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ABSTRACT 

Fast detection and isolation of faults in a DC microgrid is of particular importance. 

Fast tripping protection (i) increases the lifetime of power electronics (PE) switches by 

avoiding high fault current magnitudes and (ii) enhances the controllability of PE 

converters. This thesis proposes a traveling wave (TW) based scheme for fast tripping 

protection of DC microgrids. The proposed scheme utilizes a discrete wavelet transform 

(DWT) to calculate the high-frequency components of DC fault currents. Multiresolution 

analysis (MRA) using DWT is utilized to detect TW components for different frequency 

ranges. The Parseval energy calculated from the MRA coefficients are then used to 

demonstrate a quantitative relationship between that energy and the fault current signal 

energy. The calculated Parseval energy values are used to train a Support Vector Machine 

classifier to identify the fault type and a Gaussian Process regression engine to estimate the 

fault location on the DC cables. The proposed approach is verified by simulating two 

microgrid test systems in PSCAD/EMTDC.    
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1. Introduction 

1.1 Motivation 

Many countries are moving into more technology driven societies from 

traditionally agrarian ones, and the energy needs of the world will only increase. These 

developing nations do not have the infrastructure to establish a nationwide electrical grid 

like the ones prevalent in developed nations [2]. In order to progress into the modern era, 

access to electricity is vital, and the approach must be on a small scale for many developing 

nations.  

Developed nations also stand to gain from microgrid technology. They can serve 

the role of a backup system to vital operations that cannot be interrupted without 

experiencing catastrophic consequences. Examples of these operations are any emergency 

services, such as hospitals, fire rescue services and police departments. Certain 

manufacturing or data services could also fall into this category. Some proponents of 

microgrid systems envision them as being a more key component to grid modernization 

with them being fully integrated into the larger grid network [3]. 

Additionally, it is estimated that the supply of fossil fuels will be diminished within 

this decade [4,5]. Energy has primarily been derived from the burning of fossil fuels, 

without this source, it is imperative to adopt alternative means of producing energy. The 

need to innovate and rethink electrical grid infrastructure is important to ensure future 

generations have an opportunity to thrive.  

A solution to this complex problem comes in the form of a microgrid system: a 

small power plant that can operate autonomously which incorporates as much clean, 

renewable power sources as possible. The attractiveness of microgrid systems is the 
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flexibility and modularity of how distributed energy resources (DER’s), such as battery 

storage, fuel cells and PV systems, can be incorporated to meet the specific need of the end 

users. Whether it is a small, rural community or an individual building, a microgrid can be 

tailored for the specific purpose. 

The electrical grid, in its current form, operates as an AC power system. DC 

electrical power systems do exist but mainly in the form of electrical transmission. 

Similarly, there are also AC and DC versions of microgrids, with the former being more 

well established. DC microgrids do offer an advantage over the AC versions, in the form 

of efficiency. It is because of these efficiency gains that DC systems are being explored in 

this thesis. 

1.2 Review of DC Systems and Their Protection 

DC microgrids render increased efficiency compared to their AC counterparts and 

flexibility for the integration of DC power sources (e.g., photovoltaic and battery energy 

storage systems). Due to these advantages, DC microgrids have gained more attention in 

recent years [6–10]. One of the challenging tasks in DC microgrids’ operation is their 

proper and effective protection. The fault currents in a DC system possess different 

signatures compared to the AC systems. No zero crossing of current in DC systems makes 

the interruption of fault currents with fuses and circuit breakers more difficult which, in 

turn, creates arcing and long fault clearing time [11]. On the other hand, fast detection and 

isolation of faults in a DC microgrid is of particular importance [12–14]. Due to the 

presence of power electronics (PE) switches, the DC fault currents usually are associated 

with a high magnitude that is sustained for a couple of milliseconds and then are attenuated 

after the internal protection of PE switches operates which blocks the switch operation. 
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Therefore, the fast detection and isolation of faults are required to: (i) increase the lifetime 

of PE switches by avoiding high fault current magnitudes, and (ii) enhance the 

controllability over PE converters under fault scenarios by preventing unwanted PE 

switches’ blocked operation [12–16].  

Conventionally, the protection of DC systems is based on overcurrent protection, 

undervoltage protection, rate of change of current, or differential schemes [17–21]. In [22], 

cable current derivatives are utilized to detect faults in DC microgrids. Alternatively, 

traveling wave (TW) protection schemes have been introduced to accommodate a faster 

tripping protection in electric power grids. These schemes rely on high-frequency 

measurements. The high-frequency transients can propagate through the system at a speed 

close to the speed of light. This feature can facilitate fast detection of TWs in less than 1 

ms after the fault. Moreover, TW protection does not depend on the magnitude of the fault 

currents which, in turn, is a good candidate to detect high impedance faults. TW protection 

is a promising approach for increasing the reliability and resilience of modern power grids 

with high penetration of renewable energy resources [23–29].  

The TW protection of high voltage DC (HVDC) systems is addressed in [30–37]. 

In [30], the frequency characteristics of TWs are used to develop a protection scheme for 

HVDC transmission lines. This method uses the first locally measured TW and accounts 

for the frequency component and polarity of TW rather than its arrival time. In [31], a TW 

protection technique is proposed that considers the power developed by both the forward 

and backward TWs. The amount of power transferred by these TWs is used to determine 

the fault location. In [32], a TW backup protection for a transmission line in an HVDC 

system is proposed. This reference analyzes the characteristics of TWs for internal and 
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external fault currents and uses the characteristic differences to develop a backup protection 

scheme. In [33], a TW protection technique for a converter-based-high-voltage DC 

transmission line is proposed. This method can detect high resistance pole to ground (PG) 

faults. In [34], another approach for the protection of line-commutated converter- based-

high-voltage DC is proposed that considers the electro-magnetic coupling effect between 

double circuit HVDC transmission lines. In [35], a TW protection scheme for multiterminal 

HVDC systems is presented. Continuous wavelet transform is used to calculate the arrival 

time of the first TWs at all converter stations. In [36], the difference of arrival time between 

the ground mode and line mode TWs is used for fault detection in multiterminal HVDC 

systems. In [37], multiterminal differential protection is presented for an HVDC system. 

This method uses a derivative-based wavelet transform to calculate high-frequency 

components of fault currents. In [29], a high-speed phaselet-based distance relaying scheme 

is proposed. Although, there are many TW protection techniques available for HVDC 

systems, the TW protection of medium voltage DC (MVDC) microgrids is not well studied 

in the literature. In [14], a TW protection scheme for MVDC microgrids is presented. This 

scheme requires the first locally measured TW and relies on its waveshape properties and 

polarity rather than its arrival time. This scheme uses a look-up table to map the waveshape 

properties and fault scenario. The lookup table should accommodate all possible fault 

scenarios which can be a challenging task. In [38], wavelet transform and artificial neural 

networks (ANN) are used to detect and classify faults in an MVDC shipboard power 

system. The wavelet coefficients’ features are used to train ANN for classifying faults. This 

scheme is only able to detect and classify faults and cannot find their locations on the 

cables. In [39], a wavelet transform, and ANN are used to detect faults and identify their 
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type in a DC microgrid. The focus of both [38] and [39] is on fault detection and 

classification rather than finding the location of the fault along DC microgrid cables. The 

findings of [40] present a numerical approach to determining fault locations using TWs and 

MRA. This method utilizes a spline, as well as a power series curve-fitting technique 

applied to Parseval energy calculated from traveling wave MRA coefficients to determine 

fault locations. The research of [41] capitalizes on DWT and MRA to calculate Parseval 

energy and determine fault location and provide fault classification. This research utilizes 

the methodologies of two state-of-the-art machine learning techniques: Random Forest and 

Tree Boosting. A comprehensive survey of various traveling wave protection schemes are 

thoroughly covered in [42]. 

On the other hand, more recently, machine learning techniques have been proposed 

as a promising solution for power system protection to further improve its performance. 

With increased access to real-time and historical data in modern power systems, machine 

learning algorithms have rendered a great potential for revolutionizing grid protection 

schemes. Fault detection, location, and response can benefit significantly with the addition 

of machine learning. A review of machine learning algorithms for power system protection 

is provided in [43]. Reference [44] uses frequency domain analysis and neural networks 

for fault location and fault section identification using line currents. In [45], a combined 

wavelet-transform-extreme learning machine is proposed for fault section identification, 

classification, and location in a series- compensated transmission line. In [46,47], Support 

Vector Machine (SVM) is utilized for fault location and classification in transmission 

systems. In [38,39], and [48], ANN is utilized to detect and classify faults in DC systems. 

In [49], Gaussian Process (GP) is used to detect faults in a simple DC system.  
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In this thesis, a TW protection scheme utilizing machine learning (ML) for DC 

microgrids is proposed. The proposed scheme utilizes discrete wavelet transform (DWT) 

to calculate the high-frequency components of DC fault currents. Multiresolution analysis 

(MRA) is used along with DWT to calculate TW components for multiple high frequency 

ranges. The Parseval energy calculated from the MRA coefficients are then used to 

demonstrate a quantitative relationship between that energy and the fault current signal 

energy. The calculated Parseval energies are used to train ML engines to (i) identify the 

fault type and (ii) estimate the fault location on the DC cables. In this thesis, SVM is used 

as a classifier for fault type classification. GP is used as the regression tool for estimating 

fault location. The proposed approach is verified by simulating two microgrid test systems 

in PSCAD/EMTDC. This thesis makes the following contributions:   

• The fast-tripping protection of DC microgrids is addressed by using the TW signatures 

at different high-frequency ranges.  

• The proposed scheme does not require any communication infrastructure and only relies 

on local measurements for fault detection and location.   

• The proposed scheme effectively works for other bolted and resistive pole to pole (PP) 

and PG faults and can effectively find the fault type, location, and direction.   

• DWT and MRA are applied on DC fault current and voltage TWs to not only detect and 

classify faults but also find the location of the fault along the cables.  

The rest of the thesis is organized as follows: Section 2 provides the preliminaries 

of TWs in a fault condition. In Section 3, the DWT and MRA are introduced. Section 4 

elaborates on the characteristics of MRA outputs for faults in a DC system. In Section 5, 
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our proposed fault detection and location scheme is discussed. Simulation results are 

provided in Section 6. Section 7 concludes the thesis.  
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2. Preliminaries on TW Theory 

TWs are electromagnetic waves propagated along the power system equipment 

such as lines or cables when a disturbance (e.g., fault, lightning, switching, etc.) occurs. 

When the high-frequency TWs reach a new environment with different circuit parameters 

(e.g., at a line terminal), a portion of the incident TW is reflected while the other portion is 

refracted to the neighboring equipment. Depending on the circuit parameters at both sides 

of the terminal, the amplitude of reflected and refracted TWs changes accordingly. The 

reflected TWs are also reflected and refracted again after they reach the fault location or 

line terminals [24]. TWs along transmission lines are formulated using the telegrapher’s 

equations. These coupled differential equations relate voltage v(x,t) and current i(x,t) at any 

point in time and space. In phasor domain, the general solutions to these equations can be 

described as [23,50]  

 {
𝐼(𝑥, 𝑡) = 𝐼0

+𝑒−𝛾𝑥 + 𝐼0
−𝑒𝛾𝑥 ,

�̃�(𝑥, 𝑡) = 𝑉0
+𝑒−𝛾𝑥 + 𝑉0

−𝑒𝛾𝑥 ,
                                                                   (1) 

where I0
+, I0

− , V0
+, and V0

−
 are the Laplace transforms of voltage and current TW 

components (i.e., incident and reflection), x describes the distance from the fault point, and 

γ denotes the propagation constant. In time domain, one can write the voltage TW equation 

as  

{

𝑣(𝑥, 𝑡) = 𝑣+(𝑥, 𝑡) + 𝑣−(𝑥, 𝑡),

𝑣+(𝑥, 𝑡) = |𝑉0
+|𝑒−𝛼𝑥 𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑥),

𝑣−(𝑥, 𝑡) = |𝑉0
−|𝑒𝛼𝑥 𝑐𝑜𝑠(𝜔𝑡 + 𝛽𝑥),

                                                                            (2) 

where α and β denote the attenuation constant and phase constant, respectively. A similar 

procedure can be used to obtain the equations for i(x,t). The propagation constant is  

𝛾 = 𝛼 + 𝑗𝛽.           (3) 
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Alternatively, the propagation constant can be formulated as  

𝛾 = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶),        (4) 

where R, L, G, and C are the per unit length resistance, inductance, conductance, and 

capacitance of the transmission line or cable, ω represents the angular frequency of the 

TW. The propagation velocity of a TW is  

𝑣 =
𝜔

𝛽
.         (5) 

In general, higher frequency TWs travel faster but have a larger α and hence a lower 

magnitude compared to the lower frequency ones.  
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3. DWT and MRA 

The wavelet transform (WT) has been widely utilized as an effective tool for the 

simultaneous analysis of waveforms in time and frequency domains [51,52]. As opposed 

to the Fourier Transform where the frequency content is related to the entire duration of 

the analyzed signal, WT can accommodate localized frequency contents in time. Discrete 

wavelet transform (DWT) is defined as [38]  

𝑊𝐷(𝑚, 𝑛) =
1

√𝑎0
𝑚
∑ 𝑥𝑘 [𝑘]𝛹 [

𝑘−𝑛𝑏0𝑎0
𝑚

𝑎0
𝑚 ],       (6) 

with 𝛹 is defined as the mother wavelet, k is discretized time. Variables, m, and n facilitate 

scaling and time shifting with parameters a0 and b0. DWT is subject to the uncertainty 

principle of signal processing where both time and frequency cannot be located very 

precisely; the better resolution in frequency would compromise the time resolution and 

vice versa.  

In order to effectively construct wavelets over a wide frequency range, 

multiresolution analysis (MRA), advanced by Mallat [53], is a practical approach for fully 

implementing the discrete wavelet transform. MRA details the procedure to obtain an 

orthonormal wavelet basis with compact support. MRA can be implemented by a series of 

high-pass and low-pass filters and decimators as shown in Fig. 1. As seen in the figure, the 

outputs of low and high-pass filters at each level are ai[n] and di[n]. The output of the low-

pass filter at each level is passed through the next level for constructing wavelets for the 

next decomposition level. The low-pass filter outputs are referred to as scaling coefficients 

while the high-pass filter outputs are called wavelet coefficients. Assuming that the initial 

sampling frequency of WT is set as fs, then the frequency range of each level is shown in 

Fig. 1. In this thesis, the wavelet coefficients are of interest since they better represent the 
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high-frequency behavior of TWs [38]. According to [54], it is possible to reconstruct the 

original signal using wavelet series reconstruction. To this end, reverse filters are used to 

up sample the coefficients by the factor of 2. The reconstruction facilitates the delivery of 

wavelet coefficients of different scales with a finer resolution.  

Once the MRA based wavelet coefficients are identified, the Parseval’s theorem is 

used to calculate the energy corresponding to the identified coefficients. In this thesis, the 

MRA analysis is conducted on both voltage and current measurements. As discussed in 

[38,51], if the scaling function and the mother wavelet form an orthonormal basis, then 

Parseval’s theorem can be used to build a relationship between the calculated wavelet 

coefficients and the energy spectrum of the fault signal (i.e., cable’s voltage or current 

measurement). Under this condition, Parseval’s theorem states that the energy of the fault 

signal can be described mathematically in terms of the expansion coefficients (i.e., the 

integral or sum of the square of the original function is equal to the sum of the square of 

the coefficients). The DWT can split the energy of fault signals in time and frequency 

domains. With Parseval’s theorem, one can effectively interpret the high-frequency 

signatures of TWs by relating the current or voltage TW energy to the energy calculated 

from the wavelet coefficients. The fault signal can be described by the wavelet coefficients 

of different ranges. The total Parseval energy of the wavelet coefficients of current or 

voltage measurements, di, at mth time step after an initial time t0 are defined as [38,51]  

 𝐸𝑃𝑅𝑆(𝑚) = ∑ ∑ 𝑑𝑖
2(𝑡0 + 𝑗𝛥𝑡)𝑚

𝑗=1
𝑛
𝑖=1 ,                                                                       (7) 
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where di(t) denotes the wavelet coefficient calculated for the i-th decomposition level at 

the time t; Δt is the time step used in DWT. The Parseval energy of a single wavelet 

coefficient that corresponds to a specific MRA level can be described as  

 𝐸𝑃𝑅𝑆,𝑖(𝑚) = ∑ 𝑑𝑖
2(𝑡0 + 𝑗𝛥𝑡)𝑚

𝑗=1 .                                                                 (8) 

In the following, EPRS,i(m) is calculated for different MRA levels of current and voltage 

measurements on each cable. EPRS,i(m) values will be analyzed and utilized for the proposed 

fault detection, classification, and location algorithms.  

2

HHPF,1[n]GLPF,1[n]

Sampled Signal

2

d1

2

HHPF,2[n]GLPF,2[n]

2

a1

2

HHPF,3[n]GLPF,3[n]

2

a2 d2

a3 d3

[fs/4 , fs/2]

[fs/8 , fs/4]

[fs/16 , fs/8]  

Figure 1. MRA block diagram. 
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4. High-Frequency Fault Signatures in a DC System 

4.1. Simple Microgrid Model 

In order to study the high-frequency fault signatures of DC systems, a simple DC 

system (shown in Fig. 2) is modeled in PSCAD/EMTDC. This circuit includes a 

controllable DC voltage source, one cable with the length of 3000 m, and a DC load with 

the resistance of 10 Ω. The nominal voltage of this system is ± 375 V. The cable is modeled 

using the frequency-dependent distributed parameter model available in PSCAD/EMTDC. 

The cable specifications are provided in Fig. 3. It is assumed that each pole is buried 1 m 

deep. The core conductor resistivity is 2 × 10-8 
Ωm while sheath resistivity is 30 × 10-8 

Ωm.  

AC

DC C1

LoadAC Grid
Sensor

Main 

Converter  

Figure 2. Simple DC microgrid system. 

0.015m

0.017667m

0.020667m

0.5m

Core 

Conductor

Sheath

 

Figure 3. Cable configuration of the DC system in Fig. 2. 
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4.2. Pole to Pole Fault Characteristics  

 

When a Pole to Pole (PP) fault occurs on a cable, the voltage at the local terminal 

of cable (i.e. where the sensor is located) hugely drops while the pole current increases 

significantly and is attained for a short period of time until the internal protection of the 

main converter PE operates and the pole currents are forced back to zero. To illustrate the 

high-frequency fault current signatures in a DC system, it is assumed that a PP fault is 

applied at 2625 m of Cable C1 from the current sensor side. The fault is applied at t = 0.5 

s. The sensor’s current, MRA’s level 1 wavelet coefficient, and its Parseval energy are 

shown in Fig. 4. Fig. 4b clearly illustrates the TW incidents received at the sensor location 

after the fault occurs. In this study, the sampling frequency of DWT is 1 MHz. Daubechies 

(db8) is used as the mother wavelet. Therefore, the wavelet coefficient shown in Fig. 4b 

represents the TW components corresponding to [250 kHz, 500 kHz] frequency range. The 

Parseval energy, shown in Fig. 4c, demonstrates a quantitative measure of the TWs. As 

seen, after the first incident of TW arrives at the sensor location, the Parseval energy 

increases and is settled at an interim value until the next incident TW reaches the sensor 

location. Using the Parseval energy value, one can identify the timing of TW incidents at 

different decomposition levels. In this thesis, the Parseval energy of the first incident of 

TWs is of interest. This value will be later used in the fault classification and location 

algorithm.  
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(a) 

 

 

(b) 

 

(c) 

Figure 4. PP fault signatures for a fault at 2625 m in Fig. 2: (a) sensor fault current on the positive pole; 

(b) MRA’s level 1 wavelet coefficient; (c) Parseval energy calculated from the wavelet coefficients. 
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As mentioned in Section 3, MRA is an effective tool to demonstrate the high-

frequency fault signatures in different frequency ranges. In order to show how the Parseval 

energy calculated from the wavelet coefficients of each MRA’s level is impacted for 

different fault locations, PP faults are applied at every 75 m of Cable C1 in Fig. 2. First, it 

is assumed that DWT’s sampling frequency is 1 MHz. The Parseval energy values for three 

levels of MRA applied to the current measured at the sensor in Fig. 2 are shown in Fig. 5. 

Herein, level 1, 2, and 3 are associated with [250 kHz, 500 kHz], [125 kHz, 250 kHz], and 

[67.5 kHz, 125 kHz] frequency ranges. As seen in Fig. 5a, the Parseval energy value is 

generally decreasing as the fault location gets closer to the end of the cable, however, some 

local peaks are observed that happen at every 375 m. A similar pattern is observed in Fig. 

5b; however, the local peaks occur at every 750–800 m. Finally, Fig. 5c shows that the 

local peaks occur at every 1500 m. As a rule of thumb, the number of local peaks 

approximately doubles from level 3 to level 2 and as well as from level 2 to level 1. In Fig. 

6, it is assumed that the DWT’s sampling frequency is 2 MHz. Doing so, level 1 and 2 are 

associated with [500 kHz, 1 MHz] and [250 kHz, 500 kHz] frequency ranges, respectively. 

As seen in Fig. 6, a similar pattern to Fig. 5 can be observed. In general, with a higher 

DWT’s sampling frequency, (i) more oscillations on the Parseval energy profile of fault 

currents is observed, and (ii) the first incident of TW can be detected faster. The latter is 

based on an inherent feature of TWs in which the higher frequency TWs travel faster with 

a lower magnitude.  

As discussed in Section 3, the spectrum of the energy of the fault signals 

corresponds to the Parseval energy calculated from the wavelet coefficients. The Parseval 

energy patterns for different fault locations in Fig. 5 and Fig. 6 are based on the inherent 
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behavior of TW currents and voltages as described in Section 2. More specifically, the 

incident TW current incurred by a fault can be formulated as  

𝑖+(𝑥, 𝑡) = |𝐼0
+|𝑒−𝛼𝑥 𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑥),                                                                 (9) 

where α and β denote the attenuation constant and phase constant, respectively, x denotes 

the distance from the fault location. Alternatively, one can formulate a function between 

the incident TW current at the cable terminal where the sensor is located (see Fig.2) and 

fault location assuming sliding faults along the cable. Doing so, the incident TW current 

at the cable terminal and the fault location, xf , can be represented as  

𝑖+(𝑥𝑓 , 𝑡) = |𝐼0
+|𝑒−𝛼𝑥𝑓 𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑥𝑓).                                                               (10) 

According to (10), the relationship between the incident TW current at the sensor location 

and fault location inherits a combined exponential/sinusoidal behavior. Due to the 

existence of a cosine function, some local peaks are observed. These local peaks at a 

specific time t1 occur at  

𝑥𝐿𝑜𝑐𝑎𝑙𝑃𝑒𝑎𝑘 =
(𝜔𝑡1−2𝑛𝜋)

𝛽
, 𝑛 = 0,1, . ...                                                               (11) 

Since the MRA coefficients correspond to the magnitude of TW at a specific frequency 

range and Parseval energy sums up the square of MRA coefficients over time, the Parseval 

energy as a function of fault location results in the waveshapes seen in Fig. 5 and Fig. 6. 

Moreover, from (11), the local peaks of incident TW current at the sensor location as a 

function of fault location occur periodically and are a function of TW angular frequency 

ω. According to (3) and (4), β also corresponds to ω. With ω appearing in the denominator 

of (11), one can conclude that as ω increases, more local peaks with a higher frequency 

can occur as seen in Fig. 5 and Fig. 6.  
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(a) 

 

(b) 

 

(c) 

Figure 5. Parseval energy values for different fault locations on the cable of DC system with 1 MHz 

sampling frequency in Fig. 2: (a) MRA’s level 1; (b) MRA’s level 2; (c) MRA’s level 3. 
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Figure 6. Parseval energy values for different fault locations on the cable of DC system with 2 MHz 

sampling frequency. 

 

4.3. Pole to Ground Fault Characteristics  

 

When a Pole to Ground (PG) fault occurs on a cable, the main converter of the DC 

microgrid is able to regulate the PP voltage and maintain it at the nominal voltage of the 

microgrid. After the PG fault occurs, at the fault location, the faulted pole’s voltage is 

forced to zero, while the healthy pole voltage absolute value is forced to DC microgrid’s 

nominal voltage. Therefore, the PP voltage and current measurements at the local terminal 

of cable (i.e. where the sensor is located) do not experience any significant change and 

only small transients are noticed on these quantities. The voltage and current at the sensor 

of DC microgrid in Fig. 2 for a PG fault at 1500 m are shown in Fig. 7. It should be noted 

that the microgrid’s grounding happens at the middle point of the DC link of the 

microgrid’s AC/DC converter. As seen in Fig. 7a and Fig. 7b, after the PG fault is applied 

at 0.25 s, only small transients are observed in the current and PP voltage at the sensor 

location. However, Fig. 7c and Fig. 7d show that the positive pole to ground (PPG) voltage 

drops to zero while the negative pole to ground (NPG) voltage reaches to − 750 V.  

One distinguishing factor between PP and PG faults is how the Parseval energy of 

TWs for PP and PG voltage values change. For PG faults, positive and negative pole 
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voltages’ Parseval energies experience a significantly higher change compared to PP 

voltage’s Parseval energies (See Fig. 8 and Fig. 9).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. PG fault signatures for a fault at 1500 m in Fig. 2: (a) sensor fault current on positive pole; (b) 

PP voltage; (c) PPG voltage; (d) NPG voltage. 
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(a) 

 

(b) 

 

(c) 

Figure 8. Impact of PG fault on pole to pole and pole to ground voltages’ s Parseval energy: (a) PP 

voltage; (b) PPG voltage; (c) NPG voltage. 
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(a) 

 

(b) 

 

(c) 

Figure 9. Impact of PP fault on pole to pole and pole to ground voltages’ Parseval energy: (a) PP 

voltage; (b) PPG voltage; (c) NPG voltage. 
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5. Fault Classification and Location Scheme 

5.1. Fault Detection and Direction Algorithm  

In this section, the fault detection and direction, the fault classification, and the fault 

location algorithms are elaborated in detail. There are two classifications of faults that this 

section references much: the bolted (non-resistive) and unbolted (resistive) faults. The 

difference between the two is that the bolted fault can be thought of as the two faulted 

cables (pole-to-pole or pole-to-ground) being “bolted” together to essentially form a short 

circuit. The circuit is not truly non-resistive but very close, it is still subject to the small 

amount internal resistance of the system. The resistive (unbolted) fault is one that has some 

resistance between the two faulted cables in question, such as through electrical arcing. The 

resistive faults have a much lower fault current than bolted faults, which carry the 

maximum. The fault detection and direction algorithms will now be explained. The goal of 

the fault detection algorithm is to distinguish a fault scenario from a regular transient in the 

microgrid system. The fault detection algorithm is based on comparing the calculated 

Parseval energy value of the current flowing through the protection relay sensor, EPRS,I , 

and a threshold η which is calculated as follows:  

   𝜂 = 𝛾𝑚𝑖𝑛( 𝐸𝑃𝑅𝑆,𝐼,𝑃𝑃 , 𝐸𝑃𝑅𝑆,𝐼,𝑃𝐺),                                                               (12) 

where EPRS,I,PP and EPRS,I,PG are the summation of the first N levels of Parseval energy of 

the current flowing through the protection relay sensor for remote end bolted PP and PG 

faults, respectively, γ is a parameter to account for measurement noises. In general, regular 

microgrid transients (e.g., load outage, converter outage, etc.) create TWs with lower 

Parseval energy values compared to a bolted fault scenario. Therefore, 𝜂 can be used to 

distinguish between a bolted fault scenario and other transients in the system. For highly 
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resistive faults, 𝜂 may fail to distinguish a transient condition from the fault condition since 

resistive faults have lower current Parseval energy values. To tackle this challenge, the 

summation of the first N levels of Parseval energy of the PP, PPG, and NPG voltages are 

utilized. For a regular transient in the system, the Parseval energy values of PP, PPG, and 

NPG voltages remain very small. However, for a resistive PP fault, the summation of the 

first N levels of Parseval energy of PP voltage is much higher than a regular transient. For 

a resistive PG fault, the summation of the first N levels of Parseval energy of PPG and NPG 

voltages are much higher than the regular transients. Therefore, by calculating the Parseval 

energy values of PP, PPG, and NPG voltage values, one can distinguish between a regular 

transient and highly resistive fault condition.  

The fault direction algorithm is extracted from [18]. The algorithm assumes that the 

convention for the direction of current measurement units is as follows (See Figure 10): on 

the positive pole, the positive direction of the current measurement unit is toward the line 

while on the negative pole, the positive direction of the current measurement unit is toward 

the terminal. Depending on the fault type and location, one of the following scenarios can 

happen:  

• For PP faults, when a forward fault is applied in front of the measurement unit, the 

measurement unit will see a decreasing voltage surge and an increasing current surge.  

• For PP faults, when a forward fault is applied behind the measurement unit, the 

measurement unit will see a decreasing voltage surge and a decreasing current surge.   

• For PG faults, since the changes of the measured current at the relay location are 

minimal, it is recommended to use the fault location algorithm in Section 5.3. If the fault 

is located on one of the cables behind the measurement unit, the amount of Parseval 
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energy values seen at the relay location are highly attenuated due to the reflections at the 

local terminal.  

Positive Pole 
Current Sensor

DC

Negative Pole 
Current Sensor

 

Figure 100. Convention for fault direction algorithm. 

5.2. Fault Classification Algorithm  

 

To distinguish between PP and PG faults, the Parseval energy of PP voltage at the 

sensor location is compared against the Parseval energies of the positive or negative pole 

to ground voltage. This procedure is shown in Fig. 11. As discussed in Section 4, for PG 

faults, the Parseval energies of positive or negative pole to ground voltage are significantly 

higher than the Parseval energy of PP voltage. To this end, the algorithm first calculates 

the summation of the first N levels of Parseval energy values related to PP voltage and PPG 

voltage using (i.e., EPRS,VPP and EPRS,VPG, respectively). Then, EPRS,VPP and EPRS,VPG are 

compared against each other to determine the fault type. Herein, the ratio of EPRS,VPG 

/EPRS,VPP is calculated and compared against λFT threshold. This threshold can be found by 

trial and error on the microgrid system. Since EPRS,VPG is significantly higher than EPRS,VPP 

for PG faults, λFT is always greater than 1. As a rule of thumb, the threshold is selected at 

around 10% of the EPRS,VPG /EPRS,VPP ratio for the remote end PP and PG faults.  
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Once the fault type (i.e., PP versus PG) is identified, an SVM classifier is used to 

find if the fault is resistive or bolted. SVM has been proven to be a very effective as a 

classification tool. The preliminaries of SVM are discussed in [56]. For this purpose, 

multiple bolted and resistive faults are simulated at different locations of cable (e.g., every 

25 m) in a simulation software package (e.g., PSCAD/EMTDC). It should be noted that the 

fault resistance values adopted in the simulations depend on the DC microgrid conditions 

like voltage level or geographical location. After the simulation results are gathered, the 

SVM classifier is trained using the labeled Parseval energy values. For PP faults, the inputs 

to the SVM classifier are the N level Parseval energy values of pole current and PP voltage 

at the sensor location. For PG faults, the inputs to the SVM classifier are the N level 

Parseval energy values of pole current and PPG voltage at the sensor location. The output 

of the classifier is the type of fault, bolted or resistive. Matlab was utilized with the 

“fitcsvm” function for classification, the training inputs and outputs were described above. 

For more information on using the “fitcsvm” function, see [57]. 
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Figure 111. Fault classification and location algorithm. 

 

5.3. Fault Location Algorithm  

Once the fault type is classified, the proposed approach ensures that the fault is 

located on the primary cable. To this end, the Parseval energy value of the current flowing 
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through the protection relay sensor, EPRS,I, is calculated. Depending on the fault type, EPRS,I 

is compared against the precalculated Parseval energy value related to the remote end 

bolted PP, resistive PP, bolted PG, or resistive PG fault. The proposed fault location 

algorithm relies on the Parseval energy values gathered from MRA. The algorithm utilizes 

the first N levels of MRA, calculates the Parseval energy of the first TW incidents, and then 

utilizes GP regression engines to find the fault location. The proposed fault location 

algorithm is shown in Fig. 10.  

GP Regression: A GP is a generalization of the Gaussian probability distribution. 

GP is a collection of any finite number of random variables with a joint Gaussian 

distribution. GP is a very effective tool for classification and regression of datasets with 

linear or nonlinear relationships. A training set of n observations (inputs and outputs) is 

given by D = {(xi, yi)|i = 1,…,n} or equivalently D = (X, y). A GP regression model predicts 

an output value ynew for the new input of xnew. A linear GP regression model can be written 

as [58]  

𝑦 = 𝒙𝑇𝛽 + 𝜀,                     (13) 

where ( )2
~ 0,

n
 N  denotes an additive noise described by a Gaussian distribution with 

zero mean and variance of σ2
n. The regression tool tries to estimate the coefficients β and 

variance σ2
n. A GP regression tool finds the solution by incorporating the GP-based latent 

variables {𝑓(𝒙𝒊)|𝑖 = 1,… , 𝑛} and the basis functions h, which lead to the formation of  

 𝑦 = ℎ(𝒙)𝑇𝛽 + 𝑓(𝒙),                                                               (14)     

with f(x) formed by GP with zero mean and covariance function of k(x, x′ ). A sample of 

solution y can be represented as 
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𝑃(𝑦𝑖|𝑓(𝒙𝑖), 𝒙𝑖) ∼ 𝑁(𝑦𝑖|ℎ(𝒙𝑖)
𝑇𝛽 + 𝑓(𝒙𝑖), 𝜎

2 ).                                                               (15)     

Equivalently, the joint distribution of latent variables in the probabilistic GP regression 

model is  

 𝑃(𝑓|𝑋) ∼ 𝑁(𝑓|0, 𝐾(𝑋, 𝑋′)),                                                               (16)     

where 𝑋 = [𝒙1
𝑇 𝒙2

𝑇 . . . 𝒙𝑛
𝑇] and  

𝐾(𝑋, 𝑋′) = [

𝑘(𝒙1, 𝒙1) 𝑘(𝒙1, 𝒙2) ⋯ 𝑘(𝒙1, 𝒙𝑛)
𝑘(𝒙1, 𝒙2) 𝑘(𝒙2, 𝒙2) ⋯ 𝑘(𝒙2, 𝒙𝑛)

⋮ ⋮ ⋮ ⋮
𝑘(𝒙𝑛, 𝒙1) 𝑘(𝒙𝑛, 𝒙2) ⋯ 𝑘(𝒙𝑛, 𝒙𝑛)

].                                                     (17)     

The covariance functions are represented through a set of Kernel hyperparameters [58].  

The fault location algorithm utilizes different GP regression engines 

corresponding to bolted and resistive PP and PG faults. In order to effectively train the GP 

regression engine, the number of MRA levels, N, requires to be greater than or equal to 

three. Although the higher value of N increases the accuracy of the GP regression engine, 

increasing the levels of MRA decreases the speed of the fault location algorithm as MRA 

has a slower response for lower frequency ranges. The value of Parseval energy selected 

for each decomposition level is the value that is observed after the first traveling wave 

corresponding to that decomposition level reaches the sensor location. In this thesis, to 

effectively train the GP regression engine, the Parseval energy of MRA’s six levels at 

multiple fault locations (e.g., every 50 m of the cable) are utilized as the training inputs 

and outputs, respectively. Once trained, the GP regression tool can identify the fault 

location using the Parseval energy of MRA’s six levels for any new fault scenario on the 
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cable. Both SVM and GP don’t require extensive training datasets for their effective 

operations.  

The Gaussian Process for Machine Learning (GPML) add on toolbox [58] for 

Matlab was utilized to formulate the machine learning algorithms. An exponential kernel 

function was chosen for the analysis. The training input and outputs were described above. 

For a comprehensive explanation of how to use the code, see [58]. 

Remark 1. In this thesis, six MRA’s levels are used as the inputs to the GP regression 

engine. Generally, it is preferred to utilize more MRA’s levels in order to cover more 

signatures of the fault current at a wider frequency range. However, with a higher MRA 

level, the computational time of the algorithm becomes significantly higher which in turn 

slows down the protection scheme [38,55]. Therefore, six levels of MRA are selected to 

provide a tradeoff between the comprehensiveness of fault current signatures and the 

computational efficiency of the algorithm.  

Remark 2. It should be noted that the proposed protection scheme can effectively work 

with different DWT sampling frequencies. The DWT sampling frequency only impacts the 

speed of the fault location algorithm. With a higher sampling frequency, MRA is able to 

calculate the first N levels of wavelet coefficients faster. For example, with 8 MHz 

sampling frequency and six MRA levels, the proposed algorithm will be able to find the 

fault location in 200 µs. With the recent advancements in signal processing and 

measurement technologies, high-frequency data sampling and measurement can be easily 

accommodated for the implementation of the proposed scheme. In fact, existing 

commercial TW relays are able to perform very high frequency (in the order of MHz) 

measurements [59]. 
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Remark 3. For both SVM classifier and GP regression tools, a supervised learning 

approach is adopted. The supervised learning uses the simulation model to create labeled 

data sets for training both SVM and  GP tools. When the proposed protection scheme is 

deployed in the field, the data gathered from the fault incident is used to identify fault type 

and estimate fault location using the most recent trained SVM and GP tools. Then, the new 

dataset along with the fault type and location will be added to the training set and both 

SVM and GP tools will be trained with the updated training set.  

Remark 4. Mother wavelet can significantly impact the accuracy and speed of the MRA. 

It is of particular importance to select a suitable mother wavelet for the proposed fault 

location algorithm. The criteria for selecting a mother wavelet are: (i) incorporating enough 

number of vanishing points for accounting for the salient features of waveforms, (ii) sharp 

cutoff frequencies to minimize the amount of energy leakage to the next decomposition 

level, and (iii) being orthonormal, (iv) minimum description length (MDL) [38,60]. 

According to [38], Daubechies (db) mother wavelets are promising candidates that comply 

with the aforementioned criteria and facilitate fast and accurate MRA.  

Remark 5. The proposed protection approach can also provide backup protection for 

forward cables that are located in front of the protection relay. This is achieved by 

calculating the Parseval energy value related to faults applied at the remote end of the 

shortest forward cable. If the Parseval energy of the current flowing through the protection 

relay sensor is lower than the precalculated Parseval energy value of a fault applied at the 

remote end of the primary cable and greater than the Parseval energy value related to a fault 

applied at the remote end of the shortest forward cable, then the protection relay can provide 

backup protection. In order to coordinate backup and primary protection relays, the backup 



 

32 
 

protection should operate with a delay named the coordination time interval (CTI). 

According to [14], the CTI (i) should be greater than the operating time of primary 

protection relay, (ii) should be greater than the operating time of solid-state DC circuit 

breaker which is assumed to be around 200 µs, and (iii) must include a 20% security 

margin. For example, if the operating time of the primary relay is 200 µs, then the CTI is 

equal to (200 + 200) × 1.2 = 480 µs.  
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6. Performance Verification 

6.1. DC Microgrid 1  

To verify the performance of the proposed fault detection and location scheme, two 

different DC microgrid systems are utilized. The simulation results for these two microgrid 

systems will be shown now, starting with Microgrid 1. The DC microgrid 1 test system is 

illustrated in Fig. 12. This DC microgrid system is based on a real DC microgrid system in 

the city of Albuquerque, NM. We have utilized high frequency (in the order of 10 MHz) 

field measurements from the actual microgrid to calibrate the created model in 

PSCAD/EMTDC. The DC microgrid is supplying four residential houses. Each residential 

house is described as a nanogrid (NG). Each NG included the residential house load, a PV 

system, a Battery Energy Storage System (BESS), and DC-DC converters to integrate NG 

into the rest of the microgrid. The PV system is associated with a maximum power tracking 

scheme. The size of the PV system in each NG is 10 kW while the size of BESS is 6 kW/12 

kWh. The load of NG1, NG3, and NG4 is 56.25 kW and the load of NG2 is equal to 50 

kW. It is assumed that the microgrid includes a community BESS and PV system with the 

size of 20 kW/40 kWh and 18 kW, respectively. The microgrid’s main converter is modeled 

as a multi-level voltage sourced converter [61]. The microgrid’s grounding happens at the 

middle point of the DC link of the microgrid’s AC/DC converter. The size of this converter 

is 500 kW. Load L1′s size is 10 Ω. RC1 is 25 mΩ and LC1 is 20 µH. In Fig. 12, Relays R1 

to R6 identify the location of our proposed fault detection and location algorithms. The 

cables configuration is provided in Fig. 3. It is assumed that each cable has its own local 

protection.  
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To verify the effectiveness of the proposed scheme, bolted and resistive PP and PG 

faults are applied at different locations of all six cables in the DC microgrid test system 

shown in Fig. 12. The fault resistance for both PP and PG faults is equal to 5 Ω. The length 

of each these simulations, DWT’s sampling frequency is 8 MHz. Six levels of MRA are 

used for the fault classification and location algorithm. For Cables C1 and C6, 40 different 

fault locations are simulated; for Cables C2 and C5, 30 different fault locations are 

simulated; for Cable C3, 38 different fault locations are simulated; for Cable C4, 22 

different fault locations are simulated. The captured Parseval energy values for bolted PP 

faults on Cables C1 to C6 are illustrated in Figs. 13–18.  
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Figure 12. DC Microgrid 1. 

 

Table 1. Cable lengths and fault locations values. 

Cable C1 C2 C3 C4 C5 C6 

Length 2000 m 800 m 1000 m 600 m 800 m 2000 m 

Fault 

locations 

At every 

50 m 

50 m, 75 m, 100 

m, 125 m, 150 m, 

175 m, 200 m, 225 

m, 250 m, 275 m, 

300 m, 325 m, 350 

m, 375 m, 400 m, 

425 m, 450 m, 475 

m, 500 m, 525 m, 

550 m, 575 m, 600 

m, 625 m, 650 m, 

675 m, 700 m, 725 

m, 750 m, 800 m   

50 m, 75 m, 100 m,  

125 m, 150 m, 175 m, 

200 m, 225 m, 250 m, 

275 m, 300 m, 325 m, 

350 m, 375 m, 400 m, 

425 m, 450 m, 475 m, 

500 m, 525 m, 550 m, 

575 m, 600 m, 625 m, 

650 m, 675 m, 700 m, 

725 m, 750 m, 775 m, 

800 m, 825 m, 850 m, 

875 m, 900 m, 925 m, 

950 m, 1000 m  

50 m, 75 m, 100 m,  

125 m, 150 m, 175 

m, 200 m, 225 m, 

250 m, 275 m, 300 

m, 325 m, 350 m, 

375 m, 400 m, 425 

m, 450 m, 475 m, 

500 m, 525 m, 550 

m, 600 m 

50 m, 75 m, 100 

m, 125 m, 150 m, 

175 m, 200 m, 225 

m, 250 m, 275 m, 

300 m, 325 m, 350 

m, 375 m, 400 m, 

425 m, 450 m, 475 

m, 500 m, 525 m, 

550 m, 575 m, 600 

m, 625 m, 650 m, 

675 m, 700 m, 725 

m, 750 m, 800 m 

At 

every 

50 m 
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                                         (a)                                                                                  (b) 

  

                                         (c)                                                                                  (d) 

 

                                         (e)                                                                                  (f) 

Figure 13. Parseval energy values for bolted PP faults on C1: (a) Level 1; (b) Level 2; (c) Level 3; (d) 

Level 4; (e) Level 5; (f) Level 6. 
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                                         (a)                                                                                  (b) 

         

                                         (c)                                                                                  (d) 

     

                                         (e)                                                                                  (f) 

Figure 14. Parseval energy values for bolted PP faults on C2: (a) Level 1; (b) Level 2; (c) Level 3; (d) 

Level 4; (e) Level 5; (f) Level 6. 
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                                         (a)                                                                                  (b) 

 

                                         (c)                                                                                  (d) 

 

                                         (e)                                                                                  (f) 

Figure 15. Parseval energy values for bolted PP faults on C3: (a) Level 1; (b) Level 2; (c) Level 3; (d) 

Level 4; (e) Level 5; (f) Level 6. 
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                                         (a)                                                                                  (b) 

 

                                         (c)                                                                                  (d) 

 

 

                                         (e)                                                                                  (f) 

Figure 16. Parseval energy values for bolted PP faults on C4: (a) Level 1; (b) Level 2; (c) Level 3; (d) 

Level 4; (e) Level 5; (f) Level 6. 
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                                         (a)                                                                                  (b) 

 

                                         (c)                                                                                  (d) 

 

                                         (e)                                                                                  (f) 

Figure 17. Parseval energy values for bolted PP faults on C5: (a) Level 1; (b) Level 2; (c) Level 3; (d) 

Level 4; (e) Level 5; (f) Level 6. 
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                                         (a)                                                                                  (b) 

 
                                         (c)                                                                                  (d) 

 
                                         (e)                                                                                  (f) 

Figure 18. Parseval energy values for bolted PP faults on C6: (a) Level 1; (b) Level 2; (c) Level 3; (d) 

Level 4; (e) Level 5; (f) Level 6. 

 

In Table 2, the Parseval energy values measured at Relays R2, R3, R4, R5, and R6 

for the remote end faults on Cables C2, C3, C4, C5, and C6 are compared against the 

Parseval energy values resulting from non-fault transient events close to each relay. The 

non-fault transients include the outage of a cable or NG as well as nonlinear load switching 

inside NGs. For the nonlinear load switching scenarios, it is assumed that all the loads are 

modeled as a nonlinear voltage-dependent model where the load’s power is a nonlinear 

function voltage satisfying P = P0(V/V0)
2 with P and V as the load’s power and operating 

voltage and P0 and V0 as the rated power and voltage of load. For each cable, the close- by 

nonlinear load is switched off. All transients occur at 2.5 sec and then the Parseval energy 
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values of the relay’s current are captured after 200 us, which are summarized in Table 2. 

As seen, the non-fault transients result in much lower Parseval energy values on current 

TWs captured at Relays R2, R3, R4, R5, and R6.  
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Table 2. Comparison of faults’ Parseval energy values versus a regular transients’ Parseval energy 

values. 

Relay Scenario Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

R2 

Remote bolted PP 

fault on C2 

8.87 47.22 300 1459 670 9037 

Remote resistive PP 

fault on C2 

2.15 11.51 72.59 393 145 2871 

Remote bolted PG 

fault on C2 

8.864 47.11 297.9 1461 668.3 8722 

Remote resistive PG 

fault on C2 

0.93  4.96  30.5  161  71.5  1365 

C3 Outage 1.43×10-11 6.6×10-10 8.15×10-09 1.99×10-07 4.25×10-06 2.61×10-05 

NG2’s Load 

Switching 
2.67×10-9 4.75×10-8 5.92×10-7 6.63×10-7 1.96×10-6 1.4×10-5 

R3 

Remote bolted PP 

fault on C3 

0.6 23.65 212 305 1641 3404 

Remote resistive PP 

fault on C3 

8.54×10-7 3.35×10-5 0.0003 0.00043 0.0023 0.0049 

Remote bolted PG 

fault on C3 

0.8951 33.61 291.8 425.7 2389 6870 

Remote resistive PG 

fault on C3 

0.16  5.89  50.01  79.69  410  1044 

NG2 Outage 4.8×10-10 2.18×10-09 8.73×10-09 5.25×10-08 5.74×10-06 6.25×10-05 

NG2’s Load 

Switching 
1.47×10-9 3.45×10-8 9.87×10-8 2.07×10-7 6.43×10-7 6×10-6 

R4 

Remote bolted PP 

fault on C4 

29.05 79.7 372 648 4423 5469 

Remote resistive PP 

fault on C4 

3×10-4 8×10-4 3.7×10-3 6.5×10-3 0.044 0.055 

Remote bolted PG 

fault on C4 

29.97  87.73  396.2  705.6  5538  4348 

Remote resistive PG 

fault on C4 

2.03 6.33 29.56 60.55 454 389 

NG3 Outage 1.23×10-12 3.12×10-11 6.41×10-10 4.47×10-08 7.64×10-07 3.95×10-6 

NG3’s Load 

Switching 1.05×10-10 7.49×10-9 4.94×10-8 1.83×10-7 5.06×10-6 2.76×10-5 

R5 

Remote bolted PP 

fault on C5 

15.98 104 782 3895 1343 20367 

Remote resistive PP 

fault on C5 

0.00017 0.0011 0.0084 0.0418 0.0144 0.218 

Remote bolted PG 

fault on C5 

5.813   32.60  207.5  925.7  1088 3838 

Remote resistive PG 

fault on C5 

0.92 5.29 35.46 169 167 696 

NG4 Outage 6.96×10-13 2.07×10-11 1.3×10-10 1.49×10-09 1.21×10-07 1.09×10-7 

NG4’s Load 

Switching 6.52×10-13 2.04×10-11 1.32×10-10 1.49×10-9 1.18×10-7 1.12×10-7 

R6 

Remote bolted PP 

fault on C6 

1.76 6.05 182 949 3276 7350 

Remote resistive PP 

fault on C6 

1.72×10-5 6.46×10-5 0.0019 0.0104 0.035 0.079 

Remote bolted PG 

fault on C6 

0.0006 0.06203 0.5678 8.558 311.13 3699 

Remote resistive PG 

fault on C6 

9.31×10-5 0.01 0.1 1.44 54.38 722 

NG1 Outage 6.56×10-12 7.8×10-12 1.46×10-10 1.12×10-09 1.11×10-08 2.16×10-07 

NG1’s Load 

Switching 4.14×10-12 2.27×10-11 7.68×10-11 7.44×10-10 9.59×10-9 2.21×10-7 
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The algorithm was able to effectively distinguish PP faults from PG ones by 

selecting 10 as the λFT threshold in Fig. 10. To verify the performance of the SVM classifier 

for identifying bolted faults from resistive ones, two separate datasets were used for 

training and testing. 60% of the available data were used for training and 40% of them were 

used for testing randomly. In the SVM, a linear Kernel is used while the penalty factor for 

misclassified data is set to 1. The verification results rendered 100% precision in classifying 

bolted faults versus resistive faults using the six levels of current and voltage Parseval 

energies at Cable C1. In Table 3, the fault location estimation errors using GP engines for 

all cables and different types of faults are summarized. The estimation error percentage is 

equal to the mean absolute error of testing dataset over the length of the cable. For each 

cable, around 65% of the gathered datasets are used for training and the rest are used for 

testing. The training and testing datasets are selected randomly. The fault location 

estimation errors in Table 3 verify the effectiveness of the proposed fault location 

algorithm. In Table 3, the estimation error depends on the number of datasets available for 

training and the length of the cable. In general, simulating faults at more locations can 

increase the number of training datasets which in turn improves the performance of the GP 

regression engine in estimating fault location. The regression results for Cable C4 are 

illustrated in Fig. 19. As seen, for both resistive and bolted PP and PG faults, the GP 

regression engine can effectively locate faults with small estimation errors. In all cases, the 

proposed algorithm is able to find the fault location in 200 µs.  
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                                          (a)                                                                                      (b) 

  

                                         (c)                                                                                      (d) 

Figure 19. Regression verification plots for C4: (a) bolted PP faults; (b) resistive PP faults; (c) bolted PG 

faults; (d) resistive PG faults. 

 

Table 3. Fault location estimation error for DC Microgrid 1. 

Cable Bolted PP Resistive PP Bolted PG Resistive PG 

C1 4.9% 3.6% 2.5% 4.1% 

C2 5.1% 2.9% 3.9% 1.1% 

C3 4.7% 6.1% 4% 2.7% 

C4 1.1% 0.4% 2.1% 0.2% 

C5 6.3% 0.6% 0.8% 0.6% 

C6 5.3% 4.8% 6.2% 3.4% 
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In Table 4, the performance of GP for fault location is compared against some other 

regression techniques, including Artificial Neural Network (ANN) [62], Decision Tree 

[63], ε-SVM [64], and Nu-SVM [65]. ANN has been utilized in [38] and [39] for the fault 

location of DC systems. All ML algorithms were executed in Matlab. To reduce bias, all 

training and testing data were the same for all methods. The ANN method was executed 

with the net selected as “fitnet” configured with 10 hidden layers using the “train” function 

as the training function. The decision tree method was executed with the “fitrtree” function 

to create the training model and the “predict” function to predict the fault location using 

the model created from “fitrtree”. The ε-SVM and nu-SVM methods are executed with the 

“svmtrain” function. There are self-selected hyper parameters, c, epsilon, and nu, that must 

be entered in this function. An iterative loop was constructed to optimize these parameters, 

which will ensure the lowest amount of error possible. The comparisons are performed for 

Cable C2. As seen, GP renders higher accuracy compared to the other regression 

techniques.  

Table 4. Comparison of estimation error for different regression techniques for Cable C2. 

Fault Type GP ANN Decision Tree ε-SVM Nu-SVM 

Bolted PP 5.1% 8.6% 9% 8.2% 15% 

Resistive PP 2.9% 4.8% 6% 5.9% 14% 

Bolted PG 3.9% 8.9% 5.9% 7.7% 9% 

Resistive PG 1.1% 2.9% 2.2% 2% 6% 

 

6.2. DC Microgrid 2  

The goal of this case study is to verify the performance of the proposed fault 

location scheme in a microgrid with a meshed topology. To this end, the DC Microgrid 2 

shown in Fig. 20 is considered. As seen, this microgrid has a meshed network topology. 

Herein, the DC microgrid test system in [14] is modified by changing the operating voltage 
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to 750 V. The nanogrids, AC-DC converter, and cable configuration are similar to the ones 

in DC Microgrid 1. The microgrid’s grounding happens at the middle point of the DC link 

of the microgrid’s AC/DC converter. To verify the effectiveness of the proposed scheme, 

bolted PP and PG faults are applied at every 50 m of the three cables interconnecting nodes 

2, 5, and 6. These three cables form a mesh and are highlighted in red in Fig. 20. In these 

simulations, DWT’s sampling frequency is 1 MHz. Six levels of MRA are used for the 

fault classification and location algorithm. In Table 5, the fault location estimation errors 

using GP engines for all cables and different types of faults are summarized. The estimation 

error percentage is equal to the mean absolute error of the testing dataset over the length of 

the cable. For each cable, around 65% of the gathered datasets are used for training and the 

rest are used for testing. The training and testing datasets are selected randomly. The fault 

location estimation errors in Table 5 verify the effectiveness of the proposed fault location 

algorithm. The regression results for Relays R25 and R52 are illustrated in Fig. 21. As seen, 

for both relays, the GP regression engine can effectively locate faults with small estimation 

errors. In all cases, the proposed algorithm is able to find the fault location in less than 1 

ms.  

Since a similar microgrid system to [14] is utilized, in Table 5, the fault location 

accuracy of our proposed scheme is compared against the fault location technique in [14]. 

It should be noted that, in [14], fault location estimation is only performed for PG faults. 

Comparing the fault location estimation errors using the fault location algorithm in this 

thesis against the algorithm proposed in [14], one can see that the estimation errors are very 

small using both approaches with better accuracies reported for R52, R62, R56, and R65 

using the algorithm proposed in this thesis.  
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Figure 20. DC Microgrid 2. 

 

Table 5. Fault location estimation error for DC Microgrid 2. 

Relay 
This Thesis Reference [14] 

Bolted PP Bolted PG Bolted PG 

R25 0.26% 0.82% 0.045% 

R52 0.27% 0.58% 1.54% 

R26 0.42% 0.54% 0.54% 

R62 0.39% 0.54% 1.11% 

R56 0.46% 0.51% 1.6% 

R65 0.69% 0.41% 1.46% 
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                                         (a)                                                                                       (b) 

  

                                         (c)                                                                                       (d) 

Figure 21. Regression verification plots for Relays R25 and R52: (a) bolted PP faults at Relay R25; (b) 

bolted PG faults at Relay R25; (c) bolted faults at Relay 52; (d) bolted PG faults at Relay R52. 

 

 

 

 

 

 



 

49 
 

7. Conclusion and Future Work 

In this thesis, a TW-based scheme for fast tripping protection of MV and LV DC 

microgrids is proposed. The proposed scheme utilizes MRA to calculate the high-frequency 

components of DC fault currents. The Parseval energy calculated from the MRA 

coefficients are then calculated, which provide a quantitative relationship between the fault 

current signal energy and the energy calculated from the MRA’s coefficients. The 

calculated Parseval energy values are used to train an SVM classifier to identify the fault 

type and a GP regression engine to estimate the fault location on the DC cables. The 

proposed fault classification and location algorithm: (i) is a single-ended communication-

free approach that increases the resilience of the protection systems, and (ii) can effectively 

work for both bolted and resistive PP and PG faults in LVDC microgrids. The proposed 

approach was verified by simulating two microgrid test systems in PSCAD/EMTDC. One 

of the microgrids is radial, and the other one has a meshed topology. The simulation results 

show that the proposed scheme can effectively identify the fault type and estimate fault 

locations. The SVM classifier renders 100% precision in distinguishing bolted faults from 

resistive ones. The GP regression engine is also able to locate faults with an acceptable 

estimation error range (less than 5% in most of the cases). The case study results show that 

the GP regression engine renders higher accuracy with a larger number of training datasets. 

The proposed protection scheme can effectively work with different DWT sampling 

frequencies. The DWT sampling frequency only impacts the speed of the fault location 

algorithm. With a higher sampling frequency, MRA is able to calculate the first N levels of 

wavelet coefficients faster. For example, with 8 MHz sampling frequency and six MRA 

levels, the proposed algorithm will be able to find the fault location in 200 µs.  
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This thesis evaluated the effectiveness of using MRA of traveling waves to 

determine fault locations and types of faults for two different DC microgrid systems. The 

results were positive and warrant further analysis. Future work based on the result of these 

findings may include: 

• Investigating whether the traveling wave reflections can provide more useful 

information about the fault location. The traveling wave will remain in the cable 

and will continuously be reflected back and forth, along the cable and between 

equipment/transitions, until the wave dissipates with time. Before this dissipation 

occurs, it may be a possibility that these remaining incidents of traveling waves 

be used as a subset of training/testing data to identify the fault location. It may be 

possible that these subsets could be used to create a greater accuracy in predicting 

fault location at very little increase in computational expense since the data is 

already being gathered.  

• Experimenting with different mother wavelets to determine if there is a better 

wavelet suited to solve the fault location problem. The Daubechies db8 mother 

wavelet was used for this analysis but there are many others available and custom 

ones can be created. Again, the goal here would be to increase accuracy in 

determining the fault location. 
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