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Abstract

We prove an Obata-type rigidity result for the first eigenvalue of the sub-Laplacian

on a compact seven dimensional quaternionic contact (QC) manifold which satisfies

a Lichnerowicz-type bound on its QC-Ricci tensor, and has a non-negative Paneitz

P -function. In particular, under the stated conditions, the lowest possible eigenvalue

of the sub-Laplacian is achieved if and only if the manifold is QC-equivalent to the

standard 3-Sasakian sphere.
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Conventions

A,B,C Capital letters from the beginning of the alphabet denote any section

of the tangent bundle TM .

X, Y, Z Capital letters from the end of the alphabet denote a section of the

horizontal space H.

α, β, γ Denotes any element of the set {0, 1, 2, 3}.

(i j k) Denotes any cyclic permutation of (1, 2, 3).∑
(i j k) Denotes a cyclic sum. For example,∑

(i j k)

[T 2
ii + 2T 2

ij] = T 2
11 + T 2

22 + T 2
33 + 2T 2

12 + 2T 2
23 + 2T 2

31. (0.0.1)

{eγ}3γ=0 Denotes a local orthonormal frame for the horizontal space H.

P (eβ, eγ, eγ, eβ) Summation over repeated indices is implied. For example,

P (eβ, eγ, eγ, eβ)
def
=

3∑
β,γ=0

P (eβ, eγ, eγ, eβ). (0.0.2)

∇∗αT 0 For α = 0, 1, 2, 3, and I0
def
= idH , the divergences of T 0 are denoted:

∇∗T 0(X)
def
= ∇T 0(eγ, eγ, X), ∇∗αT 0(X)

def
= ∇T 0(eγ, Iαeγ, X).

(0.0.3)
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Chapter 1

Introduction

Of continued interest in geometric analysis is the relationship between the geom-

etry of a Riemannian manifold (Mn, g) and the spectrum of the Laplace-Beltrami

(Laplacian) operator ∆. A theorem of Lichnerowicz states that if M is compact and

the Ricci tensor of g satisfies Ric ≥ (n − 1)g then the first positive eigenvalue of

the Laplacian satisfies λ ≥ n. The Ricci tensor of the round metric g̊ on the unit

sphere is Ric = (n − 1)̊g and a theorem of Obata states that if such a manifold

supports a function which achieves the eigenvalue λ = n, then (Mn, g) is isometric

to (Sn, g̊). In Chapter 2.1 we detail these theorems and describe their consequences

for the eigenfunction f and the Riemannian metric g.

A Cauchy-Riemann (CR)-manifold is an abstract model of a real hypersurface in

a complex vector space Cn+1, and a Quaternionic Contact (QC)-manifold models a

real hypersurface in a quaternionic vector space Hn+1, cf. Chapters 2.2 and 3.3 re-

spectively. The geometric properties of a Riemannian manifold are determined by its

metric g, the sub-Riemannian CR and QC-manifolds have their geometric properties

determined instead by a 1-form η. The spheres S2n+1 ↪→ Cn+1 and S4n+3 ↪→ Hn+1

are important examples of such hypersurfaces; the former can be given a special type

1



Chapter 1. Introduction

of CR-structure called Sasakian (cf. Chapter 2.2.2), and the latter can be given a

corresponding QC-structure called 3-Sasakian (cf. Chapter 3.5). Analogous results

to those of Lichnerowicz and Obata in the Riemannian setting hold on these mani-

folds as well, with the Sasakian and 3-Sasakian spheres playing the role of the round

sphere in the CR and QC Obata-type Theorems, and a Lichnerowicz-type bound

L ≥ 4g playing the role of the lower Ricci bound Ric ≥ (n− 1)g.

In the Riemannian setting, an eigenfunction f achieving the lowest possible eigen-

value necessarily satisfies the Hessian equation (2.1.5), and this phenomenon also

occurs in the CR (2.2.8) and QC (3.6.3) cases. From Theorem 2.1.3 we see that a

Riemannian manifold meeting the hypotheses of Obata’s theorem is necessarily an

Einstein manifold, i.e. the trace-free part of the Ricci tensor vanishes. In the QC-

Obata type Theorem 3.7.1 the corresponding QC-Einstein property was proven for

the n > 1 case (cf. Chapter 3.7), but had to be taken as an assumption when n = 1.

The QC-Einstein condition is equivalent to the vanishing of two symmetric, trace-

free tensors T 0 and U defined in (3.3.8). However, when n = 1 the tensor U vanishes

identically and the identities used to prove T 0 = 0 when n > 1 become trivial

when n = 1 (cf. Chapter 3.7.1). It is the Main Theorem in this dissertation that

the conclusions of the QC Obata-type Theorem 3.7.1 hold in dimension 7 without

the QC-Einstein assumption. In Chapter 4 we prove that such a QC-manifold is

necessarily QC-Einstein, then the second part of Theorem 3.7.1 will allow us to

obtain the main result.

Theorem 1.0.1 (Main Theorem). Let (M, η) be a closed, compact, QC-manifold of

dimension seven and let g be the horizontal metric. Suppose the following QC-Ricci

curvature lower-bound holds true

L(X,X)
def
= 2Sg(X,X) +

10

3
T 0(X,X) ≥ 4g(X,X), X ∈ Γ(H), (1.0.1)

and the P -function of any eigenfunction associated to the first non-zero eigenvalue

2



Chapter 1. Introduction

of the sub-Laplacian is non-negative. If the (lowest) eigenvalue of the sub-Laplacian

is 4, then (M, η) is QC-equivalent to the standard 3-Sasakian sphere.

To prove the Main Theorem, we begin by using the compactness of M to obtain

the vanishing of the P -form (cf. Chapter 3.4) of any eigenfunction f of lowest

possible eigenvalue λ = 4. We intrepret the Lichnerowicz-type bound (1.0.1) as the

non-negativity of a certain quadratic form P (4.2.6) that is related to the P -form of

f . This, together with the assumed positivity of P -function (cf. Definition 3.4.1),

will imply that the horizontal gradient ∇f belongs to the kernel of P. This allows

one to see that certain components of T 0 vanish, and the vanishing of P is equivalent

to the vanishing of T 0. The fact that P(X,∇f) = 0 yields an important identity for

T 0(X,∇f), and the covariant derivative∇T 0(X, Y,∇f) contains further components

of T 0 we wish to show vanish.

The significance of the identity (4.2.8) for T 0(X,∇f) comes from the fact that

in the 7-dimensional QC-case we can frame the 4-dimensional horizontal space by

the gradient of the extremal first eigenfunction, obeying ∆f = 4f , and its images

under the almost-complex structures; i.e. the vector fields {∇f, I1∇f, I2∇f, I3∇f},

suitably normalized, form an orthonormal basis for Hp at points where ∇f |p 6= 0.

That this basis extends a.e. to a global orthonormal frame for H is a consequence of

the fact that f satisfies an elliptic PDE (4.2.25) involving the Laplacian ∆h associated

to the extended Riemannian metric h of (3.3.6). Since f is an eigenfunction it cannot

vanish identically, the unique continuation result of Aronszajn then implies that f

cannot vanish on any open set either. It follows that ∇f cannot vanish on any open

set, otherwise f = const and this would imply that 0 = ∆f = 4f , a contradiction.

The properties of the canonical connection ∇ imply that we can find the com-

ponents ∇T 0(X,∇f, I1∇f) by finding ∇T 0(X, I1∇f,∇f) instead through (4.2.10),

but we cannot find formulas for the “mixed” components∇T 0(X, I1∇f, I2∇f) in this

way. To find them, we first show that ∇T 0 satisfies the “5−3” formula from Lemma

3



Chapter 1. Introduction

4.2.3 relating the torsion T 0, the normalized QC-Scalar curvature S, the eigenfunc-

tion f , and their derivatives. From here, we use our special frame to systematically

determine the components ∇T 0(Ii∇f, Ij∇f, Ik∇f) and in the process obtain formu-

las for the QC-Ricci 2-forms ρk(Ij∇f, ξj) and the vertical Hessian ∇2f(ξi, ξj).

With these formulas and several lemmas we proceed to show that the normalized

QC-Scalar curvature is constant in Chapter 4.4, in fact S = 2. Once it is known

that S = 2 many of the previous identities simplify considerably and in Lemma

4.5.2 we obtain the following relationships between the components of T 0 and the

eigenfunction f and its derivatives:

fTjk =
1

4
[fiTkk − fkTki] =

1

4
[fjTij − fiTjj] , fTii =

1

4
[fkTij − fjTki] .

At this point, we no longer need to show any further components of T 0 vanish because

the identities above are used to show that |T 0|= 0 directly in (4.6.1). This proves

that M is in fact QC-Einstein. The final conclusion that (M, η) is QC-equivalent to

the 3-Sasakian sphere follows from part 2 of Theorem 3.7.1.
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Chapter 2

Background

2.1 The Riemannian Case

On a Riemannian manifold (Mn, g) the Levi-Civita connection ∇ is determined by

the metric g, and so the geometry of the manifold determines the spectrum of the

Laplacian ∆ = − trg ◦ ∇2. On the other hand, if M is compact and g satisfies the

lower bound on its Ricci tensor

Ric(X,X) ≥ (n− 1)g(X,X)

then a theorem of Lichnerowicz [44] places the lower bound λ ≥ n on the positive

eigenvalues of the Laplacian. A result of Obata [45] subsequently showed that if

there is a function satisfying ∆f = nf then the manifold is in fact isometric to the

round unit sphere (Sn, g̊), and so the spectrum of the Laplacian can help determine

the geometry as well. Explicitly, we have

Theorem 2.1.1. Suppose (Mn, g) is a compact Riemannian manifold satisfying the

lower Ricci bound

Ric(X,X) ≥ (n− 1)g(X,X). (2.1.1)

5



Chapter 2. Background

Then,

• (Lichnerowicz) if M admits a function f such that ∆f = λf and λ 6= 0, then

λ ≥ n.

• (Obata) if M admits a function f such that ∆f = nf , then M is isometric to

the round unit sphere.

This characterization of a compact manifold satisfying the lower Ricci-bound

(2.1.1), and admitting a function that achieves the eigenvalue n, through an isometry

with the round sphere is Obata’s rigidity result. However, the assumptions of the

theorem yield even more information about the eigenfunction f and the metric g,

and in anticipation of the Main Theorem 1.0.1 in this dissertation we describe this

additional data in the following section.

2.1.1 The Hessian Equation

Let f be any eigenfunction of the Laplacian and the hypotheses of Theorem 2.1.1

hold. Decompose the Hessian of f into a trace-free part plus a multiple of the metric

∇2f =
(
∇2f

)
[0]

+
1

n
〈∇2f, g〉g. (2.1.2)

Recall Bochner’s formula

−1

2
∆(|∇f |2) = |∇2f |2−g(∇(∆f),∇f) + Ric(∇f,∇f) (2.1.3)

and integrate this over the compact M using the divergence theorem to find

0 =

∫
M

[
|(∇2f)[0]|2+

1

n
(∆f)2 − g(∇(∆f),∇f) + Ric(∇f,∇f)

]
Volg. (2.1.4)

Then, since ∆f = λf and Ric(∇f,∇f) ≥ (n− 1)|∇f |2, we have

0 ≥
∫
M

|(∇2f)[0]|2 Volg +
n− 1

n
(n− λ)

∫
M

|∇f |2 Volg.

6



Chapter 2. Background

The first term above is non-negative, hence this inequality can only hold when λ ≥ n.

Consequently, if λ = n then the trace-free part (∇2f)[0] of the Hessian of f must

vanish and therefore (2.1.2) shows that

∇2f =
1

n
〈∇2f, g〉 g =

1

n
(−∆f) g.

Thus, if a compact Riemannian manifold satisfies Ric ≥ (n− 1)g then

∆f = nf ⇐⇒ ∇2f = −fg

since the reverse implication holds by definition ∆f = −trg(∇2f). In fact, Obata

showed in [45] a more general result concerning complete manifolds which admit

functions satisfying a Hessian equation instead.

Theorem 2.1.2. A complete Riemannian manifold (Mn, g) admits a non-constant

f such that

∇2f = −fg (2.1.5)

if and only if it is isometric to the round unit sphere.

Assuming that M is complete and satisfies the Ricci-bound (2.1.1), the Bonnet-

Myers and Hopf-Rinow theorems imply that M is compact. M being compact and

supporting a function satisfying the Riemannian Hessian equation (2.1.5), along

with the generalized Toponogov Theorem, can be used to show that M is isometric

to the round unit sphere [17, Chapter 3.4]. Although Theorem 2.1.2 and equation

(2.1.5) have their counterparts in the CR and QC cases, and in some cases these

sub-Riemannian manifolds have a corresponding Bonnet-Myers theorem (cf. [3, 4]),

a sub-Riemannian Toponogov theorem is (currently) an open problem. However, we

shall see in subsequent sections that if these sub-Riemannian manifolds are complete

with respect to their associated Riemannian metrics then a reduction to Theorem

2.1.2 is possible to prove rigidity.

7



Chapter 2. Background

2.1.2 The Einstein Metric

Other than yielding the Hessian equation by showing that the trace-free part of

∇2f vanishes, the hypotheses of Obata’s portion of Theorem 2.1.1 also imply an

important property of the metric g, namely that the trace-free part Ric[0] of its Ricci

tensor must also vanish.

Theorem 2.1.3 (S. Ivanov & D. Vassilev, [38]). Suppose (M, g) is a compact Rie-

mannian manifold of dimension n which satisfies the lower Ricci bound (2.1.1). If

the lowest possible eigenvalue is achieved, ∆f = nf for some function f , then (M, g)

is an Einstein space.

The Ricci tensor of the round sphere is Ric = (n − 1)̊g and so it is an Einstein

manifold, but this theorem shows that you can conclude the Einstein property from

the assumptions of Obata’s theorem alone, not just from its conclusion. As shown

in the previous section, an f as in Theorem 2.1.3 must satisfy the Hessian equation.

Taking the covariant derivative of (2.1.5) and employing a Ricci identity leads to a

simple formula for the curvature tensor

R(X, Y, Z,∇f) = df(X)g(Y, Z)− df(Y )g(X,Z)

from which the expression Ric(X,∇f) = (n− 1)df(X) and a divergence formula

∇∗R(X, Y,∇f) = f Ric(X, Y )− (n− 1)fg(X, Y )

both follow. These equations are used to show that the Lie derivative L∇f |Ric0|2k=

4kf |Ric0|2k whereupon integration over the compact M and the divergence theorem

yield

(n− 4k)

∫
M

|Ric0|2kf 2 Volg =

∫
M

|Ric0|2k|∇f |2 Volg.

Hence, choosing k large enough shows that Ric0 = 0 and so g is an Einstein metric.

8



Chapter 2. Background

The Main Theorem in this dissertation is an analogue of Theorem 2.1.3 in the 7-

dimensional QC case and its proof will deviate significantly from this approach. We

will instead exploit the fact that the Ricci tensor of a QC-manifold can be expressed

in terms of the torsion of the canonical connection, and the torsion enjoys some very

useful properties especially in dimension 7.

2.2 Cauchy-Riemann Manifolds

Let M be a real, oriented (2n + 1)-dimensional smooth manifold and TMC
def
=

TM ⊗R C be its complexified tangent bundle. Fix a smooth sub-bundle T 1,0(M) :=

spanC{Z1, . . . , Zn} ⊂ TMC, of complex dimension n, such that T 1,0(M)∩T 1,0(M) =

{0} and T 1,0(M) is formally integrable:

[T 1,0(M), T 1,0(M)] ⊂ T 1,0(M). (2.2.1)

The sub-bundle T 1,0(M) is a CR-structure on M , and the pair (M,T 1,0(M))

is a CR-manifold. Let H := Re(T 1,0(M) ⊕ T 1,0(M)) be the real part of the sub-

bundle, hereafter referred to as the horizontal space. Then, H has an almost-complex

structure, J ∈ End(H) and J2 = −idH , given by

J(Z + Z) := i(Z − Z) ∀Z ∈ T 1,0(M).

Let Xα := 1
2
(Zα + Zα) then by the above JXα = i

2
(Zα − Zα), therefore Zα = Xα −

iJXα and iZα = iXα+JXα. Hence, we can realize each n-dimensional C-vector space

T 1,0(M) as a 2n-dimensional R-vector space H = spanR{X1, . . . , Xn, JX1, . . . , JXn}

with the endomorphism J playing the role of multiplication by i. In terms of this

R-basis for H, the formal integrability condition (2.2.1) amounts to the requirement

that [JXα, Xβ] + [Xα, JXβ] ∈ H and that the Nijenhuis tensor vanishes: ∀X, Y ∈ H

NJ(X, Y )
def
= [JX, JY ]− [X, Y ]− J ([JX, Y ] + [X, JY ]) ≡ 0. (2.2.2)

9



Chapter 2. Background

Finally, suppose H is defined globally by a compatible contact form η, i.e. H =

ker(η) and Volη = η ∧ (dη)2n is a volume form on M . As η is a contact form, dη is

non-degenerate on H, and its compatibility with J means that

2g(X, Y )
def
= −dη(JX, Y )

is a non-degenerate symmetric bilinear form. If g is also positive definite on H

then the CR-structure is said to be strictly pseudoconvex and g will be referred to

as the horizontal metric. The form η is not unique and a choice of one such η is

called a pseudohermitian structure on M , and in this case 2ω := dη|H is called the

fundamental 2-form. Hereafter an integrable, strictly pseudoconvex, pseudohermi-

tian CR-manifold (M2n+1, H, η) will be referred to as just a CR-manifold. Let V

be the complementary to H sub-bundle in TM , the vertical space. The extended

(Riemannian) metric on TM = H ⊕ V is

h := g + η ⊗ η, (2.2.3)

and we extend the complex structure J ∈ End(H) to TM by declaring that J |V≡ 0.

The Reeb vector field ξ, uniquely determined by the equations η(ξ) = 1 and ξ y dη =

0, spans the vertical space and H ⊥ V with respect to the Riemannian metric (2.2.3).

2.2.1 The Tanaka-Webster Connection

On a CR-manifold (M2n+1, H, η) there is a unique linear connection ∇, with torsion

T , that preserves the given pseudohermitian structure, the Tanaka-Webster connec-

tion [48], [49]. Concretely, this connection satisfies

• The horizontal space is preserved: ∇AΓ(H) ⊂ Γ(H) for any A ∈ Γ(TM).

• The almost-complex structure J and η are parallel, hence

∇ξ = ∇J = ∇η = ∇g = 0.

10



Chapter 2. Background

• For X, Y ∈ Γ(H) the torsion satisfies:

T (X, Y ) = dη(X, Y )ξ = 2ω(X, Y )ξ = 2g(JX, Y )ξ.

For ξ ∈ Γ(V ) the torsion T (ξ, · ) : H → H is an endomorphism of the horizontal

space which satisfies g(T (ξ,X), Y ) = g(T (ξ, Y ), X) = −g(T (ξ, JX), JY ). From

the torsion endomorphism we can form the Webster torsion (or pseudohermitian

torsion) A(X, Y )
def
= g(T (ξ,X), Y ) which therefore satisfies A(X, Y ) = A(Y,X) =

−A(JX, JY ). The Webster torsion is completely trace-free A(eα, eα) = A(eα, Jeα) =

0 (the trace here is taken over a local ON-frame {eα}2nα=1 for H), and its vanishing is

sometimes taken as the definition of a Sasakian manifold, which we now describe.

2.2.2 Kähler and Sasakian Manifolds

A complex manifold, of C-dimension n, is a topological manifold whose coordinate

charts are homeomorphisms onto neighborhoods of Cn, such that the transition func-

tions are bi-holomorphic. If (z1, . . . , zn) are the coordinates coming from a complex

chart, then the correspondence zα = xα + iyα allows us to also us to also view this

as a chart in R2n giving rise to coordinates (x1, . . . , xn, y1, . . . , yn) and thus we can

view a complex manifold as a real manifold. The coordinate vector fields define a

canonical almost-complex structure, J ∈ End(R2n) and J2 = −id, by

J
∂

∂xα
:=

∂

∂yα
and J

∂

∂yα
:= − ∂

∂xα
.

and this definition is independent of the particular chart since the transition functions

are holomorphic. An almost-complex structure is a complex structure if it comes

from a complex chart as above, and the Newlander-Nirenberg theorem states that

this occurs precisely when the Nijenhuis tensor (2.2.2) vanishes.

If g is a Riemannian metric on the complex manifold M , with complex structure

J , then g is compatible with J if g(JX, JY ) = g(X, Y ), in which case the compatible

11
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triple (M,J, g) is a Hermitian manifold. Let ω(X, Y )
def
= g(JX, Y ), then from J2 =

−id and the compatibility of g, it follows that ω(X, Y ) = −ω(Y,X). The 2-form ω is

called the Kähler form and if ω is closed, dω = 0, then (M,ω) is a Kähler manifold.

Returning to the case of a CR-manifold (M2n+1, J, η), recall that H = ker(η) and

η ∧ (dη)n 6= 0 and so M is necessarily a contact manifold. Let C(M) = M2n+1 ×R+

be its Riemannian cone, t the coordinate on R+, h the Riemannian metric on M

from (2.2.3), and ĝ := t2h + dt ⊗ dt the cone metric. Let A ∈ Γ(TM) denote any

section, f ∈ C∞(C(M)), and define an endomorphism Ĵ of TC(M) by

Ĵ

(
A, f

d

dt

)
=

(
JA− fξ, η(A)

d

dt

)

then Ĵ2 = −id, and so Ĵ is almost-complex structure on C(M). If (C(M), Ĵ , ĝ) is

Kähler then the contact manifold (M,J, η) is said to be Sasakian [7, 9].

2.2.3 The CR-Paneitz Operator

In the 3-dimensional CR-case, the analogue of Theorem 2.1.1 has an additional re-

striction not present in the Riemannian case, which is closely related to the embed-

dability problem for a CR-manifold (M3, η) [15]. In particular, if M3 is Sasakian

then it is known that M is embeddable into a complex space [39], and the non-

negativity condition (2.2.4) holds [18]. Let {eγ}2nγ=1 be a local ON-frame for H and

the summation convention hold. Given a smooth function f define a 1-form, called

the P -form of f , by

Pf (X) := ∇3f(X, eγ, eγ) +∇3f(JX, eγ, Jeγ) + 4nA(X, J∇f),

12
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and let Pf (∇f) be the P -function of f . Then, the 4th-order differential operator

f 7→ Cf given by

Cf = ∇4f(eα, eα, eγ, eγ) +∇4f(eα, Jeα, eγ, Jeγ)− 4n∇∗A(J∇f)− 4ng(∇2f, JA)

is the CR-Paneitz operator, in fact Cf = −∇∗Pf . In general, this operator is called

non-negative, C ≥ 0, if for any f ∈ C∞0 (M) we have∫
M

f C(f) Volη = −
∫
M

Pf (∇f) Volη ≥ 0. (2.2.4)

When n = 1 the condition that C ≥ 0 is a CR-invariant since the CR-Paneitz

operator is a conformal invariant [23]. When n = 1 and the Webster torsion vanishes,

A ≡ 0, we also have that the CR-Paneitz operator is non-negative since (up to a

constant) C = �b�b, where �b is the Kohn-Laplacian [16]. In the CR-analogues of

the Obata and Lichnerowicz theorems we will take the non-negativity of the CR-

Paneitz operator as an assumption when n = 1.

When M is compact and n > 1, we always have C ≥ 0. To see this let

B(X, Y ) = (∇2f)[1](X, Y ) =
1

2

(
∇2f(X, Y ) +∇2f(JX, JY )

)
be the (1, 1)-component of the horizontal Hessian of f , and let

B0(X, Y ) = B(X, Y )− 1

2n
〈∇2f, g〉 g(X, Y )− 1

2n
〈∇2f, ω〉ω(X, Y )

be the completely trace-free part of B. Then, we have

Lemma 2.2.1 (C. Graham & J. Lee, [21]). On a compact, strictly pseudoconvex,

pseudohermitian CR manifold of dimension (2n+ 1), n ≥ 1, the following identities

hold true

−∇∗B0(X) =
n− 1

2n
Pf (X),∫

M

|B0|2 Volη = −n− 1

2n

∫
M

Pf (∇f) Volη =
n− 1

2n

∫
M

f Cf Volη

In particular, if n > 1 the CR-Paneitz operator is non-negative.

13
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Aside from its geometric significance, the CR-Paneitz operator appears as an

additional term when we perform the integration-by-parts argument (2.1.4) on the

analogous CR Bochner formula (cf. Section 2.2.4). Similarly, the QC-Paneitz oper-

ator appears when intergrating the QC-Bochner formula, and we these reserve the

details for Chapter 3.6.

2.2.4 The CR Lichnerowicz-type Theorem

The CR analogue of Lichnerowicz’ contribution to Theorem 2.1.1 first began with

Greenleaf in [22] for n > 2, continued with n = 2 in [40], and finally n = 1 in [18].

The proof is similar to how Bochner’s formula (2.1.3), along with the compactness

of M and the lower Ricci-bound (2.1.1), were used to give a lower bound on the

spectrum of the Laplacian and show that the eigenfunction ∆f = nf must satisfy a

Hessian equation (2.1.5).

For some positive constant k0 > 0, the CR lower Ricci-bound (or Lichnerowicz-

type bound) is

Ric(X,X) + 4A(X, JX) ≥ k0g(X,X). (2.2.5)

and the CR-Bochner formula, in real coordinates from [36], is given by:

1

2
∆
(
|∇f |2

)
= −g (∇(∆f),∇f) + Ric(∇f,∇f)

+ 2A(J∇f,∇f) + |∇2f |2+4∇2f(ξ, J∇f). (2.2.6)

After several lemmas and integration over the compactM , one arrives at the following

identity [36, (8.15)]:

0 =

∫
M

[
Ric(∇f,∇f) + 4A(J∇f,∇f)− n+ 1

n
(∆f)2

]
Volη

+

∫
M

[
|(∇2f)[1]|2−

1

2n
(∆f)2 − 1

2n
g(∇2f, ω) + |(∇2f)[−1]|2−

3

2n
Pf (∇f)

]
Volη.

14
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Now suppose f is an eigenfunction ∆f = λf , and use the Lichernowicz-type bound

(2.2.5) with X = ∇f into the above to find

0 ≥
∫
M

[(
−n+ 1

n
λ+ k0

)
|∇f |2+|(∇2f)[−1]|2−

3

2n
Pf (∇f)

]
Volη .

To control the additional term involving the P -function of f we invoke condition

(2.2.4) and thus arrive at the CR-Lichnerowicz theorem.

Theorem 2.2.2 (A. Greenleaf [22], S.-Y Li & H.-S. Luk [40], H.-L. Chiu [18]). Let

(M, η) be a compact, strictly pseudoconvex, pseudohermitian manifold of dimension

(2n+ 1) such that for some k0 = constant > 0 we have the Lichnerowicz-type bound

Ric(X,X) + 4A(X, JX) ≥ k0g(X,X) ∀X ∈ Γ(H). (2.2.7)

• If n = 1, then any eigenvalue λ of the sub-Laplacian ∆ satisfies the inequality

λ ≥ n

n+ 1
k0.

• If n = 1 and the CR-Paneitz operator is non-negative (cf. (2.2.4)), C ≥ 0, then

λ ≥ 1

2
k0.

As described in Chapter 2.1.1 for the Riemannian case , an “extremal first eigen-

function”, i.e. an f which realizes the bottom of the spectrum of ∆, has a special

form for its Hessian ∇2f . Similarly, in the CR-case an extremal first eigenfunction

has a special form for its horizontal Hessian (cf. (3.3.3)):

Theorem 2.2.3 (S. Ivanov & D. Vassilev, [36]). Let M be a compact, strictly pseu-

doconvex CR manifold of dimension (2n+ 1), n ≥ 1, satisfying

Ric(X,X) + 4A(X, JX) ≥ k0g(X,X)

while if n = 1 assume, further, that the CR-Paneitz operator is non-negative on

f , i.e. (2.2.4) holds true. If n
n+1

k0 is an eigenvalue of the sub-Laplacian, then the

corresponding eigenfunctions satisfy the identity

∇2f(X, Y ) = − k0
2(n+ 1)

fg(X, Y )− df(ξ)ω(X, Y ).

15
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Using a homothety, one can reduce to the case that the smallest eigenvalue λ1 =

2n and k0 = 2(n+ 1), and therefore the horizontal Hessian equation becomes

∇2f(X, Y ) = −fg(X, Y )− df(ξ)ω(X, Y ), X, Y ∈ Γ(H). (2.2.8)

In anticipation of the QC-case, we mention [36, Remark 8.2] which states if f is

extremal first eigenfunction then equality is achieved in the Lichnerowicz-type bound

and the integral of its P -form vanishes:

Ric(∇f,∇f) + 4A(J∇f,∇f) = k0|∇f |2 and

∫
M

Pf (∇f)Volη = 0.

2.2.5 The CR Obata-type Theorem

In the case of a complete Riemannian manifold (Mn, g), Theorem 2.1.2 characterized

the round unit sphere through the Hessian equation (2.1.5). Unlike the Riemannian

case, the best known Obata-type Theorem for a complete non-compact CR-manifold

(M2n+1, η) uses the vanishing of the Webster torsion. When n = 1 this is taken as

an assumption, when n > 1 one can show that Webster torsion vanishes if it was

divergence-free.

Theorem 2.2.4 (S. Ivanov & D. Vassilev, [36]). Let (M, η) be a strictly pseudocon-

vex, psuedohermitian CR-manifold of dimension 2n + 1 ≥ 5 with a divergence-free

pseudohermitian torsion, ∇∗A = 0. Assume, further, that M is complete with respect

to the Riemannian metric

h = g + η ⊗ η.

If there is a smooth function f 6≡ 0 whose Hessian with respect to the Tanaka-Webster

connection satisfies

∇2f(X, Y ) = −fg(X, Y )− df(ξ)ω(X, Y ) X, Y ∈ H = ker(η)
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then, up to a scaling of η by a positive constant, (M, η) is the standard (Sasakian)

CR-structure on the unit sphere in Cn+1. In dimension three the above result holds

provided the pseudohermitian torsion vanishes, A = 0.

In the proof of the n > 1 case, the authors arrive at the equation |∇f |2A = 0,

and in order to conclude that A vanishes they must show that f cannot be a local

constant. To see this, they prove that if f satisfies (2.2.8) then f also satisfies an

elliptic equation involving the Riemannian Laplacian ∆hf = ∆f − ∇2f(ξ, ξ) (i.e.

the Laplacian with respect to the Riemannian metric (2.2.3)). In particular, we have

from [36, Corollary 4.5 & Lemma 5.1]:

∆hf = (2n+ 1)f − 1

n
(∇∗A)(J∇f), if n > 1

∆hf =

(
2 +

S − 2

6

)
f − 1

12
g(∇f,∇S) +

1

3
(∇∗A)(J∇f), if n = 1.

Therefore, by a unique continuation result f is not a local constant and we must

have that A = 0. In order to reduce to the Riemannian Obata Theorem 2.1.2, it’s

then shown that f satisfies the Riemannian Hessian Equation (2.1.5) with respect to

the Levi-Civita connection of h, (∇h)2f = −fh, hence (M2n+1, h) is isometric to the

round unit sphere and A = 0, i.e. M is Sasakian. With these observations one can

apply [13, 14] to conclude that (M2n+1, H, η) is (up to a scaling of η) the standard

Sasakian structure on the unit sphere in Cn+1.

The compact n = 1 case of the Obata-type theorem was completed in [37]. In the

compact n > 1 case, the assumption of divergence-free Webster torsion in [36, 37] was

able to be removed by [42, 43]. In the case of a compact Sasakian manifold Theorem

2.2.4 in fact characterizes the unit Sasakian sphere by the horizontal Hessian equation

(2.2.8). If f satisfies the horizontal Hessian equation then it’s also an extremal

eigenfunction, ∆f = 2nf , this observation and several others lead to the CR Obata-

type theorem.
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Theorem 2.2.5 (S. Ivanov & D. Vassilev [37], S.-Y Li & X. Wang [42, 43]). Sup-

pose (M,J, η), dim(M) = 2n + 1, is a compact strictly pseudoconvex, psuedohermi-

tian manifold which satisfies the Lichnerowicz-type bound (2.2.7). If n ≥ 2, then

λ = n
n+1

k0 is an eigenvalue if and only if up to a scaling (M,J, η) is the standard

pseudohermitian CR-structure on the unit sphere in Cn+1. If n = 1 the same con-

clusion holds assuming in addition that the CR-Paneitz operator is non-negative,

C ≥ 0.
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Chapter 3

Quaternionic Contact Manifolds

3.1 The Quaternions

As an R-vector space the quaternions H are isomorphic to R4 and so each quater-

nion can be identified with an ordered quadruple of real numbers; H = {(t, x, y, z) :

t, x, y, z ∈ R} with addition and multiplication by scalars done as in R4. However,

since the quaternions are also a division ring over R we adopt a notation that nat-

urally describes how multplication works on H, just like we do with the complex

numbers C.

First, we use the symbols 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and

k = (0, 0, 0, 1) for the standard basis of R4, so that we may write

H = {t+ xi+ yj + zk : t, x, y, z ∈ R}.

Then, we define the associative multiplication of H in terms of these symbols

i2 = j2 = k2 = ijk = (−1, 0, 0, 0) = −1

ij = (0, 0, 0, 1) = k, jk = (0, 1, 0, 0) = i, ki = (0, 0, 1, 0) = j,
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and the standard distributive laws that a ring over R enjoys. The identies above

can be used to show that ji = −ij and so, unlike multiplication in C, quaternionic

multiplication is not commutative. In general, if q = t+ ix+ jy+ kz is a quaternion

then we can form its conjugate q̄ = t − ix − jy − kz and this allows us to identify

the real and imaginary parts of q:

Re(q) =
1

2
(q + q̄), Im(q) =

1

2
(q − q̄),

and the corresponding real and imaginary subspaces of H

Re(H) = {t : t ∈ R}, Im(H) = {xi+ yj + zk : x, y, z ∈ R}.

Conjugation also allows us to write the Hermitian inner product on H as (q, p) =

qp̄ and from this we can recover the Euclidean inner product

〈q, p〉 := Re(q, p) =
1

2
(qp̄+ pq̄),

and the modulus of a quaternion |q|2= 〈q, q〉 = t2 + x2 + y2 + z2. Finally, if q 6= 0

then q is invertible, with its inverse given by

q−1 =
1

|q|2
q̄.

3.2 The Compact Symplectic Group

The Cartesian product Hn = {(q1, . . . , qn) : qi ∈ H} is isomorphic to R4n as an

R-module, but since we can multiply the quaternions we can also view Hn as a

module over H. However, because quaternionic multiplication is not commutative

there is a distinction between left and right H-modules, and our convention is that

multiplication acts on the right

H×Hn → Hn : (q, (q1, . . . , qn)) 7→ (q1q, . . . , qnq).
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We also have Hermitian and Euclidean inner-products, as well as a norm on Hn:

(q, p) =
n∑
i=1

qip̄i, 〈q, p〉 = Re(q, p), |q|2= 〈q, q〉. (3.2.1)

The H-linear transformations of Hn can be identified with the n × n matrices

with quaternions as entires, EndH(Hn) ∼= Mn×n(H), and those linear transformations

which are also invertible are then Aut(Hn) ∼= GLn(H). Those automorphisms of Hn

which preserve the Hermitian inner-product in (3.2.1) form the compact Symplectic

group, a Lie group also known as the quaternionic unitary group U(n,H), which can

thus be described as

Sp(n) = {A ∈ GLn(H) : A†A = AA† = idHn}.

where A† is the quaternionic conjugate transpose. In particular, since every non-

zero quaternion is invertible we have GL1(H) ∼= H∗, and we can identify the unit

quaternions with the unit sphere in R4, i.e. Sp(1) = {q ∈ H∗ : |q|= 1} ∼= S3.

Let v ∈ H ∼= R4 and p, q ∈ Sp(1) be unit quaternions. Every map of the form v 7→

qvp−1 defines an element of SO(4). Therefore, we have a surjective homomorphism

Sp(1)×Sp(1)→ SO(4) whose kernel is 〈(1, 1), (−1,−1)〉 ∼= Z2 since multiplication by

real scalars is commutative in H. We denote the isomorphic image of Sp(1)× Sp(1)

in SO(4) by Sp(1)Sp(1) ∼= (Sp(1)× Sp(1))/Z2. In general, let H act on Hn ∼= R4n on

the right (q, (q1, . . . , qn)) 7→ (q1q−1, . . . , qnq−1), this identifies the unit quaternions

Sp(1) with a subgroup of SO(4n) (which we regard as endomorphisms of Hn acting

on the left) and gives us another description of the compact Symplectic group

Sp(n) = {A ∈ SO(4n) : AB = BA ∀B ∈ Sp(1)}.

Once again, we obtain a surjective homomorphism Sp(n)×Sp(1)→ SO(4n) and the

isomorphic image of this map in SO(4n) is Sp(n)Sp(1) ∼= (Sp(n)× Sp(1)) /Z2.

The Lie algebra of Sp(n) consists of the n × n skew-Hermitian matrices with

quaternions as entries sp(n) = {A ∈ gln(H) : A+A† = 0} with the usual bracket. In
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particular, if I, J,K ∈ SO(4n) represent the images of i, j, k ∈ Sp(1), then sp(1) =

spanR{I, J,K}. The Lie algebra of Sp(n)Sp(1) is sp(n)⊕ sp(1). Just like the action

of Sp(n) on Hn preserves its Hermitian inner-product, the action of Sp(n)Sp(1) on

Hn preserves the Euclidean inner-product in (3.2.1).

3.3 Quaternionic Contact Structures

The notion of a Quaternionic Contact Structure was first introduced by O. Biquard

[5, 6], but we follow the explicit description from [26]. A (4n+3)-dimensional smooth

manifold M with a co-dimension 3 distribution H is a QC-manifold if

1. H has a conformal Sp(n)Sp(1)-structure:

• a conformal class of metrics [g],

• a 2-sphere bundle Q ⊂ End(H) locally generated by three almost-complex

structures {Is}3s=1 such that I2s = −idH , and I1I2 = −I2I1 = I3,

• each Is is Hermitian compatible with each g ∈ [g]: g(Is· , Is·) = g(· , ·).

2. There is an R3-valued 1-form η := (η1, η2, η3) such that locally H =
⋂
s ker(ηs)

and 2g(Is· , ·) = dηs(· , ·) for some g ∈ [g] and any s ∈ {1, 2, 3}.

Hereafter we shall refer to H as the “horizontal space.” As we shall see in the

following section, Biquard showed that there is a unique sub-bundle V , the “vertical

space,” such that TM = H⊕V . The three fundamental 2-forms of the QC-structure

are determined by

2ωs|H= dηs|H and ξ yωs = 0, ∀ξ ∈ V. (3.3.1)

The choice of η, Is and g is not unique: if locally η̄ is another 1-form generating H,

with corresponding horizontal metric ḡ ∈ [g] and almost-complex structures {Īs}3s=1,

then η̄ = µΨη for some SO(3)-valued function Ψ, and a smooth µ > 0. However, if
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η is fixed then Is and g are unique if they exist. If instead H and g are fixed, then

there is at most one family of associated 1-forms η and 2-sphere bundle Q:

Lemma 3.3.1 (O.Biquard, [5], [35]). Let (M,H, [g],Q) be a QC-manifold, then

1. If (η, Is, g) and (η, Īs, ḡ) are two QC-structures on M , then Is = Īs, s = 1, 2, 3,

and g = ḡ.

2. If (η, g) and (η̄, g) are two QC-structures on M with ker(η) = ker(η̄) = H,

then Q = Q̄ and η̄ = Ψη for some matrix Ψ ∈ SO(3) with smooth functions as

entries.

In general, we will let (M, g,Q) be a QC-manifold with a fixed horizontal metric

g and sphere bundle Q, then H indeed has an Sp(n)Sp(1)-structure, and we denote

with η any locally defined associated 1-form.

3.3.1 Invariant Decompositions

Any endomorphism Ψ ∈ End(H) can be decomposed with respect to the quaternionic

structure (g,Q) uniquely into four Sp(n)-invariant parts:

Ψ = Ψ+++ + Ψ+−− + Ψ−+− + Ψ−−+,

where Ψ+++ commutes with all three Is, Ψ+−− commutes with I1 and anti-commutes

with I2 and I3, etc. Explicitly,

4Ψ+++ = Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3, 4Ψ+−− = Ψ− I1ΨI1 + I2ΨI2 + I3ΨI3

4Ψ−+− = Ψ + I1ΨI1 − I2ΨI2 + I3ΨI3, 4Ψ−−+ = Ψ + I1ΨI1 + I2ΨI2 − I3ΨI3.

Each Ψ ∈ End(H) determines a bilinear form on H through the horizontal metric

g, for example the fundamental 2-forms (3.3.1) ωs are the bilinear forms determined

by the almost-complex structures, ωs(X, Y ) = g(IsX, Y ), and the horizontal metric
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itself is g(X, Y ) = g(idHX, Y ). Other than these two exceptions, we will usually

denote the endomorphism of H and the bilinear form it determines by the same

letter Ψ(X, Y ) := g(ΨX, Y ).

Let Υ := I1⊗ I1 + I2⊗ I2 + I3⊗ I3 be the Casimir operator, it acts on End(H) by

(ΥΨ)(X, Y ) = Ψ(I1X, I1Y ) + Ψ(I2X, I2Y ) + Ψ(I3X, I3Y ) and satisfies (Υ− 3I)(Υ +

I) = 0. The two Sp(n)Sp(1)-invariant components of Ψ

Ψ[3](X, Y ) =
1

4
[Ψ(X, Y ) + Ψ(I1X, I1Y ) + Ψ(I2X, I2Y ) + Ψ(I3X, I3Y )]

Ψ[−1](X, Y ) =
1

4
[3Ψ(X, Y )−Ψ(I1X, I1Y )−Ψ(I2X, I2Y )−Ψ(I3X, I3Y )]

are projections onto the eigenspaces of Υ corresponding to the eigenvalues 3 and −1,

respectively [11]. From the formulas above we see that g[3] = g and ωs[−1] = ωs, and

when n = 1 we have from [30, Lemma 2.1]:

Lemma 3.3.2. The space Ψ[3] is four dimensional and the symmetric tensors in

it are proportional to the metric. The space Ψ[−1] is twelve dimensional, in which

lies the three dimensional space of the 2-forms ωi. The latter determines the anti-

symmetric part of the Ψ[−1]-component.

The horizontal metric g induces an inner-product on End(H) which we will denote

with angle-brackets 〈· , ·〉. If A,B ∈ End(H), and {eα}4nα=1 is a local orthonormal

frame for H, then

〈A,B〉 def=
4n∑
α=1

g (Aeα, Beα)

and every Ψ ∈ End(H) has an Sp(n)Sp(1)-invariant orthogonal decomposition Ψ =

Ψ[3]⊕Ψ[−1] with respect to this inner-product. With this inner-product, we can also

realize each trace of an endomorphism A as a projection onto a subspace of End(H):

〈A, g〉 =
4n∑
α=1

A (eα, eα) , 〈A, ωs〉 =
4n∑
α=1

A (eα, Iseα) . (3.3.2)
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In particular, for a smooth function f and the canonical connection ∇ on a QC-

manifold (cf. section 3.3.2), its horizontal gradient ∇f ∈ Γ(H) is defined through

the equation df(X) = g(∇f,X) for X ∈ Γ(H). Since this connection preserves the

splitting TM = H⊕V , we can define an endomorphism of H by X 7→ ∇X(∇f). This

endomorphism determines the bilinear form we call the horizontal Hessian ∇2f :

∇2f(X, Y )
def
= g(∇X(∇f), Y ), X, Y ∈ Γ(H). (3.3.3)

Following (3.3.2), we will write the following traces as

〈∇2f, g〉 =
4n∑
α=1

∇2f(eα, eα), 〈∇2f, ωs〉 =
4n∑
α=1

∇2f(eα, Iseα).

3.3.2 The Canonical Connection

The canonical connection ∇ on a QC-manifold (M4n+3, g,Q) was discovered by O.

Biquard [5] when n > 1 and by D. Duchemin [20] in the n = 1 case, and we will

follow the conventions adopted by Biquard.

Theorem 3.3.3 (O. Biquard, [5]). Let (M, g,Q) be a quaternionic contact manifold

of dimension 4n + 3 > 7 and a fixed metric g on H in the conformal class [g].

Then, there exists a unique connection ∇ with torsion T on M4n+3, and a unique

supplementary subspace V to H in TM , such that:

• ∇ preserves the decomposition H ⊕ V and the metric g;

• for X, Y ∈ H, one has T (X, Y ) = −[X, Y ]|V ;

• ∇ preserves the Sp(n)Sp(1)-structure on H, i.e. ∇g = 0 and ∇XΓ(Q) ⊂ Γ(Q);

• for ξ ∈ V , the torsion endomorphism T (ξ, ·)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂

gl(4n);

• the connection on V is induced by the natural identification ϕ of V with the

subspace sp(1) of the endomorphisms of H, i.e. ∇ϕ = 0.
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When n > 1, Biquard also described the supplementary distribution V , which is

generated locally by three Reeb vector fields {ξ1, ξ2, ξ3} determined through:

ηs(ξt) = δst, (ξs y dηs) |H= 0, (ξs y dηt) |H= − (ξt y dηs) |H . (3.3.4)

Given a QC-structure (M4n+3, g,Q) it may not be possible to find three vector fields

{ξ1, ξ2, ξ3} that satisfy the relations in (3.3.4) when n = 1. However, Duchemin

showed in [20] that if we assume the existence of Reeb fields satisfying (3.3.4), then

Theorem 3.3.3 holds. Henceforth, by a seven-dimensional QC-structure on M we

will always mean a structure satisfying (3.3.4).

The equations in (3.3.4) also describe the sp(1)-connection 1-forms αs for∇ on the

bundle Q (c.f. [25, Proposition 3.5, Corollary 3.6]). The isomorphism ϕ : V → sp(1),

∇ϕ = 0, then yields the corresponding connection forms on V as well:

∇Ii = −αj ⊗ Ik + αk ⊗ Ij and ∇ξi = −αj ⊗ ξk + αk ⊗ ξj (3.3.5)

for any cyclic permutation (i j k) of (1 2 3). Using the Reeb fields we can extend the

horizontal metric g on H to a Riemannian metric h on M by requiring V ⊥ H and

the Reeb fields are orthonormal. In fact,

h
def
= g +

3∑
s=1

ηs ⊗ ηs (3.3.6)

achieves exactly this. Since g is parallel from Theorem 3.3.3, the 1-forms ηs satisfy

the same identites in (3.3.5), h is symmetric and the Biquard connection preserves

the type of a tensor, it follows that ∇h = 0. Indeed, using the convention (0.0.1):

∇h = ∇g +∇

(
3∑
s=1

ηs ⊗ ηs

)
=
∑
(i j k)

[(−αj ⊗ ηk + αk ⊗ ηj)⊗ ηi + ηi ⊗ (−αj ⊗ ηk + αk ⊗ ηj)] = 0.

We also extend the almost-complex structures to all of TM by setting Is|V = 0.

The Riemannian metric does not depend on the action of SO(3) on V , but if η
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undergoes a conformal change then h is multiplied by the same conformal factor (c.f.

[25, Chapter 5]). The QC-analogue of a normal neighborhood of a point p ∈ M is

supplied by [25, Lemma 4.5]:

Theorem 3.3.4 ([25]). In a neighborhood of any point p ∈ M4n+3 and a Q -

orthonormal basis

{X1(p), X2(p) = I1X1(p), . . . , X4n(p) = I3X4n−3(p), ξ1(p), ξ2(p), ξ3(p)}

of the tangent space at p, there exists a Q-orthonormal frame field

{X1, X2 = I1X1, . . . , X4n = I3X4n−3, ξ1, ξ2, ξ3}, Xα|p= Xα(p), ξs|p= ξs(p),

for α = 1, . . . , 4n and s = 1, 2, 3, such that the connection 1-forms of the Biquard

connection are all zero at the point p, i.e. we have

(∇XαXβ)|p= (∇ξiXβ)|p= (∇Xαξt)|p= (∇ξtξs)|p= 0,

for α, β = 1, . . . , 4n and s, t, r = 1, 2, 3. In particular,

((∇XαIs)Xβ)|p= ((∇XαIs)ξt)|p= ((∇ξtIs)Xβ)|p= ((∇ξtIs)ξr)|p= 0.

Finally, for a local orthonormal frame {eγ}4nγ=1 of H, the (horizontal) divergence of a

horizontal vector field/1-form σ ∈ Λ1(H), is defined by

∇∗σ = −tr|H(∇σ) = −∇σ(eγ, eγ).

This yields the ”integration by parts” formula on a compact M [25, 47]:∫
M

(∇∗σ)Volη = 0. (3.3.7)

3.3.3 Torsion and Curvature

From Theorem 3.3.3, the torsion T (A,B) = ∇AB − ∇BA − [A,B] of the Biquard

connection restricted to the horizontal space is given by T (X, Y ) = −[X, Y ]|V =
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2
∑3

s=1 ωs(X, Y )ξs, but when one of its arguments is vertical we obtain the torsion

endomorphism: Tξ
def
= T (ξ, ·)|H∈ End(H). Decomposing the torsion endomorphism

Tξ ∈ (sp(n)⊕ sp(1))⊥ into its symmetric T 0
ξ and skew-symmetric bξ parts

Tξ = T 0
ξ + bξ, ξ ∈ V,

we have the following theorem as stated in [25, Proposition 2.5]:

Theorem 3.3.5 (O. Biquard, [5]). The torsion Tξ is completely trace-free,

tr(Tξ) =
4n∑
α=1

g(Tξ(eα), eα) = 0, tr(Tξ ◦ I) =
4n∑
α=1

g(Tξ(eα), Ieα) = 0, I ∈ Q,

where e1, . . . , e4n is an orthonormal basis of H. The symmetric part of the torsion

has the properties:

T 0
ξi
Ii = −IiT 0

ξi
, i = 1, 2, 3.

In addition, we have

I2(T
0
ξ2

)+−− = I1(T
0
ξ1

)−+−, I3(T
0
ξ3

)−+− = I2(T
0
ξ2

)−−+, I1(T
0
ξ1

)−−+ = I3(T
0
ξ3

)+−−.

The skew-symmetric part can be represented in the following way

bξi = Iiu, i = 1, 2, 3,

where u is a traceless symmetric (1, 1)-tensor on H which commutes with I1, I2, I3.

If n = 1 then the tensor u vanishes identically, u = 0 and the torsion is a symmetric

tensor Tξ = T 0
ξ .

Therefore, we can write Tξi = T 0
ξi

+ Iiu and from this decomposition the authors

[25] define two Sp(n)Sp(1)-invariant, symmetric, trace-free tensors on H

T 0(X, Y )
def
= g((T 0

ξ1
I1 + T 0

ξ2
I2 + T 0

ξ3
I3)X, Y ), U(X, Y )

def
= g(uX, Y ) (3.3.8)
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which enjoy the properties that

T 0(X, Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0, (3.3.9)

3U(X, Y )− U(I1X, I1Y )− U(I2X, I2Y )− U(I3X, I3Y ) = 0.

According to Theorem 3.3.5 in dimension 7 the tensor U vanishes identically, U ≡ 0.

In addition, letting T 0(ξs, IsX, Y ) := g(T 0(ξs, IsX), Y ), we can recover the torsion

endomorphism and its symmetric part from T 0 [33, Proposition 2.3]:

4T 0(ξs, IsX, Y ) = T 0(X, Y )− T 0(IsX, IsY ) (3.3.10)

T (ξs, IsX, Y ) =
1

4

[
T 0(X, Y )− T 0(IsX, IsY )

]
− U(X, Y )

Since the Biquard connection preserves the splitting TM = H⊕V and the bundle

Q, the curvature operator R(A,B) = [∇A,∇B] − ∇[A,B] also preserves them. In

particular, we may regard R(A,B)|H as an endomorphism and we have R(A,B) ∈

sp(n) ⊕ sp(1).Let R(A,B,C,D) := h(R(A,B)C,D) for A,B,C,D ∈ Γ(TM) and

{eγ}4nγ=1 be a local ON-frame for H. The QC-Ricci tensor and QC-Scalar curvature

are defined similar to the Riemannian setting, except all traces are taken on H:

Ric(B,C) :=
4n∑
γ=1

R(eγ, B, C, eγ), Scal :=
4n∑
γ=1

Ric(eγ, eγ) (3.3.11)

The normalized QC-Scalar curvature is S := Scal/8n(n + 2). Through the almost-

complex structures, we define six additional QC Ricci-type tensors:

ρs(A,B) :=
1

4n

4n∑
γ=1

R(A,B, eγ, Iseγ), ζs(B,C) :=
1

4n

4n∑
γ=1

R(eγ, B, C, Iseγ)

where the ρs are called the QC-Ricci 2-forms. From [26, Lemma 4.3.2] the curvature

of the Biquard connection on V is determined by

2ρk(A,B) = R(A,B, ξi, ξj), A,B ∈ Γ(TM), ξs ∈ Γ(V ).

29



Chapter 3. Quaternionic Contact Manifolds

When restricted to H, the tensors above can be expressed in terms of the torsion

of the Biquard connection [25], see also [26, 33]. In particular, from [33, Theorem

2.4] we have the following identities:

Ric(X, Y ) = (2n+ 2)T 0(X, Y ) + (4n+ 10)U(X, Y ) + 2(n+ 2)Sg(X, Y )

ρs(X, IsY ) = −1

2

[
T 0(X, Y ) + T 0(IsX, IsY )

]
− 2U(X, Y )− Sg(X, Y )

ζs(X, IsY ) =
2n+ 1

4n
T 0(X, Y ) +

1

4n
T 0(IsX, IsY ) +

2n+ 1

2n
U(X, Y ) +

S

2
g(X, Y )

T (ξi, ξj) = −Sξk − [ξi, ξj]|H , S = −h(T (ξ1, ξ2), ξ3)

g(T (ξi, ξj), X) = −ρk(IiX, ξi) = −ρk(IjX, ξj) = −h([ξi, ξj], X).

(3.3.12)

When n = 1 the above formulas hold with U = 0. A QC-structure is called QC-

Einstein if the trace-free part of the QC-Ricci tensor vanishes, i.e. Ric is a scalar

multiple of the metric,

Ric(X, Y ) = 2(n+ 2)Sg(X, Y ). (3.3.13)

Thus, when n = 1 the structure is QC-Einstein if and only if T 0 = 0, which is

equivalent to the vanishing of the torsion endomorphism [25, Proposition 4.2]:

Lemma 3.3.6. A quaternionic contact manifold (M, g,Q) is QC-Einstein if and

only if the quaternionic contact torsion vanishes identically, Tξ = 0, ξ ∈ V .

3.4 The QC-Paneitz Operator and the Hessian in-

equality

In the lowest 7-dimensional QC-case, just like the lowest dimensional CR-case, the

analogue of Theorem 2.1.1 has an additional assumption. For a compact QC-

manifold (M4n+3, g,Q) and f ∈ C∞(M) we have from [30, Definition 3.1]:
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Definition 3.4.1. For a fixed f we a define a 1-form Pf ≡ P [f ] on M , which we

call the P -form of f , by the following equation

Pf (X) = ∇3f(X, eγ, eγ) +
3∑
t=1

∇3f(ItX, eγ, Iteγ)− 4nSdf(X) + 4nT 0(X,∇f)

− 8n(n− 2)

n− 1
U(X,∇f), if n > 1,

Pf (X) = ∇3f(X, eγ, eγ)+
3∑
t=1

∇3f(ItX, eγ, Iteγ)−4Sdf(X)+4T 0(X,∇f), if n = 1.

(3.4.1)

The P -function of f is the function Pf (∇f). Finally, the C-operator is the fourth-

order differential operator on M (independent of f !) defined by

Cf = −∇∗Pf = (∇eαPf )(eα).

We say that the P -function of f is non-negative if its integral exists and is non-

positive ∫
M

f · Cf Volη = −
∫
M

Pf (∇f)Volη ≥ 0. (3.4.2)

If (3.4.2) holds for any smooth function of compact support we say that the C-operator

is non-negative.

Following Section 3.3.1, the horizontal Hessian ∇2f has an orthogonal decompo-

sition into its [3] and [−1]-components:

∇2f(X, Y ) = (∇2f)[3](X, Y ) + (∇2f)[−1](X, Y ), X, Y ∈ Γ(H).

Let (∇2f)[3][0] be the orthogonal complement of the projection of the Hessian ∇2f

onto span{ 1
2
√
n
g}, i.e. the trace-free part of (∇2f)[3]. Then, we have the orthogonal

decomposition:

(∇2f)[3] = (∇2f)[3][0] +
1

4n
〈∇2f, g〉 g. (3.4.3)
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Similarly, using that span{ 1
2
√
n
ωs} is an orthonormal set in the [−1]-space, we have

(∇2f)[−1] = (∇2f)[−1][0] +
1

4n

3∑
s=1

〈∇2f, ωs〉ωs. (3.4.4)

where (∇2f)[−1][0](eα, Iseα) = 0 for any s = 1, 2, 3. Now, when n > 1 and M is

compact, the C-operator is indeed non-negative:

Theorem 3.4.2 (S. Ivanov, A. Petkov, & D. Vassilev, [30]). On a QC-manifold of

dimension 4n+ 3 we have the formula

4(∇eγ (∇2f)[3][0])(eγ, X) =
n− 1

n
Pf (X).

In particular, if the manifold is compact then the C-operator is non-negative for any

dimension bigger than seven. In this case for any function f the function Cf vanishes

exactly when the trace-free part of the [3]-component of a function vanishes. In this

case the P -form of f vanishes as well.

This conclusion of the above theorem follows from an application of the horizontal

divergence theorem (3.3.7):

n− 1

4n

∫
M

fCfVolη = −n− 1

4n

∫
M

Pf (∇f)Volη =

∫
M

|(∇2f)[3][0]|2Volη.

In the lowest 7-dimensional QC Lichnerowicz and Obata theorems, we will take

non-negativity of the C-operator as an assumption. Furthermore, the orthogonal de-

composition of∇2f , along with equations (3.4.3), (3.4.4), yield the Hessian inequality

for an extremal first eigenfunction of the sub-Laplacian

|∇2f |2≥ 1

4n

[
〈∇2f, g〉2 +

3∑
s=1

〈∇2f, ωs〉2
]
. (3.4.5)

3.5 Hyper-Kähler and 3-Sasakian Manifolds

Recall from Section 2.2.2 that a Hermitian manifold (M2n, J, h) with a closed funda-

mental 2-form ω(X, Y ) := h(JX, Y ) is a Kähler manifold. Suppose there were three
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complex structures {I1, I2, I3} ⊂ End(TM) satisfying the relations of the imaginary

quaternions, Is
2 = −id and I1I2 = −I2I1 = I3, such that each (M, Is, h) is a Hermi-

tian manifold. Then, if each of the three fundamental 2-forms ωs(X, Y ) := h(IsX, Y )

is closed, i.e. each (M,ωs) is Kähler, then (M, I1, I2, I3, h) is said to be a hyper-Kähler

manifold.

A manifold (M,J, g) meeting the hypotheses of the CR Obata-type Theorem

2.2.5 is CR-equivalent to the Sasakian sphere in Cn, and this Sasakian structure on

M can be characterized by the condition that the Riemannian cone (C(M), Ĵ , ĝ) is

Kähler (cf. Chapter 2.2.2). We shall see that a manifold meeting the hypotheses of

the QC Obata-type Theorem 3.7.1 will be QC-equivalent to the 3-Sasakian sphere,

which is a specific type of QC-structure on the unit sphere in R4n+4. This 3-Sasakian

structure also has a characterization in terms of the Riemannian cone of a manifold

with an “almost-contact 3-structure” (cf. [8, 9]) being hyper-Kähler. However, more

relevant to this dissertation is the fact that the 3-Sasakian manifolds are locally the

only QC-Einstein (3.3.13) manifolds:

Theorem 3.5.1 (S. Ivanov, I. Minchev, & D. Vassilev, [25]). Let (M4n+3, g,Q) be a

QC-manifold with positive QC-Scalar curvature Scal > 0, assumed to be constant if

n = 1. The next conditions are equivalent:

1. (M4n+3, g,Q) is a QC-Einstein manifold.

2. M is locally 3-Sasakian, i.e. locally there exists an SO(3) matrix Ψ with smooth

entries, such that, the local QC-structure
(

16n(n+2)
Scal

Ψη,Q)
)

is 3-Sasakian.

3. The torsion of the Biquard connection is identically zero.

The QC-Scalar curvature of a QC-Einstein manifold is a global constant ([25,

Theorem 4.9] for n > 1 and [28, Theorem 1.1] for n = 1). From Lemma 3.3.6 we

have that a manifold is QC-Einstein if and only if the torsion endomorphism Tξ
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vanishes identically. In particular, a QC-Einstein manifold of positive QC-Scalar

curvature, assumed in addition to be constant if n = 1, is an Einstein manifold of

positive Riemannian Scalar curvature.

3.6 The QC Lichernowicz-type Theorem

As in the CR case, the corresponding sub-Laplacian is a sub-elliptic operator, hence

the compactness of M implies the spectrum of ∆ is discrete. The QC Lichnerowicz-

type theorem was found in [31] for the n > 1 case, and in [30] in the n = 1 case.

Theorem 3.6.1 (S. Ivanov, A. Petkov, & D. Vassilev, [30, 31]). Let (M, η) be a com-

pact QC-manifold of dimension 4n+ 3. Suppose, for αn = 2(2n+3)
2n+1

, βn = 4(2n−1)(n+2)
(2n+1)(n−1) ,

β1 = 0, and for any X ∈ H

L(X,X)
def
= 2Sg(X,X) + αnT

0(X,X) + βnU(X,X) ≥ 4g(X,X). (3.6.1)

If n = 1, assume in addition the positivity of the P -function of any eigenfunction.

Then, any eigenvalue of the sub-Laplacian ∆ satisfies the inequality λ ≥ 4n.

The inequality (3.6.1) is the QC-analogue of the lower-Ricci bound (2.1.1). Sim-

ilar to (2.1.3) and (2.2.6), we have the QC-Bochner formula [31, (4.1)]:

1

2
∆(|∇f |2) = |∇2f |2−g(∇(∆f),∇f) + 2(n+ 2)S|∇f |2+2(n+ 2)T 0(∇f,∇f)

+ 2(2n+ 1)U(∇f,∇f) + 4
3∑
s=1

∇2f(ξs, Is∇f). (3.6.2)

Assuming that ∆f = λf , integrate (3.6.2) over the compact M to arrive at

0 ≥
∫
M

(
|∇2f |2− 1

4n

[
〈∇2f, g〉2 +

3∑
s=1

〈∇2f, ωs〉2
])

Volη −
3

4n

∫
M

Pf (∇f)Volη

+
2n+ 1

2

∫
M

(
L(∇f,∇f)− λ

n
|∇f |2

)
Volη
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The Hessian inequality (3.4.5), Theorem 3.4.2, and the Lichnerowicz-type bound

L(∇f,∇f) ≥ 4|∇f |2 imply the above inequality can only hold when λ ≥ 4n. In

addition, when λ = 4n those same assumptions now show that an extremal first

eigenfunction f enjoys several more properties:

• it satisfies the horizontal Hessian equation:

∇2f(X, Y ) = −fg(X, Y )−
3∑
s=1

df(ξs)ωs(X, Y ), (3.6.3)

• its gradient ∇f achieves equality in the Lichnerowicz-type bound (3.6.1):

L(∇f,∇f) = 4|∇f |2,

• the integral of its P -function vanishes:∫
M

Pf (∇f)Volη = 0.

3.7 The QC Obata-type Theorem

By QC-conformal transformation we mean a diffeomorphism between QC-manifolds

F : (M, η)→ (M̄, η̄) that pulls η̄ back to a form conformal to η: F ∗(η̄) = µΨη ∈ [η],

where 0 < µ ∈ C∞(M) and Ψ ∈ SO(3) with smooth functions as entries. Then,

(M4n+3, η) is QC-homothetic to the unit 3-Sasakian sphere (M̄, η̄) := (S4n+3, η̊) (c.f.

[25, Section 8.3]) if there is such a diffeomorphism with µ a positive constant.

Theorem 3.7.1 (S. Ivanov, A. Petkov, & D. Vassilev, [32]). Let (M, η) be a com-

pact QC-manifold of dimension 4n + 3 which satisfies a Lichnerowicz-type bound

L(X,X) ≥ 4g(X,X). Then, there is a function f with ∆f = 4nf if and only if

1. when n > 1, M is QC-homothetic to the 3-Sasakian sphere;
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2. when n = 1, and M is QC-Einstein, i.e. T 0 = 0, then M is QC-homothetic to

the 3-Sasakian sphere.

Under these hypotheses it was shown that

∆f = 4nf ⇐⇒ ∇2f = −fg −
3∑
s=1

df(ξs)ωs

since the reverse implication holds by definition ∆f = −trg(∇2f). Similar to the

Riemannian and CR-cases, when n > 1 the proof of this theorem relies on a result

analogous to Obata’s Theorem 2.1.2 in the QC-case concerning complete manifolds

that admit functions whose Hessians are as in (3.6.3).

Theorem 3.7.2 (S. Ivanov, A. Petkov, & D. Vassilev, [32]). Let (M, η) be a quater-

nionic contact manifold of dimension 4n + 3 > 7 which is complete with respect to

the associated Riemannian metric h = g+(η1)
2+(η2)

2+(η3)
2. There exists a smooth

f 6≡ const, such that,

∇df(X, Y ) = −fg(X, Y )−
3∑
s=1

df(ξs)ωs(X, Y )

if and only if the QC-manifold (M, η, g,Q) is QC-homothetic to the unit 3-Sasakian

sphere.

When n > 1, Theorem 3.7.2 implies Theorem 3.7.1 since a compact Riemannian

manifold is necessarily complete. Also when n > 1, [32, Lemma 3.10] states that

a QC-manifold which satisfies the conditions of Theorem 3.7.2 is necessarily QC-

Einstein. Let ∇h denote the Levi-Civita connection of the Riemannian metric h

of (3.3.6). For any A,B ∈ Γ(TM) the relationship between the Hessians of the

Levi-Civita and Biquard connections is [32, (3.75)]:

(∇h)2f(A,B) = ∇2f(A,B) +
1

2
[h(T (A,B), df)− h(T (B, df), A) + h(T (df,A), B)] .

Then, if (M4n+3, h) is complete and (∇h)2f = −fh we can invoke Obata’s theorem

2.1.2 to conclude that (M4n+3, h) is isometric to the round unit sphere (S4n+3, g̊).
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Lemma 3.7.3 (S. Ivanov, A. Petkov, & D. Vassilev, [32]). Let (M, η, g,Q) be a QC-

Einstein manifold, T 0 = U = 0, of dimension 4n + 3 > 7. Let h be the associated

Riemannian metric (3.3.6). If f is a smooth function whose horizontal Hessian

satisfies (3.6.3), then the Riemannian Hessian of f with respect to the metric h

satisfies (2.1.5).

A Riemannian manifold (M, g) is locally conformally-flat (i.e. locally conformally

diffeomorphic to Rn with its flat metric δ) if and only if its Weyl tensor vanishes. The

flat model of a QC-manifold is the quaternionic Heisenberg groupG(H) ∼= Hn×Im(H)

with its standard contact form Θ (cf. [25, Section 5.2]), and the obstruction for

a QC-manifold (M, η) to be locally QC conformally-flat (i.e. locally conformally

diffeomorphic to (G(H),Θ)) is the conformally invariant QC-conformal curvature

tensor W qc.

Theorem 3.7.4 (S. Ivanov & D. Vassilev, [33]). A QC-structure on a (4n + 3)-

dimensional smooth manifold is locally quaternionic contact conformal to the stan-

dard flat QC-structure on the quaternionic Heisenberg group G(H) if and only if the

QC-conformal curvature vanishes, W qc = 0.

The Cayley transform provides a QC-conformal diffeomorphism from (G(H),Θ)

to the 3-Sasakian sphere without a point (S−{q}, η̊) (cf. [25, Section 8.3]). Therefore,

as a corollary to the above theorem we also have

Theorem 3.7.5 (S. Ivanov & D. Vassilev, [33]). A QC-manifold is locally quater-

nionic contact conformal to the quaternionic sphere S4n+3 if and only if the QC-

conformal curvature tensor vanishes, W qc = 0.

In [32, Section 3.8] it is shown that a QC-manifold satisfying the hypotheses

of Obata-type Theorem 3.7.1 indeed has its QC-conformal curvature tensor vanish.
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In order to conclude from here that (M, η, g,Q) is QC-homothetic to the unit 3-

Sasakian sphere the authors invoke the following QC Liouville-type Theorem (see

also [38, Section 8.3]):

Theorem 3.7.6 (A. Cǎp, J. Slovák,[10]). Every QC-conformal transformation be-

tween open subsets of the 3-Sasakian unit sphere is the restriction of a global QC-

conformal transformation.

Hence, there is a diffeomorphism F : (M4n+3, η)→ (S4n+3, η̊) such that F ∗(η̊) =

Ψη ∈ [η], i.e. M is QC-homothetic to the unit 3-Sasakian sphere.

3.7.1 The Open Problem

In the proof of the QC Obata-type theorem 3.7.1 the authors show that a manifold

satisfying its hypotheses is QC-Einstein, and this is equivalent to the vanishing of

the tensors T 0 and U from (3.3.8). When n > 1, they arrive at the following formulas

[32, Lemma 3.8]:

|∇f |4T 0(X, Y ) = − 2n

n− 1
U(∇f,∇f)

[
3df(X)df(Y )−

3∑
s=1

df(IsX)df(IsY )

]

|∇f |4U(X, Y ) = −U(∇f,∇f)

n− 1

[
|∇f |2g(X, Y )− ndf(X)df(Y )

]
+ n

U(∇f,∇f)

n− 1

3∑
s=1

df(IsX)df(IsY ).

Thus, to reach the conclusion that such an M is QC-Einstein when n > 1 they need

only show that U(∇f,∇f) vanishes. However, when n = 1 the tensor U vanishes

identically, the formulas above become trivial, and the QC-Einstein condition was

taken as an assumption. The general QC Obata-type 3.7.1 result in dimension 7

(without the additional assumption that M is QC-Einstein) remained open, which

motivated the investigations that lead to the Main Theorem 1.0.1 in this dissertation.
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Proof of the Main Theorem 1.0.1

4.1 7-Dimensional QC-Structures

For ease of reference we collect the relevant identities from Chapter 3.3.3 working only

in the 7-dimensional setting. In particular, the tensor u of Theorem 3.3.5 vanishes

and therefore the torsion endomorphism Tξ = T 0
ξ is symmetric. This implies that

U(X, Y ) from (3.3.8) also vanishes and the identites in (3.3.12) simplify when n = 1:

Ric(X, Y ) = 4T 0(X, Y ) + 6Sg(X, Y ),

ζs(X, IsY ) =
3

4
T 0(X, Y ) +

1

4
T 0(IsX, IsY ) +

S

2
g(X, Y ),

T (ξi, ξj) = −Sξk − [ξi, ξj]|H , S = −h(T (ξ1, ξ2), ξ3),

g(T (ξi, ξj), X) = −ρk(IiX, ξi) = −ρk(IjX, ξj) = −h([ξi, ξj], X).

(4.1.1)

Let {eγ}4nγ=1 be a local orthonormal frame for H, f ∈ C∞(M), and the summation

convention (0.0.2) hold. The sub-Laplacian ∆f , and the norm of the horizontal

gradient ∇f , are defined by

∆f = −trgH(∇2f) = −∇2f(eγ, eγ), |∇f |2= df(eγ)df(eγ).
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Following the notation set in (3.3.2), we see that

〈∇2f, g〉 = ∇2f(eγ, eγ) = −∆f.

On the other hand, the Ricci identity ∇2f(X, Y ) −∇2f(Y,X) = −2ωs(X, Y )df(ξs)

and the fact that ∇2f(eγ, Iseγ) = −∇2f(Iseγ, eγ) implies

〈∇2f, ωs〉 = ∇2f(eγ, Iseγ) = −4df(ξs) = −4fs, (4.1.2)

where we set

fs
def
= df(ξs). (4.1.3)

4.2 First Equations

We shall assume throughout all of the hypotheses of Theorem 1.0.1. The function

f will denote an eigenfunction of the sub-Laplacian, ∆f = λf , achieving the lowest

possible eigenvalue λ = 4. It was shown in [30, Remark 4.1] that, with the made

assumptions, the horizontal Hessian of f is given by the Hessian equation:

∇2f(Y,X) = −fg(Y,X)−
3∑
s=1

fs ωs(Y,X) (4.2.1)

for Y,X ∈ Γ(H), recalling the notation fs = df(ξs) set in (4.1.3). In addition,

L(∇f,∇f)− 4|∇f |2 = 2

[
(S − 2)|∇f |2+5

3
T 0(∇f,∇f)

]
= 0, (4.2.2)

where L is as in Theorem 1.0.1, and we have that∫
M

Pf (∇f) Volη = 0.

We note that the compactness of M was essential in order to obtain the above

identities by integrating the qc-Bochner formula. Furthermore, if f satisfies (4.2.1)

then differentiating the Hessian equation we obtain the identity, [32, Lemma 3.1],

∇3f(A, Y,X) = −df(A)g(Y,X)−
3∑
s=1

∇2f(A, ξs)ωs(Y,X) (4.2.3)
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for A ∈ Γ(TM) and Y,X ∈ Γ(H). We note that [32] assumes n > 1, but the cited

lemma and its proof do not make use of this assumption. In addition, the argument

leading to [32, (3.8)] is valid in the case n = 1 as well, i.e., we have the following

identity
3∑
s=1

∇2f(IsX, ξs) = (1− 2S)df(X)− 2

3
T 0(X,∇f), (4.2.4)

which follows from the Ricci identity∇2f(X, ξs)−∇2f(ξs, X) = T (ξs, X,∇f) applied

to the left-hand side of [32, (3.8)], noting that the Ricci idenity and (3.3.10) give

∇2f(X, ξs)−∇2f(ξs, X) = −1

4
[T 0(IsX,∇f) + T 0(X, Is∇f)]. (4.2.5)

It will be convenient to define the quadratic symmetric (0,2)-tensor P by

P(X, Y )
def
= 2 [L(X, Y )− 4g(X, Y )] = 4

[
(S − 2)g(X, Y ) +

5

3
T 0(X, Y )

]
(4.2.6)

The Lichnerowicz-type bound (1.0.1) implies that P is non-negative P(X,X) ≥ 0.

Hence, taking into account that T 0 is a traceless tensor, we have S ≥ 2 ; while by

(4.2.2) it follows that

P(∇f,∇f) = 0.

Lemma 4.2.1. The P -form of f is P(X,∇f), i.e.,

Pf (X) = P(X,∇f) = 4(S − 2)df(X) +
20

3
T 0(X,∇f). (4.2.7)

Furthermore, P(X,∇f) = 0, hence

T 0(X,∇f) = −3

5
(S − 2)df(X). (4.2.8)

Proof. Taking the indicated traces in (4.2.3) we obtain

∇3f(X, eγ, eγ) = −4df(X),

3∑
s=1

∇3f(IsX, eγ, Iseγ) = −4
3∑
s=1

∇2f(IsX, ξs)

= −4(1− 2S)df(X) +
8

3
T 0(X,∇f).
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A substitution of the above two identities in the definition (3.4.1) of the P -form of f

gives (4.2.7). The non-negativity of P, Cauchy-Schwarz’ inequality and P(∇f,∇f) =

0 imply P(X,∇f) = 0.

An immediate consequence of the Hermitian compatibility of the horizontal met-

ric g and (4.2.8) are the following identities,

T 0(Is∇f,∇f) = 0, s = 1, 2, 3. (4.2.9)

In addition, the covariant derivative of (4.2.8) along a horizontal vector Y and the

Hessian equation (4.2.1) yield the following

∇T 0(Y,X,∇f) = −3

5
dS(Y )df(X) + f

(
T 0(Y,X) +

3

5
(S − 2)g(Y,X)

)
+

3∑
s=1

fs

(
T 0(IsY,X) +

3

5
(S − 2)ωs(Y,X)

)
. (4.2.10)

Next, we will obtain formulas for the individual terms in the sum (4.2.4) and

their derivatives. This will be achieved by computing the horizontal QC-Ricci tensor

ζs in two different ways.

Lemma 4.2.2. The following identities hold true

∇2f(X, ξi) =
1

5
(1 + 2S)df(IiX)− 2

3
T 0(X, Ii∇f) (4.2.11)

and

∇3f(Y,X, ξi) =
1

5
(1 + 2S) [fωi(Y,X)− fig(Y,X) + fjωk(Y,X)− fkωj(Y,X)]

+
2

3

[
fT 0(X, IiY )− fiT 0(X, Y ) + fjT

0(X, IkY )− fkT 0(X, IjY )
]

+
2

5
dS(Y )df(IiX)− 2

3
∇T 0(Y,X, Ii∇f). (4.2.12)
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Proof. First, we compute ζi(IiX,∇f) using its definition (3.3.11) and then apply the

following third order Ricci identity

R(X, Y,∇f, Z) = ∇3f(X, Y, Z)−∇3f(Y,X,Z) + 2
3∑
s=1

∇2f(ξs, Z)ωs(X, Y ),

which give for a fixed i the formula

4ζi(IiX,∇f)
def
= R(eγ, IiX,∇f, Iieγ)

= ∇3f(eγ, IiX, Iieγ)−∇3f(IiX, eγ, Iieγ) + 2
3∑
s=1

∇2f(ξs, Iieγ)ωs(eγ, IiX).

An application of (4.2.3) and (4.2.4) to the above equation brings us to

4ζi(IiX,∇f) = −df(X)−
3∑
s=1

∇2f(eγ, ξs)ωs(IiX, Iieγ)

+
3∑
s=1

∇2f(IiX, ξs)ωs(eγ, Iieγ) + 2
3∑
s=1

∇2f(ξs, Iieγ)ωs(eγ, IiX)

= −df(X)−
[
∇2f(IiX, ξi)−∇2f(IjX, ξj)−∇2f(IkX, ξk)

]
+ 4∇2f(IiX, ξi) + 2[∇2f(ξi, IiX)−∇2f(ξj, IjX)−∇2f(ξk, IkX)]. (4.2.13)

Invoking (4.2.5) to re-write the last bracket in (4.2.13) we come to

4ζi(IiX,∇f) = −df(X)−
[
∇2f(IiX, ξi)−∇2f(IjX, ξj)−∇2f(IkX, ξk)

]
+ 2[∇2f(IiX, ξi)−∇2f(IjX, ξj)−∇2f(IkX, ξk)]−

1

2
[T 0(X,∇f)− T 0(IiX, Ii∇f)]

+ 4∇2f(IiX, ξi) +
1

2
[T 0(X,∇f)− T 0(IjX, Ij∇f)] +

1

2
[T 0(X,∇f)− T 0(IkX, Ik∇f)]

= −df(X) + 6∇2f(IiX, ξi)−
3∑
s=1

∇2f(IsX, ξs) + T 0(X,∇f) + T 0(IiX, Ii∇f)

− 1

2

[
T 0(X,∇f) +

3∑
s=1

T 0(IsX, Is∇f)

]
.

Finally, using (3.3.9) and (4.2.4) the last equation takes the form

4ζi(IiX,∇f) = 2(S − 1)df(X) + 6∇2f(IiX, ξi)

+
5

3
T 0(X,∇f) + T 0(IiX, Ii∇f). (4.2.14)
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On the other hand, from (4.1.1) we have the following formula for ζi(IiX,∇f)

4ζi(IiX,∇f) = −3T 0(IiX, Ii∇f)− T 0(X,∇f)− 2Sdf(X). (4.2.15)

From (4.2.15) and (4.2.14) we obtain

3∇2f(X, ξi) = (2S − 1)df(IiX) +
4

3
T 0(IiX,∇f)− 2T 0(X, Ii∇f). (4.2.16)

A substitution of (4.2.8) into (4.2.16) gives (4.2.11).

The second identity in the lemma is obtained by taking the covariant derivative of

(4.2.11) along Y ∈ Γ(H), noting that from (3.3.5) the terms involving the connection

1-forms coming from the covariant derivatives of Ii and ξi cancel, which gives

∇3f(Y,X, ξi) =
2

5
dS(Y )df(IiX)− 2

3
∇T 0(Y,X, Ii∇f)

+
1

5
(1 + 2S)∇2f(Y, IiX) +

2

3
fT 0(X, IiY ) +

2

3

3∑
s=1

fsT
0(X, IiIsY ).

Finally, using the Hessian equation (4.2.1) in the above formula gives (4.2.12).

Some of the above identities can be viewed as versions of formulas found in [32]

that hold when n = 1. Other than (4.2.1) and (4.2.3) coming directly from [32] as

stated above, (4.2.4) can be obtained from [32, (3.8)] by setting U = 0, n = 1, and

then applying a Ricci identity.

On the other hand, identity (4.2.8) can be formally obtained from [32, (3.5)] by

setting U = 0 and n = 1. When n > 1, the proof of [32, Lemma 3.2] shows that

[32, (3.5)] is found by subtracting [32, (3.7)] from [32, (3.8)]. However, if n = 1 then

[32, (3.7)] is identical to [32, (3.8)] and therefore we cannot obtain [32, (3.5)] when

n = 1 following [32]. In our case, in order to prove (4.2.8) we used the compactness

of M to show that the P -form of f vanishes instead. However, once (4.2.8) is known,

substituting it into (4.2.4), and then using a Ricci identity, will yield [32, (3.9)].

In addition, (4.2.9) implies that [32, (3.6)] continues to hold when n = 1. Finally,
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(4.2.11) and (4.2.12) correspond to [32, Lemma 3.3] and [32, (3.18)], respectively,

but now they hold in the case n = 1.

4.2.1 A Key Identity

Since the canonical connection preserves the type of a tensor and T 0 is symmetric, we

can compute terms of the form ∇T 0(Y,∇f, Ii∇f) by finding ∇T 0(Y, Ii∇f,∇f) from

(4.2.10); we cannot obtain in this way explicit formulas for the ∇T 0(Y, Ij∇f, Ii∇f).

However, with the help of the previous Lemmas, we will find a certain relation

between the torsion T 0, the normalized QC-scalar curvature S, and their derivatives,

which will lead to a system that can be solved for the “unknown” components. To

formulate it, we need the following covariant tensors that will also play a prominent

role for the remainder of the chapter,

Γi(Y,X)
def
= ωj(Y,X)ρk(Ii∇f, ξi)− ωk(Y,X)ρj(Ii∇f, ξi) + df(IkY )ρj(IiX, ξi)

+ df(IkX)ρj(IiY, ξi)− df(IjY )ρk(IiX, ξi)− df(IjX)ρk(IiY, ξi), (4.2.17)

where the last four terms constitute its symmetric part:

Γisym(Y,X)
def
= df(IkY )ρj(IiX, ξi) + df(IkX)ρj(IiY, ξi)

− df(IjY )ρk(IiX, ξi)− df(IjX)ρk(IiY, ξi) (4.2.18)

Lemma 4.2.3. The following identity holds true for any cyclic permutation of the
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indices (i, j, k),

5∇T 0(Y,X, Ii∇f)− 3∇T 0(X, Y, Ii∇f) = −3[∇T 0(∇f, Y, IiX) +∇T 0(∇f, IiY,X)]

+3dS(Y )df(IiX)− 9

5
dS(X)df(IiY )+

6

5
(4+3S)fig(Y,X)+12

3∑
s=1

∇2f(ξi, ξs)ωs(Y,X)

− 12

5
(1 + 2S)

[
fωi(X, Y ) +

3∑
s=1

fsωs(Y, IiX)

]
+ f [5T 0(X, IiY )− 3T 0(IiX, Y )]

+ fi[6T
0(IiX, IiY )− 8T 0(X, Y )] + fj[5T

0(X, IkY ) + 6T 0(IjX, IiY ) + 3T 0(IkX, Y )]

+ fk[6T
0(IkX, IiY )− 5T 0(X, IjY )− 3T 0(IjX, Y )]− 12Γi(Y,X). (4.2.19)

Proof. We begin by finding another formula for ∇3f(Y,X, ξi), see (4.2.22) below,

besides the already known identity (4.2.12). We begin by using the third order Ricci

identity

∇3f(Y,X, ξi) = ∇3f(ξi, Y,X) +∇2f(T (ξi, Y ), X) +∇2f(Y, T (ξi, X))

+ df((∇Y T )(ξi, X)) +R(ξi, Y,X,∇f). (4.2.20)

Next, we compute each of the terms in the right-hand side of (4.2.20) separately.

The first term can be simplified with the help of (4.2.3), which gives

∇3f(ξi, Y,X) = −fig(Y,X)−
3∑
s=1

∇2f(ξi, ξs)ωs(Y,X).

The Hessian equation (4.2.1) and (4.2.5) show that

∇2f(T (ξi, Y ), X) =
1

4
f [T 0(IiY,X) + T 0(Y, IiX)]

− 1

4

3∑
t=1

df(ξt)[T
0(IiY, ItX) + T 0(Y, IiItX)].

The third term in the right-hand side of (4.2.20) is handled similarly. Next, use

(3.3.9) to simplify the sum of the above formulas for the second and third terms,
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which give

∇2f(T (ξi, Y ), X) +∇2f(Y, T (ξi, X)) =
1

2
f [T 0(IiX, Y ) + T 0(X, IiY )]

+
1

2
fj[T

0(X, IkY )− T 0(IkX, Y )] +
1

2
fk[T

0(IjX, Y )− T 0(X, IjY )].

To simplify the fourth term, we differentiate (3.3.10), using (3.3.5), which gives

df((∇Y T )(ξi, X)) = (∇Y T )(ξi, X,∇f)

= −1

4
[∇T 0(Y, IiX,∇f) +∇T 0(Y,X, Ii∇f)].

At this point we need the following general formula for the curvature, cf. [33, 35],

R(ξi, Y,X, Z) = −1

4
[∇T 0(X, IiZ, Y ) +∇T 0(X,Z, IiY )]

+
1

4
[∇T 0(Z, IiX, Y ) +∇T 0(Z,X, IiY )] + ωj(Y,X)ρk(IiZ, ξi)

− ωk(Y,X)ρj(IiZ, ξi) + ωk(Y, Z)ρj(IiX, ξi) + ωk(X,Z)ρj(IiY, ξi)

− ωj(Y, Z)ρk(IiX, ξi)− ωj(X,Z)ρk(IiY, ξi). (4.2.21)

Letting Z = ∇f in (4.2.21) gives the following formula for the fifth term in the

right-hand side of (4.2.20),

R(ξi, Y,X,∇f) = −1

4
[∇T 0(X, Ii∇f, Y ) +∇T 0(X,∇f, IiY )]

+
1

4
[∇T 0(∇f, IiX, Y ) +∇T 0(∇f,X, IiY )] + Γi(Y,X),

recalling the tensor Γi defined in (4.2.17). A substitution of the above identities into

(4.2.20) yields the sought formula for ∇3f(Y,X, ξi), i.e.,

∇3f(Y,X, ξi) = −fig(Y,X)−
3∑
s=1

∇2f(ξi, ξs)ωs(Y,X)+
1

2
f [T 0(IiX, Y )+T 0(X, IiY )]

+
1

2
fj[T

0(X, IkY )− T 0(IkX, Y )] +
1

2
fk[T

0(IjX, Y )− T 0(X, IjY )]

− 1

4
[∇T 0(Y, IiX,∇f) +∇T 0(Y,X, Ii∇f)]− 1

4
[∇T 0(X, Ii∇f, Y ) +∇T 0(X,∇f, IiY )]

+
1

4
[∇T 0(∇f, IiX, Y ) +∇T 0(∇f,X, IiY )] + Γi(Y,X). (4.2.22)
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After this initial calculation, we use (4.2.10) and the symmetry in the last two in-

dices of∇T 0 to rewrite and expand the terms∇T 0(Y, IiX,∇f) and∇T 0(X,∇f, IiY )

in (4.2.22). After a small simplification we obtain

∇3f(Y,X, ξi) = − 1

10
(4 + 3S)fig(Y,X)−

3∑
s=1

∇2f(ξi, ξs)ωs(Y,X)

+
1

4
f [T 0(IiX, Y ) + T 0(X, IiY )] +

3

20
[dS(Y )df(IiX) + dS(X)df(IiY )]

− 1

4
fj[T

0(IjY, IiX) + T 0(IjX, IiY )− 2T 0(X, IkY ) + 2T 0(IkX, Y )]

− 1

4
fk[T

0(IkY, IiX) + T 0(IkX, IiY )− 2T 0(IjX, Y ) + 2T 0(X, IjY )]

− 1

2
fiT

0(IiX, IiY )− 1

4
[∇T 0(Y,X, Ii∇f) +∇T 0(X, Y, Ii∇f)]

+
1

4
[∇T 0(∇f, IiX, Y ) +∇T 0(∇f,X, IiY )] + Γi(Y,X). (4.2.23)

Next, we subtract (4.2.12) from (4.2.23) and collect the terms containing

∇T 0( · , · , Ii∇f) on one side leaving the terms containing the“unknown” components

of ∇T 0 and the vertical Hessian of f on the other side. With the help of (3.3.9) we

simplify the bracketed terms multiplying the vertical derivatives of f , which gives

the claimed formula (4.2.19).

For several calculations we will need the symmetric part of (4.2.19), which is

given by

∇T 0(Y,X, Ii∇f) +∇T 0(X, Y, Ii∇f) = −3[∇T 0(∇f, IiY,X) +∇T 0(∇f, Y, IiX)]

+
3

5
[dS(Y )df(IiX) + dS(X)df(IiY )]− 6

5
(S − 2)g(Y,X)fi − 12Γisym(Y,X)

+ f [T 0(Y, IiX) + T 0(IiY,X)] + fi[6T
0(IiY, IiX)− 8T 0(Y,X)]

+ fj[4T
0(IkY,X) + 4T 0(Y, IkX) + 3T 0(IiY, IjX) + 3T 0(IjY, IiX)]

+ fk[3T
0(IkY, IiX) + 3T 0(IiY, IkX)− 4T 0(Y, IjX)− 4T 0(IjY,X)] (4.2.24)
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recalling (4.2.18) and also taking into account that

3∑
s=1

fs[ωs(Y, IiX) + ωs(X, IiY )] = fi[g(IiY, IiX) + g(IiX, IiY )]

+ fj[g(IjY, IiX) + g(IjX, IiY )] + fk[g(IkY, IiX) + g(IkX, IiY )]

= fi[g(Y,X) + g(X, Y )] + fj[g(Y, IkX)− g(IkX, IiY )]

+ fk[g(IjY,X)− g(X, IjY )] = 2fig(X, Y ).

4.2.2 Unique Continuation and a Special Frame

Let h be the Riemannian metric (3.3.6) and ∆h be the associated elliptic Laplacian.

In the following lemma we will give a version of [32, Lemma 3.6] for the case n = 1.

In particular, this will allow the construction at almost every point of M of a global

orthonormal frame of the horizontal space using the horizontal gradient of f .

Lemma 4.2.4. The eigenfunction f obeys the following identity

∆hf =

(
19 + 8S

5

)
f − 2

5
dS(∇f). (4.2.25)

In particular, f and its horizontal gradient ∇f do not vanish on any open set. Thus,

if we let

I0
def
= idH and σα

def
= |∇f |−1Iα∇f

then {σα}3α=0 is an orthonormal frame for the horizontal space H at almost every

point of M .

Proof. Following [31, Lemma 5.1] the Riemannian Laplacian ∆h and sub-Laplacian

∆ are related by

∆hf = ∆f −
3∑
s=1

∇2f(ξs, ξs). (4.2.26)
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Taking the trace X = eγ, Y = Iieγ of (4.2.19) using that T 0 is completely trace-free

gives

5∇T 0(Iieγ, eγ, Ii∇f)− 3∇T 0(eγ, Iieγ, Ii∇f) = 3dS(Iieγ)df(Iieγ)

+
9

5
dS(eγ)df(eγ)−

48

5
(1 + 2S)f + 48∇2f(ξi, ξi)− 12Γi(Iieγ, eγ). (4.2.27)

From ∇T 0(eγ, Iieγ, X) = −∇T 0(Iieγ, eγ, X) and Γi(Iieγ, eγ) = 0 by (4.2.17) we can

solve for the component of the vertical Hessian of f in (4.2.27) which gives

∇2f(ξi, ξi) =
1

6
∇T 0(eγ, Iieγ, Ii∇f) +

1

10
dS(∇f)− 1

5
(1 + 2S)f. (4.2.28)

Using (3.3.9) in which we take X = Iieγ, Y = Ii∇f , and (3.3.5), gives the following

trace formula

∇T 0(eγ, eγ,∇f) +
3∑
s=1

∇T 0(eγ, Iseγ, Is∇f) = 0. (4.2.29)

Then, (4.2.10) with X = Y = eγ shows that the divergence of T 0 satisfies

∇T 0(eγ, eγ,∇f) = −3

5
[dS(∇f)− 4(S − 2)f ] . (4.2.30)

Therefore, (4.2.28) with (4.2.29) and (4.2.30) implies

3∑
s=1

∇2f(ξs, ξs) =
2

5
dS(∇f) +

1

5
(1− 8S)f. (4.2.31)

A substitution of (4.2.31) into (4.2.26), taking into account that ∆f = 4f , shows

(4.2.25). The final part of the Lemma follows from Aronszajn’s unique continuation

result [1].

4.3 The Components of T 0 and their Derivatives

Since in lemma 4.2.4 we found a global orthonormal frame {σα, ξs} valid a.e., it will

be convenient to use the index notation for the components of the involved tensors
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constructed from the torsion as follows

Tαβ
def
= T 0(Iα∇f, Iβ∇f), ∇T 0(Iγ∇f, Iα∇f, Iβ∇f) = Tαβ;γ, (4.3.1)

where I0
def
= idH . In particular, the fact that T 0 is a symmetric tensor can be written

as Tαβ = Tβα and (3.3.9) becomes

T00 + T11 + T22 + T33 = 0. (4.3.2)

Furthermore, from the properties of the connection we have Tαβ;γ = Tβα;γ.

Next, we will show that Ti0;0 vanish. This will yield a relation between the vertical

derivatives fs and the torsion components Tαβ.

Lemma 4.3.1. The following identities between the components Tαβ of the torsion

tensor and the vertical derivatives fi of the eigenfunction f hold true

fsT00 = f1Ts1 + f2Ts2 + f3Ts3, s = 1, 2, 3, (4.3.3)

and

Ti0;0 = 0. (4.3.4)

Proof. From (4.2.11) and (4.2.8) we have

∇2f(X, ξi) = df(IiX)− 2

3
T 0(IiX,∇f)− 2

3
T 0(X, Ii∇f). (4.3.5)

By (4.2.9) we have Ti0 = 0, hence the above identity shows ∇2f(∇f, ξi) = 0. There-

fore, for any ξ ∈ Γ(V ) and A ∈ Γ(TM), we have

∇2f(∇f, ξ) = ∇2f(∇f,∇Aξ) = 0 (4.3.6)

taking into account (3.3.5). The covariant derivative along ∇f of the identity
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∇2f(∇f, ξi) = 0 gives

0 = ∇3f(∇f,∇f, ξi)− f ∇2f(∇f, ξi)−
3∑
s=1

fs∇2f(Is∇f, ξi)−∇2f(∇f,∇∇fξi)

= ∇3f(∇f,∇f, ξi)−
3∑
s=1

fs

[
df(IiIs∇f)− 2

3
T 0(IiIs∇f,∇f)− 2

3
T 0(Is∇f, Ii∇f)

]
= ∇3f(∇f,∇f, ξi) + |∇f |2fi +

2

3
[−fiT00 + fiTii + fjTji + fkTki]

using the Hessian equation (4.2.1), (4.3.6), Ti0 = 0 by (4.2.9), and (4.3.5). However,

it follows from (4.2.10) that

Ti0;0 = −fiT00 + fiTii + fjTji + fkTki, (4.3.7)

hence,

∇3f(∇f,∇f, ξi) + |∇f |2fi +
2

3
Ti0;0 = 0. (4.3.8)

On the other hand, from (4.2.23) we have

∇3f(∇f,∇f, ξi) = −1

5
(1 + 2S)|∇f |2fi +

2

3

[
fT 0(∇f, Ii∇f)− fiT 0(∇f,∇f)

]
+

2

3

[
fjT

0(∇f, Ik∇f)− fkT 0(∇f, Ij∇f)
]

+
2

5
dS(∇f)df(Ii∇f)

− 2

3
∇T 0(∇f,∇f, Ii∇f) = −1

5
(1 + 2S)|∇f |2fi −

2

3
fiT00 −

2

3
Ti0;0 (4.3.9)

using Ti0 = 0 by (4.2.9) to obtain the last equality. Now, (4.3.8) and (4.3.9) give

∇3f(∇f,∇f, ξi) = −1

2
Ti0;0 − |∇f |2fi. (4.3.10)

A substitution of (4.3.10) into (4.3.8) shows (4.3.4), which together with (4.3.7) give

(4.3.3).

4.3.1 The Components Tij;0 and the QC-Ricci 2-forms

At this stage, from (4.2.10) we can compute the components Tαβ;γ only when either

α = 0 or β = 0. However, by evaluating (4.2.19) on the {σα}3α=0 frame, cf. Lemma
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4.2.4, we will be able to use the components T0i;j to determine not only Tij;0, but

also the qc-Ricci 2-forms ρs defined in (3.3.11). We will use the following identities

for the QC-Ricci 2-forms, cf. [33, Theorem 3.1] or [35, Theorem 4.3.11],

18ρs(ξs, X) = 3dS(X) +
1

2
∇T 0(eγ, eγ, X)− 3

2
∇T 0(eγ, Iseγ, IsX),

18ρi(ξj, IkX) = −18ρi(ξk, IjX)

= 3dS(X)− 5

2
∇T 0(eγ, eγ, X)− 3

2
∇T 0(eγ, Iieγ, IiX).

(4.3.11)

We begin by using (4.2.24) and the symmetry of the Tαβ;γ in the first two indices to

prove the following Lemma.

Lemma 4.3.2. We have

ρk(Ij∇f, ξj) = −3

5
(S − 2)fk, (4.3.12)

Tij;0 =
1

4
[fk(Tii − Tjj) + fjTkj − fiTki]. (4.3.13)

Proof. Letting Y = Ij∇f and X = ∇f in (4.2.24) we have, taking into account

Ti0 = 0 and Ti0;0 = 0 by (4.2.9) and (4.3.4), respectively, the following identity

Ti0;j + Tj0;i = −3Tji;0 + fTji+ 6fiTki + 7fjTjk

+ fk(−3Tii + 3Tkk − 4Tjj + 4T00)− 12|∇f |2ρk(Ii∇f, ξi).

From (4.2.10) we can find another formula for Ti0;j + Tj0;i, which together with the

above identity and (4.3.3) gives

Tji;0 = −3|∇f |2ρk(Ii∇f, ξi) +
3

2
fkT00 − [fkTjj − fjTkj] +

1

2
[fiTki − fkTii]. (4.3.14)

On the other hand, by first taking (4.2.24) for j, and then working as above but

using Y = Ii∇f and X = ∇f we obtain the identity

Tij;0 = 3|∇f |2ρk(Ij∇f, ξj)−
3

2
fkT00 + [fkTii − fiTki]−

1

2
[fjTkj − fkTjj]. (4.3.15)
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Therefore, the symmetry of Tij;0 in i and j, together with the last line in (4.1.1),

(4.3.2) and (4.3.3) give

0 = Tij;0 − Tji;0 = 3|∇f |2[ρk(Ij∇f, ξj) + ρk(Ii∇f, ξi)]− 3fkT00

+
3

2
[fk(Tii + Tjj)− fiTki − fjTkj] = 6|∇f |2ρk(Ij∇f, ξj)− 6fkT00,

which, by (4.2.8), implies (4.3.12). Similarly, (4.3.14) and (4.3.15) yield

2Tij;0 = Tij;0 + Tji;0

= 3|∇f |2[ρk(Ij∇f, ξj)− ρk(Ii∇f, ξi)] +
1

2
[fk(Tii − Tjj) + fjTkj − fiTki].

By (4.1.1) the term in the first brackets is zero, hence we conclude (4.3.13).

4.3.2 The Components Tii;0 and the vertical Hessian of f

With the results of the previous section, we can begin to determine the components

of dS. In particular, we can now show that one of the components of dS|H vanishes.

Lemma 4.3.3. The normalized QC-scalar curvature S satisfies the following rela-

tions at almost every point of M

dS(∇f) = 0, T00;0 = 0, and Tii;0 =
1

2
[fjTki − fkTji]. (4.3.16)

Proof. Letting X = Ii∇f and Y = ∇f in (4.2.24) and taking (4.2.9) into account,

we have the identity

Tii;0 + T0i;i =

− 3[Tii;0 − T00;0]−
3

5
|∇f |2dS(∇f)− f [T00 − Tii] + fjTki − fkTji. (4.3.17)

From the formula for ∇T 0(Y,X,∇f) in (4.2.10) we can compute that

Ti0;i = f [Tii − T00] + fkTij − fjTki (4.3.18)
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and 5T00;0 = −3|∇f |2dS(∇f); using this and (4.3.18) in (4.3.17) we see that

Tii;0 = −3

5
|∇f |2dS(∇f) +

1

2
[fjTki − fkTji]. (4.3.19)

On the other hand, from the Sp(1)Sp(1)-invariance of (4.3.2) it follows that

T00;0 + T11;0 + T22;0 + T33;0 = 0

which together with (4.3.19) and (4.3.18) yield |∇f |2dS(∇f) = 0, hence (4.3.16).

Now we can determine the components of the vertical Hessian of f , which will then

be used in the proofs that the remaining components of dS vanish and, eventually,

in the final section that the torsion vanishes.

Lemma 4.3.4. With the assumptions of Theorem 1.0.1, if f satisfies (4.2.1) then

we have the following identities for the vertical Hessian of f ,

|∇f |2∇2f(ξi, ξi) = −1

5
(1 + 2S)|∇f |2f − 2

3
[fTii + fkTij − fjTki], (4.3.20)

|∇f |2∇2f(ξi, ξj) = −2

3
fTij +

1

2
(4− S)|∇f |2fk

− 11

12
[fiTki − fkTii]−

1

4
[fjTkj − fkTjj], (4.3.21)

∇2f(ξi, ξj)−∇2f(ξj, ξi) =
2

5
(3 + S)fk. (4.3.22)

Proof. First, letting X = Ii∇f and Y = ∇f in (4.2.19) and taking into account

Γi(∇f, Ii∇f) = 0 from (4.2.17) we have

5Tii;0 − 3Ti0;i = 3T00;0 − 3Tii;0 − 3|∇f |2dS(∇f) + 5fTii + 3fT00

+ 12|∇f |2∇2f(ξi, ξi) +
12

5
(1 + 2S)|∇f |2f + fkTij − fjTki.
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Using the formulas in (4.3.16) and (4.3.18), we can expand the above

5

2
[fjTki − fkTji]− 3(f [Tii − T00] + fkTij − fjTki) = −3

2
[fjTki − fkTji] + 5fTii

+ 3fT00 + 12|∇f |2∇2f(ξi, ξi) +
12

5
(1 + 2S)|∇f |2f + fkTij − fjTki

and then solve this for the vertical Hessian of f to obtain (4.3.20). Next, let X =

Ij∇f and Y = ∇f in (4.2.19); then use that Γi(∇f, Ij∇f) = 2|∇f |2ρk(Ii∇f, ξi) from

(4.2.17) to see

5Tji;0 − 3T0i;j = −3T0k;0 − 3Tij;0 + 5fTji + 12|∇f |2∇2f(ξi, ξj)

− 12

5
(1 + 2S)|∇f |2fk − 24|∇f |2ρk(Ii∇f, ξi) + 6fiTki + 5fjTjk

− 6fkTii − 5fkTjj + 3fkT00.

From (4.2.10) with Y = Ij∇f , X = Ii∇f we can compute that T0i;j = fTij + fiTki +

fk[T00−Tii]. Then this, along with Ti0;0 = 0 from (4.3.4), the formula for ρk(Ij∇f, ξj)

in (4.3.12), and for Tij;0 in (4.3.13), applied to the above gives

5

4
[fk(Tii − Tjj) + fjTkj − fiTki]− 3[fTij + fiTki + fk(T00 − Tii)]

= −3

4
[fk(Tii − Tjj) + fjTkj − fiTki] + 5fTji + 12|∇f |2∇2f(ξi, ξj)

− 12

5
(1 + 2S)|∇f |2fk +

72

5
(S − 2)|∇f |2fk + 6fiTki + 5fjTjk

− 6fkTii − 5fkTjj + 3fkT00.

Using that 5T00 = −3(S − 2)|∇f |2 from (4.2.8) and solving the above for the term

|∇f |2∇2f(ξi, ξj) yields (4.3.21).

Finally, recall that {ξs}3s=1 is an orthornormal frame for V with respect to the

Riemannian metric (3.3.6). With this, and the orthonormal frame {σα}3α=0 for H,

we can expand

T (ξi, ξj) = |∇f |−2
3∑

α=0

h(T (ξi, ξj), Iα∇f)Iα∇f +
3∑
s=1

h(T (ξi, ξj), ξs)ξs.
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By the last two lines of (4.1.1) we have h(T (ξi, ξj), Iα∇f) = −ρk(IiIα∇f, ξi) and

h(T (ξi, ξj), ξs) = −Sδks. Thus, (4.3.12) and the Ricci identity

∇2f(ξi, ξj)−∇2f(ξj, ξi) = −df(T (ξi, ξj))

shows (4.3.22).

4.4 The QC-Scalar Curvature is Constant

Here we obtain first a formula for the horizontal part dS|H of the differential of S

and therefore one for the horizontal Hessian ∇2S(X, Y ) as well. The latter will then

be used to show that dS|V = dS|H= 0 and allow us to conclude that S is constant.

Several divergences of the torsion tensor T 0 will appear in the next calculations,

so we remind the notation set in (0.0.3). In particular, we will use that if α 6= 0 then

∇∗αT 0(X) = −∇T 0(Iαeγ, eγ, X).

Lemma 4.4.1. The next identity holds at almost every point of M ,

dS(It∇f) = −2(S − 2)ft, t = 1, 2, 3. (4.4.1)

Proof. With (4.3.12), the last line of (4.1.1), and second line of (4.3.11), we arrive at

the identity

−3

5
(S − 2)fi = ρi(Ik∇f, ξk)

= −1

6
dS(Ii∇f) +

5

36
∇∗T 0(Ii∇f)− 1

12
∇∗iT 0(∇f).

(4.4.2)

By (4.2.10) and the fact that T 0 is completely trace-free we have the identity

∇∗iT 0(∇f) =
3

5
[dS(Ii∇f) + 4(S − 2)fi]. (4.4.3)
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Therefore, we need only determine ∇∗T 0(Ii∇f). For this, take the trace X = eγ,

Y = Iαeγ in (4.2.19):

5∇T 0(Iαeγ, eγ, Ii∇f)− 3∇T 0(eγ, Iαeγ, Ii∇f) = 3dS(Iαeγ)df(Iieγ)

− 9

5
dS(eγ)df(IiIαeγ) +

6

5
(4 + 3S)g(Iαeγ, eγ)fi + 12

3∑
s=1

∇2f(ξi, ξs)ωs(Iαeγ, eγ)

− 12

5
(1 + 2S)

(
fωi(eγ, Iαeγ) +

3∑
s=1

fs ωs(Iαeγ, Iieγ)

)
− 12Γi(Iαeγ, eγ). (4.4.4)

For α = 0 equation (4.4.4) becomes

∇∗T 0(Ii∇f) = −3

5
[dS(Ii∇f) + 4(S − 2)fi]− 12Γi(eγ, eγ). (4.4.5)

Using (4.2.17) and (4.3.11) we see that

Γi(eγ, eγ) = 2[ρj(Ij∇f, ξi) + ρk(Ik∇f, ξi)]

=
2

3
dS(Ii∇f)− 5

9
∇∗T 0(Ii∇f) +

1

6
[∇∗jT 0(Ik∇f)−∇∗kT 0(Ij∇f)], (4.4.6)

thus a substitution of (4.4.6) into (4.4.5) gives

∇∗T 0(Ii∇f) =
3

7

(
23

5
dS(Ii∇f) +

12

5
(S − 2)fi

)
+

3

7

[
∇∗jT 0(Ik∇f)−∇∗kT 0(Ij∇f)

]
. (4.4.7)

Now we write (4.4.4) for j instead of i and then let α = k in the result. Then we

use (4.2.17) to see that Γj(Ikeγ, eγ) = −4ρi(Ij∇f, ξj) and thus by (4.3.12):

∇∗kT 0(Ij∇f) = −3

5
dS(Ii∇f)− 6

5
(7− S)fi + 6∇2f(ξj, ξk). (4.4.8)

Next, we do one more permutation of the indices and consider (4.4.4) for k instead

of i and then let α = j, which taking into account Γk(Ijeγ, eγ) = 4ρi(Ik∇f, ξk) and

(4.3.12) gives an identity for the remaining divergence

∇∗jT 0(Ik∇f) =
3

5
dS(Ii∇f) +

6

5
(7− S)fi + 6∇2f(ξk, ξj). (4.4.9)
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Therefore, subtracting (4.4.8) from (4.4.9) and applying (4.3.22) we come to

∇∗jT 0(Ik∇f)−∇∗kT 0(Ij∇f) =
6

5
[dS(Ii∇f)− 4(S − 2)fi]. (4.4.10)

Lastly, a substitution of (4.4.10) into (4.4.7) gives

∇∗T 0(Ii∇f) =
3

7

(
29

5
dS(Ii∇f)− 12

5
(S − 2)fi

)
(4.4.11)

which after using it together with (4.4.3) in (4.4.2) shows (4.4.1).

Lemma 4.4.2. The normalized QC-scalar curvature S is constant, in fact S = 2.

In particular,

T00 = 0, T11 + T22 + T33 = 0, f1Ts1 + f2Ts2 + f3Ts3 = 0 (4.4.12)

for s = 1, 2, 3, and for any cyclic permutation (i, j, k) of (1, 2, 3) we have

fkTik − fiTkk = fiTjj − fjTij. (4.4.13)

Proof. First we will show that the differential of S vanishes on the vertical space,

dS|V = 0. With (4.3.16) and (4.4.1) we can write the horizontal gradient of S in the

{σα}3α=0 frame in the form

|∇f |2∇S = −2(S − 2)
3∑
t=1

ft It∇f. (4.4.14)

The covariant derivative of (4.4.14) along a horizontal vector Y , using (3.3.5), the

horizontal Hessian equation (4.2.1), and (4.2.11) for the term ∇2f(Y, ξi), gives the

equation

1

2
|∇f |2∇2S(Y,X) = fdf(Y )dS(X) +

3∑
t=1

ft[df(ItY )dS(X) + df(ItX)dS(Y )]

+ (S − 2)
3∑
t=1

[
ft∇2f(Y, ItX) +

(
1

5
(1 + 2S)df(ItY )− 2

3
T 0(Y, It∇f)

)
df(ItX)

]
.

(4.4.15)
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Using (4.2.1) again, the identities in (4.3.16) and (4.4.1) we find ∇2S(Ii∇f,∇f) =

∇2S(∇f, Ii∇f). Hence, by the Ricci identity

∇2S(X, Y )−∇2S(Y,X) = −2
3∑
t=1

dS(ξt)ωt(X, Y )

we have

−2
3∑
t=1

dS(ξt)ωt(Ii∇f,∇f) = ∇2S(Ii∇f,∇f)−∇S(∇f, Ii∇f) = 0,

which implies

dS(ξt) = 0, t = 1, 2, 3. (4.4.16)

Now we can show that the differential of S vanishes on all horizontal vectors as

well, dS|H= 0. From (4.1.2) and (4.4.16) we find ∇2S(eγ, Iieγ) = 0. On the other

hand, using (4.4.15) with (4.4.1) we also have

|∇f |2∇2S(eγ, Iieγ) = −2fdS(Ii∇f).

Thus, since f 6= 0 a.e., see Lemma 4.2.4, we conclude

dS(It∇f) = 0 t = 1, 2, 3.

Hence, since in addition we have dS(∇f) = 0 by (4.3.16), it follows that dS|H= 0.

Therefore, taking into account that dS vanishes on the Reeb vector fields as proven

above, it follows that dS = 0 and hence S is constant.

In order to determine the constant we note that from (4.4.1), either S = 2 or

f1 = f2 = f3 = 0 on some open set. Arguing by contradiction, suppose the latter,

then for any horizontal vector X we would have, by (3.3.5) and the assumption

fs = 0, the idenity

0 = Xfi = ∇2f(X, ξi)− αj(X)fk + αk(X)fj = ∇2f(X, ξi).
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Then it would follow from (4.2.11) that 10Tii = −3(1+2S)|∇f |2. On the other hand,

the component T00 can be computed from (4.2.8), which gives T00 = −3
5
(S−2)|∇f |2.

Therefore, by (4.3.2) we have

0 =
3∑

α=0

Tαα =
3

10
(1− 8S)|∇f |2,

hence, S = 1/8. This is a contradiction since the Lichnerowicz-type bound (1.0.1)

implies, due to T 0 being a trace-free tensor, that S ≥ 2. Thus we must have S = 2,

and consequently (4.2.8) now implies T00 = 0. With this, (4.4.12) follows from (4.3.2)

and (4.3.3).

Finally, a substitution of the second identity in (4.4.12) into the third one written

for s = i shows

0 = fiTii + fjTij + fkTik = fi(−Tjj − Tkk) + fjTij + fkTik

from which (4.4.13) follows.

4.5 Vanishing of the Torsion

The last application of (4.2.19) is to finally show that T 0 = 0. We begin with a simple

lemma describing the consequences of S = 2 on the components of the divergences

∇∗iT 0(X)=∇T 0(eγ, Iieγ, X) defined in (0.0.3).

Lemma 4.5.1. The divergences of the torsion satisfy the following identities,

|∇f |2∇∗iT 0(Ii∇f) = −4[fTii + fkTij − fjTki] (4.5.1)

|∇f |2∇∗jT 0(Ik∇f) = |∇f |2∇∗kT 0(Ij∇f) = −4[fTjk + fjTij − fiTjj]. (4.5.2)

Proof. Since S = 2 by Lemma 4.4.2, equation (4.4.10) implies ∇kT
0(Ij∇f) =

∇jT
0(Ik∇f), which gives the first equality in (4.5.2). Furthermore, (4.3.21) now

61



Chapter 4. Proof of the Main Theorem 1.0.1

takes the simpler form

12|∇f |2∇2f(ξj, ξk) = −8fTjk + 12|∇f |2fi − 11fjTij

+ 11fiTjj − 3fkTik + 3fiTkk. (4.5.3)

Applying (4.4.13) to (4.5.3) we find

12|∇f |2∇2f(ξj, ξk) = −8fTjk + 12|∇f |2fi − 8fjTij + 8fiTjj. (4.5.4)

Substituting (4.5.4) into (4.4.8) yields the second equality of (4.5.2).

Finally, let α = i in (4.4.4), which due to ∇∗αT 0(X) = −∇T 0(Iαeγ, eγ, X) takes

the form (for i fixed)

− 8∇∗iT 0(Ii∇f) = 5∇T 0(Iieγ, eγ, Ii∇f)− 3∇T 0(eγ, Iieγ, Ii∇f)

= −48f − 48∇2f(ξi, ξi)− 12Γi(Iieγ, eγ) = −48
[
f +∇2f(ξi, ξi)

]
using Γi(Iieγ, eγ) = 0 from (4.2.17). An application of (4.3.20) to the last equation

gives (4.5.1).

In the last lemma needed for the proof of the main theorem we derive the key

relation between the components of the torsion tensor. We continue the use of the

notation Tij for the components of the torsion set in (4.3.1).

Lemma 4.5.2. The next identities hold at almost every point,

fTjk =
1

4
[fiTkk − fkTki] =

1

4
[fjTij − fiTjj] (4.5.5)

fTii =
1

4
[fkTij − fjTki]. (4.5.6)

Proof. First, let us dispose with the trivial case, by noting that the second identity

in (4.5.5) follows directly from (4.4.13).
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We turn to the proof of the first equality in (4.5.5). Let A(Y,X) denote the tensor

in the left-hand side of (4.2.19). Therefore,

16∇T 0(Y,X, Ii∇f) = 5A(Y,X) + 3A(X, Y ).

Taking into account that the scalar curvature is constant and T00 = 0 the above

equation takes the following explicit form

8∇T 0(Y,X, Ii∇f) = −12∇T 0(∇f, IiX, Y )− 12∇T 0(∇f,X, IiY ) + 48g(X, Y )fi

−
3∑
s=1

fs[30g(IiX, IsY ) + 18g(IsX, IiY )] + 12
3∑
s=1

∇2f(ξi, ξs)g(X, IsY )

+ 8fT 0(X, IiY ) + 12fg(X, IiY ) + fi[24T 0(IiX, IiY )− 32T 0(X, Y )]

+ fj[17T 0(X, IkY ) + 15T 0(IjX, IiY ) + 9T 0(IiX, IjY ) + 15T 0(IkX, Y )]

+fk[15T 0(IkX, IiY )+9T 0(IiX, IkY )−17T 0(X, IjY )−15T 0(IjX, Y )]−48Γi(X, Y ).

(4.5.7)

Now, let X = Y = Ij∇f in (4.5.7) and use (4.2.9) to obtain

8Tji:j = −24Tjk;0 + 8fTjk + fi[24Tkk − 32Tjj]

− 32fjTij − 24fkTik − 48Γi(Ij∇f, Ij∇f).

Next, consider (4.5.7) written for j, and then let X = Ii∇f , Y = Ij∇f . Using

(4.4.12) and Ti0;0 = 0 by (4.3.4) it follows

8Tij;j = 12Tkj;0 + 12|∇f |2fi − 12|∇f |2∇2f(ξj, ξk)

− 32fjTij + 26fkTik + fi[−9Tkk + 17Tii − 15Tjj]− 48Γj(Ii∇f, Ij∇f).

By the symmetry of Tαβ;γ in its first two indices and the above identities for Tji;j and

Tij;j we have

0 = 8Tji;j − 8Tij;j = −36Tjk;0 + 8fTjk + 33fiTkk − 17fiTjj − 50fkTki − 17fiTii

− 12|∇f |2fi + 12|∇f |2∇2f(ξj, ξk)− 48[Γi(Ij∇f, Ij∇f)− Γj(Ii∇f, Ij∇f)]. (4.5.8)
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Since S = 2, (4.2.30) and (4.4.11) imply ∇∗T 0 = 0. Therefore by the last lines in

(4.3.11), (4.1.1) we have

ρk(IjX, ξi) = −ρk(IiX, ξj) =
1

12
∇∗kT 0(IkX). (4.5.9)

The definition of Γi(Y,X) in (4.2.17), together with (4.5.9) and (4.5.2) show that

Γi(Ij∇f, Ij∇f)− Γj(Ii∇f, Ij∇f) = −1

4
|∇f |2∇∗kT 0(Ij∇f) = fTjk + fjTij − fiTjj,

which gives a formula for the last term in (4.5.8). The latter, together with the

identities (4.3.13) for the term Tjk;0 and (4.5.3) for the term |∇f |2∇2f(ξj, ξk), allows

to rewrite (4.5.8) as follows

0 = −9[fi(Tjj−Tkk) +fkTik−fjTij] + 8fTjk + 33fiTkk−17fiTjj−50fkTki−17fiTii

− 12|∇f |2fi − 8fTjk + 12|∇f |2fi − 8fjTij + 8fiTjj − 48[fTjk + fjTij − fiTjj]

= 30fiTjj + 42fiTkk − 17fiTii − 47fjTij − 59fkTik − 48fTjk.

From (4.4.12) we have that −17fiTii = 17fjTij + 17fkTik, therefore the above reads

0 = 30fiTjj + 42fiTkk − 30fjTij − 42fkTik − 48fTjk. (4.5.10)

In addition, (4.4.12) also gives

fjTij − fiTjj = fjTij + fiTii + fiTkk = fiTkk − fiTik.

Applying this to (4.5.10) shows

0 = 30fiTjj + 42fiTkk − 30fjTij − 42fkTik − 48fTjk = 12fiTkk − 12fkTik − 48fTjk

from which the first identity in (4.5.5) follows.

We turn to the proof of (4.5.6). Choosing X and Y in the obvious ways, equation

(4.5.7) written for j and k, respectively, implies the following identities

8Tkj;i = 12Tkk;0 − 12Tii;0 − 12|∇f |2∇2f(ξj, ξj)− 8fTkk − 12|∇f |2f

− 56fjTki − 6fkTij − 2fiTjk − 48Γj(Ik∇f, Ii∇f)
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and

8Tjk;i = 12Tii;0 − 12Tjj;0 + 12|∇f |2∇2f(ξk, ξk) + 8fTjj + 12|∇f |2f

− 56fkTij − 2fiTjk − 6fjTki − 48Γk(Ij∇f, Ii∇f).

Therefore, we have

0 = 8Tkj;i − 8Tjk;i = 12[Tkk;0 − 2Tii;0 + Tjj:0]

− 12|∇f |2[∇2f(ξj, ξj) +∇2f(ξk, ξk)]− 24|∇f |2f − 8f [Tkk + Tjj]

− 50[fjTki − fkTij]− 48[Γj(Ik∇f, Ii∇f)− Γk(Ij∇f, Ii∇f)]. (4.5.11)

By the definition of Γi in (4.2.17), followed by the identity (4.5.9) for ρs, and (4.5.1),

we find

Γj(Ik∇f, Ii∇f)− Γk(Ij∇f, Ii∇f) =
1

12
|∇f |2∇∗kT 0(Ik∇f)

− 1

6
|∇f |2∇∗iT 0(Ii∇f) +

1

12
|∇f |2∇∗jT 0(Ij∇f) = fTii − fjTki + fkTij.

Then, using the above along with (4.3.19) and (4.3.20) in (4.5.11) gives

0 = 12

[
1

2
(fiTjk − fjTij)− (fjTki − fkTji) +

1

2
(fkTij − fiTkj)

]
− 12

[
−|∇f |2f − 2

3
(fTjj + fiTjk − fkTij)− |∇f |2f −

2

3
(fTkk + fjTki − fiTjk)

]
− 24|∇f |2f − 8f [Tkk + Tjj]− 50[fjTki − fkTij]− 48[fTii − fjTki + fkTij]

= −12fjTki + 12fkTij − 48fTii

from which (4.5.6) follows.

4.6 Proof of Theorem 1.0.1

We can now finally prove that M is QC-Einstein and hence conclude the Main

Theorem. With the notation set in (4.3.1) we have T00 = T0i = 0, see (4.4.12) and
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(4.2.9), hence

|∇f |4|T 0|2= T 2
11 + T 2

22 + T 2
33 + 2T 2

12 + 2T 2
23 + 2T 2

31

=
∑
(i j k)

[T 2
ii + 2T 2

ij] =
∑
(i j k)

[T 2
ii + 2T 2

jk], (4.6.1)

recalling that
∑

(i j k) indicates a cyclic sum. Using the identities

4fTjk = fiTkk − fkTki = fjTij − fiTjj and 4fTii = fkTij − fjTki

by (4.5.5) and (4.5.6), we obtain

4f |∇f |4|T 0|2=
∑
(i j k)

[Tii (fkTij − fjTki) + Tjk (fiTkk − fkTki) + Tjk (fjTij − fiTjj)]

=
∑
(i j k)

[fkTiiTij − fjTiiTki + fiTjkTkk − fkTjkTki + fjTjkTij − fiTjkTjj]

=
∑
(i j k)

[fkTiiTij − fkTjjTij + fkTijTjj − fkTjkTki + fkTkiTjk − fkTijTii] = 0.

By Lemma 4.2.4 it follows T 0 ≡ 0. Thus, M is a QC-Einstein manifold. Finally, since

f is an eigenfunction of the sub-Laplacian of eigenvalue 4 and M is QC-Einstein of

constant normalized QC-Scalar curvature S = 2, it follows from part 2 of Theorem

3.7.1 that (M, η) is QC-equivalent to the standard seven-dimensional 3-Sasakian

sphere. The main steps in the proof of this QC-equivalence are given in Section 3.7.
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