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Abstract: In this paper, we introduce and investigate a new class
of sets and functions between topological space called neutrosophic

semi-supra open set and neutrosophic semi-supra open continuous
functions respectively.
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1 Introduction and Preliminaries
Intuitionistic fuzzy set is defined by Atanassov [2] as a general-
ization of the concept of fuzzy set given by Zadesh [14]. Using
the notation of intuitionistic fuzzy sets, Coker [3] introduced the
notion of an intuitionistic fuzzy topological space. The supra
topological spaces and studied s-continuous functions and s∗-
continuous functions were introduced by A. S. Mashhour [6] in
1993. In 1987, M. E. Abd El-Monsef et al. [1] introduced the
fuzzy supra topological spaces and studied fuzzy supra contin-
uous functions and obtained some properties and characteriza-
tions. In 1996, Keun Min [13] introduced fuzzy s-continuous,
fuzzy s-open and fuzzy s-closed maps and established a num-
ber of characterizations. In 2008, R. Devi et al. [4] introduced
the concept of supra α-open set, and in 1983, A. S. Mashhour
et al. introduced the notion of supra-semi open set, supra semi-
continuous functions and studied some of the basic properties for
this class of functions. In 1999, Necla Turan [11] introduced the
concept of intuitionistic fuzzy supra topological space. The con-
cept of intuitionistic fuzzy semi-supra open set was introduced
by Parimala and Indirani [7]. After the introduction of the con-
cepts of neutrosophy and a neutrosophic se by F. Smarandache
[[9], [10]], A. A. Salama and S. A. Alblowi[8] introduced the
concepts of neutrosophic crisp set and neutrosophic topological
spaces.

The purpose of this paper is to introduce and investigate a new
class of sets and functions between topological space called neu-
trosophic semi-supra open set and neutrosophic semi-supra open
continuous functions, respectively.

Definition 1.1. Let T , I , F be real standard or non standard sub-
sets of ]0−, 1+[, with supT = tsup, infT = tinf
supI = isup, infI = iinf
supF = fsup, infF = finf

n− sup = tsup + isup + fsup
n− inf = tinf + iinf + finf . T , I , F are neutrosophic compo-
nents.

Definition 1.2. Let X be a nonempty fixed set. A neutro-
sophic set [briefly NS] A is an object having the form A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, where µ

A
(x), σ

A
(x)

and γ
A

(x) represent the degree of membership function (namely
µ

A
(x)), the degree of indeterminacy (namely σ

A
(x)) and the de-

gree of nonmembership (namely γ
A

(x)) respectively of each el-
ement x ∈ X to the set A.

Remark 1.1. (1) A neutrosophic set A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X} can be identi-

fied to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on

X .

(2) For the sake of simplicity, we shall use the symbol
A = 〈µ

A
, σ

A
, γ

A
〉 for the neutrosophic set A =

{〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.3. Let X be a nonempty set and the neutrosophic
sets A and B in the form
A = {〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, B =

{〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥
γ

B
(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement
of A]

(d) A ∩ B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨
γ

B
(x)〉 : x ∈ X};
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(e) A ∪ B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧
γ

B
(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.4. Let {Ai : i ∈ J} be an arbitrary family of neu-
trosophic sets in X . Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing
neutrosophic topological spaces, we must introduce the neutro-
sophic sets 0

N
and 1

N
in X as follows:

Definition 1.5. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=
{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.6. [5] A neutrosophic topology (NT) on a nonempty
set X is a family T of neutrosophic sets in X satisfying the fol-
lowing axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-
trosophic topological space (NTS) and each neutrosophic set in
T is called a neutrosophic open set (NOS). The complement A
of a NOS A in X is called a neutrosophic closed set (NCS) in X .

Definition 1.7. [5] Let A be a neutrosophic set in a neutrosophic
topological space X . Then
Nint(A) =

⋃
{G | G is a neutrosophic open set in X and

G ⊆ A} is called the neutrosophic interior of A;
Ncl(A) =

⋂
{G | G is a neutrosophic closed set in X and

G ⊇ A} is called the neutrosophic closure of A.

Definition 1.8. Let X be a nonempty set. If r, t, s be real stan-
dard or non standard subsets of ]0−, 1+[, then the neutrosophic
set xr,t,s is called a neutrosophic point(in short NP )in X given
by

xr,t,s(xp) =

{
(r, t, s), if x = xp

(0, 0, 1), if x 6= xp

for xp ∈ X is called the support of xr,t,s, where r denotes the de-
gree of membership value ,t denotes the degree of indeterminacy
and s is the degree of non-membership value of xr,t,s.

Now we shall define the image and preimage of neutrosophic
sets. Let X and Y be two nonempty sets and f : X → Y be a
function.

Definition 1.9. [5]

(a) If B = {〈y, µ
B

(y), σ
B

(y), γ
B

(y)〉 : y ∈ Y } is a neutro-
sophic set in Y , then the preimage ofB under f , denoted by
f−1(B), is the neutrosophic set in X defined by
f−1(B) = {〈x, f−1(µ

B
)(x), f−1(σ

B
)(x), f−1(γ

B
)(x)〉 :

x ∈ X}.

(b) If A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} is a neutro-
sophic set in X , then the image of A under f , denoted by
f(A), is the neutrosophic set in Y defined by
f(A) = {〈y, f(µ

A
)(y), f(σ

A
)(y), (1 − f(1 − γ

A
))(y)〉 :

y ∈ Y }. where

f(µ
A

)(y) =

{
supx∈f−1(y) µA

(x), if f−1(y) 6= ∅,
0, otherwise,

f(σ
A

)(y) =

{
supx∈f−1(y) σA

(x), if f−1(y) 6= ∅,
0, otherwise,

(1− f(1− γ
A

))(y) =

{
infx∈f−1(y) γA

(x), if f−1(y) 6= ∅,
1, otherwise,

For the sake of simplicity, let us use the symbol f−(γ
A

) for
1− f(1− γ

A
).

Corollary 1.1. [5] Let A , Ai(i ∈ J) be neutrosophic sets in
X , B, Bi(i ∈ K) be neutrosophic sets in Y and f : X → Y a
function. Then

(a) A1 ⊆ A2⇒ f(A1) ⊆ f(A2),

(b) B1 ⊆ B2⇒ f−1(B1) ⊆ f−1(B2),

(c) A ⊆ f−1(f(A)) { If f is injective,then A = f−1(f(A)) } ,

(d) f(f−1(B)) ⊆ B { If f is surjective,then f(f−1(B)) = B },

(e) f−1(
⋃
Bj) =

⋃
f−1(Bj),

(f) f−1(
⋂
Bj) =

⋂
f−1(Bj),

(g) f(
⋃
Ai) =

⋃
f(Ai),

(h) f(
⋂
Ai) ⊆

⋂
f(Ai) { If f is injective,then f(

⋂
Ai) =⋂

f(Ai)},

(i) f−1(1
N

) = 1
N

,

(j) f−1(0
N

) = 0
N

,

(k) f(1
N

) = 1
N

, if f is surjective

(l) f(0
N

) = 0
N

,

(m) f(A) ⊆ f(A), if f is surjective,

(n) f−1(B) = f−1(B).
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2 Main Results

Definition 2.1. A neutrosophic set A in a neutrosophic topolog-
ical space (X,T ) is called

1) a neutrosophic semiopen set (NSOS) if A ⊆
Ncl(Nint(A)).

2) a neutrosophic α open set (NαOS) if A ⊆
Nint(Ncl(Nint(A))).

3) a neutrosophic preopen set (NPOS) if A ⊆ Nint(Ncl(A)).

4) a neutrosophic regular open set (NROS) if A =
Nint(Ncl(A)).

5) a neutrosophic semipre open or β open set (NβOS) if A ⊆
Ncl(Nint(Ncl(A))).

A neutrosophic set A is called a neutrosophic semiclosed set,
neutrosophic α closed set, neutrosophic preclosed set, neutro-
sophic regular closed set and neutrosophic β closed set, respec-
tively (NSCS, NαCS, NPCS, NRCS and NβCS, resp), if the
complement of A is a neutrosophic semiopen set, neutrosophic
α-open set, neutrosophic preopen set, neutrosophic regular open
set, and neutrosophic β-open set, respectively.

Definition 2.2. Let (X,T ) ba a neutrosophic topological space.
A neutrosophic setA is called a neutrosophic semi-supra open set
(briefly NSSOS) ifA ⊆ s-Ncl(s-Nint(A)). The complement of
a neutrosophic semi-supra open set is called a neutrosophic semi-
supra closed set.

Proposition 2.1. Every neutrosophic supra open set is neutro-
sophic semi-supra open set.

Proof. Let A be a neutrosophic supra open set in (X,T ). Since
A ⊆ s-Ncl(A), we get A ⊆ s-Ncl(s-Nint(A)). Then
s-Nint(A) ⊆ s-Ncl(s-Nint(A)). Hence A ⊆ s-Ncl(s-
Nint(A)).

The converse of Proposition 2.1., need not be true as shown
in Example 2.1.

Example 2.1. Let X = {a, b}. Define the neutrosophic sets A,
B and C in X as follows:
A = 〈x, ( a

0.2 ,
b
0.4 ), ( a

0.2 ,
b
0.4 ), ( a

0.5 ,
b
0.6 )〉, B =

〈x, ( a
0.6 ,

b
0.2 ), ( a

0.6 ,
b
0.2 ), ( a

0.3 ,
b
0.4 )〉

and C = 〈x, ( a
0.3 ,

b
0.4 ), ( a

0.3 ,
b
0.4 ), ( a

0.4 ,
b
0.4 )〉. Then the families

T = {0
N
, 1

N
, A,B,A ∪ B} is neutrosophic topology on X .

Thus, (X,T ) is a neutrosophic topological space. Then C is
called neutrosophic semi-supra open but not neutrosophic supra
open set.

Proposition 2.2. Every neutrosophic α-supra open is neutro-
sophic semi-supra open

Proof. Let A be a neutrosophic α-supra open in (X,T ), then
A ⊆ s-Nint(s-Ncl(s-Nint(A))). It is obvious that s-Nint(s-
Ncl(s-Nint(A))) ⊆ s-Ncl(s-Nint(A)). Hence A ⊆ s-Ncl(s-
Nint(A)).

The converse of Proposition 2.2., need not be true as shown
in Example 2.2.

Example 2.2. Let X = {a, b}. Define the neutrosophic sets A,
B and C in X as follows:
A = 〈x, ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.5 ,
b
0.3 )〉, B =

〈x, ( a
0.1 ,

b
0.2 ), ( a

0.1 ,
b
0.2 ), ( a

0.6 ,
b
0.5 )〉

and C = 〈x, ( a
0.2 ,

b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 )〉. Then the families

T = {0
N
, 1

N
, A,B,A ∪ B} is neutrosophic topology on

X .Thus, (X,T ) is a neutrosophic topological space. Then C
is called neutrosophic semi-supra open but not neutrosophic
α-supra open set.

Proposition 2.3. Every neutrosophic regular supra open set is
neutrosophic semi-supra open set

Proof. Let A be a neutrosophic regular supra open set in (X,T ).
Then A ⊆ (s-Ncl(A)). Hence A ⊆ s-Ncl(s-Nint(A)).

The converse of Proposition 2.3., need not be true as shown
in Example 2.3.

Example 2.3. Let X = {a, b}. Define the neutrosophic sets A,
B and C in X as follows:
A = 〈x, ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.5 ,
b
0.3 )〉, B =

〈x, ( a
0.1 ,

b
0.2 ), ( a

0.1 ,
b
0.2 ), ( a

0.6 ,
b
0.5 )〉

and C = 〈x, ( a
0.2 ,

b
0.3 ), ( a

0.2 ,
b
0.3 ), ( a

0.2 ,
b
0.3 )〉. Then the families

T = {0
N
, 1

N
, A,B,A ∪ B} is neutrosophic topology on X.

Thus, (X,T ) is a neutrosophic topological space. Then C is
neutrosophic semi-supra open but not neutrosophic regular-supra
open set.

Definition 2.3. The neutrosophic semi-supra closure of a setA is
denoted by semi-s-Ncl(A) =

⋃
{ G :G is aneutrosophic semi-

supra open set in X and G ⊆ A} and the neutrosophic semi-
supra interior of a set A is denoted by semi-s-Nint(A) =

⋂
{G

:G is a neutrosophic semi-supra closed set in X and G ⊇ A}.

Remark 2.1. It is clear that semi-s-Nint(A) is a neutrosophic
semi-supra open set and semi-s-Ncl(A) is a neutrosophic semi-
supra closed set.

Proposition 2.4. i) semi− s−Nint(A) = semi s-Ncl (A)

ii) semi− s−Ncl(A) = semi s-int (A)

iii) if A ⊆ B then semi-s-Ncl(A) ⊆ semi-s-Ncl(B) and
semi-s-Nint(A) ⊆ semi-s-Nint(B)

Proof. It is obvious.

Proposition 2.5. (i) The intersection of a neutrosophic supra
open set and a neutrosophic semi-supra open set is a neutro-
sophic semi- supra open set.
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(ii) The intersection of a neutrosophic semi-supra open set and
aneutrosophic pre-supra open set is a neutrosophic pre-supra
open set.

Proof. It is obvious.

Definition 2.4. Let (X,T ) and (Y, S) be two neutrosophic semi-
supra open sets and R be a associated supra topology with T . A
map f : (X,T ) → (Y, S) is called neutrosophic semi- supra
continuous map if the inverse image of each neutrosophic open
set in Y is a neutrosophic semi- supra open in X .

Proposition 2.6. Every neutrosophic supra continuous map is
neutrosophic semi-supra continuous map.

Proof. Let f : (X,T ) → (Y, S) be a neutrosophic supra contin-
uous map and A is a neutrosophic open set in Y . Then f−1(A)
is a neutrosophic open set in X . Since R is associated with T .
Then T ⊆ R. Therefore f−1(A) is a neutrosophic supra open
set in X which is a neutrosophic supra open set in X . Hence f is
aneutrosophic semi-supra continuous map.

Remark 2.2. Every neutrosophic semi-supra continuous map
need not be neutrosophic supra continuous map.

Proposition 2.7. Let (X,T ) and (Y, S) be two neutrosophic
topological spaces and R be a associated neutrosophic supra
topology with T . Let f be a map from X into Y . Then the
following are equivalent.

i) f is a neutrosophic semi-supra continuous map.

ii) The inverse image of a neutrosophic closed sets in Y is a
neutrosophic semi closed set in X .

iii) Semi-s-Ncl(f−1(A)) ⊆ f−1(Ncl(A)) for every neutro-
sophic set A in Y .

iv) f(semi-s-Ncl(A)) ⊆ Ncl(f(A)) for every neutrosophic
set A in X.

v) f−1(Nint(B)) ⊆ semi-s-Nint(f−1(B)) for every neu-
trosophic set B in Y .

Proof. (i) ⇒ (ii) : Let A be a neutrosophic closed set in Y .
Then A is neutrosophic open in Y , Thus f−1(A) = f−1(A) is
neutrosophic semi-open inX . It follows that f−1(A) is a neutro-
sophic semi-s closed set of X .
(ii)⇒ (iii) : LetA be any subset ofX . SinceNcl(A) is neutro-
sophic closed in Y then it follows that f−1(Ncl(A)) is neutro-
sophic semi-s closed in X . Therefore, f−1(Ncl(A)) = semi-s-
Ncl(f−1(Ncl(A)) ⊇ semi-s-Ncl(f−1(A))
(iii) ⇒ (iv) : Let A be any subset of X . By (iii) we ob-
tain f−1(Ncl(f((A))) ⊇ semi-s-Ncl(f−1(f(A))) ⊇ semi-s-
Ncl(A) and hence f(semi-s-Ncl(A)) ⊆ Ncl(f(A)).
(iv) ⇒ (v) : Let f(semi-s-Ncl(A)) ⊆ f(Ncl(A) for
every neutrosophic set A in X . Then semi-s-Ncl(A)) ⊆
f−1(Ncl(f(A)). semi− s−Ncl(A) ⊇ f−1(Ncl(f(A)))

and semi-s-Nint(A) ⊇ f−1(Nint(f(A))). Then semi-s-
Nint(f−1(B)) ⊇ f−1(Nint(B)). Therefore f−1(Nint(B)) ⊆
s-Nint(f−1(B)) for every B in Y .
(v) ⇒ (i) : Let A be a neutrosophic open set in Y .
Therefore f−1(Nint(A)) ⊆ semi-s-Nint(f−1(A)), hence
f−1(A) ⊆ semi-s-Nint(f−1(A)). But we know that semi-
s-Nint(f−1(A)) ⊆ f−1(A), then f−1(A) = semi-s-
Nint(f−1(A)). Therefore f−1(A) is a neutrosophic semi-s-
open set.

Proposition 2.8. If a map f : (X,T )→ (Y, S) is a neutrosophic
semi-s-continuous and g : (Y, S)→ (Z,R) is neutrosophic con-
tinuous, Then g ◦ f is neutrosophic semi-s-continuous.

Proof. Obvious.

Proposition 2.9. Let a map f : (X,T ) → (Y, S) be a neu-
trosophic semi-supra continuous map, then one of the following
holds

i) f−1(semi-s-Nint(A)) ⊆ Nint(f−1(A)) for every neutro-
sophic set A in Y .

ii) Ncl(f−1(A)) ⊆ f−1(semi-s-Ncl(A)) for every neutro-
sophic set A in Y .

iii) f(Ncl(B)) ⊆ semi-s-Ncl(f(B)) for every neutrosophic
set B in X .

Proof. Let A be any neutrosophic open set of Y , then condition
(i) is satisfied, then f−1(semi-s-Nint(A)) ⊆ Nint(f−1(A)).
We get, f−1(A) ⊆ Nint(f−1(A)). Therefore f−1(A) is a neu-
trosophic supra open set. Every neutrosophic supra open set is
a neutrosophic semi supra open set. Hence f is a neutrosophic
semi-s-continuous function. If condition (ii) is satisfied, then we
can easily prove that f is a neutrosophic semi -s continuous func-
tion if condition (iii) is satisfied, and A is any neutrosophic open
set of Y , then f−1(A) is a set inX and f(Ncl(f−1(A)) ⊆ semi-
s-Ncl(f(f−1(A))). This implies f(Ncl(f−1(A))) ⊆ semi-s-
Ncl(A). This is nothing but condition (ii). Hence f is a neutro-
sophic semi-s-continuous function.
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