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its ability to cope with free ammonia is less robust.  For practical purposes, P. kessleri 

seems to be able to tolerate and thrive on ammonium nitrogen already present in much 

of the PW.  

 If ammonium rich PW is to be used as a growth medium for algae cultivation 

ammonia toxicity should be studied for candidate species in a variety of conditions.  

Responses seem to vary by species in this study which is supported in the literature 

[Collos and Harrison, (2014) & Gutierrez et al. (2016)].  Different algae cultures and PW 

chemistries might have unique interactions.  Algae growth in high alkalinity PW might 

exacerbate an algae species susceptibility to free ammonia.  Maintaining pH at or below 

8 (Which is commonly done through CO2 addition.) and lower total ammonium 

concentrations might be prudent standard operating procedure for a variety of algae 

strains. 
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Figure 3.5. 1: Microscopic image of dead D. tertiolecta cells being scavenged by bacteria 
under phase contrast (800X). 

 

Figure 3.5. 2: The pKa values for ammonia/ammonium species as a function of salinity 
using equations from Maeda et al. (1990) based on the specific interaction model. 
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Figure 3.5. 3:  Free ammonia levels in different solutions over a pH range of 8-10 
assuming a total ammonium concentration of 13 mg NH4-N/L. 

 

 
Figure 3.5. 4: Estimated free ammonia in the 120 g TDS/L PW media at a range of 
different initial total ammonium concentrations.  Dashed lines displayed growth 
inhibition. 

 

 
Figure 3.5. 5: Flask photos of D. tertiolecta growing in PW at an initial concentration of 
52 mg NH4-N/L on Day 2 (left) and Day 14 (right).   

Note the presence of a yellow color on Day 2 and an absence on Day 14. 
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Figure 3.5. 6: Estimated free ammonia and measured biomass densities for D. tertiolecta 
in 120 g TDS/L PW media at initial concentrations of 13 and 26 mg NH4-N/L. 

 

 
Figure 3.5. 7: Estimated free ammonia and measured biomass densities for D. tertiolecta 
in 120 g TDS/L PW media at an initial concentration of 39 mg NH4-N/L. 
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Figure 3.5. 8: Estimated free ammonia and measured biomass densities for D. 
tertiolecta. 

 In 30 and 120 g TDS/L PW media at an initial concentration of 13 mg NH4-N/L.  Growth 
inhibition and growth are labeled for the 30 g TDS/L salinity. 

 
Figure 3.5. 9: Growth rate vs. ammonia concentration for D. tertiolecta taken from 
Gutierrez et al. (2016).   
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The dashed green line in the modeled growth kinetics. 
 

 
Figure 3.5. 10: Polyculture free ammonia levels in 60 g TDS/L PW media at a range of 
initial ammonium concentrations. 

Chapter 4: Summary and Conclusion 
 

4.1: Summary of the Polyculture’s suitability for cultivation in PW 
 
 Based on the results of this study, the Polyculture (and its two-dominant algae 

species) are potential candidates for biofuel production in PW.  Growth remained 

consistent and strong (45-50 mg/L/Day) over a wide range of salinity from 15-60 g TDS/L 

using nitrate (Figure 4.1. 1).  A higher biomass productivity was achieved at the 60 g 

TDS/L salinity using ammonium, which is likely already present in PW, can be added with 

wastewater, and/or can be recycled from biofuel production such as anaerobic 

digestion.  Compared to the commercial F/2 media, growth in PW was greater most 

likely because the Polyculture can utilize the higher concentration of bicarbonate.  
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bicarbonate addition), nutrients, and/or illumination.  High inorganic carbon 

concentration, ammonium, and low phosphate produced a sustained growth rate of 

97.5 mg/L/Day in tubular photobioreactors.  The results from the flask tests suggest that 

concentrations of around 13 mg NH4-N and 1.7 mg PO4-P produce the highest biomass 

productivity.  These nutrient levels could be maintained with a continuous feed of 

enriched media.   Many sources of PW have nutrient concentrations at or above these 

values.  Experiments in outdoor raceway ponds could define the optimized illumination, 

nutrient, and pH levels.   

 Growth compares favorably with other species grown in PW and outdoor ponds 

in New Mexico.  Racharaks et al. (2015) cultivated D. tertiolecta at around 42.1 mg/L/D 

and Nannochloropsis salina at around 41.7 mg/L/D under similar flask growth 

conditions.  Higher growth rates were claimed in Racharaks et al., (2015), but they were 

achieved in a closed photoreactor system that would not be scalable for biofuel 

production.  Aravinthan and Harrington (2013) claimed a growth rate of 49.7 mg 

suspended solids/L/Day using D. tertiolecta in brackish conditions (using suspended 

solids often yields a higher biomass than AFDW).  At higher nutrient levels (10X those 

tested in flask tests here) and constant aeration, N. salina was reported to create 

biomass at a rate of 140 mg/L/Day (Graham et al., 2017), but once again these were not 

outdoor open pond conditions.  Hodgkiss et al., 2016 reported a similar growth rate of 

around 120 mg/L/Day in coal bed methane waste water with a wild algae strain in the 

family Chlamydomonadaceae.  The waste water in their study was brackish with a 

higher alkalinity of 23 mM.  Chlorella sp. was cultivated with a biomass production rate 
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of 93 mg/L/D in high rate algal ponds in New Mexico (Weissmen and Goebel, 1988).  

Under optimized conditions it is possible the Polyculture could match or exceed these 

growth rates with a higher salinity tolerance (60 g TDS/L) than all except the Dunaliella 

genus.  The commonly studied species N. salina has a much lower salinity threshold for 

optimal growth of around 40 g NaCl/L, and thus the Polyculture could extend cultivation 

to higher salinities (Bartley et al., 2013).  Once again, the true potential of any species 

for biofuel production must be tested in realistic industrial scale cultivation systems. 

  The lipid content and productivity of the Polyculture are suitable for conversion 

to fuel.  The maximum lipid productivity found in this study of 12 mg/L/Day shows 

promise and could be improved.  Higher biomass growth at a salinity of 60 g TDS/L 

followed by a few days in a nitrogen or phosphorus deficient media could increase this 

value.  Prior to harvest salinity stress could be used to increase lipid content and has 

been shown to increase lipid yield by 21% for Chlorella (Sibi et al., 2016).  Also, exposure 

to increased concentrations of metal ions such as iron and copper have been claimed to 

increase lipid content in Chlorella (Li et al., 2013). Nutrient starvation would reduce 

protein content which improves the efficiency of anaerobic digestion and quality of fuel 

from hydrothermal liquefaction.  The lipid derived FAME content is capable of producing 

suitable biodiesel due to the high percentage of saturated C16 and C18 content.  Any 

issues involving viscosity could be handled by blending with unsaturated FAMEs from 

another source.  Further testing is needed to explore how this unique Polyculture would 

perform in outdoor raceway ponds under different conditions. 
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 The mixotrophic capabilities of P. kessleri could improve productivity of its 

cultivation in PW.  Wang et al., 2012 documented a biomass density of over 6 g cell 

dry/L and productivity of around 280 mg/L/D growing the closely related Chlorella 

kessleri mixotrophically on 200mM of glycerol.  In addition, the algae cells were able to 

thrive on sugars and ethanol.  Piasecka et al. (2017) states that P. kessleri has the same 

potential for photoheterotrophic growth.  Thus, biomass productivity can be greatly 

increased by using waste byproducts from biofuel production or other industrial 

processes.  Glycerol is the chief byproduct of the transesterification of triglycerides to 

FAMEs.  Also, processed algae biomass from biodiesel conversion commonly contains 

residual carbohydrates including sugar that could be fed back to the algae ponds.  Sugar 

rich byproducts such as beet molasses can be added to media to increase growth 

(Piasecka et al., 2017).  It is also possible, that the closely related C. vulgaris can 

metabolize petroleum compounds that might already be present in a PW medium 

(Kauss and Hutchison, 1970).  This could serve a dual function of remediation of this 

challenging wastewater.  Carbon dioxide is less available at higher salinity and adding an 

already reduced carbon source could significantly increase growth (Tafreshi & Shariati, 

2007).   Further experimentation with mixotrophic growth in a PW medium could fully 

explore its potential. 

 The Polyculture species were able to adapt to a variety of environmental 

stresses.  Growth occurred over a pH range of around 4 – 10.6.  The pH in outdoor 

ponds can exceed 11 under high photosynthetic conditions, which the Polyculture can 

tolerate (Park et al., 2011).  Purposely allowing pH to increase to these levels can kill of 
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algae predators (Benemann et al., 1978).  Acidification can occur in low alkalinity media 

when using ammonium (Eustance et al., 2013).  The culture would likely survive sudden 

extreme swings in acidity or alkalinity whatever the cause.  It was observed to grow in 

PW with a strong odor of hydrogen sulfide gas.  The Polyculture tolerated metal 

concentrations in the PW media of 2.42 mg Cu/L and 0.386 mg As/L that inhibit some 

algae species.  While algae growth was affected at higher salinities, it could survive 

levels as high as 120 g TDS/L for three weeks.  During cultivation, this could be a useful 

characteristic to survive temporary spikes in salinity.  Adjusting the salinity of the media 

might also be a way to manage algae predators by temporarily spiking to kill such 

organisms as rotifers and amoebas.  Additional testing could better define the limits of 

the Polyculture. 

4.2: Summary of the D. tertiolecta’s suitability for cultivation in PW 
 
 D. tertiolecta is a strong candidate for biofuel production in PW media at 

salinities above 60 and below 210 g TDS/L.  Growth rates while lower than the 

Polyculture below 60 g TDS/L are consistent from 30 – 120 g TDS/L at around 16-17 

mg/L/D in PW using nutrient levels equal to the F/2 media.  For cultivation, growth rates 

might be acceptable from 120 to above 200 g TDS/L.  At a salinity of 120 g TDS/L 

ammonium levels of 13 mg NH4-N/L boosted growth by around 28%.  A continuous 

nutrient feed might be one technique improving productivity in hypersaline PW media 

and avoiding free ammonia inhibition.  Growth rates were 240% higher in the high 

alkalinity PW as opposed to the F/2 commercial media.  Dunaliella’s increased growth 

on bicarbonate has been described previously, and its impact may be enhanced in 
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hypersaline media [Srinivasan et al., (2015) & Beardal and Giordano, (2009)].  Many 

sources of PW have alkalinity values up to 77 mM (Graham et al., 2017).  Dissolved 

inorganic carbon already present or added should raise growth rates above those 

measured in this study to values as high as 60 mg/L/Day for Dunaliella HRAP cultivation 

(Huesemann & Benemann (2009) & Tafreshi and Shariati (2008)).  Other algae species, 

such as those in the Polyculture, have a higher biomass productivity below 60 g TDS/L.  

Despite D. tertiolecta’s slightly higher growth at lower salinities near seawater, its 

halotolerance lends it to cultivation at higher ionic strength.  The number of algae 

species that can grow at 120 g TDS/L is small and the amount of PW with salinities in 

this range large.  As always evaporation in outdoor conditions will only increase the TDS 

of the media.  If this challenging media is to be used for large scale cultivation 

production, further study is warranted for this species as a candidate. 

 Lipid measurements of D. tertiolecta show its potential as an oleaginous biofuel 

feedstock.  Peak oil content of 40-45% was achieved in some of the conditions (Figure 

4.2. 1).  Like biomass, lipid production was consistent over a broad salinity (Figure 3.4. 

26).  Maximum oil concentration did not necessarily match biomass in some conditions, 

and this would be an important factor in determining when to harvest.  The highest lipid 

productivity of 11.2 mg/L/Day was obtained using low initial concentrations of 

ammonium and phosphate (13 mg NH4-N and 1.7 PO4-P/L) under alkaline conditions (pH 

9.8).  A time dependent lipid enrichment peak occurred a few days after ammonium 

depletion in the media.  This peak probably corresponds with peak inorganic carbon 

uptake as determined by pH.  In media with nitrate, N stress did not seem to clearly 



 173 

enrich fat content of the biomass to the point it improved lipid productivity.  The lipid 

derived FAME profiles would produce a high cetane biodiesel.  Proportionally less C18:3 

was found than reported in other studies (Racharaks et al., 2015 & Chen et al., 2011) 

improving the quality (in terms of cetane number and oxidative stability) of derived 

biodiesel.   

 Ammonia toxicity is a concern for D. tertiolecta cultivation utilizing produced 

water.  Free ammonia concentrations of around 2-2.5 mg NH3-N/L cause severe 

inhibition of growth.  The potentially high concentrations of ammonium (over 300 mg 

NH4/L) found in PW samples (with or without photosynthetic induced pH increases) 

could easily exceed this threshold.  Algae utilization of bicarbonate clearly produces 

more alkaline conditions while increasing growth.  Care would be needed to maintain 

overall concentrations in the range of optimal growth while keeping pH well below the 

pKa of the ammonium system.  Carbon dioxide addition to the media could prevent 

alkaline pH values reducing the fraction of ammonia species and increasing the 

availability of inorganic carbon.  D. tertiolecta can survive free ammonia concentrations 

in excess of 2-2.5 mg/L allowing time to restore more favorable growth conditions.  

Acclimatization or selection of different D. tertiolecta strains might reduce the 

susceptibility to ammonia.  Interestingly, it is possible that free ammonia concentrations 

less than 2 mg N/L might stimulate growth.  One potential advantage of ammonia 

toxicity is that it may be possible to reduce C18:3 content of the derived biodiesel 

improving oxidative stability and engine ignition (Gutierrez et al., 2016). 
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 D. tertiolecta’s high glycerol content could be used as an organic carbon source 

for mixotrophic growth of other algae strains or as a supplement to improve oil yields of 

other biomass feedstocks.  Many members of the Chlorella genus are considered for 

biofuel production and have enhanced growth in mixotrophic conditions.  The biofuel 

candidates Nannochloropsis, Chlorella sp., Scenedesmus sp., and Haematococcus were 

documented to have higher biomass and lipid productivities in mixotrophic conditions 

using glycerol (Andruleviciut et al., 2014).  Glycerol produced as a byproduct of D. 

tertiolecta’s conversion to biodiesel or other methods could be utilized by capable algae 

species to increase yields.  In addition, glycerol remains in the growth media after 

Dunaliella harvesting (Tafreshi and Shariati, 2008).  Mixotrophic algae could be relied 

upon to utilize the left-over glycerol and nutrients of the spent media.  Cao et al. (2016) 

reported glycerol addition can improve the oil yield of rice straw with Hydrothermal 

liquefaction.  A practical process for utilizing D. tertiolecta’s glycerol to improve algae 

biofuel production warrants further study. 

4.3: Design and operational ramifications for algae biofuel production and 

hypersaline wastewater remediation 
 
 Algae biofuel production utilizing the challenging PW media is clearly feasible.  

The saline and hypersaline conditions of many PW water sources are not a barrier to 

algae growth.  Both algal cultures in this study exhibited adequate growth for cultivation 

in hypersaline PW that spans the range of many measured samples.  Ishika et al. (2017) 

proposed cultivation over a range of salinities to efficiently recover nutrients from spent 

saline media, and the algae cultures in this study would be potential candidates.  Other 
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species in the Dunaliella genus could extend the salinity range and improve productivity.  

D. salina has an even higher salt tolerance up to the saturation point of sodium chloride 

(Oren, 2005).  This could extend cultivation salinities to over 300 g TDS/L.  Another 

member of the genus, D. viridis, has been reported to possess higher growth rates 

between 100 and 200 g TDs/L (Cifuentes et al., 2001).  Results from study and others 

indicate that algae species could be cultivated in the full range of PW salinities 

measured.   

 Hypersaline cultivation of algae even has advantages over lower ionic strength.  

The number of algae herbivores that can survive these conditions is much reduced 

(Tafreshi and Shariati, 2008).  In open pond systems, high ionic strength PW could be 

used to kill off any algae grazers with lower halotolerance than the algae.  Fungal 

parasitism and viral infection have the ability to also reduce biomass productivity (Park 

et al., 2011).  Hypersaline media would likely inhibit both these classes of organisms.  

Invasive algae species with less optimal oil yields would have a much lower chance of 

establishing themselves at salinities comparable to brine lakes.   

 Nutrient levels already present in PW are adequate for high algae biomass 

productivity.  Many studies have reported ammonium concentrations in excess of the 

13 mg NH3-N/L that resulted in the highest growth rates.  Overall, the reduced nitrogen 

in ammonium seems to produce higher growth for the cultures in this study, and that 

might be broadly applicable to more strains and species.  The low concentrations of 

phosphate (1.7 mg PO4-P/L), that led to the highest growth rates in these experiments, 

are most likely commonly found in PW.  Trace metal such as iron are also usually 
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present in PW samples (Graham et al., 2017).  PW with high alkalinity has elevated levels 

of inorganic carbon that improve growth rates.  Operating costs could be reduced by 

about a quarter by removing the need for nutrient addition.  Species capable of growth 

in the hypersaline conditions would improve the efficiency of utilizing the nutrient levels 

already present (Ishika et al., 2017).  Removing cost associated with nutrient addition 

should improve the economic outlook for algae biofuel production. 

 Lower phosphate concentration might improve biomass production and high 

phosphate lipid productivity.  In this study both the species in the Polyculture and D. 

tertiolecta exhibited mildly inhibited growth at the elevated phosphate concentration of 

8 vs. 1.7 mg PO4-P/L.  Species appear to be likely storing the extra phosphate as 

polyphosphate inclusions.  Phosphate bonds in ATP require 31.8 kJ/Mol for formation 

and are a crucial part of how cells store and transmit energy (Madigan et al., 2015).  It is 

likely that in this study algae cells diverted energy away from growth to store it in 

polyphosphate bonds.  This had the effect of slightly reducing the growth rate compared 

to the lower phosphate condition.  Maintaining low phosphate concentrations (near 1.7 

mg PO4-P/L) seems to be a viable strategy to optimize growth rates.  While growth rates 

at the high phosphate condition were lower, lipid productivity was higher.  It appears in 

this study that nitrogen stress without phosphate limitation results in a higher peak lipid 

content of the algae (47% vs. 35%).  This effect might apply to other potential algae 

biofuel candidates. 

 Though this study focusing on algae cultivation for biofuel production, algae 

appear capable of quickly removing nutrients from hypersaline waste water.  The 
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Polyculture was able to sustain a removal rate around 12 mg NH4-N/L/Day in the tubular 

bioreactors.  D. tertiolecta displayed a lower removal rate of around 3 mg NH4-N/L/Day.  

Hypersaline oilfield disposed of in surface streams contains high levels of ammonium 

that could cause eutrophication and formation of disinfection byproducts in 

downstream water treatment plants (Harkness et al., 2015).  Both cultures in this study 

and likely other algae could remove ammonium from discharged PW removing this risk.  

Both the Polyculture and D. tertiolecta were able to efficiently uptake phosphate.  This 

ability could be used reduce eutrophication in surface water from discharged waste.   

4.4: Future research directions and potential 
 
 The results from this study need to be tested at the pilot scale in realistic 

outdoor cultivation conditions.  Though the species presented here appear to be strong 

candidates for biofuel production, results may vary in an open raceway system.  A 

number of different environmental factors would vary possible affecting biomass and 

lipid productivity.  Diurnal and seasonal temperature cycles, changes in light intensity, 

PW character variation, and many other factors would exert an influence.  Many of 

these variables would be site specific.  Pilot scale experiments exploring these 

parameters would be informative to determine the viability of large scale algae 

cultivation in PW. 

 The influence of potentially toxic components of PW should be more thoroughly 

explored.  Heavy metal concentrations in this wastewater can be high and may influence 

biofuel production.  For example, Cu, Cr, Zn, Cd and Pb were shown to inhibit growth in 

Chlorella vulgaris and D. tertiolecta (Ouyang et al., 2012 & Tsuji et al., 2002).  Also, algae 
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produce biomolecules called phytochelators that sequester metals intracellularly in 

vacuoles (Hirato et al., 2001).  This could contribute to toxicity during anaerobic 

digestion or nutrient recycling.  Many biorefinery schemes suggest utilizing left over 

biomass from biofuel production for fertilizer and animal feed.  Enriched heavy metal 

content of the biomass could be prohibitive for these uses.   

 Mixotrophic growth of algae cultures has the potential to increase biomass and 

lipid yields.  Additional experiments should be performed in saline and hypersaline 

media using different substrates (particularly glycerol).  Various industrial sources could 

be tested such as food waste.  The mixotrophic potential of Dunaliella has not been fully 

defined yet and might boost growth in hypersaline media.  Lipid productivity and 

character under these conditions should also be better defined. 

 If large scale algae biofuel production is to become reality PW might be the only 

viable water source in arid inland regions.  Algae can be cultivated in this challenging 

media.  The economics of the processes need to be explored further to determine 

whether a reasonable path exists.  While low petroleum prices currently exist, this may 

not remain the case.  The need to reduce carbon emissions will remain relevant.  Algae 

derived biofuels may yet represent a significant source of world energy consumption.   
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Figure 4.1. 1:  Polyculture and D. tertiolecta growth rates in PW media at a range of 
salinities.  Initial nitrate, phosphate, and trace metal levels were kept constant. 

 

 
Figure 4.2. 1: Maximum measured lipid productivity and content for D. tertiolecta and 
the Polyculture in PW media. 
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