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Abstract

Differential gene expression analysis has the potential to discover candidate biomark-

ers, therapeutic targets, and gene signatures, which are critical for the prevention and

treatment of diseases. Survival analyses have been used for differentially expressed

genes (DEGs) identification for high-throughput gene datasets, in which genomic

features (genes) are associated with survival outcomes, usually survival time of in-

dividuals. However, unbalanced samples in rare diseases generally have a high cost

on data collection if using a large sample and a low power if using a small sample.

How to save money when using an unaffordable sample is a practical question. The

case-cohort (CCH) study design can blend the economy of case-control studies with

the advantages of cohort studies. But it has not been seen in the medical research

literature where high-throughput genomic data were involved. This dissertation de-

veloped statistical methods for analyzing the high-throughput gene expression data

under the CCH design.
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It is straightforward to use the hypothesis testing methods such as the Likelihood

Ratio test, Wald test, and score test based on the Cox Proportional Hazard (PH)

model to identify DEGs associated with survival outcomes given a full cohort (ran-

dom sample). But in a typical genomic study, thousands of hypothesis tests must

be performed simultaneously, and a score test is usually preferred. It does not need

to fit the Cox PH model iteratively; hence, it can save computing time and avoid

potential convergence issues. Combining the advantage of the CCH study design

and score test, we developed a score test under the CCH design to identify DEGs

associated with survival outcomes. We provided asymptotic distribution theory and

inferential procedures for the test. We also verified the validity of the inferential

procedure in finite samples through simulation studies.

Another popular approach to DEG identification is the permutation-based score

test. It is a non-parametric method, and when it is used for survival outcome-

related DEG analysis, the strong PH and probability distribution assumptions do

not need to be a concern. One advantage of this method is that it estimates the false

discovery rate (FDR) directly from the permutation procedure, which takes into

account the correlation among the genomic features (genes). However, it cannot be

directly applied to the data from a CCH study design because a CCH sample is not a

random sample. We developed a procedure to reconstruct a full cohort from a CCH

sample and then perform the permutation-based score test on the reconstructed

full cohort to identify the DEGs associated with survival outcomes. To illustrate

the performance of our proposed method, we evaluated our testing procedures and

compared our methods with other existing approaches in terms of the FDR and the

power through the simulation study and the application to the real datasets from

two cancer-related genomic studies.
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Chapter 1

Introduction

Differential gene expression analysis is one focal point of pharmaceutical and clinical

research, which identifies, among thousands of genes, those associated with certain

medical conditions in a population ([13], [18], and [60]). By studying the DEGs, it is

possible to discover candidate biomarkers, therapeutic targets, and gene signatures,

which are critical for the prevention and treatment of diseases ([64], [22], and [22]).

Survival analyses have been used for DEG identification for high-throughput gene

datasets (for example, [44], [32], and [5]), in which genomic features (genes) are

associated with survival outcome, usually survival time of individuals. Identifying

DEGs usually involves analyzing a high-throughput dataset, which includes p genes,

n patients, and a p× n gene expression matrix (Shown in Figure 2.1). For example,

there are more than 20,000 genes in human beings. In a general procedure, we

perform a statistical test on each gene in the dataset separately and obtain their

p-values. Then we correct the p-values, for example, with the Benjamini-Hochberg

method to adjust for the multiple tests. Genes with an adjusted p-value less than

a given significant level passed the significant test and are called significant genes,

which would be considered the potential biomarkers of interest and undergo further
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Chapter 1. Introduction

biomedical investigations.

Under the proportional hazard assumption [14], hypothesis testing methods, for

example, the partial likelihood ratio test (PLRT), Wald test, and score test can be

used to identify DEGs in a full cohort dataset. The null hypothesis, H0, is that the

gene under test is not a DEG, while the alternative hypothesis, Hα, is that the gene

under test is a DEG. In a NONDEG, the survival time has no relationship with the

gene expression value, while for a DEG, the survival time is associated with the gene

expression value. In other words, we want to test whether the log of hazard ratio

parameter β = 0. The PLRT is related to partial maximum likelihood estimators

(PMLEs). Its test statistic needs to estimate parameter β at PMLE in two parameter

spaces to get the superior of the numerator and the denominator. For Wald tests, it

needs to estimate parameter β at PMLE and use the estimated value to approximate

the expected partial likelihood information matrix to build its test statistic. So, for

both LRT and Wald tests, we need to iteratively fit the Cox-ph model to estimate β

at PMLE, which is computationally expensive, and convergence is not guaranteed.

Compared to them, the score test has been widely used in genomic studies because

we do not need to estimate β at (P)MLE under the null hypothesis [42].

For rare diseases ([2] [1]), the number of events is few, and the number of censored

cases is enormous. This unbalanced sample usually has a high cost on data collection

if using a large sample and a low power if using a small sample ([17], [8], and [46]).

Pragmatically, processing a disproportionately high number of controls makes little

sense. How to save money when you have to use an unaffordable sample is a practical

question. The case-cohort (CCH) design [39] is an observational study design that

blends the economy of case-control studies with the advantages of cohort studies

([20], and [38]). It is one of the survival analysis methods, where cases are defined as

observations that had an event, and controls are right-censored observations. CCH

designs consider a random sample of the full cohort, called a sub-cohort. At the time

2
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of analysis, cases outside the sub-cohort will be added to the sample to form the

CCH. The CCH design can be far more efficient than a full cohort analysis, mainly

when dealing with rare outcomes. So the CCH design can save substantial time and

money for studies with expected low incidence rates. However, since data of a CCH

design are not a random sample, special measures have to be taken in the analysis

to adjust for the sampling.

CCH analysis methods have been developed ([39] [49] [16] [6]) and three of them

were compared in the context of fitting models [35]. These methods use different

weighting schemes for controls and cases inside or outside of the subcohort. For

example, Barlow’s method appears to be the most natural approach as the weights

are proportional to the subcohort size. If the subcohort is 10% of the full cohort,

Barlow’s method weighs controls in the subcohort as if they are worth 10 people.

Since all cases are included in this design, cases outside the subcohort are given a

weight of 1. Subcohort cases are treated in two ways. Before their events, they are

weighted with a factor of 10 (just like the controls), but at the time of their event,

they are treated like the cases outside the subcohort, with the weight of 1 individual.

Improving DEGs’ identification under CCH has medical and biological values.

The “Score process” of CCH was proved with asymptotic normality [49], and the

related Wald test was proposed based on the distribution. To find out a good esti-

mation of parameters, it needs to iteratively fit the Cox-ph model, and convergence

is not guaranteed. One alternative method is to use a score test. To prove this

procedure is theoretically valid. We need to estimate the covariance matrix of CCH

asymptotic chi-square distribution at β0 = 0. Furthermore, we need to derive the

first derivative of the log Pseudo-likelihood Function and acquire the value of “Score

Process”. Then, we need to find a test statistic with certain distribution to calculate

the p-value under the null hypothesis, β = 0.

In multiple testing comparisons, as the number of genes or features, p is large,

3
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it usually brings low power for the whole procedure. Hence, we often use the false

discovery rate (FDR) proposed by Benjamini and Hochberg rather than the family-

wise error rate (FWER) to adjust for the multiple comparisons. A caveat is that

the BH method assumes that all the test are independent while the expressions

of many genes are correlated with each other. A permutation-based approach has

been proposed to estimate the FDR directly through the permutation procedure

that takes into account of the correlation among the genes. Proposed by Fisher

[20] and Pitman [38], this method has been applied on biostatistics and quantized

data analysis ([59] and [11]). A permutation test adopts a non-parametric statistic

that obtains the p-value from the sample-specific permutation distribution of that

statistic rather than from the theoretical distribution derived from the parametric

assumption. Permutation procedures were applied to estimate false discovery rate

(FDR) ([58] and [56]). When permutation tests are used on DEGs’ identification,

strong semi-parametric assumption and probability distribution assumption for p-

value do not need to be concerned. Under the null hypothesis of genes (they are

not DEGs), their FDR is obtained by calculating the average of a large number of

possible FDR values calculated from related rearrangements of the observed data.

However, the basic assumption of a permutation test is the “exchangeability” ([20]

and [38]), which requires a survival dataset to be a random sample. Therefore,

the permutation test can not be directly applied to a CCH sample because the CCH

sample is not random. We want to find a new procedure to identify DEGs, which can

save the benefits of both the CCH and permutation tests. We propose to reconstruct

a whole cohort based on the given CCH and use the entire reconstructed cohort to do

a permutation test. As the controls outside the CCH sample are missing at random

and patients in the subcohort are a random sample, we used the expression values

in the subcohort to impute the missing expression values of controls outside of the

CCH sample.

This dissertation is organized as follows. In Chapter 2, we gave a background
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review of tests and methods for DEG identification. In Chapter 3, we proposed a

CCH-based score test, in which Σ(β0) and ∆(β0) were estimated at β0 = 0 under null

hypothesis, rather than at β̃. We built the test statistic of the test, which asymp-

totically follows a Chi-square distribution. Furthermore, we conducted simulation

studies to evaluate the Type-I error and power for a single gene and to evaluate the

false discovery rate (FDR) and power for high-throughput data. Besides, we applied

the CCH-based score test to a real dataset to measure the consistency between the

proposed CCH-based test and the full cohort analysis method. In Chapter 4, we

proposed a CCH-based permutation test. We rebuilt the whole cohorts by imputing

the missing data with resampling with replacement and used them to identify DEGs

by permutation tests. We performed simulation studies to evaluate our methods and

to compare our methods with some existing test procedures. We also used real data

to compare the performance consistency of full-cohort and reconstructed full cohort

to illustrate our methods. Finally, we gave conclusions and further research works

in Chapter 5.
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Chapter 2

Background

Recently there has been an increased focus on precision medicine ([23] [62] [33]), with

researchers seeking to discover biomarkers that can inform if an individual is more

or less likely to suffer harmful health outcomes or whether they will be receptive to

treatment ([34] [29] [57]). High-throughput gene expression profiles have allowed the

discovery of potential biomarkers ([65] [61] [36]).

Differential gene expression analysis can determine which genes are expressed at

different levels between conditions by performing statistical analysis. Through DEG

analysis, we can understand the biological differences between healthy and diseased

states. For example, we can find upregulated genes and downregulated genes between

events and censored cases and use them to discover potential biomarkers.

Parametric and Non-parametric DEG identification methods have been proposed

for studying the changes in gene or transcript expressions under different conditions

(e.g. control vs infected). DESeq [3], DESeq2 [32] and edgeR [44], use a negative

binomial distribution to model RNA-Seq read counts for assessing differential expres-

sion. Limma [53] uses linear models based on the empirical Bayes method to identify

DEGs. Fisher’s exact test is non-parametric in the analysis of contingency tables,
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which does not assume data across samples are based on the theoretical probability

distribution.

2.1 DEG Analysis on Survival Data

DEG analysis can be applied to survival data. In survival data, a full cohort is

usually a random sample from the population. As shown in Figure 2.1, the data

structure includes three tables, clinical covariate, gene expression matrix, and an-

notation of genomic features. Clinical covariate has sample annotations, such as

survival information for each patient. For patient j, time tj is the length of time

until the occurrence of an event of interest. However, we may not observe the time

completely. That is, some patients may be censored. δj = 0 means censored, and

δj = 1 means that the patient have experienced the event of interest. In our study,

we will assume that censoring is non-informative [41]. That is, censoring should not

be related to the probability of an event occurring.

The gene expression matrix has gene expression for all n patients and p genes

(Shown in figure 2.1). It is a p×n matrix. We use xij to denote the gene expression

related with ith gene and jth patient. So, the observed data in the full cohort/sample

is (tj, δj, xij) for patient j, where tj = min(Tj, Cj). Tj is the true survival time and

Cj is the censored time. The table of Annotation of genomic features has Gene ID,

Gene Symbol, Gene descriptions, etc.

When studying the DEGs in survival data, we want to know whether gene expres-

sion is associated with survival times. More specifically, we want to identify whether

the survival times either decrease or increase with the increase of gene expression.

For a gene, when survival times decrease with increasing its expression, we call it

down-graded. Reversely, we call it upgraded. Both down-graded and upgraded genes

are DEGs.
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Chapter 2. Background

Figure 2.1: Dataset for a study of gene expressions associated with survival outcome.

2.1.1 Proportional Hazards Model

The proportional hazards (PH) model, proposed by Cox [14], is one of the most

popular survival models in survival analysis. The hazard function is

h(t|xj) = h0(t)exp(β
Txj), (2.1)

where xj = (x1j, x2j, ..., xpj)
T is a vector of predictors of the jth sample unit, and

βT = (β1, β2, ..., βp) is a vector of unknown coefficients that we want to estimate.

The factor h0(t) is called the baseline hazard, which is the hazard rate in the case

when all predictors are zero. It requires no particular form for survival time. In other

words, the baseline hazard is unspecified. In medical research, xj usually consists of

clinical and demographical covariates including the gene expression values.

For any two sets of predictors, xi and xi∗, the hazard ratio (HR) is constant over
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time.

h(t|xj)/h(t|xj∗) = h0(t)exp(β
Txj)/h0(t)exp(β

Txj∗) = exp(βTxj)/exp(β
Txj∗).

(2.2)

It is why the model is called proportional hazard. Non-informative censoring and

proportional hazard are the critical assumptions in the Cox model.

Suppose there is a full cohort with size n, which is a random sample with tj, δj,

and xij (j = 1, 2, ... n), and their assumed probability distributions depend on some

unknown parameter β = (β1, β2, ...βp). Then the partial likelihood function of the

sample is called Lp(β).

Lp(β) =
∏m

j=1
exp(βT xj)∑

i∈Rk
exp(βT xi)

, (2.3)

where m is the number of unique event times, and Rk is the set of subjects at risk

just before time tj. Suppose there is exactly one event at each event time. The

maximum likelihood estimation of the unknown parameter β would be the value

that maximizes the likelihood function Lp(β) based on the data we observed. If the

likelihood function is differentiable in βi, possible candidates for the MLE are the

values of (β1, β2, ...βp) that solve

∂
∂βi

Lp(β) = 0. (2.4)

To simplify the calculation, we usually use the natural logarithm of the likelihood

function, which is below.

lp(β) = log(Lp(β)) = log(
∏m

j=1
exp(βT xj)∑

i∈Rk
exp(βT xi)

). (2.5)

The counting process formulation replaces the pair of variables (Tj, Cj) with the

pair of functions (Nj(t), Yj(t)), where Nj(t) is the number of observed events in [0, t]
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for individual j and Yj(t) is an indicator, 1 if individual j is under observation and

at risk at time t, 0 otherwise. The two symbols system are the same in nature.

The partial likelihood function described by the counting process is below.

Lp(β) =
∏n

j=1

∏
t≥0(

Yj(t)rj(β,t)∑
k Yk(t)rk(β,t)

)dNj(t), (2.6)

where rj(β, t) is the risk score for subject j with rj(β, t) = exp[Xj(t)β], and dNj(t)

is a shorthand that allows mixed continuous and discrete processes to be handled by

a single notation. As counting processes are purely jumping processes, dNj(t) is the

number of events occurring precisely at t for subject j.

The log partial likelihood can be written as below.

lp(β) =
∑n

j=1

∫∞
0
[Yj(t)Xj(t)β − log(

∑
k Yk(t)rk(β, t))]dNj(t). (2.7)

As the log operator would not change the maximum of Lp(β), we can use lp(β)

to find the maximum likelihood estimation of β. If the log-likelihood function is

differentiable in βi, possible candidates for the MLE are the values of (β1, β2, ...βp)

that solve

∂
∂βi

lp(β) = 0. (2.8)

The maximum likelihood estimator is asymptotically normal. It follows

J(β0)
1/2(β̂ − β0) →D N(0, I), (2.9)

where J(β) is defined as the partial likelihood information. For one covariate case,

it is easy to present as J(β) = − ∂2

∂β2 lp(β). And the extension is straightforward. Cox

[15] and others ([43] [19] [27] [45]) have shown that this partial likelihood can be

treated as an ordinary likelihood to derive valid (partial) MLEs of β. We introduce

below the concepts of four hypothesis methods, the partial likelihood ratio test, Wald

test, score test, and permutation test, which have been used on the partial likelihood

of the full cohort.
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2.1.2 Partial Likelihood Ratio Tests

The partial likelihood ratio test (PLRT) of hypothesis testing is related to the afore-

mentioned partial maximum likelihood estimators (PMLEs), and it is performed by

estimating two models and comparing the fit of one model to the fit of the other

based on the ratio of their partial likelihoods. Suppose we have a statistical model

with parameter space B. Consider a hypothesis testing problem in which the null

and the alternative hypotheses are H0 : β ∈ B0 and Hα : β ∈ Bc
0, where B0∪Bc

0 = B.

The definition of the likelihood ratio test statistic for hypothesis testing is

λ(x) =
supB0

Lp(β)

supBLp(β)
. (2.10)

For the denominator, we can think of doing the maximization over the entire

parameter space B, and for the numerator, we can think of doing the maximization

of a subset of B. If the PMLE of the former is β̂ and the PMLE of the latter is β̂0,

we can write the form of the likelihood ratio test statistic as

λ(x) = Lp(β̂0)

Lp(β̂)
. (2.11)

For computational simplicity, the partial likelihood-ratio test statistic is expressed

as a difference between the log-likelihoods.

λLR(x) = −2ln[Lp(β̂0)

Lp(β̂)
] = −2[lp(β0)− lp(β)], (2.12)

where λLR(x) converges asymptotically to a chi-square distribution with degrees of

freedom equal to the difference in the dimensionality of β and β0.

Let λLR(x)obs denote the observed value of the static calculated from the data,

and the p-value is

p− value = P (λLR(x) ≥ λLR(x)obs|H0). (2.13)

11
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2.1.3 Wald Test

Wald test (Wald, 1943) tests the significance of particular explanatory variables in

a statistical model. Consider a hypothesis testing problem in which the null and the

alternative hypotheses are H0 : β = β0 and Hα : β ̸= β0. The definition of the Wald

tests statistic for hypothesis testing is

WT = J(β̂)[β̂ − β0]
2, (2.14)

where J(β) is the partial likelihood information matrix. We need to estimate β at

MLE to estimate it. (J(β̂) is J(β)’s estimation at the MLE). The test statistics mea-

sure the weighted distance between the unrestricted estimate and its hypothesized

value under the null hypothesis, where the weight is expected the partial likelihood

information matrix or the inverse of the variance of the estimate. Compared with

the likelihood-ratio test, it only requires estimating the unrestricted model, which

can decrease the computational cost. However, as derived from a Taylor expansion,

the Wald test is not invariant to equivalent but different nonlinear expressions of

the null hypothesis, as they may lead to nontrivial differences in the corresponding

Taylor coefficients.

The Wald test can test the significance of multiple variables simultaneously, which

has been implemented in the procedure corresponds to backward elimination in mul-

tiple regression. In the method, residuals are computed for the current model. Then

the least significant parameter is removed from the model. Repeat to calculate resid-

uals and remove the least significant parameter until a set is obtained that they are

sufficiently unimportant to be eliminated.

WT = [β̂−β0]2

V ar(β̂)
. (2.15)

The formula for the test statistic of a single parameter β is as above, where WT

follows an asymptotic χ2
1 distribution and V ar(β̂) can be estimated from data. Let

12



Chapter 2. Background

Wobs denote the observed value of the static calculated from the data, and the p-value

is

p− value = P (WT ≥ Wobs|H0). (2.16)

2.1.4 Score Test

The score test of hypothesis testing is related to the partial likelihood function.

A score is the gradient of the likelihood function, evaluated at the hypothesized

parameter value under the null hypothesis and used to assess constraints on statistical

parameters [42]. Consider a hypothesis testing problem in which the null and the

alternative hypotheses are H0 : β = β0 and Hα : β ̸= β0. Let Lp be the partial

likelihood function which depends on a univariate parameter β, and x be the data.

The score U(β) is defined as

U(β) = ∂
∂β
logLp(β). (2.17)

The partial likelihood information is

J(β) = − ∂2

∂β2 lp(β). (2.18)

The definition of the score test statistic for the hypothesis testing is below, which

converges in distribution to a Chi-square distribution.

S(β0) =UT (β0)J
−1(β0)U(β0) ∼ χ2

k. (2.19)

Under H0, U(β0) and J(β0) are estimable if they are unknown.

Ŝ(β0) =ÛT (β0)Ĵ
−1(β0)Û(β0). (2.20)

Let Ŝ(β0)obs denote the observed value of the static calculated from the data, and

the p-value is

p− value = P (Ŝ(β0) ≥ Ŝ(β0)obs|H0). (2.21)

13
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The score test only requires the computation of the restricted estimator underH0.

It checks whether the data violate a restriction on a model estimated by maximum

likelihood. If the restricted estimator is near the maximum of the likelihood function,

the score should not differ from zero by more than a sampling error. It is the main

advantage of the score test over the Wald test and the likelihood-ratio test.

After discussing the three tests, we can see that the Score test fits just the re-

stricted model, the Wald test fits just the unrestricted model, and the Likelihood

Ratio test fits both models. Both the Wald and the Lagrange multiplier (or score)

tests are asymptotically equivalent to the LR test in large sample sizes and, in finite

samples, the three will generally come to the same conclusion, although their test

statistics is maybe somewhat different. The advantage of the Wald and Lagrange

multiplier (or score) tests is that they approximate the LR test but require only one

model to be estimated.

2.1.5 Permutation Test

The basic assumption of a permutation test is the “exchangeability” ([20] and [38]).

A permutation test calculates all possible values of the test statistic under possible

rearrangements of the observed data. Under the hypothesis, observations are ex-

changeable if they are independent, identically distributed (i.i.d.), or jointly normal

with equal covariances. If not, the joint distribution of the observations is variant

after permutation. For example, the joint distribution of a set of normally dis-

tributed random variables is invariant under permutations of the variable subscripts

if, in its covariance matrix, all diagonal elements have the same value σ2 and all the

off-diagonal elements have the same value.

Preserving transforms, asymptotic exchangeability, partial exchangeability, and

weak exchangeability have been studied, which enlarged the application of the per-
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mutation test. A set of observations (random variables) X will be said to be trans-

formable exchangeable if there exists a transformation (measurable transformation)

T , such that TX is exchangeable [12]. A set of random variables is weakly ex-

changeable if their joint distribution is invariant for a subset of permutations. For a

sequence of discrete random variables that represent the outcomes of a finite Markov

Chain, if the transition matrix of the Markov Chain is such that Pij = Pji for all i

and j, the sequence is of variables is partially exchangeable [63].

Tusher, Tibshirani, and Chu proposed “Significance Analysis of Microarrays”

(SAM), which is a statistical technique for finding significant genes in a set of mi-

croarray experiments [58]. It uses permutation tests to identify differentially ex-

pressed genes (the expression of any genes is significantly related to the response).

The response variable may be a grouping like untreated, treated (either unpaired or

paired), a multiclass grouping (like breast cancer, lymphoma, colon cancer), a quan-

titative variable (like blood pressure), or a possibly censored survival time. Besides,

SAM can be used on the studies of identifying exonic splicing enhancers, genetic

dissection of transcriptional regulation, and finding binding sites of transcriptional

regulators.

For simple linear regression questions, suppose there are n pairs of observations

of a random variable Y with fixed values of a variable X. We want to test the null

hypothesis of no (linear) relationship between Y and X. For example, the linear

model of Y = µ + βX + ϵ, the null hypothesis is that the slope β = 0. If the null

hypothesis is true, the n observations of Y could have been observed in any order

with respect to the n fixed values of X. In other words, there are n! unique possible

permutations. The only assumption of a related test is that the observations Y are

exchangeable under a null hypothesis [4].

Censored survival data have the form (tj, δj|xij), where i is the index for genes

and j is the index for individuals. The response (time, status) pair, like (10,1) or
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(20,0), is conditional on the gene expression. The first number is survival time, and

the second is status (1=died, 0=censored). SAM considers that each pair (tj, δj) is a

responsible variable and each xij is an explanatory variable [24]. Possible ties in the

survival times are handled by Breslow’s method [9]. Under null hypothesis (the gene

understudying is a NONDEG), the gene expression and the (tj, δj) pairs should have

no relationship. For each gene i, SAM assumes the pairs (tj, δj) are exchangeable

under the null hypothesis. Cox model uses partial likelihood, which involves only the

ranks of the survival times, making the model semiparametric. SAM uses its score

statistic on the permutation test. Under the null hypothesis (the gene understudying

is a NONDEG), the gene expression and the (tj, δj) pairs should have no relationship,

which assures the Type-I error is correct. Under the alternative hypothesis (the gene

understudying is a DEG), gene expression should associated with the (tj, δj) pairs,

assuring power.

SAM uses a modified score test statistic for a permutation test on a full cohort,

in which each gene will be scored [10]. The definition of the score Si for gene i is:

Si =
ri

si+s0
, (2.22)

where ri is a score, si is a standard deviation and s0 is an exchangeability factor to

put the penalty to the genes with overall low expression values. For censored survival

data, ri is defined as

ri =
∑K

k=1(x
∗
ik − dkx̄ik). (2.23)

And si is defined as

si = [
∑K

k=1((
dk
mk

)
∑

j∈Rk
(xij − x̄ik))

2]1/2, (2.24)

where xij is the expression value of gene i for patient j. k be the indices of the K

unique death times z1, z2, ... zK , and R1, R2, ... RK be the indices of the observations

at risk at these unique death times, , that is Rk = {i : ti ≥ zk}. Let mk = #inRk.

Let dk be the number of deaths at time zk. x
∗
ik =

∑
tj=zk

xij and x̄ik =
∑

j∈Rk

xij

mk
.
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In SAM, FDR is defined as:

FDR ≡ E(V
R
) ≡

1
N

∑N
j=1 #(S

(j)
perm(i)

>△)

#(Sobs(i)>△)
, (2.25)

where R is the number of genes that are called a DEG and V is the number of genes

that are incorrectly called a DEG. The decision rule for ith gene to be a DEG: if

S(i) > △, it is; otherwise, it is not. The number of DEGs is related to the cutoff ∆.

The denominator is the number of DEGs found with non-permuted data and related

scores. In the project, it is the number of DEGs found from a full cohort or a full

reconstructed cohort without permutation. The numerator is the average number of

DEGs from N time permutations. For example, from the first permutation, we find

a1 DEGs. And from the second permutation, we find a2 DEGs. Then the average

number of DEGs from 2-time permutations is (a1 + a2)/2. When the number of

permutations, N , is large enough,
1
N

∑N
j=1 #(S

(j)
perm(i)

>△)

#(Sobs(i)>△)
converges to E(V

R
) by large

number theory.

Figure 2.2: Plot of permutation test.

After permutations, valid ∆cutoff can be chosen to control FDR for high-throughput

data or type I error for single genes. For example, if we want FDR to be less than

0.05, we can solve related ∆cutoff from the function’s reverse function (4.1).

We can calculate Sobs(i) with score function [10] for each gene in a full cohort or

rebuild cohort. Using ∆cutoff as the cutoff, the decision rule for ith gene to be a
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DEG: if S(i) > ∆cutoff , it is; otherwise, it is not.

When we apply SAM to a whole cohort, we need to choose the value of a tuning

parameter “delta,” which is related to the significant level. For example, there is

a list of delta in Table 2.1. “M-FP” is the median false positive. “90P-FP” is

90th percent false positive. “M-FDR” is the median FDR. “90P-FDR” is the 90th

percentage FDR. If we want to use the delta related to “M-FDR” 0.05, we should

choose 0.7206676641. Then we use it to identify the list of DEGs.

Figure 2 is a standard output from the manual of SAM [10], where genes have

positive scores or negative scores. The positive scores are related to up-regulated

genes, and the negative scores are related to down-regulated genes. Most of the

genes are shown linearly in the middle of the plot and are not DEGs, and DEGs

are labeled at the left and right tails. Positive significant genes are DEGs in the

up-regulated gene (labeled in red), and significant negative genes are DEGs in the

down-regulated gene (labeled in green).
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Table 2.1: Delta Table of 300 Permutation Test with package SAMR.

delta M-FP 90P-FP called M-FDR 90P-FDR cutlo cuthi

1 0.0000000000 2.04e+04 2.33e+04 43493 0.47 0.54 -4.29e-01 0.33
2 0.0008569176 2.04e+04 2.33e+04 43469 0.47 0.54 -4.31e-01 0.33
3 0.0034276702 2.03e+04 2.33e+04 43404 0.47 0.54 -4.36e-01 0.33
4 0.0077122580 2.02e+04 2.32e+04 43331 0.47 0.54 -4.43e-01 0.33
5 0.0137106809 2.01e+04 2.31e+04 43204 0.46 0.53 -4.55e-01 0.33
6 0.0214229389 1.99e+04 2.29e+04 43005 0.46 0.53 -4.71e-01 0.33
7 0.0308490320 1.96e+04 2.27e+04 42785 0.46 0.53 -4.90e-01 0.33
8 0.0419889602 1.93e+04 2.24e+04 42521 0.45 0.53 -5.13e-01 0.33
9 0.0548427235 1.89e+04 2.20e+04 42195 0.45 0.52 -5.40e-01 0.33
10 0.0694103220 1.85e+04 2.171e+04 41892 0.44 0.52 -5.68e-01 0.33
11 0.0856917555 1.81e+04 2.13e+04 41526 0.44 0.51 -6.01e-01 0.33
12 0.1036870242 1.77e+04 2.10e+04 41170 0.43 0.51 -6.35e-01 0.33
13 0.1233961280 1.72e+04 2.06e+04 40713 0.42 0.51 -6.76e-01 0.33
14 0.1448190669 1.67e+04 2.03e+04 40277 0.42 0.50 -7.18e-01 0.33
15 0.1679558409 1.62e+04 1.98e+04 39826 0.41 0.50 -7.63e-01 0.33
16 0.1928064500 1.56e+04 1.92e+04 39226 0.40 0.49 -8.17e-01 0.33
17 0.2193708942 1.51e+04 1.88e+04 38758 0.39 0.49 -8.68e-01 0.33
18 0.2476491735 1.47e+04 1.84e+04 38184 0.38 0.48 -9.26e-01 0.33
19 0.2776412879 1.42e+04 1.79e+04 37596 0.38 0.48 -9.87e-01 0.33
20 0.3093472375 1.37e+04 1.76e+04 37047 0.37 0.48 -1.05e+00 0.33
21 0.3427670221 1.27e+04 1.66e+04 35745 0.36 0.46 -1.12e+00 0.37
22 0.3779006419 1.08e+04 1.48e+04 33265 0.32 0.45 -1.19e+00 0.47
23 0.4147480968 9.08e+03 1.294e+04 30921 0.29 0.42 -1.26e+00 0.58
24 0.4533093868 7.11e+03 1.08e+04 27709 0.26 0.39 -1.34e+00 0.72
25 0.4935845119 5.49e+03 8.82e+03 24619 0.22 0.36 -1.44e+00 0.85
26 0.5355734721 3.81e+03 6.66e+03 20719 0.18 0.32 -1.53e+00 1.03
27 0.5792762674 2.55e+03 4.85e+03 17124 0.15 0.28 -1.62e+00 1.22
28 0.6246928979 1.43e+03 3.11e+03 12877 0.11 0.24 -1.72e+00 1.47
29 0.6718233634 6.56e+02 1.75e+03 8680 0.076 0.20 -1.82e+00 1.80
30 0.7206676641 2.26e+02 7.30e+02 4485 0.050 0.16 -1.93e+00 2.43
31 0.7712257998 1.24e+02 4.56e+02 3360 0.037 0.14 -2.06e+00 2.73
32 0.8234977707 7.34e+01 3.00e+02 2698 0.027 0.11 -2.17e+00 2.95
33 0.8774835767 4.12e+01 2.02e+02 2167 0.019 0.093 -2.30e+00 3.11
34 0.9331832178 1.97e+01 1.13e+02 1549 0.013 0.073 -2.47e+00 3.24
35 0.9905966940 1.01e+01 6.57e+01 1124 0.0090 0.058 -2.63e+00 3.39
36 1.0497240053 5.37e+00 3.65e+01 840 0.0064 0.043 -2.79e+00 3.49
... ... ... ... ... ... ... ... ...
48 1.8929308798 0.00e+00 0.00e+00 5 0.00 0.00 -1.00e+10 5.20
49 1.9743380476 0.00e+00 0.00e+00 5 0.00 0.00 -1.00e+10 5.20
50 2.0574590504 0.00e+00 0.00e+00 2 0.00 0.00 -1.00e+10 5.49
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2.2 Case Cohort Study Design

Case-Cohort study design is a kind of advanced Case-Control design, which keeps

the properties of both Case-Control Study and Cohort Study ([30] [26]). Case-

control study design identifies cases and controls and looks back to see if these cases’

characteristics differ from controls [51]. Cases are individuals who develop the disease

or outcome, and controls are individuals without the disease and outcome. The

measure of association for a case-control study is typically an odds ratio. The case-

control approach allows for the study of rare diseases [21]. They are efficient for

rare diseases or diseases with a long latency period between exposure and disease

manifestation, and they provide a much cheaper and quicker study of risk factors.

Cohort studies are longitudinal studies that begin with persons who do not have

but are at risk of developing a disease or outcome ([54] [50]). The studies must follow

the individuals over a period (usually several years). During follow-up, some people

in the cohort will be exposed to a specific risk factor or characteristic until some

develop a disease. We then explore the impact of this factor or feature. The measure

of association is a relative risk, attributable risk, or depicted with survival analysis.

For example, the British Doctors Study identifies the link between smoking and lung

cancer. A cohort study may not be economical when the cohort size is extremely

large and the disease event rate is low, especially for rare diseases.

The case-cohort (CCH) study design is a prospective observational study design

that blends the economy of case-control studies with the philosophical soundness

of cohort studies because not all members of the parent cohort require diagnostic

testing ([52] [28]). For example, when dealing with rare outcomes or diseases, there

is a disproportionately high number of controls. Similar to the idea of case-control

study designs, it makes little sense to process all controls. In a CCH, controls are

randomly selected from the parent cohort, forming a subcohort (a random sample

20



Chapter 2. Background

of the full (parent) cohort). At the time of analysis, all cases outside the subcohort

will be added to the sample. In other words, a CCH sample consists of all cases of

the full cohort, but only the controls in the subcohort. So CCH design can save time

and money on the controls out of subcohort. CCH design will also reduce selection

bias, as cases and controls are sampled from the same population. A CCH analysis

is best suited to data that is cheap to collect but expensive to analyze or process.

Taking a blood or tissue sample is relatively quick and easy, but fully genotyping an

individual from such a sample requires considerably greater resources.

Building a likelihood function is indispensable to identify DEGs in data of a CCH

study design. Similar to the partial likelihood function of a full cohort (equation 2.3),

a weighted likelihood was proposed to account for the sampling scheme in a CCH

study (equation 2.26) [39]. For survival time 1 to n, δj is 0 if there is no event and

one if there is an event. ωj is the weight for individual i, and the summation in the

denominator only includes individuals at risk who are also in the subcohort (S is the

subcohort and R(tj) is the risk set on time tj). Individual j, however, can either be

a case from inside or outside of the subcohort. xj is its gene expression. Based on

this weighted likelihood, methods to do significance testing and interval estimation

for β̂ were proposed.

L̃(β) =
n∏

j=1

 exjβ

ωje
xjβ+

∑
i ̸=j

i∈R(tj)∩S

ωiexiβ


δj

. (2.26)

Under Case-Cohort study design (CCH design), we want to propose novel hypoth-

esis testing methods for the identification of differentially expressed genes for survival

data. This chapter will review related fundamental theories and their applications

in identifying DEGs.
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2.2.1 Prentice’s CCH method

Epidemiologic cohort studies and disease prevention trials can be costly because they

typically require the follow-up of several thousand subjects for many years. Synthetic

case-control designs had been used to reduce the number of subjects in those studies

and trials. However, some issues remain. Prentice proposed a case-cohort design

to address the problems in these case-control designs [39]. For example, since the

control may serve as a member of the comparison group for different cases, it is

inefficient to align each selected control subject to its matched case in a synthetic

case-control design. CCH selects a random sample, or a stratified random sample,

of the entire cohort, constituting the comparison set of cases in the range of failure

times.

For binary response, the maximum likelihood estimate of the odds ratio is

λ̂ = d1(n0 − d0)d0(n1 − d1)
−1, (2.27)

where d0 and d1 are the number of failures, and n0 and n1 are the number of subjects,

corresponding to the dependence of failure probability on the presence, z = 1, or

absence, z = 0, respectively.

For time to response data, the relative risk parameter β can be estimated using

case-cohort data, considering maximizing the function 2.26. The maximum pseudo-

likelihood estimator β̂ is defined by U(β̂) = 0, where

U(β) = ∂logL̃(β)
∂β

, (2.28)

and

var{U(β)} =
∑n

j=1[var{Uj(β)}+ 2
∑

k|tk<tj
cov{Uk(β), Uj(β)}]. (2.29)

Besides, for β∗ between the maximum pseudolikelihood estimator β̂ and true

22



Chapter 2. Background

value β, the Taylor expansion about the true β evaluated at β̂ gives

n−1/2U(β) = n−1I(β∗)n
1/2(β̂ − β). (2.30)

With equation 2.30, a hypothesis wald test was built, in which we need to itera-

tively fit PH model to get β̂. And we need to compute estimators of the variance of

the prentice score process because the actual values of var{U(β)} can not be com-

puted and need to be estimated. The estimator of variance matrix prentice used is

below.

Ṽ (β) =
∑n

j=1 δj{vjj + 2∆(tj)
∑

k|tk<tj
δkvkj}. (2.31)

2.2.2 Self-Prentice’s CCH method

In Prentice’s CCH method, the martingale method was applied. When certain gen-

erating σ − algebras were not nested, the martingale convergence results were not

sufficient. In self and Prentice [49], they developed another asymptotic distribu-

tion theory for the case-cohort maximum pseudolikelihood estimator, β̃, and related

quantities using a combination of martingale and finite population convergence re-

sults.

β̃ →p β0. (2.32)

n−1/2Ũ(β0, 1) →D N(0,Σ +∆). (2.33)

β̃ is a point estimation of β0. Consistency of β̃ to β0 and asymptotic normality of

the score statistic Ũ(β0, 1) were proved. With equations 2.32 and 2.33, asymptotic

normality of β̃ was also proved. Conditions were listed to ensure the asymptotic

distribution theories.

n1/2(β̃ − β0) →D N(0,Σ−1 + Σ−1∆Σ−1). (2.34)
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With equation 2.34, a hypothesis Wald test was built, in which we need to itera-

tively fit the PH model to get β̃. And we need to compute estimators of Σ and ∆,

because the real values of Σ and ∆ can not be computed and need to be estimated.

The estimators they used are in equations 2.35 and 2.36.

Σ̃(β̃) = 1
n

∫ 1

0
Ṽ (β̃, t) dN̄(t). (2.35)

△̃(β̃) = 1
n2

∫ 1

0

∫ 1

0
G̃(β̃, x, w) dN̄(x) dN̄(w). (2.36)

2.2.3 Lin-Ying’s CCH method

D. Y. LIN and Z. YING [16] proposed an approximate partial likelihood estimator

(APLE) to the true value β0, which is consistent and asymptotically normal under

regularity conditions.

The approximate partial-likelihood score function can be written in equation 2.37,

which is a function of the sum over the uncensored failure times of the observed value

of Zi(Xi) minus its “estimated” conditional expectation. The APLE β̃ is the root to

the Ũ(β) = 0.

Ũ(β) =
∑n

i=1 ∆iHi(Xi){Zi(Xi)− E(β,Xi)}. (2.37)

Under the assumptions that A(β0) is nonsingular and that Ũ(β) = 0 has a unique

root, n1/2(β̃ − β0) is asymptotically normal with mean 0 and covariance matrix

A−1(β0)B(β0)A
−1(β0)

′
, which can be estimated as A−1

n (β̃0)Bn(β̃0)A
−1
n (β̃0)

′
, where all

variables/matrix were explictly defined in [16].

n1/2(β̃ − β0) →D N(0, A−1(β0)B(β0)A
−1(β0)

′
). (2.38)

Their variance estimator is a Jackknife estimator and is much easier to calculate

than the estimators of Prentice [39] and Self and Prentice [49]. Furthermore, if there
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are multiple subcohort augmentations, its form will keep unchanged. Furthermost,

incomplete covariate measurements on the cases are allowed in the estimator.

2.2.4 Barlow’s CCH method

Barlow [6] proposed a weighted CCH analysis. Tables 1 and 2 (from Barlow’s paper)

describe the basic idea. For a full cohort with n subjects, there are m failure and

n −m censor. When sampling fraction, the percentage of subcohort to full cohort,

is α, the expected cell frequencies for each cell are listed in Table 1. In Barlow’s

method, the weights are proportional to the subcohort size. For example, if the

sampling fraction is 0.2, Barlow’s method weighs controls in the subcohort as 5.

Since all cases are included in this design, cases outside the subcohort are given a

weight of 1. Subcohort cases are treated in two ways.—Before their event, they are

weighted with a factor of 5, just like the controls. But at the time of their event, they

are treated like cases outside the subcohort, with the weight of 1. So his method is

sensitive to the sampling fraction.

He also compared his method with prentice and self-prentice methods. Table

2 (from Barlow’s paper) describes the weighting schemes for the three ways. For

prentice’s approach, only weight “Case outside subcohort before failure” to 0 and

weight all rest situations to 1. And for the Self and Prentice method, only weight

“Case outside subcohort before failure” and “Case outside subcohort at failure” to

0 and weight all rest situations to 1.
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When a case outside of sub-cohort suddenly appears at its own failure time, this

may cause a correlation if this case was not included in the earlier failure time [6].

Barlow used a simple jackknife variance estimate on the estimation of true value β

to consider the correlation. The equation is listed below. ∆(β̂j) is the change of β̂ if

the jth individual is deleted, and it is a p-dimensional vector for p covariates.

V ar(β̂) =
∑

i(∆(β̂j))p∗1(∆(β̂j)
T )1∗p. (2.39)

2.2.5 CCH designs on high-throughput genomic studies

Onland [35] compared three CCH analysis methods, Prentice, Self and Prentice, and

Barlow, in the context of fitting models. As discussed above, these methods use

different weighting schemes for controls and cases inside or outside the subcohort.

The CCH designs can be used in high-throughput genomic studies. But compared

with full cohort study designs, the related research is rarely reported.

In John Carl Pesko ’s Ph.D. dissertation [37], the performance of four CCH

methods (Prentice, Self-Prentice, Lin-Ying, and Barlow) were compared on Genomic

Data, which is high-throughput as the number of features is usually far greater than

the number of observations. The purpose is to identify differentially expressed genes

(DEGs) from the actual and simulated datasets with the four methods and explore

their difference. True DEGs are known in simulation studies. So he can estimate

the power of a method with the proportion of DEGs found to be significant and the
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FDR with the ratio of significant genes that are not DEGs.

(a) Pseudo-FDR (b) Pseudo-power

Figure 2.3: Box plots displaying the pseudo-FDR and Pseudo-power achieved by
each CCH method for the childhood leukemia dataset. Each box represents the 5-
number summary for pseudo-FDR and Pseudo-power over 100 samples for a given
level of π, with black dots indicating outliers. The smooth lines represent the mean
pseudo-FDR for each method. (The images are from John’s dissertation)

For real data, true DEGs are not known, but it is possible to investigate how well

a CCH analysis captures the results from a complete cohort analysis. To do this,

two measures, pseudo-FDR, and high pseudo-power were defined. Pseudo-FDR is

the proportion of significant genes in a CCH analysis that are not also detected by the

full cohort analysis, while pseudo-power is the proportion of significant genes from

the full cohort analysis that are detected by a CCH analysis. For a CCH method

to be considered an adequate substitute for complete cohort analysis, it should have

low pseudo-FDR and high pseudo-power.

The left sub-figure of Figure 2.3 shows the pseudo-FDR achieved by each CCH

method. Lower pseudo-FDR indicates good performance. The right sub-figure of

Figure 2.3 displays the pseudo-power achieved by each CCH method. Higher pseudo-

power means good performance.
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(a) venn (b) scatter

Figure 2.4: Left-subfigure: the Venn diagram of the CCH method agreement for the
childhood leukemia dataset considers the top 200 genes identified by each method.
Counts in overlapping regions indicate the number of the top 200 genes agreed upon
by the approaches involved in the overlap. Right-subfigure: Scatter plot matrix
of gene ranking by method for the simulated data. Genes are ranked from 1 to
200 in order from most to least significant, based on their adjusted p-value. The
lower triangle displays the bivariate scatter plots, while the upper triangle shows
the corresponding correlation coefficient (Pearson’s r). (The images are from John’s
dissertation)

Results show that the performance of the four methods differs in small subcohorts.

For example, Barlow and Lin & Ying demonstrate much higher pseudo-FDR than

the other two methods, and Self-Prentice exhibited a large amount of variability at

π = 10%. As π increases, the performance of the four methods becomes similar.

For example, mean pseudo-FDR tends to decrease, and the distribution of pseudo-

FDR for each method approaches a similar shape, particularly when π ≥ 40%. For

pseudo-power, they have a similar pattern.

In addition to FDR and power, two approaches were used to consider method

concordance. The Venn diagram (Left-subfigure of Figure 2.4) displayed how many

genes identified as significant across methods are the same. The overlap indicates

the number of shared genes among the top 200 most significant genes identified by
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each way. As at least 150 out of 200 genes are the same, the results show high

concordance among the four methods. And a scatter plot matrix (Right-subfigure

of Figure 2.4) compares how similarly the top genes are ranked in each way. A

correlation coefficient of 1 would indicate perfect agreement between two methods,

and 0 would indicate definitive agreement between two approaches. The results show

a high correlation among the four methods.

29



Chapter 3

A CCH-Based Score Test

Improving DEGs’ identification under CCH has medical and biological values. We

want to combine the advantages of the CCH study design and score test in differential

gene expression analysis of rare diseases.

Self and Prentice [49] proved the asymptotic normality of the “CCH score pro-

cess”, Ũ(β0, 1), in equation 3.1, which is defined as the first derivative of the log

Pseudolikelihood function. The variance matrix Σ(β0) and ∆(β0) are positive defi-

nite matrix. However, the specific form of related functions to compute Σ(β0) and

∆(β0) can not be explicitly defined. For example, we do not know the specific form

of functions (Refer to Appendix A). Σ(β0) and ∆(β0) can not be computed and

need to be estimated. Prentice and Self estimated Σ(β0) and ∆(β0) with Σ̃(β̃) and

∆̃(β̃) at β̃. To acquire β̃, need to fit the Coxph model iteratively. Convergence and

computational cost are potential risks.

In this chapter, a CCH-based score test was proposed, in which the covariance

matrix Σ(β0) and ∆(β0) in the asymptotic chi-square distribution of CCH were es-

timated at β0 rather than at β̃. The Cox PH model requires β0 = 0 for NONDEGs,

which makes that survival time has no association with gene expression data. Fur-
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thermore, the “Score Process” was acquired by deriving the first derivative of the log

Pseudo-likelihood function. Then, a test statistic with Chi-squared distribution was

built to calculate the p-value under the null hypothesis of the proposed score test,

β = 0, which is equivalent to the null hypothesis that the tested gene is a NON-

DEG. Simulation studies were conducted to study the Type-I error and power for

a single gene, and false discovery rate (FDR) and power for high-throughput data.

Besides, real datasets were applied to measure the consistency between the proposed

CCH-based test and the full cohort analysis method.

3.1 Asymptotical Distribution of the CCH Score

The “CCH score process”, Ũ(β0, 1), asymptotically follows a normal distribution.

n−1/2Ũ(β0, 1) →D N(0,Σ(β0) + ∆(β0)). (3.1)

Σ(β0) and ∆(β0) are positive definite. With singular value decomposition, we get

(Σ(β0) + ∆(β0))
(−1/2)n−1/2Ũ(β0, 1) →D N(0, I). (3.2)

By squaring (Σ(β0)+∆(β0))
(−1/2)n−1/2Ũ(β0, 1), a CCH-based score test statistic can

be found, which has an asymptotic chi-square distribution.

n−1Ũ(β0, 1)
T (Σ(β0) + ∆(β0))

−1Ũ(β0, 1) →D χ2
k. (3.3)

When β is a single variable, the equation 3.3 has a simple form.

n−1 Ũ(β0,1)2

Σ(β0)+∆(β0)
→D χ2

1. (3.4)

When β is a single variable and under the null hypothesis, β = 0, a Z-test or a

chi-square test is equivalent to identifying DEGs. When we use a Z-test, the gene

is up-regulated if the statistic has a positive value, and the gene is down-regulated
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if the statistic has a negative value. However, different datasets have different gene

expression values; some have magnitude gene expressions and large covariance. If

divided by their variance, a positive value, their test statistics are “standardized,”

which is an advantage of using chi-square distribution.

3.2 A Proposed Chi-Square Score Test

To propose a Chi-Square Score Test, the variance matrix Σ and ∆ need to be esti-

mated, and Ũ(β0, 1) need to be calculated. They will be shown step by step in the

next subsections.

3.2.1 Estimating the variance matrix of the asymptotic Chi-

Square distribution

The Cox proportional hazards model for the hazard process yields

λj(t) = Yj(t)λ0(t)r{β
′
0Zj(t)}, (3.5)

where λ0 is a fixed function under the proportional hazards assumption, and Yj(t)

is an indicator function. At time t, if the jth patient/observation is “at risk” for

observable failure, Yj(t) = 1. Otherwise, Yj(t) = 0. Consistent with the method

of simulating the data for the proportional hazards model (Refer to Section 3.3),

r(x) = exp(x), r(1)(x) = dr(x)/dx and r(2)(x) = dr(1)(x)/dx . For each unique

event/failure time t,

r{β ′
0Zl(t)} = exp(β

′
0Zl(t)), (3.6)

r(1){β ′
0Zl(t)} = dr{β ′

0Zl(t)}/d{β
′
0Zl(t)} = d(exp(β

′
0Zl(t)))/d{β

′
0Zl(t)} = exp(β

′
0Zl(t)),
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(3.7)

and

r(2){β ′
0Zl(t)} = dr(1){β ′

0Zl(t)}/d{β
′
0Zl(t)} = d(exp(β

′
0Zl(t)))/d{β

′
0Zl(t)} = exp(β

′
0Zl(t)).

(3.8)

Under the null hypothesis, β0 = 0, r{β ′
0Zl(t)} = 1 and r(i){β ′

0Zl(t)} = 1, i = 1 or 2.

We also need function u(x) = log(r(x)) = x. Similarly, u(1)(x) = du(x)/dx = 1 and

u(2)(x) = du(1)(x)/dx = 0.

Self and Prentice [49] defined specific forms of functions to prove asymptotical

normality of β̃ and to estimate the true value of β0 by β̃, but they did not set up

a score test with their theory. We can reference these functions to do hypothesis

testing and propose a Chi-Square score test on the CCH data. However, we need

to expand them at β0, not at β̃, because β0 is assumed to be known under null

hypothesis, which is one advantage of the CCH-based Score Test.

For each unique event time t and each patient/observation l in a CCH, X
(i)
l (β0, t)

and S̃(i)(β0, t) are defined below, for i = 0, 1 and 2, respectively.

X
(0)
l (β0, t) = r{β ′

0Zl(t)} = exp(β
′
0Zl(t)). (3.9)

X
(1)
l (β0, t) = Zl(t)r

(1){β ′
0Zl(t)} = Zl(t)exp(β

′
0Zl(t)). (3.10)

X
(2)
l (β0, t) = Zl(t)

⊗2u(1){β ′
0Zl(t)}2r{β

′
0Zl(t)} = Zl(t)

⊗2exp(β
′
0Zl(t)), (3.11)

where z⊗2 denotes the p ∗ p matrix with (i, j) element zizj for any z
′
= (z1, z2, ...zp).

When β0 = 0, X
(0)
l (0, t) = 1, X

(1)
l (0, t) = Zl(t) and X

(2)
l (0, t) = Zl(t)

⊗2.

S̃(i)(β0, t) = ñ−1
∑

l∈C̃ Yl(t)X
(i)
l (β0, t), (3.12)

where ñ−1 is the number of patients/observations in the CCH, for i = 0, 1 and 2,

respectively.
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Under the null hypothesis, β = 0, the values of S̃(i)(0, t) can be calculated by the

functions below.

S̃(0)(0, t) = ñ−1
∑

l∈C̃ Yl(t)X
(0)
l (0, t) = ñ−1

∑
l∈C̃ Yl(t). (3.13)

S̃(1)(0, t) = ñ−1
∑

l∈C̃ Yl(t)X
(1)
l (0, t) = ñ−1

∑
l∈C̃ Yl(t)Zl(t). (3.14)

S̃(2)(0, t) = ñ−1
∑

l∈C̃ Yl(t)X
(2)
l (0, t) = ñ−1

∑
l∈C̃ Yl(t)Zl(t)

⊗2. (3.15)

And define

Ẽ(β0, t) = S̃(1)(β0, t)/S̃
(0)(β0, t), (3.16)

Ṽ (β0, t) = S̃(2)(β0, t)/S̃
(0)(β0, t)− Ẽ(β0, t)

⊗2, (3.17)

and

Σ̃(β0) =
1
n

∫ 1

0
Ṽ (β0, t) dN̄(t). (3.18)

For x,w ∈ [0, 1]2, Q̃(i)(β0, x, w), H̃
(i)(β0, x, w) and G̃(β0, x, w) are defined below

for i = 0, 1 and 2, respectively. They are bounded on β0 × [0, 1]2.

Q̃(0)(β0, x, w) = ñ−1
∑

l∈C̃ Yl(t)Yl(w)X
(0)
l (β0, x)X

(0)
l (β0, w). (3.19)

Q̃(1)(β0, x, w) = ñ−1
∑

l∈C̃ Yl(t)Yl(w)X
(1)
l (β0, x)X

(1)
l (β1, w). (3.20)

Q̃(2)(β0, x, w) = ñ−1
∑

l∈C̃ Yl(t)Yl(w)X
(0)
l (β0, x)X

(1)
l (β1, w). (3.21)

H̃(0)(β0, x, w) = Q̃(0)(β0, x, w)− S̃(0)(β0, x)S̃
(0)(β0, w). (3.22)

H̃(1)(β0, x, w) = Q̃(1)(β0, x, w)− S̃(1)(β0, x)S̃
(1)(β0, w)

′
. (3.23)

H̃(2)(β0, x, w) = Q̃(2)(β0, x, w)− S̃(0)(β0, x)S̃
(1)(β0, w). (3.24)

G̃(β0, x, w) =
1−α̃
α̃

[{S̃(0)(β0, x)S̃
(0)(β0, w)}−1H̃(1)(β0, x, w)

+{S̃(0)(β0, x)S̃
(0)(β0, w)}−2S̃(1)(β0, x)S̃

(1)(β0, w)
T H̃(0)(β0, x, w)

−S̃(0)(β0, x)
−1S̃(0)(β0, w)

−2S̃(1)(β0, w)H̃
(2)(β0, w, x)

−S̃(0)(β0, w)
−1S̃(0)(β0, x)

−2S̃(1)(β0, x)H̃
(2)(β0, x, w)],

(3.25)
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where α̃ = (1 − eventRate) × sr + eventRate. The eventRate is the event rate in

the full cohort, and sr is the subfraction of the subcohort out of the full cohort.

△̃(β0) =
1
n2

∫ 1

0

∫ 1

0
G̃(β0, x, w) dN̄(x) dN̄(w). (3.26)

3.2.2 Computing the “Score Process” from the Pseudo-likelihood

function

A weighted likelihood function was proposed [39] to account for the sampling scheme

in a CCH study.

L(β) =
∏
j∈E

exjβ

exjβ+
∑
k∈S
k ̸=i

Yke
xkβ , (3.27)

where E is the set of unique event time. In each unique event time j, xj is the

gene expression value of the case in the event at time j. If more than one case has

an event at the same time, we compute the contribution of each of them separately

and then multiply them together. The summation in the denominator only includes

individuals at risk who are also in the subcohort. Yk indicates whether patient k

is in risk at event time j or not. If in risk, Yk = 1. Otherwise, Yk = 0. However,

individuals related with event time j can either be a case from inside or outside of

the subcohort.

logL(β) =
∑
j∈E

[logexjβ − log(exjβ +
∑
k∈S
k ̸=j

Yke
xkβ)]. (3.28)

∂logL(β)
∂β

=
∑
j∈E

[
xje

xjβ

exjβ
−

xje
xjβ+

∑
k∈S
k ̸=j

Ykxke
xkβ

exjβ+
∑
k∈S
k ̸=j

Yke
xkβ ]. (3.29)
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Ũ(β, 1) = ∂logL(β)
∂β

=
∑
j∈E

[
xje

xjβ

exjβ
−

xje
xjβ+

∑
k∈S
k ̸=j

Ykxke
xkβ

exjβ+
∑
k∈S
k ̸=j

Yke
xkβ ]. (3.30)

When expanding the equation in β0 and, under null hypothesis, β = 0, we have

∂logL(β)
∂β

|β=0 =
∑
j∈E

[xj −

xj+
∑
k∈S
k ̸=j

Ykxk

1+
∑
k∈S
k ̸=j

Yk
]. (3.31)

By the definition of “Score” process, Ũ(β0 = 0, 1) has the form of function 3.32,

which can be looked as, summation of gene expression value of each case minus the

related weighted average gene expression value.

Ũ(β0 = 0, 1) = ∂logL(β)
∂β

|β=0 =
∑
j∈E

[xj −

xj+
∑
k∈S
k ̸=j

Ykxk

1+
∑
k∈S
k ̸=j

Yk
]. (3.32)

3.2.3 Setting up CCH score test statistic

Σ(β0) can be estimated by Σ̃(β0), and ∆(β0) can be estimated by ∆̃(β0) (See appendix

A for details). The estimators can be calculated from equation 3.18 and equation

3.26, respectively. Then we can approximately write the score test statistic for CCH

design as:

n−1Ũ(β0, 1)
T ( ˜Σ(β0) + ∆̃(β0))

−1Ũ(β0, 1) →D χ2
k. (3.33)

When β is a single variable and under the null hypothesis, β = β0 = 0, the equation

3.33 has a simple form (equation 3.34). n−1 Ũ(β0=0,1)2

Σ̃(β0=0)+∆̃(β0=0)
is used as the test statistic

in the proposed CCH based score test, which follows a χ2
1 distribution. Where

Ũ(β0 = 0, 1) can be calucated from equation 3.32.

n−1 Ũ(β0=0,1)2

Σ̃(β0=0)+∆̃(β0=0)
→D χ2

1. (3.34)
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3.3 Simulation Study

3.3.1 Data Simulation

Bender et al. [7] discussed techniques to generate survival times for simulation stud-

ies regarding Cox proportional hazards models. The survival function of the Cox

proportional hazards model is given by

S(t|x) = exp[−H0(t)e
xβ], (3.35)

where H0(t) is the cumulative hazard function, and β is the vector of regression

coefficients associated with the predictor covariates x. The distribution function of

the Cox model is

F (t|x) = 1− exp[−H0(t)e
xβ]. (3.36)

As F (t|x) follows a continuous U(0, 1) distribution, a random variable U = 1 −

F (t|x) = exp[−H0(t)e
xβ] also follows a continuous U(0, 1) distribution.

By the inverse Probability integral transform (PIT), survival time T can be writ-

ten as a random variable:

T = S−1(U |x) = H−1
0

(
− log(U)

exβ

)
. (3.37)

Using a Weibull distribution with scale λ and shape ρ, the inverse of the cumu-

lative hazard function is below:

H−1
0 (t) = (λ−1t)1/ρ. (3.38)

Based on the two formulas above, survival times can be generated with:

T =
(
− log(U)

λexβ

) 1
ρ
. (3.39)
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We can use equation 3.39 to generate survival times. What we need are to

generate a set of realization u, choose a β = log(HR), generate a set of x from

Normal(0, 1) distribution, and plug them into the equation. Then we can get a set

of survival times.

Survival times can be used to generate one gene expression vector (the length

of the vector is the size of all patients). For our simulations, the shape, scale, and

censoring rate parameters were fixed at ρ = 1, λ = 1, and λcens = 10 to give an

incidence rate near 10%. To generate gene expression of many DEGs, we generate

survival times and censoring information using the method described above and

rewrite the survival time equation in terms of xij. The expression level of gene i for

individual j is:

xij =
−log

(
−λt

ρ
j

log(Uj)

)
βi

+ eij,
(3.40)

where the eijs are N(0, 1) perturbations. We draw a set of perturbations to generate

expression levels for each DEG. To ensure each expression level and survival time

correlate around the original pair. We did a check. If the correlation between per-

turbation and survival time is between 0.8 and 1.2 times the correlation between

original expression and survival time, we accept the perturbated expression values

and add the vector to the dataset. Otherwise, we redo the perturbation. We can

draw random numbers for the null genes since we only care that they are unrelated

to survival.

We need to separate the controls and cases in a survival analysis study. For all

patients, draw censoring times C ∼ Exp(λcens), and compare them to their corre-

sponding survival times. If censoring occurs after the survival time (censoring time

is longer than the survival time) for an individual, he/she was observed to have

experienced an event and is considered a case. Otherwise, he/she is in the control

group.
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Simulating single DEG or single NONDEG datasets

For simulated data, we need to know which genes are DEGs and which are NON-

DEGs. For NONDEG genes, we picked β = 0 on equation 3.37, and we simulated

1000 NONDEG genes for each combination of event rate (0.05, 0.1, 0.15 and 0.2)

and full cohort size (500, 1000, 1500 and 2000). Each gene was saved as a separate

dataset.

For DEG genes, we picked β = log(effectsize) on Equation 3.37, and “effect

size” can pick values from 1.2 - 1.3 for a low correlation of gene expression value and

survival time, up to 1.7 - 1.8 for a high correlation of expression value and survival

time. We simulated 1000 DEG genes for each combination of event rate (0.05, 0.1,

0.15 and 0.2) and full cohort size (500, 1000, 1500 and 2000). Each gene was saved

as a separate dataset.

Simulating high-throughput datasets

A high-throughput dataset includes DEGs and NONDEGs at the same time. Besides

event rate, effect size, and subfraction for a single gene, the proportion of DEGs in

the dataset should be considered. To consider randomness, 100 dataset with 5%,

10%, 15% or 20% proportion of DEGs were simulated for each combination of event

rate (0.05, 0.1, 0.15 and 0.2) and effect size (1.2 to 1.3, 1.3 to 1.4, ... up to 1.7 to 1.8),

respectively. Each dataset has 1000 patients and 2000 genes, and they were generated

and saved independently. For example, at effect size 1.5 to 1.6, if proportion of DEGs

is 20% and event rate is 0.1, a dataset should include 400 DEGs (2000 genes × 0.2

= 400 genes) and around 100 cases (1000× 0.1 = 100).
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Choosing event rate and fractions of subcohort to sample sub-

cohorts from full-cohorts

CCH designs consider a random sample of the full cohort, called a subcohort. At

the time of analysis, we add all cases outside the subcohort to the sample. In other

words, a CCH sample consists of all cases (both in and out of the subcohort), but

only the controls in the subcohort. For example, if the event rate is 10% (10% of

patients are cases), there are 100 cases out of 1000 patients. Fraction of subcohort

are 10%, 20%, 30%, 40%, 50%, 60% 70%, 80%, and 90%, respectively. If fraction

is 20%, the expected number of patients in a sample is 280 (1000*0.2*0.9 + 100 =

280). Shown in Table 3.2).

Sub-cohort Full Cohort Size
Fraction 500 1000 1500 2000

0.1 73 145 218 290
0.2 120 240 360 480
0.3 168 335 503 670
0.4 215 430 645 860
0.5 263 525 788 1050
0.6 310 620 930 1240
0.7 358 715 1073 1430
0.8 405 810 1215 1620
0.9 453 905 1358 1810
1.0 500 1000 1500 2000

Table 3.1: The expected number of patients in a CCH for each sub-fraction. The
event rate is 0.05, and the full cohort size is 500, 1000, 1500, and 2000, respectively.
If Sub-cohort fraction is 20%, the expected number of patients in a sample is 240
(1000× 0.2× 0.95 + 50 = 240).
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Sub-cohort Full Cohort Size
Fraction 500 1000 1500 2000

0.1 95 190 285 380
0.2 140 280 420 560
0.3 185 370 555 740
0.4 230 460 690 920
0.5 275 550 825 1100
0.6 320 640 960 1280
0.7 365 730 1095 1460
0.8 410 820 1230 1640
0.9 453 905 1358 1820
1.0 500 1000 1500 2000

Table 3.2: The expected number of patients in a CCH for each sub-fraction. The
event rate is 0.1, and the full cohort size is 500, 1000, 1500, and 2000, respectively.
. If Sub-cohort fraction is 20%, the expected number of patients in a sample is 280
(1000× 0.2× 0.9 + 100 = 280).

In this study, we choose event rate 0.05, 0.10, 0.15 and 0.20, and full cohort size
500, 1000, 1500 and 2000. The expected number of patients in CCH’s are listed in
Table 3.1 - Table 3.4.

Sub-cohort Full Cohort Size
Fraction 500 1000 1500 2000

0.1 118 235 353 470
0.2 160 320 480 640
0.3 203 405 608 810
0.4 245 490 735 980
0.5 288 575 863 1150
0.6 330 660 990 1320
0.7 373 745 1118 1490
0.8 415 830 1245 1660
0.9 458 915 1373 1830
1.0 500 1000 1500 2000

Table 3.3: The expected number of patients in a CCH for each sub-fraction. The
event rate is 0.15, and the full cohort size is 500, 1000, 1500, and 2000, respectively.
If the Sub-cohort fraction is 20%, the expected number of patients in a sample is 320
(1000× 0.2× 0.85 + 150 = 320).
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Sub-cohort Full Cohort Size
Fraction 500 1000 1500 2000

0.1 140 280 420 560
0.2 180 360 540 720
0.3 220 440 660 880
0.4 260 520 780 1040
0.5 300 600 900 1200
0.6 340 680 1020 1360
0.7 380 760 1140 1520
0.8 420 840 1260 1680
0.9 460 920 1380 1840
1.0 500 1000 1500 2000

Table 3.4: The expected number of patients in a CCH for each sub-fraction. . The
event rate is 0.2, and the full cohort size is 500, 1000, 1500, and 2000, respectively.
If the Sub-cohort fraction is 20%, the expected number of patients in a sample is 360
(1000× 0.2× 0.8 + 200 = 360).

3.3.2 Type I error and power for single gene datasets

To validate our “CCH Score” method, its performance on type I error should be

evaluated. To prove its efficiency, its power should be evaluated. The performance

of Type I error and Power are listed in the figures below. Type I error is defined as

the percentage of falsely identified NONDEGs out of all NONDEGs. For example,

if 50 NONDEGs are falsely identified as DEGs out of all 1000 NONDEGs, the Type

I error = 50/1000 = 0.05. For Power, we simulate 1000 DEG genes with a β larger

than 0 for each parameter’s combination on Equation 3.37. The survival time t will

have a negative association relationship with gene expression value x. t will decreases

if x increases given −log(U) unchanged. The Power is defined as the percentage of

correctly identified DEG genes out of all DEG genes. For example, if you identified

800 out of 1000 DEGs, the Power is 800/1000=0.80. Type I error and Power work

for both full-cohort and Sub-cohort methods.
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Figure 3.1: At case rate 0.05, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and full
cohort 500, 1000, 1500, and 2000, respectively. For example, “5 0500” means at case
rate 0.05 and full cohort size 500.

Figure 3.2: At case rate 0.10, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and full
cohort 500, 1000, 1500, and 2000, respectively. For example, “10 1000” means at
case rate 0.1 and full cohort size 1000.
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Figure 3.3: At case rate 0.15, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and full
cohort 500, 1000, 1500, and 2000, respectively. For example, “15 1500” means at
case rate 0.15 and full cohort size 1500.

Figure 3.4: At case rate 0.20, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and full
cohort 500, 1000, 1500, and 2000, respectively. For example, “20 0500” means at
case rate 0.2 and full cohort size 500.
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Figure 3.1 shows that, at case rate 0.05, Type I error of the “CCH Score” method

on simulated single gene data with hazard ratio 1.5-1.6 will decrease quickly with the

increase of subcohort fraction and keep around 0.05 for full cohort size 500, 1000,

1500 and 2000, respectively. Increasing or decreasing the full cohort size will not

influence Type I error at a case rate of 0.05. For case rate 0.10, 0.15 and 0.2, Figure

3.2, Figure 3.3 and Figure 3.4 show similar results.

To evaluate Type I error for different full cohort sizes. Figure 3.5 shows that,

at full cohort 500, Type I error of “CCH Score” method on simulated single gene

data with hazard ratio 1.5-1.6 will decrease quickly with the increase of subcohort

fraction and around 0.05 for case rate 0.05, 0.1, 0.15 and 0.2, respectively. For full

cohort size 1000, 1500 and 2000, Figure 3.6, Figure 3.7 and Figure 3.8 show similar

results.

Figure 3.5: At full cohort 500, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and case
rate 0.05, 0.1, 0.15, and 0.2, respectively. For example, “20 0500” means at case rate
0.2 and full cohort size 500.
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Figure 3.6: At full cohort 1000, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and case
rate 0.05, 0.1, 0.15, and 0.2, respectively. For example, “20 1000” means at case rate
0.2 and full cohort size 1000.

Figure 3.7: At full cohort 1500, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and case
rate 0.05, 0.1, 0.15, and 0.2, respectively. For example, “10 1500” means at case rate
0.1 and full cohort size 1500.
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Figure 3.8: At full cohort 2000, Type I error of “CCH Score” method is a function of
subcohort fraction on simulated single gene data with hazard ratio 1.5-1.6 and case
rate 0.05, 0.1, 0.15, and 0.2, respectively. For example, “20 2000” means at case rate
0.2 and full cohort size 2000.

In all, the Type I error of our “CCH Score” method is valid for all tested single

gene data. From a small sample of 500 to a medium sample of 2000, Type I error

works well at event rates 0.05, 0.1, 0.15, and 0.2, which are usually the event rates

range of rare diseases.

Comparing power with other existing CCH based methods

We computed Power of ”CCH Score” method for each combination of event rate

(0.05, 0.10, 0.15 and 0.20) and full cohort size (500, 1000, 1500 and 2000) on subco-

hort fraction from 0.1, 0.2, 0.3 ... 1.0, and compared them with four existing methods

that can also applied to the gene expression analysis under the CCH Design, “Pren-

tice” [39], “SelfPrentice” [49], “LinYing” [16] and “Barlow” [6].

47



Chapter 3. A CCH-Based Score Test

Figure 3.9: At case rate 0.05, comparing the power of the “CCH Score” method with
those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods on simulated
single gene data with hazard ratio 1.5-1.6 and full cohort size 500, 1000, 1500 and
2000, respectively. For example, “Barlow-05-1000” means at case rate 0.05 and full
cohort size 1000, and with the “Barlow” method.

Figure 3.9 shows that, at case rate 0.05, the power of the “CCH Score” method

on simulated single gene data with hazard ratio 1.5-1.6 will increase quickly with the

increase of subcohort fraction and reach the almost same point at subcohort fraction

= 1.0 (full cohort) as the same as other four methods for full cohort size 500, 1000,

1500 and 2000, respectively.
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Figure 3.10: At case rate 0.10, comparing the power of the “CCH Score” method with
those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods on simulated
single gene data with hazard ratio 1.5-1.6 and full cohort size 500, 1000, 1500 and
2000, respectively. For example, “Barlow-10-1000” means at case rate 0.1, full cohort
size 1000, and with the “Barlow” method.
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Figure 3.11: At case rate 0.15, comparing the power of the “CCH Score” method
with those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods methods
on simulated single gene data with hazard ratio 1.5-1.6 and full cohort size 500, 1000,
1500 and 2000, respectively. For example, “Barlow-15-1000” means at case rate 0.15,
full cohort 1000, and with the “Barlow” method.

The power of “CCH Score” method is consistent with the other four existing

methods. Increasing or decreasing the full cohort size will not influence the consis-

tency of the five methods at a case rate of 0.05. Besides, with the increase of the full

cohort size from 500 to 2000, the power will increase. For case rate 0.10, 0.15 and

0.2, Figure 3.10, Figure 3.11 and Figure 3.12 show similar results.
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Figure 3.12: At case rate 0.20, comparing the power of the “CCH Score” method with
those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods on simulated
single gene data with hazard ratio 1.5-1.6 and full cohort size 500, 1000, 1500 and
2000, respectively. For example, “Barlow-20-1000” means at case rate 0.2, full cohort
1000, and with the “Barlow” method.

Figure 3.9 shows that at case rate 0.05 and full cohort size 500, the power of

the ”Barlow” method has an apparent drop down, as it fails to return a p-value

200 times out of 1000 simulation, which essentially decreases its power. ”Prentice,”

”SelfPrentice,” ”LinYing,” and ”Barlow” methods need to iteratively fit the PH

model to estimate β̃ and have a risk to fail convergence. There are more examples in

the next chapter. ”CCH Score” method only involves matrix calculation, does not

51



Chapter 3. A CCH-Based Score Test

need to fit the PH model to estimate β, and does not need to consider the convergence

problem. Compared with other methods, it is robust and would not lose power from

missing return p-values.

Figure 3.13: At full cohort size 500, compare the power of the “CCH Score” method
with those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods on sim-
ulated single gene data with hazard ratio 1.5-1.6 and case rate 0.05, 0.1, 0.15 and
0.2, respectively. For example, “Barlow-05-500” means at case rate 0.05, full cohort
size 500, and with the “Barlow” method.
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Figure 3.14: At full cohort size 1000, compare the power of the “CCH Score” method
with those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods on sim-
ulated single gene data with hazard ratio 1.5-1.6 and case rate 0.05, 0.1, 0.15 and
0.2, respectively. For example, “Barlow-10-1000” means at case rate 0.1, full cohort
size 1000, and with the “Barlow” method.

Figure 3.13 shows that the results of simulated single gene data with hazard

ratio 1.5-1.6 or full cohort size 500, 1000, 1500, and 2000, respectively. At full

cohort size 500, the power of the “CCH Score” method will increase quickly with the

increase of subcohort fraction and reach the almost same point at subcohort fraction

= 1.0 (full cohort) as the same as the other four methods, “Prentice,” “SelfPrentice,”

“LinYing,” and “Barlow.” The “CCH Score” performance is consistent well with the
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other four existing methods. Increasing or decreasing the case rate will not influence

the consistency of the five methods at a full cohort size of 500. Besides, with the

increase of case rate from 0.05 to 0.2, the Power will increase. For full cohort size 1000,

1500, and 2000, Figure 3.14, Figure 3.15 and Figure 3.16 show similar results. In all,

the Power of our “CCH Score” method is consistent well with existing mainstream

methods. From a small sample size of 500 to a medium sample size of 2000, the

Power works well at different event rates.

Figure 3.15: At full cohort size 1500, compare the power of the “CCH Score” method
with those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods on sim-
ulated single gene data with hazard ratio 1.5-1.6 and case rate 0.05, 0.1, 0.15 and
0.2, respectively. For example, “Barlow-05-1500” means at case rate 0.05, full cohort
size 1500, and with the “Barlow” method.
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Figure 3.16: At full cohort size 2000, compare the power of the “CCH Score” method
with those of “Prentice,” “SelfPrentice,” “LinYing,” and “Barlow” methods on sim-
ulated single gene data with hazard ratio 1.5-1.6 and case rate 0.05, 0.1, 0.15 and
0.2, respectively. For example, “Barlow-05-2000” means at case rate 0.05, full cohort
size 2000, and with the “Barlow” method.

To sum up, the Type I errors of the “CCH Score” method on single gene datasets

are valid, which means the procedure is correct. Furthermore, the powers of the

“CCH Score” method are comparable with other mainstream methods, because they

have similar performance in all combinations of event rate and full cohort size. Be-

sides, our “CCH Score” method is more robust than theirs because it does not

iteratively fit the PH model to estimate β̃ and does not need to consider the conver-
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gence problem. The “CCH Score test” method is computationally more robust than

others.

3.3.3 False discovery rate and power on high-throughput

dataset

After testing the performance of the CCH Score method on a single gene dataset, we

want to test how good it is on the high-throughput dataset, which includes DEGs and

NONDEGs simultaneously. For simplicity, we draw a set of perturbations to generate

expression levels for DEGs (The details are in the Data Simulation section). For

simulated data, we know which ones are DEGs and NONDEGs, and labeled them.

Then, we used the false discovery rate (FDR) and power to measure the performance

of CCH based Score test method on the simulated data.

FDR ≡ #(C∩Rc)
#(C) , (3.41)

where C is the set of DEGs identified by the “CCH Score test” method, and R is the

set of true DEGs in the dataset. c indicates the complement of a set. The numerator

is the number of NONDEGs that are falsely called significant by the CCH analysis.,

and the denominator is the total number of genes that are called significant (or a

DEG) by the CCH analysis.

Power is defined as:

Power ≡ #(C∩R)
#(R)

. (3.42)

Power is the proportion of true DEGs that are called significant by a CCH analysis.

As shown in Figure 3.17 and 3.18, FDR of CCH Score method decreases quickly

with the increase of subfraction and keep around 0.05. All five methods have similar

FDR performance with the increase of subfraction.
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Figure 3.17: Comparing FDR of the “CCH Score” method with the other four ex-
isting methods on simulated multiple gene data with hazard ratio 1.4-1.5, case rate
0.1, the proportion of DEG 10%, 2000 genes, and 1000 patients (full cohort).

Figure 3.18: Comparing FDR of the “CCH Score” method with the other four ex-
isting methods on simulated multiple gene data with hazard ratio 1.5-1.6, case rate
0.1, the proportion of DEG 10%, 2000 genes, and 1000 patients (full cohort).
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Figure 3.19: Comparing the power of the “CCH Score” method with the other four
existing methods on simulated multiple gene data with hazard ratio 1.4-1.5, case rate
0.1, the proportion of DEG 10%, 2000 genes, and 1000 patients (full cohort).

Figure 3.20: Comparing the power of the “CCH Score” method with the other four
existing methods on simulated multiple gene data with hazard ratio 1.5-1.6, case rate
0.1, the proportion of DEG 10%, 2000 genes, and 1000 patients (full cohort).
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Figure 3.21: Comparing the power of “CCH Score” method on simulated multiple
gene dataset with or without checking the correlation between genes’ expression and
survival time (hazard ratio 1.4-1.5, case rate 0.1, the proportion of DEG 10%, 2000
genes, and 1000 patient (full cohort)).

Figure 3.22: Comparing the power of “CCH Score” method on simulated multiple
gene dataset with or without checking the correlation between genes’ expression and
survival time (hazard ratio 1.5-1.6, case rate 0.1, the proportion of DEG 10%, 2000
genes, and 1000 patient (full cohort)).
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As shown in Figure 3.19 and 3.20, the Power of the ”CCH Score test” method

increases with the increase of subfraction, and all five methods have similar power

performance in the subfraction.

When we simulate a high-throughput dataset, we should check whether, for all

genes, the correlations between expression value and survival time are similar. To tell

the difference with or without checking, we simulated datasets accordingly. Results

show that “CCH Score” method has more power on the dataset with check than

those without check (shown in Figure 3.21 and 3.22). The reason is that “DEGs”

have scattered gene expression values in a not checking dataset, and some of them

may be close to the random distribution of NONDEGs.

3.4 Application

Measure the Consistency between CCH and Full Cohort Anal-

ysis

We treat the full cohort analysis as “the truth” for real data problems. In other

words, we treat the genes deemed significant by the full cohort analysis as “true”

DEGs. So, we find a baseline to compare the CCH methods.

To evaluate the performance consistency of full-cohort and subcohort-based CCH

methods, we define Type I-agreement and Type II-agreement, which are the same as

“pseudo-FDR” and “pseudo-power” in John’s dissertation [37]. Let F and C be the

sets of genes called significant by the full cohort and subcohort-based CCH analyses,

respectively. To determine the sets of significant genes for each method, we test genes

one by one to get their p-values. P -values were adjusted using the BH procedure,

and genes were called significant if their adjusted p-values were equal to or less than
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0.05. We also define a function #(·) to count the number of significant genes in the

(). Type I-agreement is defined as:

Type I-agreement ≡ #(C∩Fc)
#(C) , (3.43)

where c indicates the complement of a set. The numerator is the number of significant

genes in a CCH analysis but are not detected by the full cohort analysis, and the

denominator is the number of the significant genes in a CCH analysis.

Type II-agreement is defined as:

Type II-agreement ≡ #(C∩F)
#(F)

. (3.44)

Type II-agreement is the proportion of significant genes from the complete cohort

analysis that are detected by a CCH analysis.

For a CCH method to be considered an adequate substitute for full cohort analy-

sis, it should have low Type I-agreement and high Type II-agreement. We think the

DEG found by the full cohort is “true DEG.” For example, if you find 100 DEGs

with the whole cohort, you see 80 “DEG” with a subcohort. 70 out of the 100 “true

DEG,” and the rest 10 are not. As the percentage of falsely discovered DEGs out of

all genes found with a subcohort, the Type I-agreement is 10/(10+70)=12.5%. As

the percentage of true DEGs found with a subcohort out of all ”true DEGs” with

the full cohort, the Type II-agreement is 70/100 = 70%.

Apply CCH Score method on the TCGA RNASeq Version 2

breast cancer dataset

The example features an analysis of the TCGA RNASeq Version 2 breast cancer data

(BRCA). We downloaded the data on October 3, 2017 using the R/Bioconductor

package RTCGAToolbox [48]. The dataset, pre-processed and normalized using the
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RSEM algorithm [31], contains 1, 037 primary tumors, and the clinical data has 988

subjects with primary tumors. After removing 10 males, 71 cases whose follow-up

times are less than or equal to 25 days, and 3 cases that didn’t have RNA-Seq data,

we left 904 subjects for our analysis. BRCA data has 16005 genes, and the whole

genes were selected as a dataset. Of the 904 individuals in the RNA-seq dataset,

only 115 had an event, giving an observed incidence rate of 12.7%. We choose 0.1,

0.2, ... and 0.9 as sub-cohort fraction. For the real dataset, we did simulations 100

times for each sub-cohort fraction.

Figure 3.23: Type I agreement and Type II agreement on one time simulation with
sampling fraction 0.9 for BRCA dataset.

The consistency between an original full cohort analysis method and the CCH-

based score method was measured. As shown in Figure 3.23, for BRCA dataset,

in one time simulation with sampling fraction 0.9, a full cohort analysis identified

373 DEGs, and a full reconstructed cohort identified 376 DEGs. They have 367

DEGs in common. The related “Type I agreement” = 9/(367+9)= 2.4% and “Type

II agreement”=367/(367+6) = 98.4%.
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Figure 3.24: Type I agreement on BRCA data for “Prentice,” “SelfPrentice,” “LinY-
ing,” and “Barlow” and “CCH Score” methods, respectively.

Figure 3.25: Type II agreement on BRCA data for “Prentice,” “SelfPrentice,” “LinY-
ing,” and “Barlow” and “CCH Score” methods, respectively.

For a “CCHScore” method to be considered an adequate substitute for full co-
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hort analysis, it should have to decrease “Type I agreement” and increase “Type

II agreement” with the increasing of subcohort, although “Type I agreement” has

not to be below 5% and “Type II agreement” has not to be above 95%, following

the nominal 0.05 and 0.95 significance levels.

As shown in Figure 3.24, “Prentice” method has 0 values in low sub-cohort frac-

tion, because it cannot find any DEG at low sub-cohort fraction (number of DEG =

0). It is very conservative. The other four methods have a high value at the low sub-

cohort fraction, decreasing gradually with the increasing sub-cohort fraction. CCH-

Score is between the highest Type I agreement and the lowest Type I agreement.

CCHScore has comparative performance with others on “Type I agreement.”

As shown in Figure 3.25, all five methods have low values at low sub-cohort

fractions. They increase gradually with the increase of sub-cohort fraction and reach

almost the same value at sub-cohort fraction = 1 (Full cohort). “Prentice” method

still has 0 values in low sub-cohort fraction, because it cannot find any DEG at

the low sub-cohort fraction (number of DEG = 0). It is conservative. CCH Score

method is between the highest Type I agreement and the lowest Type I agreement.

CCH Score method has a comparative performance with other methods on “Type

II agreement.”
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A Case-Cohort Design Based

Permutation Test

Improving DEGs’ identification has medical and biological values. One alternative

method is to use a permutation test to calculate the false discovery rate (FDR),

which is preferred by researchers who want a list of candidate features that contains

a small number of false positives. Proposed by Fisher [20] and Pitman [38], this

method has been applied on biostatistics and quantized Data Analysis ([59] and

[11]). A permutation test is a non-parametric statistic that obtains the p-value

from the sample-specific permutation distribution of that statistic rather than from

the theoretical distribution derived from the parametric assumption. Permutation

procedures were applied on estimating false discovery rate (FDR) ([58] and [56]).

When permutation tests are used on DEGs’ identification, strong semi-parametric

assumptions and probability distribution assumptions for p-value do not need to be

concerned. Under the null hypothesis of the permutation test (The genes under

study are not DEGs), their FDR is obtained by averaging a large number of possible

FDR values calculated from related rearrangements of the observed data.
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The basic assumption of a permutation test is that the data of the responsible

variable must be exchangeable under the null hypothesis ([20], and [38]). In a CCH

of survival data, the values of the response variable, survival times, exist. However,

the permutation test can not be directly applied to a CCH sample, because the CCH

sample is not a random sample and the gene expression values of controls out of the

subcohort are missing. We want to find a new procedure to identify DEGs, which

can save the benefits of both the CCH and the permutation test. We propose recon-

structing the entire cohort by imputing the missing gene expression values outside the

subcohort and performing the permutation test on the re-constructed whole cohort.

Random sampling with replacement will be used to reconstruct entire cohorts.

In this work, we proposed a permutation-based score test procedure and applied it

to high-throughput gene differential expression analysis under CCH design. Firstly,

we reconstructed the full cohorts by imputing the missing data with resampling

with the replacement method. Then, we performed the CCH-based permutation

test on the reconstructed full cohort to identify the DEGs associated with survival

outcomes. To illustrate the usage and advantages of this method, we evaluated our

testing procedures through simulation studies with datasets generated based on PH

and non-PH models, respectively. Besides, we applied the proposed approach to the

same RNA-sequencing data set (BRCA) and a microarray data set (ALL) from a

leukemia study. Furthermost, we compared the proposed method with some existing

CCH methods that can also be applied to the gene expression analysis under the

CCH Design.

4.1 Rebuilding full cohorts from a CCH sample

The CCH study design is a prospective observational study design that blends the

economy of case-control studies with the philosophical soundness of cohort studies.
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CCH designs consider a random sample of the whole cohort, called a subcohort. At

the time of analysis, add all cases outside the subcohort to the sample. In other

words, a CCH sample consists of all cases (both in and out of the subcohort) but

only the controls in the subcohort. A CCH analysis is best suitable for data that is

cheap to collect but expensive to analyze or process.

Suppose there are p genes and n patients in a full cohort gene dataset. As shown

by the right diagram at the right of Figure 4.1, a CCH gene dataset is a subset of the

full cohort, and the subcohort was randomly chosen from the full cohort. Therefore,

the gene expression values outside the CCH are missing at random. We impute

these missing gene expression values by replacing them with the data obtained from

sampling with replacement from the subcohort. In this way, we can form a new full

cohort data set (as shown in the right diagram in Figure 4.1) for the permutation

test.

Figure 4.1: A CCH sample from a related full cohort.

More specifically, for gene i, the observed data in the full cohort/sample is

(tj, δj, xij) for patient j, where tj = min(Tj, Cj). Tj is the true survival time and

Cj is the censored time (refer Chapter 2.1). As shown in figure 4.2, missing ex-

pression values are imputed by resampling with replacement to form a full cohort

in this project. To explain the “reconstructed full cohort” method, we must con-

sider the relationship between gene expression and survival times. In reconstructed

pairs, survival times are unchanged because they come from the times of controls
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in the whole original cohort, and missing gene expression values are resampled with

replacement from a subcohort randomly. We put an expression value and a survival

time together in a pair by chance. Under the null hypothesis, the expression value

and time have no relationship in the original cohort, “(Tj, Cj)|xij = (Tj, Cj)”. A

subcohort is a random sample of the original cohort, and its expression value and

time should also have no association. As the missing gene expressions are resampled

from the subcohort randomly, they should also have no association with time, which

will keep the type I error or FDR at the corresponding nominal levels.

Figure 4.2: Imputing one gene expression from a CCH to a full cohort.

In computation, the pairs of expression value and time are created by chance.

When they are associated, this will increase type I error. On the other hand, when

they have no relationship, this will not impact type I error. When the sub-cohort

fraction is large enough, the number of expression values resampled with replacement

is small. So the number of pairs with an association is small. When most expression

and time pairs have no relationship, the type I error should keep at the corresponding

nominal levels in the permutation test. The power can be evaluated in simulation

studies.
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4.2 A Proposed Permutation Score Test

Scoring the reconstructed full cohort

Similar with the censored survival full cohort permutation tests, reconstructed full

cohorts of censored survival data were scored in this project. The definition of the

score Si for gene i is:

Si =
rci

sci+sc0
, (4.1)

where rci is the numerator of the score, sci is a standard deviation and sc0 is an

exchangeability factor. We use sc0 = 0 for simplification. For censored survival

data, rci is defined as

rci =
∑K

k=1(x
∗
ik − dkx̄ik). (4.2)

And sci is defined as

sci = [
∑K

k=1((
dk
mk

)
∑

j∈Rk
(xij − x̄ik))

2]1/2, (4.3)

where xij is the expression value of gene i for patient j. xij is either from CCH or

be imputed. As the same as the original full cohort analysis, k be the indices of

the K unique death times z1, z2, ..., zK , and R1, R2, ..., RK be the indices of the

observations at risk at these unique death times, that is Rk = {i : ti ≥ zk}. Let

mk = #inRk. Let dk be the number of deaths at time zk. x∗
ik =

∑
tj=zk

xij and

x̄ik =
∑

j∈Rk

xij

mk
.

As shown in Appendix B, rci = ri +
∑K

k=1(−dk
∑

j∈Rk

eij
mk

), where ri is the

“score process” of the original full cohort and is defined in equation 2.23. As

E(
∑K

k=1(−dk
∑

j∈Rk

eij
mk

)) = 0 under the assumption that eij has mean 0 and finite

variance σ2
e for patient j outside of CCH, E(rci) = ri. Under the null hypothesis,
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the value of ri is close to 0. The value of rci will also fluctuate around 0 under the

large number theory. And under the alternative hypothesis, the absolute value of ri

is large. The value of rci will also fluctuate around the value of ri under the large

number theory. V ar(rci) is finite (equation B.7).

As Si =
rci

sci+sc0
and E(sci

2) ≥ si
2 (shown in Appendix B), the expected score value

of reconstructed full cohort method should be smaller or equal to that of original

full cohort method, which may make the power of the former smaller or equal to the

power of the latter. This relationship makes sense because the former only uses a

part of the original data, while the latter method uses all the original data.

A Score Based Permutation Test

In this project, the null hypothesis of a permutation test is that the gene under testing

is not a DEG. As shown in Figure 2.2, N times permutation were done for each gene.

With the scores of each permuted reconstructed full cohort, we can identify DEGs

by a permutation test. In DEGs, gene expression of n patients is related to survival

time, and this relationship will be broken after permuting the gene expression. The

difference in scores before and after permutations will be tested for each gene with

FDR or p-value method.

Identify DEGs with FDR

We define FDR and identify DEGs as the same as that in SAM [58]. Please see 2.1.5

as a reference.
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Identify DEGs with p-values

To determine the sets of significant genes for a full cohort, we test genes one by

one to get their p-values by equation 4.4. The null hypothesis is that the gene is

not a DEG. P -values were adjusted using the BH procedure, and genes were called

significant if their adjusted p-values were equal to or less than 0.05.

p− value(i) ≡ Pr(S ≥ Sobs(i)|H0) ≡
#(S

(j)
perm(i)

>Sobs(i))

N
. (4.4)

Measuring the consistency between rebuild full cohorts and

the original full cohort

In a simulation study, we simulated DEGs and non-DEGs and labeled them differ-

ently. Type I-error and power can be used to measure the performance of our method

on a single gene, while FDR and power can be used to measure the performance of

our approach on a high-throughput dataset.

For data from real problems, we treat the initial full cohort analysis as “the

truth.” We assume the genes deemed significant by the full cohort analysis as “true”

DEGs. So we have a baseline to which we compare the CCH methods. To evaluate

the performance consistency of full-cohort and subcohort-based CCH methods (re-

constructed full cohort method) for real data, we define Type I-agreement and Type

II-agreement as the same as those in Chapter 3 (Refer 3.4 of Chapter 3).
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4.3 Simulation Studies

4.3.1 Simulation of proportional hazard model data

Data Simulation Method

The data simulation method is the same as the data simulation method of the PH

model in Chapter 3. Please refer to that for details.

Comparing methods of rebuilding full cohorts

Suppose we have an original full cohort and a CCH from the original full cohort.

We proposed and compared three reconstructing full cohort methods, “CCH,” “sub-

cohort,” and “controls in CCH,” and want to figure out which one has the best

performance on power and type I error. As their names indicating, they reconstruct

an entire cohort by resampling with replacement data from a CCH, a subcohort,

or only the controls in the CCH, respectively. To compare them with the random

sampling method, a ”random sample” method randomly selects patients from the

original cohort according to the expected number of patients in the CCH.

As shown in Figure 4.3, 4.4, 4.5 and 4.6, all reconstructing methods have power

higher than that of “random sample” method. “CCH” method has the lowest (best)

Type I error and FDR, but its power is the lowest among the reconstructing meth-

ods. “subcohort” method resamples in a random sample, while “controls in CCH”

resamples in the controls of CCH, which is not a random sample. The latter’s FDR

is slightly higher than 0.05 in large sub-fraction of full cohort and decreases slowly,

although its power is higher than that of the ”subcohort” method. So, we choose

the “subcohort” method as the best method.
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Figure 4.3: Type I error of reconstructing full cohort methods on simulated single
gene data with hazard ratio 1.6-1.7, full cohort size 1000, and case rate 0.1.

Figure 4.4: Power of reconstructing full cohort methods on simulated single gene
data with hazard ratio 1.6-1.7, full cohort size 1000, and case rate 0.1.
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Figure 4.5: FDR of reconstructing full cohort methods on simulated high throughput
gene data with hazard ratio 1.6-1.7, full cohort size 1000, genes 2000, case rate 0.1,
and DEG 10%.

Figure 4.6: Power of reconstructing full cohort methods on simulated high through-
put gene data with hazard ratio 1.6-1.7, full cohort size 1000, genes 2000, case rate
0.1, and DEG 10%.
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Comparing “subcohort” method with existing CCH methods

There are four well know existing CCH methods, “Prentice,” “SelfPrentice,” “LinY-

ing,” and “Barlow.” We want to compare the performance of “subcohort” with them.

As shown in Figure 4.7 and 4.9, the “subcohort” method has high Type I error

and FDR at the low sub-fraction, but they decrease quickly and become valid when

sub-fraction of the full cohort is large enough. Besides, when the subcohort is large

enough and the percentage of cases in patients is not low, or the number of cases

in a dataset is not very rare, the “subcohort” method has very similar performance

to other existing methods. As shown in Figure 4.8 and 4.10, all five ways have

comparable Power when the sub-fraction of a full cohort is large enough.

Figure 4.7: Type I error of subcohort and other existing four methods on simulated
single gene data with hazard ratio 1.6-1.7, full cohort size 1000, and case rate 0.1.
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Figure 4.8: Power of subcohort and other existing four methods on simulated single
gene data with hazard ratio 1.6-1.7, full cohort size 1000, and case rate 0.1.

Figure 4.9: FDR of subcohort and other existing four methods on simulated multiple
gene data with hazard ratio 1.6-1.7, full cohort size 1000, genes 2000, case rate 0.1
and DEG 10%.
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Figure 4.10: Power of subcohort and other existing four methods on simulated mul-
tiple gene data with hazard ratio 1.6-1.7, full cohort size 1000, genes 2000, case rate
0.1 and DEG 10%.

Figure 4.11: Type I error of subcohort and other existing four methods on simulated
single gene data with hazard ratio 1.9-2.0, full cohort size 1000, and case rate 0.002.
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Figure 4.12: Power of subcohort and other existing four methods on simulated single
gene data with hazard ratio 1.9-2.0, full cohort size 1000, and case rate 0.002.

However, for example, when there are 1000 patients and only 5% of them are

cases, there are only 50 cases in the full cohort. The “Barlow” method begins to

infinite Type I error. And when the percentage of cases decreases to 0.2%, the number

of patient events is scarce, only 2 or 3. As shown in Figure 4.11 and Figure 4.12,

“Prentice,” “SelfPrentice,” and “LinYing” methods can keep type-I error around

0.05, but they have low Power. Although the “Barlow” method has relatively high

Power, it cannot stay type-I errors around 0.05, and this means this method is not

correct in the situation. Compared with the existing four methods, our approach can

keep Type I error at approximately 0.05 while having relatively high Power, which is

an advantage of our ”subcohort” method over the other four methods if people need

to study rare event diseases.
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4.3.2 Simulation 1 of non-proportional hazard data

In a proportional hazards model, the hazard ratio remains constant from the be-

ginning to the end of the study. In practice, this does not occur for most medical

interventions. Stensrud et al. [55] discussed three scenarios regarding proportional

hazards. They are “no immediate effect,” “immediate and delayed effects in oppo-

site directions,” and “variations in disease susceptibility” which were illustrated by

three articles previously published in the Journal of the American Medical Associ-

ation (JAMA). These scenarios showed that hazards are not proportional when the

treatment effect changes over time. For example, the hazard ratio was 1.8 during

the first year and 0.70 after five years of follow-up. The overall hazard ratio of 1.24

from a Cox proportional hazards model was a weighted average, which needs to be

interpreted as a weighted average of the actual hazard ratios over the entire follow-up

period.

When hazard rates are non-proportional, the power is lost for both log-rank &

Cox PH tests. Log-rank is no longer the most powerful test, and the score test

based on the Cox model is no longer the best partial-likelihood statistics. Stensrud

[55] implied that statistical tests for non-proportional data are unnecessary because

it varies over the follow-up period, and tests of proportional hazards yielding high

P-values are probably underpowered. Besides, the related problems, such as an

incorrect standard variance estimator will be reported when the statistical model

includes covariates other than the treatment group indicator, or the magnitude of

the Cox hazard ratio depends on the distribution of censoring, should be overcome by

estimating valid 95% confidence intervals with resampling with replacement methods

and by estimating an inverse probability weighted hazard ratio.
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Data Simulation Method

xij =
−log

(
−λt

ρ
j

log(uj)

)
βi

. (4.5)

xij = xij × ratio. (4.6)

xij = xij + eij. (4.7)

The scenarios talked above have two different hazard ratios over the entire follow-

up period. In other words, they are nonproportional hazard data. To simulate a

dataset with two different hazard ratios, we can combine data from two parts to

create a whole cohort. For example, we want to simulate the hazard ratio as 1.8

at the start and 1.2 after three years. We generate survival time first. Then use

equation 4.5 to calculate single gene expression values. We change the values related

with after three years by multiplying the ratio with equation 4.6, where the ratio is

1 for the first years and is 1.8/1.2 after that. For multiple genes, add random values

for gene expression got from equation 4.6.

Type-I error and power for DEGs’ identification in single gene

datasets

For a dataset with two different hazard ratios, there is one hazard ratio for the first

three years and another afterward. When the subcohort is large enough and the

percentage of cases in patients is not low, or the number of cases in the dataset is

not very rare, the six methods have a very similar performance of type-I error and

power for DEGs’ identification in single gene datasets of the first type of non-PH

model.
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Figure 4.13: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 500 and case rate 0.05. the hazard ratio is 1.8
at the start and 1.2 after three years.

Figure 4.14: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 500 and case rate 0.1. The hazard ratio is 1.8
at the start and 1.2 after three years.
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Figure 4.15: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 500 and case rate 0.15. The hazard ratio is 1.8
at the start and 1.2 after three years.

Figure 4.16: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 500 and case rate 0.2. The hazard ratio is 1.8
at the start and 1.2 after three years.
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Figure 4.17: Power of subcohort and other existing four methods on simulated single
gene data with full cohort size 500 and case rate 0.05. The hazard ratio is 1.8 at the
start and 1.2 after three years.

Figure 4.18: Power of subcohort and other existing four methods on simulated single
gene data with full cohort size 500 and case rate 0.1. The hazard ratio is 1.8 at the
start and 1.2 after three years.
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Figure 4.19: Power of subcohort and other existing four methods on simulated single
gene data with full cohort size 500 and case rate 0.15. The hazard ratio is 1.8 at the
start and 1.2 after three years.

Figure 4.20: Power of subcohort and other existing four methods on simulated single
gene data with full cohort size 500 and case rate 0.2. The hazard ratio is 1.8 at the
start and 1.2 after three years.
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As shown in Figure 4.13 to 4.16, the type I errors of five methods are comparable,

although in case rate 0.05 and 0.1, the type I error of “Barlow” method is higher than

other four methods. But when the case rate increases to 0.15 or 0.2, the type I error

curves of the five methods become very similar in the middle and high subcohort

fraction range.

The situation is the same when we compare the “power” of the five methods.

We found that in the case of rates 0.05 and 0.1, the power of the “Barlow” method

is higher than the other four methods. But when the case rate increases to 0.15 or

0.2, the power curves of five methods almost overlap in middle and high subcohort

fraction range (Shown in Figure 4.17 to 4.20).

FDR and power for DEGs’ identification in high-throughput

gene datasets

High-throughput gene datasets include multiple genes. We used two methods to

consider the multiple comparisons. The first used p-value BH-adjustment, and the

second estimated FDR as the same as that of chapter 3.

For the first type of non-PH data, the six methods have similar performances

of FDR on high-throughput datasets. When the subcohort is large enough and the

percentage of cases in patients is not low, or the number of cases in a dataset is not

very rare, the “subcohort” method performs very similarly to other existing methods.

Although in case rate of 0.05, “Prentice” and “SelfPrentice” are better than the other

four (Shown in figure 4.21). But when the case rate increases to 0.1, 0.15, or 0.2, the

FDR curves of the six methods become very similar in the middle and high subcohort

fraction range. As shown in Figure 4.22 to 4.24, their FDR is comparable.
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Figure 4.21: FDR of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.05. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset, and 10% are DEGs.

Figure 4.22: FDR of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.1. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset, and 10% are DEGs.
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Figure 4.23: FDR of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.15. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset, and 10% are DEGs.

Figure 4.24: FDR of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.2. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset, and 10% are DEGs.
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Figure 4.25: Power of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.05. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset and 10% are DEGs.

Figure 4.26: Power of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.1. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset and 10% are DEGs.
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Figure 4.27: Power of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.15. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset and 10% are DEGs.

Figure 4.28: Power of subcohort, p-value BH-adjustment of subcohort, and other
existing four methods on simulated multiple gene data with full cohort size 1000 and
case rate 0.2. The hazard ratio is 1.8 at the start and 1.2 after three years. There
are 2000 genes in each dataset and 10% are DEGs.
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The situation is the same when we compare the “power” of the six methods. We

found that in case rate 0.05, their powers are diverse (Shown in Figure 4.25. But

when the case rate increases to 0.1, 0.15, or 0.2, the power curves of the six methods

almost overlap in the middle and high subcohort fraction range (Shown in Figure

4.26 to 4.28).

4.3.3 Simulation 2 of non-proportional hazard data

Simulate survival times and genes’ expression values

h(t|x, z(t)) = h0(t)exp(βx)ke
exp(βx)kt. (4.8)

Let h0(t) = λ, we have

h(t|x, z(t)) = λexp(βx)keexp(βx)kt. (4.9)

Then, the cumulative hazard function is given by:

H(t, x, z(t)) =
∫ t

0
λexp(βx)keexp(βx)ku du

= λ(exp(exp(βx)kt)− 1).
(4.10)

The survival function is related with the cumulative hazard function, H(t|x), by

S(t|x) = exp[−H(t|x)]. (4.11)

When S(t|x) follows a continuous U(0, 1) distribution, a random variable U =

exp[−H(t|x)] also follows a continuous U(0, 1) distribution.

F = 1− S = 1− exp[−H(t|x)] = 1− exp(−λ(exp(exp(βx)kt)− 1)). (4.12)

f(t, x|λ, k) = ∂F
∂t

= exp(−λ(exp(exp(βx)k × t)− 1))λ(exp(exp(βx)kt)× exp(βx)k.
(4.13)
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L(λ, k|x, t) =
∏n

i=1 f(ti, xi|λ, k) = exp(−λ
∑n

i=1 (exp(exp(βxi)kti)− 1))

λnexp(
∑n

i=1 exp(βxi)tik)exp(
∑n

i=1 βxi)k
n.

(4.14)

logL(λ, k|x, t) = −λ
∑n

i=1 (exp(exp(βxi)kti)− 1)

+nlog(λ) +
∑n

i=1 exp(βxi)tik +
∑n

i=1 βxi + nlog(k).
(4.15)

Let ∂log(L(λ,k|x,t))
∂λ

= 0, we can get

λmle = n[
∑n

i=1(e
exp(βxi)tik − 1)]−1. (4.16)

∂log(L(λ,k|x,t))
∂k

= −λ
∑n

i=1 (exp(exp(βxi)kti)exp(βxi)ti)

+
∑n

i=1 exp(βxi)ti + n/k,
(4.17)

which is a function of λ and k. We can use newton raphson method to solve λ and

k for

∂log(L(λ,k|x,t))
∂k

= 0, (4.18)

and

∂log(L(λ,k|x,t))
∂λ

= 0. (4.19)

Therefore, an event time can be generated as

T =
(

1
kexp(βx)

)
log(1 + (−log(U))

λmle
). (4.20)

When x increases, T decreases. x is associated with T . To make T in the range of

“Time To Event” (TTE), multiply T with a scale factor and let

T = T ×max(TTEi)/max(Ti). (4.21)

Simulation of Full Cohorts and CCHs

Formulars above provides a non-proportional model. Firstly, we need to find a real

DEG and use its information to estimate kmle and λmle. P9906 cohort of ALL’s
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dataset was used here, as the “cage effect” does not need to be considered in a

single cohort. Sex- and hemoglobin-related genes were removed according to the

gene’ ”Probe.Set.ID”. Then the package “SAMR” were used to find potential DEG

candidates. Table 2.1 shows that when the median FDR is less than 0.05, the first

related delta should be 0.7712257998. Using the value, we can compute the list

of significant genes (the gene with large positive values or large negative values).

The gene “KIAA0430”, with Probe.Set.ID “202386 s at”, has a large negative score

value, -2.867. It was randomly selected from negative expressed genes as the input

to estimate kmle and λmle, which is consistent with the designed negative association

model above.

We assign β = 5 and input the gene’s survival time and expression value to the

model. Then we can use newton Rapson method to solve the derivative equations

4.18 and 4.19 to approximate kmle and λmle.

To build a full cohort, we need to assign the number of patients in it. For

example, we have n patients in a full cohort. Then we need to know whether the

full cohort includes one gene or multiple genes. If it has only one gene and the gene

is a DEG, we assume the expression value of patients follows a N(µ, σ) distribution,

which can be calculated from the original expression value of gene 11823. The single

gene expression values of n patients can be simulated from the N(µ, σ) distribution.

Then input them to equation 4.20 and equation 4.21, we can acquire the event time

of the n patients. For the null genes, we draw random numbers since we only care

that they are unrelated to survival time. At last, we need to identify the control

group and cases. For all patients, draw censoring times C ∼ Exp(λcens) and compare

them to their corresponding survival times. If censoring occurs after the survival

time (censoring time is longer than the survival time) for an individual, they were

observed to have experienced an event and are considered cases. Otherwise, they are

in the control group.
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For a multiple gene full cohort, we use exactly the same procedures above to

acquire censoring, survival time, and gene expression value for a single gene. Then

we need to know the percentage of DEGs in the full cohort. For DEG genes, the

expression level of gene i for individual j is: xij = xj + eij, where the eijs are N(0, 1)

perturbations. We draw a set of perturbations to generate expression levels for each

DEG. For the null genes, we draw random numbers since we only care that they

are unrelated to survival time. Like proportional data simulation, a CCH sample

consists of all cases (both in and out of the subcohort) but only the controls in the

subcohort. The fraction of subcohort is 10% to 90%, respectively.

Type-I error and power for DEGs’ identification in single gene

datasets

Figure 4.29: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.05, and β = 5.

For the second type of non-PH data, the five methods have similar performances

on single gene datasets. When the subcohort is large enough and the percentage of
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cases in patients is not low, or the number of cases in a dataset is not very rare, the

“subcohort” method performs very similarly to other existing methods.

Figure 4.30: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.1, and β = 5.

Figure 4.31: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.15, and β = 5.
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Figure 4.32: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.2, and β = 5.

Figure 4.33: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.05, and β = 10.
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Figure 4.34: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.1, and β = 10.

Figure 4.35: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.15, and β = 10.
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Figure 4.36: Type I error of subcohort and other existing four methods on simulated
single gene data with full cohort size 1000, case rate 0.2, and β = 10.

Figure 4.37: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.05, and β= 5.
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Figure 4.38: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.1, and β = 5.

Figure 4.39: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.15, and β = 5.
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Figure 4.40: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.2, and β = 5.

Figure 4.41: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.05, and β = 10.
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Figure 4.42: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.1, and β = 10.

Figure 4.43: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.15, and β = 10.
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Figure 4.44: The power of subcohort and the other four existing methods are on
simulated single gene data with full cohort size 1000, case rate 0.2, and β = 10.

As shown in Figure 4.29 to 4.32 for β = 5, the type I errors of five methods are

comparable, although in case rate 0.05, the type I error of the “Barlow” method is

higher than the other four methods. But when the case rate increases to 0.1, 0.15, or

0.2, the type I error curves of the five methods become very similar in the middle and

high subcohort fraction range. When we increase β from 5 to 10 (shown in Figure

4.33 to 4.36), the situation is similar.

The situation is the same when we compare the “power” of the five methods.

We found that in case rate 0.05 and β = 5, the power of the “Barlow” method is

higher than the other four methods (Shown in Figure 4.37). But when the case rate

increases to 0.1, 0.15, or 0.2, the power curves of the five methods almost overlap

in the middle and high subcohort fraction range (Shown in Figure 4.38 to 4.40). To

consider the effect of β, we increase β from 5 to 10 (shown in Figure 4.41 to 4.44).

Results show that the situation is similar. The power of the “Barlow” method is

higher than the other four methods in the case rate 0.05, but the power curves of the

five methods almost overlap in the middle and high subcohort fraction range when
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the case rate increases to 0.1, 0.15, or 0.2.

FDR and power for DEGs’ identification in high-throughput

gene datasets

We used p-value BH-adjustment and FDR to measure the performance of the CCH-

based permutation test on high-throughput datasets. For the second type of non-PH

data, the six methods have similar performances on high-throughput datasets.

When the subcohort is large enough and the percentage of cases in patients is not

low, or the number of cases in a dataset is not very rare, the ”Subcohort” method

performs very similarly to other existing methods. As shown in Figure 4.45 to 4.48,

their FDR is comparable, although in case rate 0.05 and 0.1, their FDR are low.

But when the case rate increases to 0.15, or 0.2, the FDR curves of the six methods

become very similar in the middle and high subcohort fraction range.

Figure 4.45: FDR of subcohort, p-value BH-adjustment of subcohort, and other four
existing methods on simulated multiple gene data with full cohort size 1000, and
case rate 0.05. β is 10. There are 1000 genes in each dataset, and 10% are DEGs.
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Figure 4.46: FDR of subcohort, p-value BH-adjustment of subcohort, and other four
existing methods on simulated multiple gene data with full cohort size 1000, and
case rate 0.1. β is 10. There are 1000 genes in each dataset, and 10% are DEGs.

Figure 4.47: FDR of subcohort, p-value BH-adjustment of subcohort, and other four
existing methods on simulated multiple gene data with full cohort size 1000, and
case rate 0.15. β is 10. There are 1000 genes in each dataset, and 10% are DEGs.
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Figure 4.48: FDR of subcohort, p-value BH-adjustment of subcohort, and other four
existing methods on simulated multiple gene data with full cohort size 1000, and
case rate 0.2. β is 10. There are 1000 genes in each dataset, and 10% are DEGs.

Figure 4.49: Power of subcohort, p-value BH-adjustment of subcohort, and other
four existing methods on simulated multiple gene data with full cohort size 1000,
and case rate 0.05. β is 10. There are 1000 genes in each dataset, and 10% are
DEGs.
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Figure 4.50: Power of subcohort, p-value BH-adjustment of subcohort, and other
four existing methods on simulated multiple gene data with full cohort size 1000,
and case rate 0.1. β is 10. There are 1000 genes in each dataset, and 10% are DEGs.

Figure 4.51: Power of subcohort, p-value BH-adjustment of subcohort, and other
four existing methods on simulated multiple gene data with full cohort size 1000,
and case rate 0.15. β is 10. There are 1000 genes in each dataset, and 10% are
DEGs.
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Figure 4.52: Power of subcohort, p-value BH-adjustment of subcohort, and other
four existing methods on simulated multiple gene data with full cohort size 1000,
and case rate 0.2. β is 10. There are 1000 genes in each dataset, and 10% are DEGs.

The situation is the same when we compare the “power” of the six methods. We

found that in case rate 0.05 and 0.1, their power is low (Shown in Figure 4.49 to

4.50). But when the case rate increases to 0.15, or 0.2, the power curves of the six

methods almost overlap in the middle and high subcohort fraction range (Shown in

Figure 4.51 to 4.52).

To sum up, the “subcohort” method has a very similar performance of FDR and

power to other existing methods in high-throughput gene datasets of the second type

non-PH model.

4.4 Application

We applied the “subcohort” method to two real datasets. Pediatric B-Cell acute

lymphoblastic leukemia (ALL) dataset has 801 patients from two cohorts, including
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54,504 probe sets [25]. Its 20,000 probe sets with the largest interquartile range

(IQR) were selected as the input dataset. For the BRCA data (the same data we

used in Chapter 3), the 16000 genes (the data has only 16005 genes) with the largest

interquartile range (IQR) were selected as a dataset. We choose 0.1, 0.2, ... and

0.9 as sub-cohort fraction. We reconstructed full cohort simulations 100 times for

each real dataset for each subfraction and replicated a 1000 times permutation-based

score test on each full reconstructed cohort.

As stated in the Method part, we defined “Type I-agreement” and “Type II-

agreement” to measure the consistency between an original full cohort and a full

reconstructed cohort. For example, for the top 16000 largest interquartile genes of

the BRCA database, in a one-time simulation with a sampling fraction of 0.9, a full

cohort analysis identified 373 DEGs, and a full reconstructed cohort identified 376

DEGs. They have 367 DEGs in common (shown in Figure 3.23). The related Type

I-agreement = 9/(367+9)= 2.4% and Type II-agreement=367/(367+6) = 98.4%.

(a) Type I-agreement (b) Type II-agreement

Figure 4.53: Performance of “subcohort” methods on BRCA.
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(a) Type I-agreement (b) Type II-agreement

Figure 4.54: Performance of “subcohort” methods on ALL.

For a CCH method to be considered an adequate substitute for complete co-

hort analysis, it should have decreasing Type I-agreement and increasing Type II-

agreement with increasing subcohort. However, Type I-agreement need not be below

5%, and Type II-agreement need not be above 95%, following the nominal 0.05 and

0.95 significance levels, respectively.

(a) Type I-agreement (b) Type II-agreement

Figure 4.55: Performance of subcohort on simulated multiple gene data with hazard
ratio 1.5-1.6, full cohort size 1000, genes 2000, case rate 0.1 and DEG 10%.

The results of BRCA is shown in Figure 4.53. Type I-agreement decreases, and
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Type II-agreement increases with the increase of subcohort fraction. The results of

ALL and simulated data show a similar pattern (Figure 4.54 and 4.55). The only

difference among the three figures is how quickly the Type I-agreement will decrease

and how quickly Type II-agreement will increase within the scope of the subcohort

fraction.
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Conclusion

High-throughput gene expression profiling technologies, such as microarray and RNA-

Sequencing, have been widely used in medical research. One of the applications of

these technologies is to identify, among thousands of genes, those whose expressions

are associated with survival outcomes. The case-cohort (CCH) design is an efficient

way to analyze survival data, particularly for large cohorts with low failure rates.

However, the application of CCH design in a high-throughput gene expression anal-

ysis has not been seen in the published literature. In this dissertation, we sought

to promote the use of the CCH design in gene expression analysis and to develop

statistical methods for identifying the genes associated with survival outcomes under

the CCH design.

A score test is usually preferred in a typical genomic study because it does not

need to fit the Cox PH model iteratively when thousands of hypothesis tests must

be performed simultaneously. Hence, it can save computing time and avoid potential

convergence issues. Combining the advantage of the CCH study design and score

test, we developed a score test under the CCH design to identify DEGs associated

with survival outcomes. We provided asymptotic distribution theory and inferential
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procedures for the test. a CCH-based score test was proposed, in which the covariance

matrix Σ(β0) and ∆(β0) in the asymptotic chi-square distribution of CCH were

estimated at β0 = 0 under the null hypothesis, rather than at β̃. Furthermore,

the “Score Process” was acquired by deriving the first derivative of the log Pseudo-

likelihood function. Then, a test statistic with asymptotic Chi-squared distribution

was established to calculate the p-value under the null hypothesis, β = 0, which is

equivalent to the null hypothesis that the tested gene is a NONDEG (survival time

has no relationship with gene expression data).

For the CCH-based score test, we verified the validity of the inferential proce-

dure in finite samples through simulation studies with datasets generated from PH

models. For simulated single gene datasets, its type I error decreases quickly and

around the nominal significance level with the increase of sub-cohort fraction, and

power increases quickly and approach the power of the full cohort with the increase of

sub-cohort fraction. For simulated high-throughput datasets of PH models, its FDR

decreases quickly, and its power increase quickly with the increase of sub-cohort frac-

tion. Besides we used an RNA-sequencing data set (BRCA) from a breast cancer

study as the full cohort and draw a large number of CCH samples with different

sampling fractions. We applied the CCH-based score test on each of the CCH sam-

ples and compared the result to that from applying an ordinary score test on the

full cohort. The type-I agreement and Type-II agreement show that there was an

excellent agreement between the set of genes identified both methods. Furthermost,

we compared the proposed method with some existing methods that can also applied

to the gene expression analysis under the CCH Design. The power of our CCH-based

score method is comparable with other methods because all methods have similar

performance in all combinations of event rate and full cohort size.

Permutation tests are non-parametric methods. When the permutation test and

CCH design are combined on DEG identification, strong semi-parametric and prob-
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ability distribution assumptions for p-value do not need to be concerned. In this

project, a CCH-based permutation test procedure was proposed and applied for

high-dimensional gene differential expression analysis, which can reduce the cost of

DEG discovery and avoid statistical assumption violation. Another advantage of

this method is that it estimates the false discovery rate (FDR) directly from the

permutation procedure, which considers the correlation among the genomic features

(genes).

We developed a procedure to reconstruct a full cohort from a CCH sample and

then perform the permutation-based score test on the reconstructed full cohort to

identify the DEGs associated with survival outcomes. To illustrate the usage and

advantages of this method, we evaluated our testing procedures through simulation

studies with datasets generated based on PH and non-PH models, respectively. For

simulated single gene datasets of both PH and non-PH models, its type I error de-

creases quickly and around the nominal significance level and power increase quickly

and approach the power of the full cohort with the increase of sub-cohort fraction.

For simulated high-throughput datasets of both PH and non-PH models, its FDR

decreases quickly, and its power increase quickly with the increase of sub-cohort frac-

tion. Besides, we applied the proposed method to the same RNA-sequencing data

set (BRCA) and a microarray data set (ALL) from a leukemia study. The results of

the Type-I agreement and the Type-II agreement show good consistency between the

proposed permutation test and the full cohort method. Furthermost, we compared

the proposed method with some existing CCH methods. Results show they have

a good consistency. When the number of patients’ events is scarce, our proposed

method performs better than the others.

The results indicates that our methods can be effectively used to identify DEGs

in high-throughput gene expression dataset while reducing the costs for genomics

experiments.
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Future Work

In the two CCH-based tests proposed in this dissertation, there is possible room to

extend our investigation. The following areas are recommendations for further work.

For the CCH-based score test, we applied it to simulated datasets and a real

question with one cohort using χ2
1 distribution. Individuals may have different dis-

tributions for some categorical variables at different variable levels. We can extend

our method by using a stratified design for those variables to consider their main

effects. The degree of freedom of the extended CCH-based score test needs to be

considered.

We proposed a CCH-based permutation test. We validated it through simulation

studies and applied it to real problems. Further theoretical exploration may give a

more precise mechanism of the method.

A nested case-control study design is a case-control study within a cohort study by

the selection of several healthy controls for each case. A pseudo-likelihood approach

was proposed [47]. Another future work is to develop similarly a “nested case-control

study-based score test” and a “nested case-control study-based permutation test”.
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A Proving Estimators’ Consistency for CCH Asymptotic Chi-Square

Distribution 1

chapterB The test statistics of CCH-based permutation test2

114



Appendix A

Proving Estimators’ Consistency

for CCH Asymptotic Chi-Square

Distribution

The defination of △̃(β), △, G̃(β0, x, w) and G(β0, x, w) are in Prentice and Self [49]

.

△ =
∫ 1

0

∫ 1

0
G(β0, x, w)S

(0)(x)S(0)(w)λ0(x)λ0(w) dx dw. (A.1)

△̃(β) = 1
n2

∫ 1

0

∫ 1

0
G̃(β, x, w) dN̄(x) dN̄(w). (A.2)

Suppose β0 is the true value of β. Under the null hypothesis of the score test,

the real value of β is known. Pick β = β0 in A.2, we get

△̃(β0) =
1
n2

∫ 1

0

∫ 1

0
G̃(β0, x, w) dN̄(x) dN̄(w). (A.3)

We want to prove

△̃(β0) →P △(β0). (A.4)
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G(β0, x, w) =
1−α
α

[s(0)(β0, x)s
(0)(β0, w)}−1h(1)(β0, x, w)

+s(0)(β0, x)s
(0)(β0, w)}−2s(1)(β0, x)s

(1)(β0, w)
Th(0)(β0, x, w)

−s(0)(β0, x)
−1s(0)(β0, w)

−2s(1)(β0, w)h
(2)(β0, w, x)

−s(0)(β0, w)
−1s(0)(β0, x)

−2s(1)(β0, x)h
(2)(β0, x, w)],

(A.5)

where α = (1 − eventRate) × sr + eventRate. The eventRate is the event rate in

the full cohort, and sr is the subfracton of the subcohort out of the full cohort.

G̃(β0, x, w) =
1−α̃
α̃

[{S̃(0)(β0, x)S̃
(0)(β0, w)}−1H̃(1)(β0, x, w)

+{S̃(0)(β0, x)S̃
(0)(β0, w)}−2S̃(1)(β0, x)S̃

(1)(β0, w)
T H̃(0)(β0, x, w)

−S̃(0)(β0, x)
−1S̃(0)(β0, w)

−2S̃(1)(β0, w)H̃
(2)(β0, w, x)

−S̃(0)(β0, w)
−1S̃(0)(β0, x)

−2S̃(1)(β0, x)H̃
(2)(β0, x, w)],

(A.6)

where α̃ = (1−eventRate)×sr+eventRate. The eventRate is the event rate in the

full cohort, and sr is the subfracton of the subcohort out of the full cohort. First,

we need to show

G̃(β0, x, w) →P G(β0, x, w). (A.7)

Prentice and Self ( [40] and [49]) listed condtions A-G to ensure the desired asymp-

totic distribution of β̃ and Λ̃. By condition G(iv): S̃(0)(β0, x), S̃(1)(β0, x), and

Q̃(i)(β0, x, w) (i = 0, 1, and 2) converge to s(0)(β0, x), s
(1)(β0, x), and q(i)(β0, x, w) (i =

0, 1, and 2), respectively. H̃(i)(β0, x, w) (i = 0, 1, and 2) are functions of S̃(0)(β0, x),

S̃(1)(β0, x), and Q̃(i)(β0, x, w) (i = 0, 1, and 2) (Shown in Chapter 3), and h(i)(β0, x, w)

(i = 0, 1, and 2) are functions of s(0)(β0, x), s
(1)(β0, x), and q(i)(β0, x, w) (i = 0, 1, and

2) (Similar with the definition of H̃(i)(β0, x, w). Only change S̃(0)(β0, x), S̃
(1)(β0, x),

and Q̃(i)(β0, x, w) (i = 0, 1 and 2) to s(0)(β0, x), s
(1)(β0, x), and q(i)(β0, x, w) (i = 0,

1, and 2), respectively). So, H̃(i)(β0, x, w) converge to h(i)(β0, x, w) (i = 0, 1, and 2)

uniformly on β0 × [0, 1]2. So, G̃(β0, x, w) converges to G(β0, x, w).

And by the definition of n−1N̄(t), it converges uniformly to
∫ 1

0
S(0)(x)λ0(x)dx.

As n−1N̄(t) is bounded in probability and G(β0, x, w) resides in the product space
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of left-continuous functions, △̃(β0) converges to △(β0). Now, we want to prove

Σ̃(β0) →P Σ(β0). (A.8)

The defination of Σ̃(β), Σ(β0), Ṽ (β0, t) and v(β0, t) are in Prentice and Self [49].

Σ(β0) =
∫ 1

0
v(β0, t)s

(0)(β0, t)λ0(β0, t) dt. (A.9)

Σ̃(β0) = Σ̃(β)|(β = β0) =
1
n

∫ 1

0
Ṽ (β0, t) dN̄(t). (A.10)

v(β0, t) = s(2)(β0, t)/s
(0)(β0, t)− e(β0, t)

⊗2. (A.11)

e(β0, t) = s(1)(β0, t)/s
(0)(β0, t). (A.12)

Ṽ (β0, t) = S̃(2)(β0, t)/S̃
(0)(β0, t)− Ẽ(β0, t)

⊗2. (A.13)

Similarly, as S̃(0)(β0, x), S̃
(1)(β0, x), and S̃(2)(β0, x) converge to s

(0)(β0, x), s
(1)(β0, x)

and s(2)(β0, x), respectively. We get

Ṽ (β0, t) →P v(β0, t). (A.14)

And by the definition of n−1N̄(t), it converges uniformly to
∫ 1

0
S(0)(x)λ0(x)dx.

As n−1N̄(t) is bounded in probability and v(β0, t) resides in the product space of

left-continuous functions, we have:

Σ̃(β0) →P Σ(β0). (A.15)
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The test statistics of CCH-based

permutation test

For ith gene, xi is the gene expressions of the original full cohort, and xR
i is the gene

expressions of the reconstructed full cohort. ei is the difference between xR
i and xi

(ei = xR
i − xi). We assume xi and xR

i have the same mean and variance. eij is 0 for

patient j inside of CCH. We assume that eij has the mean 0 and finite variance σ2
e

for patient j outside of CCH.

The definition of the score Si of the reconstructed full cohort for gene i is:

Si =
rci

sci+sc0
. (B.1)

where rci is the numerator of the score, sci is a standard deviation and sc0 is an

exchangeability factor. We use sc0 = 0 for simplification. For censored survival

data, rci is defined as

rci =
∑K

k=1(x
∗
ik − dkx̄ik). (B.2)

And sci is defined as

sci = [
∑K

k=1((
dk
mk

)
∑

j∈Rk
(xR

ij − x̄ik))
2]1/2. (B.3)
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Where xR
ij is the expression value of gene i for patient j. xR

ij is either from CCH or

be imputed. As the same as the original full cohort analysis, D be the indices of

the K unique death times z1, z2, ... zK , and R1, R2, ... RK be the indices of the

observations at risk at these unique death times, that is Rk = {i : ti ≥ zk}. Let

mk = #inRk. Let dk be the number of deaths at time zk. x∗
ik =

∑
tj=zk

xR
ij and

x̄ik =
∑

j∈Rk

xR
ij

mk
.

rci =
∑K

k=1(x
∗
ik − dkx̄ik)

=
∑K

k=1(
∑

tj=zk
xij − dk

∑
j∈Rk

xij+eij
mk

)

=
∑K

k=1(
∑

tj=zk
xij − dk

∑
j∈Rk

xij

mk
− dk

∑
j∈Rk

eij
mk

)

= ri +
∑K

k=1(−dk
∑

j∈Rk

eij
mk

),

(B.4)

where ri is completely from the original full cohort.

As E(
∑K

k=1(−dk
∑

j∈Rk

eij
mk

)) = 0,

E(rci) = ri. (B.5)

V ar(rci) = V ar(
∑K

k=1(−dk
∑

j∈Rk

eij
mk

))

=
∑K

k=1(d
2
kV ar(

∑
j∈Rk

eij
mk

))

=
∑K

k=1(
d2k
m2

k
V ar(

∑
j∈Rk

eij))

=
∑K

k=1(
d2k
m2

k

∑
j∈Rk

V ar(eij))

=
∑K

k=1(
d2k
m2

k
σ2
e#k),

(B.6)

where #k is the number of imputed gene expressions in the risk set Rk, and #k is

less than or equal to mk.

V ar(rci) =
∑K

k=1(
d2k
m2

k
σ2
e#k) ≤ σ2

e

∑K
k=1(

d2k
mk

) < ∞. (B.7)

Equation B.7 shows that the “score process” of the CCH-based permutation test
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has a limited variance.

sci
2 =

∑K
k=1((

dk
mk

)
∑

j∈Rk
(xR

ij − x̄ik))
2

=
∑K

k=1(
dk
mk

)2(
∑

j∈Rk
(xR

ij − x̄ik))
2

=
∑K

k=1(
dk
mk

)2(
∑

j∈Rk
(xij + eij −

∑
j∈Rk

xij+eij
mk

))2

=
∑K

k=1(
dk
mk
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∑
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))2
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k=1(
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mk

)2(
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∑
j∈Rk

xij

mk
) +

∑
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(eij −
∑
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mk

))2

=
∑K
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mk

)2(
∑

j∈Rk
(xij +

∑
j∈Rk

xij

mk
))2

+2 ∗ (
∑

j∈Rk
(xij +

∑
j∈Rk

xij

mk
))× (

∑
j∈Rk

(eij −
∑

j∈Rk

eij
mk

)) + (
∑

j∈Rk
(eij −

∑
j∈Rk

eij
mk

))2

= si
2 +

∑K
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mk

)22 ∗ (
∑

j∈Rk
(xij +

∑
j∈Rk

xij

mk
))× (

∑
j∈Rk
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∑
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(
∑
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∑
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mk
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(B.8)

where si
2 is only dependent on the original full cohort.

E(sci
2) = E(si

2 +
∑K

k=1(
dk
mk

)22 ∗ (
∑

j∈Rk
(xij +

∑
j∈Rk

xij

mk
))× (

∑
j∈Rk

(eij −
∑

j∈Rk

eij
mk

))+∑K
k=1(

dk
mk

)2(
∑

j∈Rk
(eij −

∑
j∈Rk

eij
mk

))2)

= si
2 + 0 + E(

∑K
k=1(

dk
mk

)2(
∑

j∈Rk
(eij −

∑
j∈Rk

eij
mk

))2)

= si
2 + σ2

e

∑K
k=1(

dk
mk

)2(#k − 2#k

mk
+ #k

2

mk
2 ).

(B.9)

From equation B.6 and B.9, we know E(sci
2) is a function of V ar(rci).

E(sci
2) = Q ∗ V ar(rci) + si

2 (B.10)

where Q =
∑K

k=1(
dk
mk

)2(#k − 2#k

mk
+ #k

2

mk
2 )/

∑K
k=1(

d2k
m2

k
#k).

As (#k − 2#k

mk
+ #k

2

mk
2 ) = (1 − 2#k

mk
+ #k

2

mk
2 ) + #k − 1 ≥ (1 − #k

mk
)2 ≥ 0, we have

E(sci
2) ≥ si

2.

120



References

[1] Rare List. Global Genes, 15 April 2016. Retrieved 15 April 2016.

[2] Rare Disease Act of 2002. United States Congress, 2002. Retrieved 21 January
2022.

[3] S. Anders and W. Huber. Differential expression analysis for sequence count
data. Genome Biol, 11(10):106, 2010.

[4] M. J. Anderson. Permutation tests for univariate or multivariate analysis of
variance and regression. Can. J. Fish. Aquat. Sci., 58:626–639, 2001.

[5] A. Anjum, S. Jaggi, E. Varghese, S. Lall, A. Bhowmik, and A. Rai. Identifica-
tion of differentially expressed genes in rna-seq data of arabidopsis thaliana: A
compound distribution approach. J Comput Biol, 23(4):239–247, 2019.

[6] W.E. Barlow, L. Ichikawa, D. Rosner, and S. Izumi. Analysis of case-cohort
designs. Journal of Clinical Epidemiology, 52(12):1165–1172, 1999.

[7] R. Bender, T. Augustin, and M. Blettner. Generating survival times to simu-
late cox proportional hazards models. Statistics in Medicine, 24(11):1713–1723,
2005.

[8] W. C. Blackwelder. Current issues in clinical equivalence trials. Journal of
Dental Research, 83:113–115, 2004.

[9] N. E. Breslow. Analysis of survival data under the proportional hazards model.
Int Stat Rev, 43:45–57, 1975.

[10] G. Chu, M. Seo, J. Li, B. Narasimhan, R. Tibshirani, and V. Tusher. SAM “Sig-
nificance Analysis of Microarrays” Users guide and technical document. 2001.

[11] D. S. Collingridge. A primer on quantitized data analysis and permutation
testing. Journal of Mixed Methods Research, 7(1):79–95, 2013.

121



References

[12] D. Commenges. Transformations which preserve exchangeability and application
to permutation tests. Journal of Nonparametric Statistics, 15(2):171–185, 2003.

[13] S. J. Costa, D. Domingues, and F. M. Lopes. Rna-seq differential expression
analysis: An extended review and a software tool. PLoS ONE, December 2017.

[14] D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical
Society, Series B, 34(2):187–220, 1972.

[15] D. R. Cox. Partial likelihood. Bioetrika, 62(2), 1975.

[16] D. Lin D and Z. Ying. Cox regression with incomplete covariate measurements.
Journal of the American Statistical Association, 88(424):1341–1349, 1993.

[17] C. W. Dunnet. Pairwise multiple comparison in the homogenous variance, un-
equal sample size case. Journal of the American Statistical Association, 75:789–
795, 1980.

[18] R. R. Esteban and X. Y. Jiang. Differential gene expression in disease: a com-
parison between high-throughput studies and the literature. BMC Medical Ge-
nomics, 10(59), 2017.

[19] J. Fan and J. Jiang. Non-and semi-parametric modeling in survival analysis.
New Developments in Biostatistics and Bioinformatics, 1:3–33, 2009.

[20] R. A. Fisher. The Design of Experiments. New York-Hafner, New York, 1935.

[21] S. C. Gad. Encyclopedia of Toxicology (Third Edition). Elsevier Inc, 2014.

[22] J. Han, M. J. Chen, Y. H. Wang, B. X. Gong, T. W. Zhuang, L. Y. Liang, and
H. Qiao. Identification of biomarkers based on differentially expressed genes in
papillary thyroid carcinoma. Scientific Reports, 8(9912), 2018.
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