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Abstract 
 
Debiased Sinkhorn divergence (DS divergence) is a distance function of regularized optimal 

transport that measures the dissimilarity between two probability measures of optimal transport. 

This thesis analyzes the advantages of using DS divergence when compared to the more 

computationally expensive Wasserstein distance as well as the classical Euclidean norm. 

Specifically, theory and numerical experiments are used to show that Debiased Sinkhorn 

divergence has geometrically desirable properties such as maintained convexity after data 

normalization. Data normalization is often needed to calculate Sinkhorn divergence as well as 

Wasserstein distance, as these formulas only accept probability distributions as inputs and do not 

directly apply to signed data such as time signals and seismic waves; however, in doing so one 

may lose or distort information about the original signal. The investigations in this paper show 

that for high frequency signal inputs, Wasserstein distance may need a much more dramatic 

normalization compared to Debiased Sinkhorn in order to preserve convexity, leading to a loss of 

information about the original signal, the amplification of noise, and possibly machine overload, 

thus posing the desirability of the Debiased Sinkhorn divergence method. 
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Section 1 
 

 
Introduction 
 
Measuring the dissimilarity between two signals is an important and continually occurring 

problem in many fields of study [8, 1, 2, 3, 4, 5, 6, 7]. Optimal transport (OT) is an efficient way 

of handling this problem, as long as the inputted signals are probability distributions, i.e., their 

components sum to one and are all positive.   

Debiased Sinkhorn divergence is a distance function that uses Sinkhorn divergence to measure 

the dissimilarity between two probability measures. Sinkhorn divergence is obtained by adding 

an entropic regularization term to the Kantorovich formulation of the optimal transport problem 

[1]. A main advantage of Sinkhorn divergence over Wasserstein distance, a commonly used 

metric, lies in its computability by an iterative algorithm known as Sinkhorn’s matrix scaling 

algorithm, where each iteration involves two matrix-vector products. Sinkhorn is significantly 

less complex than Wasserstein distance yet still maintains the same desirable geometric 

properties [1, 2, 3, 8]. 

 

This paper aims to show convincing evidence that Debiased Sinkhorn divergence maintains 

convexity even when very high frequency signals are inputted and after data normalization is 

performed. Sinkhorn divergence and Wasserstein distance both require their inputs to be 

probability measures and to be entirely positive [1, 2, 3, 8], which not all signals are not 

guaranteed to be. To make them into acceptable inputs, data normalization is performed. 

Wasserstein distance is sensitive to this normalization, especially in the case of high frequency 

inputs, and often requires an extreme manipulation of the original signal to force convexity [1, 2, 

3, 4]. Convexity is a very important property as with the absence of local extrema, there is no 

chance of an iterative method converging to the wrong solutions. Debiased Sinkhorn divergence 

does not suffer as much from this sensitivity to data normalization and maintains convexity 

without having drastically having to manipulate the original signal. 
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Section 2 
 
Optimal Transport and Dissimilarity Measures 
 
In this section we will discuss Kantorovich’s optimal transport problem which will lead us to the 

formulation of the Wasserstein distance. Adding an entropic penalty term to the total transport 

cost allows us to approximate the solutions of the original OT problem, which leads to the 

formulation of Sinkhorn divergence and eventually Debiased Sinkhorn divergence.  

 

As mentioned, Sinkhorn divergence and Wasserstein distance are types of dissimilarity measures 

of two probability distributions. Throughout this paper, we will be considering these probability 

distributions to be signals (one could think of them as seismic waves, for example).  

 

2.1 Kantorovich’s Optimal Transport Problem and 
Wasserstein Distance 
 
 
Let 𝒳 be a compact subset of Euclidean space ℝ. Also, let f and g be two n-dimensional 

probability vectors. This means they follow the structure Σ! ≔ {𝐟 ∈ ℝ"
! ∶ 𝐟#𝟏𝒏 = 1}, defined 

on 𝒳. Here, 𝟏𝒏 is the n-dimensional vector of ones. The two probability vectors f and g are 

assumed to be given as two sets of n discrete points {x%, … , x!} ⊂ 	𝒳	 and {y%, … , y!} ⊂ 	𝒳	 in 

ℝ, respectively. 
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Figure 1: The top figure displays f which is consists of two components 𝑥% (blue) and 𝑥& 
(orange) each with a mass of %

&
. The two color schemes in the bottom plots represent different 

ways to distribute the "mass" of 𝑥% and 𝑥& onto g which is comprised of 𝑦% =
'
(
 and 𝑦& =

%
(
. 

 
 
Now, the goal is to figure out how much “work” it would take to map x%, … , x) onto y%, … , y) in 

an optimal fashion. 

 

For this purpose, we will need to introduce a cost matrix defined by a distance function d. 

 

𝐶 = 6𝐶*+7 ∈ ℝ"
!        𝐶*+ = 𝑑9𝑥* , 𝑦+:

,   𝑖, 𝑗 = 1,… , 𝑛		; 		𝑝 ∈ [1,∞)         (1) 

 

Throughout this paper, we set 𝑝 = 2 and we consider the Euclidean norm as the distance 

function 
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𝑑9𝑥* , 𝑦+:
& ≔ 9𝑥* − 𝑦+:

& 

 
We look for transport matrices 𝑃 ∈ ℝ"

!-!  where 𝑃*+ corresponds to the amount of “mass” we 

need to move from 𝐟 at point x* to 𝐠 at point y+. In order for this to be an admissible transport 

plan, the sum of rows of 𝑃*+ must be equal to 𝐟 and the sum of columns must be equal to 𝐠. This 

is because all the mass taken from a point x* must be equal to the mass at point x*, and the mass 

taken to the target point y+ must be equal to the mass at the target point y+. We call f and g the 

marginals of P [1].  With this we can now introduce the optimal transport problem, which is to 

find the optimal matrix 𝑃 that transports 𝐟 onto 𝐠. Let 𝑃 ∈ 𝑈(𝐟, 𝐠), where 

 

𝑈(𝐟, 𝐠) ≔ 	 {𝑃 ∈ ℝ"
!-!, 𝑃𝟏𝒏 = 𝐟, 𝑃. 	𝟏𝒏 = 𝐠}       (2) 

 

Here, 𝟏𝒏 is the n-dimensional  vector of ones. The “work” needed in using 𝑃 as our transport 

plan is given by the Frobenius inner product < 𝑃, 𝐶 >	= 	∑ 𝑃*+ 	𝐶*+*,+ . We could conceptualize it 

as work being equivalent to mass multiplied by distance. Kantorovich’s optimal transport 

problem aims to minimize this cost of transporting 𝐟 onto 𝐠, which reads 

𝑇0(𝐟, 𝐠) ≔ min
1∈3(𝐟,𝐠)	

< 𝑃, 𝐶 >        (3) 

 

The Wasserstein distance of order 𝑝  [1] is denoted 

 

𝑊,(𝐟, 𝐠) = 9𝑇0(𝐟, 𝐠):
!
"                  (4)  
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2.2 Sinkhorn Divergence 
 
One way to compute this solution is to regularize the problem and then try to approximate the 

solution of the regularized problem [1]. To perform this regularization, we use the idea from 

Cuturi [12] and add an entropic penalty term to the original problem and arrive at the following. 

 

   𝑇09(𝐟, 𝐠) ≔ min
1∈3(𝐟,𝐠)	

< 𝑃, 𝐶 > − %
9
𝐻(𝑃)                  (5) 

 

Where 𝜆 > 0 is our regularization parameter, and 𝐻(𝑃) is the discrete entropy of the transport 

matrix. 

 

𝐻(𝑃) ≔	−∑ 𝑃*+9log 𝑃*+ − 1:*,+         (6) 

 

Let 𝑃9 be the optimal solution to the regularized problem. Then the Sinkhorn divergence of order 

𝑝 between 𝐟 and 𝐠 is given as [1], 

 

𝑆,,9(𝐟, 𝐠) ≔	< 𝑃𝝀, 𝐶 >%/,	                    (7)                          

 

 

Sinkhorn’s Algorithm 

 

Since we are interested in a constrained optimization problem, it is natural to use the Lagrangian. 

We first introduce two Lagrange multipliers 𝐟X ∈ ℝ! and 𝐠Y ∈ ℝ! for the marginal constraints 

𝑃.𝟏𝒏 = 𝐟	, 𝑃𝟏𝒏 = 𝐠.  

The Lagrangian of (5) - (6) then reads 

 

𝓛9𝑃, 𝐟X, 𝐠Y: =	< 𝑃, 𝐶 > − %
9
𝐻(𝑃) − 𝐟X#( 𝑃𝟏𝒏 − 𝐟) − 𝐠Y(𝑃#𝟏𝒏 − 𝐠)  

 

Setting 𝜕1#$𝓛 = C*+ +
%
9
log 𝑃*+ − fX* − gY+ = 0, we can solve for 𝑃*+ 
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log 𝑃*+ = 𝜆fX* + 𝜆gY+ − 𝜆C*+ 

 

𝑃*+ = 𝑒9𝐟<#"9𝐠=$>9?#$ 

Thus, one can write 

 

𝑃*+ = 𝑢* 	𝑄*+ 	𝑣+      (8) 

 

Where 

 

  𝑢* ≔ 𝑒9@<#     𝑄*+ ≔ 𝑒>9?#$       𝑣+ ≔ 𝑒9A=$  (9)   

 

    

   

Alternatively, one can write (8) - (9) in matrix factorization form [1], such that 

 

𝑃9 = 𝑈𝑄𝑉          (10) 

 

 

 𝑈 = diag(𝑢%, … , 𝑢!)  𝑄 = [𝑄*+]            𝑉 = diag(𝑣%, … , 𝑣!)           (11) 

 

 

Notice that due to the form of (8) and (9), and subsequently (10) and (11), that   𝑃9 ∈ ℝ"
!-!, i.e. 

𝑃9 is nonnegative. Also, the formulation of 𝑃9 involves the multiplication of two nonnegative 

vectors called scaling vectors, which can be obtained using the marginal constraints,  

 

𝑃𝟏𝒏 = 𝐟, 𝑃.𝟏𝒏 = 𝐠  

 

					𝑈𝑄𝑉𝟏𝒏 = 𝐟,  𝑉𝑄#𝑈𝟏𝒏 = 𝐠                                (12) 
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And notice that  

 

𝑉𝟏𝒏 = 𝒗, 𝑈𝟏𝒏 = 𝒖       (13) 

Therefore, one can write 

 

           𝒖⊙ (𝑄𝒗) = 𝐟,    𝒗⊙ (𝑄𝒖) = 𝐠       (14)  

 

Where ⊙ denotes an entry-wise product, such as the operation “ .* ” in MATLAB. 

Notice that (14) denotes two nonlinear equations involving nonnegative scalars and a nonnegative 

matrix. These equations can be solved using an iterative method known as Sinkhorn’s algorithm 

(17), which begins with the following calculations [10, 11]. 

 

			𝒖(𝑖) = 𝐟⊘ [𝑄𝒗(𝑖 − 1)],       𝒗(𝑖) = 𝐠⊘ [𝑄#𝒖(𝑖)]   𝑖 = 1,… , 𝐾      (15) 

 

Where ⊘ denotes an entry-wise quotient, such as the operation “ ./ ” in MATLAB. 

Now, when implementing this algorithm into a computer program, one will need to set a 

stopping criterion. A reasonable solution would be to measure the difference between our 

original inputs f and g and our most updated solutions 𝒖⊙ (𝑄𝒗) and 𝒗⊙ (𝑄𝒖) respectively, 

using the one-norm, and stop the algorithm once we have reached sufficient accuracy. More 

precisely, given a small tolerance 𝜖B > 0, 

we continue iterations until 

 

  Max{	||	𝒖(𝑖) ⊙ [𝑄𝒗(𝑖 − 1)] − 𝐟||%			, ||𝒗(𝑖) ⊙ 𝑄#𝒖(𝑖) − 𝐠	||%	} 	≤ 𝜖B           (16) 

  

Once the scaling vectors 𝒖 and 𝒗 have been computed to desired accuracy and putting the form 

of (8) - (11) into (5) - (6) and employing (14), we obtain the optimal transport cost in terms of 

two scaling vectors [1]. Once we have done this, we raise that cost to the power of 1/𝑝, and the 

𝑝-Sinkhorn divergence is then 

 

𝑆,,9 = q%
9
(𝐟# log 𝒖 + 𝐠# log 𝒗 − 1)r

%/,
     (17) 
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For the entirety of this paper, we will be considering the case where 𝑝 = 2 in (4) and (17). One 

should note that the term “divergence” here is used in place of “distance” as a true distance 

function must satisfy the coincidence axiom and the triangle inequality. 

 
2.3  Debiased Sinkhorn Divergence and its Properties 
 

Notice that 𝑆9(𝐟, 𝐟) ≠ 0 due to the bias introduced by the entropic penalty term, thus not 

satisfying the coincidence axiom. To ensure that we are dealing with a true distance function, we 

need a way of debiasing the distance. Thus, throughout this paper we will be investigating the 

behavior and advantages of using what is known as Debiased Sinkhorn divergence (DS 

divergence), which for two probability vectors 𝐟 and g, reads 

 

 

            𝐷𝑆(𝐟, 𝐠) ≔ u𝑆9&(𝐟, 𝐠) −
%
&
v𝑆9&(𝐟, 𝐟) + 𝑆9&(𝐠, 𝐠)w                (18) 

 

 

Note that we call this a “divergence” as opposed to a “distance” as one cannot analytically show 

that (18) satisfies the triangle inequality.  

 

Theorem 1. Let 𝒳 be a compact subset of Euclidean space ℝ with a cost function 𝐶(𝑥, 𝑦) 

defined by (1) that induces, for 𝜆 > 0, a positive kernel defined by 𝑘9(𝑥, 𝑦) ≔ 𝑒>9C(-,D). Then, 

DS divergence defines a symmetric, positive definite, smooth distance function that is convex 

with respect to each of its input variables. It is a distance function in the sense that, for any 

probability measures f and g, f = g ⇔ 𝐷𝑆(f, g) = 0. It is positive definite in the sense that 

𝐷𝑆(f, g) ≥ 0, and symmetric in that 𝐷𝑆(f, g) = 𝐷𝑆(g, f). 
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Proof 

 

An extensive proof of the above theorem is found in the proof of Theorem 1 in [9]. 

Note that DS divergence can accept continuous functions as inputs as well as vectors with a 

discrete index, which becomes noteworthy in the statement and proof of Theorem 3. 
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Section 3  
 
Normalization and Convexity 
 
 
3.1 Signed Signals 
The fact that the inputs f and g are required to be positive probability distributions is the main 

problem of applying optimal transport to general signals. For example, oscillatory seismic waves 

where the signals dip into negative regions are not entirely positive nor are they normalized such 

that the components of the waves sum to 1. Thus, we must introduce a method of manipulating 

the data such that we attain acceptable probability distributions for vectors to be inputted into the 

Sinkhorn divergence algorithm [2]. 

3.2 Normalization 
There are three popular methods of achieving signal positivity and forcing signals to be 

probability vectors [2, 3, 5]. We consider an exponential scaling (20), a linear scaling (21), and a 

newer type of exponential scaling that is now popular in practice [2] called softplus scaling (22). 

Given two signals f and g that are not probability distributions, we introduce the following 

normalizations: 

 

 

𝐟E =
F%G@(𝐱)I

∑ F%G@(K#)I#
											                  (19) 

 

 

 

    

Where  
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(i) 𝜎E  is one to one 

(ii) 𝜎E  is a 𝐶L 

 
For a hyperparameter 𝛿 > 0, we introduce exponential scaling, linear scaling, and softplus 

scaling. 

 

𝜎E,M(𝐟	) = eE𝐟	         (20)  

  

𝜎E,N(𝐟) = 𝐟 + 𝛿         (21) 

 

𝜎E,O(𝐟) = log	(𝑒E𝐟 + 1)                  (22) 

 

 

Note that when we write 𝑒E𝐟, log	(𝑒E𝐟 + 1),  𝐟 + 𝛿,  we are referring to component-wise 

exponentiation and component-wise addition, respectively.  

 

One should be aware that when using (20) the normalization is very sensitive to the value of 

delta chosen. If a large delta is selected, the negative components of the signal will become 

suppressed, while the positive components become amplified which can lead to machine 

overflow. If delta is very small, (20) will shrink the data toward a value of one, and (22) will tend 

toward the value log	(2). In the case of either a too small or too large choice delta, information 

about the original signal will be lost.  

 

Since we are interested in analyzing the advantages of Debiased Sinkhorn divergence after its 

inputs have undergone normalization, we introduce the following. Let 

 

          𝐷𝑆E(𝐟, 𝐠) ≔ 𝐷𝑆(𝐟E , 𝐠E)                       (23) 

 

 

Where 𝐷𝑆	is given by (18) and 𝐟P and 𝐠P are given by (19) in Section 2.  
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Theorem 2: The normalized DS divergence (23) is a symmetric, positive definite, and smooth 

distance function with the normalization (19) under assumptions (i) and (ii). 

 

Proof 

 

Our goal is to show that  𝐷𝑆(𝐟E , 𝐠E) being symmetric positive definite smooth distance function 

in terms of 𝐟E 	and	𝐠E, as shown in Theorem 1, implies 𝐷𝑆E(𝐟, 𝐠)  

 

is a symmetric positive definite smooth distance function in terms of f and g.  

 

Recall that if 𝐟 and 𝐠 are not probability vectors, then 𝐷𝑆(𝐟, 𝐠) is not well defined. Thus, we 

introduce 𝐷𝑆E(𝐟, 𝐠) ≔ 𝐷𝑆(𝐟E , 𝐠E) using any of the normalizations described by (20) through 

(22) on 𝐟	and	𝐠. 

 

Part 1. We want to show that the normalized DS divergence is symmetrical, in effect, 

𝐷𝑆E(𝐟, 𝐠) = 𝐷𝑆E(𝐠, 𝐟). 

 

Well, 𝐷𝑆E(𝐟, 𝐠) = 𝐷𝑆(𝐟E , 𝐠E) = 𝐷𝑆(𝐠E , 𝐟E) = 𝐷𝑆E(𝐠, 𝐟) 

 

By symmetry of Sinkhorn divergence [1]. 

 

 

Part 2. We want to show that normalized DS divergence is smooth with respect to f and g. 

Well, 𝐷𝑆E(𝐟, 𝐠) ≔ 𝐷𝑆(𝐟E , 𝐠E) is smooth with respect to 𝐟E and 𝐠E by Theorem 1. But 𝐟E and 𝐠E 

are smooth with respect to f and g, respectively. Thus, 𝐷𝑆E(𝐟, 𝐠) is smooth with respect to f and 

g.  

 

Part 3. We want to show that normalized DS divergence is positive definite, in effect that 

𝐷𝑆E(𝐟, 𝐠) ≥ 0. Well, 𝐷𝑆E(𝐟, 𝐠) ≔ 𝐷𝑆(𝐟E , 𝐠E) ≥ 0 by Theorem 1.       
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Part 4. We want to show that normalized DS divergence satisfied the coincidence axiom, in 

effect,  

 

𝐷𝑆E(𝐟, 𝐠) = 0 ⇔ 𝐟 = 𝐠.  

 

Assume 𝐷𝑆E(𝐟, 𝐠) = 0. By definition, 𝐷𝑆E(𝐟, 𝐠) = 	𝐷𝑆(𝐟E , 𝐠E). Hence, 𝐷𝑆(𝐟E , 𝐠E) = 0. But we 

know that, by Theorem 1, 𝐷𝑆(𝐟E , 𝐠E) = 0  ⇔	𝐟E = 𝐠E 

Then because our chosen normalizations from (20) - (22) are smooth and one-to-one functions, 

we conclude that 𝐟E = 𝐠E implies 𝐟 = 𝐠. 

 

Now assume 𝐟 = 𝐠. Then, due to our smooth one-to-one normalizations from     (20) – (22), 𝐟E =

𝐠E. We know from Theorem 1 that 𝐟E = 𝐠E ⇔ 𝐷𝑆(𝐟E , 𝐠E) = 0   

And by definition, 𝐷𝑆(𝐟E , 𝐠E) = 𝐷𝑆E(𝐟, 𝐠). Thus, 𝐷𝑆E(𝐟, 𝐠) = 0 

    	∎  

            
 
3.3 Convexity 
 
In general normalization does not preserve convexity. We often need to use a parameter 𝛿 > 1 in 

our normalization (18) through (20). The following theorem proves that Debiased Sinkhorn 

divergence indeed maintains convexity after softplus normalization (20) for 𝛿 large enough.  

 

Theorem 3. Let f and g be two continuous and compactly supported functions on 𝒳. Let fE , gE 

be the normalized functions of f and g based on softplus scaling (22). Then, ∃	𝛿∗ > 0 such that 

𝐷𝑆&(fP, gE) is strictly convex with respect to fE and	gE if     𝛿 > 𝛿∗.  
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Proof 

 

We know by Theorem 2 that 𝐷𝑆&(fP, gE) is a smooth (and thus continuous) function with respect 

to 𝛿. As 𝛿 → ∞, 

 

lim
E→L

			fE 

 

   = 

lim
E→L

			
log(exp	(𝛿f) + 1)

< log(exp(𝛿f) + 1) > 

=  

lim
E→L

			
log(exp	(𝛿f") + 1)

< log(exp(𝛿f") + 1) > 

= (L.H.) 

lim
E→L

	

f" exp(𝛿f")
exp(𝛿f") + 1

< f" exp(𝛿f")
exp(𝛿f") + 1 >

 

=  

f"		 lim
E→L

		 exp(𝛿f")
exp(𝛿f") + 1

		 lim
E→L

	< f" exp(𝛿f")
exp(𝛿f") + 1 >

 

=  

f"

< f" > 

: =  

f�" 

 

And by the same procedure,  

 

lim
E→L

			gE =
g"

< g" > ≔ g�" 
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Now, let 𝐼(fP, gP) ≔ 𝐷𝑆&(fP, gP) and let 𝐼A%A%	 be the second partial derivative of 𝐼 with respect 

to gE. Then since 𝐷𝑆&9f�", g�": is strictly convex, lim
E→L

	𝐼A%A%	 =	 𝐼AS'AS' is positive definite. Since 

𝐼A%A%	 is smooth and thus continuous with respect to 𝛿, then  ∃	𝛿∗ > 0 such that that for 𝛿 > 𝛿∗, 

𝐼A%A%	 is positive definite, and 𝐼(fP, gP) is convex with respect to gE. The same result holds with 

respect to fE. 

∎ 

 

Theorem 4. Let f and g(𝜃), where 𝜃 ∈ Θ, be two continuous and compactly supported functions 

on 𝒳 and let g be smooth with respect to 𝜃. Let fE , gE(𝜃) be the normalized functions of f and 

g(θ) based on softplus scaling (22). If 𝐷𝑆&9f�", g�"(𝜃)	: is convex with respect to 𝜃, then ∃	𝛿∗ >

0 such that 𝐼(fP, gP) ≔ 𝐷𝑆&9fP, gP(𝜃): will remain strictly convex with respect to 𝜃 for 𝛿 > 𝛿∗. 

 

Proof 

 

We know from Theorem 3 that lim
E→L

			fE = f�" and lim
E→L

			gE(𝜃) = g�"(𝜃). 

 

Let the Hessian of 𝐼 with respect to 𝜃	be denoted by 𝐻(𝜃, 𝛿).  

 

𝐻(𝜃, 𝛿) = �
𝐼T!,T! ⋯ 𝐼T!,T(
⋮ ⋱ ⋮

𝐼T(,T! ⋯ 𝐼T(,T(
� 

 

Notice that this a matrix valued continuous function in 𝜃 and 𝛿, as 𝐼(fP, gP) is smooth. 

Thus, lim
E→L

𝐻(𝜃, 𝛿) = 𝐻"(𝜃) where 𝐻" is the Hessian of 𝐷𝑆&(f�", g�"(𝜃)) and is hence 

symmetric positive definite with respect to 𝜃 as we assumed that 𝐷𝑆&9f�", g�"(𝜃)	: is convex. 

Then because of continuity of 𝐻(𝜃, 𝛿),  ∃	𝛿∗ > 0 such that for 𝛿 > 𝛿∗, 𝐻(𝜃, 𝛿) is symmetric 

positive definite, and hence 𝐷𝑆&9fE , gE(𝜃): is strictly convex with respect to 𝜃. 

 

∎ 
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Such results can be theoretically shown for softplus scaling (22). However, theory does not allow 

us to ensure that given 𝛿 > 𝛿∗, DS divergence is convex in 𝜃 for our normalizations (20) and 

(21). The following section aims to convince the reader that normalized DS divergence indeed is 

convex in 𝜃 when using (20) and (21) through numerical representation.  
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Section 4 
 
Numerical Experiments 
 
4.1  A Numerical Example with Exponential 
Normalization  
 

Let 𝐟 = f(𝒙) ∈ ℝ!	be a discrete three-pulse signal, where  

f(𝒙) = 𝑒>U
-#>V.(
X Y − 𝑒>U

-#>V.Z
X Y + 𝑒>U

-#>V.[
X Y 

𝑥* =
*>%
!>%

∈ [0,1],					𝑖 = 1,… , 𝑛  

Here, 𝑤 > 0 is a positive constant that affects the frequency of the three pulses. A smaller 𝑤 

creates more high frequency pulses. Now consider g, which will simply be a shifted version of f, 

i.e.  

 

𝐠(𝜃) = [f(𝒙 − 𝜃)] ∈ ℝ! 

 

Where 𝜃 is our shift, and 𝜃 is subtracted from each value of 𝑥*.  

 

Our goal in using Sinkhorn divergence begins with altering this signal in a way so that all parts 

of the function are positive and its components add up to one. Thus, for this experiment we use 

exponential normalization (20) beginning with 𝛿 = 1. 

 

 

Figure 2 top shows the signals 𝐟 and 𝐠(𝜃 = 0.3) for two different frequencies 𝑤 = 0.05 (low 

frequency signals) and 𝑤 = 0.01 (high frequency signals). In figure 2 bottom left and bottom 

right, allowing −0.3 < 𝜃 < 0.3, we can compare three following dissimilarity measures. 
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• L2 norm:  𝐿& ≔ ‖𝐟 − 𝐠(𝜃)‖&& 

• Normalized quadratic Wasserstein distance:  𝑊&9𝐟E , 𝐠E(𝜃): 

• Normalized quadratic Debiased Sinkhorn divergence:  𝐷𝑆&9𝐟E , 𝐠E(𝜃): 

 
 
 

  
           

 
 

Figure 2: The top figure shows two types of low frequency (solid curves) and high frequency 
(dashed curves) signals. Normalized DS divergence, normalized Wasserstein distance, and the L2 
norm are shown in the lower left for low frequency signals and in the lower right for high 
frequency signals.     

As we can see in Figure 2, using the L2 norm (while commonly used and inexpensive to 

compute) produces local extrema, thus losing convexity. This is an issue because when 

attempting to find an absolute minimum using an iterative method, such local extrema may lead 

to an algorithm converging to the wrong solution. We see that in the high frequency and low 

frequency case, the L2 norm fails to maintain convexity for even a small range of 𝜃, though it is 
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slightly less extreme in the low frequency case. The normalized Wasserstein distance remains 

quasi-convex after data normalization in the low frequency case only. As the frequency of the 

input signals increases, the normalized Wasserstein distance begins producing these undesirable 

local extrema. In contrast, the normalized Debiased Sinkhorn method proves to maintain 

convexity (or quasi-convexity) even in the case when the inputs are high frequency signals.  

 

In this paper, we are interested in examining how adjusting the hyperparameter 𝛿 may improve 

the convexity of normalized Wasserstein distance; however, this poses two problems. The first is 

that a value of 𝛿 = 1 may be sufficient for Wasserstein to maintain convexity if the signals are of 

low enough frequency – however, it is unclear how much larger delta must become in order to 

force convexity for higher frequency inputs. One might posit that we simply always set 𝛿 to be a 

large value, forcing convexity for even high frequency inputs, which leads us to the second issue. 

Notice that when using exponential scaling, a large value of delta will drastically shrink the 

negative portions of the original signal, and the positive parts will become rapidly become 

amplified. We examine in the following delta study whether we can force convexity for 

normalized Wasserstein distance without setting 𝛿 too large. 

 

Delta Study: 

 

We are interested in studying how increasing values of 𝛿 may change this convexity issue. 

Below are the results. 
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Figure 3: The above figures compare the normalized Debiased Sinkhorn distance (blue) to the 
normalized Wasserstein distance (red) and the classical Euclidean norm (black) for increasing 
values of delta. We use two methods of normalization – exponential normalization (solid curves) 
and linear normalization (dashed curves).  
 
From the results above, we have failed to introduce a value for 𝛿 that forces convexity when 

using linear scaling on the Wasserstein distance that is not much larger than 1. In the case of 

exponential scaling, we were able to obtain obvious quasi-convexity with 𝛿 = 1.5 for both 

normalized Wasserstein distance and DS divergence. In all cases, normalized Debiased Sinkhorn 

divergence outperformed the other methods, regardless of the choice of scaling.  

 

The example above alone should not be sufficient in convincing the reader of the advantage of 

using Debiased Sinkhorn divergence as an alternative to Wasserstein distance. Throughout this 

paper, we will introduce other high frequency signals and compare the performance of 

normalized Wasserstein distance and Debiased Sinkhorn divergence for various values of 𝛿. We 

will also analyze what happens when we consider 𝜃 as a frequency parameter, amplitude 

parameter, dilation parameter, as well as a phase shift.  
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4.2  Ricker Wavelets 
 
To investigate this phenomenon of convexity further, we aim to analyze other simulated waves 

that we might encounter. We begin with a simple ricker wavelet, which is shown below. 

 
Figure 4: The standard Ricker Wavelet is shown for 𝑥 ∈ [−6, 6] 
 
A good way to simulate different kinds of waves is to use linear combinations of Ricker wavelets 

with 𝑚 terms. This can be constructed using the following form. 

 

																					f(𝒙; 𝑎, 𝑤) ≔� 	f�\(𝒙; 𝑎, 𝑤)
]

\^%

 

Where 
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													f�\(𝒙; 𝑎, 𝑤) ≔
2𝜉\𝑎

�3α\𝑤𝜋
%
(
�1 − �

𝑥* − 𝑠\
α\𝑤

 
&
¡ 𝑒

>
-#
)

&(_*X)) 														 

 

𝑖 = 1,…𝑛 

 

Throughout this paper, we will have 𝑚 = 5, with 𝜉\ , α\ , and 𝑠\ fixed such that, 

 

[𝜉%, 𝜉&, 𝜉', 𝜉(, 𝜉Z] = [1, 1, 1, 0.5, 0.3] 

    

[𝛼%, 𝛼&, 𝛼', 𝛼(, 𝛼Z] = [4, 3, 2, 1, 0.5] 

 

[𝑠%, 𝑠&, 𝑠', 𝑠(, 𝑠Z] = [−1, 3, 1, 5, −3] 

 

Note that 𝑎 is an amplitude parameter, and 𝑤 is a frequency parameter. Smaller 𝑤 will result in 

higher frequency waves while larger 𝑤 will result in lower frequency waves. 

We need to generate g, a wave to compare with f. Furthermore,  

In this paper, we will consider several different types of manipulations using a parameter, 𝜃. We 

will analyze phase shifts, amplitude manipulation, frequency manipulation, and dilation. Thus, 

we will have, 

 

      	𝐠O(𝜃) 	≔ f(𝒙 − 𝜃; 𝑎, 𝑤)                  (25) 

 

        𝐠`(𝜃) ≔ f(𝒙; 	𝜃𝑎, 𝑤)                   (26) 

 

        𝐠X(𝜃) ≔ f(𝒙, 𝑎, 𝜃𝑤)                  (27) 

 

        𝐠a(𝜃) ≔ f(𝜃𝒙, 𝑎, 𝑤)                             (28) 

 

Where the normalization for f and g, in all of these cases, follow (19). Note that in the case of 

(25), we are referring to a component-wise subtraction of 𝜃. 
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4.3 Exponential Normalization on Ricker Wavelets 
 
Example 1 (Phase Shift for High, Low, and Mixed Frequency Waves): 

 

In this example, we will study how the normalized Debiased Sinkhorn divergence, the 

normalized Wasserstein distance, and the classical L2 norm behave when given inputs of 𝐟E and 

𝐠E that represent very high frequency, somewhat mixed frequency, as well as very low 

frequency signals. In order to capture and represent all the pulses of the signals (particularly in 

the case of the high frequency wave) we need x to be large, so we now set x to be a vector 

ranging from -1 to 1 with n = 210 evenly spaced entries.  

 

As mentioned, we will consider three different waves, and we will study them separately.  

 

For our high frequency wave, let 

 
𝑤 = 0.1 

 
For our mixed frequency wave, let 
 

𝑤 = 0.5 
 
 
For our low frequency wave, let 

	
𝑤 = 1 

 
 
After creating our linear combination, we receive the following figures displaying 𝐟 and the 

scaled version 𝐟E using (20) for 𝛿 = 1. 
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Figure 5: The figures display 𝐟 (blue) compared with the exponentially normalized version 𝐟P 
(orange) for mixed frequency (top) low frequency (bottom left) and high frequency (bottom 
right) waves for 𝛿 = 1 in (20). 

 
Note that for our high frequency wave, even to the human eye the dissimilarity measure looks to 

be very difficult to compute when compared to the low or even mixed frequency simulations. 

Solely based off these images, a hypothesis could be formulated that very high frequency signals 

could pose difficulties when conducting a dissimilarity measure. Thus, one could assume that 

suboptimal metrics and distance functions may lose convexity and therefore become undesirable 

after normalization. Our goal is to explore whether the Debiased Sinkhorn divergence may be the 

most optimal measure. 

 

For the construction of the other signal g, we will use (25) where 𝜃 is our shift.  

The following graph shows the two signals in the same figure with 𝜃 = 4. 
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Figure 6: The above figures show 𝐟 (blue) compared to the shifted signal 𝐠 (orange) with a shift 
of 𝜃 = 4 for our high mixed frequency wave (top) our low frequency (bottom left) wave and our 
high frequency wave (bottom right.) 
 
We want to study the dissimilarity between f and g with a broader range of shifts, 𝜃, compared to 

that in Section 4.1. We now allow 151 choices of 𝜃 ranging from -4 to 4. Now that we have more 

complicated signals, we proceed to create the following figures that compare the normalized 

Debiased Sinkhorn divergence with the classical L2 norm as well as the normalized Wasserstein 

distance when using 𝛿 = 1 in (20).  
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Figure 7: The above figures compare the convexity of the normalized Debiased Sinkhorn 
divergence (blue) against the classical 𝐿& norm (black) and the normalized Wasserstein distance 
(red) for our high mixed frequency wave (top) our low frequency (bottom left) wave and our 
high frequency wave (bottom right) when setting 𝛿 = 1 in (20). 
 
Upon inspection we can clearly see the benefits of using the normalized Debiased Sinkhorn 

divergence as opposed to the classic L2 norm, as the L2 norm quickly loses convexity as we 

deviate from 𝜃 = 0, creating local extrema. This effect is more profound with higher frequency 

waves. A much closer contender is found in the normalized Wasserstein distance, shown as the 

red line in the above figure. Wasserstein is still quasi-convex in this example and does not pose 

any problems.  

Notice that the above graphs used the exponential scaling (20) with 𝛿 = 1. In the next example, 

we investigate how this is affected when we choose smaller and larger values of 𝛿 for our high 

frequency wave, as such waves seem to be slightly more of a challenge for our dissimilarity 

measures.  
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Example 2 (𝛿	𝑆𝑡𝑢𝑑𝑦	𝑓𝑜𝑟	𝑃ℎ𝑎𝑠𝑒	𝑆ℎ𝑖𝑓𝑡𝑠	𝑖𝑛	𝐻𝑖𝑔ℎ	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑊𝑎𝑣𝑒𝑠) 

 

In the following example we will investigate how different 𝛿 values impact the convexity of the 

normalized Wasserstein distance as opposed to the normalized Debiased Sinkhorn divergence for 

the high frequency waves shown in Figure 6. 
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Figure 8: The figures on the right compare the normalized Debiased Sinkhorn divergence (blue) 
to the normalized Wasserstein distance (red) for our high frequency waves for increasing values 
of 𝛿 when considering 𝜃 as a phase shift (25). The figures on the left display the effect that 
increasing values of delta have on our exponential scaling 𝐟P (orange) in comparison to the 
original signal 𝐟 (blue.) 
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Notice immediately that for 𝛿 small, the amplitude of 𝐟P is now smaller than that of 𝐟 and all of 

the data shrinks toward the value 1. For for 𝛿 large, 𝐟P is greatly amplified and quickly dwarfs 𝐟. 

Recall that when delta was equal to 1 the amplitudes were unchanged. This is due to the nature 

of our exponential scaling. Having a large 𝛿 is therefore problematic because upon computing 𝐟P 

we lose information about the large negative and positive sections of 𝐟, as the negative parts 

shrink to zero and the positive parts are greatly amplified. However, a significantly large delta is 

required for the normalized Wasserstein distance to achieve strict convexity. Therefore, we see 

the advantage of using normalized DS divergence as an alternative, which achieved convexity 

for a smaller value of 𝛿. 

 

Example 3 (𝛿	𝑆𝑡𝑢𝑑𝑦	𝑓𝑜𝑟	𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒	𝐶ℎ𝑎𝑛𝑔𝑒𝑠	𝑖𝑛	𝐻𝑖𝑔ℎ	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑊𝑎𝑣𝑒𝑠) 

 

In this section we investigate how the convexity of the normalized Debiased Sinkhorn 

divergence, the normalized Wasserstein distance, and the L2  norm is affected when considering 

changes in amplitude. In this example we now let 𝐠(𝜃) ≔ 𝐠b(𝑥; 𝜃) from (26). Because we do 

not want to introduce negative amplitudes (which is not realistic) we shrink the range of 𝜃, now 

letting it consist of 151 choices ranging from 0.5 to 1.5.  

 

A graph of f and g is presented below, with 𝜃 = 1.5. 
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Figure 9: The above figure compares 𝐟 and g(𝜃) for 𝜃 = 1.5. Here, 𝜃 effects the amplitude of the 
signal (26).  
 
 
We now investigate how different 𝛿 values affect how our dissimilarity measures behave when 

considering these changes in amplitude.  
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Figure 10: The figures on the right compare the normalized Debiased Sinkhorn divergence (blue) 
to normalized Wasserstein distance (red) and the 𝐿& norm (black) for our high frequency wave 
for increasing values of delta when considering 𝜃 as an amplitude parameter (26). The figures on 
the left display the effect that increasing values of delta have on our exponential scaling 𝐟P 
(orange) in comparison to the original signal 𝐟 (blue.) 
 
We notice that when considering an amplitude change (26), all three distance functions maintain 

convexity for each of the various values of 𝛿 shown in Figure 10. Therefore we may conclude 

that when considering amplitude change, there is no specific advantage to using normalized DS 

divergence over the other measures when it comes to maintaining or achieving convexity. 

 
 
Example 4 (𝛿	𝑆𝑡𝑢𝑑𝑦	𝑓𝑜𝑟	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝐶ℎ𝑎𝑛𝑔𝑒𝑠	𝑖𝑛	𝐻𝑖𝑔ℎ	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑊𝑎𝑣𝑒𝑠) 
 
We now consider what happens when we manipulate the frequency parameter 𝑤 of f, so we 

consider 𝐠(𝜃) ≔ 𝐠X(𝑥; 𝜃) from (27). Note that changes in 𝑤 will affect amplitude as well as 

frequency of f. The parameter 𝑤 also appears under a radical, so we need to avoid introducing a 

negative 𝜃. For this purpose, we will conduct our delta study using 151 choices of 𝜃 ranging 

from 0.5 to 1.5. 

 

A graph of f and g is presented below, with 𝜃 = 1.5. 
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Figure 11: The above figure compares 𝐟 and g(𝜃) for 𝜃 = 1.5. Here, 𝜃 effects the frequency of 
the signal (27).  
 
Our delta study is shown below. 
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Figure 12: The figures on the right compare the normalized Debiased Sinkhorn divergence (blue) 
to the normalized Wasserstein distance (red) and the 𝐿& norm (black) for our high frequency 
wave for increasing values of delta when considering 𝜃 as a frequency parameter (27). The 
figures on the left display the effect that increasing values of delta have on our exponential 
scaling 𝐟P (orange) in comparison to the original signal 𝐟 (blue.) 
 
Again, we see that in the case of changing the frequency of f, all three distance functions perform 

similarly for various values of 𝛿. There is no major advantage to using normalized DS 

divergence over the other measures in this case with regards to convexity. 

 

Example 5 (𝛿	𝑆𝑡𝑢𝑑𝑦	𝑓𝑜𝑟	𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝐻𝑖𝑔ℎ	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑊𝑎𝑣𝑒𝑠) 

 

In this example we want to explore how our different dissimilarity measures are affected when 

we dilate our signal f. Thus, let 𝐠(𝜃) ≔ 𝐠c(𝑥; 𝜃) from (28). A graph of f and g is shown below, 

with 𝜃 = 1.5  
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Figure 13: The figures on the right compare the normalized Debiased Sinkhorn divergence (blue) 
to the normalized Wasserstein distance (red) and the 𝐿& norm (black) for our high frequency 
wave for increasing values of 𝛿 when considering 𝜃 as a dilation parameter (28). The figures on 
the left display the effect that increasing values of 𝛿 have on our exponential scaling 𝐟P (orange) 
in comparison to the original signal 𝐟 (blue.) 
 
In this case we do see a small advantage in using normalized DS divergence as compared to the 

normalized Wasserstein distance, and there is certainly an advantage in using the previous 

measures over the classical L2 norm, which fails to maintain convexity as 𝜃 approaches 0. 
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4.4 Linear and Softplus Normalization on Ricker 
Wavelets 
 
 
Recall that in (20) we used exponentiation in order to ensure that our signals 𝐟 and 𝐠 were 

entirely positive, i.e. 𝐟, 𝐠 ∈ ℝ"
!  (which is needed to perform Debiased Sinkhorn divergence as 

well as Wasserstein distance). In this example, we continue to use our high frequency waves 

Figure 6 and the 𝜃 parameters presented in Example 1, i.e. 𝜃 is a phase shift (25), and we 

explore two other ways of ensuring that 𝐟 and 𝐠 are shifted in the positive direction. 

Specifically, we are interested in exploring the methods of using linear scaling (21) and softplus 

scaling (22) using the normalization described in (19). 

 

Linear Scaling: 

 

Once again, we compare the performances of normalized Debiased Sinkhorn divergence, the L2 

norm, and the normalized Wasserstein distance for different values of 𝛿. Note that for this 

linear scaling, 𝛿 needs to be sufficiently large in order to ensure that 𝐟 and 𝐠 are entirely 

positive signals. Also note that in the linear case, the difference between 𝐟 and 𝐟E   (and by the 

same token 𝐠 and 𝐠E) is less sensitive to large delta, whereas in the exponential case even 𝛿 =

2 created an extreme loss of information about the original signal. 
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Figure 14: The figures on the right compare the normalized Debiased Sinkhorn divergence (blue) 
to the normalized Wasserstein distance (red) and the 𝐿& norm (black) for our high frequency 
wave for increasing values of 𝛿 when considering 𝜃 as a phase shift (25). The figures on the left 
display the effect that increasing values of 𝛿 have on our linear scaling 𝐟P (orange) in comparison 
to the original signal 𝐟 (blue.) 
 

We observe that, while linear normalization is less disruptive to the original signal, for high 

frequency waves all three of our distance measures fail to achieve convexity regardless of the 
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value of 𝛿. In the case of having high frequency signals as inputs, using linear normalization 

appears to be an undesirable method. 

 

Softplus Scaling: 

 

Softplus scaling (22) is a newer method of forcing our signals to become entirely positive. Due 

to its form, we do not have issues with setting 𝛿 to be a small value. Thus, we begin with 𝛿 =

0.05 as we did with our investigations with exponential normalization and study how the 

convexity of normalized DS divergence, normalized Wasserstein distance, and the L2 norm are 

affected by increasing values of 𝛿. Note that we again face an issue with setting 𝛿 too small or 

too large, as information about the original signal becomes corrupted as it did in the case of 

exponential normalization (20); however, in the case of 𝛿 large, the disruption is not as robust 

when using softplus scaling. Below are the results. 

 

  
 

  
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2
(Softplus) Delta = 0.05

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5
(Softplus) Delta = 0.05

L2 Norm
Debiased Sinkhorn
Wasserstein

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2
(Softplus) Delta = 0.1

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5
(Softplus) Delta = 0.1

L2 Norm
Debiased Sinkhorn
Wasserstein



 44 

  

  

  
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2
(Softplus) Delta = 0.5

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5
(Softplus) Delta = 0.5

L2 Norm
Debiased Sinkhorn
Wasserstein

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2
(Softplus) Delta = 0.75

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5
(Softplus) Delta = 0.75

L2 Norm
Debiased Sinkhorn
Wasserstein

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2

2.5
(Softplus) Delta = 1

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5
(Softplus) Delta = 1

L2 Norm
Debiased Sinkhorn
Wasserstein



 45 

  
 

  
 

  
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2

2.5

3
(Softplus) Delta = 1.25

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5
(Softplus) Delta = 1.25

L2 Norm
Debiased Sinkhorn
Wasserstein

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2

2.5

3
(Softplus) Delta = 1.5

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5
(Softplus) Delta = 1.5

L2 Norm
Debiased Sinkhorn
Wasserstein

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(Softplus) Delta = 2

f
f

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5
(Softplus) Delta = 2

L2 Norm
Debiased Sinkhorn
Wasserstein



 46 

  

  
Figure 15: The figures on the right compare the normalized Debiased Sinkhorn divergence (blue) 
to the normalized Wasserstein distance (red) and the 𝐿& norm (black) for our high frequency 
wave for increasing values of 𝛿 when considering 𝜃 as a phase shift (25). The figures on the left 
display the effect that increasing values of 𝛿 have on our softplus scaling 𝐟P (orange) in 
comparison to the original signal 𝐟 (blue.) 
 
The results above robustly show the advantages of using normalized DS divergence as a measure 

over the normalized Wasserstein distance and the L2 norm when using softplus scaling as a 

means of normalization. Regardless of the value of 𝛿, normalized DS divergence maintained 

convexity. In contrast, the normalized Wasserstein distance demanded a 𝛿 value significantly 

larger than 1 to achieve strict convexity. However, in the case of softplus scaling, having a large 

𝛿 does not disrupt the original signal as much as in the case of exponential scaling.   
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Section 5 
 
Conclusion  
 
The normalized Debiased Sinkhorn divergence offers many advantages over the commonly used 

normalized Wasserstein distance and the classical Euclidean norm. In the case of very high 

frequency signal inputs, normalized DS divergence requires far less extreme data normalization 

to achieve convexity. In Section 3, where we considered high frequency waves as inputs and 

used exponential scaling as a means of data normalization, we observed some instances where 

normalized DS divergence achieved convexity for significantly less extreme values of 𝛿 than 

was needed for the normalized Wasserstein distance, which as mentioned in the introduction 

leads to loss of information, noise amplification, and can lead to machine overflow. In the case 

where the two high frequency signals differed by a phase shift, this advantage was abundantly 

clear. In the cases where the difference between the two signals was a matter of amplitude, 

frequency, or dilation the advantage of using normalized Debiased Sinkhorn divergence was not 

as clear in terms of convexity. However, normalized DS divergence is still a less computationally 

costly method compared to the normalized Wasserstein distance and maintained convexity for 

the same values of 𝛿. In Section 4 we considered using linear and softplus scaling as a means of 

data normalization as opposed to exponential scaling. We continued to analyze two signals that 

differed by a phase shift, as it produced the most robust results in Section 3. When using linear 

scaling, we observed that, while linear scaling poses less issues when it comes to corrupting our 

original data, we were unable to achieve convexity with any of our measures regardless of the 

value of 𝛿 chosen. In the case of softplus scaling, normalized DS divergence proved to be 

desirable over the normalized Wasserstein distance. In this case a large value of 𝛿 was needed 

for normalized Wasserstein to achieve convexity; however, softplus scaling is not as sensitive to 

large 𝛿 values as exponential scaling. Normalized DS divergence maintained convexity 

regardless of the value of 𝛿 when using softplus scaling. Thus, when considering high frequency 

signals as inputs, using softplus scaling to normalize the data and using Debiased Sinkhorn as a 

measure proves to be the most optimal choice when considering these kinds of dissimilarity 

problems.  
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Section 6 
 
Future Work 
 
In Section 4, where we analyzed the effects of using linear and softplus scaling as a means for 

data normalization, we only considered a phase shift as the difference between the two signals 

because that seemed to produce the most compelling evidence in Section 3. Further research 

could be done in how differences in amplitude, frequency, and dilation affect normalized DS 

divergence and the normalized Wasserstein distance when considering linear and softplus 

scaling.  

 

Finally, the inputs given to the normalized Debiased Sinkhorn divergence and Wasserstein 

distance throughout this paper were all one-dimensional probability vectors. Further research 

could be done comparing these two methods when given two dimensional inputs (such as 2D 

images) or even higher dimensional inputs (e.g., in the case of FMRI images).   
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