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Abstract 

This paper describes the synthesis of non-fragile or re- 
silient regulators for linear systems. The general frame- 
work for fragility is described using state-space method- 
ologies, and the LQ/Xz static state-feedback case is ex- 
amined in detail. We discuss the multiplicative structured 
uncertainties case, and propose remedies of the fragility 
problem using a convex programming framework (LMIs) 
as a possible solution scheme. The benchmark problem 
is taken as an example to show how controller gain varia- 
tions can affect the performance of the closed-loop system. 

Keywords: Fragility, Linear quadratic regulator, Multi- 
plicative structured uncertainties, Linear Matrix Inequal- 
ities (LMIs). 

1. Introduction 

The purpose of this paper is to address and understand the 
effects of controller uncertainties in the implementation of 
robust regulators which optimize a given performance in- 
dex in linear systems. In the literature, there are different 
algorithms that give an answer to  the classical problem 
shown in Figure 1: 

Given a linear plant P with additive uncertainties AP find 
a feedback controller K which internally stabilizes the f a m -  
ily P + AP and satisfies a given performance measure. In 

Figure 1: Robust Control Scheme 

this paper we will consider structured uncertainties in the 
plant, to represent the effect of (generally) time-varying 
parameters whose exact values are unknown but which 
are known to belong to a given set [l]. Virtually all con- 

Figure 2: Robust Fragility Control Scheme 

have shown that, in the case of unstructured uncertain- 
ties in the plant, and using weighted U,, p or 11 synthe- 
sis techniques, the resulting controllers exhibit a poor sta- 
bility margin if not implemented exactly! This so-called 
“fragility” is displayed regardless of whether these con- 
trollers are optimal when implemented using their nominal 
parameters. Reference [3] gives the following suggestions 
to overcome the fragility problem: 

1. Develop synthesis algorithms which take into ac- 
count some structured uncertainties in the con- 
trollers and search for the “best” solution that 
guarantees a compromise between optimality and 
fragility; 

2. Examine the structure of the controller in order to 
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parameterize it in a useful way (lower-order or fixed- 
structure controllers). 

Reference [4] addresses and solves a special case of 
the fragility problem by considering a structured uncer- 
tain dynamic compensator for a noise-driven linear plant. 
The authors in [4] obtain sufficient conditions by bounding 
the uncertainties in the controller using classical quadratic 
Lyapunov bounds [5]. The resulting controllers are proven 
to be “resilient” in the sense that even when they are not 
exactly implemented, stability and some measure of per- 
formance are maintained. 

It is true that other authors have hinted at the prob- 
lem of fragility, see for example page 75 of Ackermann 
[6], and that many critics have dismissed the issue, since 
robust controllers are not designed to  be resilient. On 
the other hand, the problem is reminiscent of the Linear 
Quadratic Gaussian (LQG) optimal controllers which were 
only useful when implemented on the exact plant, and had 
no guaranteed robustness margins if the plant was uncer- 
tain. This lack of robustness was corrected using Linear 
Quadratic Gaussian synthesis with Loop Tkansfer Recov- 
ery (LQG/LTR) [7]. In addition, even robust controllers 
will eventually have to be implemented on an actual sys- 
tem using digital hardware and should be resilient both 
to implementation errors and to tuning [6]. 

The aim of this paper is to  extend the ideas in [3, 41 
and to analyze the robust fragility problem by consider- 
ing the combined effect of structured uncertainties in the 
plant and in the compensator. The basic idea is that, in- 
stead of computing the controller as a single point in the 
parameters space, we look for a set of controllers allowing 
the parameters to lie in a region of uncertainty. This is 
reminiscent of the design of Ackermann [6] and Barmish 
et al. [SI. 

This paper is organized as follows. In Section 2, we 
present the synthesis of static state-feedback controllers 
for linear systems while allowing structured uncertainties 
in the feedback gain matrix. We then further restrict 
our study to  multiplicative structured uncertainties in the 
plant. In Section 3,  a numerical example using Linear 
Matrix Inequalities as a computational tool is given. Our 
conclusions and directions for future research are finally 
given in Section 4. 

2. Outline of the problem 

Consider the following time-varying linear system 

(1) 
= A(t )z ( t )  + Bu(t) , t 2 0 ,  

where 

0 z ( t )  E Rn, is the state vector, 

e ~ ( t )  E Wm, is the control input, 

0 y(t) E RP, is the output measurements vector, 

0 A(t),  t 2 0,  contains affine uncertainties (see [9]) of 
the form 

0 

A(t)  = Ao + ai(t)Ai, 
i=l 

where the scalar coefficients ai ( t ) ,  t 2 0 ,  are 
Lebesgue measurable functions on [0, CO) represent- 
ing unknown and time -varying coefficients whose 
values belong to an uncertainty interval 

CYi 5 az(t) 5 Ei, 1 5 2 5 q, t 2 0 .  (2) 

The system (1) can then be written in the form 

k ( t )  = (Ao + E:=’=, ai&) z ( t )  + Bu(t) = 

y(t) = C z ( t ) .  
= (A0 + SA)z(t) + Bu(t) , (3) 

Now, we assume that the initial condition z(0) is a ran- 
dom variable with mean z(0) and covariance matrix equal 
to  I, and proceed to find a state-feedback compensator 
u(t)  = Kz( t )  which minimizes the Linear Quadratic (LQ) 
performance index, given by 

1 00 

J = E [i (zT(t)Qz(t)  + UT(t)Ru(t)) dt , (4) 

where Q = CTC, R is a symmetric positive-definite ma- 
trix and & denotes the expectation with respect to  the 
initial state ~ ( 0 ) .  

2.1. Non-fragile controller synthesis 

actual controller implemented is 
Although one finds the controller U = K z ,  the 

U = ( K  + 6K)z  = I?lz , (5) 

where K is the nominal controller gain, and the term 6K 
represents controller gain variations. In this case, the per- 
formance index (4) becomes a function of K ,  the uncertain 
term bK, and the uncertainties a% in ( 3 )  as shown below 
so that 

J = J ( K ,  b K ,  ai). 

A possible solution to the fragility problem may be stated 
as follows: 

1. Letting bK = 0, design a “nominal” controller and 
find a bound J on the performance index (4) so that 

J ( K ,  0, ai) 5 J ( K ) .  

Then, solve a standard guaranteed-cost problem [5] 
for the controller gain such that minimizes J ( K ) ;  
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2. Fix the uncertainty range SK and find a new bound 
j to  (4), that is, 

J(K,SK,ai)  5 j ( K ) .  

Note that J ( K )  5 j ( K ) .  Now, solving the new 
guaranteed-costnproblem we seek controller gains I? 
that minimize J ( K )  and satisfy 

where M is a level that  can be fixed a priori. If (6) 
does not hold, we reduce the uncertainty level SK. 

With this scheme in mind, we now study the multiplicative 
uncertainty case of equation ( 5 )  in greater detail. 

2.2. Multiplicative structured uncertain- 
ties 

Let the nominal state-feedback matrix K be an 
m x n (m < n) matrix. If we allow relative percentage 
drift from the nominal entries of the matrices K and rep- 
resent each entry of the perturbed matrix as a multiplica- 
tive scalar uncertainty, we have 

- 1  < -1J s.. 5 sij 5 Hij < 1 ( 7 )  

Equation (7) then leads to  the uncertain controller 
structure: 

\ i= l  j=1 / 

where Q i m ) ,  are m x m and n x n rank-one matrices 
with a "1" entry located at  the i-th and j-th position of 
the main diagonal, respectively. In this case, the closed 
loop system is given by 

Note that the closed-loop system matrix has struc- 
tured uncertainty of the form: 

P m n  

where Bi = BI;"). Now, substituting (8) into (4) yields 

I 00 

J = E [I (zTQz + zTK:RKax) dt . (11) 

Note that, using (7) it follows that 

where 
SUP&;, Amax ( K ~ R K A )  a ( K )  = Amin(KTRK) ' 

and where the supremum operation is performed over the 
uncertainty set and Amax and Amin indicate, respectively, 
the maximum and the minimum eigenvalues of a Hermi- 
tian matrix. It is easy to see that the bound (12) is verifi- 
able only when K is known in advance. The performance 
index (11) is then bounded by 

1 M 

3 = E [l (xTQz + a(K)xTKTRKx) dt  , (13) 

which gives rise to  a non-convex dynamic optimization 
problem which is in general difficult to solve but, in par- 
ticular cases, it reduces to  a convex optimization problem 
[lo]. In the following we analyze some of these special 
cases. 

2.2.1 Special Cases 
In the single input case (i.e., m = 1) (7) reduces to  

K + S K =  [ Icl(l+S1) . . .  kn(lI-6,)  ] , (14) 

where Sj, j = 1 , .  . . , n, are scalar coefficients such that 
-1 < Jj 5 Sj 5 8j < 1. We can then write the controller 
(8) as 

n 

U 1 K(In + Sjqy')~ = KR(S)X, (15) 
j=1 

where the term A(&) denotes a diagonal matrix whose en- 
tries are 1 +Sj, j = 1 , .  . . , n. In this case, the performance 
index J can be easily bounded by noting that 

A(S)RA(S) 5 (1 + el2 R , 
where 8 = maxj IS j l ,  j = 1 , .  . . , n, so that 

(16) 
I 00 

J _< J' = E [I (zTQz + (1 + 8)' zTKTRKz) dt . 
0 

Now, the closed-loop system is given by 

k ( t )  = ( A  + 2 a i A i  + BKA(S)) ~ ( t )  (17) 
\ i=l / 

and the closed-loop dynamic matrix A can be rewritten 
as 

9 n 

A = A + BK + ai Ai + S jBKqY) .  
i=l j=1 i= 1 i=l j=1 
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In this case the problem is equivalent to a static output 
feedback problem Ell] and cannot be reduced to a full- 
state feedback problem because in the state-space trans- 
formation 

E(t) = N44t) > 

A(S) is a matrix whose coefficients are uncertain. The only 
case that can be reduced to  a full-state feedback problem 
is when all entries of the state-feedback gain matrix K 
are perturbed by the same amount (i.e., 61 = 62 = . . . = 
6, = S), as was done in [4]. In this case the performance 
index (16) is bounded by the trace of a symmetric positive 
definite matrix P ,  that is, 

3. A numerical example using LQ/312 
non-fragile design 

Consider the mechanical system shown in Figure 3, known 
as the “Benchmark Problem” [9], where 

I 

Figure 3: Benchmark Problem 

where P satisfies a modified regulator Riccati equation 
given by (20). This leads to the following guaranteed-cost 
optimization problem: 

Find K such that I 
P 

~ ( t )  + (1 + S )  BG(t) , 

G(t) = K Z ( t ) ,  

(19) I is asymptotically stable and t r  P is minimized. 

The solution of this problem results in the following 
convex optimization problem 

Min t r  P 

subject to  ATP + P A  + Q + (1 + 8)2 KTRK < 0 ,  
(20) 

where 

4 

A = A (&,8, K )  = A0 + C & A i  + (1 + $ ) B K ,  
i=l 

and 

Note that, in this case, the sets (21) are sets and not 
intervals and the number of Linear Matrix Inequalities in 
(20) is equal to  2Q+l because the affine linear system (19) 
has q + 1 parameters. 

The proposed guaranteed-cost scheme, formulated as 
a convex optimization problem, can then be numerically 
used to  provide a quantitative study of non-fragile syn- 
thesis controllers over the closed-loop performance of the 
system. 

1. u(t)  is the control input; 

2. XI, x2 are the positions, with respect to  a reference 
system, of the masses ml ,  m2, respectively; 

3. the masses ml  , m2 are equal to  1 in the appropriate 
units; 

4. the stiffness k( t ) ,  t 2 0,  is a time-varying parameter 
in the interval [0.5, 21. 

The linear time-varying model which describes the behav- 
ior of the system is given by 

It is easy to see that we can represent (22) as an affine 
uncertain model where the matrix A ( t ) ,  t 2 0, is given by 

and the matrices B ,  C ,  D are constant. 
Using the MATLABTM LMI toolbox and the function 

m s f  syn, a nominal LQ/;Ftz static state-feedback controller 
was designed. The guaranteed LQ/?f2 performance was 
found to be 1.54 and the controller gain vector is given by 

K [ -2.7917 1.7912 -2.3651 -0.1045 1 .  (23) 

An affine family of uncertain controllers given by 

k = (I + S ) K ,  (24) 

were generated, where 6 is a parameter which corresponds 
to a drift in the nominal values ki, i = 1,. . , , 4 .  In this 
case each component of K was considered to  have the 
same relative uncertainty range [4]. The fragility of the 
controller was tested by varying 6 and, using MATLABTM 
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LMI Toolbox standard routines quadstab and pdlstab, 
the values of 6 for which the closed-loop system is no 
longer quadratically stable [lo, 12, 91 or, less conserva- 
tively, does not admit a parameter-dependent Lyapunov 
function [ IO,  12, 91 were checked. For this particular sys- 
tem the nominal controller (23) was implemented to ob- 
tain the closed-loop system 
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