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Abstract

For parallel-in-time integration methods, the multigrid-reduction-in-time (MGRIT)

method has shown promising results in both improved convergence and increased

computational speeds when solving evolution problems. However, one problem the

MGRIT algorithm currently faces is it struggles solving hyperbolic problems effi-

ciently. In particular, hyperbolic problems are generally solved using explicit meth-

ods and this causes issues on the coarser multigrid levels, where larger (coarser) time

step sizes can violate the stability condition. In this thesis, physics-informed neural

networks (PINNs) are used to evaluate the coarse grid equations in the MGRIT algo-

rithm with the goal to improve convergence for problems with hyperbolic behavior,

as well as improve stability for the time-stepping on coarser levels.
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Chapter 1

Introduction

1.1 Overview

Considering recent changes in computer architectures, processor clock speeds have

become stagnant, while performance improvements have come from the addition of

ever more cores. Thus, future performance gains will be primarily coming from

greater use of parallelism. In this thesis, we consider this impact for evolution equa-

tions, which are traditionally solved using time marching approaches (i.e., sequen-

tially). As a result, parallelism has traditionally been limited to spatial parallelism.

Thus, to increase parallelism, we consider adding parallelism to the temporal do-

main with parallel-in-time methods. Such parallel-in-time methods have been the

subject of active research in recent years as these methods are fairly new with the

first multigrid space-time method developed in 1984 [1].

We consider the multigrid-reduction-in-time (MGRIT) method, which is a recent

time-parallel algorithm used for a number of problems in science and engineering

[2, 3, 4, 5, 6, 7, 8, 9]. MGRIT improves the convergence and computational speeds

of many problems, but struggles with hyperbolic problems [4] which we discuss in

1



Chapter 1. Introduction

section 2.4. This motivates our research on using machine learning techniques within

MGRIT to mitigate these issues. In particular, we employ physics-informed neural

networks (PINNs) [10, 11, 12, 13, 14, 15, 16] and explore the accuracy and stability of

our new approach. Since hyperbolic PDEs tend to be solved using explicit methods,

we investigate if using PINNs in our MGRIT algorithm will increase the stability

of an explicit method. MGRIT creates coarse time grids with larger time-step sizes

making it likely to violate a CFL (see chapter 4) condition resulting in stability issues.

We do a series of tests to gauge the usefulness and applicability of using PINNs in

our algorithm. In these tests, we compare MGRIT using PINNs on the coarse grid

to what we refer to as naive MGRIT. Naive MGRIT refers to the standard MGRIT

model using finite differencing on both fine grid and coarse grid, but with a larger

step size. Naive does not imply that it is worse, it simply implies that it is the

intuitive choice that may or may not be optimal.

This thesis compares naive MGRIT to MGRIT using PINNs on the coarse grid

by studying the number of iterations and wall-clock time needed for MGRIT solu-

tions to converge. To get a more in depth look at the theory behind MGRIT and

its parallelism, please refer to Parallel Time Integration with Multigrid [2] and the

XBraid Parallel Multigrid in Time user’s manual [17].

2



Chapter 2

The Multigrid-Reduction-in-Time

(MGRIT) Algorithm

For this thesis, we use the multigrid-reduction-in-time method (MGRIT) to achieve

parallelism in time. The key idea is instead of solving an evolution problem, i.e.,

a time-dependent differential equation, using sequential time marching, we instead

solve it iteratively such that the solution for all time values is computed simultane-

ously in parallel. We describe this more in detail below.

MGRIT uses a hierarchy of temporal grids from fine to coarse, the finest being

the one that contains all the time points in the simulation. Each subsequent grid

contains fewer time points. The coarsest grid has a trivial number of time points

which means it can be solved quickly and exactly with sequential time marching. We

then use the solutions from coarser grids to correct the solutions on finer grids.

The idea is that the coarsest grid is cheap to solve sequentially and the more

computationally heavy fine grids will be corrected (solved) in parallel. Thus the

overall performance should (in theory) be faster than solving the fine grid sequentially

when enough processors are available. This is shown to the be the case in both

3



Chapter 2. The Multigrid-Reduction-in-Time (MGRIT) Algorithm

theory and practice [2] using XBraid [17], a parallel-in-time software package that

implements MGRIT.

2.1 A Two-Level MGRIT Method

We start off by describing a two-level MGRIT method for a system of ordinary

differential equations

u′(t) = f(t,u(t)), u(0) = u0, t ∈ [0, T ], (2.1)

where u, f ∈ Rn. The algorithm has two levels, a coarse level and a fine level. The

discretization for the fine level is carried out using uniform time steps ti = iδt for

i = 0, 1, ..., Nt with a step size of δt = T/Nt. Let ui be an approximate solution to

u(ti). A general sequential one-step method time discretization for (2.1) is given as

u0 = u(0)

ui = Φi(ui−1) + gi, i = 1, 2, ..., Nt.
(2.2)

In the linear setting, Φi(·) corresponds to a matrix-vector product (e.g. Φiui−1),

but for this thesis we will also be focusing on the nonlinear case. This is due to

PINNs yielding nonlinear Φi operators. Thus we will introduce MGRIT from the

linear perspective for simplicity, while noting key differences needed when moving to

nonlinear multigrid cycling, also called full approximation scheme (FAS) multigrid

[18]. An example of Φ is given for backward Euler when discussing the coarse grid.

Applying the one-step method in (2.2) for all time-steps i corresponds to a forward

solve on the block (non-)linear system

A(u) ≡


I

−Φ1 I
. . . . . .

−ΦNt I




u0

u1

...

uNt

 =


g0

g1

...

gNt

 ≡ g (2.3)

4



Chapter 2. The Multigrid-Reduction-in-Time (MGRIT) Algorithm

where g0 = u(0). Without loss of generality, we assume Φ is constant (time-

independent discretization) for describing MGRIT, i.e., we get the system,

A(u) ≡


I

−Φ I
. . . . . .

−Φ I




u0

u1

...

uNt

 =


g0

g1

...

gNt

 ≡ g. (2.4)

Solving this using forward substitution is optimal and has complexity O(Nt), but

it is sequential. For our MGRIT approach, we introduce parallelism by solving this

system iteratively using a multigrid method rather than solving it directly. Since

MGRIT is based on the multigrid method, we initially look at the two-grid or two-

level method. A key idea in multigrid methods is using relaxation (block Jacobi) on

fine meshes together with correction terms from coarse meshes to solve the problem.

Every multigrid method uses an approach to transfer values between meshes. The

multilevel algorithm follows from recursive application of the two-level algorithm.

The algorithm is based the two disjoint sets of F-points and C-points, which we

now define. We define a time step size for our coarser grid as ∆T = mδt. Then the

C-points will be defined as

Ti = i∆T for i = 0, ..., N∆ where N∆ = Nt/m,

and m is the coarsening factor. The F -points are then defined as

{ti}\{Tj} for i = 0, 1, ..., Nt and j = 0, 1, ..., N∆.

A schematic is shown in figure 2.1. Thus the union of the F- and C-points form the

fine grid. Going from the fine grid to the coarse grid is done by coarsening in time

with a factor of m. Now that we have an understanding of our F and C-points, we

consider a way to coarsen equation (2.2) so that it only involves C-points, i.e., we

shrink the problem size. We can get rid of the F-points and isolate the C-points in

5
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t0 t1 t2 t3
...

tm

T0 T1

tNt

TN∆∆T = mδt

δt

Figure 2.1: The fine and coarse grid with coarsening factor m. The C points are
highlighted in red and are present on both the fine and coarse grid whereas the F
are highlighted in black and are only present on the fine grid.

our one-step method by using block elimination in the time-stepping problem. For

the linear case, this involves a recursive application of (2.2) as shown below.

ukm = Φukm−1 + gkm

= Φ(Φukm−2 + gkm−1) + gkm

= Φ2ukm−2 + Φgkm−1 + gkm

= Φ3ukm−3 + Φ2gkm−2 + Φgkm−1 + gkm

...

ukm = Φmukm−m + g̃km, k = 1, 2, ..., N∆ (2.5)

where

g̃km = Φm−1gkm−m+1 + . . .+ Φgkm−1 + gkm. (2.6)

This is the so-called “ideal” coarse-grid problem at the C-points given as

u0 = g0

ukm = Φmukm−m + g̃km, k = 1, 2, ..., N∆,
(2.7)

which is called ideal, because its solution is identical to that of the original problem

in equation (2.2).

6
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We can also represent this ideal coarse-grid problem in matrix form as

A∗
∆u∆ =


I

−Φm I
. . . . . .

−Φm I




u∆,0

u∆,1

...

u∆,N∆

 = RΦg ≡ g∆ (2.8)

where u∆,j = ujm on the first coarse level and RΦ is the rectangular restriction

operator

RΦ =


I

Φm−1 . . . Φ I
. . .

Φm−1 . . . Φ I

 . (2.9)

Comparing to the fine-level matrix problem of (2.4), we can see that equation (2.8)

corresponds to the solution u of (2.4) at the C-points i = jm, j = 0, 1, ..., N∆.

Thus, the algorithm we are developing has one fine level and (possibly) several

coarse levels, if the coarsening procedure above is repeated. For the notation, the

subscript ∆ indicates we are on the first coarse level. The corresponding non-linear

problem A∗
∆(u∆) = g∆ is derived from block elimination of (2.2), but instead of

multiplying Φ to the forcing terms, we instead evaluate the forcing terms internally,

evaluating Φ m-times, denoted Φ(m).

ukm = Φ(ukm−1) + gkm

= Φ(Φukm−2 + gkm−1) + gkm

...

= Φ(. . . (Φ(ukm−m) + gkm−m+1) + gkm−m+2) + . . .) + gkm−1) + gkm

=: Φ(m)(ukm−1).

One thing to keep in mind is that evaluating Φ(·) m-times is expensive. Also,

7
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solving (2.7) is just as expensive as (2.2), i.e., we do not have a practical coarse-

grid equation, yet. In order to make the method practical, we approximate Φ(m)

with a cheaper function. The naive choice would be to choose Φ∆, which denotes

a rediscretization using a time step size of ∆T . For example, we apply backward

Euler’s method (see Appendix B) to a linear ODE u̇ = Au+b, where A is a matrix

and u and b are vectors, with step size δt. The resulting fine scale solution is

ui = (I − δtA)−1(ui−1 + δtbi), i = 0, ..., Nt.

For this discretization, Φ = (I − δtA)−1. Then, to define a cheaper coarse scale

operator, we rediscritize with ∆T , Φ∆ = (I − mδtA)−1. For the inversion of Φ,

various linear and nonlinear methods are common e.g. Newton’s method, sparse LU,

spatial multigrid, etc. Our new space-time coarse-grid operator can be expressed as

A∆ =


I

−Φ∆ I
. . . . . .

−Φ∆ I

 . (2.10)

A∆ ≈ A∗
∆ since Φ∆ ≈ Φ(m), and is ideally much cheaper to compute than evaluating

Φ m-times. Later in chapter 3, we use a trained neural network for the coarse-grid

equations.

Before we introduce the two-level algorithm, we must first introduce relaxation to

compliment coarse grid correction which is typical for multigrid methods. For now,

we look at two relaxation schemes, F-relaxation and C-relaxation. F-relaxation is

given by

ukm+1 = Φ(ukm) + gkm+1, k = 0, 1, ..., N∆ − 1

ukm+2 = Φ(ukm+1) + gkm+2, k = 0, 1, ..., N∆ − 1

...

ukm+m−1 = Φ(ukm+m−2) + gkm+m−1, k = 0, 1, ..., N∆ − 1.

(2.11)

8
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Φ

Figure 2.2: The top schematic illustrates F-relaxation with a coarsening factor of 5
and the bottom illustrates C-relaxation. F-relaxation updates the fine points with
initial condition given on the previous C-points, and C-relaxation updates the coarse
grid with initial conditions given on the previous F-points.

And C-relaxation is given by

ukm = Φ(ukm−1) + gkm, k = 1, 2, ..., N∆. (2.12)

This is equivalent to apply block Jacobi on the F- and C-points respectively. F-

relaxation is relaxation only on the F-points. Since time-stepping methods require

information from previous points, F-relaxation only requires information from the

C-points to begin. In this method, the C-points are not altered at all. F-relaxation

updates the F-points on the sub-intervals (Ti, Ti+1). In C-relaxation, analogous to

F-relaxation, the C-points are being updated. The first time point, C0, is given

as an initial condition, whereas the rest of the C-points need to be updated by

time-stepping the left-adjacent time point. F- and C-relaxation can be computed in

parallel for each k. This means that if we were to magically have the exact solution

at all C-points, MGRIT would solve the problem in a single iteration!

In practice, one often uses so-called FCF-relaxation scheme [2], which we also

use in our numerical experiments. FCF-relaxation is simply an F-relaxation followed

by a C-relaxation, and then another F-relaxation. Though FCF-relaxation is more

expensive, it typically offers faster convergence as the C-points are being corrected

even before the residual correction [3].

The last algorithmic component to discuss is transferring values between grids

using restriction and prolongation (interpolation) operators. Following [19], we define

9
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Figure 2.3: Restriction on the time grid via injection.

a restriction operator using simple injection R∆v = v∆ following the rule

v∆,j = vmj, j = 0, ..., N∆. (2.13)

In other words, injection is simply taking the values directly from the corresponding

fine-grid points and placing them in the coarse points. Thus we get our restriction

operator R∆,

R∆ =


I 0 . . . 0

I 0 . . . 0
. . .

 .

The spacing between each I is m− 1 block rows. This operator injects the values at

the C-points from the fine grid to the coarse grid. A schematic is shown in figure 2.3.

After an F-relaxation sweep, the residual at all the F-points is 0, thus it makes sense

to use injection for our restriction operator [17]. For this reason, Xbraid always does

an F-relaxation sweep before the application of R∆ which is equivalent to using ideal

restriction, RΦ.

Injection for coarse grid to fine grid is simply the reverse of figure 2.3. Similar to

RΦ, we can define PΦ which injects the coarse grid to the C-points on the fine grid,

10
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followed by an F-relaxation sweep, that is,

PΦ =



I

Φ

Φ2

...

Φm−1

I

Φ

Φ2

...

Φm−1

. . .



. (2.14)

In the MGRIT algorithm, we make use of the fact that ideal restriction, RΦ,

is equivalent to one F-relaxation followed by simple injection (fine to coarse), and

that ideal interpolation is equivalent to simple injection (coarse to fine) followed by

F-relaxation [2, 3]. This simplifies the algorithm as F-relaxation and simple injection

are relatively easy to program kernels.

Two-level MGRIT

The two-level method first applies an F(CF)-relaxation sweep, then applies a coarse

grid correction (described below), finally it fills in the values at the F-points with

another F-relaxation. The two-level algorithm gets an approximate solution to the

coarse system (2.8) using A∆ (2.10), then computes the solution at the fine points

with (2.11) and (2.12) in parallel on each subinterval (tim, tim+m−1), i = 1, ..., N∆.

The coarse grid correction is computed using the residual correction scheme (FAS

multigrid) which we describe next.

11
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For a nonlinear system A(u) = f, we start off with an initial guess v ≈ u. The

residual is given as r = f − A(v). If we replace f with A(u) we get the residual

equation

A(u)− A(v) = r. (2.15)

We can modify this equation using the error e = u− v by setting A(u) = A(v+ e).

This leads us to the modified residual equation

A(v+ e)− A(v) = r. (2.16)

We then allow the A(v) term to “lag”, and be A applied to the previous v value,

and place it on the right-hand-side, yielding,

A(v+ e) = r+ A(v), (2.17)

which can be solved for v+e. Finally, we compute an approximate error, (v+ e)−v

using the lagged v term. MGRIT uses this process (note, we start off with an initial

guess u then update the values. For MGRIT, u∆, the course-grid solution plays the

role of v. The coarse-grid equation solved by MGRIT,

A∆(u∆ + e∆) = r∆ + A∆(u∆), (2.18)

u∆,j = umj, e∆,j = emj, r∆,j = rmj, j = 0, ..., N∆.

After solving the coarse-grid, we compute the coarse-grid approximate error

e∆ ≈ (u∆ + e∆)− u∆

and interpolate this error to the fine-grid using injection at the C-points

umi = umi + e∆,i for i = 0, ..., N∆

followed by a fine-grid F-relaxation to update the F-points. This completes the

two-level coarse-grid correction process.

12
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This gives us a better approximation to our problem. We repeat this process, but

this time using the updated approximation as our initial guess. We do this until we

reach a residual norm less than a given tolerance. With this being said, we present

the FAS algorithm in the next section.

2.2 MGRIT Algorithm

We now describe the multilevel MGRIT algorithm. The multilevel algorithm is a

recursive application of the 2-level algorithm with a hierarchy of time discritization

meshes Ω∆l, l = 0, 1, ..., L = logm(Nt), with l = 0 being the finest level and l = L

being the coarsest level. Note that we stop coarsening if the number of points in

the discretization is less than the coarsening factor m. Each level uses constant

spacing δt, for level 0, mδt for level 1, m2δt for level 2, etc., where m > 0 is the

temporal coarsening factor. We denote the multigrid level as A∆l(u∆l) = g∆l for

levels l = 0, 1, ..., L. A∆l is the time discretization on Ω∆l using the time-propagator

matrix Φ∆l for each level.

Algorithm 1: Multigrid Reduction in Time using a V-cycle

MGRIT(A,u,g,m, l)

if l is the coarsest level, L then

Solve coarse-grid system A(u) = g (sequentially)

return u

else

Relax on A(u) = g using FCF-relaxation.

Restrict fine grid approximation and its residual to the coarse grid

u∆,i ← umi, r∆,i ← gmi − A(u)mi for i = 0, ..., N∆l.

Define the right hand side for coarse grid problem: g∆ = A∆(u∆) + r∆

13
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Solve on next level: u∆ ←MGRIT(A∆,u∆,g∆,m, l + 1).

Compute the coarse grid error approximation: e∆ = v∆ − u∆

Add the error approximation at the C-points:

umi = umi + e∆,i for i = 0, ..., N∆l.

Relax on A(u) = g using F-relaxation.

end if

return u

Remark 1. When using F-relaxation, MGRIT computes the exact (assuming exact

arithmetic) solution on all of the F-points in the interval (T0, T1) in one iteration.

FCF-relaxation computes the exact solution for all the F-points on the intervals

(T0, T1) and (T1, T2) and also computes the exact C-point at T1. Each iteration

follows this trend resulting in an exact solution in Nt/m or Nt/(2m) iterations using

F-relaxation or FCF-relaxation respectively. In practice, we end the algorithm when

it reaches an error tolerance as the exactness principle (given above) is too expensive

to be practical.

2.3 MGRIT using XBraid Software

We carry out our experiments using the XBraid Package. XBraid uses the MGRIT

algorithm in a straight-forward manner. For our relaxation method, we use FCF-

relaxation for our later experiments, but for now, we do a basic example as a demon-

stration. A demonstration goes as follows. Let’s suppose we have a simple initial

value problem,

u′(t) = λu(t) + (1− λ) cos(t)− (1 + λ) sin(t), t ∈ [0, 5],

u(0) = 1.
(2.19)
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This is an example of a stiff ODE [20]. The larger the magnitude of λ, the more stiff

it becomes. This ODE has an analytical solution of

u(t) = sin(t) + cos(t). (2.20)

We solve this ODE using the MGRIT algorithm described above. In this particular

case, we use the 2-level algorithm with a coarsening factor of m = 2. For our

relaxation scheme, we use F -relaxation with backward Euler’s method on both levels.

Let’s set λ = −50 to make the problem stiff.

Figures 2.5 and 2.6 show that it only takes 2 cycles to solve this initial value

problem to a reasonable tolerance. The goal of MGRIT is to converge to the serial

solution within tolerance. We see the orange MGRIT approximation gets closer and

closer to the blue serial solution until they are about the same. It is worth noting

that while it takes very few iterations to solve, each cycle is relatively expensive. For

this reason, running MGRIT in serial is typically slower than a typical numerical

solution compute sequential in time. But if we have access to multiple processors,

then MGRIT will eventually outpace serial solvers by introducing enough parallelism

[2].
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Figure 2.4: Initial state for our MGRIT algorithm.

Figure 2.5: 1st cycle in our MGRIT algorithm. Top plot illustrates the first F-
relaxation. The middle plot illustrates solution being corrected from the coarse-grid
correction. The bottom plot illustrates the second F-relaxation.
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Figure 2.6: 2nd cycle in our MGRIT algorithm. Top plot illustrates the first F-
relaxation. The middle plot illustrates solution being corrected from the coarse-grid
correction. The bottom plot illustrates the second F-relaxation.

2.4 Convergence Theorem

We can also understand MGRIT performance through established convergence the-

ory. Let vi be an approximate solution of (2.2) and ui is given as the exact solution

at time point i. Then the error is defined as ei = ui − vi. The residual then satisfies

r0 = g0 − v0

ri = gi − vi + Φvi−1, i = 1, 2, ..., Nt.

We next review some key results from [3, 2]. The two-level MGRIT error propagators

(iteration matrices) in the linear setting are given by

EF
∆ = I − A−1

∆ A∗
∆, for F-relaxation,

EFCF
∆ = (I − A−1

∆ A∗
∆)(I − A∗

∆), for FCF-relaxation.

EF
∆ is just a residual correction at the C-points whereas EFCF

∆ adds an extra relax-

ation step with (I − A∗
∆). Next, we list Theorem 2.3 from Two-Level Convergence

17



Chapter 2. The Multigrid-Reduction-in-Time (MGRIT) Algorithm

Theory for Parallel Time Integration with Multigrid [3].

THEOREM. Let Φ and Φ∆ be simultaneously diagonalizable by a unitary trans-

formation X, with eigenvalues λω and µω respectively. Furthermore, assume that

both time-stepping operators are stable, i.e. |λω| < 1 and |µω| < 1. Then the global

space-time error vector at the C-points ē = [eT0 , e
T
m, e

T
2m, ..., e

T
NTm] satisfies

∥EF
∆ē∥2 ≤ max

ω

{
|λm

ω − µω|
1− |µω|NT

1− |µω|

}
∥ē∥2, for F-relaxation,

and

∥EFCF
∆ ē∥2 ≤ max

ω

{
|λm

ω − µω|
1− |µω|NT−1

1− |µω|
|λω|m

}
∥ē∥2, for FCF-relaxation.

From this theorem, we can see that when the eigenvalues, µω, of Φ∆ are close to m

applications of Φ, i.e. λm
ω , then the quantity |λm

ω − µω| is small, thus making the

error bound small. Conversely, if |µω| is close to 1, then the quantity 1
1−|µω | is large,

which can (but not necessarily) make the error bound large. In the FCF-relaxation

scheme, we have an extra factor of |λω|m, where λω is the eigenvalue of Φ. Thus

any error for eigenvalues of Φ that are “far away from 1” will be quickly damped by

FCF-relaxation.

Putting this together, we get good MGRIT convergence when the eigenvalues of

the coarse-grid propagator(s) are close to the eigenvalues of the fine-grid propagator.

And secondly, the magnitude of the eigenvalues of coarse and fine time-propagators

should be far away from 1 for a smaller bound. One reason why hyperbolic problems

tend to struggle is that they typically have almost purely imaginary eigenvalues which

tend to have a the magnitude very close to 1 (resulting in a large convergence bound

in the above Theorem). Another factor to consider, is that hyperbolic problems are

generally solved using explicit methods, and explicit time-stepping schemes tend to

become unstable (especially for multilevel coarse grids).

Finally, the motivation for our use of PINNs is to use PINNs to explicitly target a
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stable coarse time-propagator that approximates well the eigenvalues of the fine-grid

propagator, and thus leads to fast MGRIT convergence. By matching the fine scale

eigenvalues λm
ω with our coarse grid eigenvalues µω, we can expect/hope for good

performance. This is particularly true for explicit methods, where typical redistriti-

zations of Φ use larger time-step sizes are not possible due to stability issues. Thus

in such cases, the coarse grid Φ∆ must come from a more “creative” discretizations,

i.e. PINNs.

19



Chapter 3

Neural Networks and

Physics-Informed Neural Networks

3.1 Deep Neural Networks

Before we discuss Physics-Informed Neural Networks(PINNs), we must briefly in-

troduce deep neural networks (DNNs). Neural networks are a subset of machine

learning techniques which are a subset of artificial intelligence. Artificial intelligence

or A.I. is a semblance of intelligence in machines induced in an artificial way (e.g.

programmed). A simple A.I. can be a program running various “if else” statements

all being explicitly defined. On the other hand, machine learning is a more implicit

artificial intelligence, that is, we do not explicitly program the intelligence. Neural

networks are machine learning techniques which aim to learn implicitly by mimick-

ing the biology of the brain with neurons and synapses passing information to each

other by “exciting” one another with an electric pulse. In a neural network, we

have neurons which “fire” or get “excited” through the use of an activation function.

It should be noted, however, that most activation functions do not mimic human
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biology, but conceptually are inspired it.

Every feed-forward neural networks has a basic structure which consists of an

input layer, hidden layer(s), and an output layer. In each layer, every neuron from one

layer is connected to every neuron in the subsequent layer.1 Each individual neuron

contains a scalar value, and every connection to other neurons will have a weight and

bias given to it. The value of the neurons in the next layer will be determined by the

sum of the products of each neuron and their respective weights. We do this from

the first (input) layer and move to the final (output) layer. This process is known

as forward propagation and by itself would only be a linear transformation which

is not enough to approximate any function i.e. a universal function approximator

[21]. For this reason, we introduce an activation function to add non-linearity in the

network. We apply the activation function after each linear transformation in every

layer which we discuss in the next section. Finally, for the sake of terminology, a

deep neural network is simply a neural network with multiple hidden layers. DNNs

generally involve some use of forward propagation, an activation function, a loss

function, backward propagation, and an optimization process to achieve the desired

result. Each of these will be briefly covered in the subsequent sections. A visual of

a simple DNN shown in the figure 3.1.

3.1.1 Activation Function

Activation functions help determine the output of a neural network by introducing

non-linearity to the network as mentioned above. A common activation function is

the sigmoid function which mimics the firing or non-firing of neurons. An additional

benefit of the sigmoid is that it is differentiable, which we will need for the back-

1It should be mentioned that some networks are designed in a way where the neurons
from one layer only connect to specific neurons in the next layer, but this delves outside
the scope of this thesis.

21



Chapter 3. Neural Networks and Physics-Informed Neural Networks

Figure 3.1: A simple illustration of a DNN with two hidden layers. The input layer
has 2 neurons. The first hidden layer has 5 neurons. The second hidden layer has 4
neurons. The output layer has 1 neuron.

propagation training algorithm described in the next section. The sigmoid function

is defined as

[σ(x)]i =
1

1+e−xi

which is evaluated element wise if x ∈ Rn. The sigmoid function has a range of (0,1)

which, by construction, should simulate the state of being on, off, or somewhere

in between (a weak electric signal). Since we often work with big data in machine

learning, our inputs will generally be vectors, but for illustration purposes, the figures

will adjusted using only scalar values. If σ : Rn → Rn, then we can scale and shift the

sigmoid function using the weights (which are stored as a matrix), W ∈ Rn×n, and

biases (which are stored as vectors), b ∈ Rn. We then scale and shift the activation

function σ(x) by applying a linear transformation to our input σ(Wx+b). A simple

illustration is shown in figure 3.2.

In general, if we have L layers, then our neural network is a composition of linear

and nonlinear functions

uθ(x) := W [L]σ[L](W [L−1]σ[L−1](. . . σ[1](W [0]x+ b[0])) + b[L−1]) + b[L].
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Figure 3.2: A 1D depiction of sigmoid function. The top figure is unscaled and
unbiased. The bottom is weighted by W = 2 and biased by b = −5. I.e. σ(2(x−5)).
The weights affect the steepness of the plot, while the bias shifts the plot.

Given a set of inputs, our network will give us an output. In other words, a neural

network is just a mathematical function. Adjusting the weights and biases will scale

and shift the output. The process of adjusting the weights and biases to achieve a

desired output from any input data is known as training the neural network. Training

is accomplished by minimizing what is known as the loss function, which measues

how much the network’s output differs from the expected output. In this sense,

training a neural network can be thought of as an optimization problem.

3.1.2 Loss Function

In supervised learning, we have labeled training data to “teach” our network, where

each training item contains input data and associated labeled correct output. Here,

we use an objective function called the loss function to guide the network towards

correct predictions on the training data. In optimization theory, an objective function
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is simply the function we are trying to minimize. The loss function is the error

between the prediction our network makes and the given labeled correct output.

There are many ways to define a loss function, but a common one to use is the mean

squared error. The mean squared error is defined as,

MSE =
1

N

N∑
i=1

(yi − uθ,i)
2,

where yi are the labeled values and uθ,i are the predicted values from the network,

andN is the number of data points we are using. The predicted values, uθ,i come from

our network and must take into account all of the weights and biases (parameters)

in the network (denoted with subscript θ). For this reason, the loss function is also

known as the cost function. For our neural network, we define our input to be

a[1] = x ∈ RN1 for some size N1. The superscript [1] indicates that we are on the 1st

layer. We define propagations through subsequent layers as

a[l] = σ(W [l]a[l−1] + b[l]), l = 1, 2, ..., L.

Given data points {x{i}}Ni=1, we can define the cost function of our network to be

Cost(W [L], ...,W [1],b[L], ...,b[1]) =
1

N

N∑
i=1

1

2

∥∥y(x{i})− a[L](x{i})
∥∥2

2
. (3.1)

The cost is measured by averaging the squared Euclidean norm over the data points.

We use the Euclidean norm as our data is given in terms of vectors. The y(x{i})

represents our expected labeled values at the given data point. The 1
2
term is solely

for convenience when taking the derivative of the cost function as we will go over

shortly. Since rescaling the cost function doesn’t effect the minimization process, the

1
2
term is okay to add [22].

Finally, we need to adjust our parameters so that our loss function gets minimized

(ideally the error goes to 0). We discuss this process in the next section.
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3.1.3 Backpropagation and Optimization Methods

The backpropagation algorithm and optimization methods are often confused with

one another, but they are two separate methods that simultaneously work together

to minimize the loss function.

Before we describe the algorithms, let’s first go back to basic calculus. How do

we minimize a smooth multi-variable function? For simplicity, if we assume that all

the parameters (weights and biases for all layers) are represented as a single vector

θ, and we want to add a small permutation ∆θ to it, what direction should we move

in in order to reduce our function? Assuming our cost function Cost : Rs → R is

differentiable, then a Taylor expansion is given as

Cost(θ +∆θ) = Cost(θ) +∇Cost(θ)T∆θ +O(∆θ2) (3.2)

where the gradient of the cost function is given by

∇Cost(θ) =
s∑

r=1

∂Cost(θ)

∂θr
.

The loss function decreases fastest in the direction of −∇Cost(θ) which we show next.

Suppose we have two vectors f,g, then |fTg| ≤ ∥f∥2 ∥g∥2 via Cauchy-Schwarz inequal-

ity. Thus, the most negative fTg can be is −∥f∥2 ∥g∥2 which occurs when f = −g

[22]. With this being said, we choose ∆θ to be in the direction of −∇Cost(θ). Thus

if we want to update our parameters in the correct direction, we use the following

result,

θ ← θ − η∇Cost(θ) (3.3)

where η > 0 is the size of the step we take which is called the learning rate. Equation

(3.3) is known as the gradient descent method which is an optimization method. It

is common to use gradient methods to iteratively train a neural network.
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Figure 3.3: A simple neural network labeling the weights. The brackets indicate
what layer of the network we are on. The indices indicate which weight came from
which neuron. So w

[2]
21 indicates the first weight of the 2nd neuron in the 2nd layer.

The final output gives us our predicted value uθ which is used to calculate the loss.

The gradient gives us the direction in which we should adjust our parameters, and

we update our parameters via an optimization method. But this raises the question,

how do we compute the gradients of the cost function with respect to each weight

and bias? This is where the backpropagation algorithm comes into play.

Backpropagation is an algorithm that efficiently computes the gradients of the

cost function with respect to the weights and biases. Backpropagation, together

with an optimization method, will adjust the weights and biases so to minimize the

cost function. Let’s discuss how backpropagation works. We start out at the output

layer and work “backwards” toward the input layer, hence it’s name. If we want

to compute the gradient of the cost function with respect to a weight in the hidden

layer, since each gradient is dependant upon the weights that come behind them, we

can compute these derivatives using the chain rule. Suppose we have a simple neural

network given in figure 3.3.

Now suppose we wanted to update the weight w
[2]
11 . Using the theory above, we
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Figure 3.4: Each output is labeled Oij where the i represents the ith neuron, and j
represents the jth layer.

update via the optimizer

w
[2]
11,new = w

[2]
11,old − η

∂Cost

∂w
[2]
11

Now we need to compute ∂Cost

∂w
[2]
11

. Let’s label the outputs of each neuron after applying

the activation function. This can be seen in figure 3.4.

Since the weight w
[2]
11 only affects the final output O13, then we compute the

gradient as

∂Cost

∂w
[2]
11

=
∂Cost

∂O13

∂O13

∂w
[2]
11

If we were to compute ∂Cost

∂w
[1]
11

, we have to look at what the weights affect. The weight

w
[1]
11 affects the outputs O12 and O13 respectively. So we compute the gradient as

∂Cost

∂w
[1]
11

=
∂Cost

∂O13

∂O13

∂O12

∂O12

w
[1]
11

We compute the gradients in this manner as it is much more efficient than manually

trying to calculate each gradient over and over again. This is because we already

have all of the information for each output Oij from our forward pass.

From (3.1), let us define the cost with respect to a single training data item i

Cx{i} =
1

2

∥∥y(x{i})− a[L](x{i})
∥∥2

2
. (3.4)
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We can use this to rewrite the gradient of our cost function as

∇Cost(θ) = 1

N

N∑
i=1

∇Cx{i}(θ) (3.5)

Thus, to compute the complete gradient of the cost function, we must compute

the gradient at every point in our data set. It is important to note, computing the

complete gradient is expensive, especially for larger data sets. Thus we often use

the stochastic gradient descent (SGD) method for optimizing neural networks with

larger data sets. The SGD method is simple to compute. The idea is that instead of

computing the mean (i.e., the complete gradient), we instead take a single training

data item at random hoping it approximates the mean. A single step in the algorithm

does the following:

1. Pick a uniformly, random integer i from {1, 2, ..., N}.

2. Update

θ ← θ − η∇Cx{i}(θ).

As long as our learning rate is not too large, our algorithm should move in the

direction of a local minima (hopefully, but not guaranteed to, converge to). Adding

to this, the more iterations we take, the method sees more training points which

gives a better picture of the full data set.

There are a couple of ways to run this method, but two important ways are

sampling with replacement and sampling without replacement. If we run with re-

placement, that means that the index i will be put back into the training set, and is

just as likely to be chosen again as any other training point. Without replacement

means once we’ve chosen our index i, it can no longer be chosen again, until all

points in the training set have been used by SGD. Running this method N times
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wihtout replacement results in every training point being visited and is hence called

an epoch.

Instead of using a single data point to approximate the gradient, it is common

to extend SGD by using a small average over a few data items.

1. Choose m integers k1, k2, ..., km, randomly, uniformly from {1, 2, ..., N}.

2. Update

θ ← θ − η
1

m

m∑
i=1

∇Cx{ki}(θ).

This is the SGD method using minibatches of size m, which tends to give more

accurate results than using basic SGD. The set {x{ki}}mi=1 is the minibatch. There are

other techniques such as momentum and acceleration which help improve training

networks, but we will not go into detail about them. Information on the Adam

optimization method, which also uses types of momentum, can be found here [23].

3.2 Physics-Informed Neural Networks

Physics-informed neural networks (PINNs) have become a popular method to solve

partial differential equations recently. Typical learning-based methods approximate

a solution by a purely data-driven approach, whereas PINNs takes the underlying

physics of the PDE into account. The physics refer to the differential equation

including initial and boundary data, as well as any other parameter data (advection

velocity for example). For the PINNs method, we follow the works [14, 15].

We want to find the solution u : [0, T ]×D → R to the nonlinear partial differential
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equation of the general form
ut +N (t,x,u,ux,uxx, ...) = 0, (t,x) ∈ (0, T ]×D,

u(0,x) = u0(x), x ∈ D,

u(t,x) = ub(t,x), (t,x) ∈ (0, T ]× ∂D,

(3.6)

Where N is a nonlinear function of time t, space x, solution u, and its derivatives.

D ⊂ Rd is our bounded spatial domain. ∂D is defined to be our boundary of D.

T is the final time. u0 : D → Rd is our prescribed initial condition function and

ub : (0, T ] × ∂D → Rd is our Dirichlet boundary condition. We then set up the

residual network we aim to minimize. PINNs gets an approximate solution uθ(t,x)

of (3.6) where uθ(t,x) : [0, T ]×D → R is a function realized by our PINNs network

with parameters θ. We define the residual of our PINNs network as

rθ(t,x) := uθt +N (t,x,uθ,uθx ,uθxx , ...). (3.7)

where uθt = ∂uθ

∂t
,uθx = ∂uθ

∂x
,uθxx = ∂2uθ

∂x2 . (3.7) is used in our loss function to

be minimized by evaluating it at a set of collocation points for network training.

N evaluates the right hand side of the PDE. For PINNs, we focus on three main

groups of points: The residual (interior) points, the initial condition points, and

the boundary condition points. Let Nr be defined as the number of residual points,

N0 be defined as the number of initial points, and Nb be defined as the number of

boundary points. Then we define our data sets as,

• Xr := {(tri , xr
i )}Nr

i=1 ⊂ (0, T ]×D,

• X0 := {(t0i , x0
i )}

N0
i=1 ⊂ {0} × D,

• Xb := {(tbi , xb
i)}

Nb
i=1 ⊂ (0, T ]× ∂D.

The PINNs approach to get the solution to the PDE is to minimize the loss function

Φθ(X) defined below as

Φθ(X) := Φr
θ(X

r) + Φ0
θ(X

0) + Φb
θ(X

b), (3.8)
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where X = Xr ∪X0 ∪Xb represents the whole training data set, and Φθ represents

the loss function with respect to the parameters θ. The other terms within (3.8) are

defined as

• mean squared residual

Φr
θ(X

r) := 1
Nr

ΣNr
i=1|rθ(tri , xr

i )|2,

where rθ is the residual PINNs network,

• mean squared misfit with respect to initial conditions

Φ0
θ(X

0) := 1
N0

ΣN0
i=1|uθ(t

0
i , x

0
i )− u0(x

0
i )|2,

• mean squared misfit with respect to boundary conditions

Φb
θ(X

b) := 1
Nb
ΣNb

i=1|uθ(t
b
i , x

b
i)− ub(t

b
i , x

b
i)|2,

where uθ is the neural network approximation of the solution u : [0, T ]×D →

Rd.

3.3 The PyTorch Library

We employ Python3 and the machine learning package PyTorch for the implementa-

tion of PINNs. PyTorch is an open-sourced Python library designed for deep learning

[24]. It has many powerful tools such as automatic differentiation which computes

and records all of the gradients of the weights and biases automatically. It is im-

portant to note that automatic differentiation is neither a numerical differentiation

scheme nor a symbolic differentiation scheme. It is is a mixture of the two. In

machine learning, we cannot use numerical differentiation as the round-off and trun-

cation errors make it highly inaccurate when computing gradients with respect to
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millions of parameters [25]. Computing derivatives by hand and hard coding them

into the neural network is inefficient and prone to error. Symbolic differentiation uses

expression manipulation in computer algebra systems such as Maple, Mathematica,

and Maxima. Such symbolic differentiation scheme solves the above issues, but is

limited in what expressions can be defined, e.g., the work [25] states “Expressions

must be closed-forms models which limits algorithmic control flow and expressivity”.

Furthermore, using symbolic differentiation often results in complex and cryptic ex-

pressions dominated by the “expression swell” problem [25]. As mentioned earlier,

automatic differentiation can be viewed as partly numerical and partly symbolic.

This is because it provides numerical values of derivatives instead of derivative ex-

pressions, and it does this by using symbolic rules of differentiation (it keeps track

of the derivative value instead of the expression) [25]. Backpropagation is one such

example of an automatic differentiation method.

PyTorch also has a variety of built-in optimization methods such as stochastic

gradient descent, LBFGS, and Adam to name a few. In our experiments, we use

Adam [23] as our optimizer of choice, as it is a powerful and commonly used option.

A defining feature of PyTorch is its ability to access the computing power of a

system’s GPU which dramatically speeds up training (as GPUs are designed for

large matrix multiplication), though this is not a focus for our experiments.
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Numerical Experiments

In this section, we perform various tests to confirm our theory as well as determine

the benefit of using PINNs to form the coarse-grid time-stepping scheme in MGRIT.

We begin defining a steady-state problem with a known analytical solution. Then

we move to a more involved problem but with a similar nature. We perform stability

tests with the CFL (Courant-Friedrichs-Lewy [26]) conditions using the forward Euler

method. The goal is to see later on if MGRIT using PINNs on the coarse-grid offers

more stability than standard MGRIT. We then look at how we train our PINNs

network and how well this network approximates our solution. Finally we do a series

of MGRIT tests with various parameters and compare how naive MGRIT does versus

MGRIT using PINNs on the coarse grid.

4.1 The Problem: Advection Diffusion Equation

We begin by motivating the problem. As mentioned before, MGRIT typically strug-

gles with hyperbolic problems. One of the most common examples of a hyperbolic

problem is the advection-diffusion equation. For our initial example, we construct a
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steady-state advection-diffusion equation for which we have an analytical solution.

We then construct a more involved advection-diffusion equation, but this time, one

that is dependent on time. The new problem will have a similar nature to the original

equation so that we have a better understanding of its long-term behavior.

4.1.1 Steady-State Advection Diffusion Equation with Forc-

ing Term

Before we set up the time-dependent problem, we first consider the steady-state

advection diffusion equation for which we have an analytical solution. The boundary

value problem is given asaux = ϵuxx + F(x), x ∈ [0, 1],

u(0) = α,u(1) = β, α, β ∈ Rn

(4.1)

where u = u(x, t),ux = ∂u(x,t)
∂x

, and uxx = ∂2u(x,t)
∂x2 .

The solution, u, measures the temperature (at different points in space) of a fluid

moving through a pipe. The fluid moves at a constant velocity a, called the advection

velocity and disperses at a constant ϵ > 0, the diffusion constant. F(x) ∈ Rn is a

forcing term or a source term heating or cooling the walls of the pipe.

For our example, we choose an advection velocity of a = −1, a diffusion constant

ϵ = 0.01, a forcing term of F(x)i = −1 and boundary conditions αi = 1, βi = 3

i = 0, ..., n. An exact solution is given on page 44 of [27] as,

u(x) = α + x+ (β − α− 1)

(
ex/ϵ − 1

e1/ϵ − 1

)
. (4.2)

A visualization of the solution (4.2) is given in figure 4.1. Now that we understand
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Figure 4.1: The analytical solution for the steady-state advection diffusion equation
with a forcing term F (x) = −1. Boundary conditions are u = 1 at x = 0 and u = 3
at x = 1.

how the steady-state solution behaves, we can add a time derivative to make the

problem more difficult, while still understanding the long-term behavior.
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4.1.2 Time-Dependent Advection Diffusion Equation with

Forcing Term

The time-dependent advection diffusion equation with forcing term is given as


ut + aux = ϵuxx + F(x), t ∈ [0, 5],x ∈ [0, 1],

u(0, t) = 1,u(1, t) = 3 t ∈ [0, 5],

u(x, 0) = 1, x ∈ [0, 1].

(4.3)

For all of the experiments, we set the advection term a = −1. Since we do not have

an analytical solution, we use a numerical scheme with small step sizes in both space

and time to get an approximate exact solution. We use a simple upwinding scheme

(given in pages 210-211 in [27]) for our first-order spatial discretization, centered

finite differencing for our second-order spatial discretization and either backward

Euler’ method (see appendix A) or forward Euler’s method (see appendix B) for our

temporal discretization. Our problem sizes will be defined in terms of Nt and Nx,

the number of intervals in our time and space discretization, respectively. The value

δt = 5/Nt is the time step size and δx = 1/Nx is the space step size.

We begin with backward Euler’s method to avoid stability issues since it is an

A-stable method [20]. We first create a reference solution which we refer to as

a “smooth” approximation since we do not have an analytical solution. We use

Nt = 5000 and Nx = 1000 for our problem size. Since our spatial domain is [0, 1] and

our temporal domain is [0, 5], this gives us a time and space step size of δt = δx =

0.001. Figure 4.2a shows the “smooth” approximation to the solution, and figure

4.2b shows the stable reference forward Euler discretization. In later tests, we will

examine PINNs as a more stable option for MGRIT than forward Euler.
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(a) (b)

Figure 4.2: Figure (a) Backward Euler “smooth” approximate solution with time
step size and space step sizes δt = δx = 0.001. Figure (b) Forward Euler solution
when both advection and diffusion CFL conditions are met.

4.2 Initial Stability Tests for CFL Conditions

The CFL terms for stability are derived in Appendix B and are given as∣∣∣a δt
δx

∣∣∣ ≤ 1, ϵ
δt

δx2
≤ 1

2
, (4.4)

from page 186 and 211 of [27] and page 133 of [20]. We demonstrate the effects of

violating these conditions in the tests below. In the first test, we look at when both

conditions are satisfied.

For the first test, we set Nt = 1024 and Nx = 80. This gives an advection term

|a δt
δx
| = 0.391 < 1 and diffusion term ϵ δt

δx2 = 0.313 < 1
2
. Figure 4.2b shows that the

forward Euler solution is computed with no stability issues. Next, we look at when

the advection CFL condition is met and the diffusion CFL condition has failed.

Setting Nt = 1024 and Nx = 102 gives us an advection term |a δt
δx
| = 0.498 < 1

and a diffusion term ϵ δt
δx2 = 0.508 > 1

2
. Figure 4.3 shows that the solution becomes
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(a) (b)

Figure 4.3: Figure (a) Forward Euler solution at final time when the advection
condition is met, but the diffusion condition failed. Figure (b) Space-time plot of
the same unstable forward Euler solution.

unstable. Figure 4.3a shows us the instability at the final time. figure 4.3b shows the

solution is unstable over the full space-time-domain. We compare the solution using

backward Euler with the same parameters. This is seen in figure 4.4a, and shows no

stability issues.

Since the solution is unstable when one of the CFL condition fails, it should be

obvious that when both CFL conditions fail, the solution is also unstable. Setting

Nt = 1024 and Nx = 256 gives us an advection term |a δt
δx
| = 1.25 > 1 and a diffusion

term ϵ δt
δx2 = 3.200 > 1

2
. We see in figure 4.4b, that forward Euler, indicated by a red

dotted line, does not show up in the plot at all. It was too unstable to get proper

values to work with resulting in “NaN” or “Not a Number” values. For this reason,

we do not give a plot of the full space-time domain.

For all of our tests in this thesis, we are working with an advection velocity of

a = −1, so we do not need to be concerned with the case where the advection CFL
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(a) (b)

Figure 4.4: Figure (a) Space-time plot of backward Euler solution using the same
parameters as figure 4.3. Advection condition is met and the diffusion condition
failed. Figure (b) Forward Euler solution at final time when both conditions failed.
Forward Euler solution is unstable and does not show up on the figure.

condition fails and the diffusion CFL condition is met. As long as the advection

velocity is a = −1 and 0 < ϵ ≤ 1 then the advection CFL condition will always be

satisfied as long as the diffusion CFL condition is met.

4.3 Training PINNs Network

We discuss the set up of our network, its parameters, and the software/hardware we

run the experiments on. Experiments were ran using the Pytorch library (see section

3.3) using an Intel Core i7 Extreme 990X cpu with 6 cores and 12 threads.
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4.3.1 Specifying Hyperparameters for Our Model

Recall back in chapter 3, we discussed hyperparameters such as learning rate, number

of hidden layers, number of nodes per layer, number of epochs, and optimizers. In

this section, we look at the specifications of each hyperparameter.

The decision to choose which hyperparameters to use came through trial and

error. We tweaked these hyperparameters to result in the largest decrease in our loss

function. Our model was trained using 4 hidden layers and 100 nodes per layer. We

trained for N = 8450 epochs. We chose Adam [23] for our optimizer with an initial

learning rate of η = 0.01 and restarted it with smaller learning rates after epochs

the 1000th (η = 0.001) and 3000th (η = 0.0005) epochs. Since Adam is a stochastic

method, we set our PyTorch seed to -42 for reproducibility. For our collocation points

in our data set, we chose N0 = 100, Nb = 200, and Nr = 5000 which are randomly,

uniformly distributed on the space-time domain as illustrated in figure (4.5).

After training our model and evaluating it on a space-time domain of Nt = 1024

and Nx = 32, we get the solution in figure 4.6a.

We can get an idea of the accuracy by looking at the error between our PINNs

evaluation and our backward Euler approximation on the same problem size. The

error is shown in figure 4.6b. We can see that the PINNs evaluation itself is only

accurate to about 1 to 2 digits of accuracy near the boundary. The bulk of the error

comes from near the boundary for x = 1. As a stand-alone method, this is not very

accurate but may still prove to be useful when using our trained network as the

coarse-grid time-stepping scheme in the MGRIT algorithm.
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Figure 4.5: Collocation points visualized in our PINNs data set. The colored points
correspond to the initial and boundary conditions.

4.3.2 PINNs on Coarse Grid

Before we implement PINNs in MGRIT, it is important to note that the PINNs

method will typically get 4 to 5 digits of accuracy from the initial residual as typically

witnessed in [10, 11, 12, 13]. And as our error demonstrated, we only got 1 to 2 digits

of accuracy near the boundary in our model. Knowing this, it would not make sense

to use it on the fine grid as the accuracy required for the fine grid is typically high.

Thus we will only use PINNs on the coarser grids. For this thesis, we focus evaluating

a trained model on the coarse grid of the 2-level MGRIT algorithm, but we also do

a series of tests for the multilevel case. For the multilevel case, we look at what
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(a) (b)

Figure 4.6: Figure (a) PINNs solution of advection diffusion equation trained using
8400 epochs, 50 initial collocation points, 200 boundary collocation points, and 5000
residual collocation points evaluated on a Nt = 1024 and Nx = 32 problem size.
Figure (b) Shows the error between a backward Euler approximation and the PINNs
evaluation on the same problem size.

happens when we only use PINNs on the coarsest grid versus using PINNs on all

coarse levels.

4.4 MGRIT Experiments Using Fixed Diffusion

Coefficient ϵ

4.4.1 Initial Convergence Tests

Before we begin our tests with naive MGRIT vs MGRIT with PINNs, we first verify

that our MGRIT algorithm is converging to the sequential solution within tolerance.

For our tests, we choose a residual tolerance of 10−10 on a problem size of Nt = 1024

and Nx = 32. This problem size was chosen for two reasons. First, we wanted
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(a) (b)

Figure 4.7: Figure (a) Error between naive MGRIT and our sequential solution using
backward Euler. Figure (b) Error between MGRIT using PINNs and our sequential
solution using backward Euler.

to meet the CFL stability conditions for when we later look at the forward Euler

experiments. Second, most of the error comes from the temporal domain, so we need

a smaller time step size to get an accurate solution, rather than a smaller space step

size.

First, we compare MGRIT using backward Euler on two levels to our sequential

solution. This is shown in figure 4.7a. Next, we look at the error between MGRIT

using PINNs on the coarse grid, and using backward Euler on the fine grid. This is

shown in figure 4.7b. Both errors appear to be the same within tolerance. With this

being confirmed, we can now move onto the actual tests.

4.4.2 Naive MGRIT vs MGRIT with PINNs

In this section, we look at some tests for naive MGRIT vs MGRIT using PINNs on

the coarse grid. We focus on 2-level MGRIT, but we also cover multi-level MGRIT
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(a) (b)

Figure 4.8: Figure (a) 2-level MGRIT using backward Euler’s method on both levels.
Figure (b) 2-level MGRIT using backward Euler’s method on the fine grid and PINNs
on the coarse grid.

with a variety of ways implementing PINNs on different levels.

First, we compare naive MGRIT using backward Euler on both levels to MGRIT

using PINNs on the coarse grid and using backward Euler on the fine grid. The

numerical solutions for each is shown in figures 4.8a and 4.8b respectively. Both

figures look nearly identical, but to be sure they are the same within tolerance, we

look at the 2-norm of the error between the two solutions. The 2-norm between the

two is 7.25× 10−10. A visualization of the error is given in figure 4.9.

While it is clear that the two solutions are the same within tolerance (10−10),

there are also clear signs that most of the error is coming from the corner from

x = 0.6 to x = 1.0 and t = 3 to t = 5. This is something we will be looking out for

later to see if it causes problems for our solver.

Another thing to note is the number of MGRIT cycles it took to converge. Naive

MGRIT took 8 cycles to converge whereas MGRIT with PINNs took 169 cycles. One

thing to note is that for the above tests, naive MGRIT’s residuals were decreasing
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Figure 4.9: Error between naive MGRIT and MGRIT using PINNs on the coarse
grid. The 2-norm of the error is 7.25× 10−10.

at around 10−1 per cycle (or gaining a digit of accuracy per cycle) whereas with

PINNs, the residual decreased very slowly. This tells us that while stable, our PINNs

evaluation is not very accurate. The underlying issue for this inaccuracy is currently

unknown. However, one thing we can do is look at the error between the sequential

solution and MGRIT using PINNs after forcibly being cut off after some number of

cycles. The idea is that by ending the algorithm prematurely, we can see where most

of the error is coming from. We run MGRIT using PINNs on the coarse grid, and

end the algorithm after 25 iterations. The solution is shown in figure 4.10a.
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(a) (b)

Figure 4.10: Figure (a) MGRIT using PINNs on coarse grid and forward Euler’s
method on fine grid for two levels. The problem size is Nt = 1024, Nx = 32. In this
example, MGRIT was forcibly cut off prematurely after 25 iterations to get an idea
of where the error was most prevalent. Figure (b) Error for MGRIT using PINNs on
the coarse level after prematurely ending the algorithm in 25 cycles.

The error illustrated in figure 4.10b gives us an idea of where the bulk of the error

is coming from. Unlike figure 4.9, the bulk of the error appears to be around t = δt

and x = 0.4 to x = 1. Both the solution and the error appear relatively accurate

when it comes to the long-term behavior of the solution, but the algorithm struggles

near the initial conditions. The root cause of this accumulation of error is unclear.

It may be the case that whatever is causing the error to accumulate near the initial

conditions is what is causing the slow MGRIT convergence in our algorithm using

PINNs.

Next, we run tests for several different problem sizes with forward Euler’s method

and then later backward Euler’s method. We begin with a problem size of Nt =

500, Nx = 40, and ϵ = 0.01. For these tests, we look at using varying number of

levels (2, 3 and 4). We compare naive MGRIT (which we refer to as “No PINNs”

on the table), PINNs on the coarsest level (referred to as “Only Coarsest Level” on
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the table) to PINNs used on every level aside from the fine level (referred to as “Full

Coarse Grid” on the table). The results are listed in Table 4.1.

Wall Time Cycles Number Levels Using PINNs?

43.442 118 2 No PINNs
64.017 73 2 Full Coarse Grid
91.485 115 3 No PINNs
92.826 115 3 Only Coarsest Level
126.119 73 3 Full Coarse Grid
71.580 117 4 No PINNs
84.100 116 4 Only Coarsest Level
151.342 73 4 Full Coarse Grid

Table 4.1: Naive MGRIT vs MGRIT using PINNs for a problem size Nt = 500, Nx =
40, ϵ = 0.01 with a coarsening factor of 2. For the fine grid and every other level not
using PINNs, we use forward Euler.

For this problem size, MGRIT using PINNs actually performs quite well versus

naive MGRIT. In terms of cycles, we get a decrease of 45 cycles on the 2-level

algorithm. For the multi-level algorithm, we mostly benefit when using PINNs on

the full coarse grid, rather than just the coarsest level. For the wall-clock time, we

see that naive MGRIT still outperforms MGRIT with PINNs. This is due to the fact

that naive MGRIT is computationally cheaper in terms of FLOPS. It should also be

mentioned that the implementation of PINNs has not been optimized for the fastest

possible evaluation on each level. For this reason, we see that using PINNs on the

full coarse grid is computationally the most expensive (in terms of wall-clock times)

in every case. The more levels there are, the more computationally expensive using

PINNs on the full coarse grid gets.

For this particular problem size, the exactness property should get the exact

solution in 1024
4

= 256 iterations. Thus for the problems that took 115−118 iterations

to converge, they heavily relied on this property. This tells us that our coarse-grid

method was only partially aiding in the convergence of these solutions.
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Overall for the forward Euler case, it appears that adding PINNs to more levels

decreases the number of cycles it takes to converge, but also increases the wall-clock

time. Aside from the 2-level algorithm (in which PINNs performs quite well), using

PINNs only on the coarsest level appears comparable to naive MGRIT in which both

methods performed poorly. Now let’s redo these tests, but this time replacing the

forward Euler method with the backward Euler method.

Wall Time Cycles Number Levels Using PINNs?

5.702 10 2 No PINNs
91.089 82 2 Full Coarse Grid
10.897 13 3 No PINNs
33.883 30 3 Only Coarsest Level
158.604 82 3 Full Coarse Grid
13.465 14 4 No PINNs
19.992 17 4 Only Coarsest Level
192.307 82 4 Full Coarse Grid

Table 4.2: Naive MGRIT vs MGRIT using PINNs for a problem size Nt = 500, Nx =
40, ϵ = 0.01 with a coarsening factor of 2. For the fine grid and every other level not
using PINNs, we use backward Euler.

Table 4.2 shows us almost completely different results from table 4.1. For every

case when using backward Euler’s method, naive MGRIT takes less cycles to converge

than when using PINNs on any part of the coarse grid. In the case of forward Euler,

using PINNs on the full coarse grid caused a decrease in the number of cycles needed

to converge. But in the case of backward Euler, using PINNs on the full coarse

grid caused an increase in the number of cycles needed to converge (the opposite).

Out of all of the cases, the only instance where PINNs performed similarly to “No

PINNs” was the 4-level case for “No PINNs” versus “Only Coarsest Level.” It is also

worth noting that it is much more computationally expensive using PINNs on the

coarse grid for the backward Euler case. Overall, it appears when using backward

Euler’s method, it is better to stick with naive MGRIT than to using PINNs on the
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(a) (b)

Figure 4.11: Figure (a) Fixed Nx = 32. Number of iterations for different methods.
ML means maximum number of levels used. BE means using backward Euler’s
method on all levels. PINNs means using PINNs on the coarsest grid only. Figure (b)
Fixed Nx = 128. Number of iterations for different methods. ML means maximum
number of levels used. BE means using backward Euler’s method on all levels. PINNs
means using PINNs on the coarsest grid only.

coarse/coarsest grid.

Since the above examined only one problem size, we should next look at how

MGRIT using PINNs performs on many different problem sizes. For each test, we

will have a fixed Nx and varying Nt. We look at Nx = 32, 128, 256 and 512. Nt

values will tested at 16, 32, 128, 256, 512, and 1024. For these tests, we will be using

PINNs only on the coarsest grid to save computational time. The coarsening factor

will be m = 2.

Figure 4.11a shows how MGRIT using PINNs performs when using the 2-level,

3-level, and 4-level algorithms and backward Euler. Quite surprisingly, the 2-level

algorithm using PINNs performs quite well, directly comparable to 2-level, naive

MGRIT (“BE ML2”). This is not the case for the 3-level and 4-level cases. Out of

all the cases, the 3-level algorithm using PINNs on the coarsest grid performs the
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(a) (b)

Figure 4.12: Figure (a) Fixed Nx = 256. Number of iterations for different methods.
ML means maximum number of levels used. BE means using backward Euler’s
method on all levels. PINNs means using PINNs on the coarsest grid only. Figure (b)
Fixed Nx = 512. Number of iterations for different methods. ML means maximum
number of levels used. BE means using backward Euler’s method on all levels. PINNs
means using PINNs on the coarsest grid only.

worst. The number of iterations continues to grow relatively large, as Nt grows. The

4-level algorithm performs decently up to Nt = 256, but it continues to grow after

that (non-optimal). This trend continues for Nx = 128, Nx = 256, and Nx = 512 as

shown in figures 4.11b, 4.12a and 4.12b.

Overall, it appears that the 2-level algorithm using PINNs is the only consistently

comparable method to naive MGRIT. It performs nearly identical to the 2-level,

naive MGRIT algorithm. For smaller problem sizes, 4-level MGRIT using PINNs

performs well, but the method is not optimal. This is because after Nt = 256, as

Nt increases, the number of iterations increase. In every case, 3-level MGRIT using

PINNs performed the worst. The method is not optimal because of the steadily

increasing iteration counts for even smaller problem sizes. Note, these results are in

agreement with our earlier observations from 4.2. But before we discuss the cases

using forward Euler, let’s first look at the computational time it takes to complete
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(a) (b)

Figure 4.13: Figure (a) Fixed Nx = 32. Wall clock times for different methods. ML
means maximum number of levels used. BE means using backward Euler’s method
on all levels. PINNs means using PINNs on the coarsest grid only. Figure (b) Fixed
Nx = 128. Wall clock times for different methods. ML means maximum number of
levels used. BE means using backward Euler’s method on all levels. PINNs means
using PINNs on the coarsest grid only.

each MGRIT solve. Figures 4.13 and 4.14, show the time (in minutes) for MGRIT

to converge for different problem sizes. For all of the tests conducted, it appears that

using PINNs with a maximum number of levels set to 3 took the longest to complete.

Note these tests are only looking at MGRIT using PINNs on the coarsest level rather

than the full coarse grid (to save computation time). However, these results may be

misleading. Since MGRIT using PINNs can be be solved fully in parallel whereas

naive MGRIT must be solved sequentially on the coarsest level.

When looking at the results from Tables 4.1 and 4.2, we observe that MGRIT

appears to benefit more from PINNs when using forward Euler than backward Euler.

With backward Euler, it took more iterations to converge and adding PINNs to more

levels didn’t improve convergence (as it did in the forward Euler case). Thus in the

next section, we look at how MGRIT using PINNs on the coarse grid performs when

using forward Euler.
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(a) (b)

Figure 4.14: Figure (a) Fixed Nx = 256. Wall clock times for different methods. ML
means maximum number of levels used. BE means using backward Euler’s method
on all levels. PINNs means using PINNs on the coarsest grid only. Figure (b) Fixed
Nx = 512. Wall clock times for different methods. ML means maximum number of
levels used. BE means using backward Euler’s method on all levels. PINNs means
using PINNs on the coarsest grid only.

4.4.3 Stability Tests

For the forward Euler tests on varying problem sizes we have to consider the CFL

conditions in (4.4). We list two tables of the conditions for advection and diffusion,

where the CFC conditions fail and when they are met.

Figure 4.15 shows us that both of the CFL conditions are met for problem sizes

N = 32 with Nt = 256, 512, and 1024. For this reason, we focus our comparisons

between naive MGRIT and MGRIT using PINNs on these particular problem sizes.

Before we list our results, let’s look at the CFL terms on the coarse grid with m = 2.
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Figure 4.15: Two tables of the CFL terms for advection |a δt
δx
| and diffusion ϵ δt

δx2 .
Each entry looks at these terms evaluated at different problem sizes for N and Nt

and compares them to the CFL conditions (4.4). The green indicates the conditions
are met and the red indicates the conditions are not met.

We see that for Nt = 128, the fine grid is partially unstable. The advection CFL

condition is not met, but the diffusion condition is met. For Nt = 256, 512, and

1024, both conditions are met on the fine grid. For the coarse-grid in figure 4.16,

we see the Nt = 128 becomes completely unstable and Nt = 256 becomes partially

unstable. This is important to note for our tests shown next.

Figure 4.16: Two tables of the CFL terms for advection |a δT
δx
| and diffusion ϵ δT

δx2 on
the coarse grid. Each entry looks at these terms evaluated at different problem sizes
for N and Nt and compares them to the CFL conditions 4.4. The green indicates
the conditions are met and the red indicates the conditions are not met.
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2-Level Naive MGRIT using Forward Euler on Both Levels

aaaaaaaaaaaa
N

Nt

16 32 128 256 512 1024

32 div div div 67 13 10

Table 4.3: MGRIT tests for forward Euler running on both levels for various problem
sizes. The number indicates how many iterations it took to converge whereas ”div”
indicates that the test diverged.

2-Level MGRIT using PINNs on coarse grid and Forward Euler on Fine Grid

aaaaaaaaaaaa
N

Nt

16 32 128 256 512 1024

32 div div div 48 80 161

Table 4.4: MGRIT tests using PINNs on coarse grid and forward Euler on fine grid
for various problem sizes. The number indicates how many iterations it took to
converge whereas ”div” indicates that the test diverged.

Tables 4.3 and 4.4 then list the MGRIT convergence results for naive MGRIT

and MGRIT with PINNs, respectively. Notice that while figure 4.15 shows that for

N = 32, Nt = 256, the CFL conditions are met on the fine grid, but table 4.16 shows

that the CFL condition for advection is not met on the coarse grid. This is also

precisely the problem size that MGRIT using PINNs outperformed naive MGRIT.

This tells us that MGRIT using PINNs is slightly more stable than naive MGRIT.

But we see when the CFL conditions are met on both the fine and coarse grid, naive

MGRIT outperforms MGRIT using PINNs (much better). Let’s look at one more

test to confirm this hypothesis. We look at the coarse grid with a coarsening factor

of m = 4 making the coarse grid twice as unstable. Similar to above, figure 4.17,

lists the values for advection |a δT
δx
| and diffusion ϵ δT

δx2 to indicate whether or not the

CFL conditions are met.
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Figure 4.17: Two tables of the CFL terms for advection |a δT
δx
| and diffusion ϵ δT

δx2

on the coarse grid with coarsening factor m = 4. Each entry looks at these terms
evaluated at different problem sizes for N and Nt and compares them to the CFL
conditions 4.4. The green indicates the conditions are met and the red indicates the
conditions are not met.

2-Level Naive MGRIT using Forward Euler on Both Levels m = 4

aaaaaaaaaaaa
N

Nt

256 512 1024

32 34 52 40

Table 4.5: MGRIT tests for forward Euler running on both levels for various problem
sizes with coarsening factor m = 4. The number indicates how many iterations it
took to converge whereas ”div” indicates that the test diverged.

2-Level MGRIT using PINNs on coarse grid and Forward Euler on Fine Grid m = 4

aaaaaaaaaaaa
N

Nt

256 512 1024

32 25 40 81

Table 4.6: MGRIT tests using PINNs on coarse grid with coarsening factor m = 4
and forward Euler on fine grid for various problem sizes. The number indicates how
many iterations it took to converge whereas ”div” indicates that the test diverged.

When you compare how naive MGRIT does versus MGRIT using PINNs on the

coarse grid, it is clear that when the CFL condition is met on the fine grid, but
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fails on the coarse grid, MGRIT using PINNs actually performs better than naive

MGRIT! For the problem size, N = 32, Nt = 256, figure 4.17 shows that both the

advection and diffusion CFL condition fails on the coarse grid (but is met on the

fine grid). Likewise, tables 4.5 and 4.6 show that MGRIT using PINNs takes 9 less

iterations to converge than naive MGRIT. For the problem size N = 32, Nt = 512,

figure 4.17 shows that while the diffusion CFL condition is met, the advection CFL

condition is not met. For this problem size, we again see that MGRIT using PINNs

does better. It takes 12 less iterations to converge to the solution than naive MGRIT.

However, once the CFL conditions are met, naive MGRIT outperforms MGRIT

using PINNs on the coarse grid. Figure 4.17 shows that both CFL conditions are

met, and tables 4.5 and 4.6 show that naive MGRIT takes about half the number of

iterations to converge. Thus we can say that when the CFL conditions are met, it is

better to use naive MGRIT. However, when the coarse grid becomes unstable, it is

actually preferable to use MGRIT using PINNs on the coarse grid.

4.5 Discussion of MGRIT Convergence when us-

ing PINNs

Since we have shown benefit to using PINNs on the coarse grid in the cases with an

unstable coarse grid, future research should look at these tests with a more accurate

PINNs model since our model obtains only 1-2 digits on accuracy near the boundary.

Currently, naive MGRIT performs a lot better when the CFL conditions are met on

all levels, but would this still be the case for when using a highly accurate PINNs

model?

In all of the tests conducted, regardless of problem size, XBraid’s residual began

on the order of 100 or 10−1 when using MGRIT with PINNs on the coarse grid. On
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the other hand, the residual would vary greatly depending on the stability of the

method when using naive MGRIT. For example, when forward Euler was used and a

CFL condition(s) fails, then the residual would grow without bound and eventually

diverge. When the advection and diffusion terms approached the CFL conditions,

the residual would grow, then eventually decrease resulting in a large number of

iterations needed to converge.

If we could replicate the accuracy of naive MGRIT (getting a digit of accuracy

per MGRIT cycle) with the stability of MGRIT using PINNs on the coarse grid, we

should be able to see convergence in 9 to 10 XBraid cycles, regardless of problem size

(resulting in an optimal method). Future work should prioritize this line of thinking

and target increased accuracy of the PINNs model used on coarse MGRIT levels. If

better PINNs accuracy could be achieved, the residual should in turn decrease much

faster than has been observed during these experiments. The work [16] discusses some

shortcomings of PINNs and also techniques on how to improve accuracy. Another

possible approach would be to use techniques in [28]. These papers could provide

guidance for improving the PINNs model for coarse MGRIT levels.

4.6 Conclusions

This thesis looked at comparisons between using naive (standard) MGRIT and

MGRIT using PINNs on the coarse grid for a problem with hyperbolic behavior

(the advection-diffusion equation with small diffusion coefficient). The goal was

to see whether or not adding PINNs would improve convergence and stability of

MGRIT for hyperbolic problems. For the backward Euler (implicit method) case,

naive MGRIT outperforms MGRIT using PINNs on the coarse grid. This is shown

in terms of the number of iterations it takes to converge to a solution. For backward

Euler, this number was much lower. Another note for backward Euler is that adding
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PINNs to more coarse-grid levels did not appear to improve convergence whereas it

did for the forward Euler case. However, the two-level method appeared to be com-

parable for naive MGRIT and MGRIT using PINNs. For the forward Euler (explicit

method) case, we look at when the CFL conditions for advection and diffusion were

met and when they were not met. We looked at different problem sizes with that

introduce different stabilities and instabilities within the method. We found that

when the CFL conditions were not met on any of the levels (fine grid or coarse grid),

MGRIT using PINNs outperformed naive MGRIT. Furthermore, adding PINNs to

each level (Full coarse grid) in the coarse grid caused an increase in convergence.

But when the CFL conditions were met on every level, naive MGRIT outperformed

MGRIT using PINNs. The overall take away has been that MGRIT using PINNs is

more stable which is good for explicit methods with varying coarse-grid levels, but

is not as accurate as naive MGRIT. Since implicit methods deal with stability, there

doesn’t seem to be reason to use PINNs with these methods. For explicit methods

involving multiple coarse-grid equations, MGRIT using PINNs is generally preferable

as varying levels increasing instability on each level.
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Future Work

Since it appears that the increased convergence of MGRIT is highly dependent upon

the accuracy for the PINNs model, this should be a focus for future research. One

way to go about this is to implement techniques discussed in [16] when training the

model. It could be beneficial to use higher order discretizations for the numerical

schemes for temporal methods (such as Runge-Kutta 4) and higher order up-winding

methods for spatial discretizations. One way to use these methods, would be to get

the error between a highly accurate method (higher-order method with small space

and time step sizes) and lower-order method to be on the same magnitude as the

error between the fine grid solver and PINNs. Once we get the error to be of the

same magnitude, we could use this lower-order method as our coarse grid for the

naive MGRIT tests. This way, the methods used to solve the coarse grid can be

more comparable in terms of accuracy.

Another area of research could involve optimizing the evaluation of PINNs within

Xbraid. Once optimized (and assuming we achieved better accuracy for PINNs

evaluations), we can begin doing parallel studies using PINNs on the coarse grid.

Since the coarse grid is solved sequentially using naive MGRIT, it is theoretically
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possible to improve solving the coarse grid using PINNs. This is because we are able

to parallelize the evaluation of PINNs on the coarse grid. This means that we could

solve both the fine and coarse grids in parallel when using PINNs. If we can achieve

a more accurate model as well as implement PINNs optimally, we can then work to

obtain parallel speed up (overarching goal).

A separate area we can look at is the case when training a PINNs network on

varying diffusion and advection coefficients rather than fixed coefficients. With this

newly trained model, we could evaluate multiple different PDEs given any coefficients

within the range trained on. This could possibly lead to speed up for solving many

different problems as opposed to training a network for each individual problem.

Several attempts were made to train such a network (ϵ varied from 0.01 to 1), but the

added parameters and hyperparameters resulted in a low accuracy solution leading

the task to be halted for future work. Perhaps future work can look into using

techniques discussed in [28] to achieve more accurate results.

Finally, our PINNs network was trained to get a continuous solution of the PDE.

But since our convergence-error bound is based on the coarse-grid eigenvalues ap-

proximating the eigenvalues of m applications of the fine-grid propagator, we could

instead train a PINNs network to explicitly target these eigenvalues to better approx-

imate the fine-grid propagator’s eigenvalues. This could lead to faster convergence

of our method.
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Appendix A

Backward Euler Discretization


ut − aux = ϵuxx + F,

u(0, t) = d0(t), u(1, t) = d1(t),

u(x, 0) = c(x).

(A.1)

We begin by discretizing uxx using centered finite differencing. Let Fi = F (t, xi).

uxx ≈ ui+1−2ui+ui−1

δx2 with spatial step size δx = 1/m for nodes xj = jδx, j =

0, 1, ...,m.

For the advection diffusion equation, we can discretize the ux term using forward,

backward, or centered finite differencing. Here we will be using the “Upwind method”

or “Upstream differencing method.” Since the solution of the advection diffusion

equation can be thought of as a wave moving to the left or right (depending on

whether a, the advection velocity, is positive or negative). We can take advantage

of this asymmetry by using a one sided approximation method, i.e. the forward or

backward finite difference method.
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Appendix A. Backward Euler Discretization

If a > 0, then the wave is moving to the left. If a < 0, then the wave is mov-

ing to the right. Depending on the direction, we will need information from the left

or right of the points in order to get an accurate result. For example, if a < 0, then

the wave is moving to the right. We will need information to the left of xj (i.e. need

xj−1). Thus we would use backward finite differencing in this case

ux =
uj−uj−1

δx

Then we can approximate the advection diffusion equation as

u′
i(t)− aux = ϵui+1−2ui+ui−1

δx2 + Fi

u′
i(t)− aui−ui−1

δx
= ϵui+1−2ui+ui−1

δx2 + Fi

u′
i(t) =

a
δx
(ui − ui−1) +

ϵ
δx2

(
ui+1 − 2ui + ui−1

)
+ Fi for i = 1, 2, ...,m − 1. Where

u0 = d0(t) and um = d1(t) are the boundary conditions

Let’s look at some cases, i = 1, i = 2, ...,m− 1

u′
1(t) =

a
δx
(u1−u0)+

ϵ
δx2

(
u2−2u1+u0

)
+F1 =

a
δx
(u1−d0(t))+ ϵ

δx2

(
u2−2u1+d0(t)

)
+F1

u′
2(t) =

a
δx
(u2 − u1) +

ϵ
δx2

(
u3 − 2u2 + u1

)
+ F2

...

u′
m−2(t) =

a
δx
(um−2 − um−3) +

ϵ
δx2

(
um−1 − 2um−2 + um−3

)
+ Fm−2

u′
m−1(t) =

a
δx
(um−1− um−2) +

ϵ
δx2

(
um− 2um−1 + um−2

)
+Fm−1 =

a
δx
(um−1− um−2) +

ϵ
δx2

(
d1(t)− 2um−1 + um−2

)
+ Fm−1
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Appendix A. Backward Euler Discretization

Notice: For i = 1, ...,m− 1, we can define

A = a
δx



1

−1 1
. . . . . .

−1 1

−1 1


, B = ϵ

δx2



−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


.

Setting Λ = A+B then let’s us express the above system of equations as

u′(t) = Λu(t) + g(t) where g(t) =
[
( ϵ
δx2 − a

δx
)d0(t) + F1, F2, ..., Fm−2,

ϵ
δx2d1(t) +

Fm−1

]T
u(0) = u0 with u0 = [c(x1), ..., c(xm−1)]

T

u(t) = [u1(t), ..., um−1(t)]
T

Our system is of the form u̇ = Au + g. Now applying backward Euler’s method

with time-step size δt gives us

Vn+1 = Vn + δt[ΛVn+1 + gn+1]

Vn+1 = Vn + δtΛVn+1 + hgn+1

(I − δtΛ)Vn+1 = Vn + hgn+1

Vn+1 = (I − δtΛ)−1(Vn + hgn+1)

When using backward Euler’s method, we must invert the matrix A = (I − δtΛ).
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Appendix A. Backward Euler Discretization

Since the matrix is tridiagonal and the inverse is dense, we would want to use an

iterative method to save time. For example, a tridiagonal LU bidiagonal factorization

could be used which is O(n).
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Appendix B

Forward Euler Discretization


ut − aux = ϵuxx + F,

u(0, t) = d0(t), u(1, t) = d1(t),

u(x, 0) = c(x).

(B.1)

Our discretization process is the same as in (APPENDIX A) up until we get

u′(t) = Λu(t) + g(t) where

A = a
δx



1

−1 1
. . . . . .

−1 1

−1 1


, B = ϵ

δx2



−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


,

Λ = A+B,

g(t) =
[
( ϵ
δx2 − a

δx
)d0(t) + F1, F2, ..., Fm−2,

ϵ
δx2d1(t) + Fm−1

]T
,

u(0) = u0 with u0 = [c(x1), ..., c(xm−1)]
T ,
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Appendix B. Forward Euler Discretization

u(t) = [u1(t), ..., um−1(t)]
T .

Our system is of the form u̇ = Au + g. Now applying forward Euler’s method

with timestep size δt gives us

Vn+1 = Vn + δt[ΛVn + gn]

This system can be solved straight forwardly without the need to invert a system.

We do, however, have to consider the stability of this method as it is an explicit

method. Notice that we have δtΛ. If we expand these terms out a little, we get the

terms used in the CFL conditions for advection and diffusion. The advection term is

a δt
δx

and the diffusion term is ϵ δt
δx2 . The CFL conditions are given in equation (4.4).
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