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Abstract

Multilocus phylogenetic studies often show a high degree of gene tree heterogeneity

—gene trees that have different topologies from each other as well as from the

species tree topology. In some cases, this can lead to studies with hundreds of

loci having distinct gene tree topologies. The degree of heterogeneity is expected
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to increase when there is a high degree of incomplete lineage sorting due to short

branches (as measured in coalescent units) in the species tree. Other potential

sources of heterogeneity include other biological processes such as introgression,

recombination within genes, ancestral population structure, gene duplication and

loss, and horizontal gene transfer, as well as gene tree estimation error due to

short DNA sequences or inadequate substitution models. Here we examine the

relationships between speciation and extinction rates and gene tree heterogeneity

with both gene tree estimation error and no gene tree estimation error. In particular,

higher speciation rates lead to shorter branches in the species tree and, therefore,

higher levels of incomplete lineage sorting. In many cases, it might not be surprising

that every gene tree has a unique topology, even for data sets with 1000 gene

trees. We also propose using the average pairwise Robinson-Foulds (RF) distance

between gene trees as a measure of heterogeneity as opposed to using the average RF

distance between gene trees and the true species tree. Further, methods of inferring

birth-death parameters (speciation and extinction rates) have involved using species

trees estimated from gene trees or concatenation of DNA sequences. We infer these

parameters using gene trees instead of species trees in this work. The method uses

Approximate Bayesian Computation (ABC), which is useful when the maximum

likelihood method is intractable, as in the case of gene trees given a species tree with

a large number of taxa.
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Chapter 1

Introduction

1.1 Background

A phylogeny is a tree representing a group of species’ evolutionary relationships and

histories. The tree depicts how the lineages of the present day species descended

from their ancestors. Life on earth has undergone and evolved several biological and

environmental changes, and traces of these evolutionary histories have been active

research areas in biological studies. For example, changes in traits (physically or

otherwise) can occur among organisms of different species or organisms of the same

species. For instance, American flamingos are pink (or reddish) due to carotenoids
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Chapter 1. Introduction

in their animal and plant plankton diet. In contrast, lesser flamingos (in India and

Sub-Saharan Africa) are paler pink due to the small amount of carotenoids in their

diets (Ali, 1990; McCulloch and Irvine, 2004; Anderson and Anderson, 2010). These

changes in the organisms have several causal factors, particularly environmental

and biological (genetic) factors. Sometimes, gradual changes lead to a divergence

(speciation) of organisms, and identifying the modes of the divergence and how often

it occurs is an active area of study in biology.

Further, species adaptations to their environments can lead to genetic changes

in a population’s history that can impact future generations. These histories can

be studied and identified using phylogenetic trees. The main goal of phylogenetics

is to reconstruct the evolutionary history of present day organisms and describe

their historical relationship using a tree-like form. Of course, all organisms can be

identified by their deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) for some

viruses, and their evolutionary relationships can be studied by comparing their DNA

sequences. DNA is made up of four types of nucleotides: adenine (A), thymine

(T), cytosine (C), and guanine (G). Typically, a phylogenetic tree represents the

evolutionary relationships of a set species given DNA sequences. The major cause

of evolutionary change is mutations in the nucleotide sites.

A common approach to reconstruct the evolutionary histories is the concatenation

2



Chapter 1. Introduction

of DNA sequences obtained from genes from single species at multiple genome sites.

Concatenated sequences from multiple species can be aligned into a supermatrix

(Chesters and Vogler, 2013). However, many studies (e.g., Kubatko and Degnan

(2007); Leaché and Rannala (2011)) reported that such concatenation of sequences

from multiple genes could bias the estimate of the true phylogeny (Leaché and

Rannala, 2011).

1.1.1 Gene and Gene Trees

The term gene is used multiple ways in the literature, and here we use the molecular

definition of gene — a contiguous sequence of DNA. A gene tree describes the

evolutionary relationships between a sample of sequences for a non-recombining

locus. Different gene trees can have separate evolutionary histories. Since every gene

evolved differently, there is no reason to expect that gene trees based on different

genes should have the same topologies. Two genes coalesce, going backward in time

when their historical lineages merge into a single ancestral copy based on a random

process. Gene trees of the genes sampled are contained within the branches of the

species tree and represent the evolutionary histories of the genes. The method for

computing gene tree probabilities involves keeping track of lineages from a gene tree

coalescing on the branches of the species tree (Nei, 1987; Degnan and Rosenberg,

3



Chapter 1. Introduction

2006, 2009).

In this project, we focused on the gene tree topologies extracted from a bifurcating

ultrametric species tree (the tips are equally distant from the root), see Figure 1.1.

There are several types of tree topologies, rooted (ranked and unranked rooted) and

unrooted gene trees. A gene tree is ranked if the order in which the lineages coalesce

is important, and it is said to be unranked if the order is not important (see plots

(a) and (b) on Figure 1.1). Using Newick format, a clade (a set of descendants from

one ancestor) is represented by a pair of parentheses. We can write a ranked gene

tree topology by modifying an unranked tree topology. For example, ((a, b)2, (c, d)3)

and ((a, b)3, (c, d)2) are two different ranked tree topologies from the unranked tree

topology, ((a, b), (c, d)). In the tree, ((a, b)2, (c, d)3), the c and d lineages first coalesce

(i.e., most recently), going back in time, before a and b coalesce, while (a, b) first

coalesce before (c, d) in the second tree, ((a, b)3, (c, d)2). The largest subscript is the

most recent coalescent event, and the rank of the root is 1, but is usually not stated.

The coalescent process is a stochastic model for the random joining of sampled

lineages going backward in time (Kingman, 1982). Also, in the coalescent model, the

time until a coalescent event has an exponential distribution, and its parameter

depends on the remaining number of sampled lineages and the population size.

4



Chapter 1. Introduction

Figure 1.1: Phylogenetic trees. (a), (b) and (d) are rooted and (c) is unrooted tree. Also, (a) -(b) are ultrametric,
(a) has unranked topology (((a, b), c), (d, e)) and (b) has a ranked topology (((a, b)3, c)2, (d, e)4).

The coalescent model is drived from the classical population genetic model, the

Fisher-Wright model (Fieher, 1922; Wright, 1931), which assumes that genetic differ-

ences between individuals do not influence their probability of reproducing; each gene

copy is uniformly probable to have been passed from one generation to another. Also,

populations with the same effective size (an ideal population where all nodes have an

equal expectation of being the ancestors of any descendant(s)) have similar patterns

of genetic variation and genetic drift (random fluctuations in allele frequency over

time) as randomly mating populations regardless of the actual size of the population.
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Chapter 1. Introduction

1.1.2 Species Tree Inference

A species tree describes the evolutionary relationships between a set of species. In

phylogenetic and phylogenomic studies, the species tree is unknown and is treated

as a parameter, while gene trees are treated as random variables whose distributions

depend on the species tree. Based on the increase of the genomic data, species tree

estimation from multiple loci sampled from different genomes is now on the rise but is

challenged by the variability across the genome due to some biological processes, such

as gene duplication and loss, horizontal gene transfer, and incomplete lineage sorting

(Maddison, 1997; Rosenberg and Kumar, 2003; Degnan and Rosenberg, 2006, 2009;

Molloy and Warnow, 2018). Many methods for estimating species trees have been

developed to address gene tree heterogeneity due to incomplete lineage sorting and

other biological processes (Degnan and Rosenberg, 2009). These methods combine

estimated gene trees from multiple loci and are sensitive to gene tree variability

and quality. These methods include minimizing deep coalescence MDC (Maddison,

1997; Maddison and Knowles, 2006), ASTRAL (Mirarab et al., 2014), ASTRID

(Vachaspati and Warnow, 2015), and maximum likelihood-based methods like STEM

(Kubatko et al., 2009). The non-parametric method BCA: Bayesian concordance

approach (Ané et al., 2007) has been developed to handle different levels of gene

tree uncertainty and to better infer species trees from gene trees. BCA (Ané et al.,

6



Chapter 1. Introduction

2007) infers the species tree by integrating over gene tree uncertainty and makes no

assumption about the reason for discordance, and it uses a non-parametric clustering

of genes with information sharing across compatible genes. Unfortunately, these

methods have been impacted by gene tree estimation error, missing data, ILS,

duplication and loss, and horizontal gene transfer (HGT) (Bansal et al., 2015; Molloy

and Warnow, 2018; Bossert et al., 2021). The maximum likelihood procedure is used

for reconstructing the phylogeny from concatenated DNA sequences. Still, it has

been reported to be statistically inconsistent under the multispecies coalescent model

due to its assumption that all genes share the same tree (Kubatko and Degnan,

2007; Roch and Steel, 2015). In addition, there are site-based methods such as

SVDquartets (Chifman and Kubatko, 2014) and SNAPP (Bryant et al., 2012) that

infer species tree directly from the site without the gene tree estimation.

1.1.3 Discordance of gene and species trees

Gene trees are used to reconstruct a species tree that describes evolutionary re-

lationships among species. Gene trees that are contained within the branches of

the species phylogeny represent the evolutionary histories of the sampled genes.

Gene trees and species trees may or may not be the same; several processes can

lead to discordance between gene trees and species trees and incongruence among

7



Chapter 1. Introduction

the gene trees from a species tree. A common procedure for multilocus phylogeny

estimation is concatenation, in which the DNA alignments are combined into a single

supermatrix. However, different nucleotide sites evolving along the branches of a tree

of species relationships can have different evolutionary histories, and consequently,

estimates of species trees from genetic data can be influenced by the particular choice

of nucleotides or genomic regions used in the analysis.

Another source of poor inference of species trees is over filtering of genes on the

basis of missing data (Huang and Knowles, 2016; Molloy and Warnow, 2018) since

removing genes based on the missing data from inference is likely to reduce the

accuracy of the estimate rather than improve it. It has been suggested that methods

that co-estimate gene trees and species seem to perform better than any other

methods but are computationally expensive on large data sets (Molloy and Warnow,

2018). Development of new robust methods are needed to bridge the deficiencies of

the existing methods. However, the contributions of the number of species, birth-

death parameters (speciation and extinction rates), and sample size (number of loci)

to the levels of gene trees heterogeneity and discordance of the species and gene trees

have not been completely investigated.

In this project, we use two approaches: (1) an application of a generalized birthday

problem to investigate the contributions of the sample size of gene trees (or loci) and

8



Chapter 1. Introduction

the number of tips of the species tree, holding other biological factors constant, to

the incongruence and discordance of gene and species trees; (2) simulation approach:

we randomly generate the species tree using the birth-death process using TreeSim

(Stadler, 2019), based on several combinations of parameters to investigate if the

birth-death parameters are factors of the gene trees variability. We discuss these

approaches in detail in the section below and in chapter 2.

1.1.4 Birth-Death (BD) Parameters

Birth-death (BD) processes are widely used to model the development of biological

populations, and their parameters can be challenging to estimate because the like-

lihood can be computationally expensive or intractable as more data are added.

A birth-death model is a continuous-time Markov process commonly used to

study how the number of individuals in a population evolves through time. These

individuals are usually species (lineages) in the case of macroevolution. A popular

and common way of inference of the BD parameters is: first estimate gene trees

from multiple genomic regions; second, estimate the species phylogeny from the gene

trees; and third, estimate the BD parameters from the estimated species tree.

However, in the phylogenetic and phylogenomic studies, the true phylogeny is not

9



Chapter 1. Introduction

available. Also, some biological processes such as hybridization and loss, horizontal

gene transfer (HGT) and incomplete lineaging sorting (ILS), and gene trees esti-

mation error (Molloy and Warnow, 2018) can seriously bias the estimates of the

true phylogeny from the estimated gene trees and even directly from the genomic

data. We propose estimating BD parameters directly from the gene trees using an

Approximate Bayesian Computation framework based on these observations. We

will be discussing this in detail in chapter 3.

10



Chapter 2

Heterogeneity of Gene Tree

Topologies

2.1 An application of the birthday problem

In empirical phylogenomics, many gene trees on the same set of taxa (barring missing

taxa) are estimated from multiple loci. Also, the relationships between the gene

trees and species trees have been vastly studied (Pamilo and Nei, 1988; Takahata,

1989; Maddison, 1997; Rosenberg, 2002), but few studies have been done on the

relationships among the gene trees given a species tree. It is frequently observed

11
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that due to certain evolutionary processes, species and gene trees are topologically

discordant. These evolutionary processes that disrupt the equivalence of the gene

and species tree topologies also lead to the incongruence of gene tree topologies given

a species tree. Sometimes, every estimated gene tree has a unique topology (Salichos

and Rokas, 2013). Also, this is reported to indicate that a data set has a large

amount of heterogeneity and suggestions that processes such as incomplete lineage

sorting (ILS) due to short branches in the species tree and other biological processes

are likely the cause. However, the relative roles of these processes or systematic

gene tree estimation error in causing this variability are not yet well understood.

Investigation of factors of the gene tree heterogeneity is the key focus of this study.

Moreover, even for moderate numbers of species, the number of possible gene tree

topologies is astronomically large. It is not clear when it should be surprising that

every gene tree is unique. For example, for 4-taxon species, there are 15 possible

rooted binary gene trees, while there are 43,459,425 possible rooted binary gene

trees for 10-taxon species. In general, for any n-taxon species the number of possible

rooted (or unranked) binary gene trees is (Felsenstein, 2004):

Tn =
(2n− 3)!

2n−2(n− 2)!
(2.1)

and the number of possible ranked gene trees is:

Rn =
n! (n− 1)!

2n−1
(2.2)

12
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Further, a linear relationship between Rn and Tn is:

Rn =
n! (n− 1)! (n− 2)!Tn

2(2n− 3)!
=

n(n− 1)2[(n− 2)! ]3

2(2n− 3)!
(2.3)

The probability that each gene tree topology is unique is likely to increase with the

number of taxa and some evolutionary processes like incomplete lineage sorting due

to short branches in the species tree (Degnan and Salter, 2005). Furthermore, short

alignments and mutation rates that are either too low or too high can increase the

uncertainty in the gene trees, therefore leading to more variability in the estimated

gene trees than occurs in the actual gene trees. Also, one can expect that the gene

trees that deviated much from the species tree should have a high probability of

incongruence. Increasing the number of loci, on the other hand, increases the chance

that at least two gene trees share the same topology, which decreases the probability

that all gene tree topologies are unique.

In addition to the question of uniqueness, we might be more generally interested

in a species tree, and how variable gene tree distributions are. This can be measured

by the expected number and variance of the number of different gene trees when they

are not all unique and the average distance between pairs of gene trees or between the

gene tree and species tree. Understanding the distributions of these incongruent and

discordant measures, we can better understand whether the level of the variability

13
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in an empirical data set is unusual. It will also help to know how alleles evolve and

sort within species.

2.2 Birthday Problem and Probability bounds

2.2.1 Uniform Case

We can think of the number of unique gene tree topologies sampled from a species

tree as a particular case of the birthday problem. In a classical birthday problem,

indistinguishable balls are thrown independently into a fixed number of the distin-

guishable boxes, with each ball having probability pi of falling into the ith box. The

frequencies (pi, i = 1, 2...) are assumed to be positive with
∑

i pi = 1. For the finite

case, n balls are thrown intom boxes, the number of balls inside the boxes is captured

by bn = (bn,1, . . . , bn,m), where bn,i is the number of balls that fall into box i after

throwing the last ball. The vector bn and other variables that depend on bn such

as the number of nonempty boxes (#{i : bn,i > 0}), and number of the boxes that

contain a certain number of ball(s) (say, 1, 2, ..., n) have been extensively studied

both in finite and infinite cases of balls and boxes (Gnedin and Yakubovich, 2007).

The most commonly studied birthday problem is finding the probability of shared

14
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birthdays in a random selection of n people. Here one is interested in the probability

of the event bn,i > 1 (i = 1, ..., 365) with the uniform assumption that each day of the

year is equally probable. For example, the probability that each of the n individuals

randomly selected has a unique birthday is

p(all unique) = 1 ·
(
1− 1

365

)(
1− 2

365

)
· · ·
(
1− n− 1

365

)

assuming that (i) there are 365 days in a year (ignoring leap years), (ii) each birthday

is equally likely, and (iii) all individuals are independent. Of course, by the pigeonhole

principle, p(not all unique) = 1 when n > 365. Famously, the probability that not

all birthdays are unique is a little above 0.5 when n = 23 and about 0.9 when

n = 42. It is often surprising and sometimes counter-intuitive how few people are

needed to get a high probability of coincidence of birthdays. In reality, birthdays

are not equiprobable, but the equiprobable assumption makes it less likely for all

birthdays to be unique. Thus, n = 23 provides a lowest upper bound for the number

of individuals needed to have at least 50% probability that all are not unique.

In general, we think of the gene tree topologies as boxes and the observed gene

trees in a sample as balls. Suppose there are k topologies (boxes), and ng gene trees

(balls) are distributed to the k topologies (ng < k). Then the probability that each

gene tree has a separate topology is

15



Chapter 2. Heterogeneity of Gene Tree Topologies

1 ·
(
1− 1

k

)(
1− 2

k

)
· · ·
(
1− ng − 1

k

)

If the probability of each topology p = 1
k
, then the probability that all is unique can

written as

P (all unique) =

ng−1∏
i=1

(1− ip) (2.4)

A difficulty is that gene tree topologies, like birthdays, are not equiprobable.

However, the number of possible rooted or ranked binary gene trees is known and

constant (equations (2.1) and (2.2)). But the frequencies of the gene tree topologies

in samples are random and are likely to depend on: (i) some biological and environ-

mental factors such as speciation, extinction, mutation, incomplete lineage sorting,

and recombination; and (ii) structural and sampling factors such as the number of

species and number of loci sampled. Considering only the structural factors and

assuming the frequencies of the gene trees topologies are constant, then for 5-taxon

species, T5 = 105 and thus, for ng = 16, we have the probability of no repetition

of gene tree topology in our sample is less than 0.5, that is, the probability that at

least two gene trees have a common topology is greater than 0.5. Also, for 10-taxon

species tree, T10 = 34, 459, 425 and for ng = 7, 000, the probability of no repetition

of gene tree topology in our sample is less than 0.5. Since the species tree and gene

16
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tree distributions depend heavily on biological and environmental factors, we use two

approaches for dealing with this problem: (i) approximate bounds on the probability

and (ii) driving expected values and variances for the number of distinct topologies.

However, a simulation is necessary but limited to a few choices of parameters. We

will discuss this in detail in Chapter 3.

To bound the probability from above, we instead consider the probability that all

ranked gene trees (also called labeled histories) are unique. That is, we distinguish

two trees that are topologically equivalent if they have a different order of coales-

cences. In this case, as the internal branches of the species tree approach length 0,

the ranked gene tree probabilities approach being equiprobable, which will lead to

larger possibilities that all ranked gene tree topologies are unique.

Let Rn be the number of possible rooted binary gene tree topologies for a given

species tree. Let ng be the sample size of gene trees from a given species tree. Holding

other biological factors constant, in the limit, as the internal branch lengths of the

species tree approach 0, the probability of no matching gene tree topologies is

P (all unique) =

ng∏
i=1

(
1− i− 1

Rn

)
=

Rn!

(Rn − ng)! (Rn)ng
(2.5)

Letting p = 1
Rn

in (2.5), we obtain

P (all unique) =

ng∏
i=1

(1− (i− 1)p)

17
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Now, using the inequality 1− x ≤ e−x, we obtain that

P (all unique) ≤
ng∏
i=1

e−(i−1)p (2.6)

Substituting back p = 1
Rn

in (4), we have

P (all unique) ≤
ng∏
i=1

e−
i−1
Rn = e−

∑ng
i=1

i−1
Rn = e−

1
Rn

∑ng−1

i=0 i = e−
(ng−1)ng

2Rn

So, an upper bound for the probability that every topology of gene trees in a sample

of size ng from a given species tree is unique is e−
(ng−1)ng

2Rn . This bound goes to zero

as ng → ∞ and tends to e−(Rn−1
2

) as ng → Rn. Also, it increases to 1 as the number

of species increases since Rn increases faster than exponentially with the number

of species, n. So, as the sample size increases, the probability that every gene tree

topology sampled is unique decreases but increases as the number of species increases.

Number of species 7 8 9 10 11 12
Probability of Uniqueness 0.012 0.854 0.996 1.000 1.000 1.000

Table 2.1: The probabilities of all-unique with sample size of 1000 for 7, 8, 9, 10, 11, and 12 species.

Also, using Taylor expansion, minorization and majorization processes we obtain a

lower and an upper bounds for the probability of uniqueness of gene trees topologies

given a species tree, assuming that some biological factors are constant.

Theorem 2.2.1. Let ng be the number of gene trees sampled from Tn, possible

rooted binary gene trees for a given species tree of n taxa with ng < Rn (number

18
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of ranked rooted binary trees). Assuming that the internal branches of the species

tree approach length 0 and the probabilities of gene tree topologies are equiprobable

and other biological factors are constant. Then

e
−

2n2
g(2n−4)!Tn

(n−1)2[(n−2)!]3Tn−2ng(2n−3)! ≤ p(all unique) ≤ e−
(ng−1)ng

2Tn (2.7)

Before the proof of Theorem 2.2.1, we state the following Lemma and its proof is

on Appendix A.

Lemma 2.2.2. For any k ≥ 0,
∑m−1

i=1 ik ≤ mk+1

k+1

Proof of Theorem 2.2.1

The probability of uniqueness from (2.5) is:

p(all unique) =

ng∏
g=1

(
1− g − 1

Rn

)

Now, using Taylor series expansion (as in − ln(1− t) =
∑∞

i=1
ti

i
), we get

− ln[p(all unique)] =

ng∑
g=1

∞∑
i=1

(g − 1)i

i(Rn)i
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So,

− ln[p(all unique)] =

ng∑
g=1

∞∑
i=1

(g − 1)i

i(Rn)i

=

ng∑
g=1

(
g − 1

Rn

+
(g − 1)2

2R2
n

+
(g − 1)3

3R3
n

+
(g − 1)4

4R4
n

+ ...

)

=
1

Rn

ng∑
g=1

(g − 1) +
1

2R2
n

ng∑
g=1

(g − 1)2 +
1

3R3
n

ng∑
g=1

(g − 1)3 + ...

=
(ng − 1)ng

2Rn

+
(ng − 1)ng(2ng − 1)

12R2
n

+ ...

Dropping the terms after the first term we get,

− ln[p(all unique)] ≥ (ng − 1)ng

2Rn

and

p(all unique) ≤ e−
(ng−1)ng

2Rn (2.8)

Also, for the lower bound, recall that,

− ln[p(all unique)] =
1

Rn

ng∑
g=1

(g − 1) +
1

2R2
n

ng∑
g=1

(g − 1)2 +
1

3R3
n

ng∑
g=1

(g − 1)3 + ...

=
1

Rn

ng−1∑
g=1

g +
1

2R2
n

ng−1∑
g=1

g2 +
1

3R3
n

ng−1∑
g=1

g3 +
1

4R4
n

ng−1∑
g=1

g4 + ...

Using Lemma 2.2.2, we get

− ln[p(all unique)] ≤
n2
g

2Rn

+
n3
g

6R2
n

+
n4
g

12R3
n

+
n5
g

20R4
n

+ ...
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Replacing the constant factors in the denominators with 1 in the above series and

factoring out ng, we get:

− ln[p(all unique)] ≤ ng

(
ng

Rn

+
n2
g

R2
n

+
n3
g

R3
n

+
n4
g

R4
n

+ ...

)

Since ng < Rn and the series in the bracket is geometric we have,

− ln[p(all unique)] ≤
n2
g

Rn − ng

(2.9)

Substituting (2.3) in (2.9) for Rn, we have

− ln[p(all unique)] ≤
n2
g

n(n−1)2[(n−2)!]3Tn

2(2n−3)!
− ng

=
2n2

g(2n− 3)!

n(n− 1)2[(n− 2)! ]3Tn − 2ng(2n− 3)!

≤
2n2

g(2n− 3)(2n− 4)! ·( Tn

(2n−3)
)

n(n− 1)2[(n− 2)! ]3Tn − 2ng(2n− 3)!

=
2n2

g(2n− 4)!Tn

n(n− 1)2[(n− 2)! ]3Tn − 2ng(2n− 3)!

Therefore,

p(all unique) ≥ e
−

2n2
g(2n−4)!Tn

n(n−1)2[(n−2)!]3Tn−2ng(2n−3)! (2.10)

Combining (2.8) and (2.10) proves Theorem 2.2.1.
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ng 6-taxon 7-taxon 8-taxon 9-taxon 10-taxon

1 0.981 0.992 0.997 0.999 1.000
2 0.925 0.967 0.987 0.995 0.998
3 0.839 0.928 0.971 0.989 0.996
4 0.732 0.875 0.949 0.981 0.994
5 0.615 0.812 0.921 0.971 0.990
6 0.496 0.741 0.889 0.958 0.986
7 0.385 0.665 0.852 0.944 0.981
8 0.288 0.587 0.811 0.927 0.975
9 0.206 0.509 0.767 0.909 0.969
10 0.143 0.435 0.721 0.888 0.961
11 0.095 0.365 0.673 0.867 0.953
12 0.060 0.301 0.624 0.843 0.945
13 0.037 0.245 0.575 0.819 0.936
14 0.022 0.195 0.526 0.793 0.926
15 0.012 0.153 0.479 0.766 0.915
16 0.007 0.118 0.433 0.739 0.904
17 0.004 0.090 0.388 0.711 0.892
18 0.002 0.067 0.346 0.682 0.880
19 0.001 0.049 0.307 0.653 0.867
20 0.0004 0.036 0.270 0.623 0.854
25 0.000 0.005 0.129 0.478 0.782
30 0.000 0.001 0.053 0.345 0.701
35 0.000 0.00004 0.018 0.235 0.617
40 0.000 0.0000 0.005 0.151 0.532
45 0.000 0.0000 0.001 0.091 0.450
50 0.000 0.000 0.0003 0.052 0.373

Table 2.2: Lower bounds for the probability of uniqueness for 6, 7, 8, 9 and 10 taxon species trees.

Theoretically, holding other biological factors constant, the probability that all

tree topologies are unique depends on the number of the tips of the species tree and

number of loci sampled.
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2.3 Expected Value and Variance of the Number

of Unranked Unique Gene Tree Topologies

Suppose we have 3-taxon species trees, then Tn = 3. Let p1, p2, p3 be the probabili-

ties of the topologies. The pi’s, i = 1, 2, 3, are not necessarily the same. Now, for a

sample size of 2, we have

p(uniqueness) = p1p2 + p2p1 + p1p3 + p3p1 + p2p3 + p3p2 = 2(p1p2 + p1p3 + p2p3)

Also, for sample size of 3, we have

p(uniqueness) = 3! p1p2p3

For 4-taxon species trees, the probabilities are p1, p2, ..., p15. For a sample of size 2,

the probability that the gene trees have distinct topologies is

p(uniqueness) = 2(p1p2 + p1p3 + p1p4 + ...+ p14p15) = 2
∑
i<j

pipj

For a sample of size 3, we have that for i, j, k ∈ {1, 2, ..., 15},

p(uniqueness) = 3!
∑
i<j<k

pipjpk

In general, for n-taxon species trees, and a sample of size ng, we have

p(uniqueness) = ng!
∑

i1<i2<...<ing

pi1pi2 ...ping
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Let

Xi,j =


1 if jth locus is gene tree i

0 otherwise

(2.11)

Recall that Tn is the possible number of bifurcating unranked gene tree topologies.

Now, the number of times topology i occurs in a sample of size ng is:

Xi =

ng∑
j=1

Xi,j (2.12)

where i = 1, ..., Tn, j = 1, ..., ng

and

Tn∑
i=1

Xi =
Tn∑
i=1

ng∑
j=1

Xi,j = ng

Also, let Yi be an indicator that topology i occurs at least once in the sample:

Yi =


1 if Xi > 0

0 if Xi = 0

(2.13)

Then the number of distinct topologies is

Y =
Tn∑
i=1

Yi

Here, Xi,j is a Bernoulli random variable with success probability pi and Xi’s are

Binomial random variables with parameters pi and m for each i.
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Further,

E[Yi] = 1 · P (Xi > 0) + 0 · P (Xi = 0)

= P (Xi > 0) = 1− P (Xi = 0)

= 1− (1− pi)
ng

E[YiYj] = P (YiYj = 1) = P (Xi > 0, Xj > 0) = 1− P (Xi = 0 or Xj = 0)

and the probability that Xi = 0 or Xj = 0 is:

P (Xi = 0 or Xj = 0) = P (Xi = 0) + P (Xj = 0)− P (Xi = 0 and Xj = 0)

= (1− pi)
ng + (1− pj)

ng − (1− pi − pj)
ng

Then

E[YiYj] = 1− (1− pi)
ng − (1− pj)

ng + (1− pi − pj)
ng

and

V ar[Yi] = [1− (1− pi)
ng ] · [1− (1− (1− pi)

ng)]

= (1− pi)
ng − (1− pi)

2ng
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Also, the covariance of Yi and Yj, i ̸= j, is:

Cov(Yi, Yj) = E[YiYj]− E[Yi]E[Yj]

= 1− (1− pi)
ng − (1− pj)

ng + (1− pi − pj)
ng

− (1− (1− pi)
ng) (1− (1− pj)

ng)

= (1− pi − pj)
ng − (1− pi)

ng(1− pj)
ng

2.3.1 The expected number and variance of distinct topolo-

gies

The expected number of distinct topologies is:

E[Y ] =
Tn∑
i=1

E[Yi] =
Tn∑
i=1

[1− (1− pi)
ng ]

= Tn −
Tn∑
i=1

(1− pi)
ng

and the variance is:

V ar[Y ] =
Tn∑
i=1

V ar[Yi] + 2
∑

1≤i<j≤Tn

Cov(Yi, Yj)

=
Tn∑
i=1

[(1− pi)
ng − (1− pi)

2ng ]

+ 2
∑

1≤i<j≤Tn

[(1− pi − pj)
ng − (1− pi)

ng(1− pj)
ng ]
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Then, as ng → ∞, E[Y ] and V ar(Y ) converge to Tn and 0, respectively. Table 2.4

depicts the behaviour of expected number of distinct topologies as the sample size

increases.

2.3.2 Uniform Case

For the equal probable case -that is: pi =
1
Tn

for each i. We have

E[Y ] = Tn − Tn

(
1− 1

Tn

)ng

= Tn

[
1− (1− 1

Tn

)ng

]

and

V ar[Y ] = Tn

[
(1− 1

Tn

)ng − (1− 1

Tn

)2ng

]
+ 2

[
Tn(1− 2

1

Tn

)ng − (1− 1

Tn

)2ng

]

where 1 ≤ ng ≤ Tn.

For example, we enumerate the all 15 possible topologies of 4-taxon species tree

with their probabilities on Table 2.3, and behavior of the expected number of distinct

gene tree topologies as the sample size (loci) increases 2.4.
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Topology Probability

1 (((A,D),B),C); 0.001
2 ((A,(B,D)),C); 0.001
3 (((A,B),D),C); 0.098
4 ((A,B),(C,D)); 0.099
5 (((A,B),C),D); 0.556
6 (((A,D),C),B); 0.001
7 ((A,(C,D)),B); 0.001
8 (((A,C),D),B); 0.021
9 ((A,C),(B,D)); 0.022
10 (((A,C),B),D); 0.079
11 (((B,D),C),A); 0.001
12 ((B,(C,D)),A); 0.001
13 (((B,C),D),A); 0.021
14 ((B,C),(A,D)); 0.022
15 (((B,C),A),D); 0.079

Table 2.3: Topologies and their probabilities for 4-taxon species tree, (((A,B),C),D).

ng / n 4-taxon 5-taxon 6-taxon 7-taxon 8-taxon

100 9.102 19.593 32.701 46.426 59.235
1,000 12.832 37.244 86.785 164.847 265.970
10,000 15.000 62.135 175.107 403.547 808.495
100,000 15.000 78.158 292.258 841.088 1963.048

1,000,000 15.000 86.350 402.687 1397.214 3986.560
100,000,000 15.000 105.000 641.611 2945.781 10864.422

Table 2.4: The sample sizes (loci) and the expected numbers of distinct gene tree topologies for
4− 8 taxon species trees. This indicates that the expected number of distinct topologies increases
with the number of loci sampled.
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2.3.3 Missing Topologies

Here we find the expected value and variance of the number of topologies that are

not in a sample of ng gene trees. Recall, Tn is the total number of possible gene tree

topologies for a species tree of n taxa and Y is the number of distinct topologies.

Then

M = Tn − Y

is the number of missing gene tree topologies. The expected number of missing

topologies of is:

E[M ] = E[Tn − Y ] = Tn − E[Y ]

= Tn −
Tn∑
i=1

E[Yi]

= Tn − (Tn −
Tn∑
i=1

(1− pi)
ng)

=
Tn∑
i=1

(1− pi)
ng

and

V ar(M) = V ar(Tn − Y ) = V ar(Y )

=
Tn∑
i=1

[(1− pi)
ng − (1− pi)

2ng ]

+ 2
∑

1≤i<j≤Tn

[(1− pi − pj)
ng − (1− pi)

ng(1− pj)
ng ]
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Both E[M ] and V ar(M) go to zero as the number of loci approaches ∞ regardless

of the number of taxa. Note that the convergence of these series is guaranteed since

Tn < ∞. Thus, the probability of missing topologies decreases as the number of loci

increases.

2.4 Non-Uniform Case

As mentioned in the previous section, the topologies of gene trees from a given

species tree are not uniformly distributed. Similarly, birthdays are not uniformily

distributed in a calendar year. For instance, some birthdays are pre-planned due

to circumstances like C-sections, inductions, days of hospital operations, etc. Borja

(2016) noted that there are more births in spring and summer in Europe and America;

and more births between Tuesdays and Fridays. These suggest that most conceptions

are around Summers and Christmas holidays, and most deliveries through C-sections

and inductions are on weekdays. Any apparent departures from the uniformity

assumption would increase the likelihood that a sample of fewer sizes (less than

23) will contain some pairs with common birthdays. The same scenario applies to

gene tree topologies. Intuitively, the likelihood of more gene trees having the same
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topology increases on the case of the non-uniformity assumption as in the case of

the birthday problem(s). However, Nunnikhoven (1992) showed that the differences

between the solutions of non-uniformity and uniformity models are minimal for

the birthday problem. So, the assumption of uniformity approximates reality well.

The birthday problems have been vastly generalized in several ways (Klamkin and

Newman, 1967; Flajolet et al., 1992; Nunnikhoven, 1992; Mase, 1992; Camarri and

Pitman, 2000; DasGupta, 2005; Feller, 2008). In the case of tree topologies, unranked

topologies do not have uniform probabilities even if all the branch lengths are zero.

When some branches in the species tree have non-zero length then this makes the

probabilities even further from uniform.

Gene trees’ discordance with their parent species tree or incongruence among gene

trees can be caused by some evolutionary events (Pamilo and Nei, 1988; Rosenberg,

2002; Degnan and Salter, 2005). Such evolutionary processes would affect the unifor-

mity assumption of the frequencies of gene tree topologies. Let pi be the probability

that a gene tree has topology i and ng be the sample size of gene trees from a given

species tree with n taxa. From equations (2.1), (2.11) and (2.12),

(Xi, ..., XTn|
Tn∑
i=1

Xi = ng) ∼ Mult(ng, p1, ..., pTn) (2.14)

where p1, ..., pTn are non-negative reals such that 0 < pi < 1 and
∑Tn

i=1 pi = 1. We

note that the collection of counts (X1, ..., XTn) is a multinomial distribution.
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The probability of uniqueness (Mallows, 1968) is:

p(all unique) = p(X1 ≤ 1, ..., XTn ≤ 1) ≤ p(X1 ≤ 1)...p(XTn ≤ 1) (2.15)

Theorem 2.4.1. Let p1, p2, ..., pTn be probabilities of gene tree topologies and pi’s are

not necessarily equal. Let pmin = min1≤i≤Tn{pi} = αn

Tn
and pmax = max1≤i≤Tn{pi} =

γn
Tn

with 0 < αn ≤ γn ≤ Tn for some real numbers αn and γn that depend on the

number of taxa of the species tree. Then for ng ≤ Tn,

p(all unique) ≤ exp { − ng[1− ((1− αn

Tn

)ng + ng
γn
Tn

(1− αn

Tn

)ng−1)]} (2.16)

and for ng > Tn,

p(all unique) = 0 (2.17)

Proof

From (2.15), we obtain

p(all unique) ≤
Tn∏
i=1

p(Xi ≤ 1)

Also, for any real number x, 1− x ≤ e−x, so,

p(Xi ≤ 1) = 1− p(Xi > 1) ≤ e−p(Xi≥1)
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for each i. Then

p(all unique) ≤
Tn∏
i=1

p(Xi ≤ 1) =
Tn∏
i=1

(1− p(Xi > 1)

≤
Tn∏
i=1

exp { − p(Xi > 1} = exp { −
Tn∑
i=1

p(Xi > 1)}

≤ exp { −
ng∑
i=1

p(Xi > 1)} = exp { −
ng∑
i=1

(1− p(Xi ≤ 1))}

= exp { −
ng∑
i=1

(1− [p(Xi = 0) + p(Xi = 1)])}

= exp { −
ng∑
i=1

[1− ((1− pi)
ng + ngpi(1− pi)

ng−1)]}

= exp { − ng +

ng∑
i=1

[(1− pi)
ng + ngpi(1− pi)

ng−1]}

≤ exp { − ng +

ng∑
i=1

[(1− pmin)
ng + ngpmax(1− pmin)

ng−1]}

= exp { − ng + ng[(1− pmin)
ng + ngpmax(1− pmin)

ng−1]}

= exp { − ng[1− ((1− pmin)
ng + ngpmax(1− pmin)

ng−1)]}

= exp { − ng[1− ((1− αn

Tn

)ng + ng
γn
Tn

(1− αn

Tn

)ng−1)]}

Also, by the pigeon hole principle, (2.17) is true.

Also, from (2.14) and according to Levin (1981), the probability of uniqueness is:

p(all unique) = p

(
X1 ≤ 1, ..., XTn ≤ 1|

Tn∑
i=1

Xi = ng

)
(2.18)

We note that based on the conditional probability (2.18), Xi’s are not independent,
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but the application of Bayes’ Theorem allows us to remove the condition that the

sum is fixed. Then, applying Bayes’ Theorem, we obtain:

p(all unique) =
p
(∑Tn

i=1 Xi = ng|Xi ≤ 1, ∀ i
)
p (Xi ≤ 1, ∀ i)

p
(∑Tn

i=1Xi = ng

) (2.19)

But by construction, p(
∑Tn

i=1 Xi = ng) = 1 since
∑Tn

i=1Xi = ng always. So,

p(all unique) = p

(
Tn∑
i=1

Xi = ng|Xi ≤ 1, ∀ i

)
p (Xi ≤ 1, ∀ i) (2.20)

Without loss of generality, pi is small for each i for a species tree with large number

of taxa since Tn grows faster than exponential, Thus, Xi approximately has a Poisson

distribution with parameter λ = ngpi. Let H =
∑Tn

i=1 Xi, then H is a sum of Tn

independent right truncated Poisson random variables.
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2.5 Discussion and Conclusions

In this chapter, we investigated the contributions of the number of tips of a species

tree and the gene trees’ sample size to the gene trees’ heterogeneity. Assuming that

the probability of gene tree topology is uniform and holding speciation, extinction,

and mutation rates constant, we derived a bound for the probability that every gene

tree has a unique topology given the sample size and the number of tips of the

species tree. Based on the bound, the probability of uniqueness increase with the

number of the tips of the species tree and decreases as the number of loci (sample

size) increases. For example, for the 10-taxon species tree, 50 loci, the lower and

upper bounds are 0.373 and 0.999, respectively. For 100 loci, the lower and upper

are 0.0194 and 0.99986, respectively. Also, for a small number of tips of the species

tree, the bound is relatively tight and widening as the number of the tips increases.

We also derived the expected number and the variance of the number of distinct

gene tree topologies for any given number of tips of the species tree and the number

of loci. We found that the expected number and variance of the number of distinct

gene trees converge to Tn (or Rn) (the number of possible gene tree topologies for

unranked or ranked rooted trees) and zero, respectively, for any species tree as the

number of loci tends to infinity.
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Further, if the uniformity assumption is violated, the probability that all gene trees

sampled have unique topology decrease, and is likely to decrease faster as the branch

lengths of the species get shorter. We investigate the probabilities of uniqueness

of gene tree topologies from larger species trees without any biological constant in

detail with simulations in the next chapter.
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Incongruence of Gene Trees

Multilocus phylogenetic studies often estimate separate gene trees for each locus.

Species trees can be inferred either directly from the sequence data or using a two-

stage approach from the gene trees estimated from different loci (Liu et al., 2009;

Rannala et al., 2020). There is often considerable heterogeneity in the gene tree

topologies, with many distinct topologies being observed in many data sets. In some

cases, every gene tree topology is distinct, even with over 1000 loci (Salichos and

Rokas, 2013).

An interesting question is how much variation in the gene trees should be expected

to be observed. There are many sources of this variability, some of which are bio-
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logical, and some having to do more with statistical issues. In particular, horizontal

gene transfer (HGT), gene duplication/loss (GDL), and the multispecies coalescent

(MSC) all lead to variability in the gene trees, even if the gene trees are known

perfectly (Maddison, 1997). Under the MSC, short internal branches in the species

tree typically predict higher levels of discordance (i.e., topological discrepancies)

between gene trees and the species tree, and also higher levels of incongruence—

variation in gene tree topologies. The heterogeneity of the gene trees reconstructed

from genomes given a species trees can be caused by either methodological processes

or systematic errors. However, the relative roles of these processes or systematic

error in causing this variability are not yet well understood. This investigation also

examines the additional heterogeneity added when gene trees are estimated under

the MSC.

There are several possible ways of characterizing the heterogeneity in a set of

gene trees. For example, one can examine conflicting rooted triple relationships by

counting the number of each of three possible triplets are supported in the collection

of gene trees (Cranston et al., 2009). Another approach is to measure the average

Robinson-Foulds (RF) distance between the gene trees and the species tree (Mirarab

et al., 2014). This has the disadvantage that the species tree is often unknown. A

proxy to this quantity, which we examine in this paper, is the average pairwise RF
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distance between all pairs of gene trees. In our simulations, this quantity is highly

correlated with the gene tree-species tree average RF distance.

Another measure of heterogeneity is the number of distinct gene tree topologies

in a sample. in particular, in some data sets every estimated gene tree topology has

a distinct topology. This occurs, for example, in Salichos and Rokas (2013), which

included 23 species of yeast using 1070 loci, each with a unique gene tree topology

that did not match the estimated species treee. The authors point to this result as

evidence of incomplete lineage sorting and a high level of gene tree discordance. On

the other hand, for this many taxa, there are over 5 × 1026 possible rooted, binary

topologies (?). For this vast number of possibilities, is it surprising that every gene

tree has a unique topology? For purely random trees generated under a birth-death

process, it would not be surprising for 1070 trees of this size to be unique. However,

if gene trees evolved within a species tree, they should have much more in common

than purely random trees. In this case, it is not clear whether this level of gene tree

heterogeneity should be surprising.

We examine this question using simulation with species trees generated by a birth-

death process and gene trees generated from each species tree using the MSC. We ex-

amine both true gene trees and gene trees estimated from DNA sequence alignments

to see the effect that sampling error has on increasing gene tree heterogeneity. For
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the birth-death process, higher levels of speciation predict shorter internal branches

in the species tree, making heterogeneity in the gene trees more likely. We use this

framework to examine the effect of speciation rates, mutation rates, and alignment

length on gene tree heterogeneity measured both by RF distances (to the species tree

and pairwise) and by the number of distinct gene tree topologies. We find that results

such as those observed by Salichos and Rokas (2013) are not necessarily surprising

for moderately high speciation rates but can be surprising for lower speciation rates.

3.1 Simulation Design

We examine gene tree heterogeneity as a function of the number of taxa (n), the

speciation rate (λ), extinction rate (µ), population mutation rate (θ), and sample

size (ng) (i.e., number of loci).

To investigate the effect of these factors on gene tree variability, we generated

random species trees under a constant-rate birth-death model with speciation rate

λ = (0.1, 0.2, 0.5, 1.0), extinction rate µ = (0, 0.5λ), and number of taxa n =

(5, 10, 15, 20) with the R package TreeSim (Stadler, 2011a). We interpret the branch

lengths for trees generated from TreeSim as being in coalescent units; i.e., a branch

length of 1.0 means N generations where N is the effective diploid population size.
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The range of λ = 0.1 to 1.0 allows the level of ILS to range from moderately low

to fairly high, and is comparable to other simulation studies (Mirarab et al., 2014;

Stadler et al., 2016a; Kim and Degnan, 2021). For each parameter combination, 100

species trees were simulated. An outgroup was then added to each species tree where

the distance from the outgroup to the root was 10 coalescent units plus the height of

the original tree. Then either ng = 500 and 1000 gene trees were simulated for each

species tree using hybrid-Lambda (Zhu et al., 2015). We note that for cases with

estimated gene trees, the number of parameter combinations for (n, λ, µ, ng, L, θ) is

therefore 4 × 4 × 2 × 2 × 2 × 2 = 256. For gene trees that were known rather than

estimated, there were 64 parameter combinations.

For each gene tree, we simulated DNA sequences of length 500 and 1000 nucleotides

(nt) of the tree with seq-gen (Rambaut and Grassly, 1997) with population mutation

rate θ = 0.002 or 0.01 under theGTR+I+Gmodel with 10% invariant sites, four rate

categories, and base frequencies of 0.4, 0.1, 0.2, 0.3 for A,C,G, and T , respectively.

Then we reconstructed and estimated the gene trees with IQTree (Nguyen et al.,

2014). To allow for among-site variation and compositional heterogeneity, we used

the GTR + G + I model in IQTree to reconstruct and estimate the gene trees. In

addition to reconstructed gene trees, true gene trees taken directly from hybrid-

Lambda were used as well.
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We counted the number of unique gene trees in each sample with PRANC (Kim

et al., 2020) using the option -utopo, which converts each Newick string into a

string which uniquely represents the clades of each tree. Furthermore, we calculated

the rooted Robinson-Foulds (RF) distance (Robinson and Foulds, 1981) among the

gene trees (pairwise RF) after the outgroup is removed, and between gene trees and

species tree (RF-ST) with Treedist in PHYLIP (Felsenstein, 1993). The probabilities

of uniqueness of gene tree topologies were computed from these reconstructed gene

trees for each species tree.

3.2 Simulation results

We examine the effects of the number of taxa, the speciation rate, the extinction rate,

and whether or not gene trees were estimated or known. In addition, we compare the

RF distances of gene trees to the species tree with pairwise RF distances between

the gene trees without using the species treee.

3.2.1 Number of Taxa

Holding sample size and other factors constant, the number of unique gene tree

topologies increases rapidly as the number of taxa increases (Figure 3.1). In par-
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ticular, the number of distinct gene tree topologies often approaches the maximum

possible value. For n = 5 taxa, only 105 topolgies are possible, but as the number of

species increases, the number of distinct gene tree topologies approaches the sample

size of 500. The probability of uniqueness also increases with the number of taxa,

but does so more rapidly for µ = 0 than for µ = .5λ (Figures 3.2 and 3.3). Both the

proportion of unique gene trees (i.e., the number of distinct gene trees divided by the

number of loci) and probability of uniqueness increase as the sample size decreases

for the trees with higher numbers of taxa (Tables 3.1, and 3.2).

3.2.2 Speciation Rate

Increasing the speciation rate (λ) decreases the average branch length and makes

more short intervals probable (Stadler and Steel, 2012b; Stadler et al., 2016b), leading

to increased heterogeneity in the gene trees. For λ ≥ .5, the probability of uniqueness

rapidly increases and is very close to 1.0 for both sample sizes for species trees with

15 or more taxa (Figure 3.2). Consequently, it would not be surprising or unusual for

all sampled gene trees to be distinct for n ≥ 15, λ ≥ 0.5, and µ = 0. Furthermore,

the average pairwise RF and RF-ST distances increase rapidly with λ for µ = 0

(Tables 3.1 and 3.2). Thus, the simulations indicated that the speciation rate plays

a strong role in the heterogeneity of the gene trees.
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Figure 3.1: Plots (a)–(d) are distributional plots for the number of unique gene tree topologies
when there are 5, 10, 15 and 20 species, respectively, for a sample size of 500 gene trees with µ = 0,
λ = 0.2, and θ = 0.002. Plots (e)–(h) are boxplots for the number of unique gene trees as a function
of the speciation rate λ when µ = 0 in samples of size 500 gene trees for n = 5, 10, 15, and 20 species,
respectively.
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Figure 3.2: The estimated probability that every gene tree topology is unique for the sample size
of 500. The legend in (j) applies for each subfigure. In (a)-(f), there were 500 loci per sample, and
in (g)-(l), there were 1000 loci per sample. The first column used known gene trees, and for columns
2 and 3, θ = 0.002 was used throughout to generate DNA sequences to estimate gene trees. The
middle column used sequence lengths of 1000 nt for estimated gene trees, and the third column uses
sequence lengths of 500 nt. For µ > 0 (the second and fourth rows), µ = 0.5λ.

45



Chapter 3. Incongruence of Gene Trees

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 u

n
iq

u
e

a. µ = 0, known gene trees b. µ = 0,   L = 1000,   θ = 0.01 c. µ = 0,   L = 500,   θ = 0.01

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 u

n
iq

u
e

d. µ > 0, known gene trees e. µ > 0,   L = 1000,   θ = 0.01 f. µ > 0,   L = 500,   θ = 0.01

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 u

n
iq

u
e

g. µ = 0, known gene trees h. µ = 0,   L = 1000,   θ = 0.01 i. µ = 0,   L = 500,   θ = 0.01

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

λ

P
ro

p
o

rt
io

n
 u

n
iq

u
e

species

20

15

10

5

j. µ > 0, known gene trees

0.25 0.50 0.75 1.00

λ

k. µ > 0,   L = 1000,   θ = 0.01

0.25 0.50 0.75 1.00

λ

l. µ > 0,   L = 500,   θ = 0.01

Figure 3.3: The estimated probability that every gene tree topology is unique for the sample size
of 500. The legend in (j) applies for each subfigure. In (a)-(f), there were 500 loci per sample,
and in (g)-(l), there were 1000 loci per sample. The first column used known gene trees, and for
columns 2 and 3, θ = 0.01 was used throughout to generate DNA sequences to estimate gene trees.
The middle column used sequence lengths of 1000 nt for estimated gene trees, and the third column
uses sequence lengths of 500 nt. For µ > 0 (the second and fourth rows), µ = 0.5λ.

3.2.3 Extinction Rate

Having a positive extinction rate affects the variability in the branch lengths and

tends to make branches near the root of the tree longer. This results in more spe-
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λ
θ n Sample size 0.1 0.2 0.5 1.0

NA 10 500 0.123 0.324 0.749 0.944
NA 10 1000 0.088 0.255 0.680 0.916
NA 15 500 0.278 0.641 0.975 1.000
NA 15 1000 0.217 0.566 0.960 0.999
NA 20 500 0.486 0.864 0.999 1.000
NA 20 1000 0.411 0.817 0.998 1.000

Alignment length = 500nt

0.01 10 500 0.220 0.449 0.843 0.967
0.01 10 1000 0.161 0.363 0.785 0.958
0.01 15 500 0.499 0.798 0.992 0.994
0.01 15 1000 0.421 0.734 0.987 1.000
0.01 20 500 0.757 0.957 1.000 1.000
0.01 20 1000 0.693 0.934 1.000 1.000

0.002 10 500 0.422 0.752 0.978 0.999
0.002 10 1000 0.333 0.678 0.966 0.998
0.002 15 500 0.773 0.975 1.000 1.000
0.002 15 1, 000 0.704 0.960 1.000 1.000
0.002 20 500 0.952 0.999 1.000 1.000
0.002 20 1, 000 0.785 0.999 1.000 1.000

Alignment length = 1000nt

0.01 10 500 0.183 0.414 0.817 0.967
0.01 10 1000 0.134 0.334 0.756 0.946
0.01 15 500 0.379 0.731 0.986 1.000
0.01 15 1000 0.308 0.660 0.978 1.000
0.01 20 500 0.623 0.763 0.999 1.000
0.01 20 1000 0.516 0.883 0.956 1.000

0.002 10 500 0.303 0.613 0.936 0.994
0.002 10 1000 0.236 0.531 0.902 0.989
0.002 15 500 0.572 0.903 0.999 1.000
0.002 15 1000 0.494 0.865 0.998 1.000
0.002 20 500 0.801 0.986 0.999 1.000
0.002 20 1000 0.741 0.976 1.000 1.000

Table 3.1: The average proportion of distinct gene trees (number of distinct gene trees divided by number of
loci) given species trees of 15 and 20 taxa for the sample sizes of 500 and 1000 loci. The entry NA in the coluumn
for θ means that known gene trees were used rather then estimated from DNA sequences. The extinction parameter
µ was 0 throughout.
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λ
θ n Sample size 0.1 0.2 0.5 1.0

NA 10 500 0.076 0.120 0.541 0.821
NA 10 1000 0.052 0.151 0.465 0.761
NA 15 500 0.178 0.441 0.867 0.988
NA 15 1000 0.134 0.370 0.823 0.982
NA 20 500 0.319 0.678 0.977 1.000
NA 20 1000 0.258 0.611 0.966 0.999

Alignment length = 500nt

0.01 10 500 0.145 0.282 0.634 0.885
0.01 10 1000 0.103 0.218 0.560 0.837
0.01 15 500 0.356 0.601 0.922 0.991
0.01 15 1000 0.287 0.525 0.902 0.994
0.01 20 500 0.606 0.846 0.992 1.000
0.01 20 1000 0.537 0.801 0.988 1.000

0.002 10 500 0.261 0.521 0.874 0.985
0.002 10 1000 0.192 0.437 0.828 0.976
0.002 15 500 0.566 0.860 0.997 1.000
0.002 15 1000 0.483 0.812 0.993 1.000
0.002 20 500 0.835 0.980 1.000 1.000
0.002 20 1000 0.929 0.971 1.000 1.000

Alignment length = 1000nt

0.01 10 500 0.114 0.252 0.601 0.862
0.01 10 1000 0.079 0.193 0.526 0.811
0.01 15 500 0.252 0.518 0.867 0.995
0.01 15 1000 0.195 0.442 0.868 0.990
0.01 20 500 0.454 0.760 0.985 1.000
0.01 20 1000 0.379 0.702 0.978 1.000

0.002 10 500 0.177 0.391 0.783 0.958
0.002 10 1000 0.130 0.319 0.726 0.937
0.002 15 500 0.366 0.706 0.978 1.000
0.002 15 1000 0.297 0.642 0.967 1.000
0.002 20 500 0.599 0.899 0.999 1.000
0.002 20 1000 0.528 0.863 0.997 1.000

Table 3.2: The average proportion of distinct gene trees (number of distinct gene trees divided by number of
loci) given species trees of 15 and 20 taxa for the sample sizes of 500 and 1000 loci. The entry NA in the coluumn
for θ means that known gene trees were used rather then estimated from DNA sequences. The extinction parameter
µ > 0 throughout.
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ciation events occurring near the present compared to a process with no extinction.

The numbers of distinct gene trees and the probabilities of uniqueness were lower

when there was extinction, especially for lower speciation rates (Tables 3.3, 3.4,

3.5, 3.6 ). This is consistent with the observation in Degnan and Salter (2005) that

short branches near the root of the species tree tend to lead to higher probabilities

of gene trees that do not match the species tree topology. Similarly, pairwise RF

and RF-ST distances decreased when extinction was added. Thus, extinction as a

biological event effects gene tree heterogeneity.
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µ λ θ num. uniq sd. uniq RF-ST pairwise RF p
0 0.10 NA 217.05 156.10 0.12 0.17 0.00
0 0.20 NA 565.71 222.24 0.22 0.32 0.00
0 0.50 NA 959.64 58.19 0.44 0.58 0.10
0 1.00 NA 999.10 2.61 0.62 0.77 0.72
0 0.10 0.01 308.17 194.72 0.15 0.21 0.00
0 0.20 0.01 659.86 215.59 0.26 0.36 0.00
0 0.50 0.01 978.11 39.33 0.47 0.62 0.22
0 1.00 0.01 999.65 1.11 0.66 0.80 0.85
0 0.10 0.002 493.83 236.58 0.21 0.27 0.00
0 0.20 0.002 864.59 145.28 0.35 0.47 0.02
0 0.50 0.002 998.48 4.28 0.59 0.75 0.65
0 1.00 0.002 999.98 0.14 0.76 0.89 0.98

.5λ 0.10 NA 134.41 136.47 0.09 0.14 0.00

.5λ 0.20 NA 370.50 239.13 0.17 0.24 0.00

.5λ 0.50 NA 823.06 194.92 0.34 0.46 0.02

.5λ 1.00 NA 981.64 38.77 0.52 0.66 0.37

.5λ 0.10 0.01 195.07 184.97 0.12 0.17 0.00

.5λ 0.20 0.01 442.09 253.85 0.19 0.27 0.00

.5λ 0.50 0.01 868.12 163.89 0.37 0.49 0.07

.5λ 1.00 0.01 990.05 23.01 0.55 0.69 0.45

.5λ 0.10 0.002 297.29 232.87 0.16 0.21 0.00

.5λ 0.20 0.002 642.03 264.16 0.26 0.35 0.00

.5λ 0.50 0.002 967.30 65.66 0.48 0.62 0.35

.5λ 1.00 0.002 999.65 1.00 0.67 0.81 0.84

Table 3.3: Summary statistics for species of 15 taxa for sample size of 1000 and DNA sequence
length of 1000. NA means that known gene trees were used instead of being estimated from
sequences. Here, num. uniq is the average number of unique gene trees, sd. uniq is the standard
deviation of the number of unique gene trees, RF-ST is the average RF-ST distance, pairwise RF
is the average pairwise RF distance, and p is the probability that all gene trees have a distinct
topology in the sample.
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µ λ θ num. uniq sd. uniq RF-ST pairwise RF p

0 0.10 NA 138.970 88.883 0.117 0.174 0.000
0 0.20 NA 320.710 106.361 0.221 0.318 0.000
0 0.50 NA 487.430 20.831 0.435 0.583 0.280
0 1.00 NA 499.780 0.629 0.622 0.768 0.860

0 0.10 0.01 189.590 105.828 0.151 0.213 0.000
0 0.20 0.01 98.419 0.254 0.356 0.010
0 0.50 0.01 493.220 12.800 0.470 0.617 0.370
0 1.00 0.01 499.960 0.197 0.657 0.797 0.960

0 0.10 0.002 286.080 117.982 0.204 0.285 0.000
0 0.20 0.002 451.470 58.792 0.343 0.467 0.090
0 0.50 0.002 499.640 1.150 0.593 0.746 0.810
0 1.00 0.002 500.000 0.000 0.765 0.887 1.000

.5λ 0.10 NA 89.250 80.741 0.092 0.135 0.000

.5λ 0.20 NA 220.540 124.154 0.168 0.240 0.000

.5λ 0.50 NA 433.360 83.443 0.339 0.464 0.050

.5λ 1.00 NA 494.110 14.083 0.516 0.664 0.580

.5λ 0.10 0.01 126.220 102.790 0.122 0.169 0.000

.5λ 0.20 0.01 258.990 127.993 0.194 0.269 0.000

.5λ 0.50 0.01 433.570 78.689 0.366 0.492 0.060

.5λ 1.00 0.01 497.320 6.891 0.546 0.693 0.650

.5λ 0.10 0.002 182.860 121.519 0.155 0.213 0.000

.5λ 0.20 0.002 353.210 122.432 0.256 0.351 0.040

.5λ 0.50 0.002 489.080 24.805 0.475 0.620 0.460

.5λ 1.00 0.002 499.870 0.418 0.665 0.808 0.900

Table 3.4: Summary statistics for species of 15 taxa for sample size of 500 and DNA sequence
length of 1000. NA means that known gene trees were used instead of being estimated from
sequences. Here, num. uniq is the average number of unique gene trees, sd. uniq is the standard
deviation of the number of unique gene trees, RF-ST is the average RF-ST distance, pairwise RF
is the average pairwise RF distance, and p is the probability that all gene trees have a distinct
topology in the sample.
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µ θ λ num. uniq sd. uniq RF-ST pairwise RF p
0 NA 0.100 242.890 111.450 0.123 0.181 0.000
0 NA 0.200 431.790 72.670 0.227 0.324 0.020
0 NA 0.500 499.510 1.527 0.441 0.587 0.830
0 NA 1.000 500 0.000 0.630 0.774 1.000
0 0.010 0.100 311.390 113.228 0.158 0.219 0.000
0 0.010 0.200 381.300 60.349 0.257 0.355 0.000
0 0.010 0.500 499.700 0.927 0.471 0.615 0.850
0 0.010 1.000 500 0.000 0.660 0.798 1.000
0 0.002 0.100 400.390 91.178 0.203 0.282 0.010
0 0.002 0.200 492.820 14.905 0.339 0.459 0.410
0 0.002 0.500 499.490 3.350 0.593 0.744 0.860
0 0.002 1.000 500 0.000 0.775 0.895 1.000

0.5λ NA 0.100 159.330 111.926 0.092 0.135 0.000
0.5λ NA 0.200 338.970 118.725 0.171 0.245 0.000
0.5λ NA 0.500 488.660 27.790 0.347 0.474 0.440
0.5λ NA 1.000 499.810 1.012 0.526 0.673 0.930
0.5λ 0.010 0.100 226.760 126.166 0.124 0.173 0.000
0.5λ 0.010 0.200 379.940 111.405 0.198 0.275 0.020
0.5λ 0.010 0.500 492.380 21.194 0.373 0.501 0.500
0.5λ 0.010 1.000 499.920 0.367 0.554 0.698 0.940
0.5λ 0.002 0.100 299.530 133.290 0.155 0.216 0.010
0.5λ 0.002 0.200 449.430 78.090 0.259 0.355 0.120
0.5λ 0.002 0.500 499.340 3.520 0.479 0.623 0.890
0.5λ 0.002 1.000 500 0.000 0.673 0.813 1.000

Table 3.5: Summary statistics for species of 20 taxa for sample size of 500 and DNA sequence
length of 1000. NA means that known gene trees were used instead of being estimated from
sequences. Here, num. uniq is the average number of unique gene trees, sd. uniq is the standard
deviation of the number of unique gene trees, RF-ST is the average RF-ST distance, pairwise RF
is the average pairwise RF distance, and p is the probability that all gene trees have a distinct
topology in the sample.
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µ θ λ num. uniq sd. uniq RF-ST pairwise RF p
0 NA 0.100 411.280 214.176 0.123 0.181 0.000
0 NA 0.200 817.060 169.939 0.226 0.323 0.000
0 NA 0.500 997.660 6.089 0.441 0.587 0.700
0 NA 1.000 999.990 0.100 0.630 0.775 0.990
0 0.010 0.100 515.950 227.150 0.158 0.220 0.000
0 0.010 0.200 882.850 130.451 0.257 0.356 0.010
0 0.010 0.500 956.210 152.598 0.471 0.616 0.640
0 0.010 1.000 1000.000 0.000 0.660 0.799 1.000
0 0.002 0.100 741.240 204.552 0.204 0.282 0.000
0 0.002 0.200 976.240 44.367 0.339 0.460 0.270
0 0.002 0.500 999.950 0.219 0.593 0.745 0.950
0 0.002 1.000 999.980 0.141 0.593 0.746 0.980

0.5λ NA 0.100 258.100 205.427 0.093 0.135 0.000
0.5λ NA 0.200 611.000 251.043 0.171 0.246 0.000
0.5λ NA 0.500 965.540 73.200 0.347 0.474 0.250
0.5λ NA 1.000 999.460 2.645 0.526 0.674 0.880
0.5λ 0.010 0.100 378.680 240.341 0.125 0.173 0.000
0.5λ 0.010 0.200 702.280 240.798 0.198 0.276 0.010
0.5λ 0.010 0.500 978.150 54.421 0.373 0.501 0.380
0.5λ 0.010 1.00 999.750 1.019 0.554 0.699 0.890
0.5λ 0.002 0.100 527.790 269.594 0.155 0.216 0.000
0.5λ 0.002 0.200 863.430 182.156 0.259 0.356 0.080
0.5λ 0.002 0.500 997.480 12.194 0.479 0.623 0.760
0.5λ 0.002 1.000 1000.000 0.000 0.673 0.815 1.000

Table 3.6: Summary statistics for species of 20 taxa for sample size of 1000 and DNA sequence
length of 1000. NA means that known gene trees were used instead of being estimated from
sequences. Here, num. uniq is the average number of unique gene trees, sd. uniq is the standard
deviation of the number of unique gene trees, RF-ST is the average RF-ST distance, pairwise RF
is the average pairwise RF distance, and p is the probability that all gene trees have a distinct
topology in the sample.
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3.2.4 Gene tree estimation error

Gene tree estimation error is often reported as an important factor that makes

species tree inference more challenging (Huang et al., 2010; DeGiorgio and Degnan,

2014; Roch and Warnow, 2015; Xi et al., 2015; Roch et al., 2019; Cai et al., 2021).

These simulations also illustrate that gene tree estimation error increases gene tree

heterogeneity. The effect of gene tree estimation error can be seen by comparing

measures of heterogeneity for known versus estimated trees, and lower versus higher

quality estimated trees due to shorter alignments and lower values of θ (which causes

lower information in the DNA alignments).

In Figure 3.2, gene tree estimation error is introduced in the second column, and

increased in the third column by shortening the alignment length, resulting in higher

probabilities that all gene trees are unique. For example, with 15 taxa, 500 loci

per sample, and λ = 0.5 with no extinction, having mutation change from none to

θ = 0.01 to θ = 0.002 resulted in the proportion of simulated data sets with all gene

tree topologies being unique change from 0.28 to 0.81 to 0.97. The sensitivity of the

probability that all topologies were unique varied considerably depending on both λ

and θ, as well as the number of loci. A comparison of Figures 3.1 and 3.4, and also

Figures 3.2 and 3.3, show that increasing θ from 0.002 to 0.01 (which decreases gene

tree estimation error), decreases the number of unique gene tree topologies as well

54



Chapter 3. Incongruence of Gene Trees

as the probability that all gene tree topologies are unique.
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Figure 3.4: Plots (a)–(d) are distributional plots for the number of unique gene tree topologies
when there are 5, 10, 15 and 20 species, respectively, for a sample size of 500 gene trees with µ = 0,
λ = 0.2, and θ = 0.010. Plots (e)–(h) are boxplots for the number of unique gene trees as a function
of the speciation rate λ when µ = 0 in samples of size 500 gene trees for n = 5, 10, 15, and 20 species,
respectively.
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3.2.5 Correlation

We investigated the relationships of the pairwise RF distance (the average RF dis-

tance between all pairs of gene trees) among the gene trees and the RF distance

between the gene trees and species tree (average RF distance between the gene tree

and species tree) through a combination of simulations and biological data analyses.

Across all the numbers of taxa and λ’s in the simulation, RF and RF-ST have a

strong positive correlation (Figure 3.5 and Table 3.7). Also, both pairwise RF and

RF-ST increase with λ and rapidly when µ = 0 under all the simulation conditions

(Table 3.3).

There are many methods for inferring species trees from collections of gene trees

(Liu et al., 2009; Xu and Yang, 2016). One of the measures of the levels of discordance

of gene trees and species tree is the RF distance between the gene trees and the

species tree. A high value of this measure indicates a high probability of discordance.

However, reporting the RF distance between the reconstructed gene trees and the

species tree requires knowing the actual species tree. While this is possible in

simulation studies, it can only be estimated in empirical studies. Although the

RF-ST is sometimes used to characterize the level of ILS (e.g. Mirarab et al., 2014),

our simulation results indicate that one can use the pairwise RF distance instead of

the RF-ST distance since both are strongly and positively correlated (Figure 3.3
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and Table 3.5). Also, the simulation results confirmed that both pairwise RF and

RF-ST increase with the number of unique trees. Thus, the values of either pairwise

RF or RF-ST distances could be used to describe the degree of heterogeneity of the

gene trees given a species tree.
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Figure 3.5: The plots of RF distances between estimated gene trees to species trees (RF to ST)
versus pairwise RF. Number of taxa increases by row, and columns alternate between alignment
lengths of 500 and 1000. For all plots, θ = 0.002.
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λ = 0.1
n µ θ r(pRF,RF−ST ) r(pRF,nUniq)

5 0.000 0.002 0.978 0.887
5 0.050 0.002 0.980 0.841
5 0.000 0.010 0.970 0.838
5 0.050 0.010 0.980 0.803
10 0.000 0.002 0.987 0.980
10 0.050 0.002 0.980 0.956
10 0.000 0.010 0.979 0.959
10 0.050 0.010 0.979 0.921
15 0.000 0.002 0.982 0.924
15 0.050 0.002 0.982 0.971
15 0.000 0.010 0.975 0.986
15 0.050 0.010 0.979 0.980
20 0.000 0.002 0.977 0.772
20 0.050 0.002 0.987 0.864
20 0.000 0.010 0.969 0.948
20 0.050 0.010 0.985 0.975

λ = 0.5
5 0.00 0.002 0.969 0.980
5 0.5λ 0.002 0.965 0.971
5 0.00 0.010 0.976 0.940
5 0.5λ 0.010 0.975 0.931
10 0.00 0.002 0.979 0.818
10 0.5λ 0.002 0.981 0.909
10 0.00 0.010 0.984 0.952
10 0.5λ 0.010 0.982 0.983
15 0.00 0.002 0.979 0.379
15 0.5λ 0.002 0.981 0.576
15 0.00 0.010 0.985 0.630
15 0.5λ 0.010 0.982 0.767
20 0.00 0.002 0.964 NA
20 0.5λ 0.002 0.983 0.233
20 0.00 0.010 0.981 0.497
20 0.5λ 0.010 0.986 0.543

Table 3.7: Correlation coefficients of Pairwise RF and RF-ST, and number of unique gene trees
and pairwise RF for λ = 0.1 and λ = 0.5, sample size of 500 and DNA sequence length of 500.
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3.3 Discussion

This work was motivated by the observation that multilocus studies often had high levels

of gene tree heterogeneity, and in particular that every gene tree having a unique topology

could seem surprising. For the example given in Salichos and Rokas with 23 taxa and 1070

genes, having every gene tree topology be unique would not be particularly surprising for

higher speciation rates, although would be surprising for very low speciation rates. For

example, with 20 taxa and 1000 loci, for λ ≥ .5 and either value of µ (0 or .5λ), the

probability of all gene tree topologies being unique was at least 70% with known gene

trees, and higher with estimated gene trees, so that it would not be surprising to not have

all unique topologies in this setting. For a lower speciation rate, say λ = 0.2, it would not

be be particularly surprising to either have or not have all unique gene tree topologies.

Overall, we see that the curves describing the probabilities of uniqueness rise steeply

with λ, so that seeing many distinct gene trees in a data set is informative regarding the

speciation rate–high levels of gene tree heterogeneity, at least in the absence of processes

such as hybridization and ancestral population structure, are consistent with high speci-

ation rates and less consistent with lower speciation rates. Quality of the inferred gene

trees matters as well, since gene trees more accurately constructed (such as with longer

alignments) tend to have less heterogeneity.
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Estimation of Birth-Death

Parameters

4.1 Birth-Death Parameters

One of the fundamental features of evolutionary dynamics is its branching structure which

depends on the rates of speciation and extinction. When we observe the present day species,

we can partially only observe the number of species and some of their characteristics, such

as, their DNA sequences, but the evolutionary genealogy that produced the species remains

unobserved. An interesting question is “how can we infer the parameters behind the evolved

process that led to the observed species?” Knowing the rate(s) of the evolutionary process
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helps us trace and reconstruct the relationships of the present day species going back in

time. Also, the branching times of a phylogenetic tree contains information about the

Birth-Death models (Nee et al., 1994). At any time point, the macroevolutionary process

involves one of the following: (1) speciation (species giving birth to new species), (2)

extinction (species dying off) and (3) neither speciation nor extinction (Feller, 2008). The

rates at which these events happen are of interest, and there are several proposed methods

of inference of these rates (birth-death parameters).

A popular method for estimating the birth-death parameters is either directly from allele

frequencies (Tanaka et al., 2006; Stadler, 2011b) or from the species tree estimated from

gene trees that were estimated from DNA sequence. Inference of the birth-death parameters

based on phylogenetic information depends on several assumptions: the quality of the

phylogenetic data, the accuracy with which branch lengths are calibrated to time and the

constancy of the speciation and extinction rates within clades (Turelli et al., 2001; Coyne

and Orr, 2004; Ricklefs, 2007). However, despite probabilistic theorems on estimating

evolutionary parameters, performing statistical inference using genomic data can be very

complicated and challenging. Some of reasons for this are: (1) even simple models of

evolutionary processes are often mathematically intractable, (2) the branching pattern of

the phylogeny depends on many implicitly unobserved factors such as, hybridization and

introgression or horizontal gene transfer. In this chapter, we propose to use approximate

Bayesian computational (ABC) methods to estimate the parameters from the gene trees.
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In the remaining part of this chapter, we describe the birth-death process and likelihood-

based method, and a simulation study for ABC methods. We conclude the chapter with a

brief discussion of the results from the simulated data.

Figure 4.1: Illustration of a model (birth-death process) that shows the lineage that gave rise to the present day
species. A). Waiting time to a speciation event; B). A birth-death tree with waiting times, where x denotes extinct
species. The values t1, t2, t3, t4, t5 are are speciation times.

4.1.1 Birth-death process

The Birth-death process is a continuous-time Markov chain that models how the number

of species changes over time. A lineage speciates into new lineage(s) at a rate λ and goes

extinct at a rate µ. We assume that λ > µ and λ > 0, otherwise the birth-death process is

at a critical or subcritical situation. That is, the lineages will die out with probability 1.

However, even if λ > µ, a lineage can go extinct (Stadler, 2013a; Stadler et al., 2013). Of

course, the rate of speciation and extinction at any given time depends on the number of

species at that time. A common assumption is that these parameters are constant, and have
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linear relationships with other evolutionary factors. However, in practice the evolutionary

process is more complicated and usually arises from implicit complex mechanisms that

underlies the biological structure of the species. These factors hinder the use of the birth-

death process for the inference of birth-death parameters due to difficulty in performing the

statistical estimation (Holmes and Bruno, 2001). Thus, the application of the birth-death

process for the inference of the birth-death parameters has been limited to a continuous

process. Consequently, much work focuses on the simple linear birth-death process since it

is somewhat analytically tractable. Unfortunately, a simple birth-death process may not

capture the complicated lineages’ relationships.

We assume that in a speciation-extinction process only two things can happen: births,

where the number of lineages (species) increases by one; and deaths, where the number of

lineages decreases by one. The simplest branching process for species evolution assumes

that one species splits only into two or die during any one event; thus, trees cannot have

“hard polytomies” (multifurcation). Usually, researchers consider a process where each

species has constant rates of either speciating (giving birth) or going extinct (dying). The

process starts with a single lineage at some time t0 in the past and has the probability of

either speciating or going extinct. The branching process continues in both new species

going forward in time. Typically, there are waiting times before the next event (either

speciation or extinction), see Figures 4.1(A) and 4.1(B). A special case of a birth-death

process is the Poisson process, in which the number of events can only increase over time.
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A pure birth model (λ > 0 and µ = 0) of the birth-death process is a Poisson process.

Let N(t) be the number of lineages at time t, including those that have gone extinct and

not observed in the pruned phylogeny. Also, let L be the number of lineages in a clade.

According to Ricklefs (2007), the expected value of L is: E[L] = e(λ−µ)t and

N(t) =
λE[L]− µ

λ− µ
=

λe(λ−µ)t − µ

λ− µ
(4.1)

and when the extinct lineages are pruned from a phylogeny, the number of lineages ancestral

to present day species is

NA(t) =
λe(λ−µ)T − µ

λe(λ−µ)(T−t) − µ
=

N(T )

N(T − t)
(4.2)

where T is the age of the phylogeny. Also, the difference between lnN(t) and lnNA(t)

(Harvey et al., 1994; Ricklefs, 2007) is approximately − ln λ−µ
λ .

A birth-death process in macroevolution only considers the total number of the species

and do not keep track of the ancestor. The rate of speciation and extinction at any time

is a function of the number of the tips of the species. We can understand the behavior

of birth-death processes in phylogenetic settings if we consider the waiting time between

successive speciation and extinction events in the phylogeny. Suppose we consider a single

lineage that exists at time t. The next event is either a speciation event, splitting the

lineage into two (Figure 4.1A), or an extinction event marking the end of that lineage

(Figure 4.1B). Under a birth-death process, the expected waiting time for an event follows

an exponential distribution, with parameters either λ or µ. Thus, the expected waiting
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time for the next event is exponential with parameter λ+ µ, and the probability that the

next event is speciation is λ
λ+µ and the probability that the next event is extinction µ

λ+µ .

When more than one species is ‘alive’ at the time t, speciation occurs with the rate

λN and extinction with the rate µN . In the classical simple linear birth-death process,

λN = Nλ and µN = Nµ. In a general birth-death process, λN and µN can be any function

of N and the waiting time to the next event. The distribution of the waiting time is

exponential with parameter N(λ+µ). The rate parameter of this exponential distribution

gets larger and larger as the number of species increases, and the expected waiting times

across all species get shorter and shorter as the number of species increases.

One popular approach in the literature, for inference of birth-death parameters using

birth-death model is to first estimate the net diversification rate

r = λ− µ (4.3)

and the relative speciation or extinction rate (Stadler, 2011b)

ϵ =
λ

µ
(or

µ

λ
) (4.4)

The diversification rate can be estimated from the present day species diversity and its age

(Wilson, 1983; Magallon and Sanderson, 2001), and if extinction is negligible,

r̂ = λ̂ =
log(n)

t

and

r̂ = λ̂ =
log(n)− log2

t
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for a stem group age and for a crown group age, respectively. Here, n is the recent species

diversity, t is the age of the tree in millions of year. A crown group is the group that

includes all the present day species of a clade plus all the extinct descendants back to the

common ancestor of all the present day species. The stem group includes all species that

are not part of the crown group. That is, every member of the stem group that has gone

extinct (Figure 4.2). Then simultaneously estimate birth-death parameters from equations

(4.3) and (4.4).

Figure 4.2: Illustration of a tree with Crown and Stem groups.

The birth-death process can be applied in many other settings. For example,it can

be use to study infectious disease dynamics in a finite population, where the number of
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infected individuals is the quantity of interest (Andersson and Britton, 2012). In molecular

evolution, the birth-death process can be used to model the insertion and deletion of

nucleotides in a DNA sequence. Further, it is commonly used to model quantities of interest

in allele frequencies, selection, or coalescence studies (Kingman, 1982; Moran, 1958).

Properties of the Birth-Death Model

Suppose we consider a small interval, ∆t, and assume that the length of this interval is so

short that it can only contain either one event or no event. Therefore, the probability of an

occurrence of an event in this interval with rate r is approximately r∆t. The probability

of speciation event over this interval is:

Pspeciation = λN∆t+ o(∆t) = N(t)λ∆t+ o(∆t)

The probability of extinction event in this interval is:

Pextinction = µN∆t+ o(∆t) = N(t)µ∆t+ o(∆t)

and the probability of more than one event is:

Pmore than one event = o(∆t)

where N(t) is the number of surviving species at time t. For the term, o(∆t), it means

that it has smaller order than ∆t, so that

lim
∆t→0

o(∆t)

∆t
= 0.
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This implies that the probability of more than one birth in this interval ∆t is negligibly

small.

Combining the above equations, we obtain that the probability of neither birth nor death

in the interval (t, t+∆t) is

PNo event = 1− (λN + µN )∆t+ o(∆t) (4.5)

Expected Number of Living Species

Suppose the total number of living species at time t is N(t). For a very small interval of

time ∆t, the expected value of N(t) is

E [N(t+∆t)] = N(t) +N(t)λ∆t−N(t)µ∆t (4.6)

Subtracting N(t) from both sides of (4.6), dividing by ∆t and then taking the limit as ∆t

tends to 0, We obtain a differential equation:

dN

dt
= N(t)(λ− µ)

Without loss generality, we assume that there are N0 species at time t = 0. Then, the

solution to the differential equation with an initial value condition (N(0) = N0) is

N(t) = N0e
(λ−µ)t (4.7)

This is the expected number of species over the time under a birth-death model, and this

number has exponential growth or decay if λ > µ or λ < µ, respectively. Also, it is constant
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as λ = µ, (Figure 4.3). For a pure birth process, we have

N(t) = N0e
λt
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Figure 4.3: Expected number of species under a birth-death model with N0 = 3000.
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4.1.2 Maximum Likelihood Method

A likelihood is a probability (or density) of observing the data (phylogeny) given the

proposed values of the parameters. The maximum likelihood method for the birth-death

parameters is to maximize the likelihood of observing a species tree from the tree’s branch

lengths. We assume that the tree is ultrametric (i.e., the total root to tip distance is

the same for every species). To use the maximum likelihood method to estimate the

parameters, one needs to write down the likelihood functions of the waiting times between

the speciation and extinction events. Knowing the probability density function allows

making inferences about the maximum likelihood of the birth-death parameters for a given

tree (reconstructed) by maximizing the density function over the parameters.

The convention is to assume that the tree begins at time t1, the root node, with a pair

of species (Stadler, 2013a) and the initial lineages survive to the present day. The observed

phylogenetic tree is a pruned tree (i.e., ignoring extinct species). A tree with n tips has n−1

speciation times, denoted as t1, t2, ..., tn−1 and ti > ti−1 > 0 (Figure 4.1), for i = 1, ..., n,

with the present day time being 0 (Nee et al., 1994; Stadler, 2010, 2013a,b). The times

of bifurcations of phylogeny provide some information about the speciation and extinction

rates, and these rates can be estimated from the reconstructed species tree (Stadler and

Steel, 2012a). The speciation time is measured backward in time from the present day.

Note, we can use both complete and incomplete phylogenies to estimate speciation and

extinction rates (Stadler and Steel, 2012a; Rabosky et al., 2007), especially, when we have
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complete sampling; that is, all the n tips are represented in the tree.

The general idea is to assign probabilities to the tips of the tree and update them going

backward in time to the root (Nee et al., 1994; Maddison et al., 2007; Stadler, 2013a).

Then getting at the root, we obtain the probability of observing the tree given the model,

and this probability at the root is the likelihood. To do this, we need to keep track of two

things: (1) the probability SN (t) that a lineage at time t in the past speciated and gave

birth to node N that survives to the present day species and (2) the probability E(t) that a

lineage evolves at some point but went extinct before the present day; the lineage starting

at time t, leaves no descendants at the present day. Going backward in time from the tip

to the root, S(troot) is the full likelihood for a single lineage. Note that SN (t) and E(t)

depend on each other because the probability of observing a lineage on a tree depends on

the extinction probability of that lineage and vice visa, and these are calculated backward

in time. We note that SN (tn) = 1 and E(tn) = 0 at the tip because observing a tip at

present day means that it does survive and the probability is 1.

Given the speciation rate λ, the time it takes a lineage to bifurcate has an exponential

distribution with a mean of 1
λ (Mooers et al., 2012; Mooers and Heard, 1997; Nee et al.,

1994; Stadler, 2013a). Suppose we consider a branch of a tree with no nodes, going back in

time, we know that (1) the lineage did survive, and (2) if speciation occurred, the lineage(s)

that bifurcated did go extinct and did not survive to the present day. These scenarios are
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represented in the following equations (Maddison et al., 2007)

dS(tn)

dt
= −(λ+ µ)S(tn) + 2λE(t)S(tn) (4.8)

The first term of the equation, −(λ + µ)S(tn), is the rate of no speciation or extinction,

while the second term 2λE(t)S(tn) is the rate of speciation followed by the extinction of

either daughter lineage.

dE(t)

dt
= µ− (λ+ µ)E(t) + λE(t)2 (4.9)

The three terms in the equation are the three possible ways a lineage might not survive

to the present day. That is, either goes extinct in the interval considered or survives the

interval but goes extinct sometime later, or it splits in the interval, but both descendants

do not survive to the present day. Note, E(t) only depends on the time and not on the

number of the tips of the tree, and each descendant that goes extinct is independent, hence

the term E(t)2.

Solving the ordinary differential equations with initial conditions: E(0) = 0 and SN (0) =

1 (Maddison et al., 2007), then

E(t) = 1− λ− µ

λ− (λ− µ)e(λ−µ)t
(4.10)

and

SN (t) = e−(λ−µ)(t−tN ) (λ− (λ− µ)e(λ−µ)tN )2

(λ− (λ− µ)e(λ−µ)t)2
SN (tN ) (4.11)

where tN is the time depth of node N . Considering each branch’s likelihood and taking

product over all 2n − 2 branches, the likelihood of observing the tree given λ and µ is
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proportional to (Maddison et al., 2007):

L(t1, ..., tn|λ, µ) = λn−1 ·
2n−2∏
j=1

e(λ−µ)(tj,t−tj,b) · (λ− µe−(λ−µ)tj,t)2

(λ− µe−(λ−µ)tj,b)2
(4.12)

where tj,b is the time at the base of the jth branch and tj,t is the time at the node on the

jth branch length nearest to the observed species (present day taxon).

This procedure only entails knowing the likelihood equation of observing the set of the

speciation times t1, t2, ..., tn−1, the number of the tips n and then obtaining the MLE of the

parameters from the equation. However, as the number of species increases, the likelihood

equation become computational expensive and sometimes intractable. Estimating the

parameters from gene trees entails combining all the likelihoods of the gene trees used

in in the inference of the species tree together.

For a pure birth model (µ = 0), we can write the likelihood function as

L(t1, ..., tn|λ) = λn−1 ·
n−1∏
j=1

e−λtj (4.13)

and the maximum likelihood estimate of λ is:

λ̂ =
n− 1∑n−1
j=1 tj

(4.14)

where
∑n−1

j=1 tj is the sum of the branch lengths. However, the resulting likelihood equation

(4.12) may be complex, complicated or even intractable. Thus, in this project, we propose

to use the ABC algorithm to infer the birth-death parameters assuming that the trees

are ultrametric. In particular, we compare the results of the ABC method and maximum

likelihood method for the pure birth model.

74



Chapter 4. Estimation of Birth-Death Parameters

4.2 Approximate Bayesian Computation (ABC)

Methods

Approximate Bayesian computation is a class of computational methods in statistics rooted

in the Bayesian method and is used to estimate the posterior (or predictive) distributions

of model parameters. ABC algorithms are used to approximate the likelihood function

by simulations, and the outcomes are compared with the observed data. This method

is popularly used for inference when the likelihood function can be simulated but is not

analytically tractable. ABC methods are popular in the biomedical sciences, particularly

in genetic and phylogenetic studies (Tanaka et al., 2006; Csilléry et al., 2010; Fan and

Kubatko, 2011; Stadler, 2011b; Kutsukake and Innan, 2014; Veeramah et al., 2015; Janzen

et al., 2015; Alanzi and Degnan, 2017).

ABC methods provide a means of performing inferences when confronted with unrea-

sonably complex and complicated models and the methods rely on summary statistics.

A comparison of how similar the simulated data set Y to the observed data set X is

undertaken by computing a distance d(X,Y ). Parameter samples that produce simulated

data sets that are ‘very close’ to the observed data set X are collected and kept as samples

from the posterior distribution. That is, a parameter that produces simulated data that

has its distance from the observed data less than the tolerance (ϵ) is accepted as part of

the posterior.
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4.2.1 ABC Rejection Algorithm

The most basic set in ABC is a set of parameter points that is first sampled from the prior

distribution. Then the sampled parameter points λ, are used to simulate data Y under the

model specified by λ. The sampled parameter value is rejected if the simulated Y is too

different from the observed data X. That is, Y is accepted with tolerance ϵ if:

d(X,Y ) ≤ ϵ

This value (ϵ) can be strict or not, depending on the problem, and also can be chosen based

on prior experience. Sometimes, the optimal tolerance value is up for debate. Practically,

the probability of generating a data set Y with small (or very small) distance to data

set X decreases as the sample size increases, and this might lead to a decrease in the

computational efficiency of the rejection algorithm (Sunn̊aker et al., 2013). The popular

approach is to replace Y and X with sets of summary statistics (summaries of the data

that do not lose any information useful for doing inference), S(Y ) and S(X), respectively,

(Casella and Berger, 2021). Typically, the summary statistics have smaller dimensions and

contain information in X and Y , respectively. Further, if the the relevant information in X

and Y are well captured by S(X) and S(Y ), this dimensional reduction does not introduce

any error or bias (Didelot et al., 2011; Sunn̊aker et al., 2013). The distance measure d(X,Y )

is also replaced with d(S(X) − S(Y )), which determines the level of discrepancy between

the data set S(X) and data set (Y ) based on a chosen metric. Common and popular

metrics are:
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• the sum of absolute difference

d(S(X), S(Y )) =
∑
k∈K

|S(X)k − S(Y )k|

• the sum of squared difference

d(S(X), S(Y )) =
∑
k∈K

[S(X)k − S(Y )k]
2

• the Kullback-Leibler divergence (KL)

d(S(X), S(Y )) =
∑
k∈K

S(X)k log (
S(X)k
S(Y )k

)

Then the acceptance criterion is:

d(S(X), S(Y )) ≤ ϵ.

The result of the ABC rejection algorithm is a sample of parameter values distributed

according to the posterior distribution and obtained without evaluating the likelihood

function explicitly. In this project, the metric we used is the pairwise Robinson-Flouds (RF)

distance (Robinson and Foulds, 1981). RF distances of sampled gene trees from species tree

simulated from the prior that corresponded to small distances compared to the observed

RF are used as a basis for an estimated posterior distribution for the parameter (i.e., the

speciation rate). Basically, in Bayesian statistics, the aim is to determine the posterior

distribution of the parameter given the data. ABC approach estimates the posterior

distribution given that the summary statistic is close to the data, and this approximates
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the posterior well when the summary statistic contains the relevant information in the

data. So, data are simulated under a range of values of the parameter λ. At each step,

if the data that is produced matches or is very close to the observed data, observed RF,

the parameter value that is being used to generate the data is ‘accepted.’ The set of

accepted parameter values is then used to approximate the posterior distribution. That

is, for each simulated RF’ that is identical or very to the observed data observed RF,

the generating parameter λ values are stored (that realization is accepted) and used to

construct a posterior distribution for the parameters. In this project, we chose the best

500 simulated RF that were very closest to the observed RF.

The main advantage of this method is that, for the most complicated phylogenetic

settings, it is far easier to simulate than to calculate. In fact, many models of evolution

lead to distributions for which direct calculation is complicated or impossible, but which,

given improvements in computational efficiency, can be relatively easily simulated. So, this

leads to the somewhat easy development of rejection algorithms, with evolutionary models,

for the purposes of inference.

In fact, we spend a lot of time generating parameter values from the prior distribution,

only to discover that they rarely lead to data that is ‘very close’ the observed RF. The

’acceptance rate’ of such algorithms is so low that it takes an unreasonable amount of time

to collect a large set of accepted parameter values. Thus, we use an alternative method,

the best βN of the parameters that produced data are very close to the observed data
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in the absolute distance. We note that since the summary statistics we used may not be

sufficient statistics, the resulting predictive distribution is an approximation of the true

posterior, and the closeness of the approximation is, a priori, unknown.

Further, we hope that the ABC method will be useful in this project since the likelihood

function of gene trees from a species tree is complicated and likely to be intractable. The

details of our ABC algorithm are given in the method section below. We simulated the

gene trees from 10-taxon and 15-taxon species trees.

4.2.2 Methods

We first simulate from the prior distribution for the parameter (in this case, a speciation

rate, λ), then simulate data from the parameter (a species trees and gene trees), using

TreeSim (Stadler, 2019) and hybrid-Lambda (Zhu et al., 2015), compute a pairwise RF

distance of the simulated and observed gene trees, and then record an absolute difference

between the RF distances. In this project, the observed and simulated data consist of

species trees, gene trees from the species tree, and pairwise RF distances among the gene

trees. We apply the method to 10-taxon and 15-taxon trees.

For 10-taxa, there are 34,459,425 possible rooted tree topologies. Based on the observed

parameter, λ, we randomly generate a species tree and ng = 500 gene trees from this

species tree and then compute the average pairwise RF distance among the gene trees.
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Also, for the simulated data, we first generate a vector of length 10,000 from the prior

distribution as speciation rates and simulate species trees with each data point from the

vector. Further, samples of gene trees with 500 loci per species tree are generated and the

sum of the RF distances is computed. The details of the algorithm are given below.

Algorithm

1. Simulate a species trees with observed speciation rate (λ) and extinction rate (µ = 0)

using TreeSim (Stadler, 2019), and then generate gene trees from the species trees

using hybrid-Lambda (Zhu et al., 2015) and compute the sum of pairwise RF distance

among the gene trees; call this observed-RF.

2. start with i = 1.

3. Simulate a species tree from the prior distribution of λ using TreeSim.

4. sample gene trees from the species tree generated with the prior using hybrid-

Lambda; then calculate the pairwise RF distance of the gene trees and call it

simulated-RFi.

5. Calculate Di = |simulated-RFi − observed-RF|

6. Increment i by 1 and repeat steps (2)-(5) N times

7. Take the smallest βN values from step (5), then retain the speciation rates corre-

sponding to these smallest distances. These rates estimate the posterior (or predic-
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tive) distribution.

Here, β is chosen to be a small number so that only those simulated speciation rates with

simulated RF distance close to the observed RF distance are retained. We used β = 0.05

and βN = 500 so that the posterior is formed from the 500 best speciation rates. We

follow Alanzi and Degnan (2017); Fan and Kubatko (2011) in accepting a fixed number of

speciation rates instead of the smallest distances. This approach is common in practice in

ABC, and it is equivalent to using a threshold that is based on a quantile of the simulated

distribution of distance (Beaumont et al., 2002). The approach we used in this project,

that is, the best 100× β% of the speciation rates, leads to a fixed number N of data sets

to simulate, and it is easier to use in practice since the length of the simulation is known

in advance, making easier to plan the length of time needed for computation. In contrast,

the fixed threshold approach leads to a random number of iterations needed to obtain a

fixed number of accepted parameters to estimate the posterior distribution. We estimate

the birth parameters by summarizing the posterior distribution of the speciation rates. To

the perform all the computations, we employs several scripts, including R codes; details

are given in the Appendix.
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4.2.3 Simulation and Sensitivity Analysis

For 10 taxon and 15 taxon trees, we also used the Algorithm above to simulate one species

tree using TreeSim (Stadler, 2019) under a pure birth model (µ = 0) with a speciation

parameter from a prior, exponential distribution with a mean of 0.5. The choice of the

prior was based on a randomly selected tree pendant edge that has an exponentially

distributed length with parameter 2λ (Stadler and Steel, 2012a). Also, we simulated the

specie trees with birth parameters from an exponential distribution with mean 1 and a

beta distributions with parameters, β = 2 and α = 2, to investigate how sensitive the

predictive distribution is to the shape and center of the prior distributions. The predictive

distribution estimated using ABC is summarized using speciation rates that their species

trees generate a sample of gene trees of the best 500 RF distances. The best 500 speciation

rates that produced the species trees that the sum of the pairwise RF among the gene trees

sampled from them are close to the observed RF. Note that the speciation rate for the

observed species tree that its gene trees produced the observed RF distance is 0.5 Using

the RF distance to summarize a distribution of trees is fairly common in phylogenetics

(Mirarab et al., 2014). Further, we outlined different proposed steps for investigating the

performance of the ABC method other methods on Figure 4.4 Some of the steps are:

• maximum likelihood (ML) using STEM (Kubatko et al., 2009) to estimate the

speciation parameter directly from branch lengths of the species tree.
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• maximum likelihood on the branch lengths of an estimated species tree from gene

trees generated with hybrid-Lambda (Zhu et al., 2015).

• ABC to estimate the speciation rate from the gene trees, and so on.

Most of the steps are planned for the future studies.

Figure 4.4: Flow chart of the simulation.The shaded parts on the gray box at the top right corner
are discussed in this project.
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4.2.4 Result

The ABC method is used to infer the speciation rate from gene trees instead of species

tree. To investigate the effect of priors, numbers of loci, numbers of replicate, and numbers

of taxa of species trees on the estimates, we employed the following parameters:

• 10 taxon and 15 taxon.

• 500 and 1, 000 (loci).

• priors: exponential with means 1 and 2, and beta distribution with β = α = 2.

• 10, 000 replicates of the species trees per each simulation.

Each combination of the above parameters was used and replicated 50 times. A size of

N = 10, 000 species trees for each replicate and a sample size of 500 loci were used for

the each of the priors. While 10, 000 species trees, 1, 000 loci were used with exponential

priors only. The 500 best speciation rates were retained. The best 500 was determined

based on the smallest Di. The value of N was determined by pilot simulation studies with

N = 50, 000 and N = 10, 000 , which suggested that N = 10, 000 and 500 loci yielded

approximate results with N = 50, 000 and 500 loci.

Doubling the mean of the exponential prior from 0.5 to 1 widens the credibility intervals

of the estimates (Tables 4.2 and 4.3). A beta(2,2) prior produces better estimates of

λ and tighter credibility intervals (Table 4.4). For example, the maximum width of the
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credibility interval for beta distribution is 0.666 compare to 2.737 and 1.961 for exp(1)

and exp(2), respectively, for 10 taxon species, and 0.606 compare to 1.706 and 1.728 for

exp(1) and exp(2), respectively, for 15 taxon species. Further, the credibility proportion,

that is the number of times the credible intervals contain the observed value (λ = 0.5) is

100% for both 10 and 15 taxa species trees for the beta prior (Table 4.1). On average, the

predictive distribution of λ is not much sensitive to the shape of the priors, the numbers of

taxa, and numbers of loci, particularly when the number of loci is at least 500 (Table 4.4

and Figures 4.5 and 4.6). However, the shape of priors affects the widths of the credible

intervals and the proportion of times the credible intervals contain the observed value.

Prior exp(2) exp(1) beta(2,2)

10-taxon

Coverage proportion 0.960 0.920 1.000
Minimum estimate 0.243 0.262 0.306
Maximum estimate 1.325 1.665 0.744

Max. credible Interval length 1.961 2.738 0.666

15-taxon

Coverage proportion 0.900 0.960 1.000
Minimum estimate 0.243 0.335 0.283
Maximum estimate 1.271 1.292 0.765

Max. credible Interval length 1.728 1.706 0.606

Table 4.1: Summary of Predictive Values for 10-taxon and 15-taxon

However, a prior of exp(2) was used for the remaining simulations based on the fact

that a randomly selected tree pendant edge has an exponentially distributed length with

parameter 2λ (Stadler and Steel, 2012a). Further, we examine the effect of the number of
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gene trees on the predictive values. Also, the sum of the branch lengths of the species trees

are negatively correlated with estimated speciation rates (Figures 4.5(d,e,f) and 4.6(d,e,f)).
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Figure 4.5: Predictive Distributional Plots of speciation rates of 10-taxon trees. (a)-(c) are the
average predictive estimates for λ for exp(2), exp(1) and beta(2,2) priors, respectively. (d)-(f) are
plots of speciation rate (λ) and sum of the branch lengths of the observed species tree for the three
priors.
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Figure 4.6: Predictive Distributional Plots of speciation rates of 15-taxon trees. (a)-(c) are the
average predictive estimates for λ for exp(2), exp(1) and beta(2,2) priors, respectively. (d)-(f) are
plots of speciation rate (λ) and sum of the branch lengths of the observed species tree for the three
priors.
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exp(2) exp(1)

exp2.mean quant.025 quant.975 exp1.mean quant.025 quant.975

0.466 0.170 0.928 0.514 0.174 1.043
1.127 0.488 2.112 1.421 0.564 2.871
0.616 0.259 1.173 0.684 0.239 1.419
0.290 0.098 0.593 0.308 0.099 0.638
0.529 0.205 1.015 0.606 0.225 1.213
0.506 0.177 0.989 0.566 0.213 1.137
0.773 0.302 1.479 0.863 0.305 1.707
0.553 0.215 1.108 0.608 0.220 1.153
0.243 0.061 0.532 0.262 0.078 0.572
0.560 0.218 1.135 0.613 0.246 1.196
0.939 0.394 1.768 1.125 0.469 2.261
0.955 0.358 1.883 1.149 0.484 2.404
0.585 0.232 1.140 0.642 0.253 1.248
0.582 0.222 1.130 0.658 0.259 1.333
1.272 0.538 2.419 1.598 0.629 3.034
0.860 0.320 1.687 1.040 0.399 2.163
0.673 0.262 1.352 0.754 0.278 1.405
0.608 0.221 1.256 0.695 0.239 1.320
0.504 0.188 0.957 0.550 0.216 1.139
0.465 0.167 0.956 0.512 0.189 1.021
0.861 0.370 1.596 1.019 0.400 1.998
0.413 0.134 0.820 0.460 0.153 0.895
0.357 0.126 0.724 0.393 0.124 0.830
0.619 0.252 1.203 0.670 0.263 1.308
0.727 0.268 1.381 0.830 0.305 1.683
0.322 0.110 0.636 0.349 0.110 0.747
0.405 0.147 0.814 0.442 0.161 0.973
0.658 0.246 1.246 0.743 0.282 1.464
0.573 0.207 1.118 0.622 0.229 1.235
0.383 0.133 0.787 0.407 0.158 0.796

Table 4.2: Estimates of λ and its credible intervals for 10 taxon species tree with exp(2) and exp(1)
priors, respectively. quant.025 and quant.975 are the 2.5% and 97.5% quantiles of the estimated
predictive distribution.
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exp(2) exp(1)

exp2.mean quant.025 quant.975 exp1.mean quant.025 quant.975

0.427 0.209 0.775 0.385 0.174 0.711
0.575 0.269 1.027 0.542 0.244 0.970
0.522 0.238 0.925 0.814 0.381 1.535
0.473 0.222 0.820 0.354 0.147 0.635
0.818 0.400 1.367 1.015 0.467 1.780
0.321 0.143 0.599 0.789 0.375 1.385
0.944 0.431 1.630 0.961 0.416 1.630
0.577 0.277 1.014 0.746 0.345 1.371
1.214 0.505 2.177 0.558 0.254 1.040
1.271 0.592 2.321 0.380 0.183 0.668
0.585 0.267 1.027 0.475 0.202 0.874
0.564 0.248 1.027 0.650 0.320 1.189
0.245 0.109 0.451 0.644 0.290 1.143
0.384 0.165 0.703 0.522 0.238 0.959
0.397 0.162 0.740 0.663 0.292 1.236
0.567 0.260 0.985 0.354 0.148 0.688
0.739 0.364 1.317 0.740 0.336 1.331
0.426 0.197 0.776 0.816 0.376 1.478
0.652 0.295 1.197 0.698 0.350 1.254
0.624 0.277 1.098 0.798 0.384 1.382
0.689 0.326 1.209 0.782 0.390 1.406
0.354 0.163 0.659 1.201 0.536 2.129
0.546 0.264 0.970 1.292 0.608 2.315
0.791 0.368 1.459 0.835 0.407 1.516
0.832 0.374 1.528 0.636 0.274 1.130
0.243 0.100 0.447 0.639 0.296 1.171
0.560 0.262 0.964 0.410 0.172 0.756
0.768 0.350 1.381 0.509 0.233 0.878
0.699 0.326 1.210 0.773 0.325 1.322
0.614 0.285 1.065 0.586 0.286 1.098

Table 4.3: Estimates of λ and its credible intervals for 15 taxon species tree with exp(2) and exp(1)
priors, respectively. quant.025 and quant.975 are the 2.5% and 97.5% quantiles of the estimated
predictive distribution.
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10-taxon 15-taxon

exp(2) exp(1) beta(2, 2) exp(2) exp(1) beta(2, 2)

1 0.466 0.514 0.508 0.427 0.385 0.462
2 1.127 1.421 0.730 0.575 0.542 0.573
3 0.616 0.684 0.590 0.522 0.814 0.546
4 0.290 0.308 0.344 0.473 0.354 0.508
5 0.529 0.606 0.545 0.818 1.015 0.699
6 0.506 0.566 0.527 0.321 0.789 0.369
7 0.773 0.863 0.645 0.944 0.961 0.706
8 0.553 0.608 0.574 0.577 0.746 0.583
9 0.243 0.262 0.306 1.214 0.558 0.765
10 0.560 0.613 0.571 1.271 0.380 0.765
11 0.939 1.125 0.689 0.585 0.475 0.584
12 0.955 1.149 0.702 0.564 0.650 0.564
13 0.585 0.642 0.574 0.245 0.644 0.283
14 0.582 0.658 0.579 0.384 0.522 0.428
15 1.272 1.598 0.744 0.397 0.663 0.434
16 0.860 1.040 0.674 0.567 0.354 0.576
17 0.673 0.754 0.618 0.739 0.740 0.653
18 0.608 0.695 0.591 0.426 0.816 0.456
19 0.504 0.550 0.531 0.652 0.698 0.617
20 0.465 0.512 0.499 0.624 0.798 0.600
21 0.861 1.019 0.665 0.689 0.782 0.638
22 0.413 0.460 0.468 0.354 1.201 0.395
23 0.357 0.393 0.423 0.546 1.292 0.543
24 0.619 0.670 0.592 0.791 0.835 0.677
25 0.727 0.830 0.642 0.832 0.636 0.686
26 0.322 0.349 0.399 0.243 0.639 0.288
27 0.405 0.442 0.451 0.560 0.410 0.574
28 0.658 0.743 0.614 0.768 0.509 0.665
29 0.573 0.622 0.546 0.699 0.773 0.651
30 0.383 0.407 0.439 0.614 0.586 0.607

Table 4.4: First 30 estimates of λ for 10 taxon and 15 taxon species with, 500 loci, and
exp(2), exp(1) and beta(2, 2) priors, respectively.
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Number of Loci

Ten and fifteen taxon species trees were generated under a pure birth model with the

values of λ from the prior exp(2), and 500 and 1000 loci from each species tree. Table 4.5

and Figure 4.7 show the effects of the sample size of the gene trees on the estimates of λ.

The credibility intervals and coverage probability widths are approximately the same for

the 500 and 1000 loci of genes for both trees. The coverage probability for 500 and 1000

loci are 0.96 for both loci for 10 taxon species tree, and 0.98 and 0.96, respectively, for

15 taxon species tree. The posterior estimates are close for these sample sizes, Table 4.5,

the maximum absolute differences of the estimates using the sample size are 0.0407 and

0.026 for 10 and 15 taxon species trees, respectively. Increasing the number of loci from

500 to 1000 does not affect the estimates. However, we speculate that there would be some

improvement by using a larger sample size if the gene trees were estimated instead of true

gene trees. The reason is that the estimated rather than known gene trees make inference

more difficult (Huelsenbeck and Kirkpatrick, 1996; Huang et al., 2010; Roch and Warnow,

2015), and by the law of large numbers, increasing the sample size is more likely to improve

the estimates. Note a difference between the known gene tree versus estimated gene tree

cases was that with the estimated gene trees, there are sampling and estimation errors,

thus, noisy data, while the known gene trees have lesser or no noise. We have proposed to

carry out the same study with estimated gene trees as part of our future projects.

Also, there is no clear difference between the shapes of the predictive distributions for the
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both number of loci, Figures 4.7(a) and 4.7(d) for 10 taxon tree, and Figures 4.7(e) and

4.7(h) for 15 taxon tree. In addition, some of the species’ trees have shorter branch lengths.

Shortness of tree branch lengths would cause more gene tree heterogeneity and discordance

of gene trees and species trees, which might cause ABC to estimate a less accurate value of

the observed λ = 0.5, particularly values higher than this value. Interestingly, increasing

the sample size does not improve the estimates much.
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Figure 4.7: Predictive plots of speciation rates. (a)-(c) have priors: exp(2), exp(1) and beta(2, 2),
respectively, with 500 loci from 10 taxon species tree. (d) has prior of exp(2) with 1000 loci from
10 taxon species tree. (e)-(g) have priors: exp(2), exp(1) and beta(2, 2), respectively, with 500 loci
from 15 taxon species tree. (h) has prior of exp(2) with 1000 loci from 15 taxon species tree.
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10-taxon 15-taxon

ng = 500 ng = 1000 difference ng = 500 ng = 1000 difference

0.466 0.472 0.005 0.368 0.363 0.005
1.127 1.141 0.014 0.497 0.487 0.010
0.616 0.624 0.008 0.759 0.737 0.022
0.290 0.280 0.010 0.339 0.339 0.000
0.529 0.542 0.014 0.906 0.894 0.012
0.506 0.499 0.007 0.711 0.701 0.011
0.773 0.786 0.013 0.903 0.893 0.009
0.553 0.551 0.001 0.672 0.668 0.003
0.243 0.243 0.000 0.530 0.536 0.005
0.560 0.570 0.010 0.368 0.368 0.000
0.939 0.912 0.026 0.452 0.457 0.005
0.955 0.991 0.036 0.607 0.610 0.003
0.585 0.583 0.001 0.587 0.588 0.001
0.582 0.574 0.008 0.465 0.477 0.012
1.272 1.242 0.030 0.597 0.602 0.005
0.860 0.900 0.041 0.336 0.337 0.001
0.673 0.670 0.003 0.680 0.666 0.014
0.608 0.607 0.001 0.740 0.740 0.000
0.504 0.491 0.013 0.651 0.650 0.000
0.465 0.457 0.008 0.719 0.708 0.012
0.861 0.884 0.023 0.695 0.697 0.002
0.413 0.418 0.005 1.034 1.051 0.018
0.357 0.362 0.005 1.113 1.103 0.011
0.619 0.626 0.007 0.761 0.779 0.018
0.727 0.731 0.005 0.583 0.597 0.014
0.322 0.321 0.001 0.585 0.575 0.010
0.405 0.418 0.013 0.389 0.401 0.011
0.658 0.658 0.001 0.469 0.477 0.008
0.573 0.581 0.008 0.702 0.692 0.010
0.383 0.388 0.005 0.561 0.569 0.008

Table 4.5: Estimates of speciation rates with 500 and 1000 loci and their differences for 10 and
15 taxon species trees.
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4.2.5 Comparison of Results: Maximum Likelihood Method

versus ABC Method

Tables 4.7 and 4.8 summarize the estimated values of λ for 10-taxon and 15-taxon species

trees, respectively, for using the maximum likelihood (MLE) method on the branch lengths

of known species trees, estimated species trees, and ABC method. The summary statistics

for the estimates in Table 4.6. The means of the estimates are 0.581, 0.580, and 0.580 for

using the MLE method on the branch lengths of known species trees and estimated species

trees from 500 and 1, 000 loci, respectively; also, 0.626 and 0.627 for the ABC method with

500 and 1000 loci, respectively, for 10-taxon species trees. Further, similar results were

obtained for 15-taxon species trees (Table 4.6 and Figure 4.8. The estimates with the ABC

method are a little higher than those with the maximum likelihood method. We speculate

that the ABC method would produce approximate results by increasing the number of

replicates and loci.

Statistic Known ST Est g500 Est g1000 ABC g500 ABC g1000

10-taxon

min 0.250 0.250 0.250 0.243 0.243
median 0.528 0.528 0.528 0.582 0.582
mean 0.581 0.580 0.580 0.626 0.627
stdv 0.214 0.214 0.214 0.245 0.243
max 1.217 1.216 1.217 1.325 1.302

15-taxon

min 0.294 0.294 0.294 0.307 0.313
median 0.534 0.534 0.534 0.583 0.576
mean 0.561 0.560 0.561 0.600 0.599
stdv 0.165 0.164 0.164 0.196 0.195
max 0.986 0.985 0.986 1.113 1.103

Table 4.6: Summary statistics for the estimates of λ for the 10-taxon and 15-taxon species trees,
from the branch lengths of known and estimated species trees, and ABC method with 500 and 1000
loci.
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Figure 4.8: Boxplots for the estimated values of λ from the branch lengths of known species trees,
estimated species trees and ABC method with 500 and 1, 000 loci.
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True ST ST g500 ST g1000 ABC g500 ABC g1000

1 0.426 0.426 0.426 0.466 0.472
2 0.808 0.807 0.807 1.127 1.141
3 0.544 0.543 0.543 0.616 0.624
4 0.977 0.976 0.976 0.290 0.280
5 0.472 0.472 0.472 0.529 0.542
6 0.724 0.724 0.724 0.506 0.499
7 0.994 0.993 0.994 0.773 0.786
8 0.250 0.250 0.250 0.553 0.551
9 0.277 0.277 0.277 0.243 0.243
10 0.501 0.500 0.500 0.560 0.570
11 0.549 0.549 0.549 0.939 0.912
12 0.297 0.297 0.297 0.955 0.991
13 0.833 0.831 0.832 0.585 0.583
14 0.674 0.674 0.674 0.582 0.574
15 0.629 0.629 0.629 1.272 1.242
16 1.185 1.185 1.185 0.860 0.900
17 0.732 0.732 0.732 0.673 0.670
18 0.511 0.511 0.511 0.608 0.607
19 0.511 0.511 0.511 0.504 0.491
20 0.424 0.424 0.424 0.465 0.457
21 0.803 0.802 0.803 0.861 0.884
22 0.708 0.707 0.707 0.413 0.418
23 0.585 0.584 0.585 0.357 0.362
24 0.487 0.486 0.486 0.619 0.626
25 0.513 0.513 0.513 0.727 0.731
26 0.373 0.373 0.373 0.322 0.321
27 0.292 0.292 0.292 0.405 0.418
28 0.404 0.404 0.404 0.658 0.658
29 0.440 0.439 0.440 0.573 0.581
30 0.460 0.459 0.459 0.383 0.388

Table 4.7: The first 30 estimates of λ for 10-taxon species (known) trees. Column 1 is the estimates
directly from the branch lengths of the species tree. Column 2 is the estimates from the branch
lengths of the species tree estimated with 500 gene trees. Column 3 is the estimates from the branch
lengths of the species tree estimated with 1000 gene trees. Column 4 is the estimates with ABC
method from 500 gene trees. Column 5 is the estimates with ABC method from 1000 gene trees
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True ST ST g500 ST g1000 ABC g500 ABC g1000

1 0.492 0.492 0.492 0.368 0.363
2 0.757 0.757 0.757 0.497 0.487
3 0.442 0.442 0.442 0.759 0.737
4 0.918 0.917 0.918 0.339 0.339
5 0.574 0.574 0.574 0.906 0.894
6 0.874 0.873 0.873 0.711 0.701
7 0.847 0.846 0.846 0.903 0.893
8 0.294 0.294 0.294 0.672 0.668
9 0.327 0.327 0.327 0.530 0.536
10 0.390 0.390 0.390 0.368 0.368
11 0.580 0.579 0.580 0.452 0.457
12 0.366 0.366 0.366 0.607 0.610
13 0.986 0.985 0.986 0.587 0.588
14 0.540 0.539 0.540 0.465 0.477
15 0.729 0.729 0.729 0.597 0.602
16 0.696 0.695 0.695 0.336 0.337
17 0.649 0.648 0.648 0.680 0.666
18 0.397 0.397 0.397 0.740 0.740
19 0.625 0.625 0.625 0.651 0.650
20 0.372 0.372 0.372 0.719 0.708
21 0.597 0.596 0.596 0.695 0.697
22 0.709 0.709 0.709 1.034 1.051
23 0.643 0.642 0.642 1.113 1.103
24 0.499 0.498 0.499 0.761 0.779
25 0.459 0.459 0.459 0.583 0.597
26 0.464 0.464 0.464 0.585 0.575
27 0.304 0.304 0.304 0.389 0.401
28 0.457 0.456 0.456 0.469 0.477
29 0.534 0.534 0.534 0.702 0.692
30 0.465 0.465 0.465 0.561 0.569

Table 4.8: The first 30 estimates of λ for 15-taxon species (known) trees. Column 1 is the estimates
directly from the branch lengths of the species tree. Column 2 is the estimates from the branch
lengths of the species tree estimated with 500 gene trees. Column 3 is the estimates from the branch
lengths of the species tree estimated with 1000 gene trees. Column 4 is the estimates with ABC
method from 500 gene trees. Column 5 is the estimates with ABC method from 1000 gene trees
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4.3 Discussion

To our knowledge, our method is the first method we are of to estimate the speciation rate

from gene trees under a pure birth model. Within the past few decades, some version of

the random Markov chain Montel Carlo (MCMC) sampling method and Snyder filter (SF)

(Parag and Pybus, 2018), a likelihood under sparse sampling scenario (Kayondo et al.,

2019), multitype birth-death model (MTBD) in BEAST 2 (Barido-Sottani et al., 2020)

were developed to infer the speciation rate either from species tree or allele frequencies

but not from gene trees. In practice, species trees are readily available. Species trees are

inferred from the gene trees, which have also been estimated from DNA sequences. Note

that our focus has not been on comparing the ABC method to some of these methods in

the project, but we did small simulations with the likelihood method, STEM (Kubatko

et al., 2009), to check its performance (Tables 4.7 and 4.8, and Figure 4.8).

The ABC method uses summary statistics, which are sometimes not sufficient, and

might not guarantee that the estimated predictive (posterior) distribution converges to the

true posterior distribution (Marjoram and Tavaré, 2006). However, it is still common to

use the ABC method in phylogenetic and genetic studies (Tanaka et al., 2006; Stadler,

2011b), and in our case, we note that the pairwise RF distance is not a sufficient statistic.

Recall, for a summary statistics T to be sufficient statistics, T (X) = T (Y ) for any given

two data sets X and Y (Casella and Berger, 2021). However, two data sets each with

different priors (exp(2) and exp(1)) indicate that best βN simulated RF distances with
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the smallest absolute distance to the observed RF distance approximately yield the same

predictive distributions, and about 95% of the credible intervals contain the true parameter.

However, pairwise RF distances still contain information about the speciation rate of the

tree. Similar results for 10 and 15 taxon species trees with different priors and number

of loci illustrate very little information loss in using this approach, despite the lack of

sufficiency.

4.4 Computation Time

The ABC method for estimating the speciation rate is slow due to the number of compu-

tations. On average, it scales well with the number of taxa; we infer that the average time

required to run the above algorithm for one replicate, which consists of 10, 000 species trees

and 500 loci per tree, were 4.34 and 6.56 hours for 10 and 15 taxa, respectively. Also, 8.6

and 11.6 hours were used with 1, 000 loci per species tree for 10 and 15 taxa, respectively.

This suggests that the computation time is roughly linearly dependent on the number of

taxa. The computation scaled well and was faster with the parallel framework.

Further, it would be better to increase N for more taxa since there are fewer speciation

rates simulated in the prior(s) that match the true speciation rate (λ = 0.5). Alternative

approaches for inferring the birth-death parameters (Tanaka et al., 2006; Stadler, 2011b;

Barido-Sottani et al., 2020) use maximum likelihood to infer these parameters from the
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branching structures of the species trees. These methods have not been implemented with

gene trees; however, likelihood calculations with gene trees scale slowly in the number of

taxa (Rosenberg, 2007; Disanto and Rosenberg, 2015; Truszkowski et al., 2021), indicating

that this method will not scale well in the number of taxa. The available techniques

calculate the product of the likelihood of the lineages evolving through different tree

branches from the tips; thus, calculating these likelihoods for at least 10-taxon species

trees requires calculating the likelihood for up to N possible gene trees since there is a

reasonable chance that all gene tree topologies are unique (chapter 2). The advantage of

the ABC method is that it does not depend on calculating the likelihoods, simulating gene

trees from species trees, and computing the RF distances scale well with the number of

taxa. However, we speculate that when the estimated gene trees are used, it is likely to

take longer due to additional time to infer the gene trees from the DNA sequence.

4.5 Application to Empirical Datasets

Application to Empirical Gibbons Dataset

We randomly sampled a set of 1000 gene trees from 10706 set of the Gibbons dataset

with five taxa: Hylobates moloch (HMO), Hylobates pileatus (HPL), Nomascus leucogenys

(NLE), Hoolock leuconedys (HLE) and Symphalangus syndactylus (SSY), and used it to
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infer the speciation rate of the organisms using ABC method. The species HMO and HPL

are the genus (Hylobates) (H), and NLE, HLE and SSY represent the genera Nomascus

(N), Hoolock (B) and Symphalangus (S), respectively. These gene trees were estimated

from the gibbon sequence dataset (Kim and Degnan, 2020).

The speciation rate λ was estimated from the 1000 sampled gene trees with prior of the

exp(1). The estimate is 0.88 with 95% credibility interval of (0.208, 2.424), (see Figure 4.9).

4.6 Conclusion

This study provides an alternative method to infer the birth-death parameters from gene

trees with some number of loci. The ability of ABC to infer the speciation rate seems

not to be sensitive to the priors and the numbers of loci (ng ≥ 500). We note that more

work needs to be done to see the effect of using larger numbers of loci, species trees, and

replicates. Sequence data is not needed for the ABC method since gene trees are its only

data source. Using summary statistics instead of sufficient statistics does not show much

loss of information in the data set. However, larger numbers of loci and replicates might

increase the accuracy and decrease the variability of the estimates. The ABC method could

be used with a diffuse prior, or a more informative prior. An informative prior was used in

this study. The possibility that under typical birth-death processes, some trees are more

probable than others for larger numbers of taxa and the prior could be based on this rather
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Figure 4.9: Distributional plot for the estimated values of λ from the Gibbons gene trees.

than making each speciation rate equally likely in the prior.

In the 10 and 15 taxa cases, about 95% of the credibility regions contain the ob-

served value. We propose to use empirical data and other simulation settings outlined

on Figure 4.4 such as estimated gene trees with and without mutations to compare the

performance of the ABC method in future studies.
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Conclusions and Future Works

5.1 Conclusion

A phylogenetic tree defines a graphical framework for modeling relationships between

species. Phylogenetic trees are hypotheses, and not definitive facts. The branching struc-

ture in a phylogenetic tree reflects how species or other groups evolved from a series of

common ancestors in the past. A species tree under the multispecies model defines a

unique distribution of gene trees. The development of statistical methods for inference of

species trees from gene trees or DNA sequences has been on the rise for over two decades.

Many of these methods have been found to be statistically consistent under some criteria

(Kubatko et al., 2009; Liu et al., 2009; Liu and Edwards, 2009; Mirarab et al., 2014).
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Despite the availability of these methods, many empirical results show much variability

among the gene trees or between gene trees and species trees, and this discord is often

reported to be surprising (Salichos and Rokas, 2013), and making difficult to estimate the

true tree.

Chapter one found the bounds of the probability of uniqueness of gene tree topologies

for a given species tree and the number of loci, holding other biological factors constant.

These results hold for either unranked rooted or ranked rooted gene trees, but the bounds

would be wider for the latter case. However, we focus on unranked rooted binary trees

since, in practice, preservation of the order of the nodes of the gene tree together with

their topological relationships among gene lineages is less important. The bounds show

that it is necessary to take into account the number of taxa of the species and number of

loci when checking the level of heterogeneity of the gene tree topologies, particularly for a

large number of species (i.e., more than ten taxa). Furthermore, the growth of the possible

number of unranked or unranked rooted binary gene trees for n taxon species tree is faster

than exponential for large n. So the fact that the topologies of the sampled gene trees can

be distinct might not hold for a small number of loci and a large number of taxa.

Simulation studies in chapter 2 confirmed the results in chapter 1, that numbers of taxa

and loci contribute to the variability of gene tree topologies, especially, when the speciation

rate is high. Higher speciation rates lead to shorter branches in the species tree and,

therefore, higher incomplete lineage sorting (deep coalesce) (Harvey and Rambaut, 1998;
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Paradis, 2016; Kim and Degnan, 2021). We observed that the probability of all topologies

being distinct increases with the number of taxa and speciation rates and rapidly for µ = 0.

Both results are intuitive: for increasing numbers of taxa, there are more possible gene trees

from the species tree, and increasing the speciation rate shortens the branch lengths and

increases the number of the tree branches and denseness of the tree structure. So, on

average, a species tree with short branches has a high diversity rate (λµ) and is likely to

produce diverse and distinct gene tree topologies. Further, the probability of uniqueness

decreases as the sample size increases.

Chapter three discussed the ABC method for inferring the speciation rate for a pure

birth model from the gene trees. The method estimates the posterior distribution of the

parameter from the best βN values of the prior that produced the simulated data (sum of

pairwise RF distances of the gene trees sampled from the species tree) close to the observed

data. The motivation is from the correlation of the pairwise RF distance among the gene

trees and the RF distance between the gene trees and the species tree. The result from this

method indicates that it is possible to estimate the birth parameter from gene trees, but

we note that more extensive studies are needed to check the performance and robustness

of the method.
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5.2 Future Works

The main shortcoming of the ABC method is that it uses summary statistics instead of

sufficient statistics. Also, it needs a large simulation study to confirm its accuracy and

robustness. Possible areas for future studies as depicted on the Figure 4.4 are:

• use the likelihood-based and pseudo-likelihood methods to infer the birth-death

parameters and compare the results.

• use the estimated gene trees instead true trees as input data in the ABC and

the likelihood-based methods to infer the birth-death parameters and compare the

results.

• apply the ABCmethod to empirical data and compares the results with the likelihood-

based methods.

The classical representation of evolution (phylogenetic tree) of a set of species often fails

to represent the relationship among the species due to some processes such as recombi-

nation, hybridization, and horizontal gene transfer. Phylogenetic networks are used to

depict complex relationships of a set of species. Networks capture the implicit inheritance

of genetic material through gene flow and are more general for modeling the evolutionary

history of species (Soĺıs-Lemus and Ané, 2016; Degnan, 2018). We have proposed to extend

the simulation studies in Chapter 2 to phylogenetic network to investigate the factors
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responsible for the heterogeneity of the gene tree topologies.
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Appendix

A: Proof of Lemma 2.2.2

Lemma 6.0.1. For any k ≥ 0,
∑m−1

i=1 ik ≤ mk+1

k+1

Proof.

Let y ≥ 0. Then, by binomial expansion,

∫ i+1

i
ykdy =

yk+1

k + 1
|i+1
i = ik +

k

2
ik−1 + ...+

1

k + 1

∴ ik ≤
∫ i+1

i
ykdy ∀ y ≥ 0
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Summing over i = 0, 1, ...,m− 1, we have,

m−1∑
i=0

ik ≤
∫ m−1

0
ykdy ≤

∫ m

0
ykdy =

yk+1

k + 1
|m0 =

mk+1

k + 1
(6.1)

B: Scripts for Simulations in Chapter 2

Here we provide some representative scripts that were used for the simulations at various

stages of this project. A few trivial scripts were selected to display. Most of the simulations

were run on the supercomputer at the UNM Center for Advanced Research Computing

lab.

R codes and Linux scripts

Several scripts are used to simulate species trees from a birth-death model and generate

gene trees from the species tree. Also, the scripts are used to compute an RF distance

among the gene trees and between the gene and species trees; the number of matching

topologies and the probability of every gene tree topology is unique.
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##########################

## tree_sim.r ##

##########################

## This is an R script that generates the species trees.

## load libraries

library(ape)

library(geiger)

library(TreeSim)

set.seed (151515+000000+202020+100)

# Note :20 for lamda , 20 for n,0 for mu and 100 for

#numbsim = 100.

x <- sim.bd.taxa(n=15, numbsim =100, lambda =.1,mu=0.05 ,

complete= FALSE)

for (i in 1: length(x)){ write.tree(x[[i]], "st15_all.txt",

append=TRUE)
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###########################

## add.outgroup.r ##

###########################

## This is an R script that roots the tree and drop the

# outgroup.

## load libraries

library(ape)

tree1 <- read.tree("st_temp.txt")

tree1string <- write.tree(tree1)

tree1string <- gsub(";","",tree1string) # remove semi -colon

tree1string <- paste("(",tree1string ,":10.0,t_out :1.0);"

,sep="") # add outgroup ’t_out ’, added tip

yt1 <- read.tree(text=tree1string)

#Note , yt1 is NOT ultrametric

library(maps)

library(phytools)

tree1_ultra <- force.ultrametric(yt1)

# makes the tree ultrametric
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write.tree(tree1_ultra , "st_temp2.txt")
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###########################

## Root_and_drop.r ##

###########################

## This is an R script that roots the tree and drop the

#outgroup.

## load required libraries.

library(ape)

library(maps)

library(phytools)

a <- read.tree("gg_temp.txt")## reads in gene trees

lapply (( lapply(lapply(a,root ,outgroup="t_out_1"),drop.tip ,

tip="t_out_1")),

write.tree ,"gt_temp2.txt",append=TRUE)

# roots , drops the outgroups and writes out the trees

d <- read.tree("gt_temp2.txt") ## reads in the trees.

f <- lapply(d, force.ultrametric)
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## makes the trees to ultrametric

## loops over the ultrametric gene trees and write them to

# a file

for(i in 1: length(f)){

write.tree(f[[i]], "gt_temp3.txt", append=TRUE)

}

b <- read.tree("st_temp2.txt")## reads in a species tree

## drop the outgroup from species tree and write the tree out

write.tree(force.ultrametric(drop.tip(b, tip="t_out")),

"st_temp3.txt")

###########################

## all.summary.r ##

###########################

## This is an R script that summarizes datasets from the

## simulations

## load libraries

library(gtools) # for sorting files

library(dplyr)

# function to get the mean of the RF distances

get_meanRF <- function(file_name){
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file <- read.table(file_name , header = FALSE)

RF <- mean(file [,3])

return(RF)

}

# function to count the numbers of matching topologies

get_matchingnumber <- function(file_name){

file <- read.table(file_name , header = FALSE )[,3]

match <- length(file[file ==0])/2

return(match)

}

## read in the files and summarize them on the fly

#library(gtools) # for sorting files

RF_to_ST <- NULL; nUnique <- NULL; pairwiseRF.j <- NULL

numbermatching <- NULL

for(j in 1:5){

datf1.j <- list.files(pattern = "1f-st15.txt",

full.names = FALSE)

nUnique.j <- read.table(datf1.j)[,1]

datf2.j <- list.files(pattern = "1RF_ST15",
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full.names = FALSE)

datf2.j <- mixedsort(datf2.j)

datf3.j <- list.files(pattern = "1pairrwiseRF15",

full.names = FALSE)

datf3.j <- mixedsort(datf3.j)

RF_to_ST[j] <- unlist(lapply(datf2.j, get_meanRF ))

pairwiseRF[j] <- unlist(lapply(datf3.j, get_meanRF ))

numbermatching[j] <- unlist(lapply(datf2.j,

get_matchingnumber ))

nUnique[j] <- ifelse(nUnique.j < 1000, 0, 1)

}

lambda <- rep (.1 ,100)

mu<- rep (0 ,100)

replicate <- seq (1 ,100)

n <- rep (15 ,100)

ngenetrees <- rep (1000 ,100)

# dataframe

df1 <- data.frame(n, lambda , mu , ngenetrees ,

replicate , nUnique ,RF_to_ST ,pairwiseRF ,numbermatching)
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write.csv(df1 , "sdf_iqtree15_.1_0.csv", row.names = FALSE)

##########################

## seq_iqtree.bash ##

##########################

## This script calls all the above scripts to accomplish its

#job.

#!/bin/bash

# Load required modules

module load miniconda3 -4.8.2 -gcc -10.2.0 - zu7qwdd

module load parallel -20200822 -gcc -10.2.0 - v75uus5

module load r-4.0.4 -gcc -10.2.0 - sancozx

source activate phylo_tools

module load iq -tree -1.7-beta12 -gcc -7.4.0 - e4x7qjf

cd $PBS_O_WORKDIR

# An R script that generate the species trees.

Rscript tree_sim.r

filename="species_tree"
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C=1

while read line;

do

echo "$line" > st_temp.txt

# an R script that adds outgroup to st_temp.txt.

Rscript add.outgroup.r

rm -f st_temp.txt # deletes the file on the fly.

# run hybrid -Lambda on st_temp2.txt to generate gene trees

#‘OUT_coal_unit ’

hybrid -Lambda -spcu st_temp2.txt -num 1000 -seed

11\$C\99$C\12$C

## Parallel setup to speed up the simulations and computations

dir=$PBS_O_WORKDIR

parallel --wd $PBS_O_WORKDIR --env PATH --delay 1

--sshloginfile $PBS_NODEFILE \

‘head -{} OUT_coal\_unit | tail -1 > gt_temp\_{}$

# grab each line of temp_gt.txt and run seq -gen on it to

#generate dna -seq
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seq -gen -l500 -s.001 -mGTR -a1.0 -g4 -i.1

-f.4,.1,.2,.3 -z2 {}{}\01{}\5{}5{} -op < gt_temp_{}

> dna -seq{}

#move dna -seq to iqtree to reconstruct/estimate tree from DNA

# sequence

iqtree -s dna -seq{} -nt 1 -m GTR+I+G

rm -f gt_temp_{}‘ ::: {1..1000}

for i in {1..1000}; do

cat dna -seq${i}. treefile >> gg_temp.txt

done

rm -f dna -seq*

Rscript root_and_drop.r # an R script that roots the trees and

#drops

rm -f gg_temp.txt

rm -f gt_temp2.txt

sed ’s/_1//g’ gt_temp3.txt > temp_gt.txt # for removing ’_1’

# from the file
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## Relabel the tips of the trees to avoid the segmentation

#problems

##when using PRANC to count the number of unique gene tree

#topologies

sed -e ’s/t15/o/g’ -e ’s/t14/n/g’ -e ’s/t13/m/g’

-e ’s/t12/l/g’ -e ’s/t11/k/g’ -e ’s/t10/j/g’ -e ’s/t9/i/g’

-e ’s/t8/h/g’ -e ’s/t7/x/g’ -e ’s/t6/f/g’ -e ’s/t5/y/g’

-e ’s/t4/d/g’ -e ’s/t3/c/g’-e ’s/t2/b/g’ -e ’s/t1/a/g’

temp_gt.txt > gt_temp4.txt

## remove branch lengths and Run pranc on gt_temp3 and count

# number of unique topologies

sed -re ’s/[0-9]*\.[0 -9]*//g’ -e ’s/:+//g’ -e ’s/[e-]//g’

-e ’s/[0-9]//g’ < gt_temp4.txt > gt_temp5.txt

## Run pranc

pranc -utopo gt_temp5.txt

wc -l outFreqs.txt >> 1f-st15.txt
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# Calculate RF -distance

mv temp_gt.txt intree ## for pairwiseRF distances

mv st_temp3.txt intree2 ## for RF_ST distances

rm -f gt_temp4.txt gt_temp5.txt gt_temp3.txt

## Run treedist

~/treedist << EOF

D

R

2

P

S

Y

EOF

cp outfile 1pairrwiseRF15_$C.txt

# file for pairwise RF -distance between gene trees

rm -f outfile

~/treedist << EOF
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D

R

2

L

S

Y

EOF

cp outfile 1RF_ST15_$C.txt

rm -f outfile

rm -f st_temp2.txt

let C=C+1

done < $filename

## an R script that summarizes the outcome of the simulation.

Rscript all.summary.r

echo Well done
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C: ABC Method

An R script that generate the species trees from TreeSim is:

library(TreeSim)

## This script generates files of species trees for

## simulations of the gene trees with hybrid -Lambda

set.seed (221204)

for(j in 1:50){

# set.seed (221204 + (j-1))

x <- rexp (10000 ,2)

write(x,file=paste("L",j,".txt",sep=""), ncol =1)

for(i in 1:10000){

y <- sim.bd.taxa(10,1,x[i],0)

write.tree(y[[1]] , file=paste("ST",j,".txt",sep=""),append=T)

}

}
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### observed trees

set.seed (221204)

w <- sim.bd.taxa (10 ,50 ,0.5 ,0)

for(i in 1:50){

write.tree(w[[i]],file="STtrue.txt",append=T)

}

Bash script for ABC simulation and computation

#!/bin/bash

## simulate data to compare with observed data

Rscript abc_trees.txt # R script for generating species trees

for ((j=46 ; j<=50 ; j++))

do

cat ../ST$j.txt > file.txt

for ((c=1 ; c <=10000 ; c++))
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do

head -$c file.txt | tail -1 > sim.txt

## run hybrid -Lambda on st_temp2.txt to generate OUT_coal_unit

~/bin/hybrid -Lambda -spcu sim.txt -num 500 -seed 12$c\12$c

# Removing ’_1’ from the file

sed ’s/_1//g’ OUT_coal_unit > intree

# calculate pairwise RF -distance

~/treedist.txt << EOF

D

R

2

P

S

Y

EOF
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## Calculate the average of the pairwiseRFs

awk ‘{ total+=$3;c++} END{print total}‘outfile | cat >> RF$j.txt

rm -f outfile

rm -f intree

done

done

echo Well done
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