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Figure 4.6: A cubic zirconia vapor cell after exposure to elevated temperatures in a
vacuum environment.

introduced with little impact on necessary heating power.

4.3 Results and Future Work

To reduce convective heat exchange each heating package was placed under vacuum.

The package mount was designed with a large conductive thermal resistance to the

vacuum chamber. This served to keep the vacuum chamber temperature within man-

ufacture specifications as well as further reduce required power to heat the vapor cell.

At elevated temperatures the major heat leak from the vapor cell occurs through ra-

diative heat transfer. Three vapor cells were constructed and tested: one cubic zirco-

nia cell and two Eu:CaF2 cells. Although cubic zirconia may be resistant to calcium

vapor when placed under vacuum at elevated temperatures cubic zirconia becomes

opaque, thereby confirming [73] (see Figure 4.6) and is not useful for the current

vapor cell configuration. The first Eu:CaF2 was slowly exposed to high temperatures

with an incident 423 nm laser. The final clock architecture relied on a saturate ab-

sorption spectroscopy technique. Initially a 423 nm laser was directed through the
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Figure 4.7: A saturated absorption peak of the cooling transition in a calcium vapor
cell.

vapor cell and retro-reflected, the 1S0 →1 P1 transition is easier to measure at lower

vapor pressures. The final transmission was measured with a photodiode (see Figure

4.7). The 657 nm clock laser was injected and the temperature was slowly increased

in an attempt to secure sufficient densities. Around 650 ◦C transmission decreased

dramatically. The cell was removed and inspected, see Figure 4.8, confirming previ-

ously undiscovered literature [6,23,24,51,53,63,105,110,127] that show color centers

form in Eu:CaF2 under elevated temperatures in the presence of calcium vapor with

absorption peaks around 220 nm, 300 nm, 380 nm and 580 nm. The second Eu:CaF2

vapor cell was carefully kept under 600 ◦C and operated continuously until excess

calcium clouded the windows (too much calcium was initially introduced), however
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Figure 4.8: A Eu:CaF2 vapor cell after exposure to calcium vapor in vacuum at
650 ◦C, observe the purple color of the cell, no longer transparent to either the
423 nm cooling or the 657.3 nm clock transition.

during final inspection it was determined that no noticeable color center formation

had occurred during the roughly 30 days of continuous operation. However, dur-

ing operation unexpected fluorescence was observed. A spectrometer was used to

determine the origin of the extra contributions (see Figure 4.9). The spectrometer

measured the presence of sodium, potassium and rubidium transitions. It appears

that the excited calcium vapor transfered energy to the atomic impurities, which

would subsequently decay causing the observed fluorescence signal. These impurities

are believed to be present in the calcium ingot and would be easily removed for new

vapor cell production. An AOM was introduced to quickly shutter the incident beam

and a PMT was used as a fluorescence detector. At various temperatures the lifetime

of the 3P1 state was measured. The incident laser would be shuttered and the PMT

would record the decay of the fluorescence signal. The measured exponential was fit

and the decay time as a function of vapor temperature was measured (see Figure 4.9

(b)). The collisional energy transfer between calcium and the impurities resulted in

a measured metastable lifetimes four times less than the expected ∼400 µs [55].

Although a calcium clock has some distinct advantages over the O-RAFS system

described in Chapters 2 and 3 more work is needed to develop a clock based on a

calcium vapor cell technology. Any clock reliant on a Eu:CaF2 vapor cell will need
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than a factor of four less than the expected 400µs (b).

to operate strictly below 600 ◦C and be properly cleaned and baked out before use

to avoid collisional broadening. In addition to exploring vapor cell technologies with

Eu:CaF ALON MgF spinel diamond and sapphire show promise for vapor cell mate-

rials [52], these materials should be investigated. Unfortunately, to fully measure the

Doppler free linewidth of the calcium intercombination line a new laser at 657.3 nm

was necessary. Several attempts were made to procure such a laser with no success.

More work detailing the collisional broadening and shifts setting a requirement on

temperature stability would need to be performed before any prediction of clock in-
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stabilities could be made. Moreover, the large radiative thermal transport of the

system could make precision temperature control problematic.
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Chapter 5

Conclusions

This dissertation has a detailed description of the development of optical frequency

standard reliant on a two-photon transition in Rb. This system shows promise for

a compact optical frequency standard that could operate in an environment where

volume, weight and power are scarce. A compact clock with fractional frequencies

of 1 × 10−15 would have similar performance to a Hydrogen maser with reduced

size, power requirements, and at, potentially, a reduced cost. Moreover, O-RAFS

employs a simple vapor cell clock design and insight into the limitations of the O-

RAFS system could yield limitations on vapor cell clocks in general. Of interest is the

practical frequency stability limit of vapor cell clocks, particularly at what point more

complicated atomic confinement systems are required. The two major environmental

influences in O-RAFS arise from ac-Stark effects and Rb-Rb collisional shifts. Ac-

Stark shifts originate from the clock laser used to probe the transition while Rb-Rb

collisional shifts arise from a temperature dependent vapor pressure driving a variable

Rb number density in the vapor cell. ”Rb-Rb” type self-collisional shifts ultimately

set the floor for any operational hot vapor cell clock as measuring temperature to a

higher precision eventually becomes a herculean task. Overcoming the large ac-Stark

shift is necessary to measuring the limit of vapor cell clocks.
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Ac-Stark shift is currently suppressed simply by stabilizing the laser power. Al-

though this technique has been successful, allowing O-RAFS to reach 4.5× 10−15 at

one day, it has limitations. Measuring laser power precisely is difficult. Photo detec-

tor arrays are often non-isotropic, have temperature dependent responsivity curves,

and eventual stabilization requires a stable voltage reference. Although counterin-

tuitive, introduction of another laser to mitigate the shift and could ease the power

stability requirements. Since the ac-Stark shift is a non-linear function in frequency,

many laser frequency/intensity pairs exist whose ac-Stark effect is equal and opposite

to the clock laser’s. Several candidates have been identified that when introduced

would reduce the total ac-Stark shift. Mitigation of the ac-Stark shift could lead to

better clock performance as well as investigation into the practical limit of hot vapor

cell clocks. Knowledge of this limit, coupled with a few other quick measurements,

would in turn put practical performance limits of vapor cell clocks of any atomic

species. This limit would clearly define the region where more complicated systems

(ion clocks, lattice clocks) become necessary.

For performance beyond classical vapor cell clocks Rb-Rb collisions would need

to be suppressed. Currently, the vapor pressure of Rb is non-linear in temperature.

This is only true if liquid Rb is present in the vapor cell. Assume that at 100 ◦C N

Rb atoms are in vapor form. If that vapor cell only had N Rb atoms the non-linear

behavior of pressure as a function of temperature would be altered. This starved cell

could be manufactured to explore the BBR magic temperature as well as suppress

temperature driven instabilities for clock performances beyond the classical vapor

cell limit.

Inclusion of any of: starved vapor cell, the two-color two-photon transition, the

Stark shift mitigation laser and/or improved collection efficiency methods could sig-

nificantly improve O-RAFS stability. With a combination of any of these improve-

ments the two-photon transition in Rb shows promise for a compact clock that can

operate at fractional frequencies of 1 × 10−15 at one day. However, operation at
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stabilities lower than 1× 10−15 could prove challenging. Current stability ambitions

require operation of the vapor cell temperature with very tight stability, 0.92 mK.

Typical platinum RTD devices have a slope of 0.38 Ω/◦C around 100 ◦C and work

by providing a stable current and reading a voltage. To condition temperature pre-

cisely to 0.92 mK from a set-point around 100 ◦C the sensor must be read to within

3.5× 10−4 Ω, requiring a current source more stable (otherwise the error in provided

current would influence the measurement). For a system to reach 1×10−16 tempera-

tures stable to 0.092 mK must be achieved, requiring a current stable to better than

1 part 100000. Operation of O-RAFS at 1× 10−16 is not practical with commercial

platinum RTDs. Moreover, the macroscopic nature of the vapor cell allows for fluc-

tuations of an observed temperature sensor driven by heat transfer interactions not

represented on the entire clamshell that most likely approach the 10 µK level.

If longer term clcock instability requirements prove to be too demanding another

operational version of O-RAFS could serve as a local oscillator to a larger microwave

system. The short term limit of O-RAFS is determined by the greater of the shot

noise and the intermodulation limit. Current systems are estimated to have short

term innermodulation limits of 5×10−14 at one second of the RIO laser and 1×10−14

for the NP Photonics laser. Increasing the SNR of O-RAFS (at the expense of ac-

Stark control) could achieve short term stabilities greatly exceeding current oven

controlled crystal oscillators.

This dissertation also examines a calcium vapor cell technology, detailing a spe-

cific case where a vapor cell could be manufactured. The intercombination line in

calcium provides a narrower transition and thus a more stable clock at one second

in the shot noise limit. It also provides an atom that appears to be more resilient to

dc-Stark and magnetic field effects. However, to the authors knowledge the Ca-Ca

collisional broadening and shift on the 1S0 →3 P1 has never been measured. It seems

unlikely that this shift would be easier to control then the shift in Rb. Maintaining

fractional frequency instabilities at the 10−16 level would likely require the assistance
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of laser cooling. Maintaining a MOT in a vapor cell that must be heated to 480 ◦C

could prove challenging and further investigation would need to be done to determine

the proper bake out procedure necessary. Moreover, the lifetime of the vapor cell

material could prove to be problematic. I have shown that a Eu:CaF2 vapor cell

can be operated at temperatures under 600 ◦C without loss of transmission for over

a month. However, the diffusive color center creation process predicts the eventual

failure of the vapor cell at some unknown time in the future.

Any clock reliant on calcium will most likely have similar disadvantages. Although

the Ca-Ca collisional shift has yet to be measured, if the magnitude is close to the

Rb-Rb collisonal shift, operation at 1× 10−16 might still prove too challenging.

Although a clock based on neutral calcium could surpass O-RAFS stability on

short time scales, eventually thermal control challenges will define the flicker floor

of any vapor cell clock. The manufacture of a clock whose instabilities drastically

impprove upon the measured instabilities of the O-RAFS system would most likley

require an ensemble of trapped atoms. A interesting choice of such a system could be

a 88Sr+ trapped ion clock. Compared to other trapped clock design, it only requires

three lasers and a optical frequency comb. In addition, the required lasers are not in

the deep ultra violet a common problem with most traped atoms. In the meantime,

small improvements to the O-RAFS system could improve compact clocks for use in

extra-laboratory environments in the immediate future.
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Appendix A

Rubidium Properties

This section collects the properties of rubidium used throughout the dissertation.

Table A.4 shows values for the reduced electric-dipole matrix elements, 〈J |d|J ′〉,

Table A.1: Frequencies of the hyperfine components of the 5S1/2 → 5D5/2 con-
strained to consider only the F = 3 (85Rb) and F = 2 (87Rb) ground states as
reported by [99].

Hyperfine Component Relative Intensity [99] Measured frequency [99]

85Rb
Fg = 3→ Fe = 5 11/36 ≈ 30.6% 385285142367.0 (8.0) kHz
Fg = 3→ Fe = 4 1/6 ≈ 16.7% 385285147084.9 (8.0) kHz
Fg = 3→ Fe = 3 7/90 ≈ 7.8% 385285151594.8 (8.0) kHz
Fg = 3→ Fe = 2 1/36 ≈ 2.8% 385285155397.6 (8.0) kHz
Fg = 3→ Fe = 1 1/180 ≈ 0.6% 385285158138.0 (13.0) kHz

87Rb
Fg = 2→ Fe = 4 3/8 ≈ 37.5% 385284566366.3 (8.0) kHz
Fg = 2→ Fe = 3 7/40 ≈ 17.5% 385284580777.8 (8.0) kHz
Fg = 2→ Fe = 2 1/16 ≈ 6.25% 385284592255.2 (8.0) kHz
Fg = 2→ Fe = 1 1/80 ≈ 1.25% 385284600225.2 (8.0) kHz
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Table A.2: A partial list of 87Rb properties

Constant Value Reference

gJ(5S1/2) 2.00233113 (20) [8]
gJ(5D5/2) 1.1998 (15) [8]

gI -0.0009951414(10) [8]
Nuclear Spin (I) 3/2

5S1/2 hyperfine structure 6834.6870 (17) MHz [18]
5D5/2 magnetic dipole constant A -7.4923 (3) MHz [18]

5D5/2 Electric quadrupole constant B 1.2713 (20) MHz [18]

Table A.3: A partial list of 85Rb properties

Constant Value Reference

gJ(5S1/2) 2.00233113 (20)
gJ(5D5/2) 1.1998 (15)

gI -0.0002936400(6) [8]
Nuclear Spin (I) 5/2

5S1/2 hyperfine structure 3035.7333 (7) MHz [18]
5D5/2 magnetic dipole constant A -2.1911 (12) MHz [18]

5D5/2 Electric quadrupole constant B 2.6804 (200) MHz [18]

taken from [118], are presented in a.u., the transition energies are taken from [112],

and the Einstein A coefficients are calculated utilizing Equation 2.16, unless refer-

enced to another source where Equation 2.16 was utilized to calculate the reduced-

dipole matrix elements. The chosen sign convention yields negative energies for the

5D5/2 → 5P3/2 and 5D5/2 → 6P3/2 transitions, where the excited, P , state has a

lower energy then the ground, 5D5/2, state
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Appendix B

Magnetic Field Splitting

Calculation

Normally, the atomic energy level shift caused by interaction with a magnetic field is

examined in two extreme conditions. The weak magnetic field regime assumes that

B is a small perturbation to the fine structure states and ignores mixing of the |J,mj〉

states. In the Paschen-Back regime the B field is much larger then the fine structure

energy splitting and the Hamiltonian is diagonal in the strong field basis. However,

if the magnetic field is of arbitrary strength the incomplete Paschen-Back regime

must be examined. This section details a calculation briefly described in the main

text where the Hamiltonian was written in the strong field basis and numerically

diagonalized.
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The Hamiltonian to be diagonalized can be written as,

H = Hhfs + H
(hfs)
B ,

Hhfs = Ahfs
I · J
~2

+Bhfs

3
~2 (I · J)2 + 3

2~(I · J)− J(J + 1)I(I + 1)

2I(2I − 1)J(2J − 1)
,

H
(hfs)
B = µB(gJJz + gIIZ)B,

To calculate 〈H〉 requires careful expansion of I · J and (I · J)2:

I · J =IzJz + IxJx + IyJy

=IzJz +
(I+ + I−)(J+ + J−)

4
+

(I+ − I−)(J+ − J−)

4

=IzJz +
I+J− + I−J+

2
,

and

(I · J)2 =(IzJz)
2 +

1

2
[(IzJz), (I+J− + I−J+)]+ +

(I+J− + I−J+)2

4

=(IzJz)
2 +

1

2
[(IzJz), (I+J− + I−J+)]+ +

(I+J−)2 + (I−J+)2

4

+
(I+I−J−J+) + (I−I+J+J−)

4
,

where the notation [A,B]+ = AB +BA. The raising and lowering operators yield,

J±|J,mJ〉 = ~
√

(J ±mJ + 1)(J ∓mJ)|J,mJ ± 1〉.

We can now calculate the expectation value of the Hamiltonian piece by piece yield-
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ing,

〈J,mJ ; I,mI |H|J,mJ ; I,mI〉 = µB(gJmJ + gImI)B + AhfsmImJ

+
3
2
mJmIBhfs

2I(2I − 1)2J(2J − 1)
+

3m2
Jm

2
IBhfs

2I(2I − 1)2J(2J − 1)

+
3Bhfs

4

(J +mJ + 1)(J −mJ)(I −mI + 1)(I +mI)

2I(2I − 1)2J(2J − 1)

+
3Bhfs

4

(J −mJ + 1)(J +mJ)(I +mI + 1)(I −mI)

2I(2I − 1)2J(2J − 1)

− (I + 1)(J + 1)

4(2I − 1)(2J − 1)
,

〈J,mJ − 1; I,mI + 1|H|J,mJ ; I,mI〉 =

C1

[
Ahfs

2
+

3Bhfs

4

1

2I(2I − 1)2J(2J − 1)
(4mImJ − 2mI + 2mJ − 1)

]
,

where, C1 =
√

(J −mJ + 1)(J +mJ)(I +mI + 1)(I −mI),

〈J,mJ + 1; I,mI − 1|H|J,mJ ; I,mI〉 =

C2

[
Ahfs

2
+

3Bhfs

4

1

2I(2I − 1)2J(2J − 1)
(4mImJ + 2mI − 2mJ − 1)

]
,

where, C2 =
√

(J +mJ + 1)(J −mJ)(I −mI + 1)(I +mI),

〈J,mJ − 2; I,mI + 2|H|J,mJ ; I,mI〉 =

3Bhfs

4

C1

√
(J +mJ + 2)(J +mJ − 1)(I +mI + 2)(I −mI − 1)

2I(2I − 1)2J(2J − 1)
,

and

〈J,mJ − 2; I,mI + 2|H|J,mJ ; I,mI〉 =

3Bhfs

4

C2

√
(J +mJ + 2)(J −mJ − 1)(I −mI + 2)(I +mI − 1)

2I(2I − 1)2J(2J − 1)
,

A python script that generates the above Hamiltonian expectation value and nu-

merically diagonalizes it yielding the hyperfine state dependence as a function of

magnetic field for the 85Rb 5D5/2 excited state manifold was used. The code then

isolates the F=5 hyperfine level and fits the data to a quadratic function in B.
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Appendix C

Ray trace Matrices and extensions

The extended ABCD matrices are presented in [124] to account for optics that are

displaced and at an angle w.r.t the optical axis. However, the calculation in Section

2.6.5 relies on the assumption that the resulting ABCD matrix with the included

extensions can be used with Gaussian beam propagation.

Consider two arbitrary extended ABCD systems and the resultant multiplication,
A1 B1 E1

C1 D1 F1

0 0 1



A2 B2 E2

C2 D2 F2

0 0 1



=


A1A2 +B1C2 A1B2 +B1D2 E1 + A1E2 +B1F2

A2C1 +D1C2 D1D2 + C1B2 F1 +D1F2 + C1E2

0 0 1

 .

The resultant product has the same ABCD matrix values had the extended matrices

not been used. The EF portion of the extended matrix is coordinate transformation

after the first system before the entering the new system. Gaussian beam propagation

is not dependent on the coordinate system used, allowing for the normal formulation

to be leveraged during calculations with the extended matrices.
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