
University of New Mexico University of New Mexico

UNM Digital Repository UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

Spring 4-4-2023

Multilevel Optimization with Dropout for Neural Networks Multilevel Optimization with Dropout for Neural Networks

Gary Joseph Saavedra
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

 Part of the Applied Mathematics Commons, Mathematics Commons, and the Statistics and

Probability Commons

Recommended Citation Recommended Citation
Saavedra, Gary Joseph. "Multilevel Optimization with Dropout for Neural Networks." (2023).
https://digitalrepository.unm.edu/math_etds/199

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital
Repository. It has been accepted for inclusion in Mathematics & Statistics ETDs by an authorized administrator of
UNM Digital Repository. For more information, please contact disc@unm.edu.

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_etds
https://digitalrepository.unm.edu/etds
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/199?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 , Chairperson

Multilevel Optimization with Dropout for
Neural Networks

by

Gary Saavedra

M.S., Computer Science, Georgia Institute of Technology, 2018

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mathematics

The University of New Mexico

Albuquerque, New Mexico

May, 2023

Dedication

Dedicated to my wonderful wife Shasta and beautiful baby girl Iris.

iii

Acknowledgments

I would like to thank my thesis advisor Dr. Jacob Schroder and colleague Dr. Eric
Cyr for their support.

iv

Multilevel Optimization with Dropout for
Neural Networks

by

Gary Saavedra

M.S., Computer Science, Georgia Institute of Technology, 2018

M.S., Mathematics, University of New Mexico, 2023

Abstract

Large neural networks have become ubiquitous in machine learning. Despite their

widespread use, the optimization process for training a neural network remains com-

putationally expensive and does not necessarily create networks that generalize well

to unseen data. In addition, the di�culty of training increases as the size of the

neural network grows. In this thesis, we introduce the novel MGDrop and SMGDrop

algorithms which use a multigrid optimization scheme with a dropout coarsening

operator to train neural networks. In contrast to other standard neural network

training schemes, MGDrop explicitly utilizes information from smaller sub-networks

which act as approximations of the full network. We empirically show that both

MGDrop and SMGDrop perform comparably to existing training algorithms and in

some cases are able to beat current algorithms in terms of accuracy and training

time. In addition, we derive theoretical descriptions of the underlying update rules

and their e↵ects on network gradients.

v

Contents

List of Figures ix

List of Tables xii

Glossary xiii

1 Introduction 1

2 Related Work 4

3 Introduction to Machine Learning 5

3.1 Basics of Machine Learning . 5

3.2 Neurons . 6

3.3 Neural Networks . 8

3.3.1 Training the Neural Network 8

4 Datasets 12

vi

Contents

5 Multigrid Optimization 14

5.1 MG/OPT algorithm . 14

5.2 A Walkthrough of a 2-Level Problem 16

5.3 Comparison of Two-Level MG/OPT to Linear Multigrid Error Cor-

rection . 17

5.4 MGDrop: MG/OPT with Dropout for Neural Networks 18

6 Dropout as a coarsening mechanism 22

6.1 Understanding Dropout as a Coarsening Mechanism 22

6.1.1 Coarse Optimization Problem Weight Update 23

6.2 Understanding Updates for the MGDrop Algorithm 24

6.2.1 With Tau Correction . 25

6.2.2 Without Tau Correction . 27

7 Experimental Results 30

7.1 Defining a Work Unit . 30

7.2 Justification for Dropout as a Coarsening Operator 31

7.3 Performance of Algorithms . 32

7.3.1 Performance of MGDrop and SMGDrop for Varied Network

Sizes . 32

7.3.2 Performance for Di↵erent Dropout Rates 33

7.3.3 Performance for Di↵erent Nc 33

vii

Contents

7.3.4 Performance for Varying Dataset Sizes 34

8 Conclusion 46

References 48

viii

List of Figures

3.1 A simple neuron with input features x(i), weights w(i), bias b, and

output y. These neurons form the building blocks of a neural network. 7

3.2 (a) A fully connected neural network with 2 hidden layers and 1

output layer. (b) A neural network with dropout applied. Dropout

randomly picks nodes with user-specified probability p and removes

the node and all its connections. 9

4.1 Peaks dataset. Each color represents a di↵erent class. 12

4.2 MNIST data examples. 13

7.1 The timing for various steps of a nonlinear neural network optimiza-

tion process for (a) 2 layers, (b) 6 layers, and (c) 10 layers. Each layer

contains 8 hidden nodes. The “forward” and “backward” labels refer

to a forward pass and backward pass through the network. The “pa-

rameter update” refers to the adjustment of the weights using the

gradient obtained during the backward pass. The “loss” refers to the

calculation of the loss after the forward pass. 35

ix

List of Figures

7.2 Distribution of accuracies with respect to training time measured in

work units for 2-layer networks. Each layer has (a) 64, (b) 128, and

(c) 256 hidden nodes. The network was trained with a batch size of

4 using the AdaGrad optimizer and learning rate 0.1. Each violin

plot is a distribution of accuracies over 100 di↵erent dropped out

networks with p set to 0.5 in the dropout algorithm. Each accuracy

was calculated using 1000 samples. For reference, the full network

accuracy is shown in red. We can see that the mean of the distribu-

tion of accuracies over di↵erent dropout networks (middle blue line)

often closely matches the accuracy of the full network (red dot). We

can also see that this e↵ect holds throughout the training process. . 36

7.3 Performance of baseline without dropout, baseline with dropout of

p = 0.5, MGDrop, and SMGDrop. Each plot shows the accuracy

as a function of work units. The various curves represent networks

with di↵erent numbers of layers. Each layer has 128 nodes. The solid

line for each curve represents the mean accuracy over three random

seeds. The spread represents the standard deviation over the three

random seeds. 37

7.4 Performance of baseline without dropout, baseline with dropout of

p = 0.5, MGDrop, and SMGDrop. Each plot shows the accuracy

as a function of work units. The various curves represent networks

with di↵erent numbers of layers. Each layer has 512 nodes. The solid

line for each curve represents the mean accuracy over three random

seeds. The spread represents the standard deviation over the three

random seeds. 38

x

List of Figures

7.5 Performance of baseline without dropout, baseline with dropout of

p = 0.5, MGDrop, and SMGDrop. Each plot shows the accuracy as

a function of work units. The various curves represent networks with

di↵erent numbers of layers. Each layer has 1024 nodes. The solid

line for each curve represents the mean accuracy over three random

seeds. The spread represents the standard deviation over the three

random seeds. 39

7.6 Performance of MGDrop for various dropout rates for 2, 6, and 10

layer networks. Baseline algorithms with the same dropout rates are

shown for comparison. 40

7.7 Performance of SMGDrop for various dropout rates for 2, 6, and 10

layer networks. Baseline algorithms with the same dropout rates are

shown for comparison. 41

7.8 MGDrop Performance for di↵erent number of coarse optimization

steps Nc. Each curve represents the performance for networks with

di↵erent number of layers. Each layer has 128 nodes. 42

7.9 SMGDrop Performance for di↵erent number of coarse optimization

steps Nc. Each curve represents the performance for networks with

di↵erent number of layers. Each layer has 128 nodes. 43

7.10 Performance of various algorithms for varying amounts of the Peaks

training data. 44

7.11 Performance of various algorithms for varying amounts of the MNIST

training data. 45

xi

List of Tables

5.1 Comparison of MG/OPT and Linear Multigrid. 21

xii

Glossary

w Weight parameters of the neural network

b Bias parameters of the neural network

x The data/input to a neural network

p Probability of removing an individual node with dropout

f The loss function of the neural network

xiii

Chapter 1

Introduction

Large neural networks (NN) have become ubiquitous in machine learning [2, 11, 17,

15, 28, 1]. Despite their widespread use, the optimization process for training a NN

remains computationally expensive and does not necessarily create networks that

generalize well to unseen data. In addition, the di�culty of training increases as the

size of the NN grows.

The choice of optimization algorithm for NN training is crucial and determines

both the speed of convergence and final accuracy of the network [24]. Despite the

progress in optimization research, it is still common for NN training algorithms to

converge to local optima [14]. In addition, the tendency to get stuck in local optima

increases as NN sizes increase [13].

In general, there are two ways for an NN to increase in size: 1) by adding more

nodes to a layer and/or 2) by adding more layers. Each type of growth creates ad-

ditional di�culties for the optimization algorithm. First, additional nodes or layers

increases the number of parameters which must be considered in the optimization

space. Second, with large numbers of layers, gradient information needed for opti-

mization may vanish as it propagates through the layers [5]. This vanishing gradient

1

Chapter 1. Introduction

problem is caused by the multiplication of many small partial derivatives needed for

the weight update process [4]. Finally, large models are at increased risk of memo-

rizing training data (overfitting) and hence less likely to generalize well to new data

[23].

The choice of activation function for an NN can also strongly influence the risk of

vanishing gradients and overfitting [19]. ReLU activation functions [3] in particular

have been studied as a means of improving NN training. There are several advan-

tages to using a ReLU function. First, NNs with ReLU activation functions do not

experience vanishing gradients since the gradient is always equal to either 0 or 1.

Second, ReLU often creates inactive neurons due to zero-value outputs for negative

neuron inputs. This phenomenon is known as “dying ReLU” and reduces overfitting

via network sparsity. One disadvantage of ReLUs is that neurons may have trouble

learning from examples whose inputs are negative. However, when batching multiple

examples together this issue becomes less probable [19].

Most NN optimization algorithms utilize some form of stochasticity to improve

performance but few leverage smaller sub-networks that act as an approximation

to the original large network. Instead, current optimization algorithms attempt

to train the full NN which is costly and may lead to overfitting if the network is

overparameterized compared to the dataset.

Regularization is another common approach to limit model size/complexity and

improve the generalization of the final model. In particular, dropout [23] is a regu-

larization scheme that reduces the number of parameters in a NN model by stochas-

tically removing nodes during training. Hence, dropout improves optimization by

utilizing parameter updates from random sub-problems at each training iteration.

However, current implementations of dropout do not directly transfer information

from problem to sub-problem or vice versa. This limitation may result in subopti-

mal performance as each iteration of dropout solves random versions of the original

2

Chapter 1. Introduction

problem with no additional information.

Multigrid optimization (MG/OPT) [20] is a multilevel approach which provides

an explicit mechanism for transferring information between the original problem and

the sub-problem. By utilizing this information sharing, MG/OPT can increase the

speed of convergence of the optimization algorithm, as well as the quality of the final

solution. In addition, multigrid methods have been shown particularly to improve

convergence for very large problems primarily involving partial di↵erential equations

[25]. In this thesis we implement MultiGrid Dropout (MGDrop) and Stochastic

MultiGrid Dropout (SMGDrop): an MG/OPT scheme for NN training which uses

dropout as a way of defining the smaller sub-problems. We show that each of these

algorithms performs well compared to their baseline counterparts. We also show that

SMGDrop is able to outperform baseline algorithms under certain circumstances.

This thesis is arranged as follows. In Chapter 2 we cover prior work in the space

of multilevel NN training. In Chapter 3 we introduce basic machine learning and NN

concepts. In Chapter 4 we discuss the data used for our experiments. In Chapter 5

we introduce the MG/OPT algorithm and our extension algorithms, MGDrop and

SMGDrop, to NNs. In Chapter 6 we derive theoretical properties for dropout as

a coarsening mechanism. Finally, in Chapter 7 we show the results of experiments

comparing MGDrop, SMGDrop, and baseline algorithms.

3

Chapter 2

Related Work

There is very little prior work applying multigrid methods to neural networks. Günther

et al. utilize a multigrid in time (MGRIT) [12] scheme to train very deep ResNet

models [16]. Cyr et al. also utilize MGRIT for multilevel initialization of ResNet

models prior to training [8]. However, both of these prior works di↵er from our work

in several key ways. First, they utilize MGRIT schemes which coarsen whole layers

(i.e., they remove entire layers) whereas our approach uses MG/OPT with dropout

which coarsens within layers (i.e., removes subsets of nodes within layers). Second,

MGRIT methods require model architectures that can be interpreted as an ODE,

e.g., a forward Euler discretization. In contrast, our methods put no constraint on

the type of model that can be considered.

Planta et al. implement an MG/OPT approach for training NNs and show im-

proved convergence speed and accuracy over stochastic gradient descent [26]. Sim-

ilarly, Dun et al. implement a multilevel approach without an explicit coarse error

correction and show improved parallelization without major degredation of model

performance [10]. However, both of these works also restrict their methods to ResNet

models and coarsen strictly by removing layers.

4

Chapter 3

Introduction to Machine Learning

3.1 Basics of Machine Learning

Machine learning is a field which focuses on creating algorithms to learn from data.

Machine learning algorithms can be broadly split into two types: supervised and

unsupervised. Supervised algorithms are used to predict a specific label for a data

point, whereas unsupervised algorithms are used to explore and describe the proper-

ties of the data. Supervised algorithms are further separated into two types of tasks:

classification and regression. Classification algorithms take an input data point and

predict a class label for that data e.g., given an image of a cat the algorithm will

label the image as having the “cat” class. Regression algorithms take an input data

point and predict a numerical output value e.g., given housing data it will predict

the price of a given home. For an in-depth introduction to machine learning see [7].

In this work we exclusively focus on supervised classification algorithms. Specifically,

we focus on neural networks (NN).

Machine learning algorithms operate on datasets. A dataset consists of individual

data points x of size n which are described by individual features x(i) where 1  i  n.

5

Chapter 3. Introduction to Machine Learning

The structure of the individual features is highly dependent on the dataset. For

instance, in images each individual x(i) is a pixel of the image whereas in text each

x(i) may correspond to a single word or character. There are also tabular datasets

where features are explicitly hand-engineered based on properties of the data, e.g.,

in a house pricing dataset a feature may correspond to square feet, location, etc.

A supervised model S takes a data point as input and outputs a class label y,

i.e.,

y = S(x).

A supervised model contains a set of internal parameters w(i) which control the out-

put response of the model. These internal parameters are tuned via a training pro-

cess. The specific details of the training process vary widely based on the supervised

algorithm and task. In general though, training consists of an iterative optimization

process whereby information from the current output, y, is used to adjust internal

parameters to improve performance of the model and reduce the number of incorrect

predictions.

3.2 Neurons

Before we describe the fully connected NN we must first describe its individual parts.

A NN consists of individual neurons. The basic structure of the neuron is shown in

Figure 3.1. A neuron performs a weighted summation of inputs i.e., given a set of

inputs x(i) and a set of scalar parameters w(i), b where 1  i  n, a neuron computes

the output

y = w(1)x(1) + w(2)x(2) + ...+ w(n)x(n) + b.

The w(i) are referred to as the weights of the neuron and the b is referred to as the

bias. The act of feeding inputs through a neuron and receiving an output is referred

6

Chapter 3. Introduction to Machine Learning

.

.

.

!(1)

"

#

!($)

$(1)

$($)

Figure 3.1: A simple neuron with input features x(i), weights w(i), bias b, and output
y. These neurons form the building blocks of a neural network.

to as a forward pass. The weights are parameters of the neuron and can be tuned

via training for the particular task at hand. It is common to feed the weighted

summation through a non-linear function � such that

y = �(w(1)x(1) + w(2)x(2) + ...+ w(n)x(n) + b).

This non-linearity, often referred to as an activation function, allows for richer rep-

resentations and often improves model performance. Common activation functions

include the ReLU, Sigmoid, and tanh functions. In this work we utilize the ReLU

function given by

�ReLU(x) =

8
><

>:

x if x � 0

0 otherwise
.

See [3] for more information on common activation functions used in NNs. A single

neuron can be used for binary classification. We say that the neuron has classified a

data point as class 0 if y is below a certain user-specified threshold and class 1 if y

is above the threshold.

7

Chapter 3. Introduction to Machine Learning

3.3 Neural Networks

Single neurons are limited in the types of tasks they can perform successfully. For

more complex tasks we can combine neurons together to form neural networks as

shown in Figure 3.2a. Here, a column of neurons forms a layer where each neuron

outputs a weighted summation of the inputs as shown in the previous section. The

output of this layer of neurons is then fed into the next layer of neurons. We can

continue this process by adding more layers. Each layer increases the representa-

tional power of the NN and hence improves its ability to do classification. However,

the increased depth comes with additional computational cost and optimization dif-

ficulties. The final layer, or output layer, consists of a set of nodes that perform the

classification. We denote this set of nodes as y(i) where 1  i  nc and nc is the

number of classes.

A softmax layer [14] is commonly used to convert the final layer outputs into a

probability distribution. The layers before the output final layer are often referred

to as the hidden layers. Overall, we can think of the entire feedforward mechanism

as taking in a set of data features, x(i), successively transforming the features at each

hidden layer into a more descriptive set of features, y(i), and using these descrip-

tive features for classification in the final layer. We implement all neural network

architectures in PyTorch 1.10.2 [21].

3.3.1 Training the Neural Network

In order for the NN to perform a classification task successfully we must tune the

neuron weights through training. Training is an iterative process that consists of four

primary steps: 1) a feedforward step for a set of data points, 2) computing the NN

loss (i.e., the error) on the data points, 3) assigning blame for the error on each of

the individual weights and biases with a gradient computed via backpropagation, and

8

Chapter 3. Introduction to Machine Learning

.

.

.

.

.

Hidden Layers Output Layer

!

!(1)

!($)

(a)

Hidden Layers Output Layer

!
.
.
.
.
.

!(1)

!($)

(b)

Figure 3.2: (a) A fully connected neural network with 2 hidden layers and 1 output
layer. (b) A neural network with dropout applied. Dropout randomly picks nodes
with user-specified probability p and removes the node and all its connections.

4) updating the weights and biases to reduce the error. We discussed the feedforward

mechanism in previous sections. We will now turn our attention to Steps 2 - 4.

Loss Functions

In order to quantify the performance of an NN we require a measurement of the

output error after a feedforward pass. Loss functions measure the di↵erence between

expected output and the NN output. There are a wide variety of loss functions with

di↵erent strengths. For an overview of loss functions see [27]. For this work, we

utilize the popular cross entropy loss

fCE(x) = �
ncX

i=1

ŷ(i) log
�
p(i)(x)

�

where ŷ(i) is the ground truth class label for class i and p(i) is the softmax output

probability for class i and is given by

p(i) =
ey

(i)

P
nc

j
ey(j)

.

9

Chapter 3. Introduction to Machine Learning

Backpropagation

After computing the loss we must quantify how much each NN parameter contributed

to that loss. Backpropagation is the most commonly used mechanism. Backprop-

agation computes the gradient, @f(x)
@w(i) , of every NN parameter, w(i), with respect to

the loss by conducting a backward pass. During the backward pass the chain rule is

utilized to calculate gradients along each path of the network. After a full backward

pass each weight and bias of the network has an associated gradient which is used

to determine how much that particular parameter contributed to the loss. See [22]

for a more in depth explanation of backpropagation.

Weight Updates via Optimization

After computing the gradients of each parameter via backpropagation we update the

parameters of the model. A wide variety of update rules exist. The most basic is the

gradient descent update rule

w(i) w(i) � �
@f(x)

@w(i)
,

where � is a user-specified learning rate and @f(x)
@w(i) is the gradient of the loss function

f(x) with respect to parameter w(i). Gradient descent computes @f(x)
@w(i) based on the

entire training set. A more common implementation known as stochastic gradient

descent (SGD) computes @f(x)
@w(i) based on only a subset of the training set.

Introduction to Dropout

Dropout [23] is a popular regularization technique used to prevent overfitting in

neural networks. With dropout on a fully connected layer, nodes are randomly

removed from the network according to a user specified probability p as shown in

Figure 3.2b. In this paper, we use dropout as a stochastic coarsening mechanism

10

Chapter 3. Introduction to Machine Learning

where the coarse grid is a copy of the fine grid neural network with nodes randomly

dropped out.

11

Chapter 4

Datasets

We utilize the Peaks dataset developed in [18]. Each data point is classified as 1

of 5 classes and contains two features: an x and y coordinate. Peaks consists of

5000 training examples with 1000 examples per class. See Figure 4.1 for a visual

representation (cf. Figure 6 from [18].

We also utilize the MNIST dataset [9] which is a commonly used dataset for

benchmarking machine learning algorithms for image classification. MNIST consists

Figure 4.1: Peaks dataset. Each color represents a di↵erent class.

12

Chapter 4. Datasets

Figure 4.2: MNIST data examples.

of 28x28 pixel image data of handwritten digits 0-9. There are 60,000 total train-

ing examples with 6000 examples per class. The validation set consists of 10,000

examples with 1000 examples per class. See Figure 4.2 for a visual representation.

13

Chapter 5

Multigrid Optimization

5.1 MG/OPT algorithm

In this section we introduce the MG/OPT algorithm [20] and a novel application to

neural networks. We use w to indicate the solution output by MG/OPT. We use

bar notation (e.g. w̄) to indicate solutions at the next coarse level. The coarse level

is a sparse version of the current level. Typically the problem size is cut in half

at the coarse level. Additionally, we use h to indicate the current level and H to

indicate the next coarse level. We denote the following operators (defined in more

detail later):

fh : objective function at level h

IH
h

: Transfer matrix from the fine level to the coarse level

Ih
H
: Transfer matrix from the coarse level to the fine level.

Given the initial guess w0, a single iteration of the MG/OPT algorithm is defined in

[20] as follows (note that this is a recursive algorithm).

14

Chapter 5. Multigrid Optimization

Algorithm MG/OPT (w0, fh):

1. If this is the coarsest grid solve

minimize
w

fh(w)

using w0 as initial guess and return result w

2. Otherwise, apply N0 iterations of an optimization algorithm to the original

problem using w0 as the initial guess to obtain w(1).

3. Compute

w̄(1) = IH
h
w(1)

g(1) = rfh(w(1))

ḡ(1) = rfH(w̄(1))

v̄ = ḡ(1) � IH
h
g(1)

4. Apply the multigrid method recursively, with initial guess w̄(1) to

minimize
w̄

fH(w̄)� v̄T w̄

and let w̄(2) be the result. That is

w̄(2) = MG/OPT (w̄(1), fH(w̄)� v̄T w̄)

5. Compute error approximation

e(2) = Ih
H

�
w̄(2) � w̄(1)

�

6. Perform a line search to obtain

w(2) w(1) + ↵e(2)

7. Apply N1 iterations of an optimization algorithm to the original problem, with

initial guess w(2) to obtain w(3). Return w(3).

We note that the v̄T w̄ term is often referred to as the tau correction term.

15

Chapter 5. Multigrid Optimization

5.2 A Walkthrough of a 2-Level Problem

This section is intended to show how MG/OPT would iterate from start to finish in

a two level setting. We refer to the steps of the MG/OPT algorithm above by using

italicized notation e.g., Step number.

1. On the first pass through we are on the fine level, so we bypass Step 1 of

MG/OPT.

2. We follow Step 2 and apply N0 iterations of an optimization algorithm to fh.

This gives a new solution on the fine grid, w(1).

3. Next we compute the quantities specified in Step 3. Here we obtain the follow-

ing: w̄(1): the coarsened solution of the fine grid. Note that this is obtained by

taking the fine grid solution and applying the restriction operator IH
h
. It is not

obtained by solving the optimization problem on the coarse level.

g(1): The gradient on the fine level.

ḡ(1): The gradient on the coarse level.

v̄: The di↵erence between the coarse gradient and the coarsened version of the

fine grid gradient.

4. We now apply the multigrid method, with initial guess w̄(1) to the coarse level

minimize
w̄

fH(w̄)� v̄T w̄

and let w̄(2) be the result. This recursive call returns us to Step 1 where we

solve the optimization problem on the coarse level. If we were using more than

2 levels then we would once again skip Step 1 and repeat the above steps until

we reached the coarsest level. We can think of w̄(2) as a correction to w̄(1).

The v̄T w̄ in the optimization problem gives a sense of the di↵erence in the

algorithm step direction/magnitude between the fine and coarse grid. This is

16

Chapter 5. Multigrid Optimization

the amount of disagreement that is created when we try to minimize the coarse

problem instead of the fine problem. Then, by subtracting this term from the

optimization problem, we remove this source of disagreement. This allows the

optimization algorithm to discover a better solution on the coarse grid.

5. Now that we have the w̄(2) we can compute e(2) from Step 5 which is an approx-

imate measure of the error on the fine grid. This is obtained by prolongating

w̄(2) � w̄(1), with Ih
H
.

6. Follow Step 6 and update the solution on the fine grid.

7. Repeat until you reach some tolerance.

5.3 Comparison of Two-Level MG/OPT to Linear

Multigrid Error Correction

In this section we convert the MG/OPT algorithm to its linear algebra counterpart

and compare to the steps of the classic linear multigrid error correction. Our goal

is to better understand the algorithm. We use the two grid correction scheme for

linear problems in [6]. Here we wish to solve the quadratic optimization problem

minimize
w

wTAw � wT b

which is equivalent to solving the linear system

Aw = b.

Table 5.1 compares the steps of MG/OPT vs. linear multigrid. Note that these steps

(in particular the cancellation of the b terms in Step 3) assume that our restriction

operator IH
h

is injection (i.e., it chooses every other fine point to be the set of coarse

17

Chapter 5. Multigrid Optimization

points). We use the same notation as in Section 5.1 and the following additional

notation:

Ā : The construction of the A matrix on the coarse level e.g. a finite di↵erence

matrix of size
n

2
where n is the size of the fine grid. Note that Ā 6= IH

h
A.

w̄ : The coarse version of vector w, i.e., IH
h
w.

b̄ : The coarse version of vector b, i.e., IH
h
b.

5.4 MGDrop: MG/OPT with Dropout for Neural

Networks

In this section we define MGDrop: a novel algorithm for training neural networks

using MG/OPT with dropout as a coarsening mechanism. We define the multigrid

operators as:

fh : NN loss function as defined in Section 3.3.1

rfh : the gradient of the loss function with respect to the NN parameters

IH
h

: NN dropout with probability p specified by user.

Ih
H
: Injection of coarse grid weights into fine NN

w : The weights and biases of the NN.

Bar notation represents the weights and biases of the coarse NN. An iteration of

optimization consists of the following steps: 1) forward pass, 2) compute loss fh(w),

3) backward pass, and 4) update weights w of the network via stochastic gradient

descent as defined in Section 3.3.1. Given the initial network w0, we define MGDrop

as follows.

18

Chapter 5. Multigrid Optimization

Algorithm MGDrop(w0, fh):

1. If this is the coarsest grid perform Nc iterations of optimization on fh and

return the updated w.

2. Otherwise, apply N0 iterations of optimization to the problem fh to obtain

w(1).

3. Compute

w̄(1) = IH
h
w(1)

g(1) = rfh(w(1))

ḡ(1) = rfH(w̄(1))

v̄ = ḡ(1) � IH
h
g(1)

4. Apply the multigrid method recursively.w̄(2) = MGDrop(w̄(1), fH(w̄(1))�v̄T w̄(1)).

5. Compute

e(2) = Ih
H

�
w̄(2) � w̄(1)

�

6. Perform a line search to obtain

w(2) w(1) + ↵e(2)

7. Apply N1 iterations of optimization to the original problem fh, with initial

guess w(2) to obtain w(3). Return w(3).

Note that in contrast to the original MG/OPT algorithm, MGDrop does not nec-

essarily fully minimize in Steps 1 and 4. Rather we choose a certain number of

optimization iterations to perform.

In addition to MGDrop we consider a stochastic variant of the algorithm which

we refer to as SMGDrop. MGDrop uses the same batch of data for each step of the

19

Chapter 5. Multigrid Optimization

algorithm i.e., a new batch is not used until a full iteration of MGDrop is complete.

In contrast, SMGDrop uses a unique batch of data for each unique optimization step

within the MGDrop iteration i.e., Step 1, 2, and 7 each use a unique data batch. By

considering di↵erent data batches, SMGDrop is less likely to overfit than MGDrop.

20

Chapter 5. Multigrid Optimization

Step number MG/OPT step Linear Multigrid step

Step 2 minimize wTAw � wT b Relax Aw = b
return w1 return w1

w̄1 = IH
h
w1 Compute fine and coarse grid residual

g1 = rfh(w1) = Aw1 � b �r1 = Aw1 � b
Step 3

ḡ1 = rfH(w̄1) = Āw̄1 � b̄ �r̄1 = Āw̄1 � b̄

v̄ = ḡ1 � IH
h
g1 = Āw̄1 � IH

h
Aw1

minimize w̄T Āw̄ � w̄T b̄� v̄T w̄ Solve Āw̄ = b̄+ v̄
return w̄2 return w̄2

Step 4 Note that this is equivalent to
Āē = r̄1 where ē = w̄ � w̄1

and r̄1 = IH
h
r1 = IH

h
(b� Aw1)

Compute Interpolate

Step 5 e2 = Ih
H

⇣
w̄2 � w̄1

⌘
e = Ih

H
ē

which is equivalent to

e = Ih
H

⇣
w̄2 � w̄1

⌘

Step 6 Perform a line search to obtain Correct fine grid approximation
w2 w1 + ↵e2 w2 w1 + e

minimize wTAw � wT b Relax Aw = b
Step 7 with initial guess w2 with initial guess w2

return w3 return w3

Table 5.1: Comparison of MG/OPT and Linear Multigrid.

21

Chapter 6

Dropout as a coarsening

mechanism

6.1 Understanding Dropout as a Coarsening Mech-

anism

We wish to understand how the MGDrop algorithm a↵ects weight updates. For the

following derivation we follow the analysis of [14] (Ch. 7, pg 227). Consider a loss

function f(w) where w are the NN weights. Further, consider a small neighborhood

such that we can make a quadratic approximation of this loss function with optimal

weights given by w⇤ = arg min
w
f(w). Then using a Taylor series expansion, we can

form the approximation

f̂(w) = f(w⇤) +
1

2
(w � w⇤)TH(w � w⇤)

where H is the Hessian of the loss function f . Then the gradient is given by

rwf̂(w) = H(w � w⇤), (6.1)

where the minimum occurs when rwf̂(w) is equal to 0.

22

Chapter 6. Dropout as a coarsening mechanism

6.1.1 Coarse Optimization Problem Weight Update

In this section, we look at the weight updates of the coarse optimization problem.

We assume a quadratic approximation in a small neighborhood as in Section 6.1.

We adopt the notation from Section 5.1 (i.e., bar notation and capital H subscripts

signify that a quantity is associated with the coarse grid; lower case h subscripts and

vectors without a bar are fine grid quantities; numbered subscripts represent a quan-

tity derived at a particular step of the MGOPT algorithm). The coarse optimization

problem of MG/OPT is given by

minimize
w̄

fH(w̄)� v̄T w̄ (6.2)

where

v̄ = rfH(w̄(1))� IH
h
rfh(w(1))

w̄(1) = IH
h
w(1)

and IH
h

is the dropout operator. Taking the gradient of the objective function (6.2)

and approximating with a Taylor series as in (6.1) gives

rwf̂H(w̄) = H̄(w̄ � w̄⇤)� v̄, (6.3)

where w̄⇤ = arg min
w̄
fH(w̄). Then the minimum of the coarse optimization problem

(6.3) occurs at rwf̂H(w̄) = 0 which allows us to write

H̄(w̄⇤
(2) � w̄⇤)� v̄ = 0 (6.4)

) w̄⇤
(2) = w̄⇤ + H̄

�1
v̄ (6.5)

where w̄⇤
(2) corresponds to the NN weights that minimize f̂(w̄). Since H is a positive

semi-definite matrix there exists an eigendecomposition such that H = Q⇤QT where

Q are the eigenvectors of H and ⇤ is a diagonal matrix containing the eigenvalues.

Thus using the fact that H�1 = Q⇤�1QT , we can write

w̄⇤
(2) = w̄⇤ + Q̄⇤̄�1Q̄

T
v̄ (6.6)

23

Chapter 6. Dropout as a coarsening mechanism

Equation (6.6) shows the optimal solution to the coarse optimization problem consists

of the optimal solution of the original coarsened/dropped-out NN (w̄⇤) plus a scaled v̄

term. The Q̄⇤̄�1Q̄
T
v̄ scales each component of v̄ in the direction of the eigenvectors

of H. Thus, the e↵ect of each of the components of v̄ on the weight update will

be influenced by the size of the respective eigenvalues. In this case, the influence

is proportional to the inverse of the eigenvalues of H, i.e., directions with smaller

eigenvalues have more influence on the weight updates. Since large eigenvalues of H

indicate steeper regions of the loss function and smaller eigenvalues indicate less steep

regions, the coarse optimization favors weight updates in the less steep direction of

the loss. Gradient descent typically concentrates updates on steep regions. Thus,

gradient descent in MGDrop primarily updates in steep regions on the fine level and

in flatter regions on the coarse level. We hypothesize this could give MGDrop an

advantage over stand-alone gradient descent.

6.2 Understanding Updates for the MGDrop Al-

gorithm

We saw in Section 6.1 that the MGDrop error correction mechanism for a simple

quadratic problem is heavily influenced by the eigenvalues of the Hessian of the loss.

In this section, we wish to understand the correction from the coarse level optimiza-

tion problem both with and without the tau correction term v̄T w̄. We consider the

MGDrop algorithm with 2 levels, no line search, injection as the interpolation op-

erator, and a single optimization step each time the fine and coarse optimization

problems are iterated (Steps 1, 4, and 7). Further, for optimization we utilize the

gradient descent rule

w w � �rf(w)

24

Chapter 6. Dropout as a coarsening mechanism

where � is the learning rate and f is the loss function of the NN. Further, we represent

the fine and coarse components of the gradient g(n) as

g(n) =

2

4g
f

(n)

gc(n)

3

5

where gc(n) are the gradients for the nodes also present on the coarse grid and gf(n)

are the gradients on the fine grid nodes that are not part of the coarse grid. Note

that gc(n) 6= ḡ(n). The ḡ(n) are computed from an example that has been propagated

through a dropped-out (coarse) network whereas gc(n) are restricted from an example

that has been propagated through the full (fine) network. We assume this ordering

of fine and coarse grid gradients going forward.

6.2.1 With Tau Correction

In this section, we analyze the e↵ect of including the tau correction term. We begin

with an initial NN where w(0) represents the edge weights and node biases. In Step

1 of MGDrop we execute a single fine grid optimization. This step generates the

gradients g(0) = rf(w(0)) and returns new NN parameters w(1) where

w(1) = w(0) � �rg(0)

= w(0) � �

2

4g
f

(0)

gc(0)

3

5

Next, v̄ is computed, and we execute a single iteration of the coarse grid optimization

with initial guess w̄(1) which returns w̄(2) where

w̄(2) = w̄(1) � �r
�
fH(w̄(1))� v̄T w̄(1)

�

= w̄(1) � �
�
rfH(w̄(1))� v̄T

�

= w̄(1) � �
�
ḡ(1) � (ḡ(1) � IH

h
g(1))

�

= w̄(1) � �IH
h
g(1)

25

Chapter 6. Dropout as a coarsening mechanism

Thus, we have that

e2 = Ih
H

�
w̄1 � �IH

h
g(1) � w̄1

�

= ��Ih
H
IH
h
g(1)

= ��

2

4 0

gc(1)

3

5

where the last equality follows from the fact that the IH
h

operator zeroes out non-

coarse gradients and the Ih
H
operator is only an injection. Finally with no line search

we have that ↵ = 1 and our update from the coarse to fine grid becomes

w(2) = w(1) + e(2)

= w(1) � �

2

4 0

gc(1)

3

5

= w(0) � �

2

4g
f

(0)

gc(0)

3

5� �

2

4 0

gc(1)

3

5

Notice that the gradients derived from the coarse optimization problem (ḡ(1)) do not

appear anywhere in this update rule. Thus, the dropped out network is actually

playing no role in the NN update. Instead the update to our original network (w(0))

consists of the gradients from the initial fine grid optimization step (g(0)) and the

coarse-node gradients from a second fine grid step (gc(1)). In essence, with the as-

sumptions on MGDrop specified at the beginning of this section, the algorithm can

be simplified to

1. Run a fine grid forward/backward to compute gradients

2. Update all weights of the NN

3. Run a second fine grid forward/backward to compute gradients

26

Chapter 6. Dropout as a coarsening mechanism

4. Randomly select nodes with probability p and update the NN only on the

selected nodes

5. Run a third fine grid forward/backward to compute gradients

6. Update all weights of the NN

7. Repeat

Explicitly coding MGDrop as this simplified algorithm would greatly reduce the work

units required. However, for this thesis we do not use the simplified algorithm in our

experiments.

If we instead execute n iterations on the coarse grid in Step 4, then we obtain

the following update:

w̄(n+1) = w̄(1) � n�
�
IH
h
g(1) � ḡ(1)

�
� �

nX

n=1

ḡ(i)

and hence

e2 = �n�IhH
�
IH
h
g(1) � ḡ(1)

�
� �Ih

H

nX

n=1

ḡ(i)

where ḡ(i) = rfH(w̄(i)). Here we see that the gradients from the coarse optimiza-

tion problem do a↵ect the final update. Thus, in order to include the e↵ect of coarse

grid gradients we require at least 2 coarse level optimization iterations.

6.2.2 Without Tau Correction

In this section we analyze the e↵ect of excluding the tau correction term. As before,

we begin with an initial NN where w(0) represents the weights and node biases. In

27

Chapter 6. Dropout as a coarsening mechanism

Step 1 of MGDrop we execute a single fine grid optimization. This step generates

the gradients g(0) = rf(w(0)) and returns new NN parameters w(1) where

w(1) = w(0) � �

2

4g
f

(0)

gc(0)

3

5

We now execute a single iteration of the coarse grid optimization with initial guess

w(1) which returns w̄(2) where

w̄(2) = w̄(1) � �rfH(w̄(1))

= w̄(1) � �ḡ(1)

Thus, we have that

e2 = Ih
H

�
w̄1 � �ḡ(1) � w̄1

�

= ��Ih
H
ḡ(1)

Note that ḡ(1) is non-zero only for coarse grid nodes and since Ih
H

is an injection

operator, the updates from e2 a↵ect only coarse-grid nodes. Finally with no line

search we have that ↵ = 1 and our update from the coarse to fine grid becomes

w(2) = w(1) + e(2)

= w(1) � �Ih
H
ḡ(1)

= w(0) � �g(0) � �Ih
H
ḡ(1).

Notice that without the tau correction our update rule is dependent on the gradients

derived from the coarse optimization problem. Thus, this situation utilizes informa-

tion from a dropped-out network, similar to the way a standard dropout algorithm

does, as well as a fine non-dropout network. We can derive a simpler algorithm from

the information above. The MGDrop algorithm with no tau correction is identical

to the following simpler algorithm

28

Chapter 6. Dropout as a coarsening mechanism

1. Run a fine grid forward/backward to compute gradients

2. Update all weights of the NN

3. Create a coarse NN

4. Run a coarse grid forward/backward to compute gradients

5. Update the NN using the interpolated gradients derived from coarse grid

6. Run a third fine grid forward/backward to compute gradients

7. Update all weights of the NN

8. Repeat

In essence this algorithm consists of a standard iteration, a dropout iteration, and a

final standard iteration. This di↵ers from typical dropout training where dropout is

applied at every iteration. If we instead execute n coarse grid steps then we obtain

the following update:

w̄(n+1) = w̄(1) � �
nX

n=1

ḡ(i)

and hence

e2 = ��IhH
nX

n=1

ḡ(i)

which is equivalent to running a standard iteration, n dropout iterations, and a

final standard iteration. Note that in this thesis we focus on MGDrop with a tau

correction for our experiments.

29

Chapter 7

Experimental Results

7.1 Defining a Work Unit

In the subsequent results we will be comparing the speed of convergence of MGDrop

to several baseline algorithms. In this section we develop a work unit to compara-

tively benchmark the various algorithms. In general, wall clock time will not su�ce

for our purposes. PyTorch represents NN parameters as matrices with various op-

erations such as forward/backward passes operating on these matrices. Thus, the

wall clock time is highly dependent on the size of the parameter matrices. However,

the current implementation of PyTorch dropout only zeroes out entries of the pa-

rameter matrix and saves no computation. Thus, wall clock times for a NN with

and without dropout are comparable as can be seen in Figure 7.1. Note that for a

typical multigrid application it is often the case that the coarse grid problem is com-

putationally cheaper than the fine grid. It may be possible to alter the underlying

PyTorch code so that dropout reduces parameter matrix sizes and hence makes the

coarse grid problem cheaper. However, such an implementation is beyond the scope

of this thesis.

30

Chapter 7. Experimental Results

Number of algorithm iterations is also a flawed metric. A single iteration of MG-

Drop contains at least 3 forward/backward passes per iteration whereas the baseline

algorithms contain only 1 forward/backward pass per iteration. Thus, using number

of iterations would give an unfair advantage to MGDrop.

Instead we use a single forward and backward pass to define our work unit. The

wall clock time of a forward and backward pass for various network sizes can be seen

in Figure 7.1. We see that, in general, the forward/backward passes make up the

bulk of the algorithm time and are comparable in magnitude to each other. Thus,

we adopt the convention that a forward pass is equivalent to 1 work unit and a

backward pass is equivalent to 1 work unit. In addition, as we noted above, dropout

operations in Pytorch do not reduce computation time. Thus, we do not reduce the

magnitude of our work units as the network is coarsened i.e., a forward or backward

pass is equal to 1 unit no matter which grid level we are on.

7.2 Justification for Dropout as a Coarsening Op-

erator

An assumption of multigrid methods is that the coarse grid represents a reasonable

approximation of the fine grid [6]. Thus, in order for dropout to function as a coars-

ening operator we make the well-founded assumption that a dropped out network

forms a reasonable approximation of the original network. We provide empirical

evidence for this fact in Figure 7.2. Here we measure the distribution of accuracies

over di↵erent dropped out networks at di↵erent points in the training process. By

observing the distribution of accuracies over di↵erent dropped out networks we can

get a sense of how well the dropped out network approximates the original network.

We can see in the Figure that for various network sizes and various points in the

31

Chapter 7. Experimental Results

training process that the accuracy of dropout networks is close to the accuracy of the

full network. Thus, we assume that dropout may function as a reasonable coarsening

operator.

7.3 Performance of Algorithms

In this section we compare the performance of the MGDrop and SMGDrop algorithms

against two baseline algorithms. Our first baseline algorithm is a standard neural

network trained with Stochastic Gradient Descent (SGD) and no dropout, and the

second baseline algorithm uses SGD with dropout of 0.5. We use a learning rate of

0.01 with no decay and a batch size of 1. In all our results we show the performance

of the validation set. Unless stated otherwise, both MGDrop and SMGDrop use

dropout rates of 0.0 and 0.5 on the fine and coarse level respectively.

7.3.1 Performance of MGDrop and SMGDrop for Varied

Network Sizes

In Figure 7.3 we show the performance of the two baseline algorithms, as well as

MGDrop and SMGDrop for networks with 128 hidden nodes per layer. The baseline

algorithm shows reasonable performance for most numbers of layers with deeper

networks taking more work units to train. The only exception is the network with 16

layers which shows no improvement in performance. Typically deeper networks take

longer to train, thus it is likely that more training would improve performance. The

baseline algorithm with dropout also shows strong performance for small number of

layers. However, the overall performance is worse with dropout especially for larger

numbers of layers.

We now turn our attention to MGDrop and SMGDrop in Figure 7.3. Both

32

Chapter 7. Experimental Results

algorithms show consistently strong performance, with each beating baseline with

dropout for any number of layers. SMGDrop typically performs better than MGDrop

by converging to higher accuracy more quickly. These results show that utilizing

multiple data batches throughout the MG/OPT iteration has a positive e↵ect on

performance. The performance of SMGDrop is also comparable to baseline with no

dropout. However, baseline with no dropout has significantly higher accuracy than

MGDrop.

Figures 7.4 and 7.5 shows performance of the four algorithms for networks with

512 and 1024 nodes per layer respectively. With more nodes per layer MGDrop and

SMGDrop beat the baseline algorithms more consistently. Thus, overall we see that

MGDrop and SMGDrop tend to perform better with wider or deeper networks.

7.3.2 Performance for Di↵erent Dropout Rates

We show the performance of MGDrop and SMGDrop for di↵erent dropout rates

in Figures 7.6 and 7.7 respectively. Here the dropout rate signifies the amount of

dropout on the fine level. The amount of dropout on the coarse level is set to be

halfway between 1.0 and the dropout value on the fine level. In general, higher fine

level dropout tends to harm performance of both MGDrop and SMGDrop. However,

increased dropout also harms the baseline algorithms. This may be an indication

that dropout is not beneficial on the Peaks dataset especially when applied on the

fine level.

7.3.3 Performance for Di↵erent Nc

In this section we study the performance of MGDrop and SMGDrop for various num-

bers of coarse grid iterations Nc. In Figure 7.8 and 7.9 we show the performance

33

Chapter 7. Experimental Results

of MGDrop and SMGDrop respectively. Each plot in the figure shows the perfor-

mance for 1, 2, and 3 coarse iterations. Overall, we see that increasing the number of

coarse iterations only reduces the accuracy of the model with respect to work units.

Further, even with additional work units (100,000 and 120,000 for 2 and 3 coarse

iterations respectively) the accuracy is never recovered.

7.3.4 Performance for Varying Dataset Sizes

In general, dropout is useful for reducing overfitting of a model to the training data.

Generally, overfitting is more likely when the training data has few points. Thus, in

this section we study the e↵ect of reducing the training dataset size. In Figure 7.10

and Figure 7.11 we see the performance of the four algorithms for varying sizes of

the Peaks and MNIST data respectively. We can see that in several cases SMGDrop

now outperforms both baseline algorithms. Thus, SMGDrop may have an advantage

over traditional dropout when the training dataset size is small.

34

Chapter 7. Experimental Results

(a) (b)

(c)

Figure 7.1: The timing for various steps of a nonlinear neural network optimization
process for (a) 2 layers, (b) 6 layers, and (c) 10 layers. Each layer contains 8 hidden
nodes. The “forward” and “backward” labels refer to a forward pass and backward
pass through the network. The “parameter update” refers to the adjustment of the
weights using the gradient obtained during the backward pass. The “loss” refers to
the calculation of the loss after the forward pass.

35

Chapter 7. Experimental Results

(a) (b)

(c)

Figure 7.2: Distribution of accuracies with respect to training time measured in work
units for 2-layer networks. Each layer has (a) 64, (b) 128, and (c) 256 hidden nodes.
The network was trained with a batch size of 4 using the AdaGrad optimizer and
learning rate 0.1. Each violin plot is a distribution of accuracies over 100 di↵erent
dropped out networks with p set to 0.5 in the dropout algorithm. Each accuracy was
calculated using 1000 samples. For reference, the full network accuracy is shown in
red. We can see that the mean of the distribution of accuracies over di↵erent dropout
networks (middle blue line) often closely matches the accuracy of the full network
(red dot). We can also see that this e↵ect holds throughout the training process.

36

Chapter 7. Experimental Results

(a) Baseline (b) Baseline with dropout p = 0.5

(c) MGDrop (d) SMGDrop

Figure 7.3: Performance of baseline without dropout, baseline with dropout of p =
0.5, MGDrop, and SMGDrop. Each plot shows the accuracy as a function of work
units. The various curves represent networks with di↵erent numbers of layers. Each
layer has 128 nodes. The solid line for each curve represents the mean accuracy over
three random seeds. The spread represents the standard deviation over the three
random seeds.

37

Chapter 7. Experimental Results

(a) Baseline (b) Baseline with dropout p = 0.5

(c) MGDrop (d) SMGDrop

Figure 7.4: Performance of baseline without dropout, baseline with dropout of p =
0.5, MGDrop, and SMGDrop. Each plot shows the accuracy as a function of work
units. The various curves represent networks with di↵erent numbers of layers. Each
layer has 512 nodes. The solid line for each curve represents the mean accuracy over
three random seeds. The spread represents the standard deviation over the three
random seeds.

38

Chapter 7. Experimental Results

(a) Baseline (b) Baseline with dropout p = 0.5

(c) MGDrop (d) SMGDrop

Figure 7.5: Performance of baseline without dropout, baseline with dropout of p =
0.5, MGDrop, and SMGDrop. Each plot shows the accuracy as a function of work
units. The various curves represent networks with di↵erent numbers of layers. Each
layer has 1024 nodes. The solid line for each curve represents the mean accuracy
over three random seeds. The spread represents the standard deviation over the
three random seeds.

39

Chapter 7. Experimental Results

(a) 2 layers (b) 6 layers

(c) 10 layers

Figure 7.6: Performance of MGDrop for various dropout rates for 2, 6, and 10 layer
networks. Baseline algorithms with the same dropout rates are shown for comparison.

40

Chapter 7. Experimental Results

(a) 2 layers (b) 6 layers

(c) 10 layers

Figure 7.7: Performance of SMGDrop for various dropout rates for 2, 6, and 10 layer
networks. Baseline algorithms with the same dropout rates are shown for comparison.

41

Chapter 7. Experimental Results

(a) Nc = 1 (b) Nc = 2

(c) Nc = 3

Figure 7.8: MGDrop Performance for di↵erent number of coarse optimization steps
Nc. Each curve represents the performance for networks with di↵erent number of
layers. Each layer has 128 nodes.

42

Chapter 7. Experimental Results

(a) Nc = 1 (b) Nc = 2

(c) Nc = 3

Figure 7.9: SMGDrop Performance for di↵erent number of coarse optimization steps
Nc. Each curve represents the performance for networks with di↵erent number of
layers. Each layer has 128 nodes.

43

Chapter 7. Experimental Results

(a) 10% (b) 7.5%

(c) 5%

Figure 7.10: Performance of various algorithms for varying amounts of the Peaks
training data.

44

Chapter 7. Experimental Results

(a) 10% (b) 7.5%

(c) 5%

Figure 7.11: Performance of various algorithms for varying amounts of the MNIST
training data.

45

Chapter 8

Conclusion

In this work we have shown that MG/OPT methods can o↵er improvements in NN

training. We successfully utilize dropout as as a coarsening mechanism and show that

coarsened NNs are good approximations of their fine counterparts. We analyzed the

the performance of two novel algorithms MGDrop and SMGDrop. We showed that

MGDrop performance was often comparable to baseline performance and in some

cases was able to beat baseline algorithms. Further, by employing stochasticity,

SMGDrop was able to improve over MGDrop’s performance for a wide variety of

network sizes and depths. Finally, we showed that MGDrop and SMGDrop tend to

perform better than baseline when small amounts of data are used. This increase in

performance can likely be attributed to dropout’s ability to reduce overfitting, which

would be more likely when only small amounts of data are available.

There are several avenues for future work. First, this study was limited to the

Peaks dataset where overfitting is not present, and hence dropout is not as valuable.

By broadening to new datasets where standard dropout shows improved performance,

we may also see larger improvements in MGDrop and SMGDrop relative to baseline.

Second, further experimentation with the tau correction term and its interaction

46

Chapter 8. Conclusion

with the NN loss function is warranted. Third, coarsening schemes besides dropout,

for instance using Algebraic Multigrid, may provide additional training boosts.

47

References

[1] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria
Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in
artificial neural network applications: A survey. Heliyon, 4(11):e00938, 2018.

[2] Filippo Amato, Alberto López, Eladia Maŕıa Peña-Méndez, Petr Vaňhara, Aleš
Hampl, and Josef Havel. Artificial neural networks in medical diagnosis, 2013.

[3] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Pre-
vete. A survey on modern trainable activation functions. Neural Networks,
138:14–32, 2021.

[4] Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan. Gradient amplifi-
cation: An e�cient way to train deep neural networks. Big Data Mining and
Analytics, 3(3):196–207, 2020.

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is di�cult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[6] William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid
tutorial. SIAM, 2000.

[7] Andriy Burkov. The hundred-page machine learning book, volume 1. Andriy
Burkov Quebec City, QC, Canada, 2019.

[8] Eric C Cyr, Stefanie Günther, and Jacob B Schroder. Multilevel initialization for
layer-parallel deep neural network training. arXiv preprint arXiv:1912.08974,
2019.

[9] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

48

References

[10] Chen Dun, Cameron R Wolfe, Christopher M Jermaine, and Anastasios Kyril-
lidis. Resist: Layer-wise decomposition of resnets for distributed training. In
Uncertainty in Artificial Intelligence, pages 610–620. PMLR, 2022.

[11] Adam Fadlalla and Chien-Hua Lin. An analysis of the applications of neural
networks in finance. Interfaces, 31(4):112–122, 2001.

[12] Robert D Falgout, Stephanie Friedho↵, Tz V Kolev, Scott P MacLachlan, and
Jacob B Schroder. Parallel time integration with multigrid. SIAM Journal on
Scientific Computing, 36(6):C635–C661, 2014.

[13] Xavier Glorot and Yoshua Bengio. Understanding the di�culty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256. JMLR Workshop
and Conference Proceedings, 2010.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[15] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A
survey of deep learning techniques for autonomous driving. Journal of Field
Robotics, 37(3):362–386, 2020.

[16] Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and Nicolas R
Gauger. Layer-parallel training of deep residual neural networks. SIAM Journal
on Mathematics of Data Science, 2(1):1–23, 2020.

[17] Guodong Guo and Na Zhang. A survey on deep learning based face recognition.
Computer vision and image understanding, 189:102805, 2019.

[18] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.
Inverse problems, 34(1):014004, 2017.

[19] Mohammad Motamed. Approximation power of deep neural networks: an ex-
planatory mathematical survey. arXiv preprint arXiv:2207.09511, 2022.

[20] Stephen G. Nash. A multigrid approach to discretized optimization problems.
Optimization Methods and Software, 14(1-2):99–116, 2000.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

49

References

Soumith Chintala. Pytorch: An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[22] Raul Rojas. The backpropagation algorithm. In Neural networks, pages 149–
182. Springer, 1996.

[23] Nitish Srivastava, Geo↵rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[24] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization
methods from a machine learning perspective. IEEE transactions on cybernetics,
50(8):3668–3681, 2019.

[25] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid. El-
sevier, 2000.

[26] Cyrill von Planta, Alena Kopanicáková, and Rolf Krause. Training of deep
residual networks with stochastic mg/opt. arXiv preprint arXiv:2108.04052,
2021.

[27] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of
loss functions in machine learning. Annals of Data Science, 9(2):187–212, 2022.

[28] Thorsten Wuest, Daniel Weimer, Christopher Irgens, and Klaus-Dieter Thoben.
Machine learning in manufacturing: advantages, challenges, and applications.
Production & Manufacturing Research, 4(1):23–45, 2016.

50

	Multilevel Optimization with Dropout for Neural Networks
	Recommended Citation

	tmp.1682103393.pdf.leGRe

