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Abstract

This thesis derives two Uncertainty Quantification (UQ) methods for differential equa-

tions that depend on random parameters: (i) error bounds for a computed cumulative

distribution function (ii) a multi-level Monte Carlo (MLMC) algorithm with adaptively

refined meshes and accurately computed stopping-criteria. Both UQ approaches utilize

adjoint-based a posteriori error analysis in order to accurately estimate the error in

samples of numerically approximated quantities of interest. The adaptive MLMC algo-

rithm developed in this thesis relies on the adjoint-based error analysis to adaptively

create meshes and accurately monitor a stopping criteria. This is in contrast to classical

MLMC algorithms which employ either a hierarchy of uniform meshes or adaptively

refined meshes based on Richardson extrapolation. Moreover, they also use a stopping

criteria that relies on assumptions on the convergence rate of the MLMC levels. This

thesis overcomes these drawbacks of the classical algorithms.

The analysis and UQ methods developed in this these are applied to several types

of differential equations and quantities of interest. Classical a posteriori error analysis
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provides a formulation of the error in a Quantity of Interest (QoI) which is represented

as a bounded linear functional of the solution to a differential equation. This thesis

derives error estimates for a QoI that describes the time at which a linear functional of

the solution achieves a threshold value. This QoI is referred to as “non-standard” since

it cannot be represented as a linear functional of the solution. The classical analysis

does not directly apply to non-standard QoIs.

The adjoint-based error analysis for the different QoIs not only develops accurate

error estimates, they also provide a decomposition of the error into contributions from

different regions of the domain. The decompositions are utilized to adaptively create

meshes when adding new levels in the MLMC algorithm. Two adaptive mesh creation

methods are described that can be used to build the MLMC estimator. Many numerical

experiments demonstrate the accuracy of the error estimates and the advantages of

using adaptive mesh creation in the MLMC algorithm.
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Chapter 1

Introduction

Uncertainty Quantification (UQ) is a rapidly developing subject that plays a key role

in scientific computing, predictive science, and numerical analysis. The study of UQ

looks to quantify the uncertainty in an output statistic (such as cumulative distribution

function, expected value, mean-squared error, etc.) based on the uncertainty of the

inputs of the model.

A type of classical, broad approach for UQ in predictive computational sciences are

Monte Carlo (MC) methods [43,48,54]. MC methods are simple to implement. As such

they are used in a vast array of disciplines including the high-energy physics involved in

particle collision, particle transport, finance, statistical mechanics and numerous other

engineering applications [49, 55]. MC methods have been modified and expanded to

improve cost effectiveness. Some of the methods based on MC methods are the Quasi-

Monte Carlo (QMC), Markov chain Monte Carlo (MCMC), multi-fidelity Monte Carlo

(MFMC), and multi-level Monte Carlo (MLMC) methods [3, 9, 22, 32, 46, 57]. Further

modifications have been made to some of these methods, including adaptive MLMC

methods [51], which employ adaptive refinement strategies for pathwise problems.

In particular, UQ for differential equations that depend on some random param-

eter(s) is of high interest, with several science and engineering applications including
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controls, communication, cyber-security, and finance [1, 31]. Often, a particular quan-

tity related to the solution of a differential equation is of interest; for example, the

concentration of a chemical over a sub-region of the domain, or the time at which an

oscillator reaches a certain position. If a differential equation depends on a random

parameter, then the related quantity of interest (QoI) is a random variable and an UQ

of this QoI is required.

This thesis develops two forms of UQ for QoIs related to differential equations. In

one, we construct an upper-bound for the error in an approximate CDF of the QoI

where samples are taken using the Monte Carlo (MC) method. The bound requires the

error in samples of approximate QoIs, which are accurately computed using adjoint-

based a posteriori error analysis. The other form of UQ developed in this thesis focuses

on creating an adaptive multi-level Monte Carlo (MLMC) estimator for expected value.

Many MLMC algorithms use uniform meshes when creating the levels of the estimator

[46]. Past algorithms, including the adaptive methods, rely on assumptions about

the convergence of the levels of the estimator and use extrapolation to determine a

stopping criteria [47,48,51]. In our adaptive MLMC algorithm, we implement adjoint-

based error analysis to accurately estimate the bias of the estimator, which is used to

monitor a stopping criteria. The error analysis also provides a way to decompose the

bias contributions from different regions of the domain. We use this decomposition

to adaptively create the meshes that are used when added a new level to the MLMC

estimator.

The UQ methods developed in this thesis utilize adjoint-based a posteriori error

analysis in order to accurately estimate errors in the QoIs. The classical a posteriori

error analysis provides computable error estimates for QoIs that can be represented as

bounded functionals of the solution to a differential equation. Many nonlinear QoIs

are handled by linearizing around a computed solution [8, 11, 23]. This adjoint-based

analysis has been widely studied and shown to provide accurate estimates in a vast

array of settings [2,5,7,8,10–13,15–20,25,27,28,34,36,38,40,41,50]. The error estima-
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tion utilizes generalized Green’s functions solving certain adjoint problems, variational

analysis, and computable residuals of the numerical solution [2, 8, 28, 37, 40, 41]. The

error estimation method is well-suited to use alongside a finite element or variational

numerical method. However this error estimation can be applied to many finite differ-

ence and finite volume methods, provided they be recast as an equivalent finite element

method [12, 17, 21, 25, 27, 29, 30, 35, 39, 53]. The practice of using adjoint equations to

gain information about the solution of a differential equation has been common since

the 1970s, with applications to optimal control theory, fluid dynamics, and aeronautical

engineering [45,52].

The types of QoI covered by the classical analysis are referred to as “standard”

QoIs. In this thesis, a certain “non-standard” QoI (one that cannot be represented by

a linear functional nor can it be trivially linearized) is analyzed. The non-standard QoI

represents the time at which an event occurs; for example this could denote the time at

which a chemical concentration surpasses a threshold, the time at which an oscillator

returns to its rest position, or the time at which a wave reaches a certain height.

While this non-standard QoI is of great importance to many physical situations, an

adjoint-based error analysis of this QoI does not exist in previous literature. In this

thesis, we develop two adjoint-based error estimates for this non-standard QoI. The

first method utilizes Taylor’s theorem to construct a representation of the error in

the non-standard QoI. Solutions to certain adjoint problems are then used to create

a computable, accurate estimate of the error representation; this analysis was first

published in [21] and expanded upon in [14]. The second relies on solutions to adjoint

problems and root-finding methods in order to obtain a “corrected” QoI; this analysis

was first published in [21].
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1 Differential Equation with random parameter(s)

The UQ presented in this thesis is applicable to any quantity of interest (QoI) related

to a differential equation that depends on a random parameter, provided there is a

computable representation or estimate of the error in an approximation of the QoI.

Classical a posteriori error analysis provides error representations for a wide array

of QoI related to several different types of differential equations. We divide these

types of differential equations into three broad classes: initial-value problems (IVPs)

with ODEs, boundary-value problems (BVPs) with PDEs, and initial-boundary-value

problems (IBVPs) with PDEs.

1.1 IVPs

The model initial-value problem with ODEs takes the formu̇ = f, t ∈ (0, T ],

u(0) = u0,
(1.1)

where u̇ = du
dt
, f = f(u, t;w) ∈ Rd is a Lipschitz continuous function, and u(t) ∈ Rd is

the solution to the IVP. The function f or the initial condition u0 = u0(w) may depend

on a random variable w. Even though the model problem is first order, the analysis

of (1.1) applies to higher order IVPs as well. If u(t) ∈ Rd, any nth order IVP can be

rewritten as a system of nd first order IVPs, through a standard change of variables.

One example of an IVP of form (1.1) is the harmonic oscillator

mÿ + cẏ + ky = f̃ , (1.2)

which, after a reduction to first order, can be expressed asu̇1(t)
u̇2(t)

 =

 0 1

−k/m −c/m

u1(t)
u2(t)

+

 0

f̃/m

 . (1.3)
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Here m ̸= 0, u1 = y, u2 = ẏ and any of the parameters m, c, k, f̃ may be random.

Other examples include the two-body problem, the Lorentz equations, and the logistic

equation.

1.2 BVPs

The boundary-value problems involving PDEs take the formDu = f, x ∈ Ω,

u = g, x ∈ ∂Ω.,
(1.4)

over a domain Ω ⊂ Rd with differential operator D = D(w), and continuous functions

f = f(u, x;w) and g = g(x;w), any of which may depend on a random variable w.

The BVPs in this thesis all have scalar-valued solutions. An example of a BVP of form

(1.4) is the (elliptic) stationary advection-diffusion model

∇2u+ b · ∇u = f, (1.5)

where the differential operator is Du = ∇2u + b · ∇u and b or f may depend on a

random variable.

1.3 IBVPs

Initial-boundary-value problems are PDEs with an explicit time variable paired with

initial conditions (in time) and boundary values (in space). We denote these problems

as 
u̇+Du = f, x ∈ Ω, t ∈ (0, T ],

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = h(x), x ∈ Ω,

(1.6)
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over a spatial domain Ω ⊂ Rd and temporal domain (0, T ], with (spatial) differential

operator D = D(w), and continuous functions f = f(u, x, t;w), g = g(x, t;w), and

h = h(x;w), any of which may depend on a random variable w. Similar to the IVP (1.1),

the IBVP only contains first order time-derivatives because problems containing higher

order time-derivatives can be rewritten as a system of first order (in time) equations.

The IBVPs used as examples in this thesis all have scalar-valued solutions. An examples

of an IBVP (1.6) is the Vlasov equation

u̇+ (x2, 0)
⊤ · ∇u = f (1.7)

where the spatial differential operator is Du = (x2, 0)
⊤ ·∇u = x2

∂u
∂x1

and f may depend

on a random variable. Other examples of IBVPs (1.6) include the (parabolic) heat

equation and the (hyperbolic) wave equation.

2 Layout of Thesis

The remainder of this thesis is organized as follows. Chapter 2 contains all of the rele-

vant background results required for the novel work of this thesis. We begin the review

of material in §2.1 by recalling the standard definitions of a few statistical quantities: the

cumulative distribution function, expectation, variance, and mean-squared error. We

provide details of Monte Carlo estimators of the expectation and cumulative distribu-

tion function of a random variable, as well as the multi-level Monte Carlo estimator for

expectation. The review continues in §2.2 where we recall the function spaces and dual

spaces that are relevant to our analysis. We then discuss adjoint operators/problems

and how to obtain them based on the differential equation and QoI. Section 2.3 reviews

the variational forms of the model equations and the Galerkin methods used in our nu-

merical experiments. We end the review of material in §2.4 where we provide details of

the classical adjoint-based a posteriori error analysis for standard QoIs. This includes

the error estimations for standard QoIs of our three model equations along with the
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adjoint problems necessary to compute them. We also provide numerical experiments

to illustrate the accuracy of the error estimations.

Chapters 3 and 4 are dedicated to the novel contributions of this thesis. First, in 3

we provide a rigorous definition of the non-standard QoI followed by a priori conver-

gence results. We then derive the two a posteriori error analysis methods for this QoI.

Numerical experiments showing the accuracy and limitations of both methods are also

provided. Finally, in 4 we derive the two novel methods of uncertainty quantification.

We derive an upper bound of the error in an estimated cumulative distribution function

which relies on a posteriori error analysis to be made computable. We also create a

novel adaptive multi-level Monte Carlo algorithm which utilizes the a posteriori error

analysis in order to adaptively refine meshes and accurately compute a stopping criteria.

Numerical experiments of the uncertainty quantification methods are provided.
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Chapter 2

Review of Material

This chapter provides the background material required to derive the novel work in

this thesis. We begin with a review of the relevant statistics material in §2.1. Some

basic definitions are provided in §2.1.1. The Monte Carlo estimators for expectation

and CDF are provided in §2.1.2. The multi-level Monte Carlo estimator for expectation

is reviewed in §2.1.3.

We then turn to a discussion of the classical adjoint-based a posteriori error analysis.

To begin this discussion we briefly recall the relevant functional analysis in §2.2. This

includes a review of certain function spaces, dual spaces, adjoint operators, and adjoint

problems. We then provide the variational forms of our three model equations and

review Galerkin methods which are used to numerically solve them. Finally, in §2.4

we discuss the details of the classical a posteriori error analysis and provide numerical

experiments demonstrating the accuracy of these methods.
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1 Statistics background

When a differential equation contains a random variable as a parameter, the corre-

sponding QoI can also be viewed as a random variable. We are interested in quantify-

ing the error in computed expected values or cumulative distribution functions of the

random QoI. This section discusses the relevant statistics background needed for our

approaches to uncertainty quantification. We first present the standard definitions of

the cumulative distribution function of a random variable, as well as the expected value

and variance. We also briefly discuss estimators of a random variable and the mean

squared error of an estimator. Monte Carlo estimators for both the expected value and

the cumulative distribution function of a QoI are presented along with the multi-level

Monte Carlo estimator for the expected value.

1.1 Basics

This section defines some basic statistics that are often of interest in UQ. In particular,

we define the cumulative distribution function, expected value, and variance of an

absolutely continuous random variable Θ and present useful properties of each. We

also provide the definition for the mean-squared error of an estimator of the random

variable.

Cumulative Distribution Functions

For an absolutely continuous random variable Θ belonging to the probability space

(Ω,F ,P), the cumulative distribution function (CDF), evaluated at some θ, is a function

that represents the probability that Θ takes a value less than θ. The CDF is denoted

as

FΘ(θ) = P (Θ ≤ θ), (2.1)
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where P denotes the probability function. Some useful properties of the CDF include

0 ≤ FΘ(θ) ≤ 1, ∀θ, (2.2)

FΘ(θ1) ≤ FΘ(θ2) whenever θ1 ≤ θ2, (2.3)

lim
θ→∞

FΘ(θ) = 1, (2.4)

lim
θ→−∞

FΘ(θ) = 0. (2.5)

From the CDF we can define a density function for the absolutely continuous random

variable, Θ, as

fΘ(θ) =
dFΘ

dθ
(θ). (2.6)

The density function fΘ(θ) represents the relative likelihood that Θ takes a value near

θ.

Expected Values

The expected value, or average value, of an absolutely continuous random variable is

defined via the density function:

E[Θ] =

∫ ∞

−∞
θfΘ(θ)dθ. (2.7)

For two independent random variables Θ1 and Θ2, the expected value is linear

E[aΘ1 + bΘ2] = aE[Θ1] + bE[Θ2], for real numbers a, b. (2.8)

The expected value of a continuous random variable Θ can be estimated from a finite

number of samples. Let {θn}Nn=1 be N samples of the random variable Θ. Then the

sample mean gives an approximation of the expected value and is defined as

E[Θ] ≈ 1

N

N∑
n=1

θn. (2.9)
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Variance

The variance of a random variable gives information on how much the samples of Θ

vary away from the expected value. The variance is defined via the density function as

V[Θ] =

∫ ∞

−∞
(θ − E[Θ])2fΘ(θ)dθ. (2.10)

The variance can also be obtained using the expectation as

V[Θ] = E[(Θ− E[Θ])2] = E[Θ2]− (E[Θ])2 . (2.11)

Other useful properties of variance are

V[Θ] ≥ 0 (2.12)

V[aΘ+ b] = a2V[Θ], for real numbers a, b. (2.13)

The standard deviation of the random variable is given as the square-root of the variance

σ[Θ] =
√

V[Θ]. (2.14)

Mean Squared Error

The mean squared error (MSE) of an estimator, Θ̂ (which is also a random variable),

of a random variable Θ is a measure of the average squared-difference between the

estimator and the random variable. The MSE is given as

MSE[Θ̂] = E
[
(Θ̂−Θ)2

]
(2.15)

= V[Θ̂] +
(
Bias[Θ̂,Θ]

)2
, (2.16)

where the variance V[Θ̂] is given in (2.11) and the Bias is given as

Bias[Θ̂,Θ] = E[Θ̂−Θ]. (2.17)

The MSE is an a priori result, even though it depends on the unknown random data

Θ.

Note that the definition of the MSE varies slightly when discussing a predictor of a

random variable instead of an estimator. For our purposes, we only focus on estimators.
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1.2 Monte Carlo

Let (Ω,F ,P) be a probability space with sample space Ω, event space F , and probability

function P. Let Q = Q(u;w) be a QoI related to the solution of a differential equation

u dependent on a random variable w which belongs to the probability space (Ω,F ,P).

Recall that the solution u = u(w) and thus the QoI Q(u;w) = Q(u(w);w) depend. on

the random variable w. As such, the QoI is a random variable and has an associated

expected value and CDF.

Let Q(w(n)) = Q(u;w(n)), for n = 1, . . . , N , be samples of Q, where w(n) is sam-

pled from the same probability space (Ω,F ,P). Given a numerical solution U , let

Q̂(w(n)) = Q̂(U ;w(n)) be an approximation of Q(w(n)). The standard Monte Carlo

method estimates the expected value, E[Q], of Q using the N samples Q̂(w(n)):

E[Q] ≈ 1

N

N∑
n=1

Q̂(w(n)). (2.18)

The Monte Carlo method can also be used to estimate the CDF of a random variable.

Denote the CDF of the random variable Q as

FQ(θ) = P ({w : Q(u;w) ≤ θ}) = P (Q ≤ θ). (2.19)

An approximation to the CDF is computed using the Monte Carlo method with the N

samples of numerically computed values
{
Q̂(w(n))

}N

n=1
,

F̂N(θ) =
1

N

N∑
n=1

1(Q̂(w(n)) ≤ θ), (2.20)

where 1 is the indicator function:

1(x ≤ y) =

1 if x ≤ y,

0 if x > y.
(2.21)

One goal of this thesis is to construct and analyze a computable bound for the error,∣∣∣FQ(θ)− F̂N(θ)
∣∣∣, in the approximation of the CDF (2.20).
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1.3 Multilevel Monte Carlo

The Multi-level Monte Carlo (MLMC) method is an extension of the MC method that

utilizes several different estimators {Q̂ℓ = Q̂(Uℓ;w)} in order to obtain a more cost-

efficient approximation of the expected value. More rigorously, let {Q̂ℓ = Q̂(Uℓ;w)}L−1
ℓ=0

be a collection of numerical QoI where the accuracy of Uℓ increases with ℓ. At each

level ℓ, Nℓ samples {w(n)
ℓ }Nℓ

n=1 of the random variable are taken. The MLMC estimator

is constructed by expanding the expected value of the most accurate estimator as

E[Q] ≈ E[Q̂L−1] = E[Q̂0] +
L−1∑
ℓ=1

E[Q̂ℓ − Q̂ℓ−1]. (2.22)

Using the standard MC method to obtain the expected values on the right side of (2.22)

gives the L-level MLMC estimator for the expected value of Q:

E[Q] ≈ Q̂ML
L,{Nℓ}, (2.23)

=
1

N0

N0∑
n=1

Q̂0(w
(n)
0 ) +

L−1∑
ℓ=1

{
1

Nℓ

Nℓ∑
n=1

(
Q̂ℓ(w

(n)
ℓ )− Q̂ℓ−1(w

(n)
ℓ )
)}

, (2.24)

=
L−1∑
ℓ=0

{
1

Nℓ

Nℓ∑
n=1

(
Q̂ℓ(w

(n)
ℓ )− Q̂ℓ−1(w

(n)
ℓ )
)}

, (2.25)

where Q̂−1 ≡ 0. One sample on the ℓ− th level is

Yℓ(w
n
ℓ ) =

(
Q̂ℓ(w

(n)
ℓ )− Q̂ℓ−1(w

(n)
ℓ )
)
, (2.26)

and requires two different estimates of the QoI. Both estimates come with the same

sample of the random parameter w, but they are obtained using the different estimators

Q̂ℓ and Q̂ℓ−1. The Mean Squared Error (MSE) of the MLMC estimator is given as

MSE = V
[
Q̂ML

{Nℓ},L

]
+
(
Bias

[
Q̂ML

{Nℓ},L, Q
])2

(2.27)

=
L−1∑
ℓ=0

1

Nℓ

V
[
Q̂ℓ − Q̂ℓ−1

]
+
(
E
[
Q̂L−1 −Q

])2
. (2.28)

The first term in (2.28) is the variance, which is decomposed into contributions from

each level of the multi-level estimator. The second term is the squared bias, which only
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depends on the highest level. The variance at level ℓ and the bias can be approximated

using a finite number of samples.

V
[
Q̂ℓ − Q̂ℓ−1

]
≈

1

Nℓ − 1

Nℓ∑
n=1

(
Q̂ℓ(w

(n)
ℓ )− Q̂ℓ−1(w

(n)
ℓ )− 1

Nℓ

Nℓ∑
k=1

(
Q̂ℓ(w

(k)
ℓ )− Q̂ℓ−1(w

(k)
ℓ )
))2

, (2.29)

E
[
Q̂L−1 −Q

]
≈ 1

NL−1

NL−1∑
n=1

(
Q̂L−1(w

(n)
L−1)−Q(w

(n)
L−1)

)
. (2.30)

With the approximations (2.29) and (2.30), the MSE can be approximated as

MSE ≈
L−1∑
ℓ=0

1

Nℓ

 1

Nℓ − 1

Nℓ∑
n=1

(
Q̂ℓ(w

(n)
ℓ )− Q̂ℓ−1(w

(n)
ℓ )− 1

Nℓ

Nℓ∑
k=1

(
Q̂ℓ(w

(k)
ℓ )− Q̂ℓ−1(w

(k)
ℓ )
))2


+

(
1

NL−1

NL−1∑
n=1

(
Q̂L−1(w

(n)
L−1)−Q(w

(n)
L−1)

))2

.

(2.31)

The squared-bias term in (2.31) requires a true sample of the QoI, Q(w
(n)
L−1), and thus is

not directly computable. This thesis utilizes adjoint-based error analysis to accurately

estimate the squared bias in (2.31) to use as a stopping criteria in the adaptive MLMC

algorithm. The estimate for the MSE shows that the bias depends on the error of

the highest level of the MLMC estimator. In order to effectively lower the bias, the

estimator Q̂L−1 would need to become more accurate, i.e. a new level would have to

be introduced. This new highest level generally does not require a large number of

samples [47, 48].

The MSE estimate (2.31) also shows that taking more samples on a given level

(increasing some Nℓ) decreases the overall variance of the MLMC estimator. However,

taking more samples increases the cost of the estimator so a balance must be met in

order to decrease the variance without increasing the cost significantly. Let the variance

on level ℓ be denoted as Vℓ = V
[
Q̂ℓ − Q̂ℓ−1

]
and let the cost of taking one sample on
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the ℓ-th level be Cℓ. Using the method of Lagrange multipliers to minimize overall

cost,
∑
NℓCℓ, under the constraint for the total variance

∑ Vℓ

Nℓ
< 1

2
ϵ gives the optimal

number of samples to take on level ℓ to be [47]

Nℓ,opt =

⌈
2

ϵ

√
Vℓ
Cℓ

L−1∑
k=0

√
Vk
Ck

⌉
. (2.32)

Note that in practice only an approximation of the variances Vℓ are available and thus

only an approximate Nℓ,opt can be computed. If this yields an under-approximation of

Nℓ,opt, the MSE of the MLMC estimator will be larger than the desired tolerance. In

practice, this can be remedied by multiplying Nℓ,opt by a factor δ > 1.

Convergence of the MLMC estimator is discussed in [47] and [24]. The first Theorem

in [47] guarantees convergence in MSE under certain assumptions of the convergence of

expected values and variances of the levels in the MLMC estimator. In [24] the authors

use the Central Limit Theorem to obtain a confidence interval which bounds the true

expected value. The use of the Central Limit Theorem relies on the fact that each level

is asymptotically normal and thus the overall MLMC estimator is as well. Since levels

of the MLMC estimator are constructed as the difference of two approximations (recall

(2.26)), high levels have relatively small expected values and variances. Because of this,

the asymptotic approximation still applies even though few samples are taken on the

higher levels of the MLMC estimator.

2 Functional Analysis Background

This section provides the background necessary for the adjoint-based analysis. We

start with the definitions of useful vector and function spaces. We introduce the idea

of weak derivatives and use them to define the Sobolev spaces. Finally, we define dual

spaces and adjoint operators and describe how adjoint problems can be used to provide

information about the solution to a differential equation.
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2.1 Function Spaces

We begin the discussion on functional analysis by introducing some standard, but very

important, definitions and properties. First, let X be a real vector space with norm

||a||X for a ∈ X. The vector spaces that are required for the analysis of differential

equations have a property that relies on Cauchy sequences.

Definition 1 (Cauchy Sequence). A sequence {an} in X is a Cauchy sequence if for

any ϵ there is an N such that for any n,m > N ,

||an − am||X < ϵ. (2.33)

An immediate consequence from the definition is that all Cauchy sequences are

bounded. A less obvious, but very important, property of Cauchy sequences is that any

Cauchy sequence {an} in X is convergent. Depending on the structure of the vector

space X, the limit of the Cauchy sequence may or may not also belong to X. This

leads to our next definition.

Definition 2 (Banach Space). A Banach (or complete) space is a vector space X such

that all Cauchy sequences {an} in X converge to a limit that is also in X:

lim
n→∞

an = A ∈ X ∀ Cauchy sequence {an} in X. (2.34)

A set of spaces that are of particular importance for functional analysis are the

Lebesgue function spaces over a domain Ω ⊂ Rd.

Definition 3 (Lebesgue Function Spaces). The Lebesgue function spaces over Ω ⊂ Rd

are Lp(Ω) = {f : f is measurable and ||f ||p <∞}, for 1 ≤ p <∞, with norms

||f ||p =
(∫

Ω

|f |pdΩ
)1/p

, 1 ≤ p <∞ (2.35)

||f ||∞ = esssupΩ|f |. (2.36)
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The Riesz–Fischer theorem shows that the Lp(Ω), for 1 ≤ p ≤ ∞ are complete vec-

tor spaces. The function spaces that we will work with are not only Banach. For (weak)

solutions to differential equations, we require the function space to be complete with

respect to the norm induced by space’s inner-product. These types of inner-product

spaces are called Hilbert spaces. Examples of Hilbert spaces include Rd with the Eu-

clidean inner-product, the Lebesgue space L2(Ω), and Sobolev spaces Hs(Ω). Sobolev

spaces are especially important in the study of solutions to differential equations. Before

defining the Sobolev spaces, we introduce the concept of a weak derivative.

Definition 4 (Weak derivative). Given a function u ∈ L2(Ω) and multi-index α, the

α-th weak derivative of u is the function v ∈ L2(Ω) such that∫
Ω

u ·DαϕdΩ = (−1)|α|
∫
Ω

v · ϕdΩ, (2.37)

for all infinitely differentiable functions ϕ with compact support in Ω, where the multi-

indexed derivative is

Dαϕ =
∂|α|ϕ

∂xα1
1 · · · ∂xαd

d

. (2.38)

For non-negative integers s and a domain Ω ⊂ Rd, the Sobolev space Hs(Ω) is the

space of L2(Ω) functions whose weak derivatives up to order s are also in L2(Ω).

Definition 5 (L2-based Sobolev Spaces). The Sobolev space Hs(Ω), for s ∈ N, is

Hs(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω) ∀ |α| < s}.

The inner-product for the Sobolev space Hs(Ω) is

(f, g)Hs =

∫
Ω

f · gdΩ +

∫
Ω

Df ·DgdΩ + · · ·+
∫
Ω

Dsf ·DsgdΩ. (2.39)

We often work with a specific sub-space of a Sobolev space that has the additional

condition that functions and their normal derivatives vanish on the boundary of Ω.

These sub-spaces are denoted as Hs
0 = {f ∈ Hs(Ω) : f = ∂f

∂n
= · · · = ∂s−1f

∂ns−1 = 0 on ∂Ω},

where ∂f
∂n

is the normal derivative on the boundary of Ω; see [37].
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2.2 Dual Spaces, Adjoint Operators, and Adjoint Problems

Definition 6 (Dual Space X∗). The dual space of a vector space X is the space of all

linear functionals on X. The dual space, denoted by X∗ is a normed vector space with

the dual (or operator) norm

||ϕ||X∗ = sup
x∈X

||x||X=1

|ϕ(x)|. (2.40)

The duality pairing ϕ(x) is often written in bracket notation: ϕ(x) = ⟨x, ϕ⟩. For

example, consider the vector space X = L2(Ω). Using Hölder’s inequality, the dual

space (L2(Ω))∗ can be identified with L2(Ω) meaning that each function g ∈ L2(Ω) is

associated with a linear functional ϕ ∈ (L2(Ω))∗ by

ϕ(f) = ⟨f, ϕ⟩ =
∫
Ω

g(x) · f(x)dx. (2.41)

Another example of a vector space that is isometric with its dual space is the Euclidean

space Rd with the dot-product. Moreover, by the Riesz Representation theorem, all

Hilbert spaces are isometric with their dual space.

For two normed vector spaces X and Y , let L(X, Y ) denote the space of linear

transformations from X to Y . Each L ∈ L(X, Y ) is associated with another linear

transformation between the dual spaces Y ∗ and X∗. This other linear map, which we

denote L∗ ∈ L(Y ∗, X∗), is called the adjoint operator of L. More rigorously, with

L ∈ L(X, Y ), for each y∗ ∈ Y ∗ we define a unique bounded, linear functional

x∗(x) := y∗(L(x)) = ⟨Lx, y∗⟩. (2.42)

Since this x∗ is a bounded linear functional on X, it is an element of the dual space

x∗ ∈ X∗. In this way, for every y∗ ∈ Y ∗ we have associated a unique x∗ ∈ X∗, thus

creating a linear transformation L∗ ∈ L(Y ∗, X∗).

Definition 7 (Adjoint operator). For a linear transformation L ∈ L(X, Y ), the adjoint

operator L∗ is defined as the operator which satisfies the bi-linear identity

⟨Lx, y∗⟩ = ⟨x, L∗y∗⟩, (2.43)
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for all x ∈ X and y∗ ∈ Y ∗.

For example, letX = Y = Rd with the usual dot-product. Any linear transformation

L ∈ L(Rd,Rd) can be represented by multiplication with a unique d× d matrix:

L(x) = Ad×dx. (2.44)

Recall that Rd is isomorphic to its dual space. With this isomorphism, the left side of

bi-linear identity (2.43) is

⟨Lx, y⟩ = Ad×dx · y. (2.45)

Basic linear algebra allows us to rearrange the matrix multiplication by taking the

transpose of Ad×d:

Ad×dx · y = x · A⊤
d×dy. (2.46)

Identifying the adjoint operator L∗ with the transpose of the matrix Ad×d satisfies the

bi-linear identity:

⟨Lx, y⟩ = Ad×dx · y = x · A⊤
d×dy = ⟨x, L∗y⟩. (2.47)

Some useful properties of the adjoint operator are presented below.

• The norm of the adjoint operator is ||L∗|| = ||L||.

• The adjoint of the null operator is 0∗ = 0.

• For L1, L2 ∈ L(X, Y ) the adjoint of the sum is (L1 + L2)
∗ = L∗

1 + L∗
2.

• For a scalar a ∈ R, (aL)∗ = a(L∗).

• For L1 ∈ L(X, Y ) and L2 ∈ L(Y, Z), the adjoint of the composition is (L1L2)
∗ =

L∗
2L

∗
1 and (L1L2)

∗ ∈ L(Z∗, X∗).

• The adjoint of the adjoint is the original operator: (L∗)∗ = L
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The error analysis used in this thesis mostly deals with Hilbert spaces like L2(Ω), H1
0 (Ω),

and H1(Ω) where the duality pairing can be identified with the L2(Ω) inner-product.

The operators are usually linear differential operators L = D and the bi-linear identity

can be written as

∫
Ω

Du · vdx =

∫
Ω

u · D∗vdx. (2.48)

The adjoint operators D∗ are combined with initial or boundary values in order to yield

specific adjoint problems that are required for our error analysis.

The adjoint operator D∗ of a differential operator D also called the formal adjoint

operator. The identity (2.48) is called the bi-linear identity with smooth functions, u

and v, that have compact support inside Ω. The Hilbert space W is chosen so that Du

andD∗v are well-defined. The formal adjoint is found by repeatedly using integration by

parts and linear algebra (and the divergence theorem in higher dimensions) to move all

derivatives and multipliers from u onto v. Since the functions are compactly supported,

any boundary terms are zero.

For example, let u, v ∈ H2
0 (Ω) and Du = −∇2u. Starting with the left side of the

bi-linear identity and integrating by parts gives

⟨Du, v⟩ =
∫
Ω

(
−∇2u

)
vdx =

∫
Ω

(∇u) (∇v) dx =

∫
Ω

u
(
−∇2v

)
dx = ⟨u,D∗v⟩, (2.49)

where the boundary integrals vanish due to the compact support of u and v. Thus the

formal adjoint is D∗ = −∇2, where we have abused the asterisk notation.

In the context of analyzing QoI that stem from problems involving differential equa-

tions, the formal adjoint will be paired with initial or boundary conditions to create an

adjoint problem. The initial or boundary conditions for the adjoint problem depend on

the initial or boundary conditions for the original problem and are chosen to ensure the

boundary terms vanish.
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For example, consider the IVPu̇ = f, t ∈ (0, T ]

u(0) = 0.
(2.50)

When computing the formal adjoint via integration by parts we get∫ T

0

u̇vdt =

∫ T

0

u(−v̇)dt+ u(0)v(0)− u(T )v(T ) =

∫ T

0

u(−v̇)dt− u(T )v(T ). (2.51)

To create the adjoint problem, we impose a condition to force v(T ) = 0. The adjoint

problem takes the form−v̇ = f, t ∈ [0, T )

v(T ) = 0.
(2.52)

The function f is chosen based off the original function f and the QoI that is being

analyzed. In practice, the condition on v does not have to be homogeneous and again

is chosen to help analyze the QoI at hand. The QoI and adjoint problems associated

with our three differential equations are presented later in §2.4 and in Chapter 3.

The next section gives a brief discussion on the weak form of a differential equation

and presents the weak forms of (1.1), (1.4), and (1.6). Galerkin methods for numerically

solving variational differential equations are also presented.

3 Variational Forms and Suitable Numerical Meth-

ods

Galerkin finite element methods (FEMs) utilize the variational form of a differential

equation to obtain numerical solutions that are piece-wise polynomials. The error

analysis used in this thesis is also based on the variational form of a differential equation

and thus it is well-suited for solutions obtained via a Galerkin FEM. However, the error
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analysis is not limited to these FEMs since many other numerical methods can be

identified with a Galerkin FEM using a certain integration scheme. This section first

details the variational forms of our three model equations (1.1), (1.4), and (1.6). We

then present the continuous and discontinuous Galerkin FEMs for the equations. We

also present a few other numerical methods and show how to identify them with certain

Galerkin methods.

3.1 Variational forms of differential equations

Variational, or weak, forms of differential equations give a generalized view of the equa-

tions and often allow for relaxed requirements on the differentiability of solutions. A

weak form is created so that the solution behaves similarly to solution of the origi-

nal differential equation under the inner-product with certain test functions. As an

illustrative example, consider the differential equation

−∇2u = f, x ∈ Ω. (2.53)

In order to satisfy (2.53), the function u must be twice differentiable. Take (2.53),

multiply by a continuously differentiable function v with compact support in Ω and use

integration by parts on the left. This yields∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx. (2.54)

In order to satisfy (2.54), the function u only requires a single (weak) derivative. To

be a weak solution of the differential equation (2.53), we require a weakly differentiable

function u ∈ H1(Ω) that satisfies (2.54) for all test functions v ∈ H1
0 (Ω). Note that

for the variational form, we do not remove all of the derivatives from u. The weak

form is considered a generalization of the strong form because if a solution to (2.54) is

sufficiently differentiable, it will also satisfy (2.53).

In this section, we present the Lax-Milgram theorem for existence and uniqueness
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of solutions to weak-forms of differential equations. We then give the weak forms of our

three model equations (1.1), (1.4), and (1.6).

Existence and Uniqueness of Weak Solution

The existence of a unique solution to the weak form of a differential equation comes

from a form of the Lax-Milgram Theorem. To present this theorem, first let a(u, v)

be the bi-linear form that represents the left side of any of the below weak forms; i.e.

a(u, v) =
∫ T

0
u̇ · vdt or a(u, v) =

∫
Ω
D1u ·D2vdx or a(u, v) =

∫
Ω
u̇ · vdx+

∫
Ω
D1u ·D2vdx.

We also present two definitions related to a bi-linear form.

Definition 8 (Bounded bi-linear form). A bi-linear form a(u, v) over a Hilbert space W

is bounded if there exists a C ∈ R such that |a(u, v)| ≤ C||u||W ||v||W for all u, v ∈ W .

Definition 9 (Coercive bi-linear form). A bi-linear form a(u, v) over a Hilbert space

W is coercive if there exists a c ∈ R such that |a(u, u)| ≤ c||u||2W for all u ∈ W .

With these two definitions we now present the Lax-Milgram Theorem as applied to

the variational forms of our differential equations.

Theorem 1 (Lax-Milgram). If the bi-linear form a(u, v) over a Hilbert space W is both

bounded and coercive, then the variational equation

a(u, v) =

∫
Ω

f · vdx ∀v ∈ W, (2.55)

has a unique solution u ∈ W , for all f ∈ W ∗.

Variational form: IVPs

Recall the differential equation used in the model IVP (1.1) is

u̇ = f, t ∈ (0, T ], (2.56)
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where u = u(t) and f = f(u, t;w) are vector functions. Since this is a first order

differential equation, we do not perform any integration by parts. The variational form

of (2.56) is: Find u ∈ (H1([0, T ]))d such that∫ T

0

u̇ · vdt =
∫ T

0

f · vdt, ∀v ∈
(
L2[0, T ]

)d
. (2.57)

Variational form: BVPs

The differential equation from the model BVP (1.4) is

Du = f, x ∈ Ω, (2.58)

where D is a differential operator of arbitrary order p. Let W q be a Hilbert space that

allows derivatives of up to order q. The weak form of (2.58) is: Find u ∈ W q such that∫
Ω

D1u · D2vdx =

∫
Ω

f · vdx, ∀v ∈ W p−q. (2.59)

The operators D1,D2 are linear differential operators, such that D∗
2D1u = Du. The

operator D∗
2 is the formal adjoint of D2 which satisfies the property (2.48). The dif-

ferential operator D1 has derivatives up to order q which may be of lower order than

D.

Variational form: IBVPs

The differential equation from the model IBVP (1.6) is

u̇+Du = f, x ∈ Ω, t ∈ (0, T ]. (2.60)

Before presenting the weak form of (2.60), we must define an appropriate solution space

over the space-time domain Ω×(0, T ]. Given a Hilbert spaceW over Ω, let L2(0, T ;W )

denote the space of functions u(x, t) such that for every fixed value of t = t, we have
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u(x) = u(x, t) ∈ W . Now, the variational form of (2.60) is: Find u ∈ L2(0, T ;W q) such

that ∫
Ω

u̇ · vdx+
∫
Ω

D1u · D2vdx =

∫
Ω

f · vdx, ∀v ∈ W p−q ∀t ∈ (0, T ]. (2.61)

The operators D1,D2 are similar to those in (2.59).

3.2 Continuous Galerkin Methods

Continuous Galerkin finite element methods are constructed using the standard con-

tinuous Lagrangian finite element spaces. In this section we describe the continuous

Galerkin methods for the three model equations (1.1), (1.4), and (1.6). To define the

methods, we first define the Lagrange spaces which act as our solution spaces. The

spaces for IVPs and BVPs are similar while the spaces for IBVPs require a different

formulation to deal with the separated time and space domains.

Galerkin Methods: IVPs

We first define the Lagrange space over the time domain [0, T ]. Let Tk be a partition of

[0, T ] into Nt sub-intervals with endpoints {t0, t1, . . . , tNt} such that tn+1 − tn ≤ k for

n = 0, 1, . . . , Nt − 1. The degree q continuous Lagrange finite element space is defined

as

Pq
k =

{
v ∈ C([0, T ]) : ∀(tn, tn+1) ∈ Tk, v|(tn,tn+1)

∈ Pq(tn, tn+1)
}
, (2.62)

where Pq(tn, tn+1) is the space of polynomials of degree at most q defined on the element

(tn, tn+1). The continuous Galerkin finite element method of degree q, denoted cG(q),

for solving (1.1) is defined interval-wise by: Find U ∈ Pq
k such that the restriction of U

to any sub-interval (tn, tn+1) ∈ Tk satisfies∫ tn+1

tn

U̇(t) · v(t) dt =
∫ tn+1

tn

f(U, t) · v(t)dt, ∀v ∈ Pq−1(tn, tn+1), (2.63)

for n = 0, 1, 2, ..., Nt − 1.
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Galerkin Methods: BVPs

The Lagrange space over the spatial domain Ω is similar to Pq
k . Let Th be a simplicial

decomposition of the spatial domain Ω, where h denotes the maximum diameter of the

elements of Th. Specifically,
⋃

τ∈Th
τ = Ω and the intersection of any two elements is

either a common edge, a node, or is empty. The degree q continuous Lagrange finite

element space is then defined as

Pq
h = {v ∈ C(Ω) : ∀τ ∈ Th, v|τ ∈ Pq(τ)} , (2.64)

The degree q continuous Galerkin finite element method, with respect to Th, for the

PDE (1.4) is: Find U ∈ Pq
h such that∫

Ω

D1U · D2vdx =

∫
Ω

f · vdx, ∀v ∈ Pq
h. (2.65)

Galerkin Methods: IBVPs

Finally, we define the Lagrange space of the space-time domain Ω × [0, T ]. We use

the spatial decomposition Th and the temporal partition Tk to define space-time slabs

over which we form the Galerkin method. The space-time slabs with respect to Th

and Tk are {sn = Th × (tn, tn+1)}Nt−1
n=0 , where (tn, tn+1) are the sub-intervals of Tk. For

n = 0, . . . , Nt−1, let {ln,j}q2j=0 be the q2+1 Lagrange basis polynomials of degree q2 over

the time interval (tn, tn+1). The Lagrange space over the space-time domain Ω× [0, T ]

is defined over each space-time slab sn as

P q1,q2
n =

{
v : v(x, t) =

q1∑
j=0

ln,j(t)wj(x), where wj(x) ∈ Pq1
h , (x, t) ∈ sn

}
. (2.66)

For any fixed time t, functions in P q1,q2
n are piece-wise polynomials of degree q1 in

space, with respect to Th. Similarly, for fixed spatial coordinate x, functions in P q1,q2
n

are piece-wise polynomials of degree q2 in time, with respect to Tk.
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The continuous Galerkin finite element method of degree q1 in space and q2 in time,

with respect to the spatial decomposition Th and the temporal decomposition Tk is: Find

U ∈ C(Ω × [0, T ]) such that its restriction to any space-time slab sn is U |sn ∈ P q1,q2
n

and satisfies∫ tn+1

tn

[∫
Ω

U̇ · vdx+
∫
Ω

D1U · D2vdx

]
dt =

∫ tn+1

tn

∫
Ω

f ·vdxdt, ∀v ∈ P q1,q2−1
n , (2.67)

for n = 0, 1, . . . , Nt − 1.

3.3 Other methods nodally equivalent to Galerkin methods

We show how two finite difference methods are identified with certain Galerkin methods.

In particular, the Backward Euler method can be identified with the discontinuous

Galerkin method of order zero and the Crank-Nicolson method can be identified with the

continuous Galerkin method of order one. We provide the work in the one-dimensional

case, but this identification still holds in higher-dimensions.

Backward Euler

Given an interval [tn, tn+1] the Backward Euler finite difference method is defined by

the equation

u(tn+1)− u(tn) = (tn+1 − tn)f(u(tn+1), tn+1). (2.68)

Theorem 2. Numerical solutions obtained via the Backward Euler scheme are nodally

equivalent to solutions obtained using a dG(0) finite element method in which the inte-

grals are evaluated with the right-hand rectangle rule.

Proof. The dG(0) formulation over a sub-interval (tn, tn+1), with the constant test

function v(t) = 1 is∫ tn+1

tn

u̇ dt =

∫ tn+1

tn

f(u, t) dt. (2.69)
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Where, by the fundamental theorem of calculus,∫ tn+1

tn

u̇ dt = u(tn+1)− u(tn). (2.70)

Using the right-hand rectangle rule, we obtain∫ tn+1

tn

f(u, t) dt ≈ (tn+1 − tn)f(u(tn+1), tn+1). (2.71)

Substituting (2.70) and (2.71) into (2.69) results in the Backward Euler scheme.

Crank-Nicolson

Given an interval [tn, tn+1] the Crank-Nicolson finite difference method is defined by

the equation

u(tn+1)− u(tn) =
tn+1 − tn

2
(f(u(tn+1), tn+1) + f(u(tn), tn)). (2.72)

Theorem 3. Numerical solutions obtained via the Crank-Nicolson finite difference

scheme are nodally equivalent to solutions obtained using a cG(1) finite element method

in which the integrals are evaluated with the trapezoidal rule.

Proof. The cG(1) formulation over a sub-interval (tn, tn+1), with the constant test func-

tion v(t) = 1 is∫ tn+1

tn

u̇ dt =

∫ tn+1

tn

f(u, t) dt. (2.73)

Where, by the fundamental theorem of calculus,∫ tn+1

tn

u̇ dt = u(tn+1)− u(tn). (2.74)

Using the trapezoidal quadrature rule, we obtain∫ tn+1

tn

f(u, t) dt ≈ tn+1 − tn
2

(f(u(tn+1), tn+1) + f(u(tn), tn)). (2.75)

Substituting (2.74) and (2.75) into (2.73) results in the Crank-Nicolson scheme.
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Many other numerical schemes have been shown to be identifiable with a Galerkin

method. This includes the Lax-Wendroff finite difference method, Picard Iteration, and

many implicit-explicit (IMEX) schemes [27,29,30,35].

4 Review of Classical a Posteriori Analysis

We present classical adjoint-based error analysis for standard QoIs. Recall that a “stan-

dard QoI” is one that can be represented, or nicely approximated by, a linear functional

of the solution to the differential equation. Classical adjoint-based analysis provides

representations of the error in a standard QoI and also details the necessary adjoint

problems in order to accurately estimate the error representations.

Throughout this section, let u be a solution to a differential equation and U be

a numerically computed solution. The particular differential equation will be obvious

from context. Since a standard QoI can be represented as a bounded linear functional

of the solution to the differential equation, by the Riesz Representation Theorem, these

QoI can be generically written as

Q(u) = (ψ, u) , (2.76)

where ψ is some weight function and (u, v) is an inner-product. Specific forms of the

standard QoI, with explicitly chosen inner-product, are detailed in this section along

with error representations and necessary adjoint problems. The error representations

and adjoint problems are different for the three differential equations (1.1), (1.4), and

(1.6). As such, this section is divided into discussions detailing the analysis for each

differential equation.

While the main goal of this thesis is to develop UQ for differential equations (1.1),

(1.4), and (1.6) (and their QoIs) that depend on a random parameter w, the error analy-

sis is applied only to solutions involving an individual sample of the random parameter.

As such, the error analysis need not be modified to be useful for our UQ. For clarity of
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notation, dependence on the random parameter w is omitted in this section. Numerical

experiments demonstrating the accuracy of the error estimates are presented throughout

the section. In these experiments, the accuracy of an error estimate, η ≈ Q(u)−Q(U),

is measured by the effectivity ratio

ρeff =
η

Q(u)−Q(U)
. (2.77)

Ideally, η is close to the true error Q(u) − Q(U) and thus the effectivity ratio ρeff is

close to one.

4.1 Classical Analysis: IVPs

For IVPs involving ODEs of form (1.1) we discuss two types of standard QoI. In this

section we first define the standard QoIs for IVPs involving ODEs. Then we derive the

representations of the error in a computed QoI and the corresponding adjoint problems.

The error representations also provide a way to decompose the error into contributions

from sub-intervals of the domain.

IVPs: Standard QoI Type 1

The first type of QoI for our IVPs represents a linear-combination of the components

of the solution u evaluated at a particular time value t = t⋆:

Q(u) = ψ · u(t⋆), (2.78)

for some ψ ∈ Rd, with the Euclidean inner-product (a.k.a dot-product). For example,

the QoI (2.78) could represent the value of the first component of u evaluated at the

final time t⋆ = T . In this example, ψ ∈ Rd is ψ = (1, 0, . . . , 0)⊤ and the QoI is

Q(u) = ψ · u(t⋆) = u1(T ). The error in a computed QoI, Q(U), of form (2.78) is given

in Theorem 4.
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Theorem 4 (Error representation of QoI type 1 for IVPs). Given a finite element

solution U(t) of (1.1) and ψ ∈ Rd, let e(t) = u(t)−U(t). The error ψ · e(t⋆) in the QoI

(2.78) at time t⋆ ∈ (0, T ] is represented as

ψ · e(t⋆) = ψ · u(t⋆)− ψ · U(t⋆) =
∫ t⋆

0

ϕ · [f(U, t)− U̇ ]dt, (2.79)

where ϕ is the solution to the adjoint equation−ϕ̇ = fu,U(t)
⊤
ϕ, t ∈ [0, t⋆),

ϕ(t⋆) = ψ,
(2.80)

with

fu,U(t) =

∫ 1

0

∇zf(z, t)ds (2.81)

and z = su+ (1− s)U .

The function fu,U(t) has the property that fu,U(t)e(t) = f(u, t) − f(U, t). Since

fu,U(t) requires the true solution u, in practice it is approximated by

fu,U(t) ≈ ∇uf(U, t). (2.82)

Proof. Take the adjoint equation (2.80), multiply by the error function e(t), and inte-

grate over the interval (0, t⋆),∫ t⋆

0

−ϕ̇(t) · e(t)dt =
∫ t⋆

0

fu,U(t)
⊤
ϕ · e(t)dt. (2.83)

Using basic linear algebra and the definition of fu,U(t), the right side of (2.83) becomes∫ t⋆

0

fu,U(t)
⊤
ϕ · e(t)dt =

∫ t⋆

0

ϕ · fu,U(t)e(t)dt =
∫ t⋆

0

ϕ · [f(u, t)− f(U, t)] dt. (2.84)

With integration by parts, the left side of (2.83) is∫ t⋆

0

−ϕ̇(t) · e(t)dt =
∫ t⋆

0

ϕ(t) · ė(t)dt− ϕ(t⋆) · e(t⋆) + ϕ(0) · e(0). (2.85)
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From the initial condition of the IVP (1.1), u(0) = u0 = U(0), so e(0) = 0. From

the condition for the adjoint IVP (2.80), ϕ(t⋆) = ψ. Putting these into (2.83) and

rearranging gives

ψ · e(t⋆) =
∫ t⋆

0

ϕ(t) · ė(t)dt−
∫ t⋆

0

ϕ · [f(u, t)− f(U, t)] dt, (2.86)

=

∫ t⋆

0

ϕ · [ė(t)− f(u, t) + f(U, t)] dt, (2.87)

=

∫ t⋆

0

ϕ ·
[
−U̇(t) + f(U, t)

]
dt, (2.88)

where the final line comes from the fact that e(t) = u(t)− U(t) and u̇(t) = f(u, t).

Taking advantage of the linearity of the integral in (2.79) gives a decomposition of

the error. If the domain of integration (0, t⋆) is partitioned into N⋆ sub-intervals with

endpoints {t0, t1, . . . , tN⋆}, a decomposition of the error (2.79) is

e(t⋆) · ψ =
N⋆−1∑
i=0

∫ ti+1

ti

[
f · ϕ− U̇ · ϕ

]
dt =

N⋆−1∑
i=0

e(ti,ti+1), (2.89)

with error contributions, e(ti,ti+1), given by the integrals

e(ti,ti+1) =

∫ ti+1

ti

[
f · ϕ− U̇ · ϕ

]
dt, for i = 0, 1, . . . , N⋆ − 1. (2.90)

The error contributions allow us to see how the error behaves over the time-interval

(0, t⋆) and is used in the adaptive refinement methods presented later in §4.2.1.

In practice, the adjoint solution ϕ must be approximated. The adjoint problem

is always linear and can be accurately approximated with an appropriate Galerkin

method. Often, the adjoint problem will either be solved over the same grid as the

IVP using a higher order Galerkin method, or the adjoint will be solved with the same

Galerkin method over a finer mesh. This is done so that any error associated to the

adjoint solution is negligible compared to other sources of error. In the case of a non-

linear IVP, we also use the approximation fu,U ≈ ∇uf(U, t). The accuracy of this

approximation correlates to the accuracy of the numerical solution U . We provide two
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numerical experiments (one linear and one non-linear) to demonstrate the accuracy of

the error representation (2.79).

Numerical Experiment 1: IVP with standard QoI Type 1

Consider the damped harmonic oscillator

ω̈ = − k

m
ω − c

m
ω̇ +

F0

m
cos(γt+ θd), t ∈ (0, 3], ω(0) = 5, ω̇(0) = 0. (2.91)

with

k = 50, m = 0.25, c = 1, F0 = 50, θd = 0, γ = 10. (2.92)

Rewriting as a system of first-order ODEs, u̇+ Au = h(t), givesu̇1(t)
u̇2(t)

+

 0 −1

200 4

u1(t)
u2(t)

 =

 0

200 cos(10t)

 . (2.93)

The type 1 QoI (2.78) represents the position of the oscillator at the final time t = 3:

Q(u) = ψ · u(3) = (1, 0)⊤ · u(3) = u1(3). (2.94)

We obtain a numerical solution U(t) using the cG(1) method for IVPs over a uniform

partition with Nt = 30 sub-intervals. We also obtain a highly-accurate reference solu-

tion, using the cG(3) method for IVPs over a uniform partition with 600 sub-intervals,

in order to check the accuracy of the error estimate.

The adjoint-based error representation given by (2.79), requiring an adjoint problem

in the form (2.80). Since the equation of the harmonic oscillator is linear, the function

on the RHS of the adjoint problem is the constant matrix f(u, U) = A. Thus the

adjoint problem we need is−ϕ̇ = −A⊤ϕ, t ∈ [0, t⋆),

ϕ(t⋆) = (1, 0)⊤.
(2.95)
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The adjoint problem is solved, backwards in time starting at t = t⋆, using the cG(3)

method for IVPs over a uniform partition with 30 sub-intervals. Note that this is the

same partition that we used to obtain the numerical solution U , but the degree is higher.

The computed QoI Q(U), reference QoI Q(u), error estimate η from (2.79), reference

error Q(u) − Q(U), and effectivity ratio ρeff are all shown in Table 2.1. We see that

the effectivity ratio is very close to one, indicating an accurate error estimate. The first

component of the numerical solution U1(t) and the computed QoI Q(U) are shown in

figure 2.1a.

Q(U) Q(u) η Q(u)−Q(U) ρeff
-0.758799 -0.418642 0.340109 0.340157 0.99985

Table 2.1: Results for Numerical example 1 of an IVP with QoI type 1.

(a) Numerical solution and standard QoI
for Harmonic oscillator in §2.4.1.

(b) Numerical solution and standard QoI
for Harmonic oscillator in §2.4.1.

Figure 2.1

Numerical Experiment 2: IVP with standard QoI Type 1

Next we consider the nonlinear IVP

u̇(t) = sin(2πu(t)), t ∈ (0, 1], u(0) =
1

4
.
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The analytic solution to this problem is

u(t) =
1

π
arctan(e2πt).

The QoI chosen here represents the value of the solution at a time, t⋆ = 0.75,

part-way through the domain: Q(u) = ψu(0.75) = (1)u(0.75) = u(0.75). A numerical

solution is obtained using the Crank-Nicolson method (which is nodally equivalent to

the cG(1) method with trapezoid rule) over a partition with Nt = 10 sub-intervals. To

create the adjoint problem, we approximate the function f in (2.80) by the derivative

f(u, U) ≈ ∂f
∂u
(U) = 2π cos(2πU(t)). The condition for the adjoint is posed at t = 0.75,

and the problem is solved backwards in time using the cG(3) method over a partition

with 10 sub-intervals. Results are presented in Table 2.2. The effectivity ratio is again

close to one, meaning the estimate is accurate. For this nonlinear problem, the estimate

is slightly less accurate than the previous linear example due to the approximation of

f(u, U). The first component of the numerical solution U1(t) and the computed QoI

Q(U) are shown in figure 2.1b.

Q(U) Q(u) η Q(u)−Q(U) ρeff
0.497259 0.497140 -0.000118 -0.000119 0.9893

Table 2.2: Results for Numerical example 2 of an IVP with QoI type 1.

IVPs: Standard QoI Type 2

The second type of QoI represents a weighted integral of the solution u, often over a

sub-interval inside the domain:

Q(u) =

∫ T

0

ψ(t) · u(t)dt, (2.96)

for some ψ ∈ Rd with the L2([0, T ]) inner-product. For example, if d = 1 the QoI (2.96)

could represent the average value of the solution over an internal sub-interval (tα, tβ)

and the weight function ψ(t) would equal 1 over the sub-interval and 0 everywhere else.

The error in an approximated QoI, Q(U), of form (2.96) is given in Theorem 5.
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Theorem 5 (Error representation of QoI type 2 for IVPs). Given a finite element

solution U(t) of (1.1) and ψ ∈ L2([0, T ])d, let e(t) = u(t) − U(t). The error
∫ T

0
ψ(t) ·

e(t)dt in the QoI (2.96) is represented as∫ T

0

ψ(t)·e(t)dt =
∫ T

0

ψ(t)·u(t)dt−
∫ T

0

ψ(t)·U(t)dt =
∫ T

0

ϕ·[f(U, t)−U̇(t)]dt, (2.97)

where ϕ is the solution to the adjoint equation−ϕ̇ = fu,U(t)
⊤
ϕ+ ψ(t), t ∈ [0, T ),

ϕ(T ) = 0.
(2.98)

The function fu,U(t) is the same as in Theorem 4. The error representation (2.97) is

nearly identical to the error representation for QoI type 1 (2.79) with the only changes

being the domain of integration and the associated adjoint problem. The proof of

Theorem 4 follows the same steps as the previous Theorem.

Proof. Take the adjoint equation (2.98), multiply by the error function e(t), and inte-

grate over the domain (0, T ):∫ T

0

−ϕ̇(t) · e(t)dt =
∫ T

0

fu,U(t)
⊤
ϕ · e(t)dt+

∫ T

0

ψ(t) · e(t)dt. (2.99)

Rearrange to isolate the term we are interested in and use integration by parts to get∫ T

0

ψ(t) · e(t)dt =
∫ T

0

ϕ(t) · ė(t)dt− ϕ(T ) · e(T ) + ϕ(0) · e(0)−
∫ T

0

ϕ(t) · fu,U(t)e(t)dt.

(2.100)

From the initial condition of the IVP (1.1), u(0) = u0 = U(0), so e(0) = 0. From

the condition for the adjoint IVP (2.98), ϕ(T ) = 0. Putting these into (2.100) and

expanding e(t) = u(t)− U(t) yields∫ T

0

ψ(t) · e(t)dt =
∫ T

0

ϕ(t) · (u̇(t)− U̇(t))dt−
∫ T

0

ϕ(t) · (f(u, t)− f(U, t))dt

=

∫ T

0

ϕ(t) · (f(U, t)− U̇(t))dt. (2.101)

where the cancellation to get the final line comes from the IVP.
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The error representation (2.97) can be decomposed in the exact same way as the

type 1 QoI for IVP. Again, let the domain of integration (0, T ) be partitioned into Nt

sub-intervals with endpoints {t0, t1, . . . , tNt}, a decomposition of the error (2.97) is∫ T

0

ψ(t) · e(t)dt =
Nt−1∑
i=0

∫ T

0

ϕ(t) · (f(U, t)− U̇(t))dt =
Nt−1∑
i=0

e(ti,ti+1), (2.102)

with error contributions, e(ti,ti+1), given by the integrals

e(ti,ti+1) =

∫ ti+1

ti

[
f · ϕ− U̇ · ϕ

]
dt, for i = 0, 1, . . . , Nt − 1. (2.103)

4.2 Classical Analysis: BVPs

The standard QoI for BVPs also represents a weighted integral of the solution u:

Q(u) =

∫
Ω

ψ(x) · u(x)dx, (2.104)

for some ψ(x) ∈ C(Ω) with compact support in Ω. This QoI often represents the

weighted average of the solution of a sub-domain inside of Ω. The error representation

for a computed QoI of form (2.104) is given in Theorem 6 and requires a numerical

solution to the weak form of the BVP (2.59).

Theorem 6 (Error representation of QoI for BVPs). Given a finite element solution

U(t) of (2.59) and ψ ∈ C(Ω) such that ψ(x) = 0 for x ∈ ∂Ω, let e(x) = u(x) − U(x).

The error
∫
Ω
ψ(x) · e(x)dx in the QoI (2.104) is represented as∫

Ω

ψ(x) · e(x)dx =

∫
Ω

([D1U(x) · D2ϕ(x)]− f(U, x) · ϕ(x)) dx, (2.105)

where ϕ(x) is the solution to the adjoint equationD∗ϕ = fu,U(x)
⊤
ϕ+ ψ(x), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω.
(2.106)

with

fu,U(x) =

∫ 1

0

∇zf(z, x)ds (2.107)

and z = su+ (1− s)U .
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The function fu,U(x) is the analog of (2.81) used in previous theorems. This function

has the property that fu,U(x)e(x) = f(u, x) − f(U, x). Since fu,U(x) requires the true

solution u, it is often approximated by

fu,U(x) ≈ ∇uf(U, x). (2.108)

The operator D∗ in (2.106) is the formal adjoint of D from the BVP (1.4). The two

operators D1 and D2 in (2.105) are such that∫
Ω

D1u · D2vdx =

∫
Ω

D∗
2D1u · vdx =

∫
Ω

Du · vdx, (2.109)

for any appropriate u and v. In this way we can write Du = D∗
2D1u where equality is

meant in the weak sense, i.e. in the sense of (2.109). Using the property of the adjoint

of a composition, we also have D∗ = D∗
1D2.

The proof of Theorem 6 is again similar to those of the previous error representa-

tions, this time utilizing the formal adjoint (which comes from integration by parts and

the Divergence Theorem). We also invoke the weak form (2.59) of the BVP rather than

the strong form.

Proof. Multiply the adjoint equation (2.106) by the error e(x) and integrate over the

domain Ω:∫
Ω

D∗ϕ(x) · e(x)dx =

∫
Ω

fu,U(x)
⊤
ϕ(x) · e(x)dx+

∫
Ω

ψ(x) · e(x)dx. (2.110)

Rearrange to isolate the desired term and using properties of formal adjoints we get∫
Ω

ψ(x) · e(x)dx = −
∫
Ω

D∗ϕ(x) · e(x)dx+
∫
Ω

fu,U(x)
⊤
ϕ(x) · e(x)dx, (2.111)

= −
∫
Ω

D2ϕ(x) · D1e(x)dx+

∫
Ω

ϕ(x) · fu,U(x)e(x)dx. (2.112)

Expand e(x) on the right, use the property (2.107), and apply the weak form (2.59).∫
Ω

ψ(x) · e(x)dx = −
∫
Ω

D2ϕ(x) · D1(u(x)− U(x))dx+

∫
Ω

ϕ(x) · (f(u, x)− f(U, x))dx,

=

∫
Ω

(D2ϕ(x) · D1U(x)− ϕ(x) · f(U, x)) dx.
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We take advantage of the linearity of the integral with respect to domain to decom-

pose the error. Let Th be a simplicial decomposition of the domain Ω. Then∫
Ω

ψ(x) · e(x)dx =

∫
Ω

(D2ϕ(x) · D1U(x)− ϕ(x) · f(U, x)) dx,

=
∑
τ∈T

∫
τ

(D2ϕ(x) · D1U(x)− ϕ(x) · f(U, x)) dx =
∑
τ∈T

eτ , (2.113)

where the error contribution, eτ , from a particular simplex τ ∈ Th is given by the

integral

eτ =

∫
τ

(D2ϕ(x) · D1U(x)− ϕ(x) · f(U, x)) dx. (2.114)

The error decomposition will be used to guide the adaptive refinement methods dis-

cussed later in §4.2.1. Next we provide a numerical experiment to show the accuracy of

the error representation (2.105) when the adjoint solution is also numerically approxi-

mated.

Numerical Experiment: BVP with standard QoI

Consider the stationary advection-diffusion equation∇2u(x) + b · ∇u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(2.115)

where b = (300, 0)⊤ and Ω = (0, 3)× (0, 1). The source f , which is non-zero only over

an interior region of the domain, is

f =

10000(x1 − 1)(x1 − 2.5)(x2 − 1
6
)(x2 − 5

6
) 1 ≤ x1 ≤ 2.5, 1

6
≤ x2 ≤ 5

6
,

0 else.
(2.116)

The standard QoI of form (2.104) is the integral of the solution over the rectangle

(1, 1.5)× (1/3, 2/3):

Q(u) =

∫
Ω

ψ(x) ·u(x)dx, where ψ(x) =

1, x ∈ (1, 1.5)× (1
3
, 2
3
)

0, else.
(2.117)
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Figure 2.2a provides a visualization of the supports of f and ψ relative to the domain

Ω. For the numerical experiment, we solve the BVP (2.115) using the continuous

(a) Illustration of overlapping supports of func-
tions from example in §2.4.2. The domain is Ω =
(0, 1)× (0, 3) outlined in black, supp(f) = (1, 2.5)×
(1/6, 5/6) in grey, and supp(ψ) = (1, 1.5)×(1/3, 2/3)
marked with diagonal lines.

(b) Mesh used for numerical solution in §2.4.2.

Figure 2.2

Galerkin method with piece-wise linear polynomials. The mesh used for the numerical

solution is created by first making a uniform 18-by-18 rectangular grid over the domain

Ω = (0, 3) × (0, 1). Then each sub-region is bisected diagonally from top right corner

to bottom left corner to create a mesh with 648 elements; see Figure 2.2b. A reference

solution is obtained using the same numerical method but over a much finer mesh

with 2880000 elements, created in the same fashion starting with a 1200-by-1200 grid.

The adjoint problem is solved over the same mesh as the numerical solution but using

fourth-degree piece-wise polynomials. The computed QoI Q(U), reference QoI Q(u),

error estimate η from (2.105), reference error Q(u) − Q(U), and effectivity ratio ρeff

are all shown in Table 2.3. We see that the effectivity ratio is close to one, indicating
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an accurate error estimate.

Q(U) Q(u) η Q(u)−Q(U) ρeff
-0.27790 -0.27863 -0.00072 -0.00073 0.988

Table 2.3: Results for numerical experiment of a BVP with standard QoI.

4.3 Classical Analysis: IBVPs

For IBVPs of form (1.6) we analyze one type of standard QoI that represents a weighted

average (over space) of the solution u evaluated at a specific time t⋆. To simplify

notation, let (u(t⋆), v(t⋆)) =
∫
Ω
u(x, t⋆) · v(x, t⋆)dx denote the L2(Ω) inner-product of

the two functions u, v evaluated at a specific time-value t⋆, where we have suppressed

the dependence on x. The standard QoI is then written as

Q(u) =

∫
Ω

ψ(x) · u(x, t⋆)dx = (ψ, u(t⋆)) , (2.118)

for some ψ ∈ H1
0 (Ω) with the L2(Ω) inner-product. The error representation for an

approximate QoI of form (2.118) is given in Theorem 7. Again, for this Theorem, we

only require a numerical solution to the weak form of the IBVP (2.61).

Theorem 7. Given a numerical solution U(x, t) to (2.61) and data ψ(x), for any

t⋆ ∈ (0, T ] the error (ψ, e(t⋆)) is given by

(ψ, e(t⋆)) = (ϕ(0), e(0)) +

∫ t⋆

0

(ϕ(t), f(U, t)− Ut(t))− (D2ϕ(t),D1U(t)) dt (2.119)

where ϕ(x, t) is the solution of the adjoint problem


−ϕ̇(x, t) = −D∗ϕ(x, t) + fu,U(x, t)

⊤
ϕ(x, t), x ∈ Ω, t ∈ [0, t⋆),

ϕ(x, t) = 0, x ∈ ∂Ω, t ∈ [0, t⋆),

ϕ(x, t⋆) = ψ(x), x ∈ Ω.

(2.120)
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The operator fu,U
⊤
(x, t) is the adjoint of the linear operator

fu,U(x, t) =

∫ 1

0

∇zf(z, x, t)ds, (2.121)

and z = su+ (1− s)U .

The linear differential operator D∗ is the formal adjoint operator of a linear operator

D in (1.6). Again, the function fu,U(x, t) is chosen because it has the property

fu,U(x, t)e(x, t) = f(u, x, t)− f(U, x, t). (2.122)

Note again that the adjoint problem is solved backwards in time with the initial condi-

tion given at t = t⋆.

Proof. Multiply the adjoint equation (2.120) by the error e(x, t) = u(x, t)−U(x, t), and

integrate over the space-time domain Ω× [0, t⋆] to give

0 =

∫ t⋆

0

(
ϕ̇(t), e(t)

)
dt−

∫ t⋆

0

(D∗ϕ(t), e(t)) dt+

∫ t⋆

0

(
fu,U(t)

⊤
ϕ(t), e(t)

)
dt. (2.123)

Looking at each term in (2.123) individually, integrate the first term by parts in time

and enforce the initial condition ϕ(x, t⋆) = ψ(x),∫ t⋆

0

(
ϕ̇(t), e(t)

)
dt = (ψ, e(t⋆))− (ϕ(0), e(0))−

∫ t⋆

0

(ϕ(t), ė(t)) dt. (2.124)

From (2.109), The second term of (2.123) becomes∫ t⋆

0

(D∗ϕ(t), e(t)) dt =

∫ t⋆

0

(D2ϕ(t),D1e(t)) dt. (2.125)

Similarly, using the property of the adjoint (2.48) and the property (2.122)∫ t⋆

0

(
fu,U(t)

⊤
ϕ(t), e(t)

)
dt =

∫ t⋆

0

(
ϕ(t), fu,U(t)e(t)

)
dt,

=

∫ t⋆

0

(ϕ(t), f(u, t)− f(U, t)) dt. (2.126)

Combining (2.123), (2.125), and (2.126) yields,
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(ψ, e(t⋆)) = (ϕ(0), e(0)) +

∫ t⋆

0

(ϕ(t), ė(t)) dt,

+

∫ t⋆

0

(D2ϕ(t),D1e(t)) dt−
∫ t⋆

0

(ϕ(t), f(u, t)− f(U, t)) dt.

Recalling that e(x, t) = u(x, t)−U(x, t) and applying the weak form of the IBVP (2.61)

gives the error representation

(ψ, e(t⋆)) = (ϕ(0), e(0)) +

∫ t⋆

0

(ϕ(t),−Ut(t)) dt,

+

∫ t⋆

0

(D2ϕ(t),−D1U(t)) dt−
∫ t⋆

0

(ϕ(t),−f(U, t)) dt.

Once again, in practice, since operator fu,U(x, t) requires the true solution to (1.6),

it is approximated by

fu,U(x, t) ≈ ∇uf(U, x, t). (2.127)

With this, the right side of the adjoint equation (2.120) is approximated by

fu,U(x, t)
⊤
ϕ(x, t) ≈ (∇uf(U, x, t))

⊤ ϕ(x, t). (2.128)

Note that for the IBVP, we do not say that e(x, 0) = u(x, 0) − U(x, 0) is zero.

This is due to the fact that the initial condition of the numerical solution U(x, 0) is the

projection of the true initial condition u(x, 0) onto the solution space. This projection

introduces a non-zero error that must be accounted for.

We decompose the error representation (2.119) over the time domain in a similar

fashion as (2.89). Let the domain of integration (0, t⋆) be partitioned into N⋆ sub-
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intervals with endpoints {t0, t1, . . . , tN⋆}. Then we decompose the error (2.119) as

(ψ, e(t⋆)) = (ϕ(0), e(0)) +
N⋆−1∑
i=0

∫ ti+1

ti

(ϕ(t), f(U, t)− Ut(t))− (D2ϕ(t),D1U(t)) dt,

(2.129)

= (ϕ(0), e(0)) +
N⋆−1∑
i=0

e(ti,ti+1). (2.130)

Where the error contributions, e(ti,ti+1), are given by the integrals

e(ti,ti+1) =

∫ ti+1

ti

(ϕ(t), f(U, t)− Ut(t))−(D2ϕ(t),D1U(t)) dt, for i = 0, 1, . . . , N⋆−1.

(2.131)

Numerical Experiment: IBVP with standard QoI

Consider the collisionless Vlasov equation with forcing term

u̇(x, p, t) + p∇x · u(x, p, t) = f(x, p) Ωx × Ωp × (0, 1], (2.132)

u(x, p, 0) = u0(x, p) Ωx × Ωp (2.133)

where x is the position of the particle, p is the momentum , and the solution u(x, p, t)

is the density. We use the domains Ωx = (0, 8) = Ωp. The initial condition is given by

the bump-function

u0(x, p) =

200(x− 1.5)2(x− 3)2(p− 1.5)2(p− 3)2, 1.5 < x, p < 3,

0, else.
(2.134)

When solving (2.132) we treat the variables x and p as the “spatial” variable in the

order (x, p) and the “spatial domain” is Ω = Ωx ×Ωp. Let the right-hand side function

be

f =
3√
2π
e

−9(p−3.5)2

2 +
3√
2π
e

−9(p−4.5)2

2 . (2.135)
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The standard QoI of form (2.118) is the weighted integral

Q(u) =

∫
Ω

ψ(x, p) · u(x, p, 0.8)dΩ, (2.136)

with weight function

ψ(x, p) =

200(x− 1.5)2(x− 3)2(p− 1.5)2(p− 3)2, 1.5 < x, p < 3,

0, else.
(2.137)

A numerical solution is obtained using the continuous Galerkin method with linear

polynomials over Ω and the Crank-Nicolson method to take steps in time. The spatial

mesh is created by making a uniform 32-by-32 grid over Ω and bisecting each sub-

region diagonally from top right to bottom left, giving a mesh with 2048 elements. The

temporal domain (0, 1] is partitioned into 10 sub-intervals of equal length. A reference

solution is obtained using quadratic polynomials over Ω using a mesh that is created

from a 128-by-128 grid. The reference solution also uses Crank-Nicolson for the time

steps using 100 sub-intervals. The adjoint problem is solved using quadratic polynomials

in space with a mesh created from a 128-by-128 grid and Crank-Nicolson steps in time

with 40 sub-intervals. The computed QoI Q(U), reference QoI Q(u), error estimate η

from (2.119), reference error Q(u) − Q(U), and effectivity ratio ρeff are all shown in

Table 2.4. We see that the effectivity ratio is close to one, indicating an accurate error

estimate.

Q(U) Q(u) η Q(u)−Q(U) ρeff
0.16095 -0.13248 -0.29636 -0.29343 1.009

Table 2.4: Results for numerical experiment of a IBVP with standard QoI.
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Chapter 3

Adjoint-Based a Posteriori Error

Analysis for NSQoI

This chapter presents two novel methods of adjoint-based a posteriori error analysis

for a QoI that is not covered in previous work. We begin by introducing a rigorous

definition of a QoI that represents the time at which a specified event occurs. This

QoI is non-standard as it cannot be represented by a linear functional of the solution,

nor can it be trivially linearized. A priori convergence results for the non-standard

QoI are derived with a numerical experiment showcasing the convergence rate. We

then derive two adjoint-based a posteriori methods to accurately estimate the error

in our non-standard QoI. The first method relies on multiply applications of Taylor’s

Theorem with remainder and the weak-form of the differential equation. The second

method applies root-finding methods to a highly accurate “corrected” solution of the

differential equation which allows us to compute the error in the computed QoI. Both

methods take advantage of the classical analysis presented in §2.4. Numerical examples

showing the accuracy and limitations of the error estimates of this non-standard QoI

are provided at the end of this chapter.
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1 Analysis of the Non-standard QoI

This section provides details and analysis of our non-standard QoI. We begin by rig-

orously defining the QoI that represents that time at which a specified event occurs.

We then give an a priori convergence result for a numerically computed non-standard

QoI based on the convergence rate of the numerical method used. Finally, we derive

the adjoint-based a posteriori error analysis of this non-standard QoI. We take two

approaches to the a posteriori analysis. The first method holds the same spirit as the

classical analysis, providing an error representation that depends on solutions to ad-

joint problems. The second method uses the classical results along with root-finding

methods to obtain a corrected QoI which allows us to compute the error. Since this

non-standard QoI requires an explicit dependence on time, it is only applicable to the

two time-dependent differential equations: IVPs (1.1) and IBVPs (1.6).

1.1 Defining the Non-standard QoI

Let G(u; t) be a linear functional of u, which is implicitly dependent on t through u,

but not implicitly dependent on x (i.e. if u = u(x, t) the x will be integrated out in G).

Let R be a chosen threshold value and assume that there is at least one time-value t⋆⋆

during the interval (0, T ] for which we have G(u; (t⋆⋆)) = R. Define the time H(u, t̂)

for fixed G and R as

H(u, t̂) = min arg
t∈(t̂,T ]

(G(u; t) = R). (3.1)

The input t̂ is chosen to obtain different occurrences of the event G(u; t) = R. Notice

that we are finding the minimum t such that G(u; t) = R over the sub-interval (t̂, T ].

Thus, the t̂ we choose must be before the event we are interested in but no earlier than

the previous occurrence of G(u; t) = R. To illustrate, if t̂ = 0, then H(u, 0) is the very

first time on the interval (0,T] that the functional G(u; t) achieves the threshold value

R. Similarly, to obtain the second time that the functional achieves the threshold value,
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we can choose any t̂ between the first and second occurrence. More precisely, H(u, t̂)

will give the second occurrence of G(u; t) = R over (0, T ] if H(u, 0) ≤ t̂ < H(u,H(u, 0)).

Since the left inequality allows equality, a sequence of nested functions can be used to

obtain any occurrence of the event.

Lemma 1. Assume there are at least J occurrences of the event G(u; t) = R over the

time interval (0, T ]. Let
{
t̂i
}J
i=1

be a sequence defined as

t̂1 = 0, (3.2)

t̂i = H(u, ti−1), for i = 2, 3, . . . , J. (3.3)

Then setting t̂ = t̂i in (3.1) will obtain the i-th occurrence of the event G(u; t) = R, for

i = 1, 2, . . . , J .

Finally, the non-standard quantity of interest Q(u) for fixed t̂ is defined as

Q(u) = H(u, t̂). (3.4)

The only difference between applying this QoI to the differential equations is the form

of the functional G(u; t). This is described in the following sections.

NSQoI for IVPs

For IVPs (1.1) the functional G(u; t) in (3.1) takes the form

G(u; t) = ψ · u(t). (3.5)

In terms of our analysis, this can be thought of as a standard QoI for IVPs of form (2.78)

without plugging in a specific time value. The non-standard QoI (3.4) then represents

the time at which a linear combination of the components of the solution achieves a

threshold value.
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NSQoI for IBVPs

For IBVPs (1.6) the functional G(u; t) in (3.1) takes the form

G(u; t) =

∫
Ω

ψ(x) · u(x, t)dx = (ψ, u(t)) . (3.6)

This can be thought of as a standard QoI for IBVPs of form (2.118) without plugging

in a specific time value. The non-standard QoI (3.4) then represents the time at which

a weighted integral of the solution achieves a threshold value.

1.2 A Priori Analysis of NSQoI

This section derives the a priori convergence results for a numerically computed non-

standard QoI (3.4), assuming a certain convergence rate of the numerical solution itself.

The results apply to both of our time-dependent differential equations (1.1) and (1.6).

As such, we keep the notation general enough to cover both cases and point out any

subtleties.

Let U be a numerical solution to one of our time-dependent differential equations

and assume that

∥u(t)− U(t)∥ ≤ Chp, (3.7)

for all t ∈ [0, T ], for some constant C > 0, and where h denotes the temporal step-size

used to compute the numerical solution. The norm used in (3.7) depends on the context

of the differential equation. For IVPs (1.1) this will be the standard Euclidean norm

over Rd. For IBVPs (1.6) the L2(Ω) norm is used and the dependence on x is omitted

in (3.7).

For a given value of the threshold R define the functional G(u; t) either as (3.5) or

(3.6), depending on the type of differential equation. For ease of notation, let tt = Q(u)

be the true non-standard QoI (3.4) and let tc = Q(U) be the computed non-standard
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QoI. Here, we assume that G satisfies the Lipschitz condition in u,

|G(u1; t)−G(u2; t)| ≤ K∥u1(t)− u2(t)∥, (3.8)

for some constant K > 0. Define the true error in the QoI, eQ, to be

eQ = tt − tc. (3.9)

Theorem 8 (Convergence of the non-standard QoI). Assume there is a numerical ap-

proximation to the solution, U , of either (1.1) (1.6) satisfying (3.7), and the functional

G(u; t) is continuously differentiable with respect to t in a neighborhood, B, which con-

tains both the true QoI, tt, as well as its numerical approximation, tc. Further assume

there exists an M > 0 such that∣∣∣∣dGdt (u; t)
∣∣∣∣ > M, (3.10)

for all t ∈ B. Then the error eQ in the computed QoI, defined by (3.9), satisfies the

bound,

eQ ≤ Ĉhp,

for some constant Ĉ which depends on M,C and K.

Proof. Given the true solution u(t) to the differential equation, we consider the func-

tional G as an explicit function of t, i.e.,

G(u; t) = G(u(t)) = G(t). (3.11)

Since G(u; t) is continuously differentiable in t, for t ∈ B, by the Inverse Function

Theorem (see [56]) we have t = t(G) for G in the image of B, and

dt

dG
(G(t)) =

1
dG
dt
(t(G))

. (3.12)

Applying the Mean-value Theorem (see [4]) we have, for some ξ between G(u; tt) and

G(u; tc),

tt − tc =
dt

dG
(ξ) [G(u; tt)−G(u; tc)] =

1
dG
dt
(t(ξ))

[G(u; tt)−G(u; tc)] . (3.13)
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Adding and subtracting the term G(U ; tc) and recalling that G(u; tt) = R = G(u; tc),

tt − tc =
1

dG
dt
(t(ξ))

[G(u; tt)−G(u; tc) +G(U ; tc)−G(U ; tc)] ,

=
1

dG
dt
(t(ξ))

[G(U ; tc)−G(u; tc)] .
(3.14)

Taking norms (absolute values for scalars), and using (3.10) and (3.8),

|tt − tc| =

∣∣∣∣∣ 1
dG
dt
(t(ξ))

∣∣∣∣∣ |G(U ; tc)−G(u; tc)| ≤
1

M
K ∥u(tc)− U(tc)∥ ≤ 1

M
KChp. (3.15)

Defining Ĉ := K C
M

gives the desired result.

We provide an example to illustrate the a priori results.

Numerical Experiment: NSQoI Convergence Rate

To illustrate the convergence results in Theorem 8, we consider the Lorenz system,

u̇1 = σ(u2 − u1),

u̇2 = ru1 − u2 − u1u3,

u̇3 = u1u2 − bu3,

 t ∈ (0, 3] with


u1(0) = 1,

u2(0) = 0,

u3(0) = 24,

(3.16)

and set σ = 10, r = 28, and b = 8
3
(see §4.1.1 for more details of this example). We

define the functional G(u; t) = u1(t) set the threshold value R = −10, and choose

t̂ = 0 to obtain the first occurrence of u1(t) = −10. Figure 3.1a illustrates an accurate

reference solution as well as the threshold value and the QoI. Figure 3.1b shows the

convergence rates for the error in the solution and the error in the non-standard QoI

when using the cG(1) method for computing the numerical solution. The cG(1) method

has second order accuracy and this convergence rate is observed both for the solution

and the non-standard QoI.
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(a) Reference solution and QoI for the Lorenz
system (3.16).

(b) Converge rates of the error in the solution
and the error in the QoI. The numerical so-
lution U and QoI tc, are computed using the
cG(1) method.

Figure 3.1

1.3 A Posteriori Analysis of NSQoI

This section derives the adjoint-based a posteriori error analysis of the non-standard

QoI (3.4). We take two approaches to the error analysis. In the first approach, we

utilize Taylor’s Theorem with remainder and the weak form of the differential equation

to create a representation of the error. This error representation contains terms that

can be viewed as the error in a standard QoI and thus is computable by applying

classical analysis. The second approach uses classical results to make accurate point-

wise corrections to the numerical solution. An iterative root-finding process is used

with these corrected points to find an accurate reference value of the non-standard

QoI which is then used to compute the error. Both approaches are discussed in detail

followed by several numerical experiments to show the accuracy and limitations of the

methods.
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Adjoint-based Error Representation

We derive an a posteriori representation of the error in the non-standard QoI (3.4) using

Taylor’s Theorem with remainder. The error representation is then approximated and

finally made computable by utilizing the classical analysis presented in §2.4. Theorem 9

and its proof are given in the context of the IBVP (1.6). The error representation for the

NSQoI for IVPs (1.1) is obtained by making the identification D = 0 and replacing the

L2(Ω) inner-product by the Euclidean inner-product. The result for IVPs is provided

in Corollary 1.

Theorem 9 (Error Representation for NSQoI for IBVPs). Let u be the solution to (1.6)

and U be an approximation of u obtained via a Galerkin method. Let the functional G

be defined by (3.6), and denote tt = Q(u) and tc = Q(U) for the true and computed

non-standard QoI (3.4), respectively. The error in the computed non-standard QoI is

given as

eQ = tt − tc =

(ψ, e(tc)) + R̃1

(D2ψ,D1U(tc))− (ψ, f(U, tc))− (∇uf(U, tc)⊤ψ, e(tc)) + (D2ψ,D1e(tc))− R̃2

(3.17)

Where e(x, t) = u(x, t) − U(x, t), and the two remainders are R̃1 = (ψ,R1(tc, tt))

where R1(x, tc, tt) = O (|tt − tc|2) and R̃2 = (ψ,R2(u, U, tc)) where R2(u, U, x, tc) =

O
(
||u− U | |2L2(Ω)

)
.

Proof. From the definitions of tt and tc we have

G(u; tt))−G(U ; tc)) = (w, u(tt)− U(tc)) = R−R = 0. (3.18)

Linearizing u(x, tt) around tc using Taylor’s Theorem with remainder and defining

e(x, t) = u(x, t)− U(x, t) gives

0 = (w, u(tc) + (tt − tc)ut(tc) +R1(tc, tt)− U(tc))

= (w, e(tc)) + (tt − tc) (w, ut(tc)) + (w,R1(tc, tt))
(3.19)
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where the remainder R1(x, tc, tt) is of order O ((tt − tc)
2). Rearranging (3.19) to isolate

the error we are interested in yields

tt − tc = −(w, e(tc)) + (w,R1(tc, tt))

(w, ut(tc))
. (3.20)

From the weak formulation of the IBVP (2.61), the denominator of (3.20) becomes

(w, ut(tc)) = − (D2w,D1u(tc)) + (w, f(u, tc))

= − (D2w,D1u(tc)) + (w, f(u, tc))− (D2w,D1U(tc)) + (D2w,D1U(tc))

= − (D2w,D1U(tc))− (D2w,D1e(tc)) + (w, f(u, tc)) .

(3.21)

We use Taylor’s Theorem one more time to linearize f(u, x, tc) around U giving

(w, f(u, tc)) = (w, f(U, tc)) + (w,∇uf(U, tc)e(tc)) + (w,R2(u, U, tc)) , (3.22)

= (w, f(U, tc)) +
(
∇uf(U, tc)

⊤w, e(tc)
)
+ (w,R2(u, U, tc)) , (3.23)

where the remainder R2(u, U, x, tc) is of order O
(
||u− U ||2L2(Ω)

)
. Substituting (3.23)

into (3.21) and combining that back into (3.20) yields the final result.

Remark 1. From Taylor’s Theorem, the remainder R1(tt, tc) is

R1(tt, tc) =
1

2

d2G

dt2
(y(ξ))(tt − tc)

2, (3.24)

for some ξ between tt and tc.

The error representation for NSQoI (3.4) related to an IVP (1.1) is easily obtained

from Theorem 9 by identifying the differential operator D with the null operator Du = 0

for all u. ThenD1 andD2 are also null. In the context of IVPs, we also use the Euclidean

inner-product instead of the L2(Ω) inner-product.

Corollary 1. Let u be the solution to (1.1) and U be an approximation of u obtained

via a Galerkin method. Let the functional G be defined by (3.5), and denote tt = Q(u)
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and tc = Q(U) for the true and computed non-standard QoI (3.4), respectively. The

error in the computed non-standard QoI is given as

eQ = tt − tc = − ψ · e(tc) + ψ · R1(tc, tt)

ψ · f(U, tc) +∇uf(U, tc)⊤ψ · e(tc) + ψ · R2(u, U, tc)
. (3.25)

Where e(x, t) = u(x, t) − U(x, t), and the remainders are such that R1(x, tc, tt) =

O (|tt − tc|2) and R2(u, U, x, tc) = O
(
||u− U | |2Rd

)
.

The error representations (3.17) and (3.25) contain remainders that decay faster

than other terms as the numerical solution U becomes more accurate. So, setting R1 ≈

0 and R2 ≈ 0 gives approximations to the error representations. The approximations

contain terms that contain the error e = u−U which can be viewed as standard QoIs.

The classical analysis from §2.4 allows us to compute the approximations to the error

in the non-standard QoI. The error approximations and the adjoint problems required

to make them computable are presented below.

NSQoI Error Approximation: IVPs

tt − tc ≈ − ψ · e(tc)
ψ · f(U, tc) +∇uf(U, tc)⊤ψ · e(tc)

. (3.26)

The approximation (3.26) contains two terms that are computed using Theorem 4, thus

we have two adjoint problems associated with the error.

First adjoint problem To obtain ψ · e(tc), we solve the adjoint problem−ϕ̇1 = fu,U(t)
⊤
ϕ1, t ∈ [0, tc),

ϕ1(tc) = ψ.
(3.27)

Second adjoint problem To obtain ∇uf(U, tc)
⊤ψ ·e(tc), we solve the adjoint problem−ϕ̇2 = fu,U(t)

⊤
ϕ2, t ∈ [0, tc),

ϕ2(tc) = ∇uf(U, tc)
⊤ψ.

(3.28)
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NSQoI Error Approximation: IBVPs

tt − tc ≈
(ψ, e(tc))

(D2ψ,D1U(tc))− (ψ, f(U, tc))− (∇uf(U, tc)⊤ψ, e(tc)) + (D2ψ,D1e(tc))
.

(3.29)

The approximation (3.29) contains three terms that are computed using Theorem 7,

thus we have three adjoint problems associated with the error.

First adjoint problem To obtain (ψ, e(tc)), we solve the adjoint problem
−ϕ̇(x, t) = −D∗ϕ(x, t) + fu,U(x, t)

⊤
ϕ(x, t), x ∈ Ω, t ∈ [0, ttc),

ϕ(x, t) = 0, x ∈ ∂Ω, t ∈ [0, ttc),

ϕ(x, ttc) = ψ(x), x ∈ Ω.

(3.30)

Second adjoint problem To obtain
(
∇uf(U, tc)

⊤ψ, e(tc)
)
, we solve the adjoint prob-

lem
−ϕ̇(x, t) = −D∗ϕ(x, t) + fu,U(x, t)

⊤
ϕ(x, t), x ∈ Ω, t ∈ [0, ttc),

ϕ(x, t) = 0, x ∈ ∂Ω, t ∈ [0, ttc),

ϕ(x, ttc) = ∇uf(U, tc)
⊤ψ(x), x ∈ Ω.

(3.31)

Third adjoint problem To obtain (D2ψ,D1e(tc)), we solve the adjoint problem
−ϕ̇(x, t) = −D∗ϕ(x, t) + fu,U(x, t)

⊤
ϕ(x, t), x ∈ Ω, t ∈ [0, ttc),

ϕ(x, t) = 0, x ∈ ∂Ω, t ∈ [0, ttc),

ϕ(x, ttc) = D∗ψ(x), x ∈ Ω.

(3.32)

Remark 2. Note that the functional G may achieve the value R at multiple times.

Assume there exists a time t̃ > tt such that G(u; t̃) = R. Equation (3.18) is then

valid at time t̃, i.e., G(U ; tc) = R = G(u; t̃) and the error approximation (either (3.26)

or (3.29)) follows with tt replaced by t̃. In the approximations we have replaced the

remainder R1 by zero. If the numerical solution is sufficiently accurate, then |tt− tc| <

|t̃− tc| and 0 ≈ R1(tc, tt) ≪ R1(tc, t̃). However, if the numerical solution is inaccurate,
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we may have the reverse situation, where |tt − tc| > |t̃ − tc|, in which case the error

estimate will be inaccurate or worse, R1(tc, t̃) ≈ 0 and the estimate may indicate the

value of t̃ − tc rather than tt − tc. We observe this phenomenon in §2.1.4 which is

illustrated by Table 3.10 and Figure 3.5b.

Many numerical experiments showcasing the accuracy of the approximations (3.26)

and (3.29) are provided later in §3.1.4.

Decomposition of Error Approximations Both of the approximations (3.26) and

(3.29) can be written in the form

tt − tc ≈
E
C
, (3.33)

where E = ψ · e(tc) in (3.26) and E = (ψ, e(tc)) in (3.29). We obtain a decomposition

of the errors by decomposing E in the same fashion as (2.89) and (2.129) while leaving

the denominator C intact.

The error (3.26) in the NSQoI associated with IVPs is decomposed as

tt − tc ≈
1

C

N∗−1∑
i=0

e(ti,ti+1) (3.34)

with error contributions e(ti,ti+1) given in (2.90).

The error (3.29) in the NSQoI associated with IBVPs is decomposed as

tt − tc ≈
1

C

(
(ϕ(0), e(0)) +

N⋆−1∑
i=0

e(ti,ti+1)

)
(3.35)

with error contributions e(ti,ti+1) given in (2.131).

Error from Iterative Root-finding Method

This section describes our second approach to creating an approximation of the error of

a computed non-standard QoI (3.4). The work in this section applies to both IVPs (1.1)
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and IBVPs (1.6). As such, we use a generic functional G(u; t) that could be of either

form (3.5) or (3.6). Given an approximate solution U(t) to the differential equation

with numerical QoI tc, define g(t) as

g(t) = G(u; t)−R,

= G(U ; t) +
(
G(u; t)−G(U ; t)

)
−R,

= G(U ; t) +G(e; t)−R.

(3.36)

With this definition, g(t) has the property g(tt) = 0. At any given t = t⋆ we estimate

G(e; t⋆) using the error representation from the classical analysis (either Theorem 4 for

IVPs or Theorem 7 for IBVPs). The initial conditions for the adjoint problems are

ϕ(t = t⋆) = ψ, where ψ comes from the definition of G(u; t).

With this point-wise method of computing g(t), we find t∗ such that g(t∗) ≈ 0 via

a standard root finding procedure. Then

η(U) = t∗ − tc, (3.37)

is an approximation of the error eQ in the non-standard QoI (3.4). There are many

options for root finding methods for computing η. In this thesis, we use two of the basic

root finding methods: the secant method and the inverse quadratic method, which are

briefly presented below.

Secant method

Given initial values x0, x1, the method is defined by the recurrence

xn =
xn−2 ∗ g(xn−1)− xn−1 ∗ g(xn−2)

g(xn−1)− g(xn−2)
n = 2, 3, . . . (3.38)

(See [44]). For the initial guesses the examples presented choose x0 < tc < x1. These

choices are made precise in the numerical examples in §3.1.4.

Inverse quadratic interpolation
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Given initial values x0, x1, x2, the method is defined by the recurrence

xn =
xn−3 gn−2 gn−1

(gn−3 − gn−2)(gn−3 − gn−1)
+

xn−2 gn−3 gn−1

(gn−2 − gn−3)(gn−2 − gn−1)
,

+
xn−1 gn−2 gn−3

(gn−1 − gn−2)(gn−1 − gn−3)
, n = 3, 4, . . . .

(3.39)

(See [33]). The choice of the initial guesses is made precise in the numerical examples

in §3.1.4.

1.4 Numerical Experiments: Error in NSQoI

This section provides several numerical experiments for both methods of our analysis

of the error in the non-standard QoI (3.4). These experiments include many types of

IVPs (linear, nonlinear, systems) and IBVPs. First we provide specifics for how we

compute the numerical non-standard QoI and how we implement root-finding for the

method presented in §3.1.3.

Numerical Methods:

All numerical solutions are obtained either using the continuous Galerkin method with

piece-wise linear polynomials or using the Crank-Nicolson method. Since the Crank-

Nicolson finite difference scheme is nodally equivalent to the cG(1) finite element

method with a trapezoidal rule quadrature, given ti < tc < ti+1, the numerical QoI

Q(U) = tc may be computed by using linear interpolation as,

tc =
R(ti − ti+1)

G(U ; ti)−G(U ; ti+1)
− tiG(U ; ti)− ti+1G(U ; ti+1)

G(U ; ti)−G(U ; ti+1)
.

Root-finding Methods:

When implementing the secant method (3.38), the two grid-points closest to the QoI

are used as initial guesses:

x0 = tL and x1 = tR, (3.40)

where tL < tc < tR, with no other grid-points in between.
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For the inverse quadratic interpolation scheme (3.39), the initial guesses are the two

closest grid-points to the left of the QoI and one to the right:

x0 = tLL, x1 = tL and x2 = tR, (3.41)

where tLL < tL < tc < tR, with no other grid-points in between. For most examples the

adjoint solutions are computed using the cG(3) method with 100 finite elements, with

the exceptions of §3.1.4 where cG(3) is used with 40 elements and §4.1.1 where cG(2)

with 100 elements is used. For all methods define nadj to be the number of adjoint

solutions required to compute the error in the QoI. This number can be seen as the

relative cost of implementing the different methods.

Linear problem

We consider the initial value problem

u̇ = sin(2πt)u, t ∈ (0, 1], u(0) = 1,

with analytic solution

u(t) = exp

(
1

2π
(1− cos(2πt))

)
.

Let R = 1.3 and G(u; t) = u(t). The true QoI is given by

tt = Q(u) = min
t∈(0,1]

arg(u(t) = 1.3) =
1

2π
(arccos(−2π ln(1.3) + 1)).

For this problem, the terms in (3.26) are

ψ = 1, f(u, t) = sin(2πt)u, ∇uf(u, t) = sin(2πt),

hence, for (3.27), (3.28), and (3.36) the values needed are

ψ1 = −1, ψ2 = sin(2πtc), ψ3 = 1.

The true solution and QoI are shown in Figure 3.2. This graph includes a horizontal

line at G(u; t) = R, to indicate the threshold value of interest, as well as a vertical line



Chapter 3. Adjoint-Based a Posteriori Error Analysis for NSQoI 61

denoting the true value of the QoI, i.e. the first time the threshold is crossed. Figure

3.2 compares the numerical QoI to the true value for both the numerical schemes. True

errors, error estimates and effectivity ratios are provided in Tables 3.1 and 3.2. All

methods provide excellent effectivity ratios, but the iterative methods require many

more applications of Theorem 4 and hence require solving more adjoint problems of the

form (2.80), as shown by the values of ηadj.

(a) Comparing cG(1) solution and computed
QoI(3.4) to the true values for linear example
in §3.1.4.

(b) Comparing Crank-Nicolson solution and
computed QoI (3.4) to the true values for lin-
ear example in §3.1.4.

Figure 3.2

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.3626 – – – -3.267e-4 -3.269e-4 1.000 2
Secant 0.3626 – 0.35 0.375 -3.267e-4 -3.267e-4 1.000 6
Inverse quad. 0.3626 0.325 0.35 0.375 -3.267e-4 -3.267e-4 1.000 7

Table 3.1: Results of the different methods on the linear example in §3.1.4 using cG(1)
with 40 elements.

Nonlinear problem

Next we consider the nonlinear initial value problem

u̇(t) = sin(2πu(t)), t ∈ (0, 1], u(0) =
1

4
.
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Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.3663 – – – -4.017e-3 -4.056e-3 1.010 2
Secant 0.3663 – 0.35 0.4 -4.017e-3 -4.017e-3 1.000 7
Inverse quad. 0.3663 0.3 0.35 0.4 -4.017e-3 -4.017e-3 1.000 7

Table 3.2: Results of the different methods on the linear example in §3.1.4 using Crank-
Nicolson with 21 nodes.

The analytic solution to this problem is

u(t) =
1

π
arctan(e2πt).

Let R = 0.4 and G(u; t) = u(t). The true QoI is

tt = Q(u) = min
t∈[0,1]

arg(u(t) = 0.4) =
ln(tan(0.4π))

2π
.

Here, the terms in (3.26) are

ψ = 1, f(u, t) = sin(2πu), ∇uf(u, t) = 2π cos(2πu),

so the data needed for (3.27), (3.28), and (3.36) are

ψ1 = −1, ψ2 = 2π cos(2πR), ψ3 = 1.

Figure 3.3a shows the true values of the linear functional G(u; t) as well as the event

in question and the true QoI. The values in Tables 3.3 and 3.4 indicate that all three

methods are fairly accurate. The two iterative methods again require more adjoint

equations to be solved.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1790 – – – -1.087e-4 -1.086e-4 1.000 2
Secant 0.1790 – 0.175 0.2 -1.087e-4 -1.087e-4 1.000 6
Inverse quad. 0.1790 0.15 0.175 0.2 -1.087e-4 -1.087e-4 1.000 6

Table 3.3: Results for nonlinear example in §3.1.4 using the different methods on cG(1)
solution with 40 elements.
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(a) Chosen value of R, true data S(u(t)), and
true QoI for nonlinear example in §3.1.4.

(b) Chosen value of R, true data S(u(t)), and
true QoI for linear system example in §3.1.4

Figure 3.3

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1810 – – – -2.156e-3 -2.141e-3 1.007 2
Secant 0.1810 – 0.15 0.2 -2.156e-3 -2.144e-3 1.001 7
Inverse quad. 0.1810 0.1 0.15 0.2 -2.156e-3 -2.144e-3 1.001 7

Table 3.4: Results for nonlinear example in §3.1.4 using the different methods on Crank-
Nicolson solution with 21 nodes.

Linear system

We consider the two dimensional system u̇+ A(t)u = 0, with matrix

A(t) =

1 + 9 cos2(6t)− 6 sin(12t) −12 cos2(6t)− 9/2 sin(12t)

12 sin2(6t)− 9/2 sin(12t) 1 + 9 sin2(6t) + 6 sin(12t)


over time domain t ∈ (0, 1] with initial conditions u1(0) = u2(0) = 1. The analytic

solution to this problem is

u1(t)
u2(t)

 =

3/5 exp(2t)(cos(6t) + 2 sin(6t))− 1/5 exp(−13t)(sin(6t)− 2 cos(6t))

3/5 exp(2t)(2 cos(6t)− sin(6t))− 1/5 exp(−13t)(cos(6t) + 2 sin(6t))

 .
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Set R = 0 and G(u; t) = u1(t) in order to analyze the first component. The true

quantity of interest is

tt := Q(u) = 0.446255366908554

The parameters needed for (3.26) are

ψ = (1, 0)⊤, f(u, t) = −A(t)u, ∇uf(u, t) = −A(t).

For (3.27), (3.28), and (3.36) the values needed are

ψ1 = −(1, 0)⊤,ψ2 = (1 + 9 cos2(6tc)− 6 sin(12tc), −12 cos2(6tc)−
9

2
sin(12tc))

⊤,

ψ3 = (1, 0)⊤.

The true solution and QoI are shown in Figure 3.3b. Tables 3.5 and 3.6 show the results

for cG(1) and Crank-Nicolson respectively. Again, all methods are accurate using either

numerical method. The two iterative methods require many more adjoint problems to

be solved than the Taylor series method without any increase in accuracy.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.4463 – – – -1.323e-4 -1.322e-4 0.999 2
Secant method 0.4463 – 0.425 0.45 -1.323e-4 -1.323e-4 1.000 6
Inverse quad. 0.4463 0.4 0.425 0.45 -1.323e-4 -1.323e-4 1.000 8

Table 3.5: Results of the different methods on linear system example in §3.1.4 using
cG(1) with 40 elements.

Table 3.6: Results of the different methods on linear system example in §3.1.4 using
Crank-Nicolson with 21 nodes.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.4462 – – – 2.675e-5 2.675e-5 1.000 2
Secant 0.4462 – 0.4 0.45 2.675e-5 2.675e-5 1.000 6
Inverse quad. 0.4462 0.35 0.4 0.45 2.675e-5 2.675e-5 1.000 8



Chapter 3. Adjoint-Based a Posteriori Error Analysis for NSQoI 65

Harmonic oscillator

Consider the harmonic oscillator

ω̈ = − k

m
ω − c

m
ω̇ +

F0

m
cos(γt+ θd), t ∈ (0, 2], ω(0) = 5, ω̇(0) = 0.

with

k = 50, m = 0.25, c = 1, F0 = 50, θd = 0, γ = 10.

Rewriting as a system of first-order ODEs, u̇+ Au = h(t), givesu̇1(t)
u̇2(t)

+

 0 −1

200 4

u1(t)
u2(t)

 =

 0

200 cos(10t)

 .

Set R = 0 and G(u; t) = u1(t) in order to observe when the oscillator first reaches the

origin. The true solution in [6] is used to determine

tt := Q(ω) = 0.14034864129073557.

Here for (3.26), the values needed are

ψ = (1, 0)⊤, f(u, t) = −Au+ h(t), ∇uf(u, t) = −A.

To compute (3.27), (3.28), and (3.36), let

ψ1 = −(1, 0)⊤, ψ2 = (0, 1)⊤, ψ3 = (1, 0)⊤.

The true data G(u; t) and QoI are given in Figure 3.4a and the results using cG(1) and

Crank-Nicolson method are provided in Tables 3.7 and 3.8 respectively. All methods

using either numerical method give effectivity ratios close to one. The two iterative

methods require more adjoint problems to be solved than the Taylor series estimate,

but they do lead to a slightly more accurate error estimate.



Chapter 3. Adjoint-Based a Posteriori Error Analysis for NSQoI 66

(a) Chosen value of R, true data S(u(t)),
and true QoI Q(u) for oscillator example
3.1.4.

(b) Chosen value of R, true data G(u; t),
and true QoI Q(u) for oscillator example
in §3.1.4.

Figure 3.4

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1447 – – – -4.440e-3 -4.449e-3 1.011 2
Secant method 0.1447 – 0.1 0.15 -4.440e-3 -4.440e-3 1.000 7
Inverse quad. 0.1447 0.05 0.1 0.15 -4.440e-3 -4.440e-3 1.000 8

Table 3.7: Results of the different methods on the oscillator example in §3.1.4 using
cG(1) with 40 elements.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1575 – – – -1.715-02 -1.816e-2 1.059 2
Secant method 0.1575 – 0.1 0.2 -1.715-02 -1.715e-2 0.999 8
Inverse quad. 0.1575 0.0 0.1 0.2 -1.715-02 -1.715e-2 0.999 10

Table 3.8: Results of the different methods on the oscillator example in §3.1.4 using
Crank-Nicolson with 21 nodes.

Harmonic oscillator: Effect of the choice of interval

We consider the same equation and function as in §3.1.4, except over the time interval

t ∈ (0.2, 2] and with R = 1.8. In effect, we are choosing t̂ = 0.2 in (3.1) to obtain the

second occurrence of G(u; t) = 1.8.
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Applying the secant method to the true solution results in the true QoI,

tt = 1.2558594599461572.

Since this problem has the same ODE and functional S as in §3.1.4, the parameters

and steps laid out in that section can be used to obtain the error estimates.

The true functional and QoI are shown in Figure 3.4b and the results when using

the different methods in Tables 3.9 and 3.10. The Taylor series method is slightly less

accurate compared to the iterative methods when using the cG(1) method. This is due

to the size of the second derivative of the functional near the event, leading to a larger

absolute value of the remainder in (3.22). Since the error estimate (3.26) neglects this

remainder, if its absolute value is too large the estimate will not be accurate. Examples

in §3.1.4 take a further look into this effect.

In this example, both the Taylor series and iterative methods are poor for the

Crank-Nicolson method. This is due to the low accuracy of the numerical solution as

illustrated in Figure 3.5b. The potential inaccuracy of the Taylor series estimate under

these circumstances is discussed in Remark 2. The root-finding methods are converging

to the second time the event occurs (which is 1.3237), rather than the first. Because

of the small difference in time between the locations of the two roots (see Figure 3.5a),

the proximity of the second root to the numerical QoI, and the size of the numerical

time step, both roots are contained within the initial interval over which the iterative

methods are applied. It is therefore possible for the iterative methods to converge to

the larger of the two roots.

Harmonic oscillator: Effect of the choice of R

Again consider the harmonic oscillator of §3.1.4, and estimate the error of the QoI (3.4)

with several different values of R, increasing R until it is very close to the maximum of

the true data. The maximum value of the true data is approximately 2.05015. Results
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(a) Figure detailing issue with iterative
methods for oscillator examples in §3.1.4
and §3.1.4 when the numerical solution is
not accurate near the event. The iterative
methods result in t∗ = ηit, which is the
second occurrence of the event rather than
the first. This figure specifically details the
case when R = 2.

(b) Numerical values for oscillator exam-
ple in §3.1.4 when using Crank-Nicolson
method with 21 nodes.

Figure 3.5

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.2637 – – – -7.887e-3 -8.623e-3 1.093 2
Secant 1.2637 – 1.235 1.37 -7.887e-3 -7.887e-3 0.999 8
Inverse quad. 1.2637 1.19 1.235 1.37 -7.887e-3 -7.887e-3 0.999 9

Table 3.9: Results of the different methods on oscillator example in §3.1.4 using cG(1)
with 40 elements.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.3674 – – – -1.116e-1 -1.542e-2 0.138 2
Secant method 1.3674 – 1.28 1.37 -1.116e-1 -1.746e-2 0.156 8
Inverse quad. 1.3674 1.19 1.28 1.37 -1.116e-1 -1.746e-2 0.156 10

Table 3.10: Results of the different methods on oscillator example in §3.1.4 using Crank-
Nicolson with 21 nodes.

are provided in Tables 3.11, 3.12 and 3.13 for increasingly fine finite element meshes.

The tables contain the effectivity ratios, ρeff , for each method and each value of R.
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Notice that the iterative methods appear to be more sensitive to the accuracy of

the numerical solution than the Taylor series method. In extreme cases, the iterative

methods fail to converge. This occurs when a root-finding iteration falls outside of the

domain of the IVP (1.6), i.e., if xn the approximation to the root at the nth iteration,

xn < 0 or xn > T . As the number of finite elements used to solve the ODE increases,

the two iterative methods eventually recover their accuracy even when the threshold

value is very close to an extremum. For the cases where the iterative methods are

inaccurate, note that the root-finding schemes do not converge to the true QoI. Instead,

the convergence is to the second occurrence of the event rather than the first (see Figure

3.5a).

The estimate derived from Taylor’s theorem is generally more accurate for the less

accurate numerical solutions, However, even when using an accurate numerical solution,

the Taylor series approach becomes inaccurate when the curvature of G as a function

of t is large near the threshold value. The remainder R1(tt, tc) is one half of the second

derivative of G with respect to t at some point between tt and tc. As the threshold value

R moves closer to the local maximum, this derivative grows and the assumption that

R1(tt, tc) is small is no longer valid, resulting in an inaccurate estimate. The iterative

methods do not depend on the values of the second derivative of the solution and those

methods are able to produce accurate error estimates provided the numerical solution

is sufficiently accurate near the event.

Method R=1.95 R=2.0 R=2.01 R=2.02 R=2.03 R=2.04 R=2.05
Taylor series 1.061 1.095 1.251 1.603 3.470 -1.137 0.427

Secant 0.999 -11.305 -4.952 -2.650 -1.405 1.000 fail
Inverse quad. 0.999 -11.305 -4.952 -2.650 -1.405 fail fail

Table 3.11: Effectivity ratio for the different methods for varying values of R on oscil-
lator example in §3.1.4 using cG(1) with 40 elements.
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Figure 3.6: True data for oscillator example in §3.1.4, showing max value of ≈ 2.05015.

Method R=1.95 R=2.0 R=2.01 R=2.02 R=2.03 R=2.04 R=2.05
Taylor series 1.033 0.999 1.043 1.100 1.179 1.283 0.758

Secant 1.000 0.999 0.999 0.999 -6.545 -4.520 3.133
Inverse quad. 1.000 0.999 0.999 0.999 -6.545 -4.520 3.133

Table 3.12: Effectivity ratio for the different methods for varying values of R on oscil-
lator example in §3.1.4 using cG(1) with 60 elements.

Method R=1.95 R=2.0 R=2.01 R=2.02 R=2.03 R=2.04 R=2.05
Taylor series 1.017 1.001 1.019 1.100 1.039 0.998 0.588

Secant 0.999 0.999 0.999 1.000 0.999 0.999 0.999
Inverse quad. 0.999 0.999 0.999 1.000 0.999 0.999 0.999

Table 3.13: Effectivity ratio for the different methods for varying values of R on example
in §3.1.4 using cG(1) with 100 elements.

One dimensional heat equation

We consider the one dimensional heat equation with boundary and initial conditions

ut(x, t) = uxx(x, t) + 3et sin(πx), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ (0, 1),

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1].

(3.42)

This section analyzes the system of ordinary differential equations that arises from a

spatial discretization of (3.42) using a central-difference method. In particular using a
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uniform partition of the spatial interval [0, 1] with 22 nodes:

{0 = x0 < x1 < · · · < x21 = 1}.

Since boundary values are specified, this semi-discretization leads to a system of 20

first-order ODEs of the form u̇(t) = Au(t) + k(t), where h = 1
21

and

A =
1

h2



−2 1 0 · · · · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 −2 1

0 · · · · · · 0 1 −2


, k(t) =



3et sin(πx1)

3et sin(πx2)

3et sin(πx3)
...

3et sin(πx19)

3et sin(πx20)


Since this problem will only analyze the semi-discrete system and not the full PDE,

a reference solution is obtained using an accurate time-integrator (SciPy’s solve ivp)

using an absolute tolerance of 10−15. Let R = 0.33 and G(u; t) = 1
20

∑20
i=1 ui(t) in order

to analyze the discrete average of the solution over the spatial domain at a time t. This

library function also has the capability of tracking when specified events occur, which

is used to obtain a reference for the true QoI,

tt = 0.5834435609935992.

For this problem, the parameters in (3.26) are

ψ =
1

20
(1, 1, . . . , 1)⊤, f(u, t) = Au+ k(t), ∇uf(u, t) = A.

For (3.27), (3.28), and (3.36), set

ψ1 = − 1

20
(1, 1, . . . , 1)⊤, ψ2 =

1

20h2
(−1, 0, . . . , 0,−1)⊤, ψ3 =

1

20
(1, 1, . . . , 1)⊤.

The true solution and QoI are shown in Figure 3.7a and the results when using cG(1) or

Crank-Nicolson methods are shown in Tables 3.14 and 3.15 respectively. All methods
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are accurate using either numerical method. The two iterative methods require more

adjoint problems to be solved than the Taylor series estimate without any noticeable

increase in accuracy.

(a) Chosen value of R, true data G(u; t), and
true QoI for example of the heat equation in
§3.1.4.

(b) Chosen value of R, true data G(u; t), and
true QoI for example of the two-body problem
in §3.1.4.

Figure 3.7

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.5834 – – – 6.157e-5 6.151e-5 0.999 2
Secant 0.5834 – 0.575 0.6 6.157e-5 6.150e-5 0.999 6
Inverse quad. 0.5834 0.55 0.575 0.6 6.157e-5 6.150e-5 0.999 7

Table 3.14: Results of the different methods on the heat equation example in §3.1.4
using cG(1) with 40 elements.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.5830 – – – 4.457e-4 4.457e-4 1.000 2
Secant 0.5830 – 0.55 0.6 4.457e-4 4.456e-4 0.999 6
Inverse quad. 0.5830 0.5 0.55 0.6 4.457e-4 4.456e-4 0.999 7

Table 3.15: Results of the different methods on the heat equation example in §3.1.4
using Crank-Nicolson with 21 nodes.
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Two body problem

We consider the two body problem

u̇1 = u3,

u̇2 = u4,

u̇3 =
−u1

(u21 + u22)
3/2
,

u̇4 =
−u2

(u21 + u22)
3/2
,


t ∈ (0, 1.5], u(0) = (0.4, 0, 0, 2.0)⊤, (3.43)

which models a small body orbiting a much larger body. Here u1, u2 are the planar

spatial coordinates of the orbiting body relative to the larger body, and u3, u4 are the

respective velocities. The initial conditions are chosen so that the analytic solution

is [26]

u =

(
cos(τ)− 0.6, 0.8 sin(τ),

− sin(τ)

1− 0.6 cos(τ)
,

0.8 cos(τ)

1− 0.6 cos(τ)

)⊤

,

where τ solves τ − 0.6 sin(τ) = t. Let R = 0 and G(u; t) = u1(t) + u2(t). The true QoI

can be found exactly:

tt = Q(u) = cos−1((15− 16
√
2)/41)− 0.6 sin

(
cos−1((15− 16

√
2)/41)

)
.

The values needed to compute (3.26) are

ψ = (1, 1, 0, 0)⊤, f(u, t) =

(
u3, u4,

−u1
(u21 + u22)

3/2
,

−u2
(u21 + u22)

3/2

)⊤

,

and

∇uf(u, t) =


0 0 1 0

0 0 0 1
2u2

1−u2

(u2
1+u2

2)
5/2

3u1u2

(u2
1+u2

2)
5/2 0 0

3u1u2

(u2
1+u2

2)
5/2

2u2
1−u2

(u2
1+u2

2)
5/2 0 0

 .

For (3.27), (3.28), and (3.36), the data needed are

ψ1 = (−1,−1, 0, 0)⊤, ψ2 = (0, 0, 1, 1)⊤ ψ3 = (1, 1, 0, 0)⊤.
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The true data G(u; t) and QoI are shown in Figure 3.7b and the results using the cG(1)

and Crank-Nicolson method appear in Tables 3.16 and 3.17 respectively. All methods

have larger error than in other examples so far due to the non-linear nature of (3.43).

However the error estimates are accurate using either numerical method; each with an

effectivity ratio close to one.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.1601 – – – 8.262e-3 8.287e-3 1.003 2
Secant 1.1601 – 1.125 1.1625 8.262e-3 8.287e-3 1.003 5
Inverse quad. 1.1601 1.0875 1.125 1.1625 8.262e-3 8.287e-3 1.003 6

Table 3.16: Results of the different methods on the two-body example in §3.1.4 using
cG(1) with 40 elements.

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.2091 – – – -4.068e-2 -4.078e-2 1.002 2
Secant 1.2091 – 1.2 1.275 -4.068e-2 -4.077e-2 1.002 5
Inverse quad. 1.2091 1.125 1.2 1.275 -4.068e-2 -4.077e-2 1.002 6

Table 3.17: Results of the different methods on the two-body example in §3.1.4 using
Crank-Nicolson with 21 nodes.
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Logistic Equation

Consider the Logistic equation

u̇ = ku
(
1− u

K

)
, t ∈ (0, 20], u(0) =

1

2
, (3.44)

where k = 0.25 and K = 1. The analytic solution is,

u(t) =
K u(0)

u(0) + (K − u(0))e−kt
=

1

1 + 3e−0.25t
. (3.45)

Let G(u; t) = u(t) and consider several threshold values,

R ∈ {0.55, 0.8, 0.9, 0.94, 0.98, 0.99, 0.995}. The values needed for (3.26) are

ψ = 1, f(u, t) = ku(1− u

k
), ∇uf(u, t) = k − 2k

K
u,

so the data needed for (3.27), (3.28), and (3.36) are

ψ1 = −1, ψ2 = k − 2k

K
R, ψ3 = 1.

The numerical solution is computed using the cG(1) method with five elements. Figure

3.8 shows the true functional and QoI for a chosen threshold value. Table 3.18 shows

the true error in the QoI and the effectivity ratio for each method as the threshold value

increases. As the error in the QoI increases, the Taylor series method loses accuracy,

presumably since the remainder terms are no longer negligible, despite the fact the

second derivatives with respect to t are small. However, the iterative methods are

accurate even when the true error is large.

Collisionless Vlasov Equation

We consider the homogeneous Vlasov problem
u̇(x, p, t) + p∇x · u(x, p, t) = 0, Ωx × Ωp × (0, 0.25],

u(x, p, 0) = u0(x, p), Ωx × Ωp,

u(x, p, t) = 0, ∂Ωx × ∂Ωp × (0, 0.25].

(3.46)
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R=0.55 R=0.8 R=0.9 R=0.94 R=0.98 R=0.99 R=0.995
eQ -0.090 -0.117 -0.166 0.194 0.829 0.610 1.513

Taylor series 1.001 1.021 1.041 0.957 0.902 0.919 0.830
Secant 0.999 0.987 0.977 1.023 1.007 1.011 1.005

Inverse quad. 0.999 0.987 0.977 1.023 1.007 1.011 1.005

Table 3.18: Error in QoI and effectivity ratio of the different methods for varying values
of R on the logistic example in §3.1.4 using cG(1) with 5 elements.

Figure 3.8: True values of functional and QoI for example of the Logistic Equation in
§3.1.4, when R = 0.94

We use the domains Ωx = (0, 1) = Ωp. The initial condition is given by the bump-

function

u0(x, p) =

200000(x− 0.3)2(x− 0.7)2(p− 0.3)2(p− 0.7)2, for 0.3 ≤ x, p ≤ 0.7

0 else

(3.47)

Recall that when solving (3.46) we view the pair of variables (x, p) as the “spatial”

variable over the “spatial domain” Ω = Ωx × Ωp. The problem is well-posed over the

given time interval because the data never reaches the space-momentum boundaries.
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We define the non-standard QoI (3.4) by setting ψ(x) from (3.6) to be

ψ(x, p) =

200000(x− 0.3)2(x− 0.7)2(p− 0.3)2(p− 0.7)2, for 0.3 ≤ x, p ≤ 0.7

0 else.

(3.48)

For (3.1) choose the threshold value R = 0.005 and t̂ = 0 to obtain the first occurrence of

the event (ψ, u(t)) = R. The error approximation (3.29) for this homogeneous problem

is

tt − tc ≈
(−ψ, e(tc))

(pψx, U(tc)) + (pψx, e(tc))
. (3.49)

The terms containing the function e = u − U are computed using Theorem 7 which

requires the solutions to associated adjoint problems. The adjoint equation for (3.46)

is

ϕt + p · ∇xϕ = 0 in Ωx × Ωp × [0, tc), (3.50)

with zero Dirichlet boundary conditions on Ωx × Ωp. The initial condition for the

adjoint problem depends the term on (3.49). To compute (−ψ, e(tc)) we use the initial

condition ϕ(x, p, 0) = −ψ. To obtain the term (pψx, e(tc)), we solve the adjoint problem

with initial condition ϕ(x, p, 0) = −pψx. With the solutions to these adjoint problems,

the terms are computed via (2.119).

A reference solution is obtained using a continuous Galerkin method with quadratic

polynomials over a 200 × 200 spatial mesh and time-steps are taken using the Crank-

Nicolson method with 100 time sub-intervals. Figure 3.9 shows the functional G(u; t) =

(ψ, u(t)) over time with the reference solution u. The figure also depicts the threshold

value R and reference value of the QoI (3.4) which is tt := Q(u) = 0.18586362344.

With this example, we explore how different discretizations for the numerical and

adjoint solutions effect the accuracy of the error approximation (3.49). We also look at

the effectivity ratios for the individual computed error terms inside the approximation
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Figure 3.9: Functional from Vlasov example in §3.1.4 with true solution.

in particular showing the size of the error in initial value of the numerical solution. For

ease of notation, let E1 ≈ (−ψ, e(tc)) and E2 ≈ (pψx, e(tc)) be the values computed

via the solution of the associated adjoint problems. In the Tables below, “E1 initial”

denotes the value of (ϕ(0), e(0)) in (2.119) when computing E1 and “ρeff of E1” denotes

the effectivity ratio for the estimation E1.

In all cases numerical solutions are computed using Crank-Nicolson for the time

steps and a linear space discretization, while adjoint solutions are computed using

Crank-Nicolson in time and quadratic space discretizations. For Tables 3.19, 3.20, and

3.21, the numerical solution uses a mesh created from a 10-by-10 grid over Ω = Ωx×Ωp

and a time grid with 10 sub-intervals. In Tables 3.22, 3.23, and 3.24, the numerical

solution uses a mesh created from a 20-by-20 grid over Ω = Ωx × Ωp and a time grid

with 10 sub-intervals. In both cases, the adjoint problem is solved over a time grid with

40 sub-intervals and different spatial meshes in order to determine any effect.

The estimates are accurate in all experiments with effectivity ratios close to 1. Tables

3.21 and 3.24 show that we accuracy does not change much as we refine the adjoint

solution’s spatial mesh, but accuracy of the error estimate increases as U becomes more
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adj Nx 30 40 60
E1 -3.40E-4 -3.40E-4 -3.40E-5
E1 initial -4.52E-4 -4.52E-4 -4.52E-5
ρeff of E1 0.9999 1.0000 1.0000

Table 3.19: Values and effectivity ratios for E1 from Vlasov example usingNx = 10 = Nt

and adj Nt = 40 with different spatial discretizations for the adjoint.

adj Nx 30 40 60
E2 -3.32E-3 -3.32E-3 -3.32E-3
E2 initial -2.98E-3 -2.98E-3 -2.98E-3
ρeff of E2 1.0000 1.0001 1.0002

Table 3.20: Values and effectivity ratios for E2 from Vlasov example usingNx = 10 = Nt

and adj Nt = 40 with different spatial discretizations for the adjoint.

tt − tc 0.01989 0.01989 0.01989
η 0.020417 0.020418 0.020419
ρeff 1.0263 1.0263 1.0263

Table 3.21: True errors, computed errors, and effectivity ratios for NSQoI in Vlasov
example using Nx = 10 = Nt and adj Nt = 40 with different spatial discretizations for
the adjoint. The numerical QoI is tc = 0.16597052.

adj Nx 30 40 60
E1 -1.01E-4 -1.01E-4 -1.01E-4
E1 initial -1.14E-4 -1.14E-4 -1.14E-4
E1 effect. 0.997 0.999 0.999

Table 3.22: Values and effectivity ratios for E1 from Vlasov example using Nx =
20, Nt = 10 and adj Nt = 40 with different spatial discretizations for the adjoint.

accurate.
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adj Nx 30 40 60
E2 -8.50E-4 -8.46E-4 -8.46E-4
E2 initial -8.57E-4 -8.57E-4 -8.57E-4
E2 effect. 1.0045 0.999 1.000

Table 3.23: Values and effectivity ratios for E2 from Vlasov example using Nx =
20, Nt = 10 and adj Nt = 40 with different spatial discretizations for the adjoint.

adj Nx 30 40 60
tt − tc 0.005824 0.005824 0.005824
η 0.005844 0.005858 0.005859
ρeff 1.0033 1.0057 1.0059

Table 3.24: True errors, computed errors, and effectivity ratios for NSQoI in Vlasov
example using Nx = 20, Nt = 10 and adj Nt = 40 with different spatial discretizations
for the adjoint. The numerical QoI is tc = 0.180039009533.
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Chapter 4

Uncertainty Quantification: CDF

Bound and MLMC Algorithm

This chapter utilizes the adjoint-based error analysis from §2.4 and Chapter 3 to derive

two methods of uncertainty quantification for QoIs related to differential equations with

random parameters. In §4.1 we derive an upper-bound on the error in a computed MC

estimator of the CDF. To create our adaptive MLMC algorithm, we first describe two

adaptive refinement methods and modify them to work in the context of the MLMC

method in §4.2.1. We then provide a description and pseudo-code for our adaptive

MLMC algorithm in §4.2.2. For both UQ methods we detail the need for the a posteriori

error estimates and provide numerical experiments.

1 A Posteriori Error Analysis of the Cumulative

Density Function

If the differential equation (either (1.1), (1.4), or (1.6)) depends on a random parameter

w, then the solution u and the QoI, Q(u;w), are random variables. As a random
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variable, Q(u;w) has a corresponding cumulative distribution function (CDF),

F (t) = P ({w : Q(u;w) ≤ t}) = P (Q ≤ t).

An approximation to the CDF is computed using the Monte Carlo method with a finite

number of numerically computed sample values {Q̂(U (n), w(n)) = Q̂(n)}Nn=1,

F̂N(t) =
1

N

N∑
n=1

1(Q̂(n) ≤ t), (4.1)

where 1 is the indicator function. A nominal sample distribution is computed using

exact values of the QoI,

FN(t) =
1

N

N∑
n=1

1(Q(n) ≤ t). (4.2)

An estimate of the error in an approximate distribution of the non-standard QoI

(3.4) is computed for two examples in §4.1.1. The estimate takes into account error con-

tributions due to finite sampling and errors arising from the discretization of the ODE.

The expressions (2.20) and (4.2) decompose the error in to sampling and discretization

contributions,

F (t)− F̂N(t) = (F (t)− FN(t)) + (FN(t)− F̂N(t)).

This decomposition is used to derive the following error bound.

Theorem 10. For 0 < ε < 1,

∣∣∣F (t)− F̂N(t)
∣∣∣ ≤

 F̂N(t)
(
1− F̂N(t)

)
Nε

1/2

,

+

(
1

N
+

1

Nε1/2

) ∣∣∣∣∣
N∑

n=1

(
1(Q̂(n) −

∣∣∣e(n)Q

∣∣∣ ≤ t ≤ Q̂(n) +
∣∣∣e(n)Q

∣∣∣))∣∣∣∣∣ ,
+

2

(2Nε)3/4
(4.3)

with probability greater than or equal to 1 − 2ε + ε2, where e
(n)
Q = Q(n) − Q̂(n) is the

error in a numerically computed sample of the QoI.
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Proof. We decompose the error as∣∣∣F (t)− F̂N(t)
∣∣∣ ≤ |F (t)− FN(t)|+

∣∣∣FN(t)− F̂N(t)
∣∣∣ = I + II. (4.4)

Focusing on the term II =
∣∣∣FN(t)− F̂N(t)

∣∣∣ = ∣∣∣F̂N(t)− FN(t)
∣∣∣,

II =

∣∣∣∣∣ 1N
N∑

n=1

(
1(Q̂(n) ≤ t)− 1(Q(n) ≤ t)

)∣∣∣∣∣ ,
=

∣∣∣∣∣ 1N
N∑

n=1

(
1(Q̂(n) ≤ t)− 1(Q̂(n) + e

(n)
Q ≤ t)

)∣∣∣∣∣ ,
=

∣∣∣∣∣∣∣∣∣
1

N

N∑
n=1

e
(n)
Q ≤0

(
1(Q̂(n) −

∣∣∣e(n)Q

∣∣∣ ≤ t ≤ Q̂(n))
)
,

+
1

N

N∑
n=1

e
(n)
Q >0

(
1(Q̂(n) ≤ t ≤ Q̂(n) +

∣∣∣e(n)Q

∣∣∣))
∣∣∣∣∣∣∣∣∣ ,

≤

∣∣∣∣∣ 1N
N∑

n=1

(
1(Q̂(n) −

∣∣∣e(n)Q

∣∣∣ ≤ t ≤ Q̂(n))
)
+

1

N

N∑
n=1

(
1(Q̂(n) ≤ t ≤ Q̂(n) +

∣∣∣e(n)Q

∣∣∣))∣∣∣∣∣ ,
=

∣∣∣∣∣ 1N
N∑

n=1

(
1(Q̂(n) −

∣∣∣e(n)Q

∣∣∣ ≤ t ≤ Q̂(n) +
∣∣∣e(n)Q

∣∣∣))∣∣∣∣∣ , (4.5)

Now consider the term I = |F (t)− FN(t)|. We start with the Chebyshev Inequality:

P (|F (t)− FN(t)| ≥ ks) ≤ 1

k2

for any real number k, where s2 is the variance of FN given by [42,58],

s2 =
F (t) (1− F (t))

N
.

Choosing ε = 1
k2

leads to

I = |F (t)− FN(t)| ≤
(
F (t) (1− F (t))

Nε

)1/2

, (4.6)
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with a probability greater than 1− ε. Now,

F (t) (1− F (t)) = FN(t) (1− FN(t)) + (F (t)− FN(t)) (1− F (t)− FN(t)) . (4.7)

Taking absolute values in (4.7), dividing by Nε, taking the square root, and using
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0,∣∣∣∣F (t) (1− F (t))

Nε

∣∣∣∣1/2 ≤ ∣∣∣∣FN(t) (1− FN(t))

Nε

∣∣∣∣1/2 + ∣∣∣∣(F (t)− FN(t)) (1− F (t)− FN(t))

Nε

∣∣∣∣1/2
(4.8)

Multiplying and dividing the second term on the right-hand side of (4.8) by
√
2δ and

using the fact that ab ≤ a2

2
+ b2

2
,

∣∣∣∣(F (t)− FN(t)) (1− F (t)− FN(t))

Nε

∣∣∣∣1/2 ≤
∣∣∣∣∣δ2 (F (t)− FN(t))

2 +
(1− F (t)− FN(t))

2

4δ2N2ε2

∣∣∣∣∣
1/2

≤ δ |F (t)− FN(t)|+
1

2δNε
,

where we obtain the final line by observing that (1− F (t)− FN(t))
2 ≤ 1. Substituting

back into (4.8) and combining with (4.6),

I ≤
(
FN(t) (1− FN(t))

Nε

)1/2

+ δ |F (t)− FN(t)|+
1

2δNε
. (4.9)

From [58], for any ε > 0 we have with a probability greater than 1− ε,

I ≤
(
log(ε−1)

2N

)1/2

≤
(

1

2Nε

)1/2

, (4.10)

where we also used that log(x) ≤ x for all x > 0. Substituting this into the right-hand

side of (4.9),

I ≤
(
FN(t) (1− FN(t))

Nε

)1/2

+ δ

(
1

2Nε

)1/2

+
1

2δNε
. (4.11)

Consider the function

D(δ) =
δ

a
+

1

δa2
, D(δ) =

δ

(2Nε)1/2
+

1

δ(2Nε)
.
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Taking the derivative of D(δ) and setting it equal to zero leads to

D′(δ) =
1

a
− 1

δ2a2
= 0 ⇒ δ = ±

√
1

a
= ±

(
1

2Nε

)1/4

. (4.12)

A local minimum of D(δ) occurs at δmin = +
(

1
2Nε

)1/4
, because G′′(δmin) > 0. With

this choice of δ, (4.11) becomes

I ≤
(
FN(t) (1− FN(t))

Nε

)1/2

+
2

(2Nε)3/4
. (4.13)

The numerator of the first term in (4.13) is expanded as

|FN(t) (1− FN(t))|

=
∣∣∣F̂N(t)

(
1− F̂N(t)

)
+
(
FN(t)− F̂N(t)

)(
1− FN(t)− F̂N(t)

)∣∣∣ ,
≤
∣∣∣F̂N(t)

(
1− F̂N(t)

)∣∣∣+ ∣∣∣(FN(t)− F̂N(t)
)(

1− FN(t)− F̂N(t)
)∣∣∣ . (4.14)

Using
∣∣∣1− FN(t)− F̂N(t)

∣∣∣ ≤ 1 in (4.14) together with (4.5) and (4.13),

I ≤

 F̂N(t)
(
1− F̂N(t)

)
Nε

1/2

+
2

(2Nε)3/4
,

+
1

Nε1/2

(∣∣∣∣∣
N∑

n=1

(
1(Q̂(n) −

∣∣∣e(n)Q

∣∣∣ ≤ t ≤ Q̂(n) +
∣∣∣e(n)Q

∣∣∣))∣∣∣∣∣
)1/2

,

≤

 F̂N(t)
(
1− F̂N(t)

)
Nε

1/2

+
2

(2Nε)3/4
,

+
1

Nε1/2

(∣∣∣∣∣
N∑

n=1

(
1(Q̂(n) −

∣∣∣e(n)Q

∣∣∣ ≤ t ≤ Q̂(n) +
∣∣∣e(n)Q

∣∣∣))∣∣∣∣∣
)
, (4.15)

where we also used
√
x ≤ x if x = 0 or x ≥ 1. Since (4.15) relies on both (4.6) and

(4.10), this bound occurs with a probability of at least (1−ε)2 = 1−2ε+ε2. Combining

(4.5) and (4.15) with (4.4) completes the proof.
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The decomposition of the error into sampling and discretization contributions can

be used to adaptively improve a given CDF estimator. If sampling error is the larger

contributor to the overall error, more samples should be taken to decrease the sampling

contribution. On the other hand, if the error majorly comes from discretization, a more

accurate numerical solution should be used.

1.1 Numerical Experiments: Error in CDF

Harmonic oscillator

Reconsider the harmonic oscillator from §2.1.4 this time with parameters k and m as

random variables:

u̇1(t)
u̇2(t)

+

 0 −1

k/m 1/m

u1(t)
u2(t)

 =

 0

50/m ∗ cos(10t)

 , t ∈ (0, 2],

with initial conditions (u1(0), u2(0)) = (5, 0). Let k have a normal distribution with

mean 50 and a standard deviation of 5 and m be uniformly distributed over [.125, .325].

For the QoI, choose R = −1 and G(u; t) = u1(t). With ε = 0.05 in (4.3), the nominal

CDF (4.2) is computed using the true solution given in [6] with 1000 samples. The

numerical solution is obtained using cG(1) with 40 elements and the approximate CDF

(2.20) is computed with N = 100 samples. The nominal and computed CDF are shown

in Figure 4.1a. The computed error bound along with the sampling and discretization

contributions are shown in Figure 4.2. Both sources contribute to the error, with the

sampling error being slightly more dominant. The computed bound is indeed larger

than the actual error in the distribution. Both the bound and the error peak near the

inflection point of the CDF, with the error bound being about six times larger than the

true error.
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(a) Comparing computed error bound (4.3)
to true error for the oscillator problem in
§4.1.1 when using 1000 samples for the nom-
inal CDF and 100 samples for the numerical
CDF.
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(b) Breaking the error bound into sampling
and discretization contributions for the oscil-
lator problem in §4.1.1 when using 100 sam-
ples. The sampling and discretization contri-
butions are computed as the first and second
terms of (4.3), respectively.

Figure 4.2: Error bound for oscillator example in §4.1.1.

Lorenz System

Consider the Lorenz system (3.16), where we let one of the initial conditions be a

random variable. More precisely, u1(0) = θ is uniformly distributed over the interval
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(0, 2]. Again let σ = 10, r = 28, and b = 8
3
. For the QoI (3.4), set R = 3 and

G(u; t) = u1(t). A reference solution and QoI are obtained using an accurate time-

integrator (SciPy’s solve ivp with event tracker) with an absolute tolerance of 10−15

and a relative tolerance of 10−8. This time, the numerical solution is computed using

the cG(1) method with 30 elements.

The values needed for equation (3.26) are

ψ = (1, 0, 0)⊤, f(u, t) = (σ(u2 − u1), ru1 − u2 − u1u3, u1u2 − bu3)
⊤,

and

∇uf(u, t) =


σ −σ 0

r − u3 −1 −u1
−u2 u1 −b

 .

hence, for (3.27), (3.28), and (3.36) the data are

ψ1 = (−1, 0, 0)⊤, ψ2 = (−σ, σ, 0)⊤, ψ3 = (1, 0, 0)⊤.

The bound (4.3) is computed with ε = 0.05. The Figure 4.1b compares the numerical

CDF computed using 80 samples to the nominal CDF using 1000 samples. Figure 4.3

shows the discretization and sampling contributions to the calculated error bound. For

this example, the discretization is the larger contributor to the error in the CDF, which

is likely due to the chaotic nature of the system. As in §4.1.1 the error bound is roughly

six times the true error at its peak.

2 Adjoint-based Adaptive MLMC Algorithm

This section presents the novel adaptive MLMC algorithm. Recall that Q̂ML
{Nℓ},L denotes

the L-level MLMC estimator with Nℓ samples taken on level ℓ. The algorithm utilizes

a posteriori error analysis for different QoIs in two ways: i) to accurately compute a
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Figure 4.3

stopping criteria and ii) to adaptively create meshes as new levels are added. For the

stopping criteria, note that if a tolerance ϵ is desired for the MSE, it is enough to have

V
[
Q̂ML

{Nℓ},L

]
< ϵ/2, and

(
E
[
Q̂ML

{Nℓ},L −Q
])2

< ϵ/2. (4.16)

The variance V
[
Q̂ML

{Nℓ},L

]
is controlled by the number of samples taken on each level

and was discussed in §4.1.3. The bias E
[
Q̂ML

{Nℓ},L −Q
]
is controlled by the accuracy of

the highest level. Recall that the bias can be approximated with a finite number of

samples as

E
[
Q̂L−1 −Q

]
≈ 1

NL−1

NL−1∑
n=1

(
Q̂L−1(w

(n)
L−1)−Q(w

(n)
L−1)

)
. (4.17)

The term Q̂L−1(w
(n)
L−1)−Q(w

(n)
L−1) is an error in the QoI and as such can be accurately

estimated via the adjoint-based a posteriori analysis discussed early in this thesis.

The adaptive creation of meshes also relies on a posteriori error estimates. More

precisely, these methods utilize decompositions of the error estimates to determine
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how to effectively refine the mesh. The two adaptive methods used in this thesis are

presented in §4.2.1 along with slight modifications to work in the context of MLMC. A

description and pseudo-code of the adaptive MLMC algorithm are provided in §4.2.2.

Finally, we present numerical experiments to compare the efficiency of using adaptively

created meshes versus uniform meshes.

2.1 Adaptive Creation of New Levels for MLMC

There are many refinement methods to choose from when creating the grid for a new

level. MLMC algorithms usually employ standard uniform refinement [47]. We take

advantage of the form of the error decompositions presented throughout Chapter §2.4

and 3 in order to adaptively create new grids and in turn create a more efficient MLMC

algorithm. The rest of this section describes the different adaptive refinement methods

used in this article. Since these refinement methods are applied to individual samples,

we also discuss how each refinement method is adapted to deal with multiple samples.

Dual Weighted Residual Refinement

For the dual-weighted-residual (DWR) refinement method, the regions, τ (either time-

intervals or regions in Ω), corresponding to the largest contributions of error are refined

by a given factor [5,8]. This type of grid refinement relies on the error decompositions

and some criteria to determine whether a region should be refined or not. Possible crite-

ria include refining any region that corresponds to an error larger than some tolerance,

or refining a certain number of regions that contribute the most error.

When using this refinement method in an MLMC algorithm, we want to combine

data from multiple samples to determine which regions to refine. We do this by deter-

mining which regions should be refined for each individual sample, and then refining

all of these regions.
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More precisely, let Th = {τ1, τ2, ..., τM} be a simplicial decomposition of a domain Ω,

where h denotes the maximum diameter of the elements of Th. Let U(w
(1)) = U(x;w(1))

and U(w(2)) = U(x;w(2)) be two numerical solutions corresponding to different samples

of the random parameter w. Let J = {τJ1 , τJ2 , ..., τJM̂} be the set of M̂ < M regions

to be refined based on the error decomposition corresponding to the numerical solution

U(w(1)). Also let K = {τK1 , τK2 , ..., τKM̃
} be the similar set corresponding to U(w(2)).

We then refine all of the regions in the union of both sets, J ∪ K.

Meso-scale Refinement

In time-dependent problems, a meso-scale refinement of the time domain may be used in

order to preserve cancellations of the error over large sections of the domain [20]. This

refinement method considers the accumulation of the error over sub-intervals and forms

“meso-scale regions”, i.e. regions of maximal cancellation in the error. The meso-scale

regions are each uniformly refined, using different scaling factors on different regions.

Since uniform refinement usually preserves cancellations, the locations of these minima

are preserved but the error decreases. Examples presented in this article follow the

“Allocation of fixed resources” algorithm from [20], which is described below.

Given a numerical solution U of an IVP (1.1) (or IBVP (1.6)), computed over a

temporal grid T = {I1, I2, . . . , IÑ}, define the accumulated contributions to the error

as

Ek =

∣∣∣∣∣
k∑

i=1

eIi

∣∣∣∣∣ , (4.18)

where the eIi are define in (2.90) (or (2.131)). Meso-scale regions, or meso-regions, are

determined by finding the global minimum of the accumulated error after the initial

increase of accumulated error. This is then repeated, starting at the minimum, until

the end of the temporal domain is reached. See Figure 4.4b for an example of an Ek

and the corresponding meso-regions.
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(a) Nonstandard QoI for the harmonic
oscillator in §3.2.3, yielding the fifth
occurrence of u1 = 0.

(b) Accumulated error Ek and
corresponding meso-regions for level ℓ = 0
of oscillator example in §3.2.3.

Figure 4.4

Let P be the number of meso-scale regions and Ñi be the number of time-steps

in the i-th meso-scale region. If the i-th meso-scale region starts at interval Ip and

ends at interval Ir, then Ñi = r − p + 1. Also let Ei = (Er − Ep) denote the error

accumulated over the i-th meso-scale region. Assume that this error accumulated over

the i-th meso-scale region satisfies

Ei =
ci

Ñ q
i

, (4.19)

where ci is some positive constant and q is determined by the order of the numerical

method. The goal of the meso-scale refinement is to create a new grid with N̂ sub-

intervals that minimizes the total error. If the total number of intervals N̂ is fixed, the

total error is minimized if

ci

N̂ q+1
i

= K, ∀i, (4.20)

for some constant K. The N̂is are obtained as follows: First obtain all ci from (4.19).
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Then, rearranging (4.20) to get an expression for N̂i and using the fact that

P∑
i=1

N̂i = N̂ , (4.21)

compute the value of K as

K =

[
1

N̂

P∑
i=1

(
c
1/(q+1)
i

)]q+1

. (4.22)

Finally, obtain the N̂is from (4.20).

It is not clear how to modify the meso-scale refinement to combine information

from multiple samples. Instead of combining the samples, we use the refinement that

corresponds to the single sample that had the largest computed absolute error in the

QoI, with the added condition that regions are never unrefined.

This is accomplished as follows. First, a tentative level ℓ grid is created with the

meso-regions and the N̂is as described above. Then, a common refinement of the meso-

regions from this tentative and the level ℓ−1 is taken, see Figure 4.5a for an illustration.

For each of the regions in this common refinement, determine whichever grid (ℓ− 1 or

tentative) has more nodes in that region. Finally, using that number of nodes, make a

uniform sub-grid over that region. This process is explained in Figure 4.5b. Here the

grid at level ℓ− 1 has two meso-scale regions, with the first meso-region having a single

interval while the second meso-region has five sub-intervals. The tentative grid (shown

in the middle) has three meso-regions having one, six and one intervals respectively.

The refinement, which forms the level ℓ grid is shown at the bottom. This grid has four

meso-regions having one, four, three and three intervals, respectively. We observe that

all regions of level ℓ grid have a finer discretization than the corresponding regions in

the level ℓ− 1 grid.
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level ℓ-1

tentative

level ℓ

(a) Meso-regions

level ℓ-1

tentative

level ℓ

(b) Meso-regions and sub-intervals

Figure 4.5: From top to bottom: level ℓ−1, tentative, and level ℓ grid. The meso-regions
are marked by thicker and longer lines, while the intervals within each meso-region are
marked by lighter and shorter lines.

2.2 MLMC Algorithm

The adaptive MLMC routine is given in Algorithm 1. It requires a user supplied initial

mesh, an initial number of samples N , and a tolerance ϵ for which the goal is to achieve

MSE< ϵ. First N samples (2.26) involving the QoI (2.104) are obtained. Each of these

N samples requires sampling the random parameter w, solving (1.4) numerically over

the initial provided mesh, and using that solution to obtain the QoI. Along with each

sample, the contributions (2.114) to the error in the computed QoI are obtained and

the sample variance (2.29) and sample bias (2.30) are computed. With the sample

variances, the optimal number of samples (2.32) is computed. If the optimal number

of samples is larger than N , more samples (2.26) involving the QoI (2.104) are taken

and the bias and variance are updated to include the new data.

Next, the bias is compared to the desired tolerance. If the tolerance has not been

achieved, a new level is added. The mesh for the new level is constructed using an

adaptive refinement method as discussed in §4.2.1, based off the error contributions

(2.114). N samples (2.26) involving the QoI (2.104) are obtained on this new level,

along with the error contributions (2.114),variance (2.29), and bias (2.30). The optimal

number of samples (2.32) is computed for all levels. Extra samples are taken on each
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level as needed and the variances are updated. The bias is also updated to include all

samples taken on the highest level. This process is repeated, adding as many levels as

needed, until the bias has reached the desired tolerance. The MSE is then computed

via (2.31).

Algorithm 1: Adaptive MLMC driver routine

Data: N ,init mesh,ϵ

Set L=1 and ℓ = 0

Compute N samples (2.26) involving the QoI (2.104), error contributions

(2.114), variance (2.29), and bias (2.30).

Find optimal number of samples, N0,opt, using (2.32).

Compute N0,opt −N new samples (2.26) involving the QoI (2.104), update

variance (2.29) and bias (2.30) to include all N0,opt samples.

while bias2 > ϵ/2 do

Add new level, L=L+1 and ℓ = ℓ+ 1

Create new mesh.

Compute N samples (2.26) involving the QoI (2.104), error contributions

(2.114), variance (2.29), and bias (2.30).

for ℓ̂ in 0,...,L-1 do

Find optimal number of samples (2.32) for level ℓ̂.

Take extra samples (2.26) as needed. Update variance (2.29) to include

new samples.

end

Compute bias (2.30).

end

Compute MSE using (2.31)

Compute MLMC estimator, Q̂ML
L,{Nℓ}, using (2.25) and the MSE using (2.31)

Result: Q̂ML
L,{Nℓ}, MSE

Remark 3. When creating new levels, the initial number of samples taken does not have
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to be the same number N as for the lowest level. If the same large N is used for every

level, starting new levels will be much more expensive than starting previous levels and it

becomes more likely that unnecessary samples are taken on high levels. In our examples

below, we keep the cost of starting a level relatively fixed for the first three levels, after

which we keep the number of initial samples constant. This maintains a reasonable

computational cost while also taking enough samples for the variance estimates to be

meaningful.

Remark 4. Algorithm 1 details how to obtain an estimated expected value in a standard

QoI (2.104) corresponding to the solution of the differential equation (1.4), although the

algorithm is applicable to any differential equation and QoI, provided an error decom-

position is available.

2.3 Numerical Experiments: Adaptive MLMC

Harmonic Oscillator

Consider the harmonic oscillator

ω̈ = − k

m
ω − c

m
ω̇ +

F0

m
cos(νt+ wd), t ∈ (0, 3], ω(0) = 5, ω̇(0) = 0.

with deterministic parameters c = 1, F0 = 50, θd = 0, ν = 10, and where k and m are

random parameters. Rewriting as a system of first-order ODEs, u̇+ Au = f̃(t), gives

u̇1(t)
u̇2(t)

+

 0 −1

k/m 1/m

u1(t)
u2(t)

 =

 0

50/m ∗ cos(10t)

 , t ∈ (0, 3]. (4.23)

With initial conditions (u1(0), u2(0)) = (5, 0). We look at examples of both a standard

QoI and the aforementioned non-standard QoI.



Chapter 4. Uncertainty Quantification: CDF Bound and MLMC Algorithm 97

Oscillator: Standard QoI

Consider the oscillator (4.23) where k ∼ N(50, 2), a normal distribution with mean 50

and standard deviation 2, and m ∼ Unif [0.225, 0.275], a uniform distribution between

0.225 and 0.275. The standard QoI is QS(u) = [(1, 0)⊤ · u(T )] = u1(T ), the position of

the oscillator at the final time T = 3. For this QoI, the error representation (2.79) is

e(T ) · (1, 0)⊤ =

∫ T

0

ϕ ·
(
f̃ − U̇ − AU

)
dt, (4.24)

where ϕ is the solution to the adjoint problem−ϕ̇+ A⊤ϕ = 0 t ∈ [0, T ),

ϕ(T ) = 1.
(4.25)

The grid for the lowest level has 27 elements, with the number of elements roughly

doubling for each further level. The algorithm is run using three different grid cre-

ation methods (uniform grid creation, DWR refinement, and meso-scale refinement) to

compare cost efficiencies. In each, we start by taking 100 samples on the lowest level.

When creating further levels, the second level starts with 50 samples and all further

levels start with 20 samples. The tolerance for the MSE is set to ϵ = 0.001.

Results when using uniform grids are shown in Tables 4.1 and 4.2. Table 4.1 provides

details for each level of the estimator, including the number of elements used to create

the grid, the relative cost per sample, the number of samples, and variance contribution

(2.29). Table 4.2 gives results for the MLMC estimator, including the variance, squared

bias, MSE (2.31), the estimated expected value (2.25), and the total relative cost.

The cost is computed by summing across all levels, the number of samples at each

level times the cost per sample at that level. The cost of the sample at level ℓ = 0

(i.e. the cost of computing a single value of Q̂0(w
(n)
ℓ ), for any ℓ) is normalized to

1. Samples for levels ℓ > 0 require computing two values, Q̂ℓ(w
(n)
ℓ ) and Q̂ℓ−1(w

(n)
ℓ ).

Hence, the cost of taking a sample on level ℓ is the sum of the costs of computing

Q̂ℓ(w
(n)
ℓ ) and Q̂ℓ−1(w

(n)
ℓ ) relative to the cost of computing Q̂0(w

(n)
ℓ ). For example, if
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ℓ = 1 and computing a single value of Q̂1(w
(n)
1 ) is twice the computational cost of

computing a single Q̂0(w
(n)
1 ), then the relative cost of a sample on the ℓ = 1 level is

Cost(Q̂1(w
(n)
1 )) + Cost(Q̂0(w

(n)
1 )) = 2 + 1 = 3.

Tables 4.3 and 4.4 show similar details when the grids are created using DWR

refinement. Results for the MLMC estimator using meso-scale refinement are provided

in Tables 4.5 and 4.6. Since levels of the MLMC estimator are made from the difference

between two approximate QoIs, the variance per level decrease for higher levels (i.e. as

the approximations converge). When using uniform grids, the MLMC estimator requires

four levels in order to achieve tolerance in bias. The estimator using DWR refinement

requires three levels. With meso-scale refinement, only two levels are required to have

a bias less than tolerance. More samples are required on level ℓ = 1 when using DWR

or meso-scale refinement but the overall costs are still lower compared to using uniform

refinement. Grids for each refinement method are shown in Figure 4.6.

Level # Elems Cost Per Sample # Samples Var. Per Level
0 27 1 227 4.32968E-4
1 54 3 52 7.36927E-4
2 108 6 20 1.90041E-6
3 216 12 20 3.28090E-7

Table 4.1: Results for each level of estimator in oscillator example from §4.2.3 with
ϵ = .001. New grids are obtained via uniform refinement.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
0.00117 2.82413E-5 0.00120 -0.38276 743

Table 4.2: Results of MLMC estimator in oscillator example from §4.2.3 with ϵ = .001.
New grids are obtained via uniform refinement.
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Level # Elems Cost Per Sample # Samples Var. Per Level
0 27 1 227 4.32968E-4
1 63 3.333 75 4387715E-4
2 153 8 20 1.36574E-6

Table 4.3: Results for each level of estimator in oscillator example from §4.2.3 with ϵ =
.001. New grids are obtained via DWR refinement where the 50% largest contributions
to the error are refined by a factor of 3.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
9.22049E-4 8.02556E-5 0.001002 -0.40173 637

Table 4.4: Results of MLMC estimator in oscillator example from §4.2.3 with ϵ = .001.
New grids are obtained via DWR refinement where the 50% largest contributions to
the error are refined by a factor of 3.

Level # Elems Cost Per Sample # Samples Var Per Level
0 27 1 227 4.32968E-4
1 59 3.185 65 8.27785E-4

Table 4.5: Results for each level of estimator in oscillator example from §4.2.3 with
ϵ = .001. New grids are obtained via meso-scale refinement.

Tot. Var Squared Bias MSE Est. Exp. Val Tot. Cost
0.00126 1.80659E-5 0.00127 -0.3816 434.03

Table 4.6: Results of MLMC estimator in oscillator example from §4.2.3 with ϵ = .001.
New grids are obtained via meso-scale refinement.

Oscillator: Nonstandard QoI

Using the same equation and deterministic parameters as in §4.2.3, now let k ∼ N(50, 1)

and m ∼ Unif(0.235, 0.265). Let the nonstandard QoI to be the time of the 5th

occurrence of u1 = 0. More precisely, set ψ = (1, 0)⊤ in (3.5). Also, for the function H

in (3.1), set R = 0 and choose a t̂ between the fourth and fifth occurrence of u1 = 0;
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see Figure 4.4a. The error representation (3.26) becomes

tt − tc ≈
ψ · e(tc))

A⊤ψ · U(tc)− ψ · f̃(tc) + A⊤ψ · e(tc)
. (4.26)

Using Theorem 4, the two error terms are given as

ψ · e(tc) =
∫ tc

0

[
f̃ · ϕ1 −

dU

dt
· ϕ1 − AU · ϕ1

]
dt (4.27)

A⊤ψ · e(tc) =
∫ tc

0

[
f̃ · ϕ2 −

dU

dt
· ϕ2 − AU · ϕ2

]
dt, (4.28)

where ϕ1 and ϕ2 are the solutions to the adjoint problems:−ϕ̇1 + A⊤ϕ1 = 0 t ∈ [0, tc),

ϕ1(tc) = ψ,
,

−ϕ̇2 + A⊤ϕ2 = 0 t ∈ [0, tc),

ϕ2(tc) = A⊤ψ,
. (4.29)

All examples in this section start with 100 samples of a numerical solution obtained

over a uniform grid with 18 sub-intervals. The second level starts with 50 samples and

all further levels with 20 samples. The grids used for levels beyond the first are obtained

from the different creation methods as discussed in §4.2.1.

Tables 4.7 and 4.8 provide results for the levels and overall MLMC estimator when

using uniform grids. Results for the MLMC estimator using DWR refinement are shown

in Tables 4.9 and 4.10. Tables 4.11 and 4.12 give results for the estimator when grids

are created using meso-scale refinement. The grids for different levels of each method

can be seen in Figure 4.7. In all three cases, the initial number of samples is enough to

achieve tolerance for the variance of the estimators. The different grid creation methods

perform similarly, all requiring four levels and the same number of samples.

Lorenz Equations

Consider the (nonlinear) Lorenz system,

u̇1 = σ(u2 − u1),

u̇2 = ru1 − u2 − u1u3,

u̇3 = u1u2 − bu3,

 t ∈ (0, 2] with


u1(0) = w,

u2(0) = 0,

u3(0) = 24,

(4.30)
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Level # Elems Cost Per Sample # Samples Var. Per Level
0 18 1 100 1.04977E-6
1 36 3 50 1.44317E-6
2 72 6 20 5.22219E-6
3 144 12 20 2.11021E-9

Table 4.7: Results for each level of estimator in oscillator example with NSQoI from
§4.2.3 with ϵ = 1E − 5. New grids are obtained via uniform refinement.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
3.01727E-6 2.02532E-6 5.04259E-6 1.45701 610

Table 4.8: Results of MLMC estimator in oscillator example with NSQoI from §4.2.3
with ϵ = 1E − 5. New grids are obtained via uniform refinement.

Level # Elems Cost Per Sample # Samples Var. Per Level
0 18 1 100 1.04977E-6
1 34 2.888 50 2.17999E-6
2 72 5.888 20 1.54181E-6
3 140 11.777 20 2.25459E-9

Table 4.9: Results for each level of estimator in oscillator example with NSQoI from
§4.2.3 with ϵ = 1E − 5. New grids are obtained via DWR refinement where the 50%
largest contributions to the error are refined by a factor of 3.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
4.77384E-6 1.73603E-7 4.94744E-6 1.45620 597.77

Table 4.10: Results of MLMC estimator in oscillator example with NSQoI from §4.2.3
with ϵ = 1E − 5. New grids are obtained via DWR refinement where the 50% largest
contributions to the error are refined by a factor of 3.

and set σ = 10, r = 28, and b = 8
3
. The initial condition w is a random variable

w ∼ Unif(0, 2].

The nonstandard QoI is the time of the 2nd occurrence of u1 = 3. That is, set

ψ = (1, 0, 0)⊤, in (3.5). In (3.1) set R = 3 and choose a t̂ between the first and second

occurrence of u1 = 3.
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Level # Elems Cost Per Sample # Samples Var. Per Level
0 18 1 100 1.0497E-6
1 39 3.166 50 1.06958E-6
2 70 6.055 20 1.23273E-7
3 121 10.611 20 3.83435E-9

Table 4.11: Results for each level of estimator in oscillator example with NSQoI from
§4.2.3 with ϵ = 1E − 5. New grids are obtained via meso-scale refinement.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
2.24646E-6 2.11483E-7 2.45794E-6 1.45597 591.66

Table 4.12: Results of MLMC estimator in oscillator example with NSQoI from §4.2.3
with ϵ = 1E − 5. New grids are obtained via meso-scale refinement.

The error approximation (3.26) becomes

tt − tc ≈
ψ · e(tc)

(∇uf(tc))
⊤ ψ · U(tc)− ψ · f(tc) + (∇uf(tc))

⊤ ψ · e(tc)
. (4.31)

Using Theorem 4, the two error terms are given as

ψ · e(tc) =
∫ tc

0

[
f · ϕ1 −

dU

dt
· ϕ1

]
dt (4.32)

(∇uf(tc))
⊤ ψ · e(tc)) =

∫ tc

0

[
f · ϕ2 −

dU

dt
· ϕ2

]
dt, (4.33)

where ϕ1 and ϕ2 are the solutions to the adjoint problems−ϕ̇1 = (∇uf)
⊤ ϕ t ∈ [0, tc),

ϕ1(tc) = ψ,
,

−ϕ̇2 = (∇uf)
⊤ ϕ t ∈ [0, tc),

ϕ2(tc) = (∇uf)
⊤ ψ,

.

(4.34)

The algorithm starts with 100 samples of a numerical solution obtained over a uniform

grid with 15 sub-intervals. The second level starts with 50 samples and all further

levels with 20 samples. The grids used for levels beyond the first are obtained from

the different creation methods as discussed in §4.2.1. Tables 4.13, 4.15, and 4.17 show

results for each level of the estimators when using uniform grids, DWR refinement and
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meso-scale refinement, respectively. Results for the MLMC estimators, using uniform

grids, DWR refinement, and meso-scale refinement are shown in Tables 4.14, 4.16,

and 4.18, respectively. The grids used in each estimator are shown in Figure 4.8.

For this nonlinear problem, all three grid creation methods perform similarly. The

different methods require two levels and use the same number of samples and hence the

comparable approximate costs.

Level # Elems Cost Per Sample # Samples Var. Per Level
0 24 1 101 4.59302E-5
1 48 3 50 5.66121E-7

Table 4.13: Results for each level of the estimator in Lorenz example from §4.2.3 with
ϵ = 1E − 4. New grids are obtained via uniform refinement.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
4.64963E-5 3.68484E-5 8.33448E-5 0.84945 251

Table 4.14: Results of the MLMC estimator in Lorenz example from §4.2.3 with ϵ =
1E − 4. New grids are obtained via uniform refinement.

Level # Elems Cost Per Sample # Samples Var. Per Level
0 24 1 100 4.59302E-5
1 50 3.083 50 8.13257E-7

Table 4.15: Results for each level of the estimator in Lorenz example from §4.2.3 with
ϵ = 1E − 4. New grids are obtained via DWR refinement where the 50% largest
contributions to the error are refined by a factor of 3.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
4.67435E-5 6.52347E-6 5.32670E-5 0.84501 254.16

Table 4.16: Results of the MLMC estimator in Lorenz example from §4.2.3 with ϵ =
1E−4. New grids are obtained via DWR refinement where the 50% largest contributions
to the error are refined by a factor of 3.
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Level # Elems Cost Per Sample # Samples Var. Per Level
0 24 1 100 4.59302E-5
1 53 3.208 50 4.71161E-6

Table 4.17: Results for each level of the estimator in Lorenz example from §4.2.3 with
ϵ = 1E − 4. New grids are obtained via meso-scale refinement.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
5.06418E-5 3.03186E-5 8.09605E-5 0.84931 260.4

Table 4.18: Results of the MLMC estimator in Lorenz example from §4.2.3 with ϵ =
1E − 4. New grids are obtained via meso-scale refinement.

Two-Body Problem

Consider the two body problem

u̇1 = u3,

u̇2 = u4,

u̇3 =
−u1

(u21 + u22)
3/2
,

u̇4 =
−u2

(u21 + u22)
3/2
,


t ∈ (0, 10], u(0) = (0.4, 0, 0, w)⊤, (4.35)

which models a small body orbiting a much larger body. Here u1, u2 are the spatial

coordinates of the orbiting body relative to the larger body, and u3, u4 are the respective

velocities. The last component of the initial condition, w, is a random variable w ∼

Unif [1.97, 2].

For the nonstandard QoI, set ψ = (1, 0, 0, 0)⊤ in (3.5). Also set R = 0 in (3.1) and

choose a t̂ to obtain the 3rd occurrence of u · ψ = u1 = 0. The error representation

(3.26) for this problem is the same as (3.4). From Theorem 4, the two error terms are



Chapter 4. Uncertainty Quantification: CDF Bound and MLMC Algorithm 105

again given by (4.32) where ϕ1 and ϕ2 are the solutions to the adjoint problems−ϕ̇1 = (∇uf)
⊤ ϕ t ∈ [0, tc),

ϕ1(tc) = ψ,
,

−ϕ̇2 = (∇uf)
⊤ ϕ t ∈ [0, tc),

ϕ2(tc) = (∇uf)
⊤ ψ,

.

(4.36)

The MLMC algorithm begins with 100 samples of a numerical solution obtained

over a uniform grid with 40 sub-intervals. The second level starts with 50 samples and

all further levels with 20 samples. The grids used for levels beyond the first are obtained

from the different creation methods as discussed in §4.2.1.

Results for the MLMC estimator using uniform grids are shown in Tables 4.19 and

4.20. Tables 4.21 and 4.22 give results when using DWR refinement. Results when

using meso-scale refinement are provided in Tables 4.23 and 4.24. The grids used in

each estimator are provided in Figure 4.9.

Here, the MLMC estimator using DWR refinement is the most cost efficient, requir-

ing three levels to achieve the desired tolerance in bias. Using meso-scale refinement,

the estimator requires four levels, and the estimator using uniform grids requires five

levels. Notice that the two estimators using adaptive grid creation methods do not

achieve the desired tolerance for variance, due to under-sampling on some level(s). The

estimator using DWR refinement is close to meeting tolerance and would only require

some more samples on the lowest, cheapest level. The estimator using meso-scale refine-

ment is further from tolerance and would require more samples on all levels, including

the higher, more expensive levels. The large variance and slow convergence of the levels

when using meso-scale refinement is due to the large variance of the approximated QoI

and the fact that our grid creation method only uses information from a single sample

of the QoI. The random parameter, u4(0) = w, is the initial velocity of the of the body

in the y-direction. The trajectory of the body is sensitive to initial velocity, thus small

changes in u4(0) lead to large changes in the sample QoI. This causes the grid creation

method to be less effective because we base the refinement off of a single sample, which



Chapter 4. Uncertainty Quantification: CDF Bound and MLMC Algorithm 106

can lead to a poor refinement when taking a different sample.

Level # Elems Cost Per Sample # Samples Var. Per Level
0 40 1 389 5.1388E-4
1 80 3 50 1.86982E-6
2 160 6 20 1.35918E-6
3 320 12 20 1.20867E-7
4 640 24 20 1.49859E-8

Table 4.19: Results for each level of the estimator in two-body example from §4.2.3
with ϵ = 1E − 3. New grids are obtained via uniform refinement.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
5.17251E-4 3.38445E-5 5.55109E-4 7.24045 1379

Table 4.20: Results of the MLMC estimator in two-body example from §4.2.3 with
ϵ = 1E − 3. New grids are obtained via uniform refinement.

Level # Elems Cost Per Sample # Samples Var. Per Level
0 40 1 255 6.99600E-4
1 74 2.85 50 4.15496E-6
2 160 5.85 20 8.88944E-7

Table 4.21: Results for each level of the estimator in two-body example from §4.2.3
with ϵ = 1E − 3. New grids are obtained via DWR refinement where the 50% largest
contributions to the error are refined by a factor of 3.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
7.04644E-4 3.72135E-4 0.00107 7.06503 514.5

Table 4.22: Results of the MLMC estimator in two-body example from §4.2.3 with
ϵ = 1E − 3. New grids are obtained via DWR refinement where the 50% largest
contributions to the error are refined by a factor of 3.
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Level # Elems Cost Per Sample # Samples Var. Per Level
0 40 1 204 4.46312E-4
1 81 3.025 64 8.85888E-4
2 176 6.425 55 1.49708E-3
3 394 14.25 20 1.10254E-3

Table 4.23: Results for each level of the estimator in two-body example from §4.2.3
with ϵ = 1E − 3. New grids are obtained via meso-scale refinement.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
2.93953E-3 2.18287E-4 0.00315 6.88846 1035.975

Table 4.24: Results of the MLMC estimator in two-body example from §4.2.3 with
ϵ = 1E − 3. New grids are obtained via meso-scale refinement.

Stationary Advection-Diffusion Equation

Consider the equation∇2u(x) + b · ∇u(x) = f(x), x ∈ (0, 3)× (0, 1),

u(x) = 0, x ∈ ∂Ω.
(4.37)

The vector b = (w, 0)⊤ has, as its first component, the random parameter w =

unif(1200, 1600). The source f is non-zero only over an interior region of the domain,

and is given as

f =

10000(x− 1)(x− 2.5)(y − 1
6
)(y − 5

6
) 1 ≤ x ≤ 2.5, 1

6
≤ y ≤ 5

6
,

0 else.
(4.38)

The weak form of (4.37) is: Find u ∈ H1(Ω) such that

−
(
∇u,∇v

)
+
(
b · ∇u, v

)
=
(
f, v
)
, ∀v ∈ H1

0 (Ω). (4.39)

The QoI is the integral of the solution over the rectangle (1, 1.5)× (1/3, 2/3):

QS(u) =

∫
Ω

ψ · udΩ, where ψ =

1, (x, y) ∈ (1, 1.5)× (1
3
, 2
3
)

0, else.
(4.40)
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See Figure 2.2a for a visualization of the supports of f and ψ. For the standard QoI

(2.118) the error representation (2.119) becomes(
e, ψ
)
= −

(
∇U,∇ϕ

)
+
(
∇ · (bU), ϕ

)
−
(
f, ϕ
)
, (4.41)

where ϕ is the solution to the adjoint problem∇2ϕ(x)− b · ∇ϕ(x) + ψ(x) = 0, x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω.
(4.42)

The MLMC algorithm is applied to this problem using two different mesh creation

methods; uniform and DWR refinement. In both cases we aim to roughly double

the number of elements when creating new levels. This is done so that each level of

the different methods can be more easily compared. When using uniform meshes, we

multiply the number of nodes in each coordinate by
√
2 and round up. The uniform

meshes are shown in Figure 4.10 and results in Table 4.25 and 4.26. For the DWR

refinement, the regions corresponding to the 25% largest contributions to the error

are refined (using DOLFIN Python’s in-built refine function). The adaptively refined

meshes are shown in Figure 4.11 and results in Tables 4.27 and 4.28. For this higher

dimensional, linear problem, the MLMC estimator using DWR refinement is much more

cost efficient than using uniform meshes. With uniform meshes, the estimator requires

five levels to achieve the desired tolerance in bias, while the DWR method requires

three levels. Also, when using uniform meshes, more samples on each level are required

than in the DWR method in order to reduce the variance.
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Level # Elems Cost Per Sample # Samples Var. Per Level
0 72 1 1530 3.19378E-6
1 162 3.25 29 7.93078E-7
2 288 6.25 34 1.96356E-6
3 578 12.027 10 3.15403E-7
4 1152 24.027 10 2.41456E-6

Table 4.25: Results for each level of the estimator in the stationary advection-diffusion
example from §4.2.3 using uniform meshes with tolerance ϵ = 10−5.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
8.68040E-6 5.87876E-7 9.26828E-6 -0.23215 2197.2

Table 4.26: Results of the MLMC estimator in the stationary advection-diffusion ex-
ample from §4.2.3 using uniform meshes with tolerance ϵ = 10−5.

Level # Elems Cost Per Sample # Samples Var. Per Level
0 72 1 979 4.98828E-6
1 135 2.680 25 8.14877E-8
2 291 4.972 10 1.68624E-7

Table 4.27: Results for each level of the estimator in the stationary advection-diffusion
example from §4.2.3 with tolerance ϵ = 10−5. New meshes are obtained using DWR
refinement where the 25% largest contributions to the error are refined.

Tot. Var. Squared Bias MSE Est. Exp. Val Tot. Cost
5.23839E-6 4.10668E-7 5.64906E-6 -0.22919 1120.5

Table 4.28: Results of the MLMC estimator in the stationary advection-diffusion ex-
ample from §4.2.3 with tolerance ϵ = 10−5. New meshes are obtained using DWR
refinement where the 25% largest contributions to the error are refined.
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(a) Uniform refinement grids (b) DWR refinement grids

(c) Meso-scale refinement grids

Figure 4.6: Grids from the different refinement methods for the oscillator example in
§4.2.3.
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(a) Uniform refinement grids (b) DWR refinement grids

(c) Meso-scale refinement grids

Figure 4.7: Grids from the different refinement methods for the oscillator example with
NSQoI in §4.2.3.
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(a) Uniform refinement grids (b) DWR refinement grids

(c) Meso-scale refinement grids

Figure 4.8: Grids from the different refinement methods for the Lorenz example in
§4.2.3
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(a) Uniform refinement grids (b) DWR refinement grids

(c) Meso-scale refinement grids

Figure 4.9: Grids from the different refinement methods for the two-body example in
4.§2.3
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(a) Initial mesh, ℓ = 0

(b) Level ℓ = 1 (c) Level ℓ = 2

(d) Level ℓ = 3 (e) Level ℓ = 4

Figure 4.10: Uniform meshes for the stationary advection-diffusion example in §4.2.3

(a) Level ℓ = 1 (b) Level ℓ = 2

Figure 4.11: Adaptively refined meshes for the stationary advection-diffusion example
in §4.2.3
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Chapter 5

Conclusions

We have developed two methods of uncertainty quantification for several quantities of

interest related to differential equations that depend on random parameters. A bound

in the error of a computed cumulative distribution function has been derived. Also,

an adaptive MLMC algorithm with accurately computed stopping criteria has been

created.

The UQ methods have been applied to a wide array of problems and quantities of

interest and require adjoint-based a posteriori error analysis. We have analyzed the

error in a QoI that is not covered by classical a posteriori error analysis, namely the

first time when a given functional G of the solution achieves a specific value. To fully

analyze this QoI, we have derived a priori convergence results in Theorem 8 and have

developed two different classes of accurate a posteriori error estimates for a QoI that

cannot be expressed as a bounded functional of the solution. The first method, Theorem

9, is based on Taylor’s Theorem and is accurate whenever the numerical solution is

sufficiently accurate and the curvature of the functionalG is not too large. Moreover this

method is cost effective, requiring the solution of only two adjoint problems. The second

class of methods, detailed in §3.1.3, are based on standard root-finding techniques and

are accurate provided the numerical solution is sufficiently accurate near the event of
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interest. These estimates however are more costly, requiring one adjoint solution per

iteration of the root-finding algorithm. Both the Taylor series and the root-finding

approaches provide accurate error estimates in most cases. Some limitations of these

methods have been revealed in §3.1.4 on pages 66 and 67. The poor results in the

example on page 66 are caused by the use of a low accuracy solution and the fact

that computed QoI was closer to the second time the threshold value was crossed than

the first. In the example on page 67, specifically Tables 3.11, 3.12 and 3.13, we have

observed that the issue which arose on page 66 can be remedied by using a numerical

solution that is more accurate near the QoI. Although another issue is revealed in the

final column of Table 3.13, where the Taylor series approach gives poor results even

though the numerical solution is quite accurate. There, the poor result is caused by

assuming that the second derivative of G(u; t) with respect to t can be neglected. The

example in §3.1.4 on page 75 shows that the Taylor series approach may not be accurate

if the error in the QoI is large, but the iterative methods are accurate provided the root

finding technique locates the correct root.

Both methods can be used as a basis for determining the discretization contribution

to an error bound on a CDF, Theorem 10, of the functional when one or more of the

parameters governing the system of differential equations are random variables. The

iterative methods are not suitable for the adaptive MLMC algorithm as they do not

provide a decomposition of the error to use in mesh creation. The MLMC algorithm

1 relies on the error decomposition to accurately approximate the bias and adaptively

refine meshes when creating new levels. It is shown that using an adaptive refine-

ment method, either meso-scale or refining regions of largest error, leads to a more

cost-effective method than uniform refinement. The advantages of adaptive refinement

become more prominent in higher-dimensional problems and in problems where error

accumulation is localized, as is illustrated in §4.2.3.
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[45] M. B. Giles and E. Süli. Adjoint methods for pdes: a posteriori error analysis and
postprocessing by duality. Acta Numerica, 11(1):145–236, 2002.

[46] Michael B. Giles. Multilevel Monte Carlo Path Simulation. Operations Research,
56(3):607–617, 2008.

[47] Michael B. Giles. Multilevel monte carlo methods. Acta Numerica, 24, 2015.



Bibliography 121

[48] Stefan Heinrich. Multilevel monte carlo methods. In Large-Scale Scientific Com-
puting, pages 58–67, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[49] A.M. Johansen. Monte carlo methods. In International Encyclopedia of Education
(Third Edition), pages 296–303. Elsevier, Oxford, third edition edition, 2010.

[50] A. Johansson, J. H. Chaudhry, V. Carey, D. Estep, V. Ginting, M. Larson, and
S.J. Tavener. Adaptive finite element solution of multiscale PDE–ODE systems.
Computer Methods in Applied Mechanics and Engineering, 287:150–171, 2015.

[51] Ralf Kornhuber and Evgenia Youett. Adaptive multilevel monte carlo meth-
ods for stochastic variational inequalities. SIAM Journal on Numerical Analysis,
56(4):1987–2007, 2018.

[52] Jacques Louis Lions. Optimal Control of Systems Governed by Partial Differential
Equations. Springer Berlin, Heidelberg, 1 edition, 1971.

[53] Anders Logg. Multi-adaptive time integration. Appl. Numer. Math., 48(3-4):339–
354, mar 2004.

[54] Ryan G. McClarren. Uncertainty Quantification and Predictive Computational
Science. Springer Cham, 2018.

[55] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the Amer-
ican Statistical Association, 44(247):335–341, 1949.

[56] Walter Rudin. Principles of mathematical analysis. McGraw-Hill New York, 3d
ed. edition, 1976.

[57] R. Scheichl, A. M. Stuart, and A. L. Teckentrup. Quasi-monte carlo and multi-
level monte carlo methods for computing posterior expectations in elliptic inverse
problems. SIAM/ASA Journal on Uncertainty Quantification, 2017.

[58] Robert J. Serfling. Approximation Theorems of Mathematical Statistics. John
Wiley and Sons, 1980.


	Robust Uncertainty Quantification with Analysis of Error in Standard and Non-standard Quantities of Interest
	Recommended Citation

	tmp.1658548282.pdf.h0gwJ

