Implementation of the load balancing algorithm over a local area network and the internet

Chaouki T. Abdallah
J. Ghanem
M. Hayat
S. Dhakal
J.D. Birdwell

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/ece_fsp

Recommended Citation
Authors
Chaouki T. Abdallah, J. Ghanem, M. Hayat, S. Dhakal, J.D. Birdwell, J. Chiasson, and Z. Tang
Implementation of the Load Balancing Algorithm over a Local Area Network and the Internet

J. Ghanem, C. T. Abdallah, M. Hayat, S. Dhakal, J.D. Birdwell, J. Chiasson, and Z. Tang*

Electrical and Computer Engineering Department
MSC01 1100
University of New Mexico
Albuquerque, NM 87131-0001
{jean,chaouki,hayat,dhakal}@eece.unm.edu

*Department of Electrical and Computer Engineering
University of Tennessee
Knoxville, TN 37996-2100 USA
{birdwell,chiasson,ztang}@utk.edu

Abstract—In this paper, experimental evaluation of the load balancing algorithm in real environments is presented. We emphasize on the effects of delays in the exchange of information among nodes, and the constraints these effects impose on the design of a load balancing strategy. Two test-beds in two different real environments have been built: The first implementation was over a local area network whereas the second one was over Planet-Lab. The results show the effect of the network delays and variances in the tasks processing time on choosing adequate gain values for the load balancing algorithm.

I. INTRODUCTION

Parallel computer architectures utilize a set of computational elements (CE) to achieve performance that is not attainable on a single processor, or CE, computer. A common architecture is the cluster of otherwise independent computers communicating through a shared network. To make use of parallel computing resources, problems must be broken down into smaller units that can be solved individually by each CE while exchanging information with CEs solving other problems. For a background on mathematical treatments of load balancing, the reader is referred to [1][2][3]. Effective utilization of a parallel computer architecture requires the computational load to be distributed more or less evenly over the available CEs. The qualifier “more or less” is used because the communications required to distribute the load consume both computational resources and network bandwidth. A point of diminishing returns exists. The distribution of computational load across available resources is referred to as the load balancing problem in the literature. Various taxonomies of load balancing algorithms exist. Direct methods examine the global distribution of computational load and assign portions of the workload to resources before processing begins. Iterative methods examine the progress of the computation and the expected utilization of resources, and adjust the workload assignments periodically as computation progresses. Assignment may be either deterministic, as with the dimension exchange/diffusion [4] and gradient methods, stochastic, or optimization based. A comparison of several deterministic methods is provided by Willeback-LeMain and Reeves [5].

The present work focuses on the experimental aspects of the load balancing in real environments, highlighting the effects of delays in the exchange of information among CEs, and the constraints these effects impose on the design of a load balancing strategy. Two test-bed were implemented in different environments; The first test-bed involved three machines connected by a switch in local area network (LAN) setting and the second test-bed involved three nodes geographically distributed and connected by the Internet. In the latter setting, the nodes used are part of the Planet-Lab research network. More information about Planet-Lab can be found at www.planet-lab.org.

II. MATHEMATICAL MODEL

In this section, continuous time models are developed to model load balancing among a network of computers. To introduce the basic approach to load balancing, consider a computing network consisting of n computers (nodes) all of which can communicate with each other. At start up, the computers are assigned an equal number of tasks. However, in some applications when a node executes a particular task it can in turn generate more tasks so that very quickly the loads on various nodes become unequal. To balance the loads, each computer in the network sends (broadcasts) its queue size qj(t) to all other computers in the network. A node i receives this information from node j delayed by a finite amount of time τij; that is, it receives qj(t−τij).

Each node i then uses this information to compute its local estimate1 of the average number of tasks in the queues of the n computers in the network. Based on the most recent observations, the simple estimator \(\left(\sum_{j=1}^{n} q_j(t - \tau_{ij}) \right) / n \) (\(\tau_{ii} = 0 \)) of the network average is used by the \(i^{th} \) node. Node i then compares its queue size \(q_i(t) \) with its estimate of the network average as \(q_i(t) - \left(\sum_{j=1}^{n} q_j(t - \tau_{ij}) \right) / n \), and, if this is greater than zero, the node sends some of its tasks to the other nodes. If it is less than zero, no tasks are sent. Further, the tasks sent by node i are received by node j

1It is an estimate because at any time, each node only has the delayed value of the number of tasks in the other nodes.
with a delay h_{ij}. The controller (load balancing algorithm) decides how often to do load balancing (transfer tasks among the nodes) and how many tasks are to be sent to each node. An important issue considered here is the effect of delays on system performance. Specifically, the continuous time models developed here represent our effort to capture the effect of the delays in load balancing techniques and were developed so that system theoretic methods could be used to analyze the. The basic mathematical model of a given computing node for load balancing is given by

$$\frac{dx_i(t)}{dt} = \lambda_i - \mu_i + u_i(t) - \sum_{j=1}^{n} p_{ij} t_{p_j} u_{j}(t - h_{ij})$$

$$y_i(t) = x_i(t) - \sum_{j=1}^{n} x_j(t - \tau_{ij})$$

$$u_i(t) = -K_{sat}(y_i(t)); \quad p_{ij} \geq 0, p_{jj} = 0, \sum_{i=1}^{n} n_{p_{ij}} = 1$$

where

$$sat(y) = y \text{ if } y \geq 0$$

$$= 0 \text{ if } y < 0.$$ \hspace{1cm} (1)

In this model we have

- n is the number of nodes.
- $x_i(t)$ is the expected waiting time experienced by a task inserted into the queue of the i^{th} node. With $q_i(t)$ the number of tasks in the i^{th} node and t_{p_j} the average time needed to process a task on the i^{th} node, the expected (average) waiting time is then given by $x_i(t) = q_i(t) t_{p_j}$. Note that $x_i t_{p_j} = q_j$ is the number of tasks in the node j queue. If these tasks were transferred to node i, then the waiting time transferred is $q_j t_{p_j} = x_j t_{p_j} t_{p_j}$, so that the fraction $t_{p_j} t_{p_j}$ converts waiting time on node j to waiting time on node i.
- $\lambda_i \geq 0$ is the rate of generation of waiting time on the i^{th} node caused by the addition of tasks (rate of increase in x_i)
- $\mu_i \geq 0$ is the rate of reduction in waiting time caused by the service of tasks at the i^{th} node and is given by $\mu_i \equiv (1 \times t_{p_j}) / t_{p_j} = 1$ for all i if $x_i(t) > 0$, while if $x_i(t) = 0$ then $\mu_i \equiv 0$, that is, if there are no tasks in the queue, then the queue cannot possibly decrease.
- $u_i(t)$ is the rate of removal (transfer) of the tasks from node i at t by the load balancing algorithm at node i. Note that $u_i(t) \leq 0$.
- $p_{ij} \mu_j(t)$ is the rate at which node j sends waiting time to node i at time t where $p_{ij} \geq 0$, $\sum_{j=1}^{n} p_{ij} = 1$ and $p_{jj} = 0$. That is, the transfer from node j of expected waiting time $\int_{t_1}^{t_2} u_{j}(t) dt$ in the interval of time $[t_1, t_2]$ to the other nodes is carried out with the i^{th} node receiving the fraction $p_{ij} t_{p_j} t_{p_j}$ of $\int_{t_1}^{t_2} u_{j}(t) dt$ where the ratio $t_{p_j} t_{p_j}$ converts the task from waiting time on node j to waiting time on node i. As $\sum_{j=1}^{n} \left(p_{ij} \int_{t_1}^{t_2} u_{j}(t) dt \right) = \int_{t_1}^{t_2} u_{j}(t) dt$, this results in removing all of the waiting time $\int_{t_1}^{t_2} u_{j}(t) dt$ from node j. The quantity $-p_{ij} u_{j}(t - h_{ij})$ is the rate of increase (rate of transfer) of the expected waiting time (tasks) at time t from node j by (to) node i where $h_{ij} (h_{ij} = 0)$ is the time delay for the task transfer from node j to node i.
- The quantities $\tau_{ij} \equiv (\tau_{ii} = 0)$ denote the time delay for communicating the expected waiting time x_j from node j to node i. The quantity $x_j^{avg} = \left(\sum_{j=1}^{n} x_j(t - \tau_{ij}) \right) / n$ is the estimate (due to the delays) by the i^{th} node of the average waiting time of the network and is referred to as the local average (local estimate of the average).

In this model, all rates are in units of the rate of change of expected waiting time, or time/which is dimensionless. As $u_i(t) \leq 0$, node i can only send tasks to other nodes and cannot initiate transfers from another node to itself. A delay is experienced by transmitted tasks before they are received at the other node. The control law $u_i(t) = -K_{sat}(y_i(t))$ states that if the i^{th} node knows that the j^{th} node output $x_i(t)$ is above the local average $\left(\sum_{j=1}^{n} x_j(t - \tau_{ij}) \right) / n$, then it sends data to the other nodes, while if it is less than the local average nothing is sent. The j^{th} node receives the fraction $\int_{t_1}^{t_2} p_{ji} (t_{p_j} / t_{p_j}) u_i(t) dt$ of transferred waiting time $\int_{t_1}^{t_2} u_i(t) dt$ delayed by the time h_{ij}.

A. Specifying the p_{ij}

One important detail remains unspecified, namely the exact form of the p_{ij} for each sending node i. One approach is to choose them as constant and equal

$$p_{ij} = 1 / (n - 1) \text{ for } j \neq i; \quad p_{ii} = 0$$ \hspace{1cm} (4)

where it is clear that $p_{jj} \geq 0$, $\sum_{j=1}^{n} p_{ij} = 1$. Another approach is to use the local information of the waiting times $x_i(t), i = 1, \ldots, n$ to set their values. The quantity $x_j (t - \tau_{ji}) - x_j^{avg}$ represents what node j estimates the waiting time in the queue of node i with respect to the local average of node j. If queue of node i is above the local average, then node j does not send tasks to it. Node j repeats this computation for all the other nodes and then portions out its tasks among the other nodes according to the amounts they are below the local average, that is,

$$p_{ij} \equiv \frac{\text{sat}(x_j^{avg} - x_i(t - \tau_{ji}))}{\sum \text{sat}(x_j^{avg} - x_i(t - \tau_{ji}))}$$ \hspace{1cm} (5)

If $\sum_{i \neq j} \text{sat}(x_j^{avg} - x_i(t - \tau_{ji})) = 0$, then p_{ij} are set to 0.

Remark If the denominator $\sum_{i \neq j} \text{sat}(x_j^{avg} - x_i(t - \tau_{ji}))$ is zero, then $x_j^{avg} - x_i(t - \tau_{ji}) \leq 0$ for all $i \neq j$. However,

$$\sum_{i \neq j} \left(x_j^{avg} - x_i(t - \tau_{ji}) \right) + x_j^{avg} - x_j(t) = 0$$

which implies

$$x_j^{avg} - x_j(t) = -\sum_{i \neq j} \left(x_j^{avg} - x_i(t - \tau_{ji}) \right) > 0.$$
That is, if the denominator is zero, the node \(j \) is not greater than the local average, so \(u_j(t) = -K_j \text{sat}(y_j(t)) = 0 \) and is therefore not sending out any tasks.

III. EXPERIMENTS OVER A LOCAL AREA NETWORK

A parallel machine has been built to implement an experimental facility for evaluation of load balancing strategies. A root node communicates with \(k \) groups of computer networks. Each of these groups is composed of \(n \) nodes (hosts) holding identical copies of a portion of the database. (Any pair of groups correspond to different databases, which are not necessarily disjoint. A specific record, or DNA profile, is in general stored in two groups for redundancy to protect against failure of a node.) Within each node, there are either one or two processors. In the experimental facility, the dual processor machines use 1.6 GHz Athlon MP processors, and the single processor machines use 1.33 GHz Athlon processors. All run the Linux operating system.

Our interest here is in the load balancing in any one group facility, the dual processor machines use 1

\[\text{GHz Athlon} \]

processors. In the experimental work reported here, \(\Delta \) is descended by any search thread. An important point is that the actual delays experienced by the network traffic in the parallel machine are random. Work has been performed to characterize the bandwidth and delay on unloaded and loaded network switches, in order to identify the delay parameters of the analytic models and is reported in [9][10].

The value \(\tau = 200 \mu \text{sec} \) used for simulations represents an average value for the delay and was found using the procedure described in [10]. The interest here is to compare the experimental data with that from the three models previously developed. To explain the connection between the control gain \(K_1 \) and the actual implementation, recall that the waiting time is related to the number of tasks as \(x_i(t) = q_i(t) t_{p_i} \) where \(t_{p_i} \) is the average time to carry out a task. The continuous time control law is \(u_i(t) = -K_1 \text{sat}(y_i(t)) \) where \(u_i(t) \) is the rate of decrease of waiting time \(x_i(t) \) per unit time. Consequently, the gain \(K_1 \) represents the rate of reduction of waiting time per second in the continuous time model. Also, \(y_i(t) = \left(q_i(t) - \left(\sum_{j=1}^{n} q_j(t) - \tau_{ij} \right) / n \right) t_{p_i} \) where \(t_{p_i} \) is simply the number of tasks above the estimated (local) average number of tasks and, as the interest here is the case \(y_i(t) > 0 \), consider \(u(t) = -K_1 y_i(t) \).

With \(\Delta \) the time interval between successive executions of the load balancing algorithm, the control law says that a fraction of the queue \(K_1 r_i(t) \) (0 < \(K_1 < 1 \)) is removed in the time \(\Delta \) so the rate of reduction of waiting time is \(-K_1 r_i(t) t_{p_i} / \Delta = -K_1 y_i(t) / \Delta \) so that

\[u(t) = -\frac{K_1 y_i(t)}{\Delta} \implies K_1 = \frac{K_2}{\Delta} \]

(6)

This shows that the gain \(K_1 \) is related to the actual implementation by how fast the load balancing can be carried out and how much (fraction) of the load is transferred.

In the experimental work reported here, \(\Delta \) actually varies each time the load is balanced. As a consequence, the value of \(\Delta \) used in (6) is an average value for that run. The average time \(t_{p_i} \) to process a task is the same on all nodes (identical processors) and is equal 10\(\mu \)sec while the time it takes to ready a load for transfer is about 5\(\mu \)sec.

The initial conditions were taken as \(q_1(0) = 6000, q_2(0) = 4000, q_3(0) = 2000 \) (corresponding to \(x_1(0) = q_1(0) t_{p_i} = 0.06, x_2(0) = 0.04, x_3(0) = 0.02 \)). All of the experimental responses were carried out with constant \(p_{ij} = 1/2 \) for \(i \neq j \).

Figures 1, 2, 3 are plots of the responses \(r_i(t) = q_i(t) - \left(\sum_{j=1}^{n} q_j(t) - \tau_{ij} \right) / n \) for \(i = 1, 2, 3 \) (recall that \(y_i(t) = r_i(t) t_{p_i} \) for \(K_2 = 0.5, 0.3 \) and 0.2 respectively. Figure 4 summarizes the data from several experimental runs of the type shown in Figures 1, 3, 2. For \(K_2 = 0.1, 0.2, 0.3, 0.4, 0.5 \), ten runs were made and the settling time (time to load balance) were determined. These are marked as small horizontal ticks on Figure 4. (For all such runs, the initial queues were the same and equal to \(q_1(0) = 600, q_2(0) = 400, q_3(0) = 200 \). For each value of \(K_2 \), the average settling time for these ten runs was computed and is marked as a dot on given on Figure 4. For values of \(K_2 = 0.6 \) and higher (with increments of 0.1 in \(K_2 \)), consistent results could not
Fig. 3. Response of the load balancing algorithm. The average value of the gains are \((K_z = 0.2) \ K_1 = 1600, K_2 = 2500, K_3 = 2857 \) (constant \(p_{ij} \)).

be obtained. In many cases, ringing extended throughout the experiment’s time interval (200 milliseconds). For example, Figure 5 shows the plots of the queue length less the local queue average for an experimental run with \(K_z = 0.6 \) where the settling time is approximately 7 milliseconds. In contrast, Figure 6 shows the experimental results under the same conditions where persistent ringing regenerates for 40 milliseconds. It was found the response was so oscillatory that a settling time was not possible to determine accurately. However, Figure 4 shows that one desires to choose the gain to be close to 0.5 to achieve a faster response time without breaking into oscillatory behavior.

IV. EXPERIMENTS OVER PLANET-LAB

A distributed system has been developed to validate the theoretical work and to assess different load balancing policies in a real environment. The system consists of several nodes running the same code. The nodes are part of Planet-Lab, a planetary-scale network involving more than 350 nodes positioned around the globe and connected via the Internet. The application used to illustrate the load balancing process was matrix multiplication, where one task is defined as the multiplication of one row by a static matrix duplicated on all nodes (3 nodes in our experiment). The size of the elements in each row was generated randomly from a specified range which made the execution time of a task variable. As for the communication part of the program, UDP was used to exchange queue size information among the nodes and TCP was used to transfer the data or tasks from one machine to another.

To match the experimental settings of the previous sections, 3 nodes were used; node1 at the University of New Mexico, node2 in Taipei-Taiwan and node3 in Frankfurt-Germany. As for the load balancing policy, the same parameter values were also used; for instance all \(p_{ij} \) were set to 1/2 for \(i \neq j \). The initial parameters and settings for the experiment are summarized in table I. Throughout the experiment, network statistics related to transmission rates

<table>
<thead>
<tr>
<th>Location</th>
<th>node 1</th>
<th>node 2</th>
<th>node 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>University of New Mexico (US)</td>
<td>Taipei - Taiwan</td>
<td>Frankfurt - Germany</td>
</tr>
<tr>
<td>Initial Distribution</td>
<td>6000 tasks</td>
<td>4000 tasks</td>
<td>2000 tasks</td>
</tr>
<tr>
<td>Average Task Processing Time (t_{pi})</td>
<td>10.2 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Deviation for (t_{pi})</td>
<td>2.5 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval between load balancing instances (\Delta t)</td>
<td>150 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval between 2 comm. transmissions</td>
<td>50 ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE I
PARAMETERS AND SETTINGS OF THE EXPERIMENT
Kz was steady and converged quickly to a balanced state when observed network delays were stable, the system response runs no settling time could be achieved. However, when the results could not be obtained. For instance, in most of the were determined. For gain values higher than 0.8, consistent were made and the settling times (time to load balance) were shown. On the other hand, when the gain was set to 0.8, 22ms. On the other hand, when the gain was set to 0.8, 4203B/s. Figures 11 and 12 show the system responses for between node 2 and node 3 dropped from 1.34KB/s to 1.42 KB/s. In particular, the data transmission rate of data needed to transmit a single task was 20 bytes, which made the observed transmission rates not exactly accurate in the presence of large communication delays.

In order to observe the behavior of the system under various gains, several experiments were conducted for different gain values K_z ranging from 0.1 to 1. Fig. 7 is a plot of the responses $r_i(t)$ corresponding to each node i where the gain K_z was set to 0.3. Similarly, Fig. 8 shows the system response for gain K_z equal to 0.5. Figure 9 summarizes several runs corresponding to different gain values. For each $K_z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7$, ten runs were made and the settling times (time to load balance) were determined. For gain values higher than 0.8, consistent results could not be obtained. For instance, in most of the runs no settling time could be achieved. However, when the observed network delays were stable, the system response was steady and converged quickly to a balanced state when K_z is equal to 0.8 (Figure 10). As previously indicated, this scenario wasn’t frequently seen. The system behavior in these set of experiments does not exactly match, for the same gain value, the results obtained in the previous sections, due to the difference in network topology and delays. For instance, the ratio between the average delay and the task process time is 20 (200ms/10ms) for the LAN setting and 12 (120ms/10ms) for the distributed setting. This fact is one of the reasons why ringing is observed earlier (for $K_z = 0.6$) in the LAN experiment whereas under Planet-Lab unstable responses were observed starting $K_z = 0.8$. The previous experiments have been conducted under normal network conditions stated in Table II. However, another set of experiments was conducted at a different time where the network condition worsens and larger delays were observed. In particular, the data transmission rate between node 2 and node 3 dropped from 1.03KB/s to 407B/s. Figures 11 and 12 show the system responses for gains $K_z = 0.4$ and $K_z = 0.8$ respectively. These experiments clearly show the negative effect of the delay on the stability of the system. Nevertheless, we can see that with a low gain namely $K_z = 0.4$, a settling time can be identified at around 22ms. On the other hand, when the gain was set to 0.8,}

<table>
<thead>
<tr>
<th>Roundtrip delay c_{ij}</th>
<th>Data transmission rate</th>
<th>Average Transmission of One Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1 - n2 215 ms</td>
<td>1.34 KB/s</td>
<td>-</td>
</tr>
<tr>
<td>n1 - n3 200 ms</td>
<td>1.42 KB/s</td>
<td>-</td>
</tr>
<tr>
<td>n2 - n3 307 ms</td>
<td>1.03 KB/s</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE II
AVERAGE NETWORK DELAYS AND TRANSMISSION RATES.

and delays were collected. The averages of the parameters are shown in Table II. Large delays were observed in the network due to the dispersed geographical location of the nodes. Moreover, the transmission rates detected between the nodes were very low mainly because the amount of data exchanged in bytes is small. Indeed, the average size of data needed to transmit a single task was 20 bytes, which made the observed transmission rates not exactly accurate in the presence of large communication delays.

Fig. 7. Experimental response of the load balancing algorithm under large delays. gain $K_z = 0.3$ and $p_{ij} = 0.5$.

Fig. 8. Experimental response of the load balancing algorithm under large delays. gain $K_z = 0.5$ and $p_{ij} = 0.5$.

Fig. 9. Summary of the load balancing time as function of the gain K_z.

Fig. 10. Experimental response of the load balancing algorithm under large delays. gain $K_z = 0.8$ and $p_{ij} = 0.5$. 4203
On the other hand, setting the gain K_z ringling persists and the system did not completely stabilize. Figures 7 and 13, we can see that in the latter case, some large variance in the tasks processing time.

The system did not reach a stable point as shown by the nodes’ ringing responses $r_i(t)$ (Figure 12). As this point, only the effect of the delay on the stability of the system was tested. To experiment the effect of the variability of the task processing time on the system behavior, the matrix multiplication application was adjusted in a way to get the following results; the average task processing time was kept at 10.2ms but the standard deviation became 7.15ms instead of 2.5ms. Figures 13 and 14 show the respective system responses for gains $K_z = 0.3$ and $K_z = 0.8$. Comparing Figures 7 and 13, we can see that in the latter case, some ringing persists and the system did not completely stabilize. On the other hand, setting the gain $K_z = 0.8$ led the system to accommodate with the variances in the task processing time.

V. SUMMARY AND CONCLUSIONS

In this paper, a nonlinear time-delay model of the load balancing algorithm was presented. Experiments have indicated a correlation between the continuous time models and the actual implementation. Further, the results drawn from the two test-beds were consistent with each other. In particular, high gains were shown to be inefficient and therefore introduce drawbacks in systems with large delays. Conversely, systems with low gain values could not cope with the variability introduced by the tasks processing time. Therefore, one should avoid the limits and carefully choose an adequate gain value. Future work will consider incorporating the network delays as detected by the system in the fraction coefficients p_{ij} in order to quickly stabilize the system and therefore decrease the overall completion time.

REFERENCES

