolve from the parental nodes. However,

5



these methods are relatively new and slower when the number of reticulations in-

creases and gets confounded while detecting the number of reticulations. Akaike

information criterion (AIC) and Bayesian information criterion (BIC) have been used

to estimate networks, however, they risk inappropriately discovering additional retic-

ulations due to the growing number of network models as the number of reticulations

increases [14].

There are several software that discusses the method of inferring phylogenetic

networks from gene trees. For example, NeighborNet [11], SplitsTree [43], SNaQ [77],

SVDquartets [20], and PhyloNet [84] are the most popular software packages which

can be used for inferring species trees. In our work, we use Phylonet for inferring the

tree or networks.

For selecting a model in phylogenetics, both AIC and BIC are frequently used,

but these criteria may be poor at model singularities and near boundaries [61]. The

parameter spaces used in likelihood methods are large and different, making the

problem more of a classification rather than an estimation method. We propose a

rooted triple approach in the context of inference of evolutionary trees while using

inter-taxon distances and k-fold cross-validation by checking whether each triplet is

tree-like or not. This is a new classification technique and can lead to a new statistical

procedure for inferring level-1 networks.

1.3 Temporal Fairness in Machine Learning

Chapter four discusses the issue of fairness in machine learning in the service queue

system. In recent years, fairness in machine learning caught the eyes and attention

of researchers. A lot of research has been made on fairness in machine learning based

on ranking [85], criminal risk prediction [38], captioning systems [81], clustering [4],

and recommendation system [68], etc. Generally, machine learning is hugely driven by
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data and since a human being provides the data, it can be highly biased. Since humans

may be prejudiced towards a certain sensitive group, regardless of age, gender, color,

political affiliation, religion, etc. When we train a model with such data, it might

cause biases in prediction due to the biases in training data. There might be several

reasons for biasedness. One of them is initial bias. If at the beginning any bias

occurs by any chance in the data, this bias may be compounded in the later data [7].

Another reason is tainted data. For example, suppose a hiring manager set a label

as a bar to select a candidate rather than selecting by their capability. If existing

managers use these data in the system to train, the system will replicate the bias.

Another example is related to word embedding which is trained on Google’s news

articles. Gender stereotypes bias was found in the system as men are highly related

to computer programming and women’s relationship with homemakers [10]. Similarly,

there may be other reasons like limited resources, sample size disparity, etc. It has

been found that XING, a job searching website, is biased in ranking male candidates

less qualified always higher compared to female candidates [53]. Even, popular online

face recognition services provided by Microsoft, Face++, and IBM are able to identify

females with darker skin color with low accuracy [13]. However, defining fairness is

another challenge. It is because of formulating fairness in such a manner that it can

be suitable for machine learning systems. In the literature, many definitions have

been proposed, for instance, Demographic Parity, Equalized Odds, Predictive Rate

Parity, etc [86], [35]. Another opinion related to the definition is individual fairness.

This was first proposed by [32]. Rather than focusing on groups, the idea here is to

make sure that similar individuals get similar treatment. It is not always easy to find

an appropriate metric to measure two similar individuals with similar inputs [48].

However, there is a lack of attention to temporal fairness, and yet, a lot to uncover

in this area. In our work, we try to unveil this area.

People waiting in a service queue (think of a 311-call center) expect fairness in

7



the service times - especially when there is no specific reason to break the first-come-

first-serve order. How do we define temporal fairness in a service queue? How can

a queue manager (or service provider) ensure fairness in the face of uncertainty in

individual service times?

In this paper, we define a temporally fair system that ensures statistically indif-

ferent service times across sensitive population groups while allowing for temporal

drifts. We demonstrate that population groups have experienced unfair service times

in real service queues such as 311-services. We also demonstrate that a simple ma-

chine model learns to be temporally unfair when trained on real data. We describe

an algorithm, Querque, to minimally alter the data in order to learn to maintain

statistical parity among groups while correctly provide the service times. We show

that a fair service time can guide a queue manager with a fairness deadline for each

new job, and thus, help developing a fairness-friendly queue manager.
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Chapter 2

DiffuScope: Inferring Post-specific

Diffusion Network

2.1 Introduction

A post on social media has become a method of expression for many. A post travels

through the social network from the author to his/her friends, followers, and beyond.

However, the diffusion path of a post in social media is not readily observable. We

consider the problem of real-time tracking of a post on social media by inferring

the diffusion network of the post. Such a diffusion network can be useful to identify

trustworthy or incentivized connections among users, which, in consequence, is helpful

to manage misinformation propagation and understand public sentiment.

In Figure 2.1, we show an inferred diffusion network of early two hundred retweet-

ers of one of President Donald Trump’s tweets on Oct 6, 2020. These retweets were

made within two seconds of the original tweet. We observe bot presence in this early

diffusion network, especially among the accounts that have successfully influenced

other accounts in a such short time. We name a few of these accounts that are al-

ready suspended by Twitter.
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Although social media platforms know who-saw-from-whom information for any

diffusion, unfortunately, the information is not publicly available. In this paper, we

show that a post-specific diffusion network can identify diffusion patterns demon-

strating differences in information diffusion within and across local communities. We

also discover differences in inferred networks of political tweets showing the dispro-

portionate presence of automated bots. Therefore, we propose this novel problem of

inferring post-specific diffusion networks from publicly available information on social

media.

In this paper, we propose an algorithm to infer the diffusion network of a post

from 1 the shares it receives, 2 the social network structure of sharing users, and

3 the history and content of posts in the past. The algorithm uses the temporal

point process to model timing of shares, along with the textual similarity of past

content and follower distribution of users, to estimate likely diffusion paths on the

social network.

We start by motivating the use of temporal, textual, and network information in

the inference process in Section 2.2. We set context against related work in Section

2.3. We continue describing the algorithm in Section 2.4. Section 2.5 shows the

empirical evaluation of synthetic data, and Section 2.6 demonstrates used cases on

real data. We make all the figures available on the paper website [1] for interactive

and high-resolution viewing.

2.2 Motivation

In this section, we explain the difficulty in inferring post-specific diffusion paths and

build the intuition behind our method.

Consider four users: A, B, C, and D. Consider a post from A that has been

re-posted or shared by B, C, and D. Most social media platforms do not provide
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Real_G2DAZ

DonnaWR8

LibertyBell1000

C_3C_3

13hammers

cjcole1985

ProudElephantUS

PatriotPaula
TaxiArchMichael

sergekorits

Figure 2.1: The diffusion network of one of President Donald Trump’s tweets.

@realdonaldtrump is at the center. Early two hundred retweeters are collected via

Twitter API. The diffusion network is inferred by DiffuScope. Seventy accounts re-

ceive more than 60% score by Bot-o-meter [27]. The named accounts are already

suspended by Twitter.
.

who-saw-from-whom information. Hence, there can be sixteen different propagation

trees for this specific tweet (figure 2.2). The shares are associated with a timestamp

that gives us the time order of re-posts by B, C, and D. In general, on social media,

anyone posting earlier cannot be influenced by someone posting later. There can be
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A

D

B

C

Observed
Information Flow

Possible Diffusion
Networks

1

15

10

5

Figure 2.2: (left) Observed information from four users. (right) All possible diffusion

trees (best viewed in color). Trees in red shade are pruned by temporal information.

Trees in blue shade are pruned by textual information. Tree in green shade is pruned

by network information, leaving us with the most probable diffusion tree.

exceptions, because real-world influence can produce out-of-order shares on virtual

media. However, using the timestamps, one can prune a significant number of possi-

bilities to reduce the search space to a smaller number of options.

If we have textual and network information from these users, in addition to the

temporal information, we can exploit them to select the most probable diffusion path

from the reduced search space. For example, if B and C are highly similar in their

topics of interest, they are more likely to have influenced each other, and hence, we

can prune some more examples.

Similarly, if we have network information that B and D do not follow each other,

we can exclude another diffusion tree, which leaves us with the most likely diffusion

tree. Thus, we infer a post-specific diffusion network by combining multi-modal (i.e.
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textual, temporal, and network) information. Note that such a diffusion network

can include out-of-order influence, and thus, can potentially reveal hidden patterns.

If more posts are available where A, B, C and D are involved, we can aggregate

information from all of them to infer an influence network among these users. We

leave this for a future work.

2.3 Related Work

To the best of our knowledge, inferring post-specific diffusion network is not discussed

in the literature. Existing work [37] [54] [76] infer diffusion network of generic concepts

across the web, and group together many tweets, blog posts, news articles, etc. to

represent the spread of a contagion. In contrast, we consider specific posts on a

social network. Post-specific inference is challenging because of the need for real-time

application scenarios, while existing work process offline archives of data collected

over a duration [54] [64]. Grouping concepts help inference by providing more data

per group. Post-specific inference is inherently challenged by sparsity in the data (i.e.

the first tweet of an author will not benefit from any historical information) and by

dynamic change in influence (based on change in users’ interest and connectivity in

the network).

Post-specific inference can reveal the roles users play in the diffusion of each post.

While contrasting the diffusion network can reveal discernible patterns [87], our work

focuses on posts and their authors, as opposed to topics [54] [63] or groups of users [94]

or groups of posts [106] [46] .

Information diffusion depends on multiple modalities of user profiles including

temporal patterns in engaging with the platform, textual patterns in authorship and

readership, and graphical patterns in connecting with other users on the platform.

In this work, we combine all of these modalities in inferring the diffusion network.
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Existing work mostly consider only one mode aggregating the others. For example,

[31] models temporal process and does not consider textual content. [37, 94] do not

use an explicit social network. [105] [106] [22] exploit textual content and does not

consider temporal information. Online analysis of information diffusion on Twitter

is proposed in [82]. This online method produces cascades for concepts and suffers

from incomplete data. In contrast, we propose to infer diffusion network for as low

as tens of shares/retweets.

Our work is inspired by work that model posting behavior as temporal point pro-

cesses [107] [31]. Work on local influence [106] inference or ego-network inference are

user-specific inference algorithms, that inspired us to look at post-specific algorithm.
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2.3.1 Novelty of DiffuScope

The similarity of DiffuScope to several existing techniques can easily obscure the

novelty DiffuScope brings to the literature.

1. DiffuScope infers diffusion of one post. It is a harder problem than inferring

aggregate diffusion of concepts, hashtags, topics or web domains. Because the

available data for one post is significantly less than the data available for ag-

gregate diffusion. Note that the diffusion networks of two posts from the same

user, on the same topic, at different times can be largely different.

2. Most existing work models information diffusion in order to predict future be-

havior to be able to manipulate, control or exploit information diffusion. DiffuS-

cope is an inference technique to explain how the specific post is being shared;

which is a typical data mining task.

3. Diffusion network of a recent post(s) creates an opportunity for timely actions

from interested parties.

4. DiffuScope exploits a myriad set of information that includes temporal, textual,

posting history, and social network of the author and the retweeters. Most

existing work considers only a subset of this information. A detailed comparison

to existing methods in a tabular format is given in our supporting webpage [1].

5. In implementation, DiffuScope exploits the follow-follower graphs as input

6. validation on real and evaluation on synthetic
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2.4 DiffuScope

2.4.1 Background

On a typical social media, a user follows another user, and thus, they form a directed

edge between them on the social network. We define Fuv, 1 ≤ u, v ≤ n, as the

adjacency matrix representation of the directed network of n users on a social network.

We consider unweighted edges, hence, Fuv ∈ {0, 1}. As we are interested in a single

post, without losing generality, we assume that the n users are the ones who shared

the post, and we ignore all other users. Although a popular post can receive hundreds

of thousands of shares, early diffusion of a post can help forecasting the diffusion of

the post in subsequent time. Hence, a diffusion analyzer would focus on the first few

thousands of shares, limiting n to a reasonably small number. We require past posts

from each of these n users to estimate model parameters for the conditional point

process.

We differentiate between a celebrity/popular user and a regular user. We assume

that a user can share a post from a celebrity user without explicitly following him/her.

Although one can share anyone’s post, it is unlikely to share a post from a non-

celebrity user without explicitly following him/her.

The output of our algorithm is a tree rooted at the author of the post. A user

on social media may see a post from more than one users, however, we formulate

the problem so only one diffusion path (i.e. as opposed to multiple paths) to a user

exists. This restriction helps maximizing the likelihood function, and ensures better

interpretability of the results. Because the social network dictates information flow

on social media, the most likely diffusion network should be a subgraph of the social

network. Hence, the problem of inferring diffusion network is reduced to picking a

subgraph of the underlying social network that maximizes the likelihood of the shares
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being made by the observed users at the observed timestamps.

2.4.2 DiffuScope Model

Suppose a node u0 posted at time t0. We call u0 the author node. Let us assume this

post is shared by n users in time order, without any co-occurrence. In other words,

ti < tj whenever 1 ≤ i < j ≤ n.

An external node represents a celebrity account, which usually follows less num-

ber of people than the number of followers it has. Media personnel, politicians, and

sportsmen are good examples of external nodes. We assume direct influence from an

external node to individual nodes because one can easily see posts from an external

node (i.e. @realdonaldtrump) by exploring trends, clicking sponsored advertisement,

and by searching for the node. In DiffuScope, we assume any user can be influenced

by an external node.
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Figure 2.3: Heavy tail distribution of inter-posting times.

Internal nodes are users that we are interested in the network. Our goal is to
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find a diffusion path from the author node u0 to a sharing node un. Note that, un

can be influenced by any combination of nodes in {u1, u2, ......un−1} because they all

have shared the post before un has shared.

In Figure 2.3, the distribution of time between a share and the original post follows

a heavy tail which suggests us to model time-to-share with exponential distribution.

For any two nodes u and v, the probability of v saw the post from u is,

puv ∝ exp(−∆uv)

where ∆uv = tv−tu, and puv is the likelihood of a diffusion from u to v. DiffuScope

models puv with three modes of information: temporal, textual and network.

Temporal Information: In our algorithm, we use the Hawkes process [40] [41]

with exponential decay to model the time of node v sharing from node u, based on

their past sharing history. The Hawkes process is defined as

γuv =

∫ t

−∞
αue

−βuv(t−u)dN(u)]dt

= αu

∑
all post by u shared by v

exp(−βuv | t− ti |)
(2.1)

where sharing history is ∀ i, ti < t, αu is the intensity rate by node u, and βuv is the

decay rate of node v given u is the source. Here, γuv is the rate of the Hawkes process,

which we restrict to γuv ∈ (ϵ, 1] to directly use as a porbability measure.

Textual Information: We use Jaccard similarity between the bags of words

from a pair of users. Let X be the bag of words that node u posted or shared, and Y

be the bag of words that node v posted or shared, then Jaccard Similarity is defined

as:

Juv =
length(X ∩ Y )

length(X ∪ Y )
(2.2)

Network Information: We take into account the popularity of a user based on
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his/her number of followers. We use Rayleigh distribution to model the number of

followers. We estimate the influence of a user on a diffusion path using the Rayleigh

follower distribution. Let zu be the number of followers of node u, then

ηu =
zu
σ2

exp(−z2u/2σ2), zu ≥ 0 (2.3)

where σ is scale parameter, and can be estimated by maximum likelihood estimator,

σ̂2 = 1
2N

∑N
u=1 z

2
u ; here N is the total number of nodes in the network, and zu is the

number of followers of the uth node.

We consider the follow-follower network of internal users to formulate the proba-

bility of diffusion from u to v, which is puv. In the absence of any other information,

the most likely diffusion path between u and v follows the underlying social network.

We define the social network by Fuv = 1, if v is a follower of u, 0 otherwise. We

incorporate the three kinds of information together to calculate the probability of a

potential edge between nodes u and v in the diffusion network.

puv =


ηu Juv exp(−∆uv) γuv, if Fuv = 1

ηu Juv exp(−∆uv) if Fuv = 0 and u is extenral

0, otherwise

(2.4)

2.4.3 DiffuScope Algorithm

To compute puv, we need to estimate the parameters γuv, Juv, and ηu, representing

temporal, textual and network information respectively.

Estimating γuv: We formulate the log-likelihood function, described in Equation A.1,

in order to optimize the Hawkes process described in Equation 2.1. The derivation of
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Algorithm 1 Estimate Gamma1

Require: ti: all shares by node v of a post from node u

Ensure: γuv

1: if v does not share a post from u then

2: return γuv ← ϵ

3: end if

4: for ten α in U(0, .1) do

5: for ten β in U(0, .1) do

6: Lαuβuv =
∑n

i=1[
αu

βuv
(e−βuv(tn−ti) − 1)] +

∑n
i=1 log[αu

∑
ti<tj

e−βuv(ti−tj)]

7: end for

8: end for

9: Sort Lαβ in descending order

10: γuv ← 1 + ϵ

11: while γuv > 1 do

12: Pick the next likely αu and βuv

13: γuv = αu

∑
all retweet i exp(−βvu | t− ti |)

14: end while

15: if γuv > 1 then

16: Go to line 3 up to ten times

17: end if

18: return γuv
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Algorithm 2 Calculate puv1

Require: u, v : two nodes, tu and tv : (re)tweets of u and v, X: bag of words from

posts of u,Y : bag of words from posts of v, z: number of followers, N : total

number of retweeters, and Fuv = 1 if v is a follower of u, 0 otherwise

Ensure: Calculate puv: Probability of a potential edge from node u to v.

1: Juv ← length(X∩Y )
length(X∪Y )

2: Juv ← ϵ if u and v do not share any similar words.

3: ∆uv = tv − tu

4: γuv = EstimateGamma

5: σ2 = 1
2N

∑N
u=1 z

2
u

6: ηu = zu
σ2 exp(−z2u/2σ2)

7: if u is followed by v then

8: puv ← ηuJuvexp(−∆uv)Fuvγuv

9: else if u is an external node and u is not followed by v then

10: puv ← ηuJuvexp(−∆uv)

11: return puv

12: else

13: return 0

14: end if
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Figure 2.4: Three example follow-follower network of different density. Each network

consists of roughly 300 nodes. Nodes of same community are colored similar (Mod-

ularity based community [66]) (left) A real-world follow-follower network collected

from Twitter having density=11.3%, number of communities=4; (mid) A syntheti-

cally generated network with density=8%, number of communities=3; (right) Another

synthetically generated community with density=1%, number of communities=17.

the log-likelihood function is given in the Appendix of this paper.

L =
n∑

i=1

[
αu

βuv

(e−βuv(tn−ti) − 1)] +
n∑

i=1

log[αu

∑
ti<tj

e−βuv(ti−tj)] (2.5)

To find the best values for αu and βuv that maximize the log-likelihood, we perform

a grid search over Uniform distributions with the restriction of γuv ∈ (ϵ, 1], where

ϵ > 0 is a small numerical value. Algorithm 1 shows the maximization process.

The algorithm draws ten U(0,0.1) random numbers as αu and ten U(0,0.1) random
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Algorithm 3 DiffuScope1

Require: Posting history of nodes 1 ≤ u ≤ n, Timestamps of all shares of a specific

post made by nodes 1 ≤ u ≤ n

Ensure: Maximum likely post-specific diffusion tree

1: for 1 ≤ k ≤ n do

2: for 1 ≤ i < k do

3: Calculate pik

4: end for

5: weightik ← argmax pik ∀ i < k

6: end for

7: Tree← max(weightik)

numbers as βuv to form a grid structure in Line 3-4. At each corner of this grid, the

likelihood function L is evaluated (Line 5). The algorithm sorts the likelihood values

(Line 6) and considers the (αu,βuv) pairs in descending order of their likelihood (Line

8-9). The algorithm calculates γuv for each pair of (αu,βuv) (Line 10) and returns

the first γuv ≤ 1. If the corners of the grid fail to produce a γuv ≤ 1, the algorithm

generates more grids for up to ten attempts (Line 12). One might worry about non-

convergence in ten attempts. In practice, on thousands of posts, Algorithm 1 never

tried more than one random grid.

Estimating Juv: We take out stopwords, URLs, emojis from all of the posts,

and convert hashtags to words. After cleaning the textual content (including posts,

shares, likes, etc.) from both users u and v, we produce the bag of words for each

user. We then count the words in both of the bag of words, and calculate the Jaccard

similarity by taking the ratio between the number of similar words and the total
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number of words between two users. If they don’t share any similar word, we put a

smaller value, ϵ, in order to avoid multiplying by zero probability.

Estimating ηu: We collect the number of followers from the poster and each of the

sharing users. We then find the probability for each user based on their number of

followers using Equation 2.3.

Once we have ηu, Juv, and γuv, we combine them into a puv in Algorithm 2. Recall

that puv is the probability of diffusion from u to v. In Algoirthm 3, we use puv values

to the maximum likely diffusion tree for the given post. Retweet order plays an

important role in this process, because a newer post cannot influence an older post.

Suppose we have u1, u2, .....un retweeter from a source node u0 in order of t1, t2, .....tn

respectively. Then at time t1, u0 and u1 will have an edge with p01. But at time t2,

there are two possible edges, either u0 and u2 with p02 or u1 and u2 with p12. In our

algorithm, we take the maximum probability between p02 and p12 and the that edge

in the tree, and so on. Therefore, an edge to node k would be from

argmax
1≤i<k

pik (2.6)

After getting all the likely edges, we concatenate them to obtain the most likely

diffusion tree.

2.5 Experimental Evaluation

In this section, we perform experimental evaluation of our proposed method using

real and synthetic datasets. We use synthetic datasets to quantitatively evaluate our

method’s performance and perform sensitivity test to validate our model’s robustness

in diverse scenarios. We use real datasets to qualitatively evaluate the inferred diffu-

sion networks.
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Figure 2.5: Examples of synthetic traversals with branching factors B = 0.1, 0.4 and

0.9, respectively from left to right.

2.5.1 Synthetic Datasets

Data on real information diffusion is only collectible, if users log the true influence

behind their retweets. Moreover, collecting information from all users on a diffusion

path is generally unlikely because of the sampling done at the social platforms. In

order to evaluate performance, we develop a synthetic data generator to create syn-

thetic social networks and simulate random post diffusion networks. We generate

random sparse graphs containing community structures. The density of edges in the

graphs range from 0.5% to 8%.

Example graphs are shown in Figure 2.4. We simulate random traversals rooted

at random nodes of the synthetic network. Depending on an external parameter, the
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branching factor (B), the traversal randomly chooses between breadth- and depth-

first approaches to visit the next set of nodes. The higher the branching factor, the

traversal visits immediate followers more often than followers of the followers. We

choose six branching factors {0.1, 0.2, 0.4, 0.6, 0.8, 0.9} to simulate diffusion netowrks.

We show three example traversals in Figure 2.5.

2.5.2 Performance Measure

We propose an edge-based accuracy measure to quantify the correctness of an inferred

diffusion network. If an edge in the inferred network is present in the true diffusion

network, we count that edge as true-positive (TP). Any spuriously inferred edge will

be a false-positive (FP) and any missed edge in the true diffusion network will be a

false-negative (FN). We define accuracy as TP
TP+FP

for any inferred network, and take

the average over all inferred networks for all posts to calculate the overall accuracy

on a dataset. The default accuracy for a randomly inferred diffusion network depends

on the size and shape of the follow-follower network of the participating users. In

one extreme, if n users share a post and they are all connected to each other, there

are n − 2 ways to be incorrect for each node, the default accuracy would be 1
n−2

%.

In the other end, if the n users are serially connected in the follow-follower network,

the default accuracy is 100% because information can diffuse exactly in one way. We

report accuracy gain which is the difference between the accuracy of DiffuScope and

the default accuracy.

2.5.3 Scalability

We generate synthetic datasets by varying the number of nodes in the network. We

explore upto n = 32, 000 nodes by iterative doubling, and generate fixed number

(2,000) of posts, each having upto 100 shares. Each post diffuses through a node to

either all of the followers or one of the followers. The branching factor B determines
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Figure 2.6: Left column shows accuracy gain of DiffuScope with only temporal infor-

mation (Hawkes Process). The right column shows accuracy gain with both temporal

and network information (Hawkes and Rayleigh). (top-row) We iteratively double the

number of nodes for a fixed density factor of 4. (bottom-row) We iteratively double

the density factor for a fixed 4000 nodes in a network. The larger the density factor,

the more density the network is. The larger the branching factor, the more nodes

have high out-degree in the network.
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the ratio of the two possibilities. We calculate accuracy of inferred network of each

post, and report the accuracy gain. See Figure 2.6.

We achieve positive gain for all synthetic scenarios. The gain grows with the size

and density of the network. The larger the network, the larger and more diverse

diffusion trees are. Hence, there are more ways to be wrong for low default accuracy,

while DiffuScope holds up the accuracy for a larger gain. Denser networks have more

connections between users, thus, default accuracy suffers on high density networks.

In contrast, DiffuScope demonstrates a larger gain for high density network. We see

that adding network information with the temporal information increases the gain

(from left column to right column) by around 5%.

We see an increase in accuracy gain for increasing branching factor, B. When

B = 0.1, the diffusion networks have long chains of nodes favoring the default infer-

ence, reducing the room for improvement for DiffuScope. However, when B = 0.9,

the diffusion networks have shorter chains and larger influence spheres, reducing the

accuracy of default inference and increasing the gain of DiffuScope.

2.5.4 Real Datasets

Although our synthetic data contain community structures and are produced with

variable density, real world social networks contain rich details including various types

of users (e.g. celebrities, bots, experts, trolls, etc.) and activity profile (e.g. consumer,

producer, propagator, etc.). In order to evaluate our algorithm on real social network,

we collect a small sub-network of Twitter’s social network. We focus on the follower-

base of a regional news source, ABQ Journal. ABQ Journal is a moderately popular

regional news media based in Albuquerque, New Mexico, USA, with roughly 88K

followers at the time of data collection in February 2020. To form a densely connected

user network with a common interest, we filter 8, 543 users who declared Albuquerque

(or nearby locations in New Mexico). Afterward, we collect user information (i.e. past
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Figure 2.7: Accuracy gain with respect to default estimator for various branching

factors of seeded diffusions on real social network.

tweets and retweets) and follower information for all these users, termed as ABQ-

Journal-Users. We also collect their most recent posted or retweeted tweets up to the

limit of 3200 as set by Twitter Rules. Based on the collected follower information, we

form a closed follow-follower network, where each node belongs to the ABQ-Journal-

Users and all edges between any two ABQ-Journal-Users are collected. This small

sub-network of Twitter is very dense with an average of 47 edges per node.

Seeded-by-Real-Graph: We simulate diffusion networks on the ABQ-Journal-

Users network for various branching factors. We test DiffuScope blindly on the

simulated diffusions and measure the accuracy gain over the default inference tech-

nique. Since, the ABQ-Journal-Users network is a dense network, the diffusions for

larger branching factors (e.g. 0.9) are generally broader in reach. DiffuScope achieves

more than 30% gain over the default inference for such broader diffusion (figure 2.7).
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2.6 Case Studies

2.6.1 On ABQ Journal Followers

In Figure 2.8, we show a tweet on Twitter posted by a verified user, UNMLoboFB,

representing a college football team. The tweet is retweeted by nine users whose

follow-follower relationships are shown in Figure 2.8(middle). We infer the most

likely diffusion using the retweets and the follow-follower network, shown in Figure

2.8(right). The diffusion network identifies two unique paths: one through employees

of the college (green path), and the other through coaches and players of the team

(blue path). The tweet diffused to the rest of the users directly from the author,

UNMLoboFB.

Diffusion Within Communities. We use ABQ-Journal-Users dataset to investi-

gate how diffusion happens in a densely connected network. Specifically, we answer:

is diffusion more likely to occur between users of the same community in comparison

to diffusion between random users? First, to identify users of similar interests, we

utilize the follow-follower network. We make a reasonable assumption that users with

more common connections belong to the same cohort, as used in related studies [21].

In this regard, we use the Modularity based community detection algorithm [66] to

identify communities in the follow-follower network. The Modularity based approach

minimizes connection across communities and maximizes connection within commu-

nities. We recognize a total of 11 communities; however, 99% of users belong to five

significant communities.

Based on the most popular topics in the community, we name these communities

as (1) Entertainment: users in this community tweet about video, movie, TV, etc.;

(2) Education; members of this community are focused on discussing regional school-

related topics; (3) Politics: users from this community talk about policing, legislation,

31



r___n

p____n

c____z

r____n

c____g

b___6

d____4 d____Q

s____a

UNMLoboFB

UNMLoboFB

r___n

p____n

c____z

r____n

c____g

b___6

d____4 d____Q

s____a

Figure 2.8: (left) One example tweet. (middle) The follow-follower network of all

users that retweeted the tweet. The author of the tweet is a college football team,

UNMLoboFB, shown at the center. (right) The diffusion path inferred for this specific

tweet revealing employees of the authoring institute (green path) and past athletes

who are currently not affiliated.

budget, etc.; (4) Media: this community is largely comprised of media personalities

who share about breaking news; (5) Business: people from this community share busi-

ness and entrepreneurial topics that promoting local businesses and start-ups. One

commonality across all communities is the heavy presence of Covid-19 related issues,

which demonstrates the pandemic’s pervasiveness and its socio-economic impact on

diverse groups of people.

We identify 188 tweets that were retweeted by at least 10 users. Afterward, we use

DiffuScope to infer diffusion network for each these retweets that happened within

the ABQ-Journal-Users network. For each of the diffusion network, we measure how

many times a diffusion edge occurs across distinct communities. We identified 261

diffusion edges, where 61 of them were across communities, resulting in an across

community diffusion ratio of 0.24. To contrast this across community diffusion, we
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Figure 2.9: (left) A tweet from New Mexico Governor. (middle) The follow-follower

network of all users that retweeted the tweet. (right) The diffusion path inferred for

this specific tweet revealing political affiliates of the governor (blue path) and business

community inspired by this tweet (green edges).

identify the number of follow-following connection that occurs across our detected

communities. We identify a total of 462, 591 edges in the whole network, where

192, 633 crosses across communities, with a ratio of 0.42. By comparing the two

obtained value for across community diffusion and across community connection, we

identify that diffusion is more likely to happen within community than across commu-

nity than the diffusion that could happen with existing follow-follower connections.

2.6.2 On Political Tweets

Tweet Diffusion: We develop a software tool to run DiffuScope in real-time. The

input to the tool is a user id. The tool repeatedly checks out Twitter API until the

user posts a tweet. As soon as the tweet id is available, the tool starts requesting

for retweets (i.e. shares) of the specific tweet at a regular interval, until a desired

number of retweets are collected or a duration of time is passed. Depending on the

speed of diffusion, collected retweets across API requests may have a large amount

of repetition. The tool deduplicates the retweets and sorts them in time order before

further processing. Attributes of each retweet include retweeter’s screen name, id,
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Figure 2.10: Three retweet diffusion network for tweets from (left) Republican Pres-

idential Candidate, (mid) Democratic Presidential Candidate, (right) Republican

Presidential Candidate. The earliest 200 retweets were crawled right after both tweets

were posted. In both cases, the original posters are at the center of the largest stars.

Interactive high-resolution and node-labeled graphs are available on paper’s website.

retweet text, and creation time. The tool is available for download in our supporting

webpage [1].

The next step is to collect the history, follower, and following information of each

of the retweeters. The Twitter API limits the number of tweets and retweets to

3200 recent objects at each request. On the other hand, there is not any limit on

34



the number of following and followers’ information. However, the number of such

requests will encounter few waiting periods, each up to 15 minutes. Therefore, to

collect history and network data of all retweeters, the tool needs on the order of few

hours. Once collected, executing DiffuScope algorithm is much quicker compared to

the time needed for data collection. The tool automatically handles suspended users

and private users, whose history and network data are unavailable. Firstly, while

extracting the history of the retweeters’ we faced some suspended users and decided

to eliminate such users from consideration. Secondly, some users maintain private

profiles, and even after collecting their followers and the following information, we

could not consider them for the experimental purpose as their tweet history was not

available.

Tweets from Competing Campaigns. We use our tweet tracker to collect the

earliest two hundred retweeters of a tweet and infer the diffusion network of the tweet.

At first, we consider two tweets from two competing political campaigns and search

for differences in the inferred diffusion network. In Figure 2.10, we show one of

President Trump’s tweets on left, and one of presidential candidate Joseph Biden’s

tweets in the middle.

The inferred networks from the two tweets show significant visual differences em-

anating from the differences in the number and size of clusters of users. The first

two hundred retweeters are more likely to be influenced by Trump directly than by

other sources (i.e. no obvious cluster). In contrast, the first two hundred retweeters

of Biden’s tweet show two distinct clusters influenced by @PalmerReport, a liberal

media, and @davidmweissman, steering committee member of an anti-Trump organi-

zation of conservatives, named The Lincoln Project.

The above findings can largely be attributed to the difference in the number of

followers the two candidates have on Twitter (87M vs. 11M). To account for this

difference, instead of the first two hundred retweeters, we extract randomly selected
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two hundred retweets of the Trump’s tweet within one minute of the original tweet,

which is the time for collecting the first two hundred retweets of Biden’s tweet. The

inferred network for the Trump’s tweets is shown in Figure 2.10(right). The network

shows one distinct cluster centered at @ThatTrumpGuy, who promoted a conservative

project named @Project Veritas. The account is currently suspended at the time

of writing.

2.6.3 On (Un)Verified Users

DiffuScope has enabled us to look at tweets of user groups at a greater detail. Consider

verified users whose accounts are verified by Twitter, who otherwise do not necessarily

have any commonality. We ask if there is any significant difference in how tweets

from verified and unverified users propagate. In order to evaluate that we create ten

diffusion networks of ten tweets from ten verified users as test set. We collect the

same from ten unverified users as the control set.

In Figure 2.11, we show examples of networks from both test and control set.

Visual inspection of the first one hundred retweeters of each tweet shows a dramatic

difference in structures of these networks. We evaluate the average diffusion length

from the root to the leaves on twenty diffusion networks. The average diffusion length

for tweets from verified users is 1.27 with a variance of 0.24 variance. The same

from unverified users is 1.79 with a variance of 0.58. We find the distributions are

statistically different in a two-sample t-test with a p-value of 0.02 at 5% significance

level.

2.7 Conclusion

Online social media is tremendously important for the future of democratic gover-

nance. Automated activities on social media create opportunities for manipulation,
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Figure 2.11: Examples of diffusion networks of tweets from verified users (bottom)

and regular users (top). Source nodes are marked in red.

misinformation and distrust. This paper develops a technique to infer diffusion net-

work of specific posts on social media. We demonstrate effectiveness of DiffuScope

over a variety of datasets, both synthetic and real. We show various diffusion net-

works in political and news domains along with existence of abusive users on these

networks. However, this work is merely one step towards better monitored social

media, significant effort must be made to protect human users from inorganic influ-

ence. Aggregating many inferred diffusion networks can produce a global influence
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network among the users, which will provide a bottom-up approach as opposed to

the traditional top-down approach to inferring influence network.
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Chapter 3

Testing Tree-Likeness of

Phylogenetic Network Data with

Cross-Validation

3.1 Introduction

Phylogenetics deals with the evolutionary trees of ancestral histories which illustrate

the relationship between species. Because of gene replication, the genetic history of

a gene can be represented by a tree, called a gene tree. When a gene copies at a

locus and its copies are handed on to multiple offspring, the gene tree branches. Due

to the fact that the gene copy has a single ancestor copy, the resulting history is a

tree with branches. These mechanisms split the genetic history into countless little

pieces, each with a tight tree-like structure of descent [57]. A speciation process could

generate branching lineages of species while forming a phylogenetic tree. Speciation

happens when genes within a species copy themselves via reproductive communities

and they form a distinct bundle of descendants. However, species trees are the ances-

tral lineages of various species in the study of evolution. A species tree can trace its
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ancestors through time (branch length), enabling a model to identify common ances-

tors. These models determine probabilities of random gene trees that evolve within

species tree branches using the multispecies coalescent [70] [30].

In gene trees, there may be evolutionary topologies of branching patterns that

differ from the topology of the species tree. In recent years, much research has been

done to describe evolutionary histories based on the concept of coalescent theory.

The coalescent theory is conceptually represented by the distribution of gene trees,

or perhaps just sequences at multiple loci, which depict the ancestral history of evo-

lution sampled from an individual’s genes. This theory investigates the likelihood of

evolutionary patterns in genealogies using an evolutionary tree within populations.

Multispecies coalescent theory is used to infer ancestral histories when they are

collected from multiple populations. When multiple populations are considered, the

multispecies coalescent model assembles many separate coalescences. A network is

sometimes used in phylogenetics instead of a tree when previously genetically isolated

populations start exchanging genes. In particular, a network is formed when a species

descends from two different parent species (hybridization occurs).

In population genetics, coalescence may happen among individuals sampled from

one population. Generally, individual samples collected from one population are

usually presumed to be closely related. However, this assumption may not always

hold because multiple lineages can coexist in a single ancestral tree. Incomplete

lineage sorting (ILS), also known as deep coalescence, also known as deep coalescence,

occurs when two gene copies in the same population cannot be traced back to a

common ancestral gene in that population. This random sorting of genetic variation

over time can lead to gene lineages from distant populations appearing to be more

closely related than gene lineages from closely related populations. The difficulty

in determining evolutionary relationships between species due to ILS has generated

interest among biologists. To tackle this challenge, the multispecies coalescent model
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has been used many times. This widely used probability model takes into account

ILS and models gene trees based on species trees, thus providing a more accurate

inference of evolutionary relationships between species [29].

It should be stressed that in ILS, the fact that two or more lineages do not coa-

lesce in a population can result in one of them first coalescing with a lineage of a less

related population, making species relationships difficult to infer [60]. Hybridization

events make it even more challenging when inferring phylogenetic networks [102] [51].

Indeed, several methods have been developed to infer networks such as maximum

likelihood [52] [98], pseudo-maximum likelihood [78] [101] [110], parsimony-based

methods [97] [92] [59], and Bayesian approaches [90] [89] [104]. For inferring the

network, methods based on likelihood are more appropriate than parsimony-based

ones. A method based on parsimony uses the minimum number of hybridization for

identifying the network. Thus, there is no significant way of selecting the number of

hybridization branches. Likelihood-based methods search to maximize the likelihood

over the entire space of networks [14].

In general, this is an extremely challenging problem because the space of possible

network structures is significantly greater than the number of tree topologies in evo-

lutionary biology, making searching over the space slow and difficult. The space is

not necessarily clearly defined. Some methods are restricted to level-1 networks (no

overlapping cycles) [29]. Usually, phylogenetic networks can be obtained from trees

with additional branches and nodes, which represent hybridization events or horizon-

tal gene transfer. In this thesis, reticulations in the network are assumed to be due

to hybridization. Likelihood calculations are much slower for networks than for trees,

partly due to there being more parameters. The parameter space is strange—different

networks can have different numbers of parameters, making the problem more like

model selection than estimation. We would like to infer the correct network (which

might be a tree). Selecting networks with information criteria such as AIC and BIC
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has been used in several literature [99]. But these criteria cause trouble in estimating

the network of models when the number of hybridization increases [9] [14]. They are

likely to detect false hybridization.

To avoid such a situation, rooted triple and unrooted quartet methods have been

used for inferring phylogenetic networks [3] [71] [28]. For instance, [2] proposed a

procedure based on a probabilistic model for inferring unrooted quartets. A quartet

species network can be checked for the presence of a 4-cycle by selecting a subset

of 4 taxa and determining the empirical quartet counts from the gene trees. The

quartet counts reflect the possible cycles on the network. To judge the evidence for

the 4-cycle, a statistical hypothesis test is then applied to the quartet counts.

In this paper, we propose a triplet version of a network and apply cross-validation

methods for distinguishing the network from a tree. A less ambitious approach is to

try to decide between a small number of candidate networks, possibly even two. In

this article, we give an example of using cross-validation to decide between candidate

networks, one of which is a tree, and one of which is a network. Cross-validation

(CV) was proposed previously [100]. In their article, they use CV by predicting gene

tree topologies for different fitted models, and finding which network (inferred from

training data) does the best job of predicting gene tree topology frequencies on test

data. We modify their approach by replacing counts of gene tree topologies with

summary statistics based on counting triplets—gene trees obtained by considering

subsets of three species at a time. We do a simulation study in particular to test the

ability of cross-validation to distinguish between a species tree and a species network

having generated a set of gene trees. We list here the steps we followed in this thesis.

• Simulate a set of gene trees from a true network (or tree).

• Gene trees are then split into 5-folded testing and training sets to cross-validate.

• Using each test set, we obtain a tree and a network by optimizing through
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maximum likelihood.

• From the optimized tree and network, we again simulate gene trees with the

same samples size as the test sets.

• All the final simulated gene trees are then split into the triplet format of gene

trees. That means, for optimized trees, networks, and test sets, each gene tree

is replaced by
(
n
3

)
gene tree triplets, where n is the number of species.

• Then unique full and tripletized gene trees are counted for each set from trees,

networks, and test sets.

• We then take the least square distance between the tree and the test set, and

between network and test sets for both full and tripletized gene trees to cross-

validate the true network (or tree).

• The least square distance tells us if it supports the tree or not.

The proposed method uses only triplets to decide on a tree versus a network. Counts

of full topologies are used to compare the proposed method to the method in [100]]

where counts of full topologies are used. To outline the thesis, in section 3.2, we

explain the phylogenetic networks and the difference between gene tree topology and

species tree topology, then we talk about how we use cross-validation in section 3.3. In

section 3.4, we depict our method including maximum likelihood and cross-validation.

We then add gene tree estimation error in our data and apply our method in it in

section 3.5. Section 3.6 describes the results of all simulation and compares the

cross-validation results with or without gene tree estimation error. In Section 3.7, we

summarise our work and talk about future work.
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3.2 Phylogenetic Networks

The goal of research on hybridization in networks is to understand the evolutionary

history of a species by studying how different genes have been inherited from dif-

ferent ancestors. This is done by comparing gene trees from different loci, such as

mitochondrial and nuclear genes. Researchers have attempted to minimize the num-

ber of hybridization events to better understand the evolutionary history, but this

can be challenging due to the complexity of the data.

In the network multispecies coalescent, gene trees evolve within a species network

(Figure 3.1). Individual gene trees are assumed to be tree-like, but the relationships

at the species level are not tree-like. Species networks can predict frequencies of

topologies that would not be predicted under a species tree [111].

Recent research on understanding relationships between different species has in-

volved using methods that take into account past hybridization events between species.

One of these methods is the multispecies coalescent, which uses probabilistic models of

the topologies of networks and their parameters for branch lengths and hybridization.

The branch lengths represent evolutionary time (often the number of generations or

years). However, these methods can be difficult to determine if multiple networks

produce the same distribution of gene trees. In this case, two networks can fail to be

distinguishable [67] [111]. To improve this situation, adding extra information such

as branch lengths, or increasing the number of individuals sampled per species that

have descended from hybrid populations can provide more information to solve the

problem of network distinguishability. This is because additional information or sam-

pling increases the amount of information available to the methods used for inferring

network topologies and parameters, which can improve the accuracy and reliability

of the inference [111]. Figure 3.2 gives an example of the difference between a tree

and a network. Both tree and network have 4 leaves but a hybridization node has
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Figure 3.1: Gene trees evolve within a Species network of 5 leaves. In the Species

tree b and e are more closely related but the gene tree topology in this network is

((A,B),((D,E),C)).
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Figure 3.2: Difference between a tree and network. The top figure shows a tree with

4 leaves where t1 and t2 are two branch length parameters. The bottom figure is a

network with a hybridization parameter γ. Generally, gene trees come from the left

ancestor with probability γ and from the right with probability 1− γ. Hybridization

edges b2 and b3 are individual populations. Parameter ti’s are for the corresponding

branch length of bi’s
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been added in the bottom figure of the network. Because of the hybridization node,

b2 and b3 branches are added which carry extra information about the evolutionary

histories.

Extended Newick format [16] represents a machine-readable form of a phylogenetic

network. An example of Newick strings has been depicted in Figure 3.3 with a

graphical representation. This network is intentionally made ultrametric, meaning

all leaves are equidistant from the root. This figure contains r as the root, the letters

from “A” to “I” are the leaves, s1, ....., s9 are the ancestor nodes, and h1 as the

hybridization node. The node s6 is descended from a hybridization node (h1). The

node h1 comes from both s7 and s8 ancestral nodes depending on a parameter γ. This

means that any gene tree lineage passing through h1 (on a path from tips to root)

goes to the left (to s7) with probability γ and to the right (to s8) with probability

1− γ. The numbers represent the branch lengths. Throughout the whole project, we

use the extended Newick format for simulation.

3.3 Cross Validation in Phylogenetic Networks

The study [100] first introduces the k-fold cross-validation method to verify the in-

ferred phylogenetic network. In their work, a collection of gene trees are split into

k-fold subsets of the same sizes. Among them, k − 1 subsets of gene trees are being

used as input to infer the model parameters and model fit. The remaining subset is

for validating the model. This can be done by comparing the distribution of gene

trees obtained from the inferred network (using the k − 1 subset) to the frequency

distribution of gene trees in the validation set.

A concern for this approach is that the number of possible topologies grows rapidly

with the number of individuals. For larger trees, all trees might have very low expected

frequencies. In this case, it might be useful to summarize gene trees into larger
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Figure 3.3: A graphical representation of Newick strings of a network with 9 leaves.

The Newick string is: (((A : 7.2, ((B : 6.5, (C : 6.1, (D : 5.6, (E : 5.2, (F : 4.6, (G :

3, H : 3)s1 : 1.6)s2 : 0.6)s3 : 0.4)s4 : 0.5)s5 : 0.4)s6 : 0.3)h1#0.1 : 0.4)s7 :

1.2, (h1#0.1 : 0.3, I : 7.1)s8 : 1.3)s9 : 0.6)r;
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categories. Here, we do this using rooted triples. For example, for 8 taxa, there are

over 135,000 rooted trees but only
(
8
3

)
×3 = 168 possible triples. Table 3.1 shows a

comparison of numbers between topologies and triples. Figure 3.4 is taken from [55],

Taxa Number of topologies Number of triples
4 15 12
5 105 30
6 945 60
7 10,395 105
8 135,135 168
9 2,027,025 252

Table 3.1: Comparison between topologies and triples

explaining that a rooted species tree of four-taxon can produce four rooted triples.

The species tree has two branch lengths T1 and T2. In the rooted triple, the lengths

of internal branches B1 means T1, B2 means (T1 + T2), and B3 or B4 is T2.

Figure 3.4: Graphic is taken from [55]. A rooted species tree with 4 taxa can be split

into four rooted triples.

3.4 Methods

In this section, we talk about the methods we used for this research. We use rooted

gene trees as a true network or a true tree by changing hybridization parameters.

From this true network or tree, we simulate gene trees. Gene trees are then separated
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into testing and training sets. We infer a network (or tree) from a training set by using

maximum likelihood and then again simulate gene trees from the inferred network

(or tree). The frequencies are then compared with test sets for both tripletized and

full gene trees. Next, we explain every step of this procedure more clearly along with

the tools that we use for implementing it.

3.4.1 Hybrid-Lambda

In order to simulate gene trees from a rooted species network or a rooted species

tree using the coalescent process, Zhu et al. [112] created Hybrid-Lambda. In this

thesis, we use extended Newick string [16] format to simulate gene trees from Hybrid-

Lambda. Hybridization events between species can be controlled by a parameter λ.

The parameter γ represents the probability of a node coming from ancestral parents.

For instance, if γ = 0.2, that means there is a probability that that particular node

comes from one species with 20% chances and from other species with 80% chances.

If γ = 0 or 1, it represents a tree and otherwise, it is a network. In our work, we

use the following command to simulate the gene trees: “hybrid-Lambda -spcu net.txt

-num k -seed n”

3.4.2 PhyloNet

The tool PhyloNet is used for reconstructing and evaluating reticulations (or non-

treelike events) in phylogenetic networks. There are several techniques to analyze the

network. For our thesis, we use PhyloNet to optimize the parameters of a network

assuming a fixed topology. The maximum likelihood approach has been applied to

optimize the network or tree. In the next section, we discuss the maximum likelihood

approach that has been used in PhyloNet. In this thesis, to optimize a network with

one hybridization node, we used the following command: ”InferNetwork ML (all) 1

-s net -m 1 -o;” and for a tree: ”InferNetwork ML (all) 0 -s net -m 1 -o;”
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3.4.3 Maximum likelihood approach

There are several techniques to infer species trees from gene trees. In this study, since,

we apply the method of maximum likelihood explained by [100], we briefly describe

the method here. In their paper, they infer a phylogenetic network of a set of species.

It is also allowed that multiple individuals might be sampled per species.

Let Ψ be a phylogenetic network represented by an rDAG (directed acyclic graph)

with leaves that represents a set of different species. In this graph, speciation nodes

have in-degree 1 (the only exception is the root) and out-degree nodes are greater

than 1 (tree nodes). However, when a reticulation node happens, two parents are

supposed to be found there with a node of in-degree 2 and out-degree 1. Since a gene

tree lineage tracks back to one of the two parents with the inheritance probability, it

is important to estimate the parameter of inheritance probability. The likelihood of a

network can be calculated using either DNA sequences or from gene trees themselves.

When using gene trees, either the gene tree branch lengths can be used or just their

topologies. The likelihood based on the sequence data is

L(Ψ,Γ|S) =
m∏
i=1

∫
g

P(Si|g)p(g|Ψ,Γ)dg (3.1)

where P(Si|g) is the likelihood of the sequence data for a certain gene genealogy g,

and p(g|Ψ,Γ) is the density of gene genealogies (topologies and branch lengths) for

the specified model parameters.

And if Gi is the estimated genealogy for locus i and G = {G1, ...., Gm}, we get

the following equation:

L(Ψ,Γ|G) =
m∏
i=1

P(Gi|Ψ,Γ) (3.2)

Here, P(Gi|Ψ,Γ) is the probability mass function (pmf) or probability density func-

tion (pdf), depending on whether the Gi’s are supplied only by their topologies or by
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both topologies and branch lengths.

3.4.4 PRANC

Kim et. al [47] developed the software, PRANC, which is a statistical method to

calculate the probabilities of ranked and unranked gene tree topologies for a given

species tree under the coalescent process. In this paper, we use this software to count

the unique gene trees. The command has been used for our work is: “PRANC -utopo

infer.txt”

3.4.5 Triplet and Full version for cross-validation

For the cross-validation approach, any (finite) number of candidate models can be

used. We do an example using only two: a network with two hybridizations and a

particular set of parameters, and a tree that is the most probable gene tree given this

network, obtained by setting γ = 0 for both hybrid nodes.

Here, 1000 gene trees are simulated from the network. The 1000 gene trees are

partitioned into 5 sets of 200. Then 5-fold cross-validation is used, so that for each

set of 200 gene trees, this set is used as a test set while the remaining 800 loci are

used as training sets. For each training set, the network parameters are optimized

(the topology is fixed) using the likelihood of the gene tree topologies, and similarly,

the tree parameters are optimized. Topology and rooted triple frequencies are then

predicted (using simulation) from the optimized networks and compared to the fre-

quencies in the test sets. The Network (N1) and Tree (N2) are then scored:

Score(Nj) =
5∑

k=1

I∑
i=1

(oki − eki)
2, j = 1, 2 (3.3)

where oki is the observed frequency of category i (either triple or topology) in the kth

fold and eki is the expected frequency, which itself is estimated from simulated data.
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Here I = 1× 3× 5× · · · (2n− 3) for trees and I =
(
n
3

)
× 3 for rooted triples.

The data set is classified as coming from network N1 if and only if Score(N1) <

Score(N2).

Instead of computing expected frequencies for all possible gene trees and rooted

triples, only those found in the data and simulated data are used. The eki values

are obtained from simulating some number m of gene trees. Here we tried m = 200

and computing frequencies of both gene trees and rooted triples. The oki values are

obtained from the 200 test gene trees in each fold. Figure 3.5 depicts the procedure

we followed in this work. First, We simulate gene trees from a true network (or

tree) by using Hybrid-Lambda. Gene trees are then split into 5-folded testing and

training sets to perform cross-validation by using the R. Using each training set, we

obtain optimized networks with or without hybridization (a tree) from the PhyloNet

software. From the optimized networks, we again simulate gene trees using the same

size as the test sets again by using Hybrid-Lambda. Then, all the final simulated

gene trees are split into the triplet format of gene trees by using the R. Thus, gene

trees from optimized networks (or trees) and test sets of the same sizes, have both the

full gene trees and tripletized gene trees. The full and tripletized gene trees are then

counted separately by PRANC for each set of trees (network without hybridization),

networks, and test sets. We then take the least square distance between gene trees

simulated from the optimized tree and the test sets; and between gene trees simulated

from the optimized network and test set for both full and tripletized gene trees by

equation (3.3) to cross-validate the true network (or tree). Finally, the least-square

distance tells us whether the tree or network is better supported by the data. Finally,

the least-square distance tells us if it supports the tree or network.
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Figure 3.5: This tree is the graphical representation of our method. With hybrid
lambda, after simulating 1000 gene trees and splitting them into training and testing
in a 5-fold manner, we do this 100 times. We then optimize a tree and a network
each time to compare gene trees from it to the test set.
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3.5 Cross-validation with Gene tree estimation error

Gene tree estimation error (GTEE) refers to errors in the gene trees (both topologies

and branch lengths) when they are estimated from DNA sequences [73]. This error

can be introduced at various stages of the gene tree estimation process, including the

alignment of sequence data, the selection of appropriate evolutionary models, and the

estimation of tree topology.

To validate our model in a more complicated situation, we add some GTEE to our

data. At the very beginning, we add an outgroup leaf in our true network or tree and

simulate gene trees from that. Adding the outgroup allows trees to be rooted on the

outgroup when programs return unrooted trees when estimating the tree from DNA

sequence data. After that, we convert that into a DNA sequence and then reconstruct

the gene trees from these DNA sequences. Which includes the gene tree estimation

error in our data. In the following sections, we describe this procedure along with the

software used.

3.5.1 Seq-gen

Seq-Gen is a computer program that uses a gene tree to generate sequences of random

DNA, RNA, or protein sequences using specified parameters and models of evolution.

It is a popular tool in the field of molecular evolution and phylogenetics, as it al-

lows researchers to simulate the process of sequence evolution and generate realistic

datasets for testing and analyzing evolutionary hypotheses. The following command

has been used for our work: “seq-gen -l500 -s.005 -mGTR -a1.0 -g4 -i.1 -f.4,.1,.2,.3 -z

k -op”
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3.5.2 Iq-tree

IQ-TREE is a a fast and effective phylogenetic tree estimation program that can be

used to infer the evolutionary history of biological sequences. It is designed to infer

maximum likelihood (ML) trees and can handle a wide range of data types, including

DNA, protein, and codon alignments. One of the main advantages of IQ-TREE is

its ability to handle large datasets efficiently and accurately. “iqtree2 -s dna-seq -m

MFP” is the command that we used for our method.

3.5.3 Full and tripletized version of cross-validation with Gene tree

estimation error

Figure 3.6 depicts the procedure we followed for cross-validation with gene tree esti-

mation error. In this case, we add a new leaf, an outgroup in the true network which

is a direct descendant of the root and does not make any hybridization node in the

whole process. Like the previous one (without GTEE), at first, we simulate gene trees

from a true network (or tree) by using Hybrid-Lambda. Then, Seq-gen converts the

gene trees to gene sequences and applies Iq-tree to reconstruct the gene trees from

the gene sequences. After that, gene trees are split into 5-folded testing and training

sets to perform cross-validation. Using each train set, we obtain optimized networks

with and without hybridization (a tree) from PhyloNet software. Then, from the

optimized networks, we again simulate gene trees as the size of the test sets by using

Hybrid-Lambda. After that, all the final simulated gene trees are then split into the

triplet format of gene trees. Now, for optimized networks (with or without hybridiza-

tion), and test sets, we have full-length gene trees and tripletized gene trees. The

unique full and tripletized gene trees are counted separately by PRANC from each

set of trees (network without hybridization), networks, and test sets. We then take

the least square distance between tree and test sets, and also between network and

test sets for both full and tripletized gene trees by equation (3.3) to cross-validate the
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true network (or tree). Finally, the least square distance tells us if it supports a tree

or a network.

3.6 Experiments and Results

In this section, we talk about the experiments and results of triplet and full versions

of networks and trees. To do so, we took 6 types of a network or tree containing 4, 5,

6, 7, 8, and 9 leaves where each of them build up with one hybridization. Therefore,

each of them includes a parameter γ which varies by the values of 0, 0.1, 0.2, and 0.3.

When γ = 0, we treat it as a tree otherwise it is a network. Therefore, in total, we

used 6 trees and 18 networks in this project. We conducted the following steps:

1) The true network or tree of extended Newick strings format has been applied

to the Hybrid-lambda to produce 1000 gene trees 100 times.

2) Every 1000 gene trees for a different number of leaves and γ’s have been split

5 times (5 folds) into training data (800 gene trees) and testing data (200 gene trees)

sets.

3) Training data are then applied to Phylonet with a maximum likelihood approach

to optimize and get either a network or tree.

4) The optimized tree or network is then sent to Hybrid-lambda again to produce

200 simulated gene trees (same size as test sets).

5) Rooted triplet trees are then generated from the new simulated gene trees and

test trees are counted by PRANC. In addition, the number of full gene trees is also

counted by the PRANC.

In the final step, scores are calculated by the equation (3.3). Figure 3.5 shows the

entire procedure.

To test if our model can tackle the more complicated situation of GTEE, we

added an outgroup in the true networks or trees before step 1 and ran under Seq-gen
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Figure 3.6: 100 simulated gene trees are converted to gene sequence to add gene tree
estimation error and then again convert to gene trees. We split them into train and
test in a 5-fold manner, we do this 100 times. Then optimize a tree and a network
each time to compare gene trees from it to the test set.
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to produce gene DNA sequences and then estimated gene trees with estimation error

using Iq-tree to generate 1000 gene trees. We split the data into training and testing

sets in a 5-fold manner, and repeat 100 times. For each iteration, we optimize a

tree and a network to compare gene trees from training and testing sets. Steps 2

to 5 remain the same. And then scores are calculated by equation (3.3). Figure 3.6

describes the whole procedure in one picture.

Figure 3.7 exhibits how accurately our model can distinguish a tree from a network.

Accuracy is represented by the vertical axes, while gamma values are represented by

the horizontal axes. The top left figure (4 leaves) shows no significant difference

between full and triplet (without GTEE), in fact, full with GTEE performs slightly

better than triplet as the value of the γ parameter changes. For γ = 0.2 and 0.3,

full with GTEE gets around 14% more accuracy. However, the scenario changes

with 5 leaves (top middle). Triplet versions for both with or without GTEE are

slightly better than full’s as γ increases. The accuracy of the triplet version (without

GTEE) is 3% more compared to the full version. On the other hand, with GTEE,

the tripletized version has higher accuracy than the full version. For instance, the

accuracy is 12% higher when γ = 0.2.

Nonetheless, the top right figure (6 leaves) indicates not too many performance

differences between full and triplet (with or without GTEE). Even so, the triplet

version is slightly better for different γ values. However, the bottom left figure (7

leaves), full and triplet can identify a tree (γ = 0) with 100% accuracy. But when γ

changes to 0.1, the accuracy of full falls down to 62% whether triplet achieves 83%. As

γ moves to 0.2 and 0.3, triplet can identify the network with 96% and 98% accuracy

and full-version achieves 81% and 86% respectively. With GTEE, full-version can

classify the tree (γ = 0) with 94% accuracy and triplets can do it 98% of the time.

If γ is configured for a network (γ= 0.1, 0.2, or 0.3), the accuracy of the triplet

is greater than 80%. On the other hand, the full version with GTEE lies between
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55% and 62%. The bottom bottom middle figure (8 leaves) has shown the full version

(without GTEE) is consistently lower than the triplet version. To be exact, the triplet

version gains 24% and 23% higher accuracy compared to the full when γ = 0.1 and

0.2 respectively, and 11% higher accuracy when γ = 0.3. A similar pattern happens

with the GTEE also: the full version with the GTEE remains in between 46% to

58% but tripletized with GTEE gains 44%, 32%, 38%, and 22% higher accuracy than

the full version with respect to the γ values from 0 to 0.3. The bottom right (9

leaves) figure demonstrates that the triplet version both with or without the GTEE

almost always represents the true network with nearly perfect accuracy, even for a

tree. While capturing a tree, the full version with the GTEE accuracy is only 78%,

as γ value increases, it achieves at most 72%, and full without the GTEE can identify

the tree with 97% accuracy, and for γ = 0.1, 0.2, and 0.3, the accuracy is near 90%.

Overall, Figure 3.7 illustrates a few interesting patterns. With the growth of a

number of leaves, the accuracy goes up except for the full version with the GTEE

version. The tripletized version always performs better with the increase in the num-

ber of leaves. For instance, in a network with 9 leaves, the tripletized version with or

without the GTEE accuracy remains more than 98%. When γ = 0.1, overall accuracy

decreases and gradually improves as γ increases, which is an interesting finding.

Figure 3.8 is an alternative representation of the results through the lens of γ. In

this figure, accuracy is as usual in the vertical axes but in the horizontal axes, we

put the number of leaves. This clarifies more about the model performance as the

number of leaves grows. The top left picture (γ =0) depicts the accuracy when the

true network is always a tree. Full and triplet almost always (with accuracy between

0.97 and 1) can capture the true trees perfectly. The only exception happens at 6

leaves tree when the gene trees with GTEE are counted as full or triplet (around

50%). However, the accuracy for full GTEE for 8 leaves goes down to less than 60%

and for 9 leaves to 78% but conversely, triplet with GTEE goes up from 98% to 100%
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Figure 3.7: Figure shows the accuracy of tripletized version (with or without GTEE)

gets better and better as the number of leaves grows in distinguishing networks from

the tree.
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Figure 3.8: Figure shows the accuracy of tripletized version (with or without GTEE)

gets better and better over different values of γ in identifying tree-likeness.
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for 7, 8, and 9 leaves. In the top right figure (γ = 0.1), the accuracy of full and

triplet for 4, 5, and 6 leaves fluctuates between 68% to 92% but as the number of

leaves increases triplet version performs better than full, at 9 leaves triplet version

reaches to 1 whether full gets 87% accuracies. On the other hand, triplet GTEE

starts somewhat lower than the full GTEE at 4 leaves tree but for the remainder

of the networks including 5 through 9 leaves, triplet GTEE gets better and better

reaches accuracy 100% whether full GTEE lies between 48% and 72%.

In the bottom left figure (gamma = 0.2), accuracy for triplet approach is always

in between 95% and 100% and for full, the accuracy drops for 7, 8, and 9 leaves.

Furthermore, the accuracy for the triplet version with GTEE at 4 leaves is slightly

more than 50% while full GTEE gets 64% accuracy. However, again as the number

of leaves increases, the gain in accuracy of triplets with GTEE increases compared

to full gene trees with GTEE. For example, accuracy at 8 leaves is 0.48 and 0.86 for

full and triplet versions with GTEE respectively. This is actually 38% more accurate

while using triplets with GTEE. Similarly, for 9 leaves accuracy is 28% more. The

bottom right figure represents the accuracy for γ = 0.3 over the networks consisting

of leaves 4 through 9. Here, triplets again gains more accuracy when compared to

full gene trees. For a network with 4 leaves, both full and triplet methods have 99%

accuracy but for a network with 5, 6, 7, 8, and 9 leaves, the accuracy using triplets

(100%, 71%, 98%, 100%, and 100%) are always greater than using full gene trees

(98%, 55%, 86%, 89%, and 89%, respectively). With GTEE, the accuracy difference

is even more, the tripletized version of GTEE gets higher accuracies as the number

of leaves increases. For 7, 8, and 9 leaves, the triplet method reaches 24%, 42%, and

36% respectively. An interesting fact of Figure 3.8 is that We always see a triplet

version either with GTEE or without the GTEE perform better as the number of

leaves increases.
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3.7 Conclusion

In summary, phylogenetics deals with the evolutionary relationships between differ-

ent species and is often represented by a phylogenetic tree. Gene trees, which are

formed by the replication of genes and their passage to different offspring, can be

used to infer the evolutionary history of a species. The process of speciation creates

branching lineages that can be traced back through time to find common ancestors.

The study of these relationships is aided by the use of coalescent theory, which mod-

els the probabilities of evolutionary patterns in genealogies and the probabilities of

ancestral histories. Multispecies coalescent theory can be applied when studying mul-

tiple populations, and the resulting evolutionary relationships can be represented as

a phylogenetic network. Inference of these networks can be complicated by factors

such as incomplete lineage sorting and hybridization events.

Likelihood calculations for networks are substantially slower than for trees because

there are more parameters to consider. Since the number of parameters varies among

networks, the underlying problem is more comparable to model selection than esti-

mation. In distinguishing tree-likeness, our method, tripletized CV (with or without

GTEE) had better performance than using the full gene trees. This is a proof-of-

concept pilot study that will be scaled to more taxa and a variety of networks. The

motivation for the tripletized version was that so many gene trees are unique in each

dataset that it might be meaningless to compare frequencies of each gene tree topol-

ogy between a simulated and observed data set.

To explore this further, a larger number of species might be needed. However, in

this case, optimizing the network parameters using likelihood is much more difficult.

A faster method is needed than in this study, such as using branch lengths in the

gene trees.
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Chapter 4

Querque: Temporal Fairness in

Service Queues

4.1 Introduction

Most real-world queues are priority queues where a business logic dictates the service

order. For example, the queue in an emergency room of a hospital is prioritized by

the need of the patients determined by the triage nurses. Another example is the

service queue for public services, most commonly accessed through and prioritized

by the 311 call centers. Can we determine if a queue is fair for all concerned groups

in terms of service times when other conditions (e.g. complaint type) are identical?

Do real-world service logs show unfair distributions of service times? Is there a way

we can help the queue managers to maintain fairness in service times at the time of

allocating resources to serve a request? We hint at the answers in the next three

paragraphs, respectively, and detail affirmative evidence in the rest of the chapter.

A fair service queue must not have a significant difference in the service time

among population groups when other conditions are identical. Figure 4.1 shows a

toy service log with at most three concurrent jobs and with two population groups.
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Longer than the previous five

Longer than the previous five Not longer than the previous five

Longer than the previous five Time

Figure 4.1: Each bar represents a service request on a timeline. The length of a

bar represents the duration for which the request was active. The colors represent

a sensitive attribute. Consider the textured bars. When compared to the median

service time of the previous five requests, we find three of them (two blue, one red)

taking longer than usual. An unfair queue counts statistically more such long service

times for any specific color over a long period of time.

We compare a job with the jobs that have been ended/closed immediately before its

arrival. An unfair queue may have a significant difference in the number of jobs that

needed unusually longer time to finish compared to the preceding jobs.

Consider the 311 call service log in New York City. We consider the service

time as the time between placing a request and the closure of the request. Since

complaints are handled by several departments separately, we consider each complaint

type independently. We label postal areas (i.e. zip codes) with more than 50%

populations of a single race as one group and the diverse areas as a neutral group.

Among the 240 complaint types, we found 37 complaint types with disparate (i.e.

statistically significant) service times for identified zip codes. An astute reader may

find strong reasons to justify such delays such as “service time must be proportionate

to tax generation,” and argue that “such disparity must not be fixed.” However, in

this paper, we mainly focus on the technical aspects of defining and ensuring fairness

and demonstrate evidence in the datasets as defined.

A fair queue does not disproportionately delay or accelerate services to a group of

the population; unless there is business logic. In this paper, we define the temporal

fairness of a strictly first in first out (FIFO) queue. We develop metrics to evaluate
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the fairness of a FIFO queue. We propose a data editing process to fix the training

data to learn temporally fair models.

4.2 Background

We consider a general model of a service queue, which is different from the commonly

known queues in queuing theory. In a service queue, there is no waiting in the queue

because an entry in the system is always guaranteed. Examples include 911 telephone

numbers for emergencies in the U.S. and the triage booth of an emergency room in a

hospital.

However, once entered, the customer starts waiting to be served, and then, after a

while, the service begins with an available server and ends when the server completes

the job. We consider the entire time from entering the queue to exiting the system

as the service time. We do not distinguish between the actual wait time (e.g. time

until a server is available) and the actual service time (e.g. time for the server to

complete the job), which can often be overlapping and indistinguishable. We identify

that fairness is a collective experience, and a customer prefers short end-to-end service

time.

Thus, in a service log, a set of n jobs are ordered based on their arrival times

a1, a2, . . . , an. The service ending times are d1, d2, . . . , dn are generally not ordered.

The service time is ∆i = di−ai > 0. The service time depends on several factors such

as the complexity of the service, availability of a server, and availability of resources

to complete the service. We bundle together all job-specific attributes of a job as ji.

The probability distribution of the ∆s also depends on the temporal state of the

system

A service can be made of multiple queues and multiple servers. For example, there

are several triage nurses in the emergency room serving a single queue of patients,
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and the 911 telephone number in the U.S. is a single queue.

We neither claim that this fairness MUST be corrected, nor we claim that delaying

some request (in absence of resources) MUST be done. We simply define the fairness

metric and show that occasional (< 1%) randomness can make a system fair. The

infinite queue is where the number of people in the queue does not impact the entry

rate. NYC call center is such a queue because there is only one 311 number. Service

priority rules vary for complaint types. In general, for the same complaint type, the

expectation is first come first serve.

Absolute fair models are hard to achieve. There can be constraints to incorporate

that is not always known ahead of training. Making a model aware of one kind of

fairness can create avenues for other kinds of unfairness.

4.3 Fairness in Service Queues

We define temporal fairness by exploiting a rolling window on the sequence of jobs

arrived in the system. The rolling window provides a context for the next job to

determine if the service time for the next job is unusually longer than the general

service time in the rolling window. Consider a rolling window of w jobs. Let us define

the kth-percentile service time of the jobs in the rolling window of the most recent w

jobs with t being the last serviced job as ∆k,t. When k = 50th-percentile, ∆k,t is the

median of the service times of the most recent w jobs.

Let us consider the service time for the (t + 1)th job as ∆t+1. If ∆t+1 > ∆k,t, we

define that the (t+ 1)th job experienced more than usual delay, and we count such a

job as a violation of expectation. The k = 95th-percentile is a reasonable choice to

identify a strong violation of expectation.

Consider a sequence of n >> w jobs in the service queue. Using the above

definition, we can assign a binary variable, v, (i.e. 1: violation and 0: expectation),
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to each of the recent n−w+1 jobs. Note that vi where w < i ≤ n is an independently

drawn sample of the random variable v. Hence,
∑n

i=w+1 vi is the number of violations

in the given sequence of n jobs.

Let us consider a binary sensitive attribute S ∈ {s1, s2}. We can count the number

of violations for each of the attribute values, and produce the following table.

Table 4.1: 2× 2 table for Chi-squared test
Violation Non-violation Row total

s1
O1=Obs. count

E1 =
r1∗c1
T

O2=obs. count
E2 =

r1∗c2
T

r1=total of row 1

s2
O3=obs. count

E3 =
r2∗c1
T

O4=obs. count
E4 =

r2∗c2
T

r2=total of row 2

c1=total of column 1 c2=total of column 2 T=Table total

The χ2 test statistics is:

χ2 =
4∑

i=1

(Oi − Ei)
2

Ei

Since table 4.1 is a 2× 2 table, the degrees of freedom for χ2-test is 1.

H0: There is no relationship between the violation counts and the sensitive attributes.

If the p-value is less than 0.05, we say the violation count between s1 and s2 is signif-

icantly different, deeming the sequence of n jobs as temporally unfair with respect to

S. Given the above contingency matrix, standard χ2-test can be applied with a 95%

confidence interval.

4.3.1 Fairness Violation in Service Queues

The above definition of temporal fairness allows us to evaluate fairness over any

complete service log. In this section, we evaluate our statistical test on two 311-call

logs from New York City and Chicago.
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4.3.2 311 call Sequences in New york city

311 call log is a good candidate to evaluate our proposed system.

1. It is a first-come-first-serve queue (only one 311). 2. For a specific type of

service request, the expected service time is equal. 3. Location bias exists because

the quality (i.e. promptness, skill, etc.) of the service providers varies across locations

(because tax collection varies across locations). We ignore these money-driven (i.e.

business) priorities because the world is unfair by definition.

311 calls are non-emergency calls in the USA. We collected the data from New

York official website1 dated from 01/01/2010 to 03/05/2022. The data set contains

created and closed time of an individual’s complaint, complaint Type, agency name,

incident Zip, borough, open data channel type, descriptor, location, etc. We also

collected demographic statistics by the Zip code of New York City from the official

website2. The complaints are recorded from total 178 zip codes. This data set contains

percentages of different races such as Hispanic Latino, American Indian, Asian non-

Hispanic, White non-Hispanic, Black non-Hispanic, unknown ethnicity, and others.

For simplicity in this article, we separated the zip codes by considering the fact that

the zip code contains more than 50 percent of either the White non-Hispanic race or

Black non-Hispanic race. If a zip code contains more than 50 percent White non-

Hispanic, we label it as a white race zip code and any complaint coming from these

zip codes is also labeled as white. Similarly, if a zip code contains more than 50

percent Black non-Hispanic, we label it as a Black race zip code and any complaint

coming from these zip codes is also labeled as Black. By taking these two races, we

ended up with 37 zip codes where 19 with White race and 18 with Black race. From

these zip codes, a total of 4718303 complaints have been received and resolved by the

1https://nycopendata.socrata.com/Social-Services/311-Service-Requests-from-2010-to-
Present/erm2-nwe9/data

2https://data.cityofnewyork.us/City-Government/Demographic-Statistics-By-Zip-Code/kku6-
nxdu
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city. After removing those that have a closing date before the created date, the total

number was reduced to 4,453,540. Among these 673,108 calls have been received

from white-majority locations and 707,207 have been received from black-majority

locations. The rest of the call locations received from the city with no single majority

race, hence we label them as neutral locations. There have been 3,073,225 calls from

141 race-neutral zip codes (Table 4.2 ).

There are 240 different types of complaints in total. Significant violations were

discovered in 37 complaint types between two races when the median was used in

the definition, and 17 complaint types between two races when the 95th and 99th

percentiles were used (Table 4.3 ).

Table 4.2: Descriptive data
NYC Chicago

Duration 01/01/2010-
03/05/2022

07/01/2018-
08/26/2022

Total calls 4,453,540 4,121,987
Complaint types 240 104
Black-majority
calls

707,207 1,883,569

White-majority
calls

673,108 1,119,455

Zip codes 178 59
Black-majority
Zips

18 17

White-majority
Zips

19 31

4.3.3 311 call Sequences in Chicago

Similar to New York City, we also collected 311 calls from Chicago’s official web-

site3 dated from 07/01/2018 to 08/26/2022. The data set includes an individual’s

complaint’s created and closed dates, service Type, owner department, incident Zip,

3https://data.cityofchicago.org/Service-Requests/311-Service-Requests/v6vf-nfxy
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Table 4.3: Number of complaints types found violated by different violation parameter
Chicago New York

city
Median 56 37
75th-
percentile

50 33

95th-
percentile

44 17

99th-
percentile

47 17

street address, city, state, created hour, week, month, and so on. We also gathered

demographic information by Chicago Zip code4. The complaints come from 59 dif-

ferent zip codes. We labeled the zip codes in the same way that we did for New York

City. Using only two races, we discovered 48 zip codes, 31 with White race and 17

with Black race. The city of Chicago has received and resolved 4121987 complaints

from these zip codes. There have been 1119455 complaints in white-majority race zip

codes and 1883569 complaints in black-majority race zip codes. The rest of the races

are labeled neutral which are around 1118963 observations based on the remaining

11 zip codes. (Table 4.2).

There are a total of 104 different types of complaints. Significant violations were

found in 56 complaint types involving two races when the median was used as the

definition, and in 44 and 47 complaint types involving two races when the 95th and

99th percentiles were used, respectively (Table 4.3).

4.3.4 Fairness Correction

The goal of correcting the input sequence to enable a model to learn to be fair.

This falls under the general data editing techniques in Machine Learning literature.

However, there is a constraint that the model needs to learn the business logic too. For

4https://data.cityofchicago.org/Health-Human-Services/Chicago-Population-Counts/85cm-
7uqa/data
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example, an obvious shuffling of the input sequence would be to make the departure

order the same as the arrival order. Surely the model would learn to be fair, however,

the business will hurt. For example, in a restaurant queue, a $1 order (e.g. a drink)

will wait for more than a $100 order (e.g. multiple meals). Therefore, the notion of

correction must be minimal so the model becomes fair and learn as much business

logic as possible.

Assume we discovered statistically significant differences between two sensitive

attributes. As a result, one attribute must have a higher proportion of violations.

We want to reduce the number of violations from the protective sensitive group to

make it more equitable. Assume that O1 and O3 are a set of observations violated by

the two groups and let O1 > O3. We reduce the number of violations, epsilon1 from

O1 to make it statistically insignificant. However, this may result in more violations

in other groups and let epsilon2 be the number that increased in the other group.

Therefore, we want to optimize in such a way that ϵ1 > ϵ2. Then the 2×2 table looks

like as: Then solving the following equation for ϵ1 is sufficient for our problem.

is

Table 4.4: 2× 2 table for Chi-squared test
Violation No Violation Row total

Female
O′

1 = O1 − ϵ1
E ′

1 =
r1∗c1′

T

O′
2 = O2 + ϵ1
E ′

2
r1∗c2′

T

Row 1 total

Male
O′

3 = O3 + ϵ2
E ′

3 =
r2∗c1′

T

O′
4 = O4 − ϵ2
E ′

4 =
r2∗c2′

T

Row 2 total

Column 1 total Column 2 total Table total

n∑
i=1

(O′
i − E ′

i)
2

E ′
i

≤ K (4.1)

where ϵ1 > ϵ2.

If the χ2-test statistics is insignificant, there must have a larger number of violations

in one group than another. For now, let O1 > O2, then obviously, O1 > E1 and let
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γ = ϵ1 − ϵ2 > 0. To show that ϵ1 provide a positive solution such that The equation∑4
i=1

(O′
i−E′

i)
2

E′
i
≤ K exists.

Table 4.5: Two way table for Chi-squared test
Violation No Violation Row total

Female
O′

1 = O1 − ϵ1
E ′

1 =
r1∗c′1
T

O′
2 = O2 + ϵ1

E ′
2 =

r1∗(T−c′1)

T

r1

Male
O′

3 = O3 + (ϵ1 − γ)

E ′
3 =

(T−r1)∗c′1
T

O′
4 = O4 − (ϵ1 − γ)

E ′
4 =

(T−r1)∗(T−c′1)

T

T − r1

c′1 = c1 − γ T − c′1 = c2 + γ T

We derive this equation for ϵ1 and get the following quadratic equation:

ϵ21T
2 + ϵ1[−2T (O1T − r1c

′
1)]+

O2
1T

2 − r1c
′
1(T − r1)(T − c′1)(

K

T
+ c′1) + Tr1c

′
1(O3 − γ −O1) ≤ 0

Assuming equal sign and solving for ϵ1

ϵ1 =
(O1T − r1c

′
1)±

√
(T − r1)[K + c′1(T − (K

T
+ c′1 + 1)]

T

Since both parts in the numerator are positive, there exists at least one positive

solution (details are in the appendix). In real-life practice, we can solve this problem

by providing the following service suggestions:

4.3.5 By providing faster service:

Our violation is defined by the kth-percentile of the last r-historical service times

(or ∆t’s). We can think of r as the size of our rolling window. Intuitively, to make a

fair system, we can speed up the service time. To do so, if the (r+1)th observation is

one of the violated ones, it is suggested that the task be completed by the median of

the previous r number of ∆t’s. Furthermore, in order to pass the chi-squared test, we

74



Algorithm 4 Fixing by providing faster service1

Require: ∆t : Service time; {a′, a} ∈ A: Sensitive attributes, r: window size

Ensure: p-value > 0.05

1: Calculate p-value from χ2 test statistics

2: For χ2 table, let Oa′ : number of violated obs. count in group a′; Oa: number

of violated obs. count in the group a; E ′
a: expected count in group a′; and Ea:

expected count in group a

3: while p-value < 0.05 do

4: if Oa′ > Oa then

5: take ϵ1 = Oa′ − Ea′

6: randomly pick ϵ1 number of violated obs from Oa′

7: ∆
i

t ← median of previous r-number of ∆′
ts

8: end if

9: if Oa > Oa′ then

10: take ϵ1 = Oa − Ea

11: randomly pick ϵ1 number of violated obs from Oa

12: ∆
i

t ← median of previous r-number of ∆′
ts

13: end if

14: Calculate χ− squared table again

15: if ϵ2 > ϵ1 then

16: Go to line 3

17: end if

18: if p-value > 0.05 then

19: return ∆t’s

20: end if

21: end while
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must optimize the ϵ1 number of service times that must be fixed. To accomplish this,

we select ϵ1 from the unfair sensitive attribute group that has the highest number

of violations according to the χ2 table. Then we take the initial ϵ1 = O1 − E1 and

fix the violations. However, we may not reach the optimal number immediately. So,

we introduce an iterative approach until it becomes insignificant. However, there is a

chance that more new violations will occur in another protective group. Assume the

other group’s number of violations is ϵ2. The raise is only permitted if the condition

ϵ1 > ϵ2 is met. Otherwise, the process is restarted. Remember that the derivation

for ϵ1 guarantees at least one positive solution. However, speeding up service could

be expensive and needs more resources. To overcome this, we offer another solution

in the next section.

4.3.6 by delaying time:

Again, our violation definition is based on the kth-percentile of the last r-historic

service times (or ∆t), and to make the system fair, we propose delaying some service

times by a certain amount of time. To accomplish this, we select the unfair sensitive

attribute group(suppose O1) that has been violated the most according to the χ2

table. Then, we begin by choosing ϵ1 = O1 − E1 violations to fix and make it fair.

We select ϵ1 violated observations at random from the protective group. Locate the

observations in each of the violated windows that are less than the median of that

window. Then the amount of (∆r+1
t -median)*r for that window is then distributed for

those observations located previously. Furthermore, in order to pass the chi-square

test, we must optimize the number of services to be delayed. There is a chance that

more new violations will occur in another protective group, as in the previous section.

Assume the other group’s number of violations is ϵ2. The raise is only permitted if

the condition ϵ1 > ϵ2 is met. Otherwise, the process is restarted. The output of the

corrected model will be serving time that will include tiny delays to make the process
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Algorithm 5 Fixing by delaying service2

Require: ∆t : Servicetime; {a′, a} ∈ A: Sensitive attributes

Ensure: p-value > 0.05

1: Calculate p-value from χ2 test statistics

2: For χ2 table, let Oa′: number of violated obs. count in group a′; Oa: number of

violated obs. count in group a; Ea′: expected count in group a′; and Ea: expected

count in group a

3: while p-value < 0.05 do

4: if Oa′ > Oa then

5: take ϵ1 = Oa′ − Ea′
6: randomly pick ϵ1 number of violated obs from Oa′
7: ∆

i

t ← median of previous r-number of ∆′
ts

8: delayed by ← (∆
(i+r+1)
t −∆

i

t) ∗ r
9: count←

∑
I(∆

(i+j)
t < ∆

i

t) for any j ∈ 1..r

10: if ∆
(i+j)
t < ∆

i

t for any j ∈ 1..r then

11: ∆
(i+j)
t ← ∆

i

t/count

12: end if

13: end if

14: if Oa > Oa′ then
15: take ϵ1 = Oa − Ea

16: randomly pick ϵ1 number of violated obs from Oa

17: ∆
i

t ← median of previous r-number of ∆′
ts

18: delayed by ← (∆
(i+r+1)
t −∆

i

t) ∗ r
19: count←

∑
I(∆

(i+j)
t < ∆

i

t) for any j ∈ 1..r

20: if ∆
(i+j)
t < ∆

i

t for any j ∈ 1..r then

21: ∆
(i+j)
t ← ∆

i

t/count

22: end if

23: end if

24: Calculate χ− squared table again

25: if ϵ2 > ϵ1 then

26: Go to line 3

27: end if

28: if p− value > 0.05 then

29: return ∆t’s

30: end if

31: end while

77



fair. However, the server can follow these service times to ensure fairness.

4.4 Experiments and Results

We tested our method on data sets from New York and Chicago. The results of both

methods are briefly discussed below.

4.4.1 New York city

We applied our method to New York data on a monthly basis for a total of 146

months, beginning on January 1, 2010, and ending on March 5, 2022. To calculate

the violations for each month, we use a window size of 100 observations. We compute

the 99th-percentile of the first window and record the 101st observation if it exceeds

the 99th-percentile. Then we proceed to the next observations on a rolling window

basis, keeping the window size constant and calculating violations until the end of

the month. We use Chi-Square test statistics to see if there is a significant rela-

tionship between violations and the zones (black or white) based on each complaint

type. Among the 240 complaint types, 25 were found to be significantly different in

violations between Black and White zones over the months. The Delay and Faster

method is then used to make the difference statistically insignificant.

Figure 4.2 depicts the significant violations on complaint type ”PLUMBING”

discovered in 9 different months. The top left graph shows the total number of

violations (only in the black and white zones) before and after using the Delay method

to fix them. After fixing, the number of violations is usually reduced in most months.

Few of them rise (e.g. March 2013 and April 2020). The results on the top right are

from the Faster method, and the numbers are always less after fixing. True, the Delay

method requires more observations to be fixed than the faster method, as shown in

the bottom part of the figure. For the month of March 2013, the delay method fixed

over 600 observations, whereas the Faster method requires only a few observations
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Figure 4.2: Figure depicts the violations for complaint type ”PLUMBING” in New

York City before and after they were corrected using the Delay and Faster approach.

The graphs below demonstrate how many issues need to be resolved before it performs

satisfactorily.
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above 20. Because the delay method fixes all observations that are less than 50th-

percentile in the window that is found to be violated, more data is required to be

fixed. The Faster method, on the other hand, only fixes one value that is causing the

violation (101st value) for a single window.
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Figure 4.3: The figure depicts the violations before and after they were fixed using

the Delay and Faster method for complaint type ”PAINT PLASTER” in New York

City. The graphs below show the number of complaints that need to be resolved in

order for it to function properly.

The number of violations for the New York City complaint type ”PAINT PLAS-
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TER” before and after correction is shown in Figure 4.3. Substantial violations in

this complaint category were found in nine separate months. The month of February

2013 had the most infractions; the Delay technique requires roughly 500, whereas the

Faster method just requires 20 observations. On the other side, the lowest number of

violations was discovered in the month of March 2011. The Delay approach requires

over 100 complaints to be resolved, whereas the Faster technique only needs about 5

obs to achieve justice.

4.4.2 Chicago city

Between July 1, 2018, and August 26, 2022, we used our approach to Chicago data

on a monthly basis for a total of 50 months. We follow the same process as New York

City to determine the number of violations for each month. 40 of the 104 complaint

types had violations that were noticeably different between the Black and White

zones over the course of the months. The discrepancy is then reduced to statistical

insignificance using the Delay and Faster approach.

Figure 4.4 displays the number of violations for the Chicago complaint type ”San-

itation Code Violation” both before and after correction. In this complaint category,

significant breaches were discovered 26 months out of 50 months. The month of April

2021 had the most infractions (36); the Faster approach only needs about 40 observa-

tions, whereas the Delay technique needs about 450. The least amount of violations,

on the other hand, were found in the month of March 2011. The Faster method only

needs roughly 5 complaints to obtain justice, whereas the Delay method needs over

100 to do so. Intriguingly, the Faster technique requires 150 to be established for

the month of September 2020, whilst the Delay method requires at least 400 for that

month.

The number of violations for the Chicago complaint type ”Yard Trash Pick-Up

Request” is shown in Figure 4.5 both before and after repair. Significant infractions
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Figure 4.4: The figure depicts the violations before and after they were fixed using the

Delay and Faster method for complaint type ”Sanitation Code Violation” in Chicago

city. The graphs below show the number of complaints that need to be resolved in

order for it to function properly.
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Figure 4.5: The figure depicts the violations before and after they were fixed using

the Delay and Faster method for complaint type ”Yard Waste Pick-Up Request” in

Chicago city. The graphs below show the number of complaints that need to be

resolved in order for it to function properly.
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were found 24 out of 50 times in this complaint category. The most infractions

(34), while the Faster strategy only requires roughly 35 observations, while the Delay

technique requires about 700. The month of December 2020 had the most infractions.

On the other hand, the month of May 2022 had the fewest breaches discovered. In

contrast to the Delay technique, which requires over 150 complaints to get fairness,

the Faster method just requires only 5 complaints.

4.5 Conclusion

Fairness in machine learning has been a growing study topic. Data drives machine

learning models, so biased data may affect predictions. Initial prejudice, polluted

data, restricted resources, and sample size discrepancy cause bias. Demographic par-

ity, equalized odds, predictive rate parity, and individual fairness are several fairness

definitions. Temporal fairness—statistically impartial service times across sensitive

population groups with temporal drifts—is neglected. ”Querque,” a temporally fair

method, ensures fair service queues and shows that population groups have encoun-

tered unfair service delays in real service queues. The technique can reduce training

data bias and create a fair queue manager.

The paper investigates the concept of fairness in service queues, where business

logic governs the order of service. We argue that, under identical conditions, a fair

queue would not necessitate a significant difference in service time between popula-

tion groups. We provide evidence of unfair service time distributions in actual service

records, such as the 311 call service log for New York City. We propose a method for

preserving temporal fairness in service queues by using a correction algorithm based

on chi-squared test statistics. We provide a fixed number that can be guaranteed

to make the system fair. In our work, we proposed the Delay and Faster methods

and demonstrated that the Delay method always requires more observations to en-

sure fairness than the Faster method. However, implementing Faster is expensive; it
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necessitates both money and manpower. As a result, we must make a budget-based

trade-off between these two methods.

We utilize non-emergency 311 calls from New York and Chicago. The calls may

originate from any zip code and any form of complaint. One may doubt the lack

of independence involved in counting violations. To address this circumstance, we

propose an alternative empirical method for estimating the critical values. First, we

count the violations according to our definition, and then we permute the sensitive

attributes while leaving the violations unchanged. This was applied to all complaint

categories with more than 1,000 complaints in Chicago data. Each time we permuted

the sensitive attributes 10,000 times, Chi-square statistics were calculated. Then,

based on the output of Chi-squared statistics, we determined the 95th percentile,

which is our critical value. We did this for all categories of complaints. The range

of critical values is from 2.47 to 3.84, with an average of 3.47. None of the values

exceeds 3.84. Therefore, if any critical value is less than 3.84, additional observations

(epsilon 1) may be required to resolve the issue. A similar technique can be applied

to New York City data.
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Chapter 5

Discussion and Future Work

5.1 Diffuscope

A positive move toward enhancing the monitoring of social media and identifying

potential sources of manipulation, misinformation, and distrust, the development of

technology to infer the diffusion network of specific posts on social media is a step

in the right direction. It would appear that the Diffuscoe approach is successful in

discovering diffusion networks across a wide variety of datasets and fields of study.

Nonetheless, it is essential to acknowledge that while the fact that locating diffusion

networks is a necessary step, this process is not, on its own, sufficient to safeguard

human users against the influence of inorganic factors. A substantial amount of effort

must be put forth to create and execute solutions to prevent manipulation, misinfor-

mation, and abuse on social media in order to offset the bad effects that are caused

by automated actions on these platforms. The aggregation of estimated diffusion

networks to produce a worldwide influence network among users is one approach that

might be taken to accomplish this goal. This bottom-up method has the ability to

provide useful insights into the ways in which information flows through social media

platforms and to detect patterns of influence and manipulation.
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It is essential that these methods be used in conjunction with other strategies

to protect human users and promote democratic governance. In general, the devel-

opment of new techniques to monitor social media is important; however, it is also

essential that these techniques be used together with other strategies.

5.2 Testing tree-likeness

Phylogenetics is a field that studies the evolutionary relationships between different

species, and gene trees are used to infer a species’ evolutionary history. Coales-

cent theory is a useful tool for modeling the probabilities of evolutionary patterns in

genealogies as well as the probabilities of ancestral histories. Understanding the rela-

tionships between multiple populations can be facilitated by the use of phylogenetic

networks.

However, due to factors such as incomplete lineage sorting and hybridization

events, inferring these networks can be difficult. Furthermore, because there are

more parameters to consider, network likelihood calculations are slower than tree

likelihood calculations. To distinguish tree-likeness, model selection techniques are

frequently used rather than estimation techniques.

Overall, the research indicates that tripletized CV is a promising method for dis-

tinguishing trees from networks among phylogenetic histories, and it will be developed

and tested on a variety of networks. However, optimizing network parameters using

likelihood remains difficult, particularly for larger datasets, and faster methods may

be required in the future.

5.3 Querque

Because of the risk of biased data affecting a specific protected group, fairness in

machine learning has become an important area of research. While there are several

definitions of fairness, temporal fairness has been overlooked in the literature. This
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research analyzes temporal fairness in service queues and proposes a method for en-

suring equal service times across vulnerable population groups. The method is based

on a correction algorithm that uses chi-squared test statistics and provides a fixed

number to ensure system fairness. The method’s effectiveness is demonstrated using

the 311-call service, which demonstrates evidence of unfair service time distributions.

We also introduce two methods for ensuring fairness and highlighting the trade-offs

between these two methods, Delay and Faster. The Faster method requires fewer cor-

rections but requires more resources to implement whereas the Delay method needs

more corrections but can be implemented with limited resources. However, it can

reduce bias in training data and produce a fair queue manager. Overall, this work

contributes significantly to the field of fairness in machine learning and emphasizes

the importance of considering temporal fairness in service queues.

Future work could involve investigating the use of machine learning algorithms

to identify and mitigate biases in large datasets, building on the idea of training a

model to learn biases from data and applying techniques to fix them. Our approach

could entail creating models that detect and quantify temporal biases in machine-

learned data and then applying our techniques to mitigate their impact. Overall, the

field of fairness in machine learning is constantly evolving, and there are numerous

opportunities for future research to improve algorithm fairness and reduce its impact

on marginalized groups.
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Appendix A

DiffuScope: Inferring Post-specific

Diffusion Network

A.1 Log-likelihood of Hawkes process

The derivation for log-likelihood of Hawkes process is

logL(t1, t2, ....tn|αu, βuv) = −
∫ T

0

γuv(t|αu, βuv)dt

+

∫ T

0

log γuv(t|αu, βuv)dN(t)

where t1, t2, ....tn are the retweeting history by node v from node u. Now, From

equation 2.1, we can write

logL(t1, t2, ....tn|αu, βuv) = −
∫ T

0

[

∫ t

−∞
αue

−βuv(t−s)dN(s)]dt

+

∫ T

0

log[

∫ t

−∞
αue

−βuvtdN(s)]dt

= −
∫ T

0

[

∫ tn

s

αue
−βuv(t−s)dN(s)]dt+

∫ T

0

log[

∫ t

−∞
αue

−βuvtdN(s)]dt
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=

∫ T

0

[
αu

βuv

(e−βuv(tn−s) − 1)]dN(s) +

∫ T

0

log[

∫ t

−∞
αue

−βuvtdN(s)]dt

Finally,

L =
n∑

i=1

[
αu

βuv

(e−βuv(tn−ti) − 1)] +
n∑

i=1

log[αu

∑
ti<tj

e−βuv(ti−tj)] (A.1)

A.2 Tweet example

Figure A.1: (left) Donald Trump’s tweet. (right) Joseph Biden’s tweet

Figure A.2: Two successive tweets from Donald Trump

A.3 R-code

library ( t i dy j s on )

l ibrary (data . table )

l ibrary ( s t r i n g r )

l ibrary ( networkD3 )

l ibrary ( t i b b l e )
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f i l e s<−l i s t . f i l e s (path = sp r i n t f ( ” F i l e path” ,n ) ,

pattern = ”∗ . csv ” ,

f u l l .names = T)

#f o l l ow e r s i d s po s t e r and r e twe e t e r s

Fol lowersID<− read . csv ( f i l e s [ 1 ] )

#fo l l ow i n g i d s o f po s t e r and r e twe e t e r s

FollowingID<− read . csv ( f i l e s [ 2 ] )

#re twee t e r s h i s t o r y

RetweeterHistory<−read . csv ( f i l e s [ 3 ] )

#name of r e twe e t e r s and time o f r e twee t

MergedRetweets<− read . csv ( f i l e s [ 4 ] )

#name of po s t e r and time o f pos t

pos t e r tweet<−f r ead ( f i l e s [ 5 ] )

######################################################

#fo l l ow e r count

fav<−NULL

for ( f in 1 : length (MergedRetweets$ re tweet screen name)){

fav [ f ]<−length (which( Fol lowersID$userID==

MergedRetweets$ re tweet screen name [ f ] ) )

}

######################################################

rt hst<−RetweeterHistory

#crea t e l i s t to s t o r e user who retweet , who post , r e twee t time ,

#twee t t e x t , and re twee t user id

who pst<−NULL

# for loop
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for ( i in 1 : length ( rt hst$text ) )

{

# ge t twee t wi th r e twee t e n t i t y

twi t = rt hst$text [ i ]

# ge t r e twee t source

pos t e r = s t r extract a l l ( twit , ” (RT| v ia ) ( ( ? : \ \ b\\W∗@\\w+)+)” )

#remove ' : '

pos t e r = gsub ( ” : ” , ”” , po s t e r )

# name of re twee t ed user

who pst= gsub ( ” (RT @| v ia @) ” , ”” , poster , i gno r e . case=TRUE)

rt hst$who post [ i ]<−who pst

}

########################################################

cas . cad<−MergedRetweets [ , c ( 7 , 2 ) ]

po s t e r tweet$ c r ea ted at<−”2021−01−26 14 : 48 : 25 ”

pos t e r i n f o<−pos t e r tweet [ , c ( 6 , 2 ) ]

po s t e r id<−pos t e r tweet [ 1 , 5 ]

colnames ( po s t e r i n f o )<−c ( ” retweet s c r e en name” , ” c rea ted at ” )

cs . cad<−rbind ( po s t e r in fo , cas . cad )

rownames( cs . cad )<−c ( )

rewtr id<−MergedRetweets [ , 6 ]

f o l l s t<−Fol lowersID

#########################

i n f e c t e d<−cs . cad$ re tweet screen name

#id s<−c ( po s t e r id$user id , rewtr id )

#id s

f o l<−l i s t ( )
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f o lw ing<−FollowingID

mmm<−match( i n f e c t ed , f o lw ing$userID [which( f o lw ing$ f o l l ow ing ID

==

pos t e r id$user id ) ] )

f l 1<−which ( (mmm==”NA”)==FALSE)

f l 1

f o l [ [ 1 ] ]<−f l 1

for ( i in 2 : length ( i n f e c t e d ) )

{

f f<−which( f o l l s t $userID==in f e c t e d [ i ] )

i f ( length ( f f ) !=0){

i i d d<−f o l l s t $ f o l l ower ID [ f f ]

f o l [ [ i ] ]<−which( ! i s .na(match( rewtr id , i i dd ) ) )

}

}

f o l

############################################################

#c o l l e c t h i s t o r y

hist l i s t<−l i s t ( )

for ( k in 1 : length ( i n f e c t e d ) ){

ht<−l i s t ( )

hist<−l i s t ( )

for ( i in 1 : length ( i n f e c t e d ) ){

i f ( i>k){

ww<−which( rt hst$who post==in f e c t e d [ k ] )

r r<−which( rt hst$screen name [ww]==in f e c t e d [ i ] )

ht [ [ i ] ]<−rt hst$ c r ea ted at [ww[ r r ] ]
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i f ( length ( ht [ [ i ] ])==0){

hist [ [ i ] ]<−l i s t ( )

}

i f ( length ( ht [ [ i ] ] ) !=0){

h i s t o<−which( cs . cad$ c r ea ted at [ k]>ht [ [ i ] ] )

i f ( length ( h i s t o ) !=0){

hist [ [ i ] ]<−ht [ [ i ] ] [ h i s t o ] [ order ( as . POSIXct ( ht [ [ i ] ]

[ h i s t o ] , format = ”%Y−%m−%d %H:%M:%S” ) ) ]

}

i f ( length ( h i s t o )==0){

hist [ [ i ] ]<−l i s t ( )

}

}

}

}

hist l i s t [ [ k ] ]<−hist

}

#######################################################

nd<−l i s t ( )

for ( i in 2 : length ( i n f e c t e d ) ){

nd [ [ i ] ]<−which( rt hst$screen name==in f e c t e d [ i ] )
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}

content<−l i s t ( )

for ( i in 2 : length ( i n f e c t e d ) ){

content [ [ i ] ]<−rt hst$text [ nd [ [ i ] ] ]

}

content [ [ 1 ] ]<−rt hst$text [which( rt hst$who post

==in f e c t e d [ 1 ] ) ]

##########################################################

f o l l ow e r<−f o l

cascades<−cs . cad

ex t e rna l<−i n f e c t e d [ 1 ]

#ex t e rna l<−NULL

content<−content

h i s t o r y<−hist l i s t

##########################

edge prob<−function ( temp ,B,E, J ,F uv ,gamma s t a r )

{

i f (E==0)

{

prob uv<−B∗(1−E)∗J∗temp∗F uv∗gamma s t a r

return ( prob uv )

}

i f ( E==1)

{

i f (F uv==1){

prob uv<−B∗E∗J∗temp∗F uv∗gamma s t a r

return ( prob uv )
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}

i f ( F uv==0)

{

prob uv<−B∗E∗J∗temp∗(1−F uv )

return ( prob uv )

}

}

else return (0 )

}

###########################################

Jaccard<−function ( content u , content v ){

x<−s t r sp l i t ( content u , ” ” )

y<−s t r sp l i t ( content v , ” ” )

J<−length ( intersect (y , x ) )/ ( length ( y)+length ( x ) )

i f (J<10ˆ−3) J<−10ˆ−3

return ( J )

}

#######################################

hawkes<−function ( a r r i v a l s ){

n=length ( a r r i v a l s )

for ( l in 1 : 10 ){

s t o r e<−matrix (nrow=100 ,ncol=3)

k=1

for ( i in 1 : 10 ){

alpha i<−runif ( 1 , 0 , 0 . 1 )

#for ( be ta i in seq ( from=0.0 , to =.1 , by=0.01)){

for ( j in 1 : 10 ){
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beta i<−runif ( 1 , 0 , 0 . 1 )

term 2 <− sum( alpha i /beta i ∗ (exp( −beta i

∗ ( a r r i v a l s [ n ]

− a r r i v a l s ) ) − 1) )

Ai <− sapply ( 2 : n , function ( z ) {

sum(exp( −beta i ∗ ( a r r i v a l s [ z ]− a r r i v a l s [ 1 :

( z − 1 ) ] ) ) )

})

term 3 <− sum( log ( alpha i ∗ Ai ) )

s t o r e [ k , ]<−c ( alpha i , beta i , term 2 +term 3)

k=k+1

}

}

l l<−which( s t o r e [ ,3]==max( s t o r e [ , 3 ] ) )

alpha<−s t o r e [ l l , 1 ]

beta<−s t o r e [ l l , 2 ]

Ai <− sum(exp( −beta ∗ ( a r r i v a l s [ n]− a r r i v a l s [ 1 :

(n−1 ) ] ) ) )

gamma s t a r [ l ]<−alpha∗Ai

}

return (mean(gamma s t a r ) )

}

##################################################

weigth matrix<−function ( nodes , time , ex te rna l , f o l l owe r , content

, h i s t o r y ){
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j<−1

d i f<−NULL

srcnd<−NULL

dstnd<−NULL

weight<−NULL

J uv<−NULL

gamma uv<−NULL

for ( k in 1 : length ( nodes ) ){

for ( i in 1 : length ( nodes ) )

{ i f ( i<k )

{

d i f f s <− d i f f t im e ( time [ k ] , time [ i ] , un i t s=”mins” )

i f ( d i f f s [ [ 1 ] ]==0) temp<−0

i f ( d i f f s [ [ 1 ] ] !=0){

d i f<−abs ( log ( d i f f s [ [ 1 ] ] ) )

i f (exp(− d i f )==0) temp<−exp(−700) #very sma l l number

i f (exp(− d i f ) !=0) temp<−exp(− d i f )

}

#ray l e i g h parameter

s i g sq<− (1/(2∗length ( fav ) ) )∗mean( fav ˆ2)

#Rayle igh D i s t r i b u t i o n

B<−( fav [ i ] / s i g sq )∗exp(−(( fav [ i ] ˆ 2 )/(2∗ s i g sq ) ) )

i f ( i s . e lement ( nodes [ i ] , e x t e rna l)==TRUE) E=1

i f ( ! i s . e lement ( nodes [ i ] , e x t e rna l)==TRUE) E=0

i f ( i s . e lement (k , f o l l ow e r [ [ i ] ] ) ) F uv=1

i f ( ! i s . e lement (k , f o l l ow e r [ [ i ] ] ) ) F uv=0

i f ( length ( content [ [ i ] ] ) !=0 & length ( content [ [ k ] ] ) !
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=0){

J<−Jaccard ( content u=content [ [ i ] ] , content v=

content [ [ k ] ] )

}

i f ( length ( content [ [ i ] ])==0 | length ( content [ [ k ] ] )

==0){

J<−10ˆ−3

}

i f (F uv !=0){

i f ( length ( h i s t o r y [ [ i ] ] [ [ k ] ] ) !=0){

cur time<−as .numeric ( as . POSIXct ( time [ i ] ) )

hst<−sort (c ( as .numeric ( as . POSIXct ( h i s t o r y [ [ i ] ]

[ [ k ] ] ) ) , cur time ) )

gamma s t a r<−hawkes ( a r r i v a l s=hst )

}

i f ( length ( h i s t o r y [ [ i ] ] [ [ k ] ])==0){

gamma s t a r=10ˆ−3

}

}

weight [ j ]<−edge prob ( temp ,B,E, J ,F uv ,gamma s t a r )

J uv [ j ]<−J

gamma uv [ j ]<−gamma s t a r

srcnd [ j ]<−nodes [ i ]

dstnd [ j ]<−nodes [ k ]

print ( j )

j=j+1
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}

}

}

return (cbind ( srcnd , dstnd , as .numeric ( weight ) , J uv ,

gamma uv ) )

}

####################################################

a r c s<−l i s t ( )

nodes<−cascades$ re tweet screen name

time<−cascades$ c r ea ted at

start time <− Sys . time ( )

a r c s [ [ 1 ] ]<−

weigth matrix ( nodes , time , ex te rna l , f o l l owe r , content , h i s t o r y )

end time <− Sys . time ( )

end time−start time

##########################################################

#most p robab l e edges wi th we i gh t s

j=1

aa<−unique ( a r c s [ [ j ] ] [ , 2 ] )

for ( i in 1 : length ( aa ) ){

bb<−which( a r c s [ [ j ] ] [ , 2 ]== aa [ i ] )

cc<−which .max( a r c s [ [ j ] ] [ bb , 3 ] )

a r c s [ [ j ] ] [ bb[− cc ] , 3 ]<−0

}

####################################
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zero weigth<−which( a r c s [ [ 1 ] ] [ , 3 ]==0 )

network<−a r c s [ [ 1 ] ] [ − zero weigth , ]

network

###################################################

#3D graph

g <−data frame ( from=network [ , 1 ] , to=network [ , 2 ] )

simpleNetwork (g , l i nkD i s t anc e = 50 , charge = −30,

f o n tS i z e = 12 ,

fontFamily = ” s e r i f ” ,

l i nkCo lour = ”#666” , nodeColour = ”#3182bd” , opac i ty = 15 ,

zoom = T)

#####################################################

A.4 Python-code

import random

import time

import csv

from datet ime import datet ime

import os

import pandas as pd

try :

import numpy as np

except ImportError :

print ( ”Trying to i n s t a l l r equ i r ed module : numpy \n” )
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os . system ( ' python −m pip i n s t a l l numpy ' )

import numpy as np

try :

import re

except ImportError :

print ( ”Trying to i n s t a l l r equ i r ed module : r e \n” )

os . system ( ' python −m pip i n s t a l l r e ' )

import re

try :

import matp lo t l i b . pyplot as p l t

except ImportError :

print ( ”Trying to i n s t a l l r equ i r ed module : matp lo t l i b \n” )

os . system ( ' python −m pip i n s t a l l matp lo t l i b ' )

import matp lo t l i b . pyplot as p l t

try :

import networkx as nx

except ImportError :

print ( ”Trying to i n s t a l l r equ i r ed module : networkx \n” )

os . system ( ' python −m pip i n s t a l l networkx ' )

import networkx as nx

try :

import glob

except ImportError :

print ( ”Trying to i n s t a l l r equ i r ed module : g lob \n” )

os . system ( ' python −m pip i n s t a l l g lob ' )

import glob

print ( ' Loading data . . . ' )
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# common f o l d e r s

FolderFo l l ower s = ' \\Fol lowers '

FolderFo l lowings = ' \\Fol lowings '

FolderHi s tory = ' \\History '

Fo l d e rP r o f i l e = ' \\ P r o f i l e '

FolderRetweeters = ' \\Retweeters '

FolderTweets = ' \\Tweets '

# now check wi th the f o l d e r approach

u s e r f o l d e r s = glob . g lob ( ' .\\Test\\RetweetCo l l ec t ion \\∗ ' )

for f o l d e r in u s e r f o l d e r s :

# Fol lowers Path

FolderFol lowersComplete = f o l d e r + Fo lderFo l lowers

FolderFol lowingsComplete = f o l d e r + FolderFo l lowings

FolderHistoryComplete = f o l d e r + FolderHi s tory

Fo lderPro f i l eComplete = f o l d e r + Fo l d e rP r o f i l e

FolderRetweetersComplete = f o l d e r + FolderRetweeters

FolderTweetsComplete = f o l d e r + FolderTweets

# i f any o f the f o l d e r are empty not cons i de r ing the

#twee t

i f ( len ( os . l i s t d i r ( FolderFol lowersComplete ) ) == 0 or

len ( os . l i s t d i r ( FolderFol lowingsComplete ) ) == 0 or

len ( os . l i s t d i r ( FolderHistoryComplete ) ) == 0 or

len ( os . l i s t d i r ( Fo lderPro f i l eComplete ) ) == 0 or
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len ( os . l i s t d i r ( FolderRetweetersComplete ) ) == 0

or

len ( os . l i s t d i r ( FolderTweetsComplete ) ) == 0 ) :

#pr in t (” Direc tory i s empty ”)

pass

else :

#pr in t (” Direc tory i s not empty ”)

# from here the l oad ing w i l l s t a r t

#ge t the f o l d e r i d s shou ld be same fo r the o ther

#f o l d e r s

g e t f o l d e r i d s f o l l o w e r s =

glob . g lob ( FolderFol lowersComplete+ ' \\∗ ' )

f o l d e r i d l i s t = [ ]

for g e t f o l d e r i d in g e t f o l d e r i d s f o l l o w e r s :

tmp = g e t f o l d e r i d . s p l i t ( os . sep )

f o l d e r i d l i s t . append (tmp[ −1])

# loop through each o f the

for f o l d e r i d in f o l d e r i d l i s t :

Fol lowersID = [ ]

#fo l l ow e r s p a t h = data pa th +

' / Fo l lowers /1427639234576490506 '

f o l l owe r s pa th = FolderFol lowersComplete + ' \\ ' +

f o l d e r i d

f i l e s = os . l i s t d i r ( f o l l owe r s p a th )

i = 0
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for f i l e in f i l e s :

p o s i t i o n = f o l l owe r s pa th + ' \\ ' + f i l e

with open( po s i t i on , ” r ” , encoding= ' utf−8 ' )

as f :

l i n e s = f . r e a d l i n e s ( )

for l i n e in l i n e s :

Fol lowersID . append ( [ i , f i l e . r e p l a c e

( ' f o l l o w e r s . txt ' , ' ' ) ,

l i n e . r ep l a c e ( '\n ' , ' ' ) ] )

i = i+1

f . c l o s e ( )

Fol lowersID = np . array ( Fol lowersID )

FollowingID = [ ]

#fo l l ow i n g s p a t h = da ta pa th +

' /Fol lowings /1427639234576490506 '

f o l l ow ing s pa th = FolderFol lowingsComplete +

' \\ ' + f o l d e r i d

f i l e s = os . l i s t d i r ( f o l l ow ing s pa th )

i = 0

for f i l e in f i l e s :

p o s i t i o n = f o l l ow ing s pa th + ' \\ ' + f i l e

with open( po s i t i on , ” r ” , encoding= ' utf−8 ' ) as f :

l i n e s = f . r e a d l i n e s ( )

for l i n e in l i n e s :

121



FollowingID . append ( [ i , f i l e . r e p l a c e

( ' f o l l ow i n g . txt ' , ' ' ) ,

l i n e . r ep l a c e ( '\n ' , ' ' ) ] )

i = i+1

f . c l o s e ( )

Fol lowingID = np . array ( FollowingID )

RetweeterHistory = pd . DataFrame ( )

#h i s t o r y p a t h = data pa th +

' /History /1427639234576490506 '

h i s t o ry pa th = FolderHistoryComplete + ' \\ '

+ f o l d e r i d

f i l e s = os . l i s t d i r ( h i s t o ry pa th )

i = 0

for f i l e in f i l e s :

p o s i t i o n = h i s t o ry pa th + ' \\ ' + f i l e

df = pd . r e ad ex c e l ( p o s i t i o n )

RetweeterHistory =

pd . concat ( [ RetweeterHistory , df ] )

RetweeterHistory =

RetweeterHistory . r e s e t i n d e x ( ) . va lue s
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MergedRetweets = pd . DataFrame ( )

#Retwee te r s pa th = da ta pa th +

' /Retweeters /1427639234576490506 '

Retweeters path = FolderRetweetersComplete +

' \\ ' + f o l d e r i d

f i l e s = os . l i s t d i r ( Retweeters path )

for f i l e in f i l e s :

p o s i t i o n = Retweeters path + ' \\ ' + f i l e

df = pd . r e ad ex c e l ( p o s i t i o n )

MergedRetweets = pd . concat ( [ MergedRetweets ,

df ] )

MergedRetweets =

MergedRetweets . r e s e t i n d e x ( ) . va lue s

print ( 'Data load ing i s complete ' )

print ( ' Cal cu la t ing ' )

po s t e r twee t = pd . DataFrame ( )

#pos t e r pa t h = da ta pa th +

' /Tweets/BarackObama tweets . x l sx '

g e t f i l e = glob . g lob ( FolderTweetsComplete +

' \\ ' + f o l d e r i d + ' \\∗ . x l sx ' )

for pos t e r path in g e t f i l e :
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pos t e r twee t = pd . r e ad ex c e l ( pos t e r path )

po s t e r twee t . i l o c [ 0 , 0 ] =

str (pd . to date t ime ( po s t e r twee t . i l o c [ 0 , 0 ] ) )

po s t e r twee t =

pos t e r twee t . r e s e t i n d e x ( ) . va lue s

#fo l l ow e r count

fav = [ ]

for f in range (0 , len (MergedRetweets [ : , 6 ] ) ) :

fav . append ( len (np . where ( Fol lowersID [ : , 1 ] ==

MergedRetweets [ f , 6 ] ) [ 0 ] ) )

fav=np . asar ray ( fav )

#crea t e l i s t to s t o r e user who retweet ,

#who post , r e twee t time , twee t t e x t , and re twee t user id

r t h s t = RetweeterHistory

who post = [ ]

# for loop

for i in range (0 , len ( r t h s t ) ) :

# ge t twee t wi th r e twee t e n t i t y

twi t = r t h s t [ i , 3 ]

# name of re twee t ed user
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#pr in t ( '{0} −− {1} −− {2} ' . format ( i , tw i t , type ( tw i t ) ) )

# cons i d e r ing on ly the twee t s wi th s t r i n g va l u e s

i f isinstance ( twit , str ) :

who pos t s t r = ”” . j o i n ( re . f i n d a l l ( r ”RT @( .+? ) : ” ,

tw i t ) )

who post . append ( who pos t s t r )

else :

pass

cas cad = np . vstack ( ( MergedRetweets [ : , 6 ] , MergedRetweets [ : ,

1 ] ) ) .T

cas cad = cas cad [ : : − 1 ] ##f i x e d

p o s t e r i n f o = np . vstack ( ( po s t e r twee t [ : , 5 ] , po s t e r twee t [ : ,

1 ] ) ) .T

#po s t e r i d = ”{ : . 6 e }”. format ( i n t ( p o s t e r tw e e t [ 0 , 4 ] ) )

po s t e r i d = str ( po s t e r twee t [ 0 , 4 ] )

c s cad = np . vstack ( ( p o s t e r i n f o , cas cad ) )

r ewt r i d = MergedRetweets [ : , 5 ]

f o l l s t = Fol lowersID

i n f e c t e d = cs cad [ : , 0 ]

f o lw ing = FollowingID

f o l l ow i n g p o s t e r = fo lw ing [ np . where ( f o lw ing [ : , 2 ] ==

po s t e r i d ) [ 0 ] , 1 ]
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f o l = [ ]

f l 1 = [ ]

for i in range (0 , len ( i n f e c t e d ) ) :

i f i n f e c t e d [ i ] in f o l l ow i n g p o s t e r :

f l 1 . append ( i )

f o l . append ( f l 1 )

for i in range (1 , len ( i n f e c t e d ) ) :

r ewtr index = [ ]

f f = np . where ( i n f e c t e d [ i ] == f o l l s t [ : , 1 ] ) [ 0 ]

i f len ( f f ) != 0 :

#pr in t ( i )

i i d d = f o l l s t [ f f , 2 ]

for j in range (0 , len ( r ewt r i d ) ) :

i f str ( r ewt r i d [ j ] ) in i i d d :

r ewtr index . append ( j )

f o l . append ( rewtr index )

else :

f o l . append ( [ ] )

#c o l l e c t h i s t o r y

h i s t l i s t = [ [ ] for i in range ( len ( i n f e c t e d ) ) ]

for k in range (0 , len ( i n f e c t e d ) ) :

#for k in range ( 0 , 1 ) :
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ht = [ [ ] for i in range ( len ( i n f e c t e d ) ) ]

h i s t = [ [ ] for i in range ( len ( i n f e c t e d ) ) ]

for i in range (0 , len ( i n f e c t e d ) ) :

i f i>k :

ww = np . where ( who post == in f e c t e d [ i ] ) [ 0 ]

r r = np . where ( r t h s t [ww, 5 ] ==in f e c t e d [ i ] ) [ 0 ]

tim = r t h s t [ : , 1 ]

ht [ i ] = tim [ww[ r r ] ]

i f len ( ht [ i ] ) == 0 :

#i f t he r e i s no re twee t ed occured

h i s t [ i ] = [ ]

else :

h i s t o = np . where ( c s cad [ k , 1 ] > ht [ i ] ) [ 0 ]

i f ( len ( h i s t o ) != 0 ) :

#i f any re twee t happens b e f o r e k th pos t

#re twee t s t imes in ordered manner

h i s t [ i ] = np . s o r t ( ht [ i ] [ h i s t o ] )

else :

#i f no re twee t happens b e f o r e k th pos t

h i s t [ i ] = [ ]

h i s t l i s t [ k ] = h i s t

nd = [ [ ] for i in range ( len ( i n f e c t e d ) ) ]

for i in range (1 , len ( i n f e c t e d ) ) :
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nd [ i ] = np . where ( r t h s t [ : , 5 ] == in f e c t e d [ i ] ) [ 0 ]

content = [ [ ] for i in range ( len ( i n f e c t e d ) ) ]

for i in range (1 , len ( i n f e c t e d ) ) :

content [ i ] = r t h s t [ nd [ i ] , 3 ]

content [ 0 ] = r t h s t [ np . where (np . asar ray ( who post ) ==

in f e c t e d [ 0 ] ) [ 0 ] , 3 ]

f o l l ow e r = f o l

cascades = cs cad

ex t e rna l = i n f e c t e d [ 0 ]

h i s t o r y = h i s t l i s t

# implement a l gor i thm2 . Caculate P uv

def edge prob ( temp , B, E, J , F uv , gamma star ) :

i f (E==0):

prob uv = B∗(1−E)∗ J ∗ temp ∗ F uv ∗ gamma star

return prob uv

i f (E==1):

i f ( F uv==1):

prob uv = B ∗ E ∗ J ∗ temp ∗ F uv ∗ gamma star

return prob uv

i f ( F uv==0):

prob uv = B ∗ E ∗ J ∗ temp ∗ (1 − F uv )

return prob uv
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else :

return 0

def Jaccard ( content u , content v ) :

x = str ( content u ) . s p l i t ( ” ” )

y = str ( content v ) . s p l i t ( ” ” )

J = 0

i n t e r s e c t i o n = len ( set ( x ) . i n t e r s e c t i o n ( set ( y ) ) )

union = len ( set ( x ) ) + len ( set ( y ) ) − i n t e r s e c t i o n

J = i n t e r s e c t i o n / union

i f ( J < 0 . 0 0 1 ) :

J = 0.001

return J

def hawkes ( hst ry ) :

a r r i v a l s=np . array ( hst ry ) #l i s t to array

#gamma star=0.001

#gamma sta= None

n = len ( a r r i v a l s )

#i f (n>1):

for l in range ( 0 , 1 0 ) :

gamma star = np . z e r o s (10)

s t o r e = np . z e r o s ( ( 100 , 3 ) )

k=0

for i in range ( 0 , 1 0 ) :
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a l pha i = random . uniform ( 0 , 0 . 1 )

#a l p h a i = 0.1

for j in range ( 0 , 1 0 ) :

b e t a i = random . uniform ( 0 , 0 . 1 )

#b e t a i = 0.1

term 2 = sum( a l pha i / b e t a i ∗(np . exp ( −b e t a i

∗ ( a r r i v a l s [ n−1] − a r r i v a l s ) ) − 1) )

Ai = [sum(np . exp ( −b e t a i ∗ ( a r r i v a l s [ z ]−

a r r i v a l s [ 0 : z ] ) ) ) for z in range (1 , n ) ]

term 3 = sum(np . l og ( a l pha i ∗ np . array (Ai ) ) )

s t o r e [ k , : ] = ( a lpha i , b e ta i , term 2 +term 3 )

#pr in t ( k )

k=k+1

l l = np . where ( s t o r e [ : ,2 ]==max( s t o r e [ : , 2 ] ) ) [ 0 ]

alpha = s t o r e [ l l , 0 ]

beta=s t o r e [ l l , 1 ]

Ai = sum(np . exp ( −beta ∗ ( a r r i v a l s [ n−1]

− a r r i v a l s [ 0 : ( n−1 ) ] ) ) )

gamma star [ l ] = alpha ∗Ai

return (np .mean( gamma star ) )
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def weigth matr ix ( nodes , timec , exte rna l , f o l l owe r ,

content , h i s t o r y ) :

#j=1

weight =[ ]

srcnd = [ ]

dstnd = [ ]

J uv = [ ]

gamma uv =[ ]

gamma star = 0.001

t o t a l t d = [ ]

sr name = [ ]

ds name = [ ]

for k in range ( len ( t imec ) ) :

for i in range ( len ( t imec ) ) :

i f i<k :

t imec k = timec [ k ] [ : 1 9 ]

t ime c i = timec [ i ] [ : 1 9 ]

t o t a l t d . append ( ( datet ime . s t rpt ime ( timec k ,

'%Y−%m−%d %H:%M:%S ')− datet ime . s t rpt ime (

t imec i ,

'%Y−%m−%d %H:%M:%S ' ) ) . t o t a l s e c ond s ( )/60 )

median td = np . median ( t o t a l t d )
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for k in range (0 , len ( nodes ) ) :

for i in range (0 , len ( nodes ) ) :

i f i<k :

t imec k = timec [ k ] [ : 1 9 ]

t ime c i = timec [ i ] [ : 1 9 ]

d i f f s = ( datet ime . s t rpt ime ( timec k ,

'%Y−%m−%d %H:%M:%S ')− datet ime . s t rpt ime (

t imec i ,

'%Y−%m−%d %H:%M:%S ' ) ) . t o t a l s e c ond s ()/60

/median td

i f d i f f s == 0 :

temp = 0

i f d i f f s !=0:

#d i f = np . abs (np . l o g ( d i f f s ) )

d i f = np . l og ( d i f f s )

i f np . exp(− d i f ) == 0 :

temp = np . exp (−700)

i f np . exp(− d i f ) != 0 :

temp = np . exp(− d i f )

s i g s q = (1 / (2 ∗ len ( fav ) ) ) ∗ np .mean

(np . power ( fav , 2 ) ) #ray l e i g h parameter

B = ( fav [ i ] / s i g s q ) ∗ np . exp

(−((np . power ( fav [ i ] , 2 ) ) / (2 ∗ s i g s q ) ) )

#Rayle igh D i s t r i b u t i o n

i f nodes [ i ] in ex t e rna l :

E = 1
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else :

E = 0

i f k in f o l l ow e r [ i ] :

F uv = 1

else :

F uv = 0

i f ( len ( content [ i ] ) != 0 and len (

content [ k ] ) != 0 ) :

J = Jaccard ( content [ i ] , content [ k ] )

i f ( len ( content [ i ] ) == 0 or

len ( content [ k ] ) == 0 ) :

J = 0.001

i f F uv != 0 :

i f len ( h i s t o r y [ i ] [ k ] ) != 0 :

cur t ime = datet ime . timestamp

( datet ime . s t rpt ime ( timec [ i ] ,

'%Y−%m−%d %H:%M:%S+%z ' ) )

for j in range (0 , len ( h i s t o r y [ i ] [ k ] ) ) :

h i s t o r y [ i ] [ k ] [ j ] =

datet ime . timestamp

( datet ime . s t rpt ime ( h i s t o r y [ i ]

[ k ] [ j ] ,

'%Y−%m−%d %H:%M:%S+%z ' ) )
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hst = np . s o r t (np . hstack ( (

h i s t o r y [ i ] [ k ] , cur t ime ) ) )

gamma star = hawkes ( hst )

else :

gamma star = 0.001

weight . append ( edge prob ( temp , B, E, J , F uv ,

gamma star ) )

J uv . append ( J )

gamma uv . append ( gamma star )

srcnd . append ( nodes [ i ] )

dstnd . append ( nodes [ k ] )

return (np . vstack ( ( srcnd , dstnd , weight , J uv ,

gamma uv ) ) .T)

a r c s = [ ]

nodes = cascades [ : , 0 ]

t imec = cascades [ : , 1 ]

s t a r t t ime = time . time ( )

a r c s = weigth matr ix ( nodes , timec , exte rna l , f o l l owe r ,

content , h i s t o r y )

end time = time . time ( )
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t o t a l t ime = end time − s t a r t t ime

print ( 'Total run time i s {0} s e c ' . format (round

( t o ta l t ime , 2 ) ) )

aa = np . unique ( a r c s [ : , 1 ] )

for i in range (0 , len ( aa ) ) :

bb = np . where ( a r c s [ : , 1 ] == aa [ i ] ) [ 0 ]

cc = np . argmax ( a r c s [ bb , 2 ] . astype (np . f l o a t 6 4 ) )

a r c s [ np . d e l e t e (bb , cc ) , 2 ] = 0

ze ro we ig th = np . where ( a r c s [ : , 2 ] == ' 0 ' ) [ 0 ]

index = np . arange (0 , len ( a r c s ) )

network = arc s [ np . d e l e t e ( index , z e ro we ig th ) , : ]

network df = pd . DataFrame ( network , columns = [ ' source node ' ,

' de s t i n a t i on node ' , 'weight ' , ' J uv ' , 'gamma uv ' ] )

network df . t o e x c e l ( r ' Result . x l sx ' )

print ( 'The r e s u l t i s saved ' )

# p l o t

print ( 'The graph i s c r e a t i n g . ' )

#A = network [ : , 0 : 2 ] . a s type ( i n t )

A = network [ : , 0 : 2 ]

df = pd . DataFrame (A, columns = [ ' source ' , ' t a r g e t ' ] )
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G = nx . f r om panda s edge l i s t ( df , ' source ' , ' t a r g e t ' )

pos = nx . sp r i n g l ayou t (G)

p l t . rcParams [ ' f i g u r e . f i g s i z e ' ] = ( 20 . 0 , 18 . 0 )

nx . draw (G, pos , node s i z e = 150 , alpha =0.9 , w i t h l a b e l s = True )

p l t . s a v e f i g ( ” r e s u l t . png” , dpi = 500)

print ( 'The graph i s saved . ' )
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Appendix B

Testing Tree-Likeness of

Phylogenetic Network Data with

Cross-Validation

B.1 Code for score count

for ( j in 1 : 50 ) {

#FULL

Netscore Fu l l <− rep ( 0 , 5 )

Treescore Fu l l <− rep ( 0 , 5 )

for ( k in 1 : 5 ) {

t ra inNet1 <− read . table ( s p r i n t f ( ”PRANC f u l l net%d %d” ,k , j ) )

t ra inTree1 <− read . table ( s p r i n t f ( ”PRANC f u l l t r e e%d %d” ,k , j ) )
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t e s t 1 <− read . table ( s p r i n t f ( ”PRANC f u l l t e s t%d %d” ,k , j ) )

Netscore Fu l l [ k ] <− 0

for ( i in 1 : length ( t e s t 1$V1) ) {

# t e s t i f t r e e s t r i n g matches , i f so ,

#take the squared d i f f e r e n c e

i f (any(which( t ra inNet1$V2==te s t 1$V2 [ i ] ) ) ) {

Netscore Fu l l [ k ] <− Netscore Fu l l [ k ]+( tra inNet1$V1 [which

( t ra inNet1$V2==te s t 1$V2 [ i ] ) ] − t e s t 1$V1 [ i ] ) ˆ 2

}

# i f t r e e s t r i n g in t e s t doesn ' t match anywhere

in s imulated pena l i z e

i f ( !any(which( t ra inNet1$V2==te s t 1$V2 [ i ] ) ) ) {

Netscore Fu l l [ k ] <− Netscore Fu l l [ k ] + ( t e s t 1$V1 [ i ] ) ˆ 2

}

}

#i f t r e e s t r i n g e x i s t s in s imu la ted data but not in t e s t data ,

a l s o p ena l i z e

for ( l in 1 : length ( t ra inNet1$V1) ) {

i f ( !any(which( t e s t 1$V2==tra inNet1$V2 [ l ] ) ) ) {

Netscore Fu l l [ k ] <− Netscore Fu l l [ k ] +

( tra inNet1$V1 [ l ] ) ˆ 2

}

}
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# repea t f o r t r e e s

Treescore Fu l l [ k ] <− 0

for ( i in 1 : length ( t e s t 1$V1) ) {

# t e s t i f t r e e s t r i n g matches , i f so ,

take the squared d i f f e r e n c e

i f (any(which( t ra inTree1$V2==te s t 1$V2 [ i ] ) ) ) {

Treescore Fu l l [ k ] <− Treescore Fu l l [ k]+

( t ra inTree1$V1 [which

( t ra inTree1$V2==te s t 1$V2 [ i ] ) ] − t e s t 1$V1 [ i ] ) ˆ 2

}

# i f t r e e s t r i n g in t e s t doesn ' t match

anywhere in s imulated pena l i z e

i f ( !any(which( t ra inTree1$V2==te s t 1$V2 [ i ] ) ) ) {

Treescore Fu l l [ k ] <− Treescore Fu l l [ k ] + ( t e s t 1$V1 [ i ] ) ˆ 2

}

}

#i f t r e e s t r i n g e x i s t s in s imu la ted data

but not in t e s t data , a l s o p ena l i z e

for ( l in 1 : length ( t ra inTree1$V1) ) {

i f ( !any(which( t e s t 1$V2==tra inTree1$V2 [ l ] ) ) ) {

Treescore Fu l l [ k ] <− Treescore Fu l l [ k ] +

( t ra inTree1$V1 [ l ] ) ˆ 2

}

}
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}

###############

#TRIPLET

Netscore Tr i p l e t <− rep ( 0 , 5 )

Treescore Tr i p l e t <− rep ( 0 , 5 )

for ( k in 1 : 5 ) {

t ra inNet1 <− read . table ( s p r i n t f ( ”PRANC t r i p l e t net%d %d” ,k , j ) )

t ra inTree1 <− read . table ( s p r i n t f (

”PRANC t r i p l e t t r e e%d %d” ,k , j ) )

t e s t 1 <− read . table ( s p r i n t f ( ”PRANC t r i p l e t t e s t%d %d” ,k , j ) )

Netscore Tr i p l e t [ k ] <− 0

for ( i in 1 : length ( t e s t 1$V1) ) {

# t e s t i f t r e e s t r i n g matches , i f so , take the

squared d i f f e r e n c e

i f (any(which( t ra inNet1$V2==te s t 1$V2 [ i ] ) ) ) {

Netscore Tr i p l e t [ k ] <− Netscore Tr i p l e t [ k]+

( tra inNet1$V1 [

which( t ra inNet1$V2==te s t 1$V2 [ i ] ) ] − t e s t 1$V1 [ i ] ) ˆ 2
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}

# i f t r e e s t r i n g in t e s t doesn ' t match anywhere

in s imulated pena l i z e

i f ( !any(which( t ra inNet1$V2==te s t 1$V2 [ i ] ) ) ) {

Netscore Tr i p l e t [ k ] <− Netscore Tr i p l e t [ k ] +

( t e s t 1$V1 [ i ] ) ˆ 2

}

}

#i f t r e e s t r i n g e x i s t s in s imu la ted data but not

in t e s t data , a l s o p ena l i z e

for ( l in 1 : length ( t ra inNet1$V1) ) {

i f ( !any(which( t e s t 1$V2==tra inNet1$V2 [ l ] ) ) ) {

Netscore Tr i p l e t [ k ] <− Netscore Tr i p l e t [ k ] +

( tra inNet1$V1 [ l ] ) ˆ 2

}

}

# repea t f o r t r e e s

Treescore Tr i p l e t [ k ] <− 0

for ( i in 1 : length ( t e s t 1$V1) ) {

# t e s t i f t r e e s t r i n g matches , i f so ,

take the squared d i f f e r e n c e

i f (any(which( t ra inTree1$V2==te s t 1$V2 [ i ] ) ) ) {

Treescore Tr i p l e t [ k ] <− Treescore Tr i p l e t [ k]+

( t ra inTree1$V1 [
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which( t ra inTree1$V2==te s t 1$V2 [ i ] ) ] − t e s t 1$V1 [ i ] ) ˆ 2

}

# i f t r e e s t r i n g in t e s t doesn ' t match anywhere

in s imulated pena l i z e

i f ( !any(which( t ra inTree1$V2==te s t 1$V2 [ i ] ) ) ) {

Treescore Tr i p l e t [ k ] <− Treescore Tr i p l e t [ k ] +

( t e s t 1$V1 [ i ] ) ˆ 2

}

}

#i f t r e e s t r i n g e x i s t s in s imu la ted data but not

in #t e s t data , a l s o p ena l i z e

for ( l in 1 : length ( t ra inTree1$V1) ) {

i f ( !any(which( t e s t 1$V2==tra inTree1$V2 [ l ] ) ) ) {

Treescore Tr i p l e t [ k ] <− Treescore Tr i p l e t [ k ] +

( t ra inTree1$V1 [ l ] ) ˆ 2

}

}

}

#################

s c o r e s <− rep ( 0 , 4 )

s c o r e s [ 1 ] <− sum( Netscore Fu l l )

s c o r e s [ 2 ] <− sum( Treescore Fu l l )

s c o r e s [ 3 ] <− sum( Netscore Tr i p l e t )
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s c o r e s [ 4 ] <− sum( Treescore Tr i p l e t )

write ( s co re s , f i l e=” r e s u l t s ” ,ncol=4,append=TRUE)

}
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Appendix C

Querque: Temporal Fairness in

Service Queues

C.1 Derivation

Table C.1: Two way table for Chi-squared test
Violation No Violation Row total

Female
O′

1 = O1 − ϵ1
E ′

1 =
r1∗c′1
T

O′
2 = O2 + ϵ1

E ′
2 =

r1∗(T−c′1)

T

r1

Male
O′

3 = O3 + (ϵ1 − γ)

E ′
3 =

(T−r1)∗c′1
T

O′
4 = O4 − (ϵ1 − γ)

E ′
4 =

(T−r1)∗(T−c′1)

T

T − r1

c′1 = c1 − γ T − c′1 = c2 + γ T

Now,

(O′
1 − E ′

1)
2

E ′
1

+
(O′

2 − E ′
2)

2

E ′
2

+
(O′

3 − E ′
3)

2

E ′
3

+
(O′

4 − E ′
4)

2

E ′
4

≤ K

O′
1
2

E ′
1

+
O′

2
2

E ′
2

+
O′

3
2

E ′
3

+
O′

4)
2

E ′
4

− 2
4∑

i=1

O′
i +

4∑
i=1

E ′
i ≤ K

O′
1
2

E ′
1

+
O′

2
2

E ′
2

+
O′

3
2

E ′
3

+
O′

4
2

E ′
4

≤ K + T

144



(O1 − ϵ1)
2

r1∗c′1
T

+
(O2 + ϵ1)

2

r1∗(T−c′1)

T

+
{O3 + (ϵ1 − γ)}2

(T−r1)∗c′1
T

+
{O4 − (ϵ1 − γ)}2

(T−r1)∗(T−c′1)

T

≤ K + T

(O1 − ϵ1)
2(T − r1)(T − c′1) + (O2 + ϵ1)

2c′1(T − r1) + {O3 + (ϵ1 − γ)}2r1(T − c′1)

r1c′1(T − r1)(T − c′1)

+{O4 − (ϵ1 − γ)}2r1c′1 ≤ K

T
+ 1

Left side:

(O1 − ϵ1)
2(T − r1)(T − c′1) + (O2 + ϵ1)

2c′1(T − r1) + {O3 + (ϵ1 − γ)}2r1(T − c′1)

+{O4 − (ϵ1 − γ)}2r1c′1

Right side:

r1c
′
1(T − r1)(T − c′1)(

K

T
+ 1)

Left side part1:

(O2
1 − 2O1ϵ1 + ϵ21)(T − r1)(c2 + γ)

Left side part2:

(O2
2 + 2O2ϵ1 + ϵ21)(T − r1)(c1 − γ)

Left side Part3:

{O2
3 + 2O3(ϵ1 − γ) + (ϵ1 − γ)2}r1(c2 + γ)

Left side Part4:

{O2
4 − 2O4(ϵ1 − γ) + (ϵ1 − γ)2}r1(c1 − γ)

Left side part11:

(O2
1 − 2O1ϵ1 + ϵ21)(Tc2 + Tγ − r1c2 − r1γ)
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Left side part21:

(O2
2 + 2O2ϵ1 + ϵ21)(Tc1 − Tγ − r1c1 + r1γ)

Left side Part31:

(O2
3 + 2O3ϵ1 − 2O3γ + ϵ21 − 2ϵ1γ + γ2)(r1c2 + r1γ)

Left side Part41:

(O2
4 − 2O4ϵ1 + 2O4γ + ϵ21 − 2ϵ1γ + γ2)(r1c1 − r1γ)

Now, Take 1.

ϵ21[Tc2 + Tγ − r1c2 − r1γ + Tc1 − Tγ − r1c1 + r1γ + r1c2 + r1γ + r1c1 − r1γ]

= ϵ21T
2

2.

ϵ1[−2O1Tc2−2O1Tγ+2O1r1c2+2O1r1γ+2O2Tc1−2O2Tγ−2O2r1c1+2O2r1γ+2O3r1c2+

2O3r1γ − 2γr1c2 − 2r1γ
2 − 2O4r1c1 + 2O4r1γ − 2γr1c1 + 2r1γ

2]

= ϵ1[−2T (O1c2 −O2c1)− 2Tγ(O1 +O2) + 2r1c2(O1 +O3) + 2r1γ(O1 +O2)

−2r1c1(O2 +O4) + 2r1γ(O3 +O4)− 2γr1(c1 + c2)]

= ϵ1[−2T (O1c2 −O2c1)− 2Tγr1 + 2r1c2c1 + 2r21γ − 2r1c1c2 + 2r1γr2 − 2γr1T ]

= ϵ1[−2T (O1c2 −O2c1)− 2Tγr1 + 2r1c2c1 + 2r21γ − 2r1c1c2 + 2r1γr2 − 2γr1T ]

= ϵ1[−2T (O1c2 −O2c1)− 4Tγr1 + 2r1γ(r1 + r2)]
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= ϵ1[−2T (O1c2 −O2c1 + γr1)]

= ϵ1[−2T (O1T −O1c1 −O2c1 + γr1)]

= ϵ1[−2T (O1T − r1c1 + γr1)]

= ϵ1[−2T (O1T − r1c
′
1)]

3.

O2
1(T − r1)(c2+γ)+O2

2(T − r1)(c1−γ)+O2
3r1(c2+γ)−2O3γr1(c2+γ)+γ2r1(c2+γ)

+O2
4r1(c1 − γ) + 2O4γr1(c1 − γ) + γ2r1(c1 − γ)

= O2
1(T − r1)(T − c′1) +O2

2(T − r1)c
′
1 +O2

3r1(T − c′1)− 2O3γr1(T − c′1) + γ2r1(T − c′1)

+O2
4r1c

′
1 + 2O4γr1c

′
1 + γ2r1c

′
1

= O2
1(T

2−Tr1−Tc′1+r1c
′
1)+O2

2(Tc
′
1−r1c′1)+O2

3(r1T−r1c′1)−2O3γr1T+2O3γr1c
′
1)+

γ2r1T − γ2r1c
′
1 +O2

4r1c
′
1 + 2O4γr1c

′
1 + γ2r1c

′
1

= O2
1T

2 − Tc′1(O
2
1 −O2

2) + Tr1(−O2
1 +O2

3 − 2O3γ + γ2) + r1c
′
1(O

2
1 −O2

2 −O2
3 +O2

4)

+2γr1c
′
1(O3 +O4)

= O2
1T

2 − Tr1c
′
1(O1 −O2) + Tr1[−O2

1 + (O3 − γ)2] + r1c
′
1[(O1 +O2)(O1 −O2)

−(O3 +O4)(O3 −O4)] + 2γr1c
′
1(T − r1)

= O2
1T

2 − Tr1c
′
1(O1 −O2) + Tr1(O3 − γ +O1)(O3 − γ −O1) + r1c

′
1[r1(O1 −O2)

−(T − r1)(O3 −O4)] + 2γr1c
′
1(T − r1)

= O2
1T

2 − Tr1c
′
1(O1 −O2) + Tr1c

′
1(O3 − γ −O1) + r1c

′
1[r1(O1 −O2)

147



−(T − r1)(O3 −O4)] + 2γr1c
′
1(T − r1)

= O2
1T

2 + r1c
′
1[−T (O1 −O2) + r1(O1 −O2)− (T − r1)(O3 −O4) + 2γ(T − r1)]

+Tr1c
′
1(O3−γ−O1)= O2

1T
2+r1c

′
1(T−r1)[−(O1−O2)−(O3−O4)+2γ]+Tr1c

′
1(O3−

γ − O1)= O2
1T

2 + r1c
′
1(T − r1)[(O2 + O4)− (O1 + O3) + 2γ] + Tr1c

′
1(O3 − γ − O1)=

O2
1T

2+r1c
′
1(T −r1)[(c2+γ)−(c1−γ)]+Tr1c

′
1(O3−γ−O1)= O2

1T
2+r1c

′
1(T −r1)(T −

c′1 − c′1) + Tr1c
′
1(O3 − γ −O1)then3.−Rightside,O2

1T
2 + r1c

′
1(T − r1)(T − c′1 − c′1) +

Tr1c
′
1(O3− γ −O1)− r1c

′
1(T − r1)(T − c′1)(

K
T
+1)= O2

1T
2 + r1c

′
1(T − r1)(T − c′1)(1−

K
T
− 1) − r1c

′
1(T − r1)(T − c′1)c

′
1 + Tr1c

′
1(O3 − γ − O1)= O2

1T
2 − r1c

′
1(T − r1)(T −

c′1)(
K
T
+ c′1) + Tr1c

′
1(O3 − γ −O1)

Solve for ϵ1,

Aϵ21 +Bϵ1 + C = 0

where,

A = T 2

B = −2T (O1T − r1c
′
1)

C = O2
1T

2 − r1c
′
1(T − r1)(T − c′1)(

K

T
+ c′1) + Tr1c

′
1(O3 − γ −O1)

ϵ1 =
−B ±

√
B2 − 4AC

2A

ϵ1 =
(O1T − r1c

′
1)±

√
(O1T − r1c′1)

2 − C

T

part1=
(O1T−r1c′1)

T
=

(O1T−TE′
1)

T
= (O1 − E ′

1) ≥ 0 when we assume O1 > O3

For part2 Assume,

(O1T − r1c
′
1)

2 − C ≥ 0

O2
1T

2−2O1Tr1c
′
1+r21c

′
1
2−O2

1T
2+r1c

′
1(T−r1)(T−c′1)(

K

T
+c′1)−Tr1c′1(O3−γ−O1) ≥ 0

=> −2O1T + r1c
′
1 + (T − r1)(T − c′1)(

K

T
+ c′1)− T (O3 − γ −O1) ≥ 0
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=> r1c
′
1 + (T − r1)(T − c′1)(

K

T
+ c′1)− TO3 + Tγ − TO1 ≥ 0

=> r1c
′
1 + (T − r1)(T − c′1)(

K

T
+ c′1)− Tc1 + Tγ ≥ 0

=> r1c
′
1 + (T − r1)(T − c′1)(

K

T
+ c′1)− Tc′1 ≥ 0

=> (T − r1)(T − c′1)(
K

T
+ c′1)− c′1(T − r1) ≥ 0

=> (T − r1)[(T − c′1)(
K

T
+ c′1)− c′1] ≥ 0

=> (T − r1)[K + c′1(T − (
K

T
+ c′1 + 1)] ≥ 0

Which is True. Therefore, there exists at least one positive ϵ1.

C.2 Python-code

import os , j son

import pandas as pd

import numpy as np

from da t e u t i l import par s e r

from datet ime import datet ime

import csv

import matp lo t l i b as mpl

import matp lo t l i b . pyplot as p l t

from matp lo t l i b import pyplot

import math

import s c ipy . s t a t s

from s c ipy . s t a t s import norm

from s c ipy import s t a t s

from pygam import LinearGAM , s , f
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import i t e r t o o l s

from s en t enc e t r an s f o rme r s import SentenceTransformer , u t i l

import csv

from emoji import demoj ize

from t rans f o rmer s import AutoTokenizer

from n l tk . t oken i z e import TweetTokenizer

#from TweetNormalizer import normalizeTweet

import t en so r f l ow as t f

from t en so r f l ow . keras . models import Sequent i a l

from t en so r f l ow . keras . l a y e r s import Dense

from t en so r f l ow . keras . l a y e r s import LSTM

from s k l e a rn . p r ep ro c e s s i ng import MinMaxScaler

from s k l e a rn . met r i c s import mean squared error

#for only s i g n i f i c a n t v i o l a t i o n s

def f i x t r a i n d a t a ( t ra in data , yy , perc , n ) :

data1=t r a i n da t a . copy ( )

import random

from random import sample

import warnings

warnings . f i l t e rw a r n i n g s ( ' i gno r e ' )

warnings . warn ( ' Del f tStack ' )

warnings . warn ( 'Do not show th i s message ' )

for com type in yy :

#pr in t ( com type )
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v i o c a l=v i o l a t i o n c a l c u l a t i o n ( data1 , com type , perc , n )

k=0

while v i o c a l [ 0 ] [ 7 ] < 0 . 0 5 :

v i o b o l d=v i o c a l [ 0 ] [ 5 ]

v i o w o ld=v i o c a l [ 0 ] [ 2 ]

##############################################

kk black=math . c e i l ( v i o c a l [ 0 ] [ 5 ] − v i o c a l [ 0 ] [ 6 ] )

uu white=math . c e i l ( v i o c a l [ 0 ] [ 2 ] − v i o c a l [ 0 ] [ 3 ] )

mm=kk black

nn=uu white

i f ( kk black >0):

ooo index=random . sample ( l i s t ( v i o c a l [ 5 ]

[ 'B index ' ] ) , kk b lack )

for ooo in ooo index :

tt mean=v i o c a l [ 5 ] [ 'mean ' ] [ v i o c a l [ 5 ]

[ 'B index ' ]==ooo ]

t t 11 th=v i o c a l [ 5 ] [ ' aa 11th ' ] [ v i o c a l [ 5 ]

[ 'B index ' ]==ooo ]

de layed by=(tt 11th−tt mean )∗n

f i x i n g d e l t a=v i o c a l [ 7 ] [ ooo ] [ ( v i o c a l [ 7 ]

[ ooo]− tt mean . va lue s )<0] . index . va lue s

add by=v i o c a l [ 7 ] [ ooo ] [ f i x i n g d e l t a ] .

va lue s+

delayed by . va lue s / len ( f i x i n g d e l t a )

data1 . c l o s i n g t ime . l o c [ f i x i n g d e l t a ]=

data1 . c r ea t ed t ime . l o c [ f i x i n g d e l t a ]+
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add by

###############################################

i f ( uu white >0):

ooo index=random . sample ( l i s t ( v i o c a l [ 4 ]

[ 'W index ' ] ) , uu white )

for ooo in ooo index :

tt mean=v i o c a l [ 4 ] [ 'mean ' ] [ v i o c a l [ 4 ]

[ 'W index ' ]==ooo ]

t t 11 th=v i o c a l [ 4 ] [ ' aa 11th ' ] [ v i o c a l [ 4 ]

[ 'W index ' ]==ooo ]

de layed by=(tt 11th−tt mean )∗n

f i x i n g d e l t a=v i o c a l [ 6 ] [ ooo ] [ ( v i o c a l [ 6 ]

[ ooo]− tt mean . va lue s )<0] . index . va lue s

#f i x i n g d e l t a=random . sample ( l i s t (

v i o c a l [ 6 ]

[ ooo ] . index ) , 1 )

add by=v i o c a l [ 6 ] [ ooo ] [ f i x i n g d e l t a ] .

va lue s+

delayed by . va lue s / len ( f i x i n g d e l t a )

data1 . c l o s i n g t ime . l o c [ f i x i n g d e l t a ]=

data1 . c r ea t ed t ime . l o c [ f i x i n g d e l t a ]+

add by

###########################################

v i o ca l upda t ed=v i o l a t i o n c a l c u l a t i o n

( data1 , com type , perc , n )

kk black updated=math . c e i l ( v i o ca l upda t ed [ 0 ] [ 5 ]

−v i o ca l upda t ed [ 0 ] [ 6 ] )
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uu white updated=math . c e i l ( v i o ca l upda t ed [ 0 ] [ 2 ]

−v i o ca l upda t ed [ 0 ] [ 3 ] )

i f ( kk black >0):

i f ( ( v i o ca l upda t ed [ 0 ] [ 2 ] − v io w o ld )>mm) :

kk black=kk black

i f ( ( v i o ca l upda t ed [ 0 ] [ 2 ] − v io w o ld )<mm) :

kk black=kk black updated

i f ( uu white >0):

i f ( ( v i o ca l upda t ed [ 0 ] [ 5 ] − v i o b o l d )>nn ) :

uu white=uu white

i f ( ( v i o ca l upda t ed [ 0 ] [ 5 ] − v i o b o l d )<nn ) :

uu white=uu white updated

k=k+1

i f ( k==30):

print ( ” f a s t e r ” )

f a s t e r=by reduc ing t ime ( data1=t r a i n da t a

, yy=yy , perc=perc , n=n)

v i o ca l upda t ed=v i o l a t i o n c a l c u l a t i o n

( data1=f a s t e r , com type=com type , perc=perc ,

n=n)

data1=f a s t e r

i f v i o ca l upda t ed [ 0 ] [ 7 ] > 0 . 0 5 :

break

return ( data1 )

def v i o l a t i o n c a l c u l a t i o n ( data1 , com type , perc , n ) :

v i o l a t i o n o r i g i n a l = pd . DataFrame ( columns=

[ ' com type ' , ' tota l White ' , ' v io l a t i on Whi t e ' , ' exp White ' ,

153



' t o t a l B l a ck ' , ' v i o l a t i o n B l a c k ' , ' exp Black ' , ' pvalue ' ,

' Tab l e t o t a l ' ] , dtype=object )

v i o l a t i on index mean = pd . DataFrame ( columns=

[ 'A index ' , 'mean ' ] , dtype=object )

white index mean = pd . DataFrame ( columns=

[ 'W index ' , ' aa 11th ' , 'mean ' , 'Borough ' ] , dtype=object )

black index mean = pd . DataFrame ( columns=

[ 'B index ' , ' aa 11th ' , 'mean ' , 'Borough ' ] , dtype=object )

# un l i s t e v e r y t h in g

def f l a t t e n l i s t ( 2 d l i s t ) :

f l a t l i s t = [ ]

# I t e r a t e through the outer l i s t

for element in 2 d l i s t :

i f type ( element ) i s l i s t :

for item in element :

f l a t l i s t . append ( item )

else :

f l a t l i s t . append ( element )

return f l a t l i s t

#Chi square t e s t s t a t i s t i c s

def ch i s qua r e (White v , White nv , Black v , Black nv ) :

f r ow t o t a l=White v+White nv

s r ow t o t a l=Black v+Black nv

f c o l t o t a l=White v+Black v
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s c o l t o t a l=White nv+Black nv

t a b l e t o t a l=f c o l t o t a l+s c o l t o t a l

exp White v=0

exp Black v=0

exp White nv=0

exp Black nv=0

i f ( t a b l e t o t a l !=0) :

exp White v=( f r ow t o t a l ∗ f c o l t o t a l )/

t a b l e t o t a l

exp White nv=( f r ow t o t a l ∗ s c o l t o t a l )/

t a b l e t o t a l

exp Black v=( s r ow t o t a l ∗ f c o l t o t a l )/

t a b l e t o t a l

exp Black nv=( s r ow t o t a l ∗ s c o l t o t a l )/

t a b l e t o t a l

c h i s q u a r e s t a t i s t i c s=0

i f ( exp Black v !=0 and exp White v !=0) :

c h i s q u a r e s t a t i s t i c s =(((White v−exp White v )

∗∗2)/ exp White v )+(((White nv−exp White nv )

∗∗2)/ exp White nv )

+((( Black v−exp Black v )∗∗2)/ exp Black v )

+((( Black nv−exp Black nv )∗∗2)/ exp Black nv )

return ( f r ow to t a l , s r ow to ta l , exp White v ,

exp Black v , c h i s q u a r e s t a t i s t i c s , t a b l e t o t a l )
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k=0

#pr in t ( com type )

data=data1 [ data1 [ ”Complaint Type”]==com type ]

global white index

global Black index

global aa de l ta w

global aa de l t a b

global v i o l a t i o n c oun t

#i f ( data . shape [0 ]>30) :

#pr i n t ( com type )

white index = l i s t ( )

Black index = l i s t ( )

v i o l a t i o n c oun t=l i s t ( )

aa de l ta w={}

aa de l t a b={}

Black v=0

White v=0

Black nv=0

White nv=0

#pe r s on s d i c t [ a a d e l t a . index [ 1 1 ] ] = aa0

#########################################

for i in range ( len ( data . index )−(n+1)) :

aa=data [ i : i+n ]

aa de l t a=aa . c l o s i ng t ime−aa . c r ea t ed t ime

aa 11th=data . c l o s i n g t ime [ data . index [ ( i +(n+1))]]−

data . c r ea t ed t ime [ data . index [ ( i +(n+1) ) ] ]
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#i f (np .mean( aa d e l t a )<aa 11th ) :

i f (np . p e r c e n t i l e ( aa de l ta , perc )<(data . c l o s i n g t ime

[ data . index [ ( i +(n+1) ) ] ]

−data . c r ea t ed t ime [ data . index [ ( i +(n + 1 ) ) ] ] ) ) :

ind v=data . index [ ( i +(n+1)) ]

v i o l a t i on index mean . l o c [ k ]=[ ind v ,

np . p e r c e n t i l e ( aa de l ta , 5 0 ) ]

a f f v=data .LABEL[ ind v ]

bro=data . Borough1 [ ind v ]

v i o l a t i o n c oun t . append ( a f f v )

i f ( a f f v== 'White ' ) :

white index mean . l o c [ k]=

[ ind v , aa 11th , np . p e r c e n t i l e

( aa de l ta , 50) , bro ]

whi te index . append ( ind v )

aa de l ta w [ ind v ]= aa de l t a

k=k+1

i f ( a f f v== 'Black ' ) :

b lack index mean . l o c [ k]=

[ ind v , aa 11th , np . p e r c e n t i l e

( aa de l ta , 50) , bro ]

Black index . append ( ind v )

aa de l t a b [ ind v ]= aa de l t a

k=k+1

#################################################

t o t a l wh i t e=data .LABEL[ data .LABEL== 'White ' ]
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t o t a l B l a ck=data .LABEL[ data .LABEL== 'Black ' ]

#i f ( l en ( wh i t e i ndex ) !=0) :

White v=len ( f l a t t e n l i s t ( f l a t t e n l i s t ( whi te index ) ) )

White nv=len ( t o t a l wh i t e )−White v

#i f ( l en ( B lack index ) !=0) :

Black v=len ( f l a t t e n l i s t ( f l a t t e n l i s t ( Black index ) ) )

Black nv=len ( t o t a l B l a ck )−Black v

#pva lue f rom ch i s quare

ch i 2=ch i s qua r e (White v , White nv , Black v , Black nv )

#pr in t ( ch i 2 [ 4 ] )

pvalue=1 − s t a t s . ch i2 . cd f ( ch i 2 [ 4 ] , 1)

#pr in t ( pva lue )

i f ( len ( Black index )==0):

Black nv=len ( t o t a l B l a ck )

i f ( len ( whi te index )==0):

White nv=len ( t o t a l wh i t e )

i f ( len ( white index mean )==0):

white index mean=0

i f ( len ( black index mean )==0):

black index mean=0

# s to r e the r e s u l t s

i f ( data . shape [0 ] <20) :

v i o l a t i o n o r i g i n a l [7 ]=1

v i o l a t i o n o r i g i n a l =[com type , ch i 2 [ 0 ] , White v , ch i 2 [ 2 ]

, c h i 2 [ 1 ] , Black v , ch i 2 [ 3 ] , pvalue , ch i 2 [ 5 ] ]

return ( [ v i o l a t i o n o r i g i n a l , white index , Black index ,
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v io la t i on index mean , white index mean , black index mean ,

aa de l ta w , aa de l t a b ] )

def by reduc ing t ime ( data1 , yy , perc , n ) :

#data1=t r a i n da t a . copy ()

#yy=data1 [” Complaint Type ” ] . v a l u e coun t s ( )

import random

from random import sample

import warnings

warnings . f i l t e rw a r n i n g s ( ' i gno r e ' )

warnings . warn ( ' Del f tStack ' )

warnings . warn ( 'Do not show th i s message ' )

for com type in yy :

#pr in t ( com type )

v i o c a l=v i o l a t i o n c a l c u l a t i o n ( data1 , com type , perc , n )

b l a ck v i o=v i o c a l [ 5 ]

wh i t e v i o=v i o c a l [ 4 ]

v i o b o l d=v i o c a l [ 0 ] [ 5 ]

v i o w o ld=v i o c a l [ 0 ] [ 2 ]

###############################################

kk black=math . c e i l ( v i o c a l [ 0 ] [ 5 ] − v i o c a l [ 0 ] [ 6 ] )

uu white=math . c e i l ( v i o c a l [ 0 ] [ 2 ] − v i o c a l [ 0 ] [ 3 ] )

mm=kk black

nn=uu white

k=0

while v i o c a l [ 0 ] [ 7 ] < 0 . 0 5 :

i f ( kk black >0):

#ooo mean=b l a c k v i o [ 'mean ' ]
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[ random . sample ( l i s t ( b l a ck v i o . index ) ,

kk black ) ]

ooo index=b l a ck v i o [ 'B index ' ]

[ random . sample ( l i s t ( b l a ck v i o . index ) ,

kk black ) ]

ooo mean=b l a ck v i o [ 'mean ' ] [ ooo index . index ]

data1 . c l o s i n g t ime . l o c [ ooo index . va lue s ]=

data1 . c r ea t ed t ime . l o c [ ooo index . va lue s ] .

va lue s

+ooo mean . va lue s

#################################################

############################################

i f ( uu white >0):

#oo=random . sample ( l i s t ( wh i t e v i o [ 'mean ' ] )

, uu white )

#wh i t e v i o . s o r t v a l u e s ( 'mean ' , ascending=False )

#ooo mean=wh i t e v i o [ 'mean ' ]

[ random . sample ( l i s t ( wh i t e v i o . index ) , uu white ) ]

ooo index=wh i t e v i o [ 'W index ' ]

[ random . sample ( l i s t ( wh i t e v i o . index ) , uu white ) ]

ooo mean=whi t e v i o [ 'mean ' ] [ ooo index . index ]

data1 . c l o s i n g t ime . l o c [ ooo index . va lue s ]=

data1 . c r ea t ed t ime . l o c [ ooo index . va lue s ]
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. va lue s+ooo mean . va lue s

#############################################

v i o ca l upda t ed=v i o l a t i o n c a l c u l a t i o n

( data1 , com type , perc , n )

b l a ck v i o=v io ca l upda t ed [ 5 ]

wh i t e v i o=v io ca l upda t ed [ 4 ]

kk black updated=math . c e i l ( v i o ca l upda t ed [ 0 ] [ 5 ]

−v i o ca l upda t ed [ 0 ] [ 6 ] )

uu white updated=math . c e i l ( v i o ca l upda t ed [ 0 ] [ 2 ]

−v i o ca l upda t ed [ 0 ] [ 3 ] )

i f ( kk black >0):

i f ( ( v i o ca l upda t ed [ 0 ] [ 2 ] − v io w o ld )>mm) :

kk black=kk black

i f ( ( v i o ca l upda t ed [ 0 ] [ 2 ] − v io w o ld )<mm) :

kk black=kk black updated

i f ( uu white >0):

i f ( ( v i o ca l upda t ed [ 0 ] [ 5 ] − v i o b o l d )>nn ) :

uu white=uu white

i f ( ( v i o ca l upda t ed [ 0 ] [ 5 ] − v i o b o l d )<nn ) :

uu white=uu white updated

k=k+1

#pr in t ( k )

i f ( k==30):

print ( k )

i f v i o ca l upda t ed [ 0 ] [ 7 ] > 0 . 0 5 :

break

return ( data1 )
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def f i n d v i o l a t i o n b e f o r e ( data1 , perc , n ) :

yy=data1 [ ”Complaint Type” ] . va lue count s ( )

v i o l a t i o n o r i g i n a l = pd . DataFrame ( columns=

[ ' com type ' , 'White v ' , ' Black v ' , ' t o t a l ' , ' pvalue ' ,

' da t a t o t a l ' ] , dtype=object )

j 1=0

for com type in yy . index :

data=data1 [ data1 [ ”Complaint Type”]==com type ]

i f ( data . shape [0]>2∗n ) :

whi te index = l i s t ( )

Black index = l i s t ( )

#########################################

for i in range ( len ( data . index )−(n+1)) :

aa=data [ i : ( i+n ) ]

a a de l t a=aa . c l o s i ng t ime−aa . c r ea t ed t ime

i f (np . p e r c e n t i l e ( aa de l ta , perc )

<(data . c l o s i n g t ime [ data . index [ ( i +(n+1))]]−

data . c r ea t ed t ime [ data . index [ ( i +(n+1))

] ] ) ) :

ind v=data . index [ ( i +(n+1)) ]

a f f v=data .LABEL[ ind v ]

i f ( a f f v== 'White ' ) :

wh i te index . append ( a f f v . index )

i f ( a f f v== 'Black ' ) :
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Black index . append ( a f f v . index )

#################################################

t o t a l wh i t e=data .LABEL[ data .LABEL== 'White ' ]

t o t a l B l a ck=data .LABEL[ data .LABEL== 'Black ' ]

White v=len ( f l a t t e n l i s t ( f l a t t e n l i s t (

whi te index ) ) )

White nv=len ( t o t a l wh i t e )−White v

Black v=len ( f l a t t e n l i s t ( f l a t t e n l i s t (

Black index ) ) )

Black nv=len ( t o t a l B l a ck )−Black v

ch i 2=ch i s qua r e (White v , White nv , Black v ,

Black nv )

pva lue f rom ch i square=1 − s t a t s . ch i2 . cd f (

ch i 2 , 1)

v i o l a t i o n o r i g i n a l . l o c [ j 1 ]=[ com type , White v ,

Black v ,

(White v+Black v ) , pva lue f rom ch i square ,

data . shape [ 0 ] ]

j 1=j1+1

return ( v i o l a t i o n o r i g i n a l [ v i o l a t i o n o r i g i n a l . pvalue

<0.05])

def f i n d v i o l a t i o n a f t e r ( data1 , yy , perc , n ) :

#yy=data1 [” Complaint Type ” ] . v a l u e coun t s ( )

v i o l a t i o n o r i g i n a l = pd . DataFrame ( columns=
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[ ' com type ' , 'White v ' , ' Black v ' , ' t o t a l ' ,

' pvalue ' , ' da t a t o t a l ' ] , dtype=object )

j 1=0

for com type in yy :

data=data1 [ data1 [ ”Complaint Type”]==com type ]

i f ( data . shape [0]>2∗n ) :

whi te index = l i s t ( )

Black index = l i s t ( )

#########################################

for i in range ( len ( data . index )−(n+1)) : #

aa=data [ i : ( i+n ) ]

a a de l t a=aa . c l o s i ng t ime−aa . c r ea t ed t ime

i f (np . p e r c e n t i l e ( aa de l ta , perc )

<(data . c l o s i n g t ime [ data . index [ ( i+

(n+1))]]−

data . c r ea t ed t ime [ data . index [ ( i+

(n + 1 ) ) ] ] ) ) :

ind v=data . index [ ( i +(n+1)) ]

a f f v=data .LABEL[ ind v ]

i f ( a f f v== 'White ' ) :

wh i te index . append ( a f f v . index )

i f ( a f f v== 'Black ' ) :

Black index . append ( a f f v . index )

#################################################

t o t a l wh i t e=data .LABEL[ data .LABEL== 'White ' ]
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t o t a l B l a ck=data .LABEL[ data .LABEL== 'Black ' ]

White v=len ( f l a t t e n l i s t ( f l a t t e n l i s t (

whi te index ) ) )

White nv=len ( t o t a l wh i t e )−White v

Black v=len ( f l a t t e n l i s t ( f l a t t e n l i s t (

Black index ) ) )

Black nv=len ( t o t a l B l a ck )−Black v

ch i 2=ch i s qua r e (White v , White nv , Black v ,

Black nv )

pva lue f rom ch i square=1 − s t a t s . ch i2 . cd f ( ch i 2 , 1)

v i o l a t i o n o r i g i n a l . l o c [ j 1 ]=[ com type , White v ,

Black v ,

(White v+Black v ) , pva lue f rom ch i square ,

data . shape [ 0 ] ]

j 1=j1+1

return ( v i o l a t i o n o r i g i n a l )

def g e t f i x e d ( data , perc , n ) :

c ount be f o r e=f i n d v i o l a t i o n b e f o r e ( data1=data , perc=perc

,n=n)

data11=data . copy ( )

data22=data . copy ( )

i f ( len ( count be f o r e . com type ) !=0 ) :

#de lay

data de lay=f i x t r a i n d a t a ( t r a i n da t a=data11 ,

yy=count be f o r e . com type . values , perc=perc , n=n)

c oun t a f t e r d e l a y=f i n d v i o l a t i o n a f t e r ( data1=
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data de lay

, yy=count be f o r e . com type . values , perc=perc , n=n)

data [ ” d l t 1 ” ]=( data de lay . c l o s i ng t ime−

data . c l o s i n g t ime )

df11=data [ data . d l t 1 !=0]

d f d e l ay=df11 [ [ ”Complaint Type” , ” d l t 1 ” , ”LABEL” ] ]

#f a s t e r

da t a f a s t e r=by reduc ing t ime ( data1=data22 ,

yy=count be f o r e . com type . values , perc=perc , n=n)

c o u n t a f t e r f a s t e r=f i n d v i o l a t i o n a f t e r

( data1=da ta f a s t e r , yy=count be f o r e . com type . va lue s

, perc=perc , n=n)

data [ ” d l t 2 ” ]=( d a t a f a s t e r . c l o s i n g t ime

−data11 . c l o s i n g t ime )

#pr in t ( data . d l t 2 )

df22=data [ data . d l t 2 !=0]

d f f a s t e r=df22 [ [ ”Complaint Type” , ” d l t 2 ” , ”LABEL” ] ]

i f ( len ( count be f o r e . com type )==0):

c oun t a f t e r d e l a y = pd . DataFrame ( columns=

[ ' com type ' , 'White v ' , ' Black v ' , ' t o t a l ' ,

' pvalue ' , ' da t a t o t a l ' ] , dtype=object )

count be f o r e = pd . DataFrame ( columns=

[ ' com type ' , 'White v ' , ' Black v ' , ' t o t a l ' ,

' pvalue ' , ' da t a t o t a l ' ] , dtype=object )

c o u n t a f t e r f a s t e r = pd . DataFrame ( columns=
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[ ' com type ' , 'White v ' , ' Black v ' , ' t o t a l ' ,

' pvalue ' , ' da t a t o t a l ' ] , dtype=object )

d f d e l ay=pd . DataFrame ( columns=[”Complaint

Type” , ” d l t 1 ” , ”LABEL” ] , dtype=object )

d f f a s t e r=pd . DataFrame ( columns=[”Complaint

Type” , ” d l t 1 ” , ”LABEL” ] , dtype=object )

return ( count be fore , c oun t a f t e r d e l ay ,

c o u n t a f t e r f a s t e r , d f de lay , d f f a s t e r )

start month=dt . c r ea t ed t ime [ 0 ]

end month=dt . c r ea t ed t ime [ 0 ]

v i o l a t i on bymonth be fo r e = pd . DataFrame ( columns=

[ 'Month ' , ' com type ' , 'Wh v ' , ' Bl v ' , 'Tl ' , ' pvalue ' ,

' da t a t o t a l ' ] , dtype=object )

v i o l a t i on bymonth a f t e r d e l ay = pd . DataFrame ( columns=

[ 'Month ' , ' com type ' , 'Wh v ' , ' Bl v ' , 'Tl ' , ' pvalue ' ,

' da t a t o t a l ' ] , dtype=object )

v i o l a t i o n bymon th a f t e r f a s t e r = pd . DataFrame ( columns=

[ 'Month ' , ' com type ' , 'Wh v ' , ' Bl v ' , 'Tl ' , ' pvalue ' ,

' da t a t o t a l ' ] , dtype=object )

v i o l a t i on chang e d e l a y = pd . DataFrame ( columns=
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[ 'Month ' , ' com type ' , 'Change by ' , ' Label ' ] , dtype=object )

v i o l a t i o n c h a n g e f a s t e r = pd . DataFrame ( columns=

[ 'Month ' , ' com type ' , 'Change by ' , ' Label ' ] , dtype=object )

month=0

k1=0

k2=0

k3=0

k4=0

k5=0

while ( start month<dt . c r ea t ed t ime [ len ( dt . c r ea t ed t ime ) −1 ] ) :

start month=end month

print ( start month )

end month=start month+2628000

data2=dt [ dt . c reated t ime>start month ]

data2=data2 [ data2 . c reated t ime<end month ]

counts=g e t f i x e d ( data=data2 , perc=99,n=100)

i f ( len ( counts [ 0 ] ) ! = 0 ) :

for ct in range ( len ( counts [ 0 ] . com type ) ) :

v i o l a t i on bymonth be fo r e . l o c [ k1]=

[ ( month+1) , counts [ 0 ] . com type [ counts [ 0 ] .

index [ c t ] ] , counts [ 0 ] . White v [

counts [ 0 ] . index [ c t ] ] , counts [ 0 ] . Black v [ counts [ 0 ] .

index [ c t ] ] , counts [ 0 ] . t o t a l [ counts [ 0 ] . index [ c t ] ] ,

counts [ 0 ] . pvalue [ counts [ 0 ] . index [ c t ] ] , counts [ 0 ] .

d a t a t o t a l [ counts [ 0 ] . index [ c t ] ] ]
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k1=k1+1

else :

v i o l a t i on bymonth be fo r e . l o c [ k1 ]=((month+1) ,

0 , 0 , 0 , 0 , 0 , 0 )

k1=k1+1

i f ( len ( counts [ 1 ] ) ! = 0 ) :

for ct in range ( len ( counts [ 1 ] . com type ) ) :

v i o l a t i on bymonth a f t e r d e l ay . l o c [ k2]=

[ ( month+1) , counts [ 1 ] . com type [ counts [ 1 ] .

index [ c t ] ] , counts [ 1 ] . White v [ counts [ 1 ] . index [ c t ] ] ,

counts [ 1 ] . Black v [ counts [ 1 ] . index [ c t ] ] , counts [ 1 ] .

t o t a l [ counts [ 1 ] .

index [ c t ] ] , counts [ 1 ] . pvalue [ counts [ 1 ] . index [ c t ] ] ,

counts [ 1 ] . d a t a t o t a l [ counts [ 1 ] . index [ c t ] ] ]

k2=k2+1

else :

v i o l a t i on bymonth a f t e r d e l ay . l o c [ k2 ]=((month+1) ,

0 , 0 , 0 , 0 , 0 , 0 )

k2=k2+1

i f ( len ( counts [ 2 ] ) ! = 0 ) :

for ct in range ( len ( counts [ 2 ] . com type ) ) :

v i o l a t i o n bymon th a f t e r f a s t e r . l o c [ k3]=

[ ( month+1) , counts [ 2 ] . com type [ counts [ 2 ] .

index [ c t ] ] ,

counts [ 2 ] . White v [ counts [ 2 ] . index [ c t ] ] , counts [ 2 ] .

Black v [ counts [ 2 ] . index [ c t ] ] , counts [ 2 ] . t o t a l
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[ counts [ 2 ] . index [ c t ] ] , counts [ 2 ] . pvalue [ counts [ 2 ] .

index [ c t ] ] , counts [ 2 ] . d a t a t o t a l [ counts [ 2 ] .

index [ c t ] ] ]

k3=k3+1

else :

v i o l a t i o n bymon th a f t e r f a s t e r . l o c [ k3 ]=((month+1) ,

0 , 0 , 0 , 0 , 0 , 0 )

k3=k3+1

i f ( len ( counts [ 3 ] ) ! = 0 ) :

for ct in range ( len ( counts [ 3 ] . d l t 1 ) ) :

v i o l a t i on chang e d e l a y . l o c [ k4 ]= [ (month+1) ,

counts [ 3 ] [ ”Complaint Type” ]

[ counts [ 3 ] . index [ c t ] ] , counts [ 3 ] . d l t 1 [ counts [ 3 ] .

index [ c t ] ] , counts [ 3 ] . LABEL[ counts [ 3 ] . index [ c t ] ] ]

k4=k4+1

else :

v i o l a t i on chang e d e l a y . l o c [ k4 ]=((month+1) ,0 ,0 ,0)

k4=k4+1

i f ( len ( counts [ 4 ] ) ! = 0 ) :

for ct in range ( len ( counts [ 4 ] . d l t 2 ) ) :

v i o l a t i o n c h a n g e f a s t e r . l o c [ k5 ]= [ (month+1) ,

counts [ 4 ] [ ”Complaint Type” ]

[ counts [ 4 ] . index [ c t ] ] , counts [ 4 ] . d l t 2 [ counts [ 4 ] .

index [ c t ] ] , counts [ 4 ] . LABEL[ counts [ 4 ] . index [ c t ] ] ]

k5=k5+1
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else :

v i o l a t i o n c h a n g e f a s t e r . l o c [ k5 ]=((month+1) ,0 ,0 ,0)

k5=k5+1

month=month+1

print (month)

i f ( start month>dt . c r ea t ed t ime [ len ( dt . c r ea t ed t ime ) −1 ] ) :

break

v io l a t i on bymonth be fo r e . t o c sv

( ” v io l a t i on50 bymonth be fo r e1 . csv ” )

v i o l a t i on bymonth a f t e r d e l ay . t o c sv

( ” v i o l a t i on50 bymonth a f t e r de l ay1 . csv ” )

v i o l a t i o n bymon th a f t e r f a s t e r . t o c sv

( ” v i o l a t i o n 50 bymon th a f t e r f a s t e r 1 . csv ” )

v i o l a t i on chang e d e l a y . t o c sv

( ” v i o l a t i on50 change de l ay1 . csv ” )

v i o l a t i o n c h a n g e f a s t e r . t o c sv

( ” v i o l a t i o n 5 0 c h ang e f a s t e r 1 . csv ” )
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