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ABSTRACT

migmz2 - where

Given an ideal J generated by an element of the form s
my > 2 and my > 0, we illustrate how to compute the idealizer I(.J) over the ring

of the rational normal curve of degree n and we give a formula for it using the

graded pieces of the sets of differential operators.
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1. Introduction

In this project, we compute I(J)g := {0 € D(R)|d* J C J}, which is called the
idealizer of J, where J = (s""2) is an ideal, D(R) denotes the ring of differential
operator and * denotes an action of a differential operator. The idealizer of an ideal
J in a regular ring R has been important for determining the ring of differential
operators, D(R), in a quotient of the regular ring modulo J. In particular, when
R is not regular ring, Berkesch, et al. in [2] gave some examples where the
ring of differential operators of a quotient of R is not a quotient of the idealizer.
However, the idealizer does help us determine the differential operators in R which
are differential operators in the quotient. Techniques to determine the idealizer
in the toric setting are becoming important in developing work of Miller, Taylor
and Vassilev [6] to get a characteristic 0 notion of differentially fixed ideals.

The computations we provide are over the ring of the rational normal curve
of degree 2 and 3, Ra, = Cl[s, st,st?] and Ra, = C|s, st, st?, st?], respectively,
and we generalize it to the ring of the rational normal curve of degree n, R4, =
Cls, st,st?,- -+ ,st"]. We include illustrative examples and visualizations in or-
der to aid our computations and we provide an explicit formula for these com-

putations. In particular, the pictures that we include explain how to compute

differential operators of the form D(I,1)q ={d € D(R)|6 *x J C J}.
1



1.1. Background. In order to contextualize the following sections, we need to
recall and introduce some important mathematical definitions and structures. One

of the most fundamental and important structures in mathematics is a ring.

Definition 1. Let A a non-empty set. A binary operation x on the set A is a
function x : A x A — A such that for any two elements a and b in A, (a,b) €

A x A, determines a third element a x b in A.

For instance, addition +, subtraction —, and multiplication x are some basic
examples of binary operations on the sets N, Z, Q, R and C. We will usually
write the multiplication of @ and b by ab instead of a x b. In particular, there are

some important structures called rings that have two binary operations.

Definition 2. A ring R is a non-empty set with two binary operations, addition

and multiplication, such that for all a, b and ¢ in R, we have:

e R is closed under addition: a+b € R

e Addition is associative: (a +b)+c=a+ (b+ c)

o Addition is commutative: a +b=b+a

e R has an additive identity element, the zero and usually denoted by 0 such
thata+0=04+a=a

e Fvery element in R has an additive inverse: for each a, there exists b € R
such that a +b =0 = b+ a and usually it is denoted as b = —a

e R is closed under multiplication: ab € R
2



o Multiplication is associative: (ab)c = a(bc)
o Multiplication distributes over addition: a(b+ ¢) = ab+ ac and (a + b)c =

ac + be.

There are special types of rings that include some extra properties. Some well
known examples of rings are: Z, R, C and F,.

If multiplication in R commutes, then the ring R is called commutative ring.
Not all the rings are commutative; for example, a non-commutative ring is the set

of all n x n matrices with entries in R, M, (R), called matrix ring.

Definition 3. A ring R with unity is a ring that has a multiplicative identity

element, generally denoted by 1 or 1r such that 1g x r =1r X 1g for all ™ € R.
Throughout, we will be assuming that all rings have unity.

Definition 4. Let R be a ring with identity 1 # 0. An element u of R is called a

unit if there is some w in R such that vw = 1 = wu.
Fields are important examples of commutative rings.

Definition 5. A field F is a commutative ring with unity in which 1 # 0 and

every nonzero element has a multiplicative inverse.
An example of field is the set of rational numbers Q = {¢[a,b € Z and b # 0}.

Definition 6. Let R be a ring. A nonzero element r of R is called zero divisors

if there is a nonzero element s in R such that either rs =0 or sr = 0.
3



A commutative ring with unity 1 # 0 is called an integral domain if it has no

zero divisors. Another specific case of rings are the polynomial rings.

Definition 7. Given a ring R with unity and a indeterminate x, the ring R[z] is
the ring of all polynomials in x with coefficients in R. That is, it is the ring of all

sums of the form Z?:o a;x* where m is a non-negative integer.

It can be generalized for indeterminate x1, z, - - - , x,. Forinstance, Clxy,- -, x,]
is the polynomial ring in indeterminates x1,- - - , x,, with coefficients in C.
A subring S C R is an additive subgroup of R which is also closed under

multiplication.

Definition 8. Let R be a ring and let I be an additive subring, which is an additive

subgroup, then I is an ideal if r1 C I and Ir C I for all r € R.

Multiplying any element r» € R by an element of the ideal I, s, produces another
element of the ideal I. However, s may not equal sr, multiplication does not have
to be commutative.

An ideal can be generated by a single element or by many elements.

Definition 9. An ideal generated by a single element is called a principal ideal

and an ideal generated by a finite set is called a finitely generated ideal.

For instance, the trivial ideal zero, 0, and the ideal R are both principal since
the ideal 0 is generated by itself and R is generated by 1. There are some other

properties that allow us to define and characterize another ideals.
4



Definition 10. An ideal M in a ring R is called maximal ideal if M # R and

if J is an ideal of R such that M C J C R, then J =M or J = R.

Another important type of ideals are called prime ideals

Definition 11. An ideal P in a ring R is said to be a prime ideal if whenever

xy € P, then either x € P ory € P.

In particular, P # R. A well known example is when R = Z and P = pZ,
where p is a prime. If xy € P then xy = pq for some ¢ € Z, then p divides zy
and since p is prime then p divides x or p divides y, which implies that x € P or

yeP.

Proposition 1. [5, Proposition 12 Sec.7.4] If R is a commutative ring with 1. An

ideal M is mazximal if and only if R/M is a field.

Proposition 2. [5, Proposition 13 Sec.7.4] P is a prime ideal if and only if R/ P

15 an integral domain.

From the previous statements, it easy to conclude that if R is a commutative

ring with 1, every maximal ideal in R is a prime ideal.

Definition 12. Let R be a commutative ring and suppose that r € R is nonzero
and is not a unit. Then, r is called an irreducible element if whenever r = ab,

a,b € R, then a or b is a unit of R.



Definition 13. Let R be a commutative ring. A nonzero element p € R is called

a prime element if (p) is a prime ideal.

Definition 14. Let R be an integral domain. We say that R is a unique factor-

wzation domain or UFD when the following two conditions are satisfied:
e r € R, which is not zero and not a unit, can be written as a finite product
of irreducibles: = p1 - pp.
e The decomposition is unique up to reordering and up to associates: if r =

PL o Pn = Q1 Gm and all p; and q; are irreducibles. Then n = m and

there exist a permutation such that it sends every p; to some g;.

For instance, Z[z] is a UFD.
The previous definitions and structures are basic algebraic concepts; however,
these concepts are useful in all mathematics disciplines. The following definitions

are some examples of how algebra and geometry are closely related.

Definition 15. An ideal I in the ring Clxy, - ,x,] defines an affine variety,

which is the set of common zeros of the complex polynomials on the complex n-

space C™:
V(I):={y € C"f(y) =0 for all f €I},

and on the other hand, an affine variety V. C C" gives the ideal

I(V):={f €Clzy, - ,z,]|f(y) =0 for all y € V}.
6



Some examples are: V(2 + y? — 1) C C? which is the unit circle centered at
the origin, V(y — 2?) C C?, a parabola, and a the cone V(2? — 2% — 3?) C C? in

R3.

Definition 16. The coordinate ring of an affine variety V- C Clay, - -+, x,] is the

ring C[V] = Clzy, -+, z,)/I(V).

Definition 17. Let R be an integral domain with field of fractions K. We say
that K s integral over R if every element in K is a root of a monic polynomial

in R[x].

Definition 18. Let R be an integral domain with field of fractions K. Then R is

normal if K is integral over R.

Definition 19. Let R be a ring and S be a commutative subring such that 1, € S.

S is called integrally closed in R if S is equal to its integral closure in R.
Definition 20. An affine variety V is normal if C[V] is integrally closed.

For example, any UFD is normal. Sometimes geometric objects are defined

algebraically, the next definition is an example of that.

Definition 21. An irreducible affine variety V' is normal if its coordinate ring

C[V] is normal.

For example, C" is normal since its coordinate ring C[zy,--- ,x,] is a UFD and

hence normal.



1.2. Projective Space and Rational Normal Curves. In this section, we
introduce the concept of projective space and rational normal curves since one
of our goals in this project is to compute the differential operators for an affine
semigroup ring R4, and radical monomial ideal J of R,4,. A rational normal curve
of degree n can be viewed as the image of of a map from the projective spaces or

as the closure in P" or the image of complex spaces.

Definition 22. The n-dimensional projective space P* is defined as the quotient
space

P = € {0}/ ~

where ~ is a relation: two elements x and y in C"'\ {0} are equivalent if there

exists A € C\ {0} such that x = \y. If v and y are equivalent, we write x ~ y.

Definition 23. A projective variety V- C P" is defined by the vanishing of finitely
many homogeneous polynomials in the polynomial ring Clxg, - - ,z,]. The homo-

geneous coordinate ring of V' is the quotient ring
C[V] =Clxg,- -+ ,x,]/I(V)
where I(V') is generated by all homogeneous polynomials that vanish on V.

[4] The ideal I(V) C C[zg, - - - , ] also defines an affine variety V C C™! called

the affine cone of V and the variety V satisfies:

V=V\{0}/C
8



and its coordinate ring is the homogeneous coordinate ring of V:

Therefore, the polynomial ring is the homogeneous coordinate ring of the pro-
jective space itself, and the variables are the homogeneous coordinates, for some
basis.

For example, consider the ideal I = (z;xj41 — z412j|0 < i < j <n-—-1) C
Clxg, - -+, z,] generated by the 2 x 2 minors of the matrix

(:z:o Ty ot Tp_g xnl)
Ty To -+ Tp_1 Tp

I defines a projective variety, C,,, since it is homogeneous and it is the image of

the map P! — P" which is defined below.

Definition 24. A rational normal curve of degree n, C,,, in a projective space

P" is defined as the image of the map
v, Pt — P,
U i[5 t] — [s" s T st T,

which is defined in homogeneous coordinates.

Remark: The image of v, is the conic curve in P" and we can see this rational

normal curve of degree n as the closure in P of the image of ¢,:
an . (C*)2 N (C*)n+1

Gn : (5,1) — (s, st, st%, ..., 5t"),
9



since the projective space P is the quotient space C"*1\ {0}/ ~ and there is a
bijective relation between the images of v,, and ¢,, given by: s" = s, s" 't > st,

<o+ t" — st". In general,
sV s st

for all i € {0,1,--- ,n}. Therefore, we call C[s, st,st?,--- ,st"] the ring of the
rational normal curve of degree n since it is the coordinate ring of the cone of the
projective rational normal curve and it is denoted by R4, . In particular, rational

normal curves are examples of toric rings.

1.3. Differential Operators. Differential operators play an important role in
different branches of mathematics; for instance, in differential equations and topol-
ogy.

Rings of differential operators were studied by Musson [7], Smith and Stafford
[10] and many others, and they obtained important results and although there are
many equivalent definitions of these rings, in this section we will give some of the
definitions and some of its characterizations that will be useful for our purposes.

In particular, we will be assuming that k is an algebraically closed field of
characteristic zero, and R is a k—algebra.

In order to define differential operators and rings of differential operators, we
need a preamble. Let R be a commutative k—algebra, and let M and N be
R—modules. The linear space of all k—linear maps ¢ from M to N is denoted by

Homy, (M, N) and this space contains Hompg(M, N) as a subset.
10



Let R be a commutative k—algebra, and M and N defined as above. For ¢ €
Homy (M, N) and r € R, we let [¢, r]| denote the element ¢r —r¢ € Homy (M, N),
which is called the commutator of ¢ and r. A particular case occurs when M = N
since we have an endomorphism, which usually is denoted by Endy (M), instead
of Homy (M, M), and the commutator is denoted by [¢1, da] := P19 — Gy for
b1, ¢ € Endy(M).

Let R be a commutative k—algebra and let M be an R—module. A k—derivation
is an homomorphism 0 € Homy(R, M) that satisfies Leibniz’s law: 0 * (ab) =
a(d xb) + (6 *a)b for all a,b € R.

Let R be a k-algebra and let M and N be R—modules. The differential opera-
tors from M to N of order n, D}(M, N), are defined using induction as follows:
(i) D%(M, N) = Homg(M, N)

(22) If rpy and ry denote the multiplication by r in M and N respectively, then
D%(M,N) = {6 € Homg(M, N)|(6ry; — rnd) € DY (M, N) ¥r € R}.
The ring of differential operators from M to N is given by

Dp(M,N) = | | DR(M,N).

neN

The subscript R will be dropped when there is no likelihood of confusion.

In particular, the ring structure on D satisfies that DFD% C Dpt™ for all
m,n € NU{0}, and Dg(M, M) = Dr(M) [3].

Easily we can notice that for any M and N modules such that Homg(M, N) =0

then D},(M, N) = 0 by induction for all n and consequently Dg(M,N) = 0.
11



Similarly, let R be a k-algebra. The ring of the differential operators is defined

as follows:

Di(R) = | Di(R),
neN
where Di(R) = Di(R, R).
7, Definition 1.2] Let M be an R—module and I and J subsets of M then we
define

where * denotes the action of a differential operator on I. In addition, we will
denote as A(1,J), and it is important to point out that A(Z,J) is different from
D(I,J) when both can be defined. For instance, D(I,0) = 0 for all ideal I, but
A(I,0) is not zero. However, if I is an ideal of R, then D(R,I) = A(R,I). We
dropped the subscript above and we will drop it as well in Dy (R), which will be

represented by D(R).

Definition 25. Let J be any ideal in a ring R, the idealizer of J in the ring of

the differential operators of R, D(R), is the ring:

I(J)q = {0 € D(R)|5%J C J}.

The idealizer is the largest subring of R in which J is a two-sided ideal. One
important fact that we point out is that I(J)g coincides with the definition of

D(J,J) := D(J) for any ideal of D(R) since

D(J)= {6 € D(R)|§ xJ C J}.
12



1.4. Differential operators in semigroup rings. Let A be a m xn matrix with

entries in Z, and let NA denote the semigroup in Z" generated by the columns of

A,
Ry:=C[NA = HC-t°
aeNA
where t® = t7't5* - - - t% and a = (a1, aq,- - - , a,) which is in NA. R, is the ring of

regular functions on the affine toric variety determined by the columns of A. For

example, consider the matrix

R4, = C|NA,] = C[s, st, st? - -, st"] which is the ring of the rational normal
curve of degree n.

Now, consider the following matrix

1023
A:{1200}

the coordinate ring is R := R4 = C|[st,t?, s? s*], which is determined by the
columns of A: the values in the columns give us the powers ¢ and j in s't’. The

semigroup NA is illustrated in Figure 1.

cee
eO0 o
FIGURE 1. Semigroup NA

In Figure 1, we have some lattice points without color in the coordinates (0, 1),

(1,0), (1,2), and (2,1) that correspond to the exponents of the multidegrees
13



t,s,st? and s%t, respectively. This is because it is not possible generate those
elements in R.

Consider the matrix
111
Ar= {0 1 21
whose associated coordinate ring is R = Ra, = C|s, st, st?]. Figure 2 illustrates
the semigroup NA,. It is important to point out that in Figure 2 we are not

representing all the elements in the semigroup NAs, just some of them in order to

provide a visualization.

F1GURE 2. The semigroup NAy

In this case, NA, is a cone bounded by h; = 6, = 0 and hy = 20, — 6, = 0 that

are called primitive integral support functions.

Definition 26. Consider a facet o of A. The primitive integral support function
of the facet o of the cone R>oA, h,, is a uniquely determined linear form on R"
satisfying:

(1) he(R>pA) >0

14



Next example illustrates the facets and the support functions.

9, Example 2.2] Consider the matrix

A = (a17327a37a4> -

o O =
o = O
—_ o O
—_

The facets of the cone RA are: 093, 094, 013 and 014 where 0,,,,, = R>oa,,+R>oay,.

Then, the respective primitive integral support functions are:
h¢723 (9) = 917 h024 (9) = 91 + 937 hU13 (9) = 927 h014 (0) = 92 + 6)3

or Simply hgg(e), h24(9), h13(9), h14(9)

And now back to the ring of the rational normal curve of degree n; R4, :=

C[NA,| = C[s, st, st?,-- -, st"] which is associated to the matrix
111 - 1 1
A=lo 12 .o n1 nf

The coordinate ring of the affine cone of the projective rational normal curve

has two facets that are:
o1 =Nay = {(z,y) € N*|z > 0, y = 0},
oy = Na, = {(z,y) € N}|z > 0, y = na},
and its respective primitive integral support functions are
hy = 0, and ho = nb; — 0s.

Now, we can describe the factorial function using the h functions,

n

H(h — i) =h(h=1)(h—2)---(h—n) =: (h,n)!
=0 15



Then for 7 = 1,2 and any multidegree d we have
hj(—d)—1
IT (hi=i) = (n;,0)(hy, 1) - (B, hy(—d)=2) (hy, hy(—d)—1) = (R, hj(—d)—1)!

=0

such that if n < 0 then (h,n)! = 1.
In addition, we define

(h,0)! = h.

One important convention that we are going to follow throughout is if my < my
and h; —my is a factor of (h;,m1)!; we do not need to multiply it by h; —mo. We
only need to multiply by equations of the lines if they were not already present in

the descending factorial which expresses the operator of that multidegree.

Theorem 1. [2, Theorem 2.3] and [8, Theorem 3.2.2] If R4 is a pointed, normal

affine semigroup ring with ZA = 7", then

D(Ra) = P t*-1(2d)) = €D t*- ((hy, hy(-d) — 1)Y).

ez ez

where d = (dy,d, - ,d,) € Z™ and the outer product runs over those j =
1,2,--- ,n with h;(d) < 0.

Throughout, we will use (—) to indicate the ideals in the ring R4, or in the
polynomial ring C[f] := C[#y, - - ,0,].

For our purposes, we will consider d = (dy,ds) € Z?, which is generated by an
element in the form of s41¢%2.p(y, 6) and recall that p(;, 0,) = ﬁl(hj, h;(-d)—1)!,

=

which is a polynomial polynomial and hy and hy are the primitive integral support

functions.
16



2. Differential operators and idealizers in R4,

In this section, we compute the idealizer I(.J)4 for some ideals J over the ring
of the rational normal curve of degree 2, R4, = Cls,st,st?]. In order to aid
our computations, we include some illustrations of the lattice representing the
multidegrees in the plane, which is divided into four chambers; C1, C2, C3 and
C4. The facets of Ay are given by o1 = {(z,y) € N?|z > 0,y = 0} and 0y =
{(x,y) € N?|z,y > 0,y = 2z} that have primitive integral support functions

hi = 0y and hy = 20, — 05. Figure 3 illustrates the integer lattice, divided into

FiGURE 3. Chambers of the differential operators with the extra

differentiators

four chambers that are colored as follows:
C1: The red multidegrees correspond to monomials in R4,
C2: The yellow multidegrees are the d such that hy(d) > 0 and hy(d) < 0
C3: The violet multidegrees are the d such that h;(d) < 0 and hy(d) < 0, and

C4: The green multidegrees are the d such that hi(d) < 0 and he(d) > 0.
17



On the other hand, the lines parallel to the facets o7 and o5 will be a guide in
order to compute I(J)4 since we can identify the lines parallel that contain the

monomials in J and the monomials in Ry, \ J. See Figure 4

(A) Lines parallel to o9 (B) Lines parallel to o1

FIGURE 4. Lines parallel to the facets

Before presenting a general formula for the idealizer of a principal monomial
ideal in R4,, we will exhibit how to find the idealizer for some specific examples

of principal ideals J in the subsections below.

2.1. The idealizer for J = (s?) over the ring Ra,. In this example we will
compute the idealizer, I(.J)g4, for J = (s?) and some different values of d in the ring
of the rational normal curve of degree 2. The monomials in J are the product
of multiplying s® by the elements of R, and by any monomials in Ry, that
correspond to the lattice points shaded in red in Figure 5. It is important to

point out that in Figure 5 the monomials in red are not all the monomials in J.
18



We have infinitely many monomials that keep going to the right forever; however,

we just included some of them in order to give a visualization.

01

FIGURE 5. Elements in Ry, \ J lieon y =2x —i fori=0,1,2,3

In Figure 5, the red multidegrees correspond to monomials in J. The teal
multidegrees are all the multidegrees outside the ideal but in the ring. They are
in the region: Ry, \ J and they lie on the half-lines y = 2z, y = 22— 1, y = 22 —2
and y = 2o — 3 that can be observed in Figure 5. C2, C3 and C4 are defined as
in subsection 2.1.

2, Theorem 2.3] gives us the graded pieces of D(R4,) that are given by
(1) D(Ruy)a = s™t% - ((hy, hi(—d) — 1)!(hy, ha(—d) — 1)!)

where d = (dy, dy). Thus, if we break down (1) by chambers, we obtain:

shitdz . C[0y, 0] ifdeC1

D(Ra)a = st . ((hy, —2dy + dy — 1)!) ifde C2
2 s4% . ((hy, —dy — 1)(hy, —2dy + dy — 1)1) if d € C3
shtdz . ((hy, —dy — 1)) ifdeC4

where the primitive integral support functions at d are: hi(d) = dy and hy(d) =

2d; — dy. Now, in order to compute the idealizer I(J)g = {0 € D(Ra,)[0xJ C J},
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we can consider graded pieces of D(R4,) at the different chambers; C1, C2, C3
and C4. In these first computations, we will consider d = (—1,0), which is in C2,
d=(—1,—-1)in C3 and d = (—1,—-2) in C4 as in [2]. However, in order to see
and describe the behavior of I(.J)g, in the following subsection we will included
some tables that contain various values of d in the different chambers.

Consider the graded piece of D(Ry,) at (—1,0) in C2. Then (—1,0) : s~ 0 -
((hay, —(=2) +0 —1)!) = s71 - {(hg,1)!) and applying s~* - (hy, 1)! to a monomial
whose exponent lies on the half-lines y = 22 and y = 22 — 1 will yield 0 which is in
J; however, the half-lines y = 22 and y = 22 — 1 contain exponent of monomials
that are not contained in the ideal generated by s2.

When we apply s - (hs, 1)! to a monomial whose exponent lies on the half-lines
y = 2x — 2 and y = 22 — 3 we obtain an integer multiple of a monomial whose
exponent lies in the facet o5 or in the half-line y = 22 — 1, respectively, and those
lines are not in the ideal J which makes clear that we do not need to consider
the monomials on the lines outside the ideal. Nevertheless, when s - ((hg, 1)!)
acts on a monomial whose exponent is a member of the half-lines y = 2x — 4 or
y = 2z — 5 lying inside NA,, we obtain an integer multiple of a monomial whose

exponent lies in y = 22 — 2 or y = 2x — 3, respectively, and these are not elements

of J.
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In order to correct it, we should multiply the terms in D(Ra4,)-1,0) by (h2 —
4)(hy — 5) and applying s - {(ha, 1)!(hy — 4)(he — 5)) to these monomials yields
0.

In Figure 6, the light blue lines indicate the half-lines representing the multi-
degrees of monomials in R4, that after application of an element in D(Ra4,)(-1,0),
fails to yield an element in .JJ. The blue lines are representing the multidegrees
of monomials in the ring, but outside J, Ry, \ J, that after the application of an
element in D(Ra,)(—1,0) fails to yield an element in J, but it does not affect our

computations. Thus,

D(J) 10 = 5"+ {(h1, DI(h2 — 4)(h2 — b))

FIGURE 6. Vanishing for d = (—1,0) in (s?)

Now, consider the graded piece of D(Ry,) at (—1,—2) in C4. Then (-1, -2) :
sTH2 (b, —(=2) = 1)) = s7 %72 ((hy, 1)!). After applying s~ 1¢72-{(hy,1)!) to
a monomial whose exponent lies on the half-lines o; and y = 1 will yield 0, which

is inside J, then these lines do not need our attention or any correction, but we
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will identify those lines with the red color. Then, the red line indicates that their
respective monomials are in the ideal J and they go to 0 after the application of
sTH72 - ((hy, 1)),

When we apply s~'¢72- ((hy,1)!) to any monomial corresponding to a multide-
gree d in J along y = n, for n = 2,3,---, we obtain monomials on y = n — 2,
respectively. Thus, after this application; monomials inside the ideal J are still
elements in J. Therefore, no correction is needed.

In Figure 7, the blue lines correspond to the half-lines: 09,y =2—1, y = 20 —2,
and y = 2x — 3 that contain the exponents of monomials that are not in J, but

no change or correction is needed. Thus, we would not modify our formula.

D(J)(_L_Q) =s 12 <(h1, 1)'>

FIGURE 7. Vanishing for d = (—1,—2) in (s?)

Similarly, consider the graded piece of D(Rg4,) at (—1,—1) in C3. (—1,-1) :
s ((hy, 1 — D (hg,2 — 1 — 1) := st hyhy. If the operator s~ ¢ hihy, is

applied to any of the monomials corresponding to multidegree d € NA; along the
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light blue half-lines in Figure 8: y = 2x — 4, we obtain an integer multiple of a
monomial with exponent in y = 2z — 3, which is not in J, and no problems are
created for the remaining monomials in J.

In Figure 8, the blue lines are in R4,, but not in the ideal J and the application
of s71t71hhy does not affect the monomials corresponding to multidegree in those
lines. In addition, the application of s7*¢~1h;hy to the monomials with exponent
on the facet oy, which is in the ideal, yield 0 and it is in J and in Figure 8
it is represented by a red line. However, multiplying by (hy — 4) yields a new
operator s~ 't (hyhy(hy—4)) that will send to 0 all monomials with multidegrees
d € NA, along the half-line y = 2z —4. No problems are created for the remaining

monomials in R4, and we obtain:

D(J)(,L,l) = Siltil : <h1h2(h2 — 4))

FIGURE 8. Vanishing for d = (—1,—1) in (s?)

Thus, we obtained
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Sdltd2 . <(h27 1)'(]12 - 4)(]12 - 5)> if d= (—]_, 0)
I(J)g = { s%t% - (hyhy(hy — 4)) if d=(-1,-1)
shtd2 . ((hy, 1)) ifd=(-1,-2)

This expression is incomplete. We have many more elements in each chamber,
but we are presenting this table just for the multidegrees that we computed here;

however, we have s#t% . C[f] for any d € C1.

Definition 27. For a given multidegree d, we say that the differential operators
of multidegree d satisfy a factorial-continuous formula, if for each support

2
function h;, there exists an integer njq such that 1(J)q = s“t% - ([T (hj,nja)!).
7j=1

Throughout, the light blue lines indicate the half-lines representing the multide-
grees of monomials in J that after application of an element in D(Ra, )4, ,d.), fails
to yield an element in J and we have to correct this lack of membership. The blue
lines represent the multidegrees of monomials in the ring, but outside J, Ry, \ J,
and after the application of an element in D(Ra,)4, 4, fail to yield an element
in J, but no changes or corrections are needed. Finally, the red lines indicate
the multidegrees of monomials in the ideal that after application of an element in

D(Ra,)(dy,45) yield 0 and as 0 is in any ideal then no changes are required.

2.2. The idealizer for J = (s’t) over the ring R,,. In this example, we will
compute the idealizer for the ideal J = (s*t), I(J)q, over the ring of the rational
normal curve of degree 2, Ra, = Cls, st, st?]. In Figure 9, the red multidegrees

correspond to monomials in J. The teal multidegrees are all the multidegrees
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FIGURE 9. Elements in R4, \ J lieon oy, y =22 —1, y = =22 — 2

and oy

outside the ideal but in the ring. They are in the region: R4, \ J and they lie on
the half-lines 05, y = 20 — 1, y = 2z — 2 and 0.

C2, C3 and C4 are defined as above.

Again, consider the graded piece of D(R4,) at (—1,0) in C2. In Figure 10,
the monomials whose exponents are member of the light blue half-lines need a
correction since after application of an element in D(R4,)(-1,0), fails to yield an
element in J they go to y = 2z —1 or y = 2z — 2, respectively, but those lines have
monomials that are not in J. In order to correct this lack of membership in J for
the monomials on y = 2z —3 and y = 22 —4, every element of D(Ra4,)(-1,0) should
be multiplied by (hy — 3)(hy —4). Then, applying s~ ((hg, 1)!(ha — 3)(ha —4)) to
the monomials in the half-lines y = 2o —4, and y = 22— 3 yield 0. The application
of s71+(hy, 1)!(hy — 3)(hy —4) to the remaining monomials in J will output a term

inside J.
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FIGURE 10. Vanishing for d = (—1,0) in (s%*¢)

Thus,

D(J) 10 = 5"+ {(h2, 1)l(ha = 3)(ha — 4)).

Consider the graded piece of D(R4,) at (—1,—2) in C4. The monomials cor-
responding to the multidegrees that lie on the light blue line y = 2 in Figure 11
are the exponents of monomials that fail to land inside J after the application
of s~ 2((hy,1)!). In order to correct this, right-multiplying by (h; — 2) yields
s 472 . ((hy,2)!) that will send to 0 all monomials with multidegrees d € NA,
along the half-line y = 2, and no problems are created for the remaining mono-

mials in J then

D(J)(_L_Q) =s 12, <(h1, 2)'>

Similarly, we consider the graded piece of D(Ra,) at (—1,—1) in C3: s~ 't hyhs.
If the operator s~'t=th hy, is applied to any of the monomials corresponding to
multidegree d € C1 along the light blue half-lines in Figure 12, y = 2x — 3 and

y = 1, we obtain an integer multiple of a monomial with exponent in y = 2z —2 or
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FIGURE 11. Vanishing for d = (—1, —2) in (st)

o1 respectively, which are not in J, and no problems are created for the remaining
monomials in J. However, multiplying by (h; — 1)(hs — 3) yields a new operator
s ((hy — 1)!hg(hy — 3)) that will send to 0 all monomials with multidegrees

d € NA, along the half-lines y = 1 and y = 2x — 3. Thus,

D(J)(—l,—l) = Siltil : <(h,1, 1)'h2(h2 - 3)>

FIGURE 12. Vanishing for d = (=1, —1) in (s%t)

Therefore, we obtain:
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Sdltd2 . <(h271)'(h2 —3)(h2 —4)> if d= (—1,0)
I(J)a = { st% . ((hy, 1)lhy(hy — 3)) if d=(-1,-1)
shtd2 . ((hy —2)!) ifd=(-1,-2)

This expression is incomplete since we have many more elements in each chamber;
however, it summarizes the results that we determined in this subsection. In
addition, we have s%t% . C[f] for any d € C1. For example, see Figure 27 which
exhibits the multidegrees d where the idealizer does not have factorial-continuous

behavior.

2.3. The idealizer for J = (s*t?) over the ring Ra,. In this example we

compute the idealizer for J = (s*t?), I(J)q4, Considering the same graded pieces

02

FIGURE 13. Elementsin R4, \J lieon oy, y =2x—1,07 andy =1

of D(R4,) at the different chambers; (—1,0) in C2, (—1,—1) in C3 and (-1, —2)
in C4, we obtain the following figures:

For d = (—1,0) we obtain s~ - ((hg, 1)!) and when s™! - ((hg,1)!) acts on a
monomial whose exponent is a member of the half-line y = 2x — 2 or y =2x — 3
we obtain an integer multiple of a monomial whose exponent lies in o5 or y = 20—1

respectively, which means that it fails to land inside J. Then every element of
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(A) Vanishing for d = (—1,0) (B) Vanishing for d = (-1, —2)

(¢) Vanishing for d = (-1, —1)

FIGURE 14. d in the different chambers for (s?t?)

D(Ra,)(~1,0) should be multiplied by (hy—2)(ho—3). Thus, applying s~ ((hs, 3)!)
these monomials now yields 0.

For d = (—1,—2) we obtain s~ '¢72 - ((hy,1)!) and when s~ 12 - ((hy,1)!) acts
on a monomial whose exponent is a member of the half-lines y = 2 and y = 3
we obtain an integer multiple of a monomial whose exponent lies in o7 and y = 1
respectively. To correct this, we should multiply the elements in D(R4,)(-1,—2) by
(hy —2)(hy — 3). Then applying s~'¢t=2 - ((h,3)!) to a monomial corresponding

to d € NA, along y = 2 or y = 3 yields 0.
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For d = (—1,—1), when s~ *~! - hihy acts on a monomial whose exponent is a
member of the half-lines y = 20 — 2 or y = 2 we obtain an integer multiple of a
monomial whose exponent lies in y = 2z — 1 or y = 1, respectively, which are not
in J. Then, we should multiply by (h; — 2)(he — 2) and applying s~ 't~ (hy(h; —
2)ha(hg — 2)) to any element of D(R4,)(-1,-1) yields 0.

Then, we obtain

sfid . ((hy, 3)1) if d = (—1,0)
I(J)qg =< sht® - (hy(hy — 2)ha(hy — 2)) ifd=(—1,-1)
stz . ((hy, 3)1) if d=(—1,-2)

This expression is not complete. We have many more elements in each chamber,
but we are presenting this table just for the multidegrees that we computed here;

In addition, we have s?t® . C[f] for any d € C1.

2.4. The idealizer for J = (s*3) over the ring R,,. In this example we

compute I(J)g for the ideal J = (s*t%). Thus, in an analogous way than in the

02

FIGURE 15. Elements in R4, \ J

previous subsections, we obtain the following figures
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(A) Vanishing for d = (B) Vanishing for d =

(—1,0) in (s%t3) (—1,—2) in (s%t3)

(¢) Vanishing for d =

(—1,—1) in (s%t3)

FIGURE 16. d in the different chambers in (s*¢3)

Applying s71 - ((hg,1)!) to the monomials in the half-line y = 2z — 1 and
y = 2x — 2 we obtain 0 or an integer multiple of a monomial whose exponent lies
in 09, respectively, but the monomials corresponding to the multidegrees which lie
on oy are not in J. Then we should multiply the terms in D(Ra,)(-1,0) by (ha —2)

and applying s - ((hg,2)!) yields 0.
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Applying s7'¢72 - {(hy,1)!) to the monomials in the half-line y = 3 and y = 4
we obtain an integer multiple of a monomial whose exponent lies in y = 1 or
y = 2 respectively, which are not in J. Then we should multiply the terms in
D(Ra,)(-1,-2) by (h1 = 3)(h1 — 4) and applying s~ - ((h1, 1)!(h1 — 3)(h1 — 4))
yields 0.

1+=1 . hihy to the monomials in the half-line y = 22 — 1

Similarly, applying s~
and y = 3 we obtain an integer multiple of a monomial whose exponent lies in oy
or y = 2, respectively, which are not in J. Then we should multiply the terms in

D(Ra,)(=1,-1y by (h1 —3)(hs — 1) and applying st~ - (hy(hy — 3)(hs, 1)!) yields

0. Thus, we obtain

stgdz . ((hy, 2)1) if d = (—1,0)
I(J)a = § s%t% - (hy(hy — 3)(ha, 1)) ifd=(-1,-1)
st ((hy, D)(hy — 3)(hy — 4)) ifd=(-1,-2)

This expression is incomplete. We have many more elements in each chamber;
however, it summarizes the results that we determined in this subsection. In

addition, we have s?¢% - C[f] for any d € C1.

2.5. The idealizer for J = (s) over the ring R,,. In this example we want
to compute I(J)q for J = (s%).
Then, we obtain the following figures

Therefore, we obtain
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FIGURE 17. Elements in R4, \ J

(A) Vanishing for d = (—1,0) (B) Vanishing for d = (-1, —2)

(¢) Vanishing for d = (-1, —1)

FIGURE 18. d in the different chambers for (s?)
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Sdltd2 . <(h2, 1)'(h2 — 6)(h2 — 7)> ifd= (—1, 0)
]I(J)d = Sdltd2 . <h1h2(h2 - 6)> if d= (—]_, —]_>
shigdz . ((hy, 1)) ifd=(-1,-2)

This expression is incomplete. It only includes the multidegrees that we computed
for this subsection. Notice that these figures are similar to the case when J = (s?).
We have omitted computations since they are similar to to the case J = (s?);
however, it is important to mention that for (s?) the multiples of the lines hy — i

are shifted to the right by 2.

2.6. The idealizer for J = (s3t®) over the ring R4,. In this example we show

some figures that help to compute I(J)q for J = (s3¢3).

FIGURE 19. Elements in R4, \ J

We have that
shtdz . ((hy, 1)!(hy — 3)(hy — 4)) ifd = (—1,0)
I(J)g = { sBt% - (hy(hy — 3)ha(hy — 3))  ifd=(—1,-1)
s> . ((hy, 1)!(hy — 3)(hy — 4)) if d = (=1, —2)

This expression is incomplete. It only includes the multidegrees that we computed

for this subsection. We did not include computations for this subsection. However,
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(A) Vanishing for d = (—1,0) (B) Vanishing for d = (-1, —2)

(¢) Vanishing for d = (-1, —1)

FIGURE 20. d in the different chambers for (s%t%)

we can compare it to the case when the ideal is generated by s*t?. For (s3t3) the
multiples of the lines hy — i are shifted to the right by 1 and the multiples of the
lines hy — j are shifted up by 1. The next subsection shows some examples that

help to determine a more general formula which will come in subsection 2.8.

2.7. Toward a formula for I(.J). In this subsection, we include tables that show
some ideals for different values d. Those tables help to visualize the formulas in
the different chambers. In the tables we provide in this section, we will consider

ideals J as above: (s?), (st), (s%?), (s*t%), (s%), (s3t3) that are generated by
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elements of the form s™¢™2 where deg(s™) = my and deg(t™?) = my and we
include various values d in the different chambers.

Table 1 will help to illustrate how we found the differential operators of degree
d = (—3,0) which is in C2. The expressions in the top row: 2z — 6, 2x — 7,

-+, 2x — 11 represent the half-lines y = 20 — 6, y =2x — 7, ---, y = 2x — 11,
respectively. In general, the mononmials on these top half-lines will map to the
monomials on the half-lines given each successive row. If a half-line has been
omitted in a row below the half-line on the top line, it is because the monomials
on the line that would have appeared on the half-line in that row of the table
already lie in the respective ideal.

The differential operator in multidegree d = (—3,0) is s72 - {(hs, 5)!). Consider
the ideal J = (s?) and the monomials with exponents in the half-lines y = 2z — 6,
y=2r—7,y=2r—8and y = 2z — 9. If we apply s ((hs,5)!) to those
exponents, we obtain the exponents of the monomials that lie on o5, y = 22 — 1,

= 2z — 2, or y = 2x — 3 respectively, which are not in J. Thus, we should
multiply s72 - ((hs,5)!) by (hg —6)(hy — 7)(hy — 8)(hy — 9) in order to correct this
lack of membership.

Similarly, if we take the ideal J = (s*¢) and the monomials with exponents in
the half-lines y = 22 — 6, y = 2z — 7 and y = 2z — 8 and we applying s72 - {(hs, 5)!

to those exponents then we obtain the exponents of the monomials that lie on
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o9,y = 2x — 1 or y = 2x — 2 respectively, which are not in J. Thus, we should
multiply 572 - ((ha,5)!) by (hy — 6)(hy — 7)(ho — 8) in order to correct this.

In a similar way, we obtained all the values in Table 1

TABLE 1. Half-lines that shift out of the ideal for d = (—3,0) along

with formula

Ideal |22 —6|2x—7|2x—8|2x—9 |2x — 10 | 2z — 11 | Formula for (—3,0)
(%) | o9 20— 1|22 -2 |22 -3 573 {(hy,9)!)
(s%t) | o9 20— 1|2z —2 s_? - ((ha, 8)1)
(s°t%) | oy 2z — 1 573 {(hy, T)!)
(s%13) | o9 s‘? ((ha,6)!)
(s2t") 572+ ((he, 5)1)
(s%) | o2 20 —1|20—2 |20 —3|2x—4 |2x—=5 |s% ((he,11)!)
(s3%t) | o9 20— 1|22 —2 |20 —3|2x—4 573 ((hg,10)!)
(3t2) | o9 20 —1 |22 -2 |22 -3 573 {(hy,9)!)
(s3t%) | o9 2 —1|2x—2 573 ((hg,8)!)
(3t4) | o9 2z — 1 573 {(hy, T)!)

Notice that all the values in the last column in Table 1 satisfy the formula
s1t92 . ((hg,2my — 2d; — mg + dy — 1)!). Then, when the exponent is d = (—3,0)
the differentials operators for all the ideals in that table will satisfy the following

formula
SdltdQ . <(h2, 2m1 — 2d1 — Mo + dg — 1)')

In the next pages, we will present two more examples for differential operators
in degree d in C2 to illustrate that the proposed formula for the graded piece of
idealizer of the ideals of the form (s™¢™2) in degree d holds.

Now, Table 2 refers to the differential operator of degree d = (—1,3) which is

in C2. The expressions in the top row: 2z — 5, 22 — 6, ---, 2o — 10 represent
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the half-lines y = 2x — 5, y = 2 — 6, ---, y = 22 — 10, respectively. In general,
the mononmials on half-lines on the top row will map to monomials on the half-
lines of each successive row. If a half-line has been omitted in any row below the
half-line on the top line, it is because the monomials on the line that would have
appeared on the half-line in that row of the table already lie in the respective
ideal. For d = (—1, 3) in C2; the differential operator is s~'#3- ((hg,4)!). Then, in
the ideal J = (s?) if we apply s s - ((hs,4)!) to the monomials with exponents
in the half-lines y = 20 — 5, y = 20 — 6, y = 20 — 7 and y = 2x — 8, we obtain the
exponents of the monomials that lie on 09, y =22 — 1, y =2x — 2, or y = 22 — 3
respectively, which are not in J. Thus, we should multiply s~ - ((hg, 4)!) by
(ha — 5)(hy — 6)(he — 7)(hy — 8) in order to correct this lack of membership.

Using a similar argument for all the ideals, we obtain all the values in Table 2

TABLE 2. Half-lines that shift out of the ideal for d = (—1, 3) along

with formula

Ideal |2x —5 |2z —6|2x—7|2x—8 |22z —9 |2z — 10 | Formula for (-1,3)
(%) | o9 20— 1|22 —2|2x—3 5713 {(hy, )N
(s%t) | o9 20 —1 |22 -2 s7H3 - {(he, T)!)
(s%2) | o9 2 —1 573 {(hy, 6)1)
(s?13) | o9 5743+ {(he, B)!)
(s*th) s7H3 - {(hy, 4)1)
(s3) 20— 1120 —222—-3|2x—4 |2z -5 | s ((ha,4)!(ha — 6) - - - (hy — 10))
(s3%t) | o9 20 —1|2x—2|2x—3 |2z —4 s7H3 - {(hy, 9)1)
(312) | o9 20—1|2x—2|2r—3 s7H3 - {(he, 8))
($33) | o9 20 —1 |2z -2 s7H3 - {(hy, )Y
(s3t1) | o9 2z —1 s713 - (g, 6)1)

In Table 2, for the ideal generated by s® the formula does not include (hy — 5)

since the half-line y = 2z —5 is not in the ideal and after applying s - ((hy, 4)!)
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to the exponents of the monomials that lie on y = 2x —5, we obtain the exponents
of the monomials that lie on o5, which is not in the ideal. Except for the ideal
generated by s, the values in the last column in Table 2 satisfy the formula
shtdz . ((hy, 2my — 2dy — my + dy — 1)!).

The following table, Table 3, is the last example of a differential operator in
multidegree d in C2. The table was filled using the values obtained in the precious
subsections. Again, the expressions in the top row: 2x — 2, 20 — 3, -+, 20 — 7
represent the half-lines y = 2x — 2, y = 20 — 3, ---, y = 2z — 7, respectively.
The mononmials on the top half-lines map to monomials on the half-lines on each
successive row. If a half-line is omitted on any row below the half-line on the top
line, it is because the monomials on the line that would have appeared on the

half-line in that row of the table already lie in the respective ideal.

TABLE 3. Half-lines that shift out of the ideal for d = (—1,0) along

with formula

Ideal |22 —2 |22 —3|2x—4|2x—5|2x—6 |2z —7 | Formula for (- ,0)

(s?) 20— 22z —3 s~ {(ha, 1)I(hg — 4)(hy — 5))
(s2t) 20— 1| 202 s71+ ((ha, D(he = 3)(ha — 4))
(s*1?) | o9 2z — 1 s71 ((hg, 3)!)

(s2) | o2 s+ ((he,2)!)

() S (o 1Y)

(s) 20 —4 22— 5|57 ((hy, DI(hy — 6)(ha = 7))
(s3t) 20 —3 |2z —4 571 {(hg, )’(h2—5)(h2—6)>
(s312) 20 —2 |22 -3 s74 ((hg, 1)!(hy — 4)(hy — 5))
(s3t3) 20— 1|2z —2 st ((ha, )'(hz —3)(hy — 4))
(s3t1) | oy 2z — 1 571 {(hy, 3)1)
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Notice that the ideals that have a continuous factorial formula are (s%t?), (s*t3),

(s?t") and (s*t*), and for d = (—1,0) their formula is given by

Sdltdz . <(h2, le — 2d1 — My + dg — 1)')

The rest of the ideals, in the table, skip some terms and they do not have a
factorial-continuous formula. For example, see Figure 27 and Figure 28 that
exhibit the multidegrees d where the idealizer does not have a factorial-continuous
behavior for (s*t) and (s3t?), respectively.

In the following pages, 3 examples for differential operators in degree d in C4
are included in order to give a formula for the graded piece of idealizer.

In Table 4, the mononmials on the half-lines y = 4, ---, y = 7 will map to
monomials on the half-lines in each successive row. If a half-line is omitted in a
row below the half-line on the top line, it is because the monomials on the line

remain in the ideal.

TABLE 4. Half-lines that shift out of the ideal for d = (0, —4) along

with formula

Ideal |y=4|y=5|y=06]|y="7]Formula for (0,-4)
(s%) = {(hy, 3)1)
(s°t) | o = ((h1, 4)1)
<52t?> o1 y=1 t= - {(hy,5))
(s’t3) | oy y=1ly=2 . <(h1, 6)!)
(st Jor Jy=1|y=2]y=3t""((h,7)}
() 4 (. 3))
(%) | oy = (b1, 4)))
(s3t%) | oy y=1 = {((h1,5)!)
0 o |y=1y=2 =+ (b1, 6))
(34 | oy y=1|y=2|y=3t*((h,7))




Table 4 has continuous formulas for all ideals and those formulas satisfy
sTt% - ((hy, —dy — 1 4+ my)!).

We will present a couple more tables for differential operators in C4 to illustrate
that the proposed formula for the graded piece of idealizer of the ideals of the form
(s™t™2) in degree d holds. In Table 5, the mononmials on the half-lines y = 3,
y =4,y =5, y =06 will map to monomials on the half-lines in each successive
row. If a half-line is omitted in any row below the half-line on the top line, it is
because the monomials on the line that would have appeared on the half-line in

that row of the table already lie in the respective ideal.

TABLE 5. Half-lines that shift out of the ideal for d = (-1, —-3)

along with formula

Ideal |y=3|y=4|y=5|y =06 | Formula for (-1,-3)

(s%) s ((he, 2)1)

(s*t) | o1 s7173 - {(hy, 3)!)

(s%t?) | oy y=1 s {((hy, A))

() o |y=1|y=2 s7H70 (M, 5)!)

(st%) y=1|y=2y=3]s"1" ((7h,2)/(hs — 4)(hy — 5)(hs — 6))
(s3) s7173 . ((hy, 2)!

(s3%) | oy sH3{(h, 3))

(s3t%) | o1 y=1 s (hy, A))

($33) | oy y=1|y=2 s7473 - {(hy, 5)!)

(s3t1) y=1|y=2|y=3|s42 ((h,2)!(hy —4)(hy — 5)(hy — 6))

In Table 5, the ideals (s?t*) and (s3t*) skip a term, the term (h; — 3), in both
cases it is because after applying s~ 't=3- ((h,2)!) to a monomial whose exponent
lie on the half-line y = 3, we obtain an exponent of the line oy, but the exponents

in y = 3 correspond to some monomials that are not part of that ideal. However,
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the remaining formulas satisfy
dyyda | - . ]
st - ((hy, —dy — 1+ my)!).

In the next table, we include some values obtained in the previous subsections.In
Table 6, the mononmials on the half-lines y = 2, y = 3, y = 4, and y = 5 will
map to monomials on the half-lines in the rows below. If a half-line is omitted
below the half-line on the top line, it is because the monomials on the line that
would have appeared on the half-line in that row of the table already lie in the

respective ideal. In Table 6, the ideals generated by s?t*, s%t?, s3t3 and s3t* skip

TABLE 6. Half-lines that shift out of the ideal for d = (-1, —2)

along with formula

Ideal |y=2|y=3|y=4|y=>5|Formula for (-1,-2)

(s%) sTt72 (I, D))

<52t> 1 Silt72 . <(h17 2)'>

(s’t%) | oy y=1 s ((hy, 3)1)

(st3) y=1|y=2 s7172 ((hy, DI(hy — 3)(hy — 4))
(s%th) y=2|y=3 s ((hy,)!(hy —4)(hy — 5))
(s%) sTH72 (1))

<53t> 1 Silt72 . <(h17 2>'>

(s3t%) | oy y=1 s ((hy, 3)1)

(s3t3) y=1|y=2 s7172 ((hy, DI(hy — 3)(hy — 4))
(s3th) y=2|y=3|s"2((hy,)!(hy —4)(hy — 5))

some terms, but the remaining formulas satisfy
dyyda | . . ]
st <(h1, da 1—|—m2)>

In the following pages we have included tables for some different values d in
C3. For C3, we have formulas that involve h; and hs, as we could see in the first

subsections. It is because we need to shift some half-lines that are parallel to the
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facet o1 and some half-lines that are parallel to o,. Therefore, tables for C3 will
contain more columns. For values d in C3, we will present the information in
two different tables: one table that includes the lines with the monomials whose
images do not lie in J and a second table with formulas for each ideal.

Table 7 and Table 8 correspond to the differential operator of degree d =
(—2,—2) in C3. Table 7 indicates the half-lines that need to be sent to zero as the
corresponding lines map outside of the ideal and Table 8 shows the formulas for
each ideal. The expressions in the top row: 2z —2, 20 —3, - - -, 2o — 7 represent the
half-lines y =2z — 2, y =2x — 3, - -+, y = 2z — 7, respectively. The mononmials
on the half-lines on the top row will map to monomials on the half-lines in each
successive row. If a half-line has been omitted below the half-line on the top line,
it is because the monomials on the line that would have appeared on the half-line

in that row of the table already lie in the ideal.

TABLE 7. Half-lines that shift out of the ideal for d = (-2, —2)

Ideal |22 —2 |22 -3 |20 —4 |22 -5 |22 -6 |20 —T7|y=2|y=3|y=4|y=5
(s?) 20 —2 |2z -3

(s2t) 20 —1|2r—2 o1

(s%?) | o9 2z —1 o1 y=1

(s2t?) | o9 y=1|ly=2

(st y=2|y=3
(s3) 20 —4 |2z -5

(s3t) 20 —3|2r—4 o1

(s%%) 20 —2 |22 -3 o1 y=1

(s3t3) 2z — 1|2z —2 y=1|y=2

(3h) | o9 20 —1 y=2|y=3

Table 8 has an interesting behavior. The ideals generated by s2, s%t, s?t?, s?

Y

s3t, and s3t2 have a factorial-continuous expression for the part of the formula that
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TABLE 8. Formula for d = (—2,—2) in C3

Ideal | Formula for (-2,-2)

(s7) st (I, )(h27 D!(ha — 4)(ha —5))
(s%t) | 57272 (7, 2)! (ha, )!(h2—3)(h2—4)>
(8262) | s7272 - (7, 3)!(ha, 3)1)

(826%) | 57272 - (7, D!(ha = 3) (7 — 4)(ha, 2)1)
(824 | 57272 (hn, DI 4)(h1— )(ha, 1))
(%) s (I, )'(hm D!(ha — 6)(ha — 7))
(%) | 57272 ((7n,2)!(ha, 1)!(ha — 5)(ha — 6))
(%) | 57272 ((hn, 3)!(Ra, 1)! (P2 4)(h2—5)>
(%) | s7272 - ((hn, D! (ha — 3)(h1 — 4)(ha, 1)!(hy — 3)(he — 4))
(%) | s7272 - (7, D (M 4)(h1— )(ha, 3)!)

involves hy and they satisfy s%t92 - ((hy, 2m; — 2d; — my +dy — 1)!) and the ideals

generated by s%t?, s%t23, s*t* and s3t* have a factorial-continuous expression for
the part of the formula that involves hy and their formulas satisfy s?¢%- ((h1, —ds—
1+ mso)!). Nevertheless, only the ideal generated by s?t* has factorial-continuous

expressions for both parts of the formula and that formula satisfies

Sdltd2 . <(h1, —d2 —1 + mg)!(hz, 2m1 — 2d1 — Mo + d2 — 1)'>

The following two tables correspond to the differential operator of degree d =
(—5,—4) in C3. One indicates the half-lines that need to be changed and the
another shows the formulas for each ideal. The expressions in the top row: 2z —6,
20 — 7, ---, 2¢ — 11 represent the half-lines y = 20 — 6, y = 2x -7, ---, y =
2z — 11, respectively. The monomials on the half-lines on the top row will map to
monomials on the half-lines in each successive row. If a half-line has been omitted

the half-line on the top line, it is because the monomials on the line that would
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have appeared on the half-line in that row of the table already lie in the respective

ideal.
TABLE 9. Half-lines that shift out of the ideal for d = (=5, —4)
Ideal |22 —6 |20 —7|2x—8 |20 —9|2x—10|2x—11 |y=4|y=5|y=6|y="7
(s%) | oo 2r—1|2x—2|2x—3
(s%t) | o9 20 —1|2zx—2 o1
(s%t?) | 09 2r—1 o1 y=1
(s23) | o9 o1 y=1|y=2
(st o1 y=1|y=2|y=3
(s3) | o9 20—1|20—-2|22—-3 |20 —4 |2z-5
(s3%t) | o9 20— 1|22 —2 |2z —3 |22z —4 o1
(s3t2) | o9 20— 1|22 —2 |22 —3 o1 y=1
($313) | o9 20 — 1|2z —2 o1 y=1|y=2
(31 | o9 2z — 1 o y=1ly=2|y=3
TABLE 10. Formula for d = (=5, —4) in C3
Ideal | Formula for (-5,-4)
(s?) | s ((h1,3)!(ho,9)!)
2 —5t=4 . ((hy,4)!(hs, 8)!
et | 255 sn(he )
(2t3) | s72t=* - ((hy,6)!(hs, 6)!)
21 | s (b, T)!(he, 5)!
(st%) | s ((h1, 7)!(h2,5)!)
() |5 ()0, 1LY
t —2t=* - ((h1,4)!(hs, 10)!
(othy | 5t (SN
33y | 5% (1, 6)!(he, 8)!
(%) | s ((h1,6)!(ha,8)!)
<53t4> sTOt4. <(h1, 7)'(h2, 7)'>

Notice that all the formulas in Table 10 do not skip any term for both compo-

nents of the formula and the formulas satisfy:

Sdltd2 . <<h1, —d2 -1 + mz)!(hg, 2m1 — 2d1 — Mo + d2 — 1)'>

Finally, in Table 11, we have included the values that we obtained in the pre-

vious subsections.
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TABLE 11. Formula for d = (—1,—1) in C3

Ideal | Formula for (-1,-1)

<52> s~ T <h1h2(h2 — 4))

(%) | 5711+ {(h, V)lha(h — 3))
<82t2> s~ L. hl(hl — 2)h2(h2 — 2)>
<S2t3> s~ hl(hl — 3)(h2, 1)'>
<83> s~ hlhg(hg — 6)>

<83t> S_lt_l . (]'Ll, 1)h2(h2 - 5)>
<53t2> s~ L. hl(hl — 2)h2(h2 — 4)>
<83t3> sTItL. hl(hl — 3)h2(h2 — 3)>
<83t4> S_lt_l . hl(hl — 4)h2(h2 — 2)>

2.8. Formulas for R,4,. If an ideal J is generated by an element of the form
s™t™m2 where deg(s™) = my and deg(t™?) = mgy for m; > 2 and my > 0, over
the ring of the rational normal curve of degree 2, R4, = C[s, st, st*], then we can
give a general formula for I(.J)4. The number of lines parallel to o, that are not
in the ideal J, but are in Rg4,, is given by 2m; — my. For instance, see Figure 5,
Figure 9, Figure 13, Figure 15, Figure 17 and Figure 19. Therefore, in order to
have a formula for C2 that includes all the continuous terms, without skipping
any term, we need that —d does not lie on one of the lines parallel to oq in Ry, \ J,

that is, —d should lie in a line parallel to o5 inside JJ. Then, the condition
—2dy + di > 2my — my

guarantees the formula

(2) s4t%2 . ((hy, 2my — 2dy — mg + dy — 1)!)

For instance, in Figure 21 the black lattice points represent d and —d. Observe

that —d = (1,0) lies in the half-line y = 22 — 2 which is a line parallel to oy and
46



this line belongs to the ideal .JJ. The inequality —2ds + dy > 2my — ms is satisfied;

therefore, we would have the continuous formula s?1¢% . ((he,2my — 2d; — mo +

dy — 1)) = 571+ ((ha, 3)1)

FIGURE 21. d = (—1,0) and —d = (1,0) in (s*t?)

For the next example, we will consider d = (1,3) in C2 and its table, Table 12,

TABLE 12. Half-lines that shift out of the ideal for d = (1, 3) along

with formula

Ideal |2z —1 |20 —2|2x—3|2x—4 |2z —5 |2z — 6| Formula for (1,3)
(s%) 20 —3 st3 - (ho(hy — 4))
(s?t) 2z — 2 st? - (ha(hy — 3))
(s*t%) 2z — 1 st® - (hy(hy — 2))
(s*3) | o9 Stf)’ ~((he, D))
(s2t1) | o9 st3 - (hs)

(s3) 2z — 5| st3 - (ha(hy — 6))
(s3t) 2r — 4 st® - (hy(hy — 5))
(s3t%) 20 —3 st3 - (ho(hy — 4))
(s3t3) 2z — 2 st? - (ha(hy — 3))
(s3t%) 2z — 1 st® - (hy(hy — 2))

For d = (1,3): (s*t®) and (s*t*) are the only ideals in the list that satisfy

—2d; +dy > 2my —my, then our formula s%¢92 - ((hy, 2m; — 2d; —mo +dy — 1)!) is
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applicable just for these ideals. Otherwise —2d;+dy < 2ms—my and —2d;+ds = 1

that requires the formula

SdltdQ : <(h2, —2d1 + d2 - 1)'(h2 - (2m1 - 2d1 — My + dg - 1))>

Denote

(3) P2.1(d) := o1 = —dy — 1 + my

and

(4) Goa(d) = oo =2my — 2dy —my +dy — 1.
and

hl2,1 = (hy, —dy — 1)!
h/272 = (hg, —2d1 -+ d2 - 1)'
If —2dy + d; < 2my — mo and —2d; + dy = 1, then the formula for C2 becomes:
s1% - (hy 5 (ha — ¢92)).

In general, if —2dy 4+ d; < 2my — my and —2d; 4+ ds = n,
(5) sT1% . (R y(hy — (¢a2 — (n—1))) -+ (ha — (d22 — 1)) (ha — a2)).

We can denote (hg — (¢2’2 — (n — 1))) st (h2 — (¢272 — ].))(hQ — ¢272) as (h2 — ¢2’2 —
n+ 1,n — 1)I. In the following pages, we will try to use this notation in some
expressions in order to show the formulas in a simpler way. Thus, the previous

expression is equivalent to

sT1% - (b y(hy — dap —n+ 1,0 — 1)1).
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In the following example represented in Figure 22, notice that —d is outside the

ideal and —2d; + dy = 2

FIGURE 22. d = (—1,0) and —d = (1,0) in (s’t%)

Therefore, as —2d;+dy = 2, then from equation (5), the formula s“#%-(hf, ,(hy—
(2.2 — 1))(ha — ¢22)) is applicable for this d, and it becomes s - ((hy, 1)!(hy —
3)(ha —4)). On the other hand, in Figure 22, the two half-lines that need to be
shifted are y = 20—3 and y = 2z—4 and it agrees with s™'-((hg, 1)!(hy—3)(ha—4)).

The elements in C4 only involve the formula in terms of h; and the number of
lines parallel to oy that are in R4,, but are not in J is given by msy. See Figure 5,
Figure 9, Figure 13, Figure 15, Figure 17 and Figure 19. Then, in order to have
a continuous-factorial formula for C4, we need that —d, lies in a line parallel to

o1 inside J. Then, the condition
—dy > my
gives us the factorial formula for C4

5Tt . (hy, —dy — 1+ my)!)
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For example, consider d = (—1, —2) which is represented in the following figure

Notice that —d = (1,2) is not in the ideal, but it lies on the half-line y = 2 and

FIGURE 23. d = (—1,-2) and —d = (1,2) in (s?)

that line is inside the ideal. In addition, the inequality —ds = 2 > 0 is satisfied.
Thus, the formula s¥t% - {(hy, —dy — 1 4+ my)!) = (s71t72(hy,1)!) works well in
this case.
For C4, if —dy < mg and —dy = 1, then the formula is given by:
st (P, —d2 = D) (h1 — ¢2.1))

In general, if —dy < my and —dy = n, then the formula is given by:

sT% - ((hy, —dy = D)!(hy = (21 — (n = 1)) -+ (ha = (21 — 1)) (h1 — $21)).
For example, —d is in a line parallel to o; outside the ideal and notice that

—dy < my and —dy = 2. Therefore, we have the formula s®t% . ((hy, —dy —

D) (1 — (@21 — (D)1 — d21)) = 5772 - ((ha, 1)1y — 3) (s — 4)).
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FIGURE 24. d = (—1,-2) and —d = (1,2) in (s*t?)

Now, consider d = (5, —2) in C4 and its table which was obtained as in previous
pages. The ideals (s?), (s%t), (s*t?), (s®), (s*t) and (s3t?) satisfy the condition
—dy > my, and the formula s%t% - ((hy, —ds — 1 + my)!) is applicable; however,
(s?t%), (s*t3) and (s3t*) do not satisfy it and since —d, = 2 then their formula
is given by s%t% - ((hy, —dy — 1)!(hy — (21 — 1))(h1 — ¢2.1)). In general, we can

apply this formula to the elements in C4 N o5.

TABLE 13. Half-lines that shift out of the ideal for d = (5, —2)

along with formula

Ideal |y=2|y=3|y=4|y=>5|Formula for (5,-2)

(s%) s7t=2 - ((hy, 1))

(s’t) | oy $5t72 - {(hy, 2)1)

(s°t%) | oy y=1 s5t72 - ((hy,3)!)

(s2t3) y=1|y=2 572 ((hy, D)!(hy — 3)(hy — 4))
(s?t‘l) y=2|y=3|st"2-((h,)!(h1 — 4)(h1 — 5))
() £ (o 1))

<S3t> o1 P2 <(h2, 2)'>

(s?t?) o1 y=1 $5t72 - {(hg, 3)!)

(s3t3) y=1|y=2 s2t72 - ((hy, D!(hy — 3)(hy — 4))
(s3th) y=2|y=3|st"2((h,)!(h1 — 4)(h1 — 5))




Any d in C3 satisfies that —2d; 4+ 2ds > 0 and —dy > 0; therefore, the formula
for C3 should involve terms of h; and hs and be related to the previous formulas
for C2 and C4.

For C3, if —dy > ms and —2ds + di > 2mq + mo, then the formula is given by:

Sdltdz . <(h1, —dg -1+ mg)!(hg, 2m1 — 2d1 — Mo + dg — 1)')

For instance, consider d = (—5, —4), which is represented in the following figure,

The line parallel to o; in which —d lies is in the ideal J and the line parallel to

FIGURE 25. d = (—5,—4) and —d = (5,4) in (st?)

09 in which —d lies is in the ideal J as well, that implies that both inequalities
are satisfied —dy > mo and —2dy + d; > 2m, + ms. Therefore, we have: s=5¢~%.

((h1,6)!(hg,8)!), which is a continuous-factorial formula.
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In addition, we have the combinations from the previous pages. If —dy > mso

and —2ds + di = g < 2m; — my then:
sTt% - ((h, da1)hy o(ho — 22 — g+ 1, — 1)1)
If —dy =p < ms and —2ds + dy > 2my; — my then:
sTt - (R (hy — dag —p+ Lp+1))).

Finally, if —dy < mg and —dy = p and —2dy 4+ di < 2my — mg and —2dy + d; = q

then
sTt% (R (hy — ¢og —p+ 1, p+ 1)RY o (ho — o — g+ 1,q + 1)1)

Consider d = (—1,—1) in (s?*t), which is represented in the following figure,

Observe that d = (—1, —1) lies on y = 1 which is parallel to o; and belongs to the

FIGURE 26. d = (—1,—1) and —d = (1,1) in (s%¢)

ideal and on the half-line y = 2z — 1 which is parallel to o9, but does not belong
to the idea. That implies —dy > my and —2dy + d; = 1 < 2mq + mo. Therefore,

the formula in terms of h; is a continuous-factorial, but the formula in terms of
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hy does not include some terms. Then, the formula for d = (-1, —1) is given by:
S92 ((h1, d21) Wy o(ha — $22)) = (s (R, 1)lha(ha — 3)).

Now, consider d = (—2,—1): —2d; +dy = —2(—2) — 1 = 3 and —dy =1
d = (—2,—1) is represented in the following two tables: Table 14 and Table 15.
The first table contains the half-lines that need to be shifted as in the previous

subsection and the second table contains the formulas for d = (-2, —1).

TABLE 14. Half-lines that shift out of the ideal for d = (-2, —1)

Ideal |22 —3 |20 —4 |20 -5 |2x—6 |20 —T7|2x -8 |y=1|y=2|y=3|y=4
(s%) 2e—1|2x—2[22-3

(s%t) | o9 20 —1|2x —2 o

(s%2) | oy 2 —1 y=1

(s2t3) | o9 y=2

(s°th) y=3
(s%) 20 —3|2x—4 |2 -5

(s3t) 20 —2 |2z -3 |2z —4 o

(s312) 2e—1|2x—2|2x—3 y=1

($3t3) | o9 20— 1|2z —2 y=2

(s34 | oy 2z — 1 y=3

TABLE 15. Formula for d = (-2, —1) in C3

Ideal | Formula for (-2,-1)

() |72 (ha(h2, 2)I(he — 4)(ha — 5)(hz — 6))

(1) |52, Dk, 5)1

(222) | 520 (g — 2) (o, )

(s%t?) s’?t’ - (hi(hy 73)(h2, 3))

(21 | 52 (g — 1)(hon 2)

<83> s L. <}L (}LQ )(}12 —6)(12— )(h2—8)>

() | 572071 {(hn, D1, 21— 5) (s — 6)(hy — 7))
(%) | s72¢7! <h1(h1—2) (ha2,2)!(hy — 4)(hy — 5)(h2 — 6))
(96) | 5726 (ha(hs = )0, )

() |52 (i — (ks )

For (s%), (s*t) and (s?) the formula in terms of h; is continuous-factorial since
in those cases —dy > moy and the rest of the formulas involving h; are of the form

SdltdZ . <(h1, —dg — 1)'(h1 — ¢271)> since —d2 = 1. On the other hand, —2d2 + dl 2
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2my —my is satisfied for the ideals (s%t), (s?t2), (s?t3), (s2t1), (s3t3) and (s3t*) and
the part of the formula involving ho do not skip any terms and since —2d,+d; = 3,

then the remaining ideals satisfy:

sTt® ((=2dy + dy — 1)!(ha — (¢22 — 2))(ha — (¢22 — 1)) (ko — o2))

We can verify that tables in the previous subsections satisfy and behave accord-

ing to these formulas. The formulas are given by: where

TABLE 16. Formula for I(J)g in Ra,

C | Condition 1 Condition 2 Formula
1 st . Clf]
9 —2dy +dy > 2my — my sTt% - ((hy, da2))
—2dy + dy < 2my — my —2d; +dy = q | sTt% . <h/272(h2 —¢o2—q+1,q— Hh
g =2 > my sTt% - (7, ¢2,1)")
—dy < My —dy=1p sTt% - (b (b — doy —p+1,p— 1))
—2dy +dy > 2my — my —dy > my st - ((hy, ¢21)!(ha, ¢22))
5 4= —2dy 4+ dy < 2my —mgy | —dy > my sTt% - (1, §2,1) ha,q)
—2dy + dy > 2my — my —dy =p < my | st - (hy1,(ho, P22)!)
q= —2d1 + d2 < 2m1 — Mo —dg =p<my sTidz . <h2’1,ph2727q>
hogq = h,2,2(h2 — o2 —q+1,q—1)
and

hop = h/271(h1 — 21 —p+ 1)L

Finally, we can consider an expression, which does not include all the d’s:

(st . C[6)] ifdeC1

s1t% - ((hg, a2)!) ifde C2and — 2d; +dy > 2m; — mo
() = { s%t% - ((hy, ¢s1)!(ha, do2)!) if d € C3 and — dy > my and
—2d; +dy > 2my; — mgy

\Sdltdz . <(h1,¢272)!> ifde C4and —dy > mo
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This expression exhibits the conditions on the multidegrees d where the differential
operators of degree d have factorial-continuous behavior occurs, from Definition
27. For example, the following two figures illustrate the regions that have a
342

factorial-continuous behavior for the ideals generated by s?t and s3¢2, respectively.

In Figure 27, the multidegrees in the lines y = 2x + 1 and y = 22 + 2 are the only

FIGURE 27. Regions with a factorial-continuous behavior for (s*t)

elements that do not have a factorial-continuous behavior for (s*t) and degree 2.
In Figure 28, the multidegrees in the linesy =2x + 1, y =2x 4+ 2, y =2z + 3
and y = —1 are the elements that do not have a factorial-continuous behavior for

(s*t?) and degree 2.

3. Differential operators and idealizers in R4,

In this section, we will compute the idealizer I(J)4 for some ideals J over the

ring of the rational normal curve of degree 3, Ra, = C[s, st, st?, st3]. In order to
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FIGURE 28. Regions with a factorial-continuous behavior for s3¢2

aid our computations, we include some illustrations of the lattice representing the
multidegrees in the plane, which is divided into four chambers; C1, C2, C3 and
C4. For the rational curves of degree 3, A3, the facets are given by o1 = {(x,y) €
N%|z > 0,y = 0} and 0y = {(z,y) € N?|z,y > 0,y = 3z} that have primitive
integral support functions h; = 6, and hy = 36, — 6s.

Figure 29 illustrates the integer lattice, divided into four chambers that are
colored as follows:

C1: The red multidegrees correspond to monomials in R4,

C2: The yellow multidegrees are the d such that hy(d) > 0 and hy(d) < 0

C3: The violet multidegrees are the d such that h;(d) < 0 and hy(d) < 0, and

C4: The green multidegrees are the d such that hi(d) < 0 and hy(d) > 0.
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Still following the convention (h,n)! = 1 if n > 0, then the graded pieces of

D(Rg4,) are given by:
(6) D(Ray)a = s™t® - {(hy, ha(=d) — D)l(ha, ha(—d) — 1)!)

This equation follows from Theorem 1 which comes from [2, Theorem 2.3] and
[8, Theorem 3.2.2], which is the Saito-Traves description of differential operators.,

and broken down by chambers gives us

shtda . <(h2, —3di + dy — 1)'> ifde (C2
D(Ra)a =4 sht® - ((hy, —dy — 1)!(hs, —3ds +dp — 1)) if d € C3
St (hy, —dy — 1)1) itdeC4

3.1. The idealizer for J = (s?t*) over the ring R,,. In this example we want
to compute I(J)q4 for J = (s*t3) and as in the previous section, we will show some

figures in order to illustrate the computations.
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Consider the following figure which contains the ideal generated by s*t® repre-
sented by the red lattice points and the teal lattice points represent the elements

that are in Ry, \ J. Consider d = (—=2,1) in C2, d = (—3,-3) in C3 and

op)
y=3xr—1
Yy =3xr —2
y=2
y=1

01

FIGURE 30. Elements in Ra, \ J

d = (3,—2) in C4. Using an argument as in the previous section, we obtain:
Again, the light blue lines indicate the half-lines representing the multidegrees
of monomials in J that after application of an element in D(R4,) 4, 4,), fails to
yield an element in J and we have to correct this lack of membership. The blue
lines represent the multidegrees of monomials in the ring, but outside J, Ra, \ J,
but no changes or corrections are needed, and red lines indicate the multidegrees
of monomials in the ideal that after application of an element in D(Ra,)(d,,d)
yield 0 and as 0 is in any ideal then no changes are required. Therefore, we obtain

the following formulas for the multidegrees which are described in Figure 31.
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(A) Vanishing for d = (—2,1) (B) Vanishing for d = (3, —2)

(¢) Vanishing for d = (-3, —3)

FIGURE 31. Different values d vanishing in (s%*t%)

shtdz . ((hy, 9)) if d=(-2,1)
I(J)g = ¢ s5t2 - ((hy,5)!(ha, 8)!) if d = (—3,—3)
st - ((hy, DI(hy = 3)(ha —4)) if d = (3,-2)

)

3.2. The idealizer for J = (s’t*) over the ring Ra,. In this example, we

compute I(J)q4 for J = (s3t*) using its figures. Figure 32 shows the ideal generated
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by s3t* and it is represented by the red lattice points and teal lattice points

represent the elements that are in R4, \ J.

y=3

y=2

y:
01

FIGURE 32. Elements in R4, \ J

Consider d = (—2,—1) in C2, (3, —4) in C3, and (—3, —4) in C4, represented in
Figure 33. Only the light blue lines need to be corrected since they indicate the
half-lines representing the multidegrees of monomials in J that after application
of an element in D(R4,) 4, ,4), fails to yield an element in J. Thus, we can obtain

the following formulas for the multidegrees which are described in 33.

sh192 . ((hy, 11)!) ifd=(-2,1)
I(J)g = 4 sBt® . ((hy, 7)(he,9)!) if d = (=3, —4)
stid . ((hy, 7)) if d=(3,—4)

Observe that in both cases, the number of lines parallel to o, is determined by

3my — my and the number of lines parallel to o; is determined by ms.
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(A) Vanishing for d = (—2,1) (B) Vanishing for d = (3, —4)

(¢) Vanishing for d = (-3, —4)

FIGURE 33. Different values d vanishing in (s3t*)

3.3. Formulas for R4,. In this subsection, we will give a formula for the rational
normal curves of degree 3. In particular, we will not include tables as we did for

degree two because the same logic that was used to derive the formulas for degree
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two can be used to devise the formulas for degree three. However, the idea of
how to determine the formulas is the same. The equation of one of the facets has

changed and thus our formulas are altered.

Define
(7) P31(d) =31 = —do — 1 +my
and
(8) ¢3(d) := ¢35 = 3my — 3dy —my +dy — 1

The number of lines parallel to o, that are not in the ideal J, but are in Ry,, is
given by 3m; — my. Therefore, in order to have a formula for C2 that includes
all the continuous terms, without skipping any term, we need that —d does not
lie on one of the lines parallel to o9 in Ry, \ J, that is, —d should lie in a line

parallel to o5 inside J. Then, the condition
—3dy +dy > 3my — mgo
guarantees the formula
shigdz . ((hg,3my — 3dy — ma +dy — 1))
Define hy ; = (hy, —dy — 1) and hy, = (hg, —3dy + dy — 1)}, then, if —3dy +d; <
3my1 — my and —3d; + dy = q:
sTt% - (hlyo(hy — d32 — q+ 1, — 1))

In C4, as the case for degree 2, just consider the formula in terms of h; and the

number of lines parallel to oy that are in Ry4,, but are not in J is given by ma.
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Then, in order to have a continuous-factorial formula for C4, we need that —ds

lies in a line parallel to oy inside J. Then, the condition
—dy > my
gives us the factorial formula for C4
st . ((hy, —dy — 14 my)!)

For C4, if —dy < my and —dy = p, then the formula is given by:

st - ((hy, —dy — D)!(h1 — ¢31 —p+ 1,p — 1)!).
For C3, if —dy > m9 and —3dy + di > 3m; — mg, then the formula is given by:

st . (hy, —dy — 14 mg)!(hy, 3my — 3d; — my + dy — 1)!)

and we can have some combinations from the previous cases.

If —dy > mq and —3dy + di = ¢ < 3my; — my then:
sht® . ((hy, ¢3,1)!h§72(h2 —¢30—q+1,¢—1)))
If —dy =p < my and —3ds + dy > 3m; — my then:
sTt% - (Rl (hy — ds1 — p+ 1,p — 1)!(ha, ds2)!).
Finally, if —dy < my and —dy = p and —3dy 4+ d; < 3my; — mg and —3dy + d; = ¢q
then
st (B (h — g3 —p+ 1, p— DG o(ha — d32 — g+ 1,¢ — 1))

The formulas are given by: where hz, 1= h3o(ha — ¢32 — ¢+ 1,¢ — 1)! and

hsap = h§,1(h1 —¢31—p+1,p—1)L
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TABLE 17. Formula for I(J)g4 in Ra,

C | Condition 1 Condition 2 Formula
1 st . Cl[0]
9 —3d1 + dg Z 3’1711 — My Sd1 td2 . <(h2, ¢3’2)'>
—3di + dy < 3mq — mao —3dy +dy =¢q stz <h32(h2 — (173’2 —q+1,q— 1)'>
4 |z m ST ((h, 6.1)1)
—dy < meo —dy=7p sTt% - (hy (b —dsa —p+1,p— 1))
—3d1 + dg > 3’177/1 — My —d2 > mo Sdltd2 . <(h1, ¢3,1)!(h2,¢372)!>
3 q= —3dy +dy < 3my —my | —ds > Mo sTigdz . <(h1, ¢3,1)!h3727q>
—3dy + dy > 3my — mgy —dy = p < msy stz <h3}1’p(h27 ¢5’2)'>
q= —3d1 +dy < 3my —my | —dy = p < msy sTitdz . <h3’1,ph3’2’q>

In addition, we can consider the following expression that only contains factorial-

continuous formulas:,

(st . C[6)
5119 . ((hy, ¢32)!)

I(J)a = § s%t% - ((h1, ¢31)!(h2, P32)!)

L sDt%2 - ((hy, ¢32)!)

This expression exhibits the conditions on the multidegrees d where the differential

operators of degree d have factorial-continuous behavior occurs, from Definition

27.

itde C1

ifde C2and — 3d; +dy > 3m; — ms

ifde C3 and — dy > mq and

—3d1 + d2 Z 37711 — My

ifde C4and —dy > mo

4. Formulas for the idealizer I(J)4 for the rational normal curve in

For any ideal J = (s"'¢™2) such that m; > 2 and my > 0 over the ring of the

rational normal curve of degree n, Ra, = C[s, st, st? -+ | st"], n > 2, we can give

a formula for the idealizer.

degree n
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The plane including R4, can be divided into four chambers in a similar way
that we divided the plane for degrees two and three. The facets of A, are given by
o1 ={(z,y) e N}|z > 0,y = 0} and 09 = {(7,y) € N?|x,y > 0,y = nz} that have
primitive integral support functions hy = 6y and hy = nf; — 0. The primitive
integral support functions hy = 6, and hy = nf; — 05 are very important elements
in order to determine the formula since they modify the facets and consequently
it modifies the inequalities. Thus, the number of lines parallel to oy that are not
in the ideal J, but are in Ry, , is given by nm; — ms and the the number of lines
parallel to oy that are in R4,, but are not in J is given by ms. Then, for all
n > 2 and ideal J = (s"'¢™?) we will have plots similar to those obtained in the
previous sections. The facet oy is the only significant modification as n changes.

Therefore, to have a formula for C2 that includes all the continuous terms, we
need that —d does not lie on one of the lines parallel to o9 in Ry, \ J, that is, —d

should lie in a line parallel to o5 inside J. Then, the condition

—ndy + dy > nmy — mgo

guarantees the formula

s1t%2 . ((hg, nmy — ndy — my + dy — 1)!)

for C2, which is similar to s#¢% . ((hy,2m; — 2d; — my + dy — 1)!) and s .
((h2,3my — 3dy —mg +dy — 1)!) that are the formulas that we obtained for degree

2 and 3, respectively.
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Now, define the following functions:
(9) Gna(d) = gn1 = —dy — 1 +my

(10) Gn2(d) == ¢p2 =nmy —ndy —mg +dy — 1.
hyy = (h1, —dy — 1)
o = (ha, —ndy + dy — 1)!
If —ndy + di < nmq — mo and —nd; + dy = ¢; thus,
S5 (1o (hy — Sz — g+ 1,q — 1),

For the formula for C4: the number of lines parallel to oy that are in Ry, , but are
not in J is given by msy. Then, in order to have a continuous-factorial formula for

C4, we need that —ds lies in a line parallel to oy inside J. Then, the condition
—dy > My
gives us the factorial formula for C4
st . ((hy, —dy — 14 my)!)
if —dy < mo and —dy = p, then the formula is given by:
shyde . (P 1 (hy = Gy —p+ 1,p— 1)),

For the formula for C3: a combination of the conditions —ndy + dy > nm; — my
and —dy > msy guarantees the continuous formula for C3; if —dy > ms and

—ndy 4+ dy > nmy + ms, then the formula is given by:

Sdltd2 . <(h17 ¢n,1)!(h27 ¢n,2)'>
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and we have combinations from the previous cases.

If —dy > my and —nds + di = ¢ < nmy — my then:

sTt% - ((hy, ¢ )Nl o (hy — o — g+ 1, — 1))

If —dy = p < my and —ndy + di > nmy; — mo then:

SdltdQ : < ;1,1(h1 - ¢n,1 —p+ 17p - 1)'<h2’¢n’2)'>

Finally, if —dy = p < mo and —ndy + d; = ¢ < nmy — my then the formula is:
s™t% - (W, (= dna —p+1,p = DAy o(hy — Gna — g+ 1,4 = 1)!).

Therefore, from the computations that we have done above, we conclude the

following proposition.

Proposition 3. Let Ry, = Cls, st,st?,--- ,st"], the ring of the rational normal
curve of degree n for n > 2. For any multidegree d and ideal J = (s™1¢™?)
such that my > 1, mgo > 0 and nm; — mg > 0, the formula for the idealizer in

multidegree is given by the entries in the last column of Table 18.

For each chamber, as long as condition 1 and 2 are satisfied then the formula
is given by the respective formula in the last column. where h, 24 := h;, 5(ho —
(¢n,2 - (q - 1))) e (h2 - ¢n,2)

and hn,l,p = ;1,1(}7'1 - <¢n,1 - (p - 1))) e (hl - ¢n,1)'

Corollary 1. Let Ra, = Cls,st,st? -, st"|, the ring of the rational normal

curve of degree n for n > 2. Given the same hypothesis as in the last proposition
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TABLE 18. Formula for I(J)g in Ra,

C | Condition 1 Condition 2 Formula
1 sTt® . C[o]
2 —nd1 -+ dg Z nmiy — Moy Sd1 td2 . <(h2, ¢n 2) >
—nd, + dy < nmq — me —ndy +dy = q | st - (h], 5(hy — ¢np —q+1,q— 1))
4 —dy > my st . <(h17¢n 1) >
—dy < mpy —dy =p s7t% - (hy, (1 — ¢y —p+1,p— 1)}
—nd; + dg > nimy — my —dy > My sTt% - ((hy, pn1) (h2, dn2)!)
5 —ndy +dy = q < nmy —mg | —dy > Mo st ((hy, on1) hnog)
—nd; + dy > nmy — my —dy =p <my | "% - (hp1 (o, Pn2)!)
—ndy +dy =g <nmy—ma | —dy =p <ma | S® - (hp1phnog)

and as long as —ndy +dy > nmy —my and/or —dy > my are satisfied, the idealizer

can be expressed as follows:

(gt de

g pde

\ 8d1 tdz

-C[o]

+((h2, 6n2)")
]I(J)d = SdltdQ :

<(h1, ¢n,l)!(h27 ¢n,2)'>

(7, n2)!)

itde C1
ifde C2and —ndy +dy > nm; —my
ifde C3and —dy > mo

—nmy + dy > nmy — my
ifde C4and —dy > mo

This expression is a special case that exhibits the conditions for the multidegrees

d where the differential operators of degree d have factorial-continuous behavior

occurs.

Again, the primitive integral support functions hy = 0 and hy = n#; — 05 are

very important elements in order to determine the formula because they modify

the facets and the inequalities are modified by those.
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5. Future directions and concluding remarks

In future directions, similar techniques could be used to compute D(R,.J) for
principal ideals J. Also similar analysis could be used to determine I(J) and
D(R, J) for other monomial ideals. For example, in [1]; differential operators,
retracts, and toric face rings, it is determined that I(J)/D(R,J) is a subring
of D(R/J) when J is the special monomial ideal which includes all monomials
associated to the interior of the cone and a similar statement is true for any
monomial ideal J.

In this document, we computed the idealizer for monomials in ideals J that
have two generators; however, it is possible to compute it for ideals with more
generators and similar techniques can be useful in order to determine these ob-
jects, or compute I(.J) for more complicated regions or rings. For instance, Saito
and Traves in [8] have determined the ring of differential operators for saturated
affine semigroup rings, and we can use their work to compute I(.J), D(Ra4,J) and
I(J)/D(Ra4,J) for non-normal rational normal curves R4 and a graded radical
R 4-ideal J.

On the other hand, determining the idealizer for monomial ideals J of R4, will
be helpful to find differential operators ¢ for which J is d-compatible and J-fixed

as Lance Miller, William Taylor and Janet Vassilev are developing in [6].
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