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Abstract

In this dissertation, I propose new approaches to multi-task learning, inspired by

statistical model diagnostics and semiparametric and additive modeling. The newly

designed additive multi-task model framework allows for flexible estimation of multi-

task parametric and nonparametric effects by using an extension of the backfitting

algorithm. Further, I propose new methods for statistical task diagnostics, which

allow for the identification and remedy of outlier tasks, based on task-specific per-

formance metrics and their empirical distributions. I perform a deep examination

of the well-established multi-task kernel method and achieve theoretical and experi-

mental contributions. Lastly, I propose a two-step modeling approach to multi-task

modeling, where the tasks are modeled differently according to their belongingness

to different clusters based on the selected performance criteria. The newly proposed

frameworks are examined on a well-known real-world multi-task benchmark dataset

and show significant improvement over other modern multi-task learning methods.
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Chapter 1

Introduction

1.1 Central theme

Multi-task learning is an area of machine learning which makes use of the separation

of the data into tasks. One can train separate models for each task (independent

task learning), or train a single model for all tasks altogether (single-task learning),

but in many research and application contexts, it will be far more beneficial to

consider a setup where all tasks share some common information among each other

while being influenced by their own specific task information. Thus, the objective of

multi-task learning is to improve the overall accuracy of a machine learning model

when compared with cases of single task and individual task learning.

Multi-task learning is widely used in fields such as finance, economics, medicine,

and education. For example, in finance and economics forecasting, it is often required

to predict the value of many possibly related indicators simultaneously (Fiot and

Dinuzzo (2015) [34]); in stock price prediction, stocks are often related to each other

in multi-task fashion (Ghosn and Bengio (1996) [36], Bitvai and Cohn (2015) [10]);

in bioinformatics, we may want to study tumor prediction from multiple microarray

1



Chapter 1. Introduction

data sets or analyze data from multiple related diseases simultaneously (Zhou et

al (2021) [87]); in small area estimation, we may want to study the small area

total estimate from multiple areas simultaneously; in web search, search results can

be improved when combining information from multiple geographical markets that

exhibit similar or distinct search patterns (Bai et al (2009) [8]).

In the context of supervised learning, regularized multi-task learning methods

have received significant attention from many researchers. The idea of multi-task

mean regularization, where task parameters are penalized individually and with re-

gard to their closeness to the overall mean of all task parameters, was first introduced

in Evgeniou and Pontil (2004) [31]. This idea was further generalized to be cast into

any L2-regularized single-task learning problem using specialized multi-task kernels

in Evgeniou, Michelli, and Pontil (2005) [30]. Its framework is based on Evgeniou,

Pontil, and Poggio (2000) [32], where the emphasis is based on regression. In this

context, reproducing kernel Hilbert spaces (RKHS) are introduced in great detail

by Manton and Amblard (2014) [56]. An extensive overview of vector-valued func-

tions and kernels is given in Alvarez, Rosasco, and Lawrence (2012) [4], and learning

these functions in RKHS is studied by Michelli and Pontil [60] (2005). Extension of

representer theorem (Kimeldorf and Wahba (1971) [49]) to multi-task regularization

was studied in Argyriou, Michelli and Pontil (2009) [7]. An effective application of

regularized multi-task learning to log-density estimation is demonstrated in Yamane,

Sasaki, and Sugiyama (2016) [80].

The methods of multi-task regularization were shown to be special cases of a larger

multi-task clustering framework in Jacob, Vert, and Bach (2009) [42]. Multi-task

kernels are proved to have a universal property in Caponnetto, Michelli, Pontil, and

Ying (2008) [16]. There is extensive literature on multi-task kernels, which includes

works by Amodei (1997) [5], Masani and Burbea (1984) [57], Caponnetto and De

Vito (2007) [15], Carmeli, De Vito and Toigo (2006) [17], Reisert and Burkhardt

2



Chapter 1. Introduction

(2007) [65].

Distinctively, choosing kernels and features for a multi-task combination of sup-

port vector machines was studied in Jebara (2004) [44], which is related to the

independent task learning procedure covered in this dissertation. Another method

to combine task features in a multi-task SVM application was studied by Bonilla,

Agakov, and Williams (2007) [11], where task-specific features are chosen using a gat-

ing network. In contrast to multi-task regularization, Parameswaran and Weinberger

(2010) [61] propose using large margin nearest neighbors algorithm to concentrate

task parameters. In the context of multiple linear regression, Lounici, Pontil, Tsy-

bakov, and van de Geer (2009) [55] propose using the Group LASSO method to

choose the predictor variables in tasks. Kato, Kashima, Sugiyama, and Asai (2007)

[47] introduce a method to differentiate between task parameter closeness depending

on their relatedness. Jawanpuria, Lapin, Hein, and Schiele (2015) [43] propose an

efficient algorithm to jointly learn tasks and their output kernel.

Lastly, a more extensive and thorough overview of multi-task learning as a field

in machine learning can be found in a work by Zhang and Yang (2018) [84], Thung

and Wee (2018) [73], and Zhang and Yang (2021) [85]. Although this dissertation

approaches multi-task learning from a statistical perspective, it is notable that the

use of deep learning models for multi-task learning has become popular; the survey

of this subfield is given by Ruder (2017) [67].

1.2 Purpose of the study

In this dissertation, I intend to contribute to the multi-task machine learning field in

multiple ways. First, I perform a deep analysis of mean-regularized multi-task kernel

methods, contributing both theoretical results about two versions of the kernel and

experimental investigation of the Gaussian kernel application. I design new methods

3
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for multi-task learning through a two-step modeling approach, which is based on the

identification of important tasks and suitable remedial measures. Drawing inspiration

from the statistical learning field, I further propose an additive multi-task model,

which is designed to be customizable to the needs of a particular problem. I also

propose new methods for statistical task diagnostics, which allow the identification

of task outliers. The effectiveness of the methods I proposed is demonstrated in their

respective experimental analyses.

It is my opinion that the existing research in multi-task learning is performed

predominantly from a computer science point of view. There is often a particular

focus on the design and implementation of optimization algorithms for solving com-

plex regularization problems. Possibly due to their complexity and programming

skills requirements, for many of these models, it is a rare occurrence to find them

being applied to solve real-world data analysis problems.

The purpose of this research is to start from the fundamentals, ground zero, and

propose new multi-task learning methods which are grounded in simple statistical

truths. I make a particular emphasis on interpretability and ease of implementation

of the proposed statistical models so that they can be beneficial to the academic

community at large. The arguments and definitions in this dissertation often use

ideas, results, and methods from the statistical field.

1.3 Summary of chapters

The rest of the dissertation is organized as follows.

In Chapter 2, I perform a review of the existing theory of the topics that are

used for further research later in the dissertation. Section 2.2 presents the theory of

support vector regression, which is an important method for applications with multi-

4



Chapter 1. Introduction

task kernels. Random forest models are covered in Section 2.3. Then in Section 2.4,

I present the explained variance metric, which is often used in the scientific literature

to measure the performance of multi-task learning methods. I continue by presenting

the famous framework of learning multiple tasks with multi-task kernel methods in

Section 2.5. The chapter concludes with a review of the existing work on task

outliers and clustering in Section 2.6, which motivates my research in statistical task

diagnostics.

In Chapter 3, I perform a deep analysis of regularized multi-task learning, focus-

ing on mean-regularization. In Section 3.1, I do an analysis of parameter choice in

Evgeniou et al (2005) [30], and in Section 3.2 I present a simple example to illustrate

the inner workings of the data transformation. Then in Section 3.3 I compare two

different versions of the mean-regularized multi-task kernel, and show their equiva-

lency both theoretically with a proof and experimentally. I also cover a special case

of ridge regression in Sections 3.3.4 and 3.3.5, where the two different versions of the

kernel can be made equal with simpler conditions than the general case. In Section

3.4 I perform a series of experiments, where I test the performance of the method in

Evgeniou et al (2005) [30], and also examine the case of the Gaussian kernel and its

influence on the model performance. The chapter is concluded with an examination

of mean-regularized MTL kernel’s edge cases of single-task learning and independent

task learning in Section 3.5.

The purpose of Chapter 4 is to propose and investigate new methods for multi-

task learning, based on a two-step modeling approach. It begins with a thorough

explanation of the logic and motivation behind the method in Section 4.1, and a

simple applied example is provided in Section 4.2. Then, in Section 4.3 multiple

configurations of the two-step multi-task modeling framework are developed and

demonstrated, which include methods of explained variance rebalancing approach,

best subsets information extraction, other tasks performance approach, and best

5
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performance subsets combinations approach.

In Chapter 5 I propose a new method to perform multi-task learning, which I

call the additive multi-task model. To accommodate the model, I generalize the idea

of explained variance in Section 5.2 and introduce multi-task combined estimation

in Section 5.3. The additive multi-task model definition and fitting algorithm are

given in Section 5.4. This algorithm is further generalized in Section 5.5. Then,

in Section 5.6 the model is customized and applied to the real-world dataset. In

Section 5.7 I perform an extension of the additive multi-task model, and in Section

5.8 I demonstrate the effectiveness of the method by comparing two reduced models

against a full model.

Chapter 6 contains new inventions in statistical task diagnostics. I begin with an

initial analysis in Section 6.2, which gives description of the tasks in ILEA schools

data. In Section 6.3 I propose a task influence test, which uses a newly defined deleted

explained variance statistic and is performed in a leave-task-out fashion. Then, in

Section 6.4 I propose a method of automating the task influence test to use critical

values in t-distribution, and in Section 6.5 kernel density estimation is used as task

cut-off criteria for the deleted explained variance statistic. Further, in Section 6.6 I

introduce a method of measuring task influence on model assumptions.

Lastly, the dissertation finishes with a conclusion in Chapter 7, where I summarize

the results achieved in my research and give directions to open questions and future

work.

6



Chapter 2

Background

2.1 Background

The research in this dissertation is based on multi-task kernel methods which are

covered in detail. This framework allows the use of regularization networks such

as support vector machines, which are also introduced. Explained variance is an

often-used metric in performance measurements of multi-task learning models, and

is covered in a separate section. Random forest models are used for some of the

experiments for the newly introduced methods in this dissertation, therefore this

topic is covered as well. Lastly, I present a review of existing research in detecting task

outliers in the multi-task learning field. Although the research in this dissertation

stands on its own, the overview of this area is necessary for understanding the state

of this research area and appreciation of the importance of this work.
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Chapter 2. Background

2.2 Support vector regression

Support vector machines (SVM) are a class of machine learning algorithms for super-

vised learning. SVM models can be divided into support vector regression (SVR) for

regression problems, and support vector classification (SVC) for classification prob-

lems. Support vector machines were invented by Vapnik (1992) [74] and are rooted

in statistical learning and Vapnik–Chervonenkis theories (Vapnik and Chervonenkis

(1971) [75]). SVR will often be integrated with multi-task learning setups in this dis-

sertation and used extensively both in theory, due to the way it penalizes the norm

of its parameters, and in practice. This section focuses on explaining the theory of

SVR.

Formulation

Let {(x1, y1), (x2, y2), ..., (xn, yn)} be a set of n observations, where xi ∈ IRd, thus

having d predictor variables, and yi ∈ IR, for all i. The goal of support vector

regression models is to learn a function f(x) with a property that the deviation of

real data y and model predictions ŷ is at most ϵ and that such function is as flat

as possible. This defines a concept of ϵ-tube (Drucker, Burges, Kaufman, Smola,

Vapnik (1996) [27]), such that the algorithm fits a line to the data with a margin of

ϵ on both sides of the line using ϵ-insensitive loss function for observation i (Vapnik

(1992) [76]):

L(yi, f(xi)) =

0, if |yi − f(xi)| < ϵ

|yi − f(xi)| − ϵ, otherwise
(2.1)

Assuming that f(x) is a linear function, define it as f(x) = ⟨w,x⟩ + b, where

w ∈ Rp is a parameter vector, b is bias and ⟨ , ⟩ is an inner product in Eucledian space.
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The formulation of support vector regression is to find an optimal set of parameters

w and b in order to ensure the flatness property, which is equivalent to minimizing

the length of the parameter vector w. This leads to the following optimization:

min
w,b

1

2
∥w∥2 (2.2a)

subject to yi − (⟨w,xi⟩+ b) ≤ ϵ (2.2b)

(⟨w,xi⟩+ b)− yi ≤ ϵ (2.2c)

We assume that there exists a function f that can satisfy all the above con-

straints. However, it might not be possible to fit all the data points in the ϵ-tube,

especially when searching for linear functions. Thus we can introduce slack variables

ξi, ξ
∗
i for positive and negative deviations, respectively, which leads to the following

optimization problem (Alpaydin (2004) [3]):

min
w,b

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ) (2.3a)

subject to yi − (⟨w,xi⟩+ b) ≤ ϵ+ ξi (2.3b)

(⟨w,xi⟩+ b)− yi ≤ ϵ+ ξ∗i (2.3c)

ξi, ξ
∗
i ≥ 0 (2.3d)

The parameter C > 0 controls the trade-off between the complexity of the func-

tion and magnitude of deviations from the ϵ-tube, as given by the sum of slack

variables. Its optimal value is usually found using cross-validation. The extensions

to nonlinear functions are facilitated using the dual problem (Alpaydin (2004) [3],

Agarwal (2020) [2]):
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max
α

− 1

2

n∑
i=1

n∑
j=1

(αi − α∗
i )(αj − α∗

j )x
T
i xj (2.4a)

+
n∑

i=1

yi(αi − α∗
i )− ϵ

n∑
i=1

(αi + α∗
i ) (2.4b)

subject to
n∑

i=1

(αi − α∗
i ) = 0 (2.4c)

0 ≤ αi ≤ C (2.4d)

0 ≤ α∗
i ≤ C (2.4e)

Both the primal and dual problems are convex quadratic problems and can be

solved directly. The name of support vector machines comes from the fact that

the solution depends only on a subset of observations, which are called support

vectors. In the case of SVR, support vectors are observations on the boundary

and outside of the ϵ-tube. From the slackness conditions (Agarwal (2020) [2]), the

observations inside the ϵ-tube have αi and α∗
i equal to zero, the support vector

observations on the ϵ-tube have 0 < αi < C or 0 < α∗
i < C, and support vector

observations outside the ϵ-tube have αi = C or α∗
i = C. This defines two sets

of support vectors: SV1 = {i ∈ {1, 2, ..., n} | 0 < αi < C or 0 < α∗
i < C} and

SV2 = {i ∈ {1, 2, ..., n} | αi = C or 0 < α∗
i = C} with an overall set SV =

SV1 ∪ SV2. Through the Lagrangian of the dual problem, the vector of parameters

can be estimated as

ŵ =
∑n

i=1(α̂i − α̂∗
i )xi =

∑
i∈SV (α̂i − α̂∗

i )xi

b̂ =
1

|SV1|
(
∑

i:0<α̂i<C(yi − ŵTxi − ϵ) +
∑

i:0<α̂∗
i<C(ŵ

Txi − yi − ϵ))

Therefore, the prediction of a new observation x can be done by

f̂(x) = ⟨ŵ,x⟩+ b̂ =
∑
i∈SV

(α̂i − α̂∗
i )(x

T
i x) + b̂. (2.5)
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Nonlinearity extension

Not all datasets can be explained well by linear hyperplanes, thus we need to extend

the SVR algorithm to incorporate nonlinearities. This can be done with feature

mapping, such that we preprocess all observations xi with some feature map Φ :

IRd → F , where F is a feature space. In the theory of SVR, we saw that the prediction

of new observation depends only on the inner products of new observation with the

observations in the training set. However, after transforming all the data points to

the feature space, computing the dot products in the feature space between each other

becomes computationally infeasible, as the number of features grows dramatically in

the feature space (Smole and Schölkopf (2004) [70]). Luckily, for a feature map Φ it

suffices to know its kernel function K, such that K(xi,xj) = ⟨Φ(xi),Φ(xj)⟩. We can

then use the kernel function directly to compute dot products in the dual problem

without performing feature mapping first, thus making the problem computationally

feasible.

Theoretical underpinnings for classes of kernel functions K(xi,xj) that corre-

spond to dot products in F are described in Smole and Schölkopf (2004) [70].

A powerful and popular choice is the family of Gaussian radial basis functions

K(xi,xj) = exp(−∥xi − xj∥2

2σ2
), which have a property of translation invariancy due

to K(xi,xj) = K(xi − xj).

Empirical and structural risks

Let L(y, f(x)) be a loss function which measures a numeric cost associated with

prediction of response variable y by function f using data x ∈ X, with X ∈ IRn×d.

Define R(y, f) =
∫
L(y, f(x))dP (x, y) to be a risk function, which is an expectation

of loss of function f across the joint probability distribution P (x, y) of the data y ∈ y

and x ∈ X, with X ∈ IRn×d. Given a sample of n data points, the data distribution
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is generally unknown, thus the risk function R can be estimated by the empirical

risk function

Remp(y, f) =
1

n

n∑
i=1

L(yi, f(xi))

In the framework of empirical risk minimization, we seek to find a function f that

minimizes empirical risk, f̂ = argminf Remp(y, f).

A sole focus on empirical risk minimization can lead to a function that is over-

fitting to the training set. A function may become too complex in order to fit the

training data, and not be generalizable enough to unseen data. This is structural

risk Rstr(f) and it can be added to empirical risk in order to have a regularizing

effect in the minimizing criteria for a learning algorithm:

Remp(y, f) + λRstr(f) =
1

n

n∑
i=1

L(yi, f(xi)) + λRstr(f) (2.6)

Parameter λ controls a trade-off between empirical and structural risk in the

minimization criteria. The support vector regression algorithm (2.3) fits the risk

minimization framework with the ϵ-insensitive loss function, Rstr(f) = ∥w∥2 and

λ =
1

2Cn
. Thus, support vector regression model is tuned by adjusting parameters

ϵ and C.

2.3 Random forest

Random forest models are an ensemble learning method for classification, regression,

or unsupervised learning. They were first introduced by Breiman (2001) [13]. In this

dissertation, the random forest will only be used for regression.

The prediction of random forest regression model h(xi) is an unweighted aver-

age of multiple regression trees predictions h(xi, θq), where θq are independent and

identically distributed vectors for all q ∈ {1, ..., Q}, and Q is the number of trees:
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h(xi) =

Q∑
q=1

h(xi, θq) (2.7)

The outcome of the prediction h(xi) is controlled by the number of trees param-

eter Q and the parameters that control the regression trees h(xi, θq).

Each individual regression tree is learned from a replacement sample of Xtrain

(Lewis (2000) [52]). This sample is partitioned into binary decision nodes multiple

times until the tree reaches terminal nodes. The number of partitions is a model

complexity parameter that is tuned by decision cost to avoid overfitting and under-

fitting.

This partitioning happens with regard to a splitting criterion, such that splitting

the tree into nodes captures the information from the sample in the most effective

way. In the case of regression, the criterion at each split in a tree is the minimization

of sums of squares (yi − h(xi, θq))
2 as the sum for both nodes. The search is com-

putationally infeasible in this form, thus a greedy algorithm is usually implemented,

which involves minimization of the expected sum of variances for both. The details of

this algorithm are given in Hastie et al (2001) [38] and Breiman, Friedman, Olshen,

and Stone (2017) [14].

As a result of the training of regression trees, each sample in the training data

Xtrain and Ytrain is placed in one of the terminal nodes. The predicted values in

each terminal node are the average values of the response variable in that node.

Resampling the data for each regression tree and then averaging these results in a

random forest model achieves a bootstrapping effect. This is conventionally denoted

as “bagging” in machine learning literature (Breiman (1996) [12]). Moreover, random

forest models allow for sampling of predictor variables for each tree and node, which

achieves regularizing effect.
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In this dissertation, the computations of random forest were performed with the

function “randomForest” in R package e1071 (Meyer, Dimitriadou, Hornik, Weinges-

sel, Leisch, Chang, and Lin (2021) [58]), which implements the original algorithm by

Breiman (2001) [13]. In all computations, all the function parameters are left as de-

fault, except the number of trees Q. Its default value is 500, but in some simulations,

I adjust this number higher, which improves the performance significantly.

2.4 Explained variance

The explained variance metric is widely used in the context of multi-task learning as

a measurement metric of a model’s performance; for example, it was applied for re-

gression problems by Bakker et al (2003) [9] and Evgeniou et al (2005) [30]. However,

the definitions of the explained variance aren’t quantitatively described in the pa-

pers. To fulfill this gap, this section rigorously defines the explained variance, which

was described in detail by Tom Heskes through direct correspondence. This thor-

ough definition is important for the model comparison and will become particularly

necessary in the task diagnostics section.

Definition by Heskes

As previously defined, let X ∈ IRn×d be a set of d predictor variables for n obser-

vations, and let Y ∈ IRn be a set of response variables in a learning problem. A

train-test split is performed, such that X = Xtrain ∪ Xtest and Y = Ytrain ∪ Ytest,

with Xtrain ∈ IRntrain×d, Xtest ∈ IRntest×d, Ytrain ∈ IRntrain , Ytest ∈ IRntest such that

ntrain + ntest = n.

Let f̂ be a model for estimating ŷi = f̂(xi). f̂ is trained using observations

in the training set (Xtrain,Ytrain) and its performance is measured on the test set
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(Xtest,Ytest). Let Ŷtest = {f̂(xi) : xi ∈ Xtest, i ∈ INntest ,∀i} ∈ IRntest , where INntest =

{1, 2, ..., ntest} , be a set of outputs of the model f̂ when applied on the predictor

variables of observations in the test set, Xtest.

Define MSE(Ytest, Ŷtest) =

∑ntest

i=1 (yi − ŷi)
2

ntest

for yi ∈ Ytest and ŷi ∈ Ŷtest, and

let Var(Ytest) =

∑ntest

i=1 (yi − ȳ)2

ntest

be the variance of response variables in the test set.

Then, explained variance EV (Ytest, Ŷtest) can be defined as:

EV (Ytest, Ŷtest) =
Var(Ytest)−MSE(Ytest, Ŷtest)

Var(Ytest)
× 100% (2.8)

Explained variance is the fraction of variance in the response variable Y that is

correctly predicted by f using predictor variable X. EV ∈ (−∞, 100%]. It can be

interpreted as comparing model f to the simplest possible model of predicting all yi

with the mean value of Y . In that case, MSE(Ytest, Ŷtest) is equal to Var(Ytest),

and EV = 0%. Any improvement in performance of f will lead to decrease in MSE,

thus increasing explained variance up to its maximum value 100%, although it can

only be equal to 100% if Ytest = Ŷtest, so that f achieves perfect prediction with

zero error. If EV < 0%, then the model f is performing worse than just using the

mean value as a prediction. The possible issues can be the model specification, lack

of fit, severe overfitting of f to the training set (Xtrain,Ytrain), or that the test set

is not representative of the distribution. Percentage explained variance is defined

only for regression problems and can be used for cross-validation to measure model

performance.

As described in this section, explained variance is defined for a model trained on

a training set, and measured for its predictive performance on the test set. In this

dissertation, there arise circumstances when explained variance needs to be further

generalized from its classical definition to be measured not only on the test set. It
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is helpful in applications when cross-validation for parameter tuning is done on the

training set exclusively, without using the test set. There also arise applications

where there is no separation between train and test splits, so that no splitting is

performed. Both of these situations fall outside of the conventional definition of

explained variance, as described in the literature. In order to overcome this, I will

seek to generalize and expand the explained variance definition to cover these cases,

while keeping the original definition intact to prevent any confusion. Therefore,

when there arises a need to apply a new metric based on explained variance, a new

definition will be created and explained in detail. In particular, this will be done in

Chapter 5.

2.5 Learning multiple tasks with kernel methods

The benefits of learning multiple tasks simultaneously can be achieved by using the

multi-task kernels applied to regularized single-task learning models. The method-

ology of extension of single-task kernel methods, such as support vector machines

and regularization networks, to multi-task learning, was developed by Evgeniou et

al (2004) [31] and further generalized by Evgeniou et al (2005) [30]. In the following,

I will present the main implications of the theory and perform a simple experiment

of the proposed methodology on real data.

Multi-task kernel method

Suppose that we have m tasks that are related to each other. Let nl be a number of

observations for task l, such that {(x1,l, y1,l), (x2,l, y2,l), ..., (xnl,l, ynl,l)} is the data for

task l. Without loss of generality, we assume that the number of datapoints per task

is constant, such that nl := n for all tasks l. Then, the dataset for all tasks becomes
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{(xi,l, yi,l) : i ∈ Nn, l ∈ Nm}. Let the l-th task’s input space be Xl and output space

be Yl and let Xl ∈ Rd and Yl ∈ R. We are seeking to learn functions fl : Xl → Yl for

each task l ∈ Nm.

If we are searching among linear functions, then fl(xi,l) = uT
l xi,l for some param-

eter vector ul ∈ Rd. Let ul = BT
l w for some p × d matrix Bl with p ≥ dm, with

p ∈ N, for each task l ∈ Nm. Note that feature vector w ∈ Rp, as previously defined.

Then, the functions can be reparameterized as:

fl(xi,l) = wTBlxi,l

Therefore, all functions fl are parameterized by the same feature vectorw. Define

B := [Bl : l ∈ Nm] to be a p × dm feature matrix, which is created by joining the

matrices Bl for each task. Matrices Bl can be specified in a desired manner to

capture the relationships between the tasks.

Let f = (fl : l ∈ Nm) be a vector-valued function for all tasks. The above feature

space viewpoint of transforming the data with matrices Bl reshapes function f to be

a real-valued function f : (x, l) → wTBlx. Then, function f has the squared norm

wTw and input space Rd×Nm. The reproducing kernel for the Hilbert space of such

functions is

K((x, l), (t, q)) = xTBT
l Bqt, x, t ∈ Rd, l, q ∈ Nm (2.9)

This defines a linear multi-task kernel (Evgeniou et al (2005) [30]). Using this

kernel and a proper choice of matrices Bl facilitates recasting the multi-task learning

problem as a single-task learning problem with the appropriately transformed data,

which corresponds to the minimization criteria:

S(w) =
1

nm

∑
j∈Nm

∑
i∈Nn

L(yi,j,w
TBlxi,j) + γwTw (2.10)
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The averaging of the loss function is over the whole training set for all tasks,

and γ is a parameter that controls the trade-off between structural and empirical

risk. Thus, this methodology falls within the risk minimization framework in (2.6).

Notably, the regularization term is given by a convenient L2 norm.

The choice of matrices Bl defines the feature space of the multi-task kernel. One

possible choice is

BT
l = [

√
1− λId,0, ...,0︸ ︷︷ ︸

l-1

,
√
λmId,0, ...,0︸ ︷︷ ︸

m-l

], (2.11)

where 0 is a d × d matrix of zeroes. The matrix Bl has dimensions d(m + 1) × d,

thus the combined feature matrix B has dimensions d(m+1)×dm and w ∈ Rd(m+1).

This choice of matrices Bl leads to the multi-task kernel

K((x, l), (t, q)) = (1− λ+ λmδl,q)x
T t, l, q ∈ Nm, x, t ∈ Rd, (2.12)

where δl,q is an indicator function of [l = q]. This leads to the multi-task regularizer

J(u) =
1

m

(∑
l∈Nm

∥ul∥2 +
1− λ

λ

∑
l∈Nm

∥ul −
1

m

∑
q∈Nm

uq∥2
)
, (2.13)

where parameter λ ∈ (0, 1] controls trade-off between closeness of parameters to their

average and small size of the parameter vectors themselves. If λ is close to 0, the tasks

are learned as a single task, and if λ = 1, the tasks are learned independently. A value

of λ between 0 and 1 can be seen as encoding a trade-off between single-task learning

and independent learning. In case of SVR, λ controls trade-off of flatness of each

task’s SVR to the proximity of individual task’s parameters to the average SVR [31].

Note that the regularizer (2.13) doesn’t appear directly in the minimization criteria

(2.10), but is implied in the multi-task learning problem because of the particular

choice of matrices Bl.
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Multi-task SVR experiment

In order to illustrate the multi-task kernel method experimentally, I run the SVR

model with a multi-task kernel for the “Inner London Education Authority” dataset,

which replicates the experiment by Evgeniou et al. (2004) [31]. It is a data of

examination records of 15362 students from 139 schools. Detailed information about

the dataset is given in Appendix A. I treat each school as a separate task. There is

one response variable, examination score, and 8 predictor variables. Using one-hot

encoding, I create indicator columns to expand categorical variables, resulting in 26

predictor variables. The number of observations per school (nl) varies from 22 to

251.

I use linear multi-task kernel in support vector regression model and matrices Bl

as described in (2.11). For this data, d = 26, dm = 26 ∗ 139 = 3614, d(m + 1) =

26 ∗ (139 + 1) = 3640, Bl has dimensions d(m + 1) × d = 3640 × 26, the feature

matrix B has dimensions d(m + 1) × dm = 3640 × 3614 and the feature vector

w ∈ Rd(m+1) = R3640. The data transformation step performs the matrix product

Blxi,l of each observation’s vector with the matrix Bl that corresponds to the task

of the observation. The resulting transformed dataset has 15362 rows and 3640

columns.

We run cross-validation for the parameter λ ∈ [0, 0.1, ..., 0.9, 1] and record ex-

plained variance metric. The train-test split is done with 75% of the data in the

train set, and the remaining 25% in the test set. This results in a train set of 11521

observations and a test set of 3841 observations. 10 random train-test splits are per-

formed, and the results of explained variance are averaged across the runs for all λ.

For this experiment, we let γ = 1 in minimization criteria (2.10), and ϵ = 0.1 in the

SVR loss function (2.3). Note that the original 10 train-test splits used by Evgeniou

et al. (2005) [30] are not publicly available, thus a new set of 10 train-test splits are
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done for this demonstration.

The model fit was performed using function “svm” from the e1071 package in

R (Meyer et al (2021) [58]). The implementation of this function in the package is

based on the LIBSVM library by Chang and Lin (2011) [18].

Figure 2.1: Explained variance of multi-task linear SVR by coupling parameter λ

Figure 2.1 displays the results of the best fit to the ILEA data. Note that the

explained variance is increasing up to the point of λ = 0, which indicates that the

best performance is achieved when the tasks are learned together, i.e. when the

schools are treated as one task and do not differ across the initial tasks partition.

The lowest explained variance is at λ = 1, thus the data doesn’t appear to come

from completely separate tasks. Differently from results in Evgeniou et al (2005)

[30], where performance was rather flat from λ = 0 to 0.7, followed by a sharp drop

in explained variance closer λ = 1, we observe that explained performance drops

sharply after λ = 0 and declines slowly in a linear way as λ increases. This difference

can possibly be the result of different learning algorithm or package that was used in

the experimental section of Evgeniou et al (2005) [30]. It is notable, however, that
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the results at λ = 0 are very similar in both of the experiments. This experiment will

be studied in more detail in the upcoming chapter, with a thorough analysis of the

influence of different parameters and kernels, challenging the consensus assumption

that it is a single-task learning dataset.

2.6 Task outliers and clustering

In multi-task learning, we assume that all tasks are somehow related to each other,

and it is the objective of the multi-task learning model to learn these task relation-

ships. Tasks can be similarly or differently distributed or have clusters of similarly

distributed tasks. There may also arise situations where most tasks are similar to

each other, while some few tasks differ in their distributions. We denote the latter

as outlier tasks. The vast distributional differences may affect the predictive power

of the model fit, such that the model may predict poorly on the majority class tasks

and on outlier tasks. It is therefore desirable to identify such tasks and to address

them specifically to improve the model performance.

Identification of outlier tasks has been investigated significantly from an algo-

rithmic perspective. One popular framework is robust multi-task learning, initially

proposed in Chen, Zhou, and Ye (2011) [21]. Gong, Ye and Zhang (2012) [37] pro-

posed working with parameters of each task’s parametric models, which are defined

as fi(x
(i)
j ) = (x

(i)
j )Twi, where wi are parameter vector of task i. The parameter

vectors are then combined as columns in a matrix W ∈ Rd×m and decomposed as

W = P +Q, and separate penalties are imposed on these matrices, such that P en-

codes the shared features among tasks and Q captures the outlier tasks. The latter

step is done in order to simplify the optimization problem. Thus, this method learns

both the shared features and outlier tasks. The loss minimization is then performed

using a modified version of gradient descent. Gong et al (2012) [37] also decomposed
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the matrix W with group sparsity, while Pu, Jiang, Wang, and Xue (2013) [62] pro-

posed to solve a similar problem by using the accelerated proximal method. Chen,

Liu, and Ye (2012) [20] introduced a multi-task model which is robust to influence

of outlier tasks. Kumar and Hal (2012) [50] proposed that there exist some basis

tasks, and all other tasks can be expressed as linear combinations of these tasks.

Zhong, Pu, Jiang, Feng, and Xue (2016) [86] further relax the tasks group structures

assumptions to identify them instead. Jeong and Jun (2018) [45] attempt a similar

approach by optimizing two coefficient matrices based on a low-rank assumption.

It should be noted, however, that a general limitation of these frameworks is that

they can only accommodate parametric models, which limits their applicability to

nonparametric relationships.

Many other frameworks apply the idea of task clustering in order to group tasks

by using algorithmic methods. Thrun and O’Sullivan (1996) [72] propose the TC

algorithm for binary classification, which creates a hierarchy of tasks by maximiz-

ing their generalization accuracy, and transfers the knowledge selectively across the

related tasks when predicting. The strength of this method is that it can deal effec-

tively with tasks that were not used during the model training. Jacob et al (2008) [41]

proposed a framework of task clustering by using the linear model parameters ma-

trix W and by using a customized spectral norm. In the Bayesian paradigm, Xue,

Liao, Carin, and Krishnapuram (2007) [79] introduced an application of Dirichlet

processes to multi-task logistic regression in two formulations. In the symmetric

formulation, all the tasks are learned jointly, while in the asymmetric formulation,

learning a new task doesn’t require access to data of all the previous tasks. In another

work in the Bayesian framework, Xiong, Bi, Rao, and Cherkassky (2007) [78] pro-

pose a probabilistic model to identify relevant tasks by identifying feature patterns

among the tasks. Kang, Grauman, and Sha (2011) [46] proposed using parameter

matrices Wg for task group g out of totally G separate task groups, and solving this

multi-task feature learning problem by iterative procedure with mixed integer pro-
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gramming. Hernandez-Lobato D., Hernandez-Lobato J.M., and Ghahramani (2015)

[39] propose a probabilistic modeling approach to identify both task outliers and

feature outliers. Zhang Xiaotong, Zhang Xianchao, Liu H., and Liu X. (2018) [83]

define partially related tasks and identify them by constructing a similarity matrix

with clustering algorithms. Liu, Zheng, Wu, Yu, and Wong (2020) [54] propose an

algorithm to identify correlations among task features with graph-clustering.

It is generally the case that the existing works in task diagnostics for multi-

task learning are highly algorithmic in their nature, not motivated by the statistical

groundwork, and have a major focus on the development of optimization procedures.

There is a significant focus on linear and parametric models, limiting their applica-

bility to more complex datasets. Another distinct tendency is the assumption of all

tasks being equally related to each other in every cluster. The focus is mostly on

clustering the tasks into groups, not on identifying the outlier tasks and performing

remedial measures. In this dissertation, I propose methods that seek to overcome

these limitations, have a statistical foundation, and also to generalize the algorithmic

clustering methods.
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Analysis of regularized multi-task

learning

The purpose of this section is to perform deeper analysis and research in the frame-

work of mean-regularized multi-task kernel regularization. Firstly, I introduce a

different version of the mean-regularized multi-task kernel, which uses task coupling

parameter c and works differently from a version with λ. I establish the conditions

to make these versions to be equivalent both for ridge regression and support vector

machine models, proving these results theoretically and demonstrating the equiva-

lency through experiments. I also study the experimental conditions in Evgeniou et

al (2005) [30] to make the experiments easier to replicate and study the nonlinear

Gaussian kernel’s influence on the performance of the mean-regularized multi-task

model.
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3.1 Setting up γ = 1

Evgeniou et al (2005) [30] perform an experiment on ILEA schools data with

mean-regularized multi-task regularization, using linear kernel and γ = 1. For more

information about the dataset, see Appendix A. Recall the minimization criteria

(2.10):

S(w) =
1

nm

∑
j∈Nm

∑
i∈Nn

L(yi,j,w
TBlxi,j) + γwTw (3.1)

In comparison, in the modern package for support vector machines LIBSVM [18],

the minimization criteria for regression is somewhat different, where it is a cost

parameter C that controls the trade-off of the loss and penalty:

C
n∑

i=1

(ξi + ξ∗i ) +
1

2
wTw (3.2)

where the slack variables ξi and ξ∗i play the role of a loss function.

To achieve γ = 1 in the LIBSVM’s SVR minimization criteria, we need to choose

C to average over all samples and to compensate for 1
2
in the regularizer. Therefore,

choose C = 1
2nm

= 1
2ntest

where ntest is the number of samples in the test set for all

tasks. Then, the penalties differ only by a factor of ntest

2
, which is a multiplicative

constant in both of the terms and does not affect the results of the optimization.

Using the mean-regularized multi-task kernel and LIBSVM through R package

e1071, the parameters for cross-validation are mean-regularization task coupling pa-

rameter λ, and SVR parameters ϵ and C for the case of the linear kernel. This result

will be used in the experimental part of this chapter.
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3.2 Analysis of a simple case of mean-regularized

MTL

To further investigate the inner workings of the mean-regularized MTL kernel, I

design a simple simulation study. I control the data-generating process to make

every step of the algorithm easy to demonstrate.

Let there be m = 2 tasks with each task having a shared input space Xd ∈ Rd

with d = 2, i.e. there are two predictor variables. Define the predictor variables and

error terms as:

x1 ∼ U(5, 8), x2 ∼ U(15, 25), ϵ ∼ N(0, 7)

The tasks 1 and 2 are defined as:

y1 = 5x1 + 12x2 + ϵ

y2 = 5x1 + 8x2 + ϵ

Thus, the dataset consists of observations from 2 tasks, with observations de-

scribed by 2 quantitative predictor variables with an error term, and 1 quantitative

response variable. The response variable y is a linear function of the predictor vari-

ables and the error term, but the linear relationship is slightly different for each task.

The coefficients for x1 are the same in both tasks, but they differ for x2. Because

the individual coefficients are close to each other, it becomes reasonable to model

the data by using a mean-regularized MTL kernel.

For this simple case with m = 2 tasks and d = 2 predictor variables, consider the

case that we have only 4 observations per task. With the 75− 25% train-test split,
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it leaves 3 observations in the training set and 1 observation in the test set per task.

Thus, the training and test sets have 6 and 2 observations in total, respectively.

To be consistent for all the steps, the following randomly generated dataset and

train-test split will be used:

• Training set:

y task x1 x2

330.5173 1 5.404407 24.66323

250.9219 1 7.866185 17.47271

302.9691 1 5.492322 22.65991

205.5379 2 5.070766 15.91489

219.7720 2 6.021867 16.28367

260.8539 2 5.136080 20.49508

• Test set:

y task x1 x2

220.6514 1 5.933868 16.58836

217.8197 2 5.586355 15.56803

First, consider the Bl version with λ for mean-regularized multi-task learning as

originally developed by Evgeniou (2005) [30]. As described in Chapter 2.5, Bl is a

(m+ 1)d× d = 6× 2 matrix that captures the relationships between tasks:

BT
l = [

√
1− λId,0, ...,0︸ ︷︷ ︸

l-1

,
√
λmId,0, ...,0︸ ︷︷ ︸

m-l

] = [
√
1− λI2,0, ...,0︸ ︷︷ ︸

l-1

,
√
2λI2,0, ...,0︸ ︷︷ ︸

m-l

]

For illustration, consider the following cases:
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• Task l = 1, λ = 0:

BT
1 = [

√
1− 0I2,

√
0× 2I2,0] =

1 0 0 0 0 0

0 1 0 0 0 0



• Task l = 2, λ = 0.2:

BT
2 = [

√
0.8I2,0,

√
2× 0.2I2] =

0.8944 0 0 0 0.6324 0

0 0.8944 0 0 0 0.6324



• Task l = 2, λ = 1:

BT
2 = [

√
1− 1I2,0,

√
2× 1I2] =

0 0 0 0 1.4142 0

0 0 0 0 0 1.4142



The data transformation step involves pre multiplying the x vectors for each ob-

servation by the Bl matrix of the observation’s task. In particular, denote xl =

[x1,l, x2,l]
T as the data vector for an observation from task l. Then, the data trans-

formation step is Blxl. This product of a 6 × 2 matrix and 2 × 1 vector results in

a 6 × 1 vector that encodes the data transformation for the observation. In other

words, a 2 × 1 vector is mapped to a 6 × 1 vector. In the statistical literature it

is traditional to write observation vectors as row vectors, while in machine learning

literature, the observation vectors are column vectors. The 6 × 1 column vector of

the transformed data above is still encoded in the machine learning notation, so we

transpose it into a 1× 6 row vector, such that it takes up a row of the transformed

dataset.

Continuing with the examples for the matrices Bl above, applied to the training

set data using the λ version:
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• Task l = 1, λ = 0:



1 0

0 1

0 0

0 0

0 0

0 0



(
5.404407 24.66323

7.866185 17.47271

5.492322 22.65991


)T

=

(
5.404407 24.66323 0 0 0 0

7.866185 17.47271 0 0 0 0

5.492322 22.65991 0 0 0 0


)T

• Task l = 2, λ = 0.2:



0.8944 0

0 0.8944

0 0

0 0

0.6324 0

0 0.6324



(
5.070766 15.91489

6.021867 16.28367

5.136080 20.49508


)T

=

(
4.535431 14.23471 0 0 3.207034 10.06546

5.386121 14.56456 0 0 3.808563 10.29870

4.593849 18.33135 0 0 3.248342 12.96222


)T
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• Task l = 2, λ = 1:

0 0

0 0

0 0

0 0

1.4142 0

0 1.4142



(
5.070766 15.91489

6.021867 16.28367

5.136080 20.49508


)T

=

(
0 0 0 0 7.171146 22.50705

0 0 0 0 8.516206 23.02859

0 0 0 0 7.263514 28.98441


)T

It becomes evident that in the case of single-task learning of λ = 0, the mean-

regularized MTL method merely reshapes the design matrix, adding additional

columns of zeroes, which are merely placeholders of the method for other λ values,

and do not have any influence on the model solution for the problem due to being

null.

When λ = 0.2, the transformation scales and transfers the data into the first

block matrix with multiplier
√
1− λ = 0.8944 and into the third block matrix with

multiplier
√
λm = 0.6324. The first block matrix serves the role of the mean regu-

larization of all model parameters together, while the task-specific block (here, the

third block matrix) is situated in columns that are exclusive to the task itself, thus

facilitating learning of the task-specific parameters.

In the case of independent task learning of λ = 1, we see that the task data is

scaled with
√
λm = 1.4142 and transferred into a block matrix. This block matrix

has columns that are zero for all other tasks in the dataset and for the first mean-

regularization block matrix. Therefore, the result works as a block-diagonal matrix

where the blocks are task-specific. Per Evgeniou et al (2005) [30], fitting a model on
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this transformed data will result in learning all tasks independently, so that there is

no information transfer between the tasks.

3.3 Equivalence of two different versions

Another definition of mean-regularized multi-task kernel was presented in Michelli

and Pontil (2004) [59]. It is different in the way the data is transformed to multi-task

kernel feature space, and creates a different regularization function. The new task

coupling parameter is c > 0, and the matrices Bl for each task l are constructed as:

BT
l = [c−1Id,0, ...,0︸ ︷︷ ︸

l-1

, Id,0, ...,0︸ ︷︷ ︸
m-l

]] (3.3)

As the task coupling parameter c is any positive number, note that there is

never the case of completely independent task learning, as the first block identity

matrix, which encodes the mean of the task parameters, never fully disappears. In

the subsequent sections, I perform a deeper investigation of the new task coupling

parameter c.

The new version of the mean-regularized kernel leads to the following regulariza-

tion term:

J(u) =
c2

m+ c2

∑
l∈Nm

∥ul∥2 +
m

m+ c2

∑
l∈Nm

∥ul −
1

m

∑
q∈Nm

uq∥2 (3.4)

Note that the regularized quantities are the same as in Equation 2.13. However,

there is a difference in the way the trade-off is achieved. Moreover, data premultiplied

with the new matrices Bl with task coupling parameter c is different from the same

data premultiplied with the version using λ. In the following subsections, I introduce
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and prove the conditions necessary for the equivalency of the two penalties, which

are demonstrated through a simple example. Then, I further simplify the conditions

for the case of ridge regression.

3.3.1 The equivalence of the two penalties

Assume that

λ =
c2

m+ c2
(3.5)

.

Then,

c =

√
λm

1− λ
(3.6)

1− λ =
m

m+ c2
(3.7)

As c > 0, λ ∈ (0, 1). λ = 1 corresponds to c = ∞ and implied division by

0, therefore the case of independent task learning is never fully achieved, but is

approximated as c becomes sufficiently large. The case of λ = 0 is not included

in the original definition of the mean-regularized multi-task kernel but is further

examined in subsequent sections. At this point, note that setting λ = 0 into the

equivalency Equation 3.6 leads to c = 0, which violates the condition that c > 0,

and leads to division by 0 in Equations 3.3 of Bl, thus it isn’t achievable either.

Let

A =
∑
l∈Nm

∥ul∥2

B =
∑
l∈Nm

∥ul −
1

m

∑
q∈Nm

uq∥2
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Denote J1(u) to be the penalty of the λ version of mean-regularized multi-task

kernel, and J2(u) to be the penalty of the version with c. Then:

J1(u) =
1

m

(
A+

1− λ

λ
B

)

J2(u) =
c2

m+ c2
A+

m

m+ c2
B

Replacing with parameter λ by using equations 3.5 and 3.7:

J2(u) = λA+ (1− λ)B = mλ
1

mλ
(λA+ (1− λ)B) = mλ

1

m
(A+

1− λ

λ
B) = mλJ1(u)

It follows that J2(u) = mλJ1(u) and J1(u) = J2(u)
mλ

. Therefore, the penalty

equivalence is achieved when λ = c2

m+c2
. It remains to establish the equivalence of

minimizing criteria, and I begin with a continuation of the demonstrative example.

3.3.2 Continuation of the simple example

In the following, I extend the simple example of the Section 3.2 with the c-version

of the mean-regularized multi-task kernel.

The dimensionality of the matrices Bl of λ and c versions is the same, and we’ve

shown previously that the relationship between c and λ is given by c =
√

λm
1−λ

. The

number of tasks m = 2, and let sequence of λ run from 0 to 1 in increments of 0.1.

As c > 0, the edge cases of λ = 0 and 1 are limiting cases, and approximations to

these cases were taken as λ close to 0 (0.00001) and 1 (0.99999). This yields in the

sequence: c ∈ {0.0045, 0.4714, 0.7071, 0.9258, 1.1547, 1.4142, 1.7321, 2.1602, 2.8284,

4.2426, 447.2114}
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The following illustrating examples are created for the equivalent cases as above

for the λ version:

• Task l = 1, c = 0.0045 (equivalent to λ = 0.00001):

BT
1 = [0.0045−1I2, I2,0] =

222.22 0 1 0 0 0

0 222.22 0 1 0 0


• Task l = 2, c = 0.7071 (equivalent to λ = 0.2):

BT
2 = [0.7071−1I2,0, I2] =

1.4142 0 0 0 1 0

0 1.4142 0 0 0 1


• Task l = 2, c = 447.2114 (equivalent to λ = 0.99999):

BT
2 = [447.2114−1I2,0, I2] =

0.0022 0 0 0 1 0

0 0.0022 0 0 0 1


The single-task learning and independent task learning examples above are de-

fined as c → 0 and c → ∞, respectively, for the coupling parameter c > 0. Those

limits are equivalent to λ = 0 and λ = 1, as discussed previously.

As c → 0, the first block matrix explodes in size, compared to the task block

of the identity matrix. This leads to a stronger influence of the average component

and reduces the influence of the task component. Therefore, when used in the data

transformation step, the impact on the data is comparable to the impact of the λ

version. The only difference is that the values get multiplied by a large number in

the c version, and realistically, even for a very small c, there is still some numerical

influence of the task block matrix, which ideally should not happen in the single-task

learning.

As c → ∞, the first block matrix vanishes away, and the inner mechanism is a

reverse of the previous example. And similarly to the above, for a numeric approxi-

mation of a very large c, the mean component never fully vanishes away.
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For the cases of λ between 0 and 1, there is a deterministic relationship between

c and λ. As an example, for the case of λ = 0.2 and c = 5.895, note that the B2

matrices are quite different. In the λ version, the first block matrix has a slightly

higher influence with a multiple of 0.8944 than the task matrix with a multiple of

0.6324. In the c version, the first block matrix multiple is 0.1696 and the task matrix

is an identity matrix. Thus, in the c version, the influence of the task data is much

stronger than in the equivalent λ case. In other words, turning up c has a much

stronger push to include the task information separately, compared to the equivalent

task coupling parameter values in λ version, where this increase is more gradual.

Consider also a transformation of the same data using the mean-regularized MTL

kernel version with the coupling parameter c:

• Task l = 1, c = 0.0045 (equivalent to λ = 0.00001):



222.22 0

0 222.22

1 0

0 1

0 0

0 0



(
5.404407 24.66323

7.866185 17.47271

5.492322 22.65991


)T

=

(
1200.979 5480.718 5.404407 24.66323 0 0

1748.041 3882.824 7.866185 17.47271 0 0

1220.516 5035.536 5.492322 22.65991 0 0


)T
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• Task l = 2, c = 0.7071 (equivalent to λ = 0.2):

1.4142 0

0 1.4142

0 0

0 0

1 0

0 1



(
5.070766 15.91489

6.021867 16.28367

5.136080 20.49508


)T

=

(
7.171215 22.50726 0 0 5.070766 15.91489

8.516287 23.02881 0 0 6.021867 16.28367

7.263583 28.98469 0 0 5.136080 20.49508


)T

• Task l = 2, c = 447.2114 (equivalent to λ = 0.99999):

0.0022 0

0 0.0022

0 0

0 0

1 0

0 1



(
5.070766 15.91489

6.021867 16.28367

5.136080 20.49508


)T

=

(
0.01133863 0.03558694 0 0 5.070766 15.91489

0.01346537 0.03641157 0 0 6.021867 16.28367

0.01148468 0.04582861 0 0 5.136080 20.49508


)T

The version with c works through a trade-off of the mean regularization and

individual task learning, thus it generally replicates the mechanism of the λ version.

As expected, in cases of single task and independent task learning, the dataset in the c

version has a different structure than λ versions due to the approximation of c values.

The single-task and independent task learning cannot be explicitly implemented in

the c version, as they are defined as limit cases.
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Consider the case of λ = 0.2 and c = 0.7071, and note that even though the

datasets look different at first glance, they have the same structure and they only

differ by the multiple of 1.5811, such that the c data matrix equals to 1.5811 mul-

tiplied element-wise with the λ data matrix. This relationship holds also for other

equivalent values of λ and c, not illustrated here, although the proportionality con-

stant changes. Therefore, even though λ and c were made equivalent to make the

penalty terms equal, they still differ in how the data itself is transformed.

3.3.3 Dataset equivalency

It was previously shown that the kernel function for mean-regularized kernel ver-

sions with λ and c encodes their equivalence by c =
√

λm
1−λ

. Although this equation

connects the penalties encoded by the two versions, we note also that the datasets

of the two versions differ by proportionality constant. As demonstrated above, this

constant depends on the value of the task coupling parameter, and we expect it to

differ by the total number of tasks.

The raw data is always kept constant in our experiments, therefore, both trans-

formed datasets will equal to each other when their transformation matrices Bl are

equal. In the following, I establish equivalence between these matrices for the λ and

c versions.

Lemma 3.3.1. The equivalence of datasets transformed with mean-regularized multi-

task kernels with λ and c versions is established when the transformation matrices

Bl are connected as B<λ>
l =

√
λm B<c>

l for the equivalent values of λ and c.

This relation holds for any number of tasks and value of λ and c, when equation

c =
√

λm
1−λ

is used to establish equivalency between the mean-regularized kernels. For

the simple example of two tasks considered above, when λ = 0.2 and, equivalently,

c = 0.7071:
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• Task l = 2, λ = 0.2:

B<λ>
l xl =

(
4.535431 14.23471 0 0 3.207034 10.06546

5.386121 14.56456 0 0 3.808563 10.29870

4.593849 18.33135 0 0 3.248342 12.96222


)T

• Task l = 2, c = 0.7071:

B<c>
l xl =

(
7.171215 22.50726 0 0 5.070766 15.91489

8.516287 23.02881 0 0 6.021867 16.28367

7.263583 28.98469 0 0 5.136080 20.49508


)T

=
1√
λn

B<λ>
l xl

=
1√

0.2× 2

(
4.535431 14.23471 0 0 3.207034 10.06546

5.386121 14.56456 0 0 3.808563 10.29870

4.593849 18.33135 0 0 3.248342 12.96222


)T

=

(
7.171146 22.50705 0 0 5.070766 15.91489

8.516206 23.02859 0 0 6.021867 16.28367

7.263514 28.98441 0 0 5.136080 20.49508


)T

with the minor differences due to the rounding error. The multiple is 1√
0.2×2

= 1.5811,

just as we observed in the previous section.

Therefore, we see that both mean-regularized kernels are equivalent, with their

datasets differing by a constant of proportionality
√
λm and the equivalency between

the coupling parameters given by c =
√

λm
1−λ

.

3.3.4 Ridge regression equivalence

In this section, I seek to investigate the inner workings of the ridge regression esti-

mator with mean-regularized multi-task kernel versions with λ and c task coupling
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parameters. Ridge regression fits perfectly into the framework of Evgeniou et al

(2005) [31], as its minimization criterion contains the L2 penalty term. The solution

of ridge regression parameters has a closed form, which eliminates randomness differ-

ences that could happen when the solution has to be found sequentially. Compared

to support vector regression, the advantage of this approach is that all model fitting

steps are tractable. The ridge regression estimator and fitted values are defined as

β̂(λRR) = (XTX+ λRRIp)
−1XTY (3.8)

Ŷ (λRR) = Xβ̂(λRR) (3.9)

First, let’s consider the behavior of the estimator for equivalent values of λ and c,

without transforming the data. For both versions of Bl, I use the same value of the

smoothing parameter λRR = 1 and do not fit intercept as it wasn’t used to generate

the data. The models were fitted separately on each of the previously demonstrated

matrices, and the fitted values were computed for the test set for each model fit

(recall that ntest = 2):

ytest 220.6514 217.8197
λ = 0 226.0392 212.2036
c = 0.0045 231.4299 207.2989
λ = 0.2 231.3304 206.7853
c = 0.7071 231.3596 207.171
λ = 1 231.2249 207.0967
c = 447.2114 231.1072 206.7309

Note that the fitted values differ for the equivalent values of λ and c. This is to be

expected, as we’ve previously established that the matrices Bl differ by a constant

of proportionality, as described in Lemma 3.3.1. This was done intentionally for

the demonstration purposes, as in the following I establish that in the case of ridge

regression the two versions of the mean-regularized multi-task kernel can be made

equivalent without data manipulations per Lemma 3.3.1.
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Recall that we have defined X to be a design matrix with d predictor variables,

n to be the number of tasks, and B<λ>
l ,B<c>

l to be the mean-regularized multi-task

kernel transformation matrices for task l using λ and c versions, respectively. The

data transformation is achieved by concatenating matrix products B<λ>
l Xl, where

Xl are the rows of matrix X corresponding to task l.

In the following, let X<λ> be matrix that contains the data after the multi-task

kernel transformation. Then, X<λ> and X<c> each have dimensions nm× d(n+1) .

From previous results, we know that X<λ> =
√
λnX<c>, which follows from the fact

that c =
√

λm
1−λ

. Let ŵλ = (X<λ>T
X<λ> + γλI)

−1X<λ>T
Y be the ridge regression

estimator on the datasets transformed using λ version, defined similarly for the c

version.

Theorem 3.3.2. The ridge regression estimators for λ and c versions of

mean-regularized MTL kernel yield equal fitted values on their respective datasets

X<λ> and X<c>, given that γλ = λmγc.

Proof.

ŵc = (X<c>T
X<c> + γcI)

−1X<c>T
Y

= (
1√
λm

X<λ>T 1√
λm

X<λ> + γcI)
−1 1√

λm
X<λ>T

Y

=
√
λm(X<λ>T

X<λ> + λmγcI)
−1X<λ>T

Y

If we let γλ = λmγc, then ŵc =
√
λmŵλ.

Ridge regression estimates yield in fitted values by Ŷ = Xŵ. For the λ version

of the kernel, Ŷ = X<λ>ŵλ =
√
λmX<c> 1√

λm
ŵc = X<c>ŵc. Therefore, the ridge

regression fitted values of both transformed datasets are equal, provided that γλ =

λmγc and c =
√

λm
1−λ

.

It becomes clear that the methods are fully equivalent when the cost is adjusted
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appropriately. Notably, this adjustment varies by the value of λ. Thus we have

established the conditions necessary to make both versions equivalent in practice,

without the need to make the datasets equivalent like in the general case. Note that

it was made possible by the fact that the ridge regression estimator has a closed-form

solution, so we were able to solve our way to the relationship between regularizing

constants. For support vector regression no close form solution exists, therefore such

a relationship cannot be easily established, although we can reasonably expect that

such a relationship between costs may exist. It is an open research question to

examine this further.

3.3.5 Ridge regression demonstration

Figure 3.1: Explained variance of ridge regression on the ILEA schools data, applied
with mean-regularized multi-task kernel λ version for a range of λ from 0.000001 to
0.99.

Using the ILEA schools data, we can fit the ridge regression model to investigate

the theoretical result. We consider scale of coupling λ from 0.000001 to 0.99 in
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Figure 3.2: Explained variance of ridge regression on the ILEA schools data, applied
with mean-regularized multi-task kernel c version for a range of c from 0.012 to
117.307, which are equivalent to λ values in Figure 3.1.

increments of 0.1, and its equivalent scale of c. We explicitly exclude the edge cases

of λ being 0 and 1, as the c version cannot be made equivalent to these cases.

We consider an arbitrary scale of γλ from 0.1 to 10 in increments of 3.3. γc is

then created for every value of γλ and λ for the fit of c-version. Theoretically, using

the respective cost values, we expect that the fitted values will be exactly the same

for two independent model fits on both datasets and therefore explained variance

is expected to be the same. The results of model fits are illustrated as explained

variance surfaces in Figures 3.1 and 3.2.

On Figure 3.2, c is scaled with the same intervals as λ, and γc is spaced similarly

as γλ. The reason is that, while γλ is regularly spaced for each λ, γc is not regularly

spaced for each c. Yet, values of γc are equivalent to their respective values of γλ,

and thus it is visually appealing to scale the axis γc with the same intervals as on

the axis of γλ.
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The surfaces look identical, thus we can observe experimentally that the meth-

ods are indeed equivalent. Also, I have verified numerically that fitted values and

explained variances are equal for both datasets.

These experiments were performed on the same fixed train-test split of data as

was previously used in the experiments with a support vector machine. The ridge

regression model achieves much higher maximum values of explained variance for

λ = 0.000001. For the illustration, consider also values of 0 and 1, and redraw

the explained variance surface with these values included in the λ version of mean-

regularized MTL kernel, illustrated in Figure 3.3.

Figure 3.3: Explained variance of ridge regression on the ILEA schools data, applied
with mean-regularized MTL kernel λ version for a full range of λ.

We see that there is a very sharp drop in explained variance at λ = 0 down to

the lower range of 33%. This demonstrates that the mean-regularized MTL kernel is

indeed useful for this data, and, in the case of ridge regression, we are much better

off using a model that is close to single-task learning, but incorporates some small

weight to the individual task components as well. As our previous experiments only
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considered a rough scale of λ, its values close to 0 weren’t checked. This finding also

partially explains why the c kernel has higher explained variance than λ kernel at

λ = 0; it happened simply because the lowest value of c corresponded to a very low

positive value of λ, and thus achieved higher performance than explicit single-task

learning.

Notably, Evgeniou et al (2005) [31] use the SVR model but don’t check the values

of λ very close to 0. We find that, in the case of ridge regression, there is a very

significant performance boost when ILEA data is rather considered multi-task data.

it can be reasonable to expect that this is the case for SVR model as well. As

such, our experiment demonstrates that the conclusion that ILEA schools data is

single-task data was not correct.

3.4 Simulations of mean-regularized MTL kernel

The purpose of this section is to demonstrate experimentally the performance of the

multi-task kernel models on ILEA schools data and to investigate the influence of

the Gaussian kernel. Recall that in the experiment with ILEA data in Evgeniou et al

(2005) [30], the mean-regularized multi-task kernel was used with parameter λ in the

matrices Bl, where λ ∈ (0, 1] is the multi-task coupling parameter. In Micchelli et

al (2004) [59], the authors redefine matrices Bl for the mean-regularized multi-task

kernel, such that c > 0 is the multi-task coupling parameter.

Note that parameter γ takes the same value for both definitions of Bl. In Ev-

geniou et al (2005) [30], the researchers take simplification in the experiments that

γ = 1, which implies C = 1
2nm

= 1
2ntest

in support vector regression model, as dis-

cussed previously.

The following illustrates a series of experiments for the ILEA data, expanding
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the experiments in Evgeniou et al (2005) [30]. Assume that ϵ = 0.1 in soft-margin

ϵ-SVR model, and the train-test split is 75% − 25% separately within each task.

Note that those details weren’t explicitly mentioned in Evgeniou (2005) [30], so I am

operating under these conventional assumptions, which may cause inconsistencies in

the results achieved. Hard-margin SVR, searching for ϵ, and train-test splits for the

whole data at once (not per task) were tried but yielded equal or worse results than

the results under the chosen assumptions.

For the experiments to be comparable to each other, the 10 fixed train-test splits

were created and were kept constant across all experiments. Therefore, the only

differences in performance across experiments are not due to randomness, but due

to the models and their parameters.

In all experiments, I consider a range of values of λ ∈ [0, 1] and their equivalent

scale in c, as mentioned previously. The following experiments are performed:

1. λ-version of the linear mean-regularized multi-task kernel in SVR, search for

optimal C.

2. λ-version of the radial basis function (Gaussian) mean-regularized multi-task

kernel in SVR, search for optimal C and γRBF .

The assumption that γ = 1 in Evgeniou et al (2005) [30], such that C = 1
2ntest

, is

too restrictive and is not indicative of the true potential performance of the model. It

is highly unlikely to be the parameter value that achieves the global maximum of the

explained variance. Moreover, any differences in how the SVR minimization criteria

were implemented in Evgeniou et al (2005) [30] from its theoretical formulas, would

make it impossible to replicate the results in the paper. Indeed, the experimental

results, which are not included for brevity, show that the performance is unusually

low under C = 1
2ntest

when working with the LIBSVM library. Therefore, I search
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for the optimal C parameter, starting from a large grid, then narrowing it down to

the values of C that yield the highest explained variance. Such simulations were

performed in Experiment 1.

Additionally, I seek to investigate the benefit of relaxing the assumption of a linear

kernel in SVR in order to improve the results. A linear kernel may prove to be too

simple if the data is not linearly separable. As there are multiple predictor variables,

this assumption is not possible to check graphically. Therefore, Experiment 2 was

conducted. With the new parameter γRBF in the RBF kernel, the grid search will

be expanded to cover this parameter to find its optimal values. This expansion to

nonlinear kernels is done according to the theory of Evgeniou et al (2005) [30], such

that the RBF kernel is applied to the data that is already transformed with matrices

Bl.

The interpretation of the results will be done with respect to the demonstration

in Evgeniou et al (2005) [30]. For the ILEA data with mean-regularized multi-task

linear kernel SVR using Bl with λ, the researchers observe a maximum point of

approx. 34% explained variance at λ = 0. Expanding to a range of λ values, the

explained variance stays at similar levels with a very slight decline until λ = 0.6, when

it starts to drop gradually, being around 30% at λ = 0.9 and dropping substantially

down to approx. 5% explained variance at λ = 1. It indicates that the data is best

interpreted as coming from the single task, although quite marginally compared to

the other low values of λs, and the substantial drop in performance at λ = 1 implies

that all schools should not be considered as completely separate tasks.

In the Section 3.3, it was shown that the λ and c versions of the mean-regularized

multi-task kernel can be made fully equivalent with the equivalence relations. As

expected, I’ve also found experimentally that the c version produces exactly the

same results as the λ version, and all the cross-validation figures that were created

for the λ version are the same for the c version. Thus these aren’t included for
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brevity.

Figure 3.4: Experiment 1. Explained variance surface of mean-regularized MTL
linear SVR for a range of values of C (Cost) by task coupling parameter λ

Expanding the experiment of Evgenious et al (2005) [30], I perform a grid search

for values of C, which was first done on a large grid, and then narrowed down to

a finer grid of values as seen in Figure 3.4. Across all λ, there is a sharp increase

in explained variance when the value of C is increased. For a very low value of C,

the explained variances are very low for all λ. As C is increased, the results are not

sensitive to its value from 0.5 up to 10. We observe that the explained variance is

very high for all λ. The maximum of explained variance is approx. 34%, in close

agreement with the result in Evgeniou et al (2005) [30]. However, we observe a slight

drop in explained variance as λ increases to 0.1 and beyond, which is different from

the results in the paper, when the explained variance stayed relatively flat. On the

good side, the explained variance doesn’t drop at all λ = 0.7 to 1.0, therefore even

when we consider the data as completely separate tasks, the explained variance is at

a quite high level, compared to a drop to approx 5% in Evgeniou et al (2005) [30].

It is a notable finding that the C choice in Evgeniou et al (2005) [30] was actually

optimal, even though it was seemingly chosen at random. The initial motivation for
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grid search was to find a value of C that replicates those results, and we see in Figure

3.4 that no such C exists. On the other hand, any other choice of C yields in a curve

of explained variance that is significantly higher for bigger λ, and slightly lower for

smaller λ.

In one of the experiments, c = 0.012 was attempted as an equivalent value for

λ = 0.000001 task coupling parameter, since c = 0 is not defined for that definition.

I’ve found that the maximum performance reaches to about 37% explained variance.

This finding means that the dataset should not be viewed as a single-task learning

dataset. Such a low value of λ encodes the fact that most of the information is shared

between the tasks, and there is some minor information that plays an important role

in some of the tasks, which is important for a stronger performance. Therefore, the

ILEA schools dataset should not be seen as a single-task dataset.

In the Experiment 2, the objective is to investigate whether the Gaussian kernel

improves the performance of the mean-regularized MTL kernel, compared to the

results in the Experiment 1. There, the highest explained variance was approx. 34%

for λ = 0. In general, the Gaussian kernel is better suited to model nonlinearities in

the data. Even though it is not visualizable whether ILEA schools data is linearly

separable, when the data is linear, the Gaussian kernel is usually expected perform

at least as well as the linear kernel.

A grid of parameter combinations is displayed in Figure 3.5, where the 3 axes

are λ, C, and γRBF . The explained variance achieved in a parameter combination

is indicated by the depth of the red color. The highest values of explained variance

are for λ = 0, with the best parameter combination of C = 10 and γRBF = 0.037,

which yields explained variance of 35.53%. It is also notable that the explained

variance is not linearly increasing in C and γRBF . Therefore, a fine grid search is not

straightforward, is time-consuming, and is likely to be overfitting to the test sets,

even though 10 train-test splits are used.

48



Chapter 3. Analysis of regularized multi-task learning

Figure 3.5: Experiment 2. Explained variance surface of mean-regularized MTL
Gaussian SVR for a range of values of C (Cost) and γRBF by task coupling parameter
λ.

The most important finding is that there is a performance improvement of approx.

1.5% compared to using the linear kernel for the same value of λ = 0. This suggests

that the data is not linearly separable, and there is a significant benefit in using a

nonlinear kernel. Even though the improvement is rather incremental, it shows that

there exists a potential to improve the performance further by tuning kernels, which

may include investigating other RBF types of kernels.
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3.5 Explicit cases of single-task and independent

task learning

In this section I perform experiments of single-task and independent task learning

as explicit cases, meaning I do not use the mean-regularized multi-task kernel, but

model these cases explicitly: merge all data together for single-task learning and

create separate models for each task for independent task learning. Then, in order

to learn more about the behavior of the mean-regularized multi-task learning with

the kernel method, I compare their results with the results of the explicit cases.

Consider the simple case of mean-regularized Bl with coupling parameter λ and

special cases of λ = 0 and λ = 1. The former is the case when all tasks are learned

together as a single task, thus the data for all tasks is concatenated and the task

variable is dropped. The latter is the case of each task learning independently from

the other tasks. As such, we obtain a “separate” model for each task, in the sense

that the design matrix is sparse after transformation, and contains non-zero blocks

for each task. This mechanism has been shown in the simple example in Section 3.2.

To investigate this question, I model the data with ϵ-SVR with linear kernel in

LIBSVM through R package e1071. The same fixed 10 train-test splits from the

previous sections are used to make the results consistent, and explained variance

performance is averaged over the splits to increase the level of confidence.

The optimal cost is searched for on a logarithmic scale in each case, narrowing

it down to the values that yield the highest explained variance. This way, these

results are comparable to Experiment 1 of simulations with mean-regularized MTL.

Because the edge cases λ = 0 and λ = 1 correspond to single-task and independent

task learning, respectively, the experiments considered in this section theoretically

mirror the results in these edge cases.
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First, consider the case of λ = 0 which corresponds to single-task learning. In

Experiment 1 of the previous section, for λ = 0, the explained variance is approxi-

mately at the level of 34% and is not sensitive to the SVR parameter C, as long as

C > 0.5. In the explicit single-task learning experiment the average explained vari-

ance is approx. 34%, and is not significantly different from the results when using the

mean-regularized multi-task kernel. This result confirms the theoretical connection

between single-task learning and mean-regularized MTL with λ = 0, such that the

method is learning a mutual parameter vector for all tasks and not the individual

parameters. Notably, the cases of λ = 0 and explicit single task learning differ in

their sensitivity to changes in cost parameter C. For explicit single-task learning,

the explained variance is high as long as the C > 0.1 (approx.) and it is not sensitive

to increases of C for bigger values. In the case of the mean-regularized multi-task

kernel, high values of explained variance and its insensitivity is achieved only for

C > 0.5.

In the case of λ = 1, the results of Experiment 1 have shown that the performance

of the mean-regularized MTL is not significantly reduced even though the tasks are

independent. Note that in Evgeniou et al (2005) [30] the case of λ = 0 achieves

explained average explained variance of approx. 5%, with the choice of C to satisfy

γ = 1.

The results of the experiment for the independent task learning case are summa-

rized in Table 3.5 for a range of costs, with the optimal value of C at approx. 2.3

with the explained variance of 12.62%.

The result of 12.6% explained variance is quite low by itself, however, it is to be

expected as we’ve already seen that the ILEA dataset is best explained as being close

to a single-task. The explained variance at independent task learning was increased

as C increased, although not optimally in the global sense. And in the example

at hand, we search for C only for the explicit case of independent task learning.
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C Explained variance
1.000000 10.55645
1.444444 12.01658
1.888889 12.52255
2.333333 12.62515
2.777778 12.59228
3.222222 12.56416
3.666667 12.47304
4.111111 12.24841
4.555556 12.09087
5.000000 11.89426

Table 3.1: Average explained variance by C for the explicit case of independent
learning.

Interestingly, the explained variance is lower than the maximum that was achieved

with the mean-regularized multi-task kernel in Experiment 1.

The results of this section are in accordance with results in Evgeniou (2005) [30]

and are slightly improved because of the search for optimal C, so it is sensible that

a better result is achieved in this section. However, we observe a difference between

performance in the explicit independent task learning case and the case of λ = 1

in Experiment 1 in Section 3.2. There might be several possible reasons for this.

But, as the data splits of the ILEA schools data were kept constant across all the

experiments and simulations, theoretically it was expected that all the results would

be consistent with each other. A possible reason for this disparity may be the fact

that the support vector machine algorithm in the LIBSVM package is affected by

how the data is presented and is not behaving consistently to replicate the results

in this setup. The optimization with the whole data together, even though all tasks

are in separate block matrices, may lead to unstable behavior of the package and not

properly separate between the tasks, which leads to the high performance at λ = 1

in Experiment 2. Moreover, as all tasks have different sample sizes, the classifier may

implicitly prioritize some tasks over others, which may further distort the results.
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Two-step modeling approach to

multi-task learning

4.1 Introduction

In this chapter, I propose a two-step modeling approach to multi-task learning, which

is highly customizable. Furthermore, I examine its performance on the ILEA schools

data for several framework customizations.

The main idea is to split the tasks into two or more clusters depending on their

per-task performance and modify the predictions for particularly bad clusters. For

example, we may identify a cluster of tasks yields explained variance that is negative

when predicted and measured individually on these tasks’ separate training and test

sets, respectively. From the definition of explained variance in 2.8, it is obvious that

in such cases predicting using an average value of the test set for each particular

task is going to increase the explained variance to 0% in such tasks. And for the

tasks with positive explained variance, we may keep the initial model. Modeling data

differently for different tasks would increase the overall performance of the model.
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To further generalize this way of thinking, I propose a two-step model, with

an initial diagnostic modeling step and, after the proper modifications, creation

of the final model. The diagnostic remedial step is highly customizable in several

of its steps. As a result, the overall procedure can range from rather simple to

complex. Therefore, the general strategy is to arrive at a procedure that gives the

best performance and is the most suitable depending on a particular scenario or

dataset.

Notationally, let Y[i] and X[i] be data for task i only, i ∈ {1, 2, ...,m}, where m

is the number of tasks. Let K be the number of clusters identified in the diagnostics

procedures. In this dissertation the only considered cases are 1 ≤ K ≤ m, i.e. the

maximum number of clusters is bounded above by the total number of tasks. Let

Y{k} and X{k} be the data of tasks that belong to cluster k.

In the following, we will go through the steps of proposed modifications for the

multi-task learning algorithm. For the purposes of explanation, the initial starting

point is the mean-regularized MTL kernel with λ used with support vector regression

described in Section 2.5. The examples will be explained in terms of the previously

covered ILEA schools data.

4.1.1 Algorithm of two-step modeling for multi-task learning

In the following, I start by presenting the algorithm of a two-step model for multi-

task learning. The brief summary of the algorithm is to identify the clusters of tasks

and model them differently. As the initial assumptions of this framework are rather

general, the Algorithm 1 is defined in loose terms to enable this.

54



Chapter 4. Two-step modeling approach to multi-task learning

Algorithm 1: two-step model for multi-task learning

Input: performance metric function, clustering criteria

Step 1
Train initial diagnostics models on Ytrain and Xtrain;
for each task i do

Select Y
[i]
test and X

[i]
test, data of only task i;

Predict on X
[i]
test with the initial diagnostics models;

Measure the performance metric based on actual responses Y
[i]
test and

predictions Ŷ
[i]

test

Rank the per-task metrics;
Cluster the tasks into K clusters per criteria;

Step 2
for each cluster k ∈ {1, ..., K} do

Based on Step 1, determine the best way to model the tasks in the
cluster;

Apply this model and obtain Ŷ
{k}
test;

Combine Ŷ
{k}
test for all k ∈ {1, ..., K} to arrive at the final predictions;

In the follow-up sections, I motivate the procedure step-by-step with explanations

and reasoning for its use.

4.1.2 Task clusters

The first step is to define the criteria for a split of tasks into clusters. For diagnostic

model fits, the performance is measured on each task’s Y[i] and X[i] individually,

such that the models are used for prediction separately on X
[i]
test for each task. Thus,

for each fit, a performance metric is computed, such as explained variance EV , and

m sets of statistics are obtained, which allows ranking of the tasks according to the

performance of the diagnostic models.

The clustering of tasks is made on the basis of models that are fitted, and the

criteria used to cluster the tasks. For example, the cases independent task learning
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and single-task learning models (equivalent to λ = 1 and 0, respectively). Or, the

model is fitted for multiple values of λ between 0 and 1. For each model, we test

its performance for each of the tasks on their respective test sets and record the

explained variance EV obtained in each case.

The further customizable steps consider a number of clusters, and criteria to split

tasks. There may be two or more clusters, and every task must fall in only one cluster.

The primary purpose to split tasks into clusters is to later modify the predictions in

some clusters in order to increase the explained variance when the model is tested

on a combined test set for all tasks. Therefore, one should plan in advance how to

modify the predictions in every cluster and split the tasks accordingly. More clusters

may complicate the procedure but can result in a more customized, better performing

overall model.

As an example, we can create initial model fits of only independent task learning

and single-task learning and split tasks into two clusters. Cluster one has tasks that

have positive explained variance in both models, while the second cluster tasks have

negative explained variance either in independent task learning model, single-task

learning model, or both. Another splitting criteria may be to split tasks according

to the improvement or worsening of tasks’ explained variance when comparing indi-

vidual and single-task learning performances. And it is possible to combine several

criteria to split the tasks into the clusters. A simple starting point to create such

criteria is to rank the tasks according to the per-task explained variances.

In this step, the customizability comes in the number of clusters and splitting

criteria that are used, and in how many models fits one wants to consider.
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4.1.3 Diagnostic initial parameters

We need to take special care of the initial model parameters for the diagnostic pro-

cedure above. For every diagnostic model, cross-validation needs to be performed in

order to find the optimal parameters.

For example, in support vector regression with linear kernel, the only parameter

of interest is cost C. Initially, the optimal values of C are not known, and can

possibly differ across different values of the task coupling parameter λ. Ideally, one

would want to use the optimal model parameters for every λ used to cluster the tasks.

However, the process of finding optimal parameters with a grid search for each λ is

time-consuming. Moreover, the optimal parameters for the final model will differ

from the optimal parameters in the diagnostic models. Therefore, it is reasonable to

devise simplified search procedures for optimal model parameters in the diagnostic

models.

In the above example of two clusters and only single-task and independent task

learning diagnostic models, we would intially seek to find the optimal C values of

the SVR models. As a simplified procedure, single-task learning (λ = 0) can be used

for a search for optimal C on a test set consisting of data from all tasks. Then, this

value of C can be used in both single-task and independent task learning diagnostic

models.

4.1.4 Designing the remedial measures

At this point of the modeling process, we are working with K clusters of tasks, each

cluster k is defined by certain predetermined criteria. The clusters may generally be

divided into good and bad ones per the criteria used and explained variance in the

cluster. Then, various remedial measures can be performed in each cluster, except
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perhaps the clusters where the performance is good as is.

As an example of remedial measures, in clusters of tasks with negative explained

variances, for each task, we can replace the predicted values with the mean response

values in the respective test sets. If a cluster already has positive explained variances

in each task, then improvement may be achieved by replacing the initial model, say

SVR, with another model, for example ridge regression, LASSO, or random forest. In

such cases, special consideration needs to be done to the way the optimal parameters

are found for these replacement models, and successful cross-validation will likely

require using the whole training set.

Separate consideration is required for the way the values in each task are replaced.

Conventionally, all response values for a task are replaced at the same time. It can

be reasonable to consider a sequential replacement, such that components Ŷ
[i]

test get

replaced one by one until the point where the performance is maximized, as measured

by explained variance EV .

4.1.5 Finalizing the model

In the final part of the overall modeling procedures, step 2 of the Algorithm 1 com-

bines the previous results to arrive at the final model. Therefore, all the procedures

together form a two-step multi-task model.

Each cluster is considered differently. The observations in good clusters that were

decided to be untouched during the diagnostics procedures, can be predicted with a

model that is fit on the training set of all tasks, as was done during the diagnostics

steps (except in cases of the models based on individual task learning). Then, the

observations in other clusters are replaced per the steps that were discovered during

their diagnostics.
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In order to find the optimal model for each cluster, we do cross-validation of

the models inside their own clusters. Note that the final model requires different

parameters compared to diagnostic models. The cluster k training data is likely to

be distributionally different from the overall data Xtrain and Ytrain. Thus the model

parameters that were found to be optimal on the overall data, may not be a good

choice for the clusters.

4.2 A simple example of the two-step model

In the next section, I demonstrate a simple example of a two-step multi-task model.

For simplicity, assume that λ ∈ {0, 1}. Because these are the edge cases, there is

no need to apply the mean-regularized MTL kernel, although the results would not

change much if it was. The baseline model will be SVR.

The tasks are split into two clusters so that K = 2. The good cluster (Y[1], X[1])

consists of the tasks that have positive explained variance on their own test sets for

both independent and single-task learning. The other tasks will be put into a bad

cluster (Y[2], X[2]), which contains tasks that have negative explained variance on

their test sets either on independent task learning model, single-task learning model,

or both.

The categorization of the tasks to the clusters will be done using the SVR model.

From the previous experience, when comparing λ = 0 and 1, the single-task learning

yields good performance on the ILEA data, and the optimal C ≈ 2.3 for λ = 0. To

simplify the procedure, this is the parameter of the SVR model that will be used for

all diagnostic fits. Note that if we didn’t have experience analyzing this data, we

would have to come up with another good approximation of C.

In order to improve the performance in the bad cluster, the predictions of the
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SVR model for each of the tasks are to be replaced with the average score value of its

test set. Alternatively, the response variable means could be replaced by regression

the predicted values to the actual values in the test set, thus obtaining Best Linear

Predictor based on the predicted values, rather than on the data itself. This process is

called linearizing the predictor, and their property is that they cannot have negative

R2, which means that they cannot have negative EV by proxy. More details are

given in Christensen (2020) [23].

The second step of the model will combine the fitted values of good and bad

clusters together. In the good cluster, the fitted values will be based on the SVR

model trained on all tasks, as was done during the diagnostics step. In the bad cluster,

we replace the predicted values with averages within each task (ȳl) as described above.

Then, we measure an explained variance EV on the combined set of predicted scores.

Thus, we obtain a single-number measure of the performance of the two-step model.

We do this step only for λ = 0 as we already know that this is better than λ = 1.

We will compare the explained variance of our two-step model with the unmodified

single-task learning SVR with C = 2.3.

Note that C ≈ 2.3 is the best when all tasks data is in the validation set, so it

can be beneficial to search for optimal C after the clustering step because we could

exclude the bad cluster from the validation set and focus on finding optimal C for

the good cluster only.

There are 40 tasks in the bad cluster and 99 tasks in the good cluster. Validating

the model on the good cluster, the optimal C ≈ 2.9. The baseline model achieves

33.67% explained variance, while the proposed model achieves 35.5%. Thus there is

a substantial increase in the explained variance in the two-step multi-task model.

Because the framework of the two-step multi-task approach is flexible, its high

customizability allows the construction of strongly performing models. This example
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highlights the benefits of the proposed approach in a simplified case.

4.3 Methods development

The purpose of this section is to demonstrate and evaluate multiple applications of

the two-step multi-task modeling approach. It allows the creation of multitude of

different model configurations, depending on the needs of a practitioner. The first

step of the modification considers the task clustering criteria, and the second step

considers the choice of models for the clusters and the final performance evaluation.

The procedure is encapsulated in Algorithm 1.

For the ILEA schools data, the linear kernel multi-task learning model in Section

2.5 will be regarded as starting point for comparison with all other models. It

achieves a test set explained variance of slightly below 34% at λ = 0 averaged over

10 random train-test splits. I repeat the experiment for 10 random train-test splits

and achieve 33.72% explained variance on the test set, using SVR with C = 1.96

which was found using the average value of 10-fold cross-validations on the training

set over all 10 random train-test splits.

In the following, multiple approaches are considered to increase the test set ex-

plained variance for this dataset. As the definition of a two-step multi-task modeling

approach is quite general, these special case applications can be seen as separate

frameworks on their own. Therefore the approaches are designed in such a way as to

be generalizable to other datasets.

These approaches are first and foremost statistical in their nature. In this context,

it means that the clustering will be based on the training sets only, and use the test

set only to evaluate the final model performance. It should be noted that Evgeniou

et al (2005) [30] used the test set to select the most optimal value of the multi-task
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coupling parameter λ, and not only to measure the final model performance. In

other words, the test set was also used to find the most important model parameter.

Therefore, also in my approaches, it might sometimes be necessary to use the test

set to cross-validate the key parameter.

4.3.1 Explained variance rebalancing approach

In the first approach, I define a per-task explained variance rebalancing procedure,

which will be used to cluster the tasks. It is defined as the weighted average of

explained variance of a model trained on an individual task and then fitted on its

own training set and on all other tasks’ training sets. α×100% of weight is placed on

the explained variance measured on the task’s own training set, and (1− α)× 100%

of weight is placed on the training set performance for average explained variance as

fitted on all other tasks’ training sets. The parameter α can be decided a priori or

can be found through cross-validation. This can be seen as an extension of explained

variance EV , which is based on data.

As a starting point, I choose α = 0.5, which induces an equal trade-off to perfor-

mance for the task itself and for all other tasks. The steps in the approach follow the

general two-step modeling framework, with a diagnostic phase and remedial measures

phase:

1. For each task’s training set, perform a 5-fold cross-validation of SVR on its own

training set to find the optimal cost parameter in the SVR models. For each

task, repeat this process for each of the train-test splits, and average optimal

costs across the splits for each task.

2. Train individual task SVR for each task separately using their optimal costs.
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3. Fit each model to its own training set and all other tasks’ training sets, ob-

taining a matrix of explained variances. Perform it for all train-test splits, and

average the results.

4. Split the tasks into two clusters according to the weighted average of explained

variance performance on its own training set and all other tasks’ training sets.

The tasks with above-median weighted explained variance go to a good cluster,

and all other tasks go to the bad cluster.

5. For both clusters, we modify the fitted values according to the table below and

measure the explained variance performance of the final model on the test set.

Good cluster model Bad cluster model Explained variance
Random Forest single task SVR single task (C = 1.96) 33.6%
SVR single task (C = 1.96) Random Forest single task 34.7%

Table 4.1: Final test set explained variance per the combination of models in both
clusters in the explained variance rebalancing approach.

The results of the application of the explained variance rebalancing approach are

stated in Table 4.1. Note that the performance has increased compared to using

single-task SVR, which achieves explained variance of 33.67% with the optimal cost

of C = 1.96. This is also the cost that we use in our modified procedure as a

simplification.

It appears to be more advantageous to use SVR in the good cluster, and random

forest in the bad cluster, likely because SVR was actually used as a model for initially

clustering the tasks. Another possible explanation is that the SVR algorithm may

be better suited to generalize knowledge between the tasks since the good cluster

contains tasks that have great performance on themselves and on other tasks. On

the contrary, the bad cluster tasks aren’t useful for explaining other tasks, and so
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here the random forest is able to more accurately capture the variation in the data

due to its tree structure, and make predictions more precise.

4.3.2 Best subsets information extraction

In the following approach, I attempt to extract additional information about the tasks

to measure their similarity by using the best subsets methods of multiple regression

models. The motivation is that similar tasks will have similar variables that are

important. The ILEA schools data has 26 predictor variables, and for each task, I

will find the optimal choice of predictor variables by using the best subsets algorithm

with a multiple regression model. As such, I am only interested in the multiple

regression and its best subsets variable selection method in order to extract the

information about tasks’ similarity. As I won’t be fitting the multiple regression to

the task clusters, the information about which variables are important for each task

will give us information about the way the tasks are related. Moreover, I won’t be

reducing the variable space when fitting the model, and we are only doing variable

selection in order to cluster the tasks. When fitting the final models, all variables

will be used for each cluster.

For each task, we find the variables that are the best according to the best

subsets algorithm. The metrics to be optimized are BIC and Mallows’s Cp, thus we

will perform two separate analyses. We define the clusters to include the tasks where

the same variables are important according to the variable selection algorithm.

The ILEA schools data has m = 139. When splitting the tasks according to the

best subsets that minimize BIC, the number of clusters K is between 79 and 87,

depending on the train-test split. When minimizing Mallow’s Cp, the number of

clusters K increases to be in the range between 96 and 107. Most of the clusters

have only one task, while few clusters group multiple tasks, with the biggest cluster
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containing 21 tasks in two of the random train-test splits.

After the tasks have been separated into clusters, we fit a separate model for each

cluster. Using support vector regression, we apply 5-fold cross-validation to find an

optimal C for that cluster. Then we predict the test set for each cluster, gather the

results, and measure the explained variance for the whole test set. We repeat the

experiment for the 10 random train-test splits and average the explained variance

across the splits to arrive at the final performance. The results of the experiments

are illustrated in the Table 4.2.

Best subsets criteria Cluster models Explained variance
BIC SVR (optimal C) 33.6%
Mallow’s Cp SVR (optimal C) 33.3%

Table 4.2: Final test set explained variance per best subsets criteria and models in
the best subsets information extraction approach.

The best performance is achieved when clustering according to variables selected

with BIC. The benchmark 33.7% of the single-task learning model is only slightly

higher than the performance of the proposed method. The number of clusters K

is very high for both of the clustering criteria, which means that there are many

individual models that are being trained and cross-validated, making this procedure

somewhat similar to individual task learning. The primary benefit is the individual

cross-validation in each cluster. However, the loss of information from reducing the

data for each model has seemingly counteracted the benefit of the clustering. It is an

open research question to search for other best subsets criteria and cluster methods

to increase the performance on ILEA data.
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4.3.3 Other tasks performance approach

In this approach, we consider the second component of the previously discussed

explained variance rebalancing approach. It is a sum of two terms, where the first

term is the performance of the task predicted on itself, and the second term is the

average performance on predicting all other tasks. We focus more closely on the

second term, the average performance on all other tasks.

Some tasks will have relatively high performance on other tasks, while some tasks

will have very low, or even negative average performance on other tasks. For the

former, it means that those tasks are well suited to predict not only themselves, but

also other tasks, while for the latter, it means that tasks aren’t suitable to predict

other tasks, and are only suited to predict themselves.

We define ξ to be the level of average explained variance on other tasks above

which we consider a task to be suitable to predict other tasks. If a task has an average

explained variance on other tasks which is lower than ξ, then it is not considered

suitable for other tasks’ prediction. For example, if ξ = 10%, tasks that achieve at

least 10% average explained variance when predicting other tasks, then it will be

modeled in a single-task learning model, together with other such tasks. And for

tasks that are below ξ, we only do independent task learning and predict on this

particular task only.

We perform experiments separately with support vector regression and random

forest models and record the results. For SVR, each model uses optimal cost param-

eters, found using 5-fold cross-validation on the training set. For random forest, we

use 1000 trees for the single-task learning model, while the independent task learn-

ing model uses default parameters. The experiments are repeated across 10 random

train-test splits, and the results are averaged out. We use cross-validation to find

the level ξ which yields the highest overall explained variance on the test set. The
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ξ SVR expl.var. RF expl.var.
-50 34.62 31.99
-40 34.64 31.50
-30 34.74 18.90
-20 34.54 16.84
-10 34.32 11.64

Table 4.3: Final test set explained variance per level ξ for the other tasks performance
approach.

results are illustrated in the Table 4.3.

Positive values of ξ didn’t yield good results, and it is interesting to note that as

ξ gets lower, the performance of SVR improved gradually. At 34.74%, it yields the

highest explained variance in this chapter so far, and 1% higher than the baseline

performance. The reason that so negative level ξ is relevant, can be that there

are some tasks that are extreme outliers, and separating those tasks yields in greater

performance improvements. However, it doesn’t seem to be the case that the provided

approach is useful in random forest models, where the performance flattens out at

high 18% as ξ gradually decreases. We also observe that as ξ decreases further, the

random forest gradually increases its performance, being slightly above 30% when

ξ = −40 and lower. With such a low value, most tasks will be considered to be one

cluster, and as ξ decreases further, it leads to single-task learning for all tasks.

4.3.4 Best performance subsets combinations

In this approach, we cluster tasks into subsets according to their best performance

on every task. For each task, we find the tasks which predict it with the highest

explained variance. Usually, it will be a model based on this task itself, but also

other tasks can provide models which give high performance. We use distance τ

away from the maximum to capture those tasks. Then, we train one learning model
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on those best tasks in the cluster, and predict only the task considered.

For example, let τ = 10%, and that for task 2, we find that the maximum

explained variance was achieved by its own model, with 35% explained variance. We

also know that task 1 yields 27% explained variance when predicting task 2 training

data, task 3 - 22%, and task 4 - 31%. Tasks 1 and 3 are within τ = 10% distance

below the maximum performance of 35%, while task 2 is not. Thus, we consider

models based on tasks 1, 2, and 3 to be a cluster of tasks that predicts task 2 very

well, we train a single-task model on a combined dataset of those tasks and predict

on the test set for task 2. This will be the final performance measure on task 2. This

process proceeds for all tasks in the dataset so that every task gets its own cluster

of tasks that perform best for this task, and a separate single-task learning model is

trained in each cluster to predict that task.

The procedure is summarized in Algorithm 2.

68



Chapter 4. Two-step modeling approach to multi-task learning

Algorithm 2: Best performance subsets combinations

input : 10 random train-test splits, parameter τ
output: Measurements of explained variance on test set for each split

for each of 10 train-test splits do
for each task i do

select training data for task i;
if necessary, perform 5-fold cross-validation to cross-validate the
parameters of the model;
record the optimal parameters for this split and task;

average the optimal costs across the splits for each task;

for each of 10 train-test splits do
for each task i do

train the model on training data for task i with the optimal
parameters for that task;
for each task j do

predict responses in training data for task j using the model
trained on task i with its optimal cost;
measure and record the explained variance;

average the explained variances across the splits for each combination of
tasks i and j (as defined in the loop above)
for each task i do

select all performances of explained variance that were achieved when
predicting on task i;
sort the explained variance values from largest to lowest;
find the task with maximum explained variance and use cut-off distance
τ to select the tasks which have maximum τ lower explained variance
than the maximum performance task;
save these tasks as the cluster for task i;

for each of 10 train-test splits do
for each cluster i do

select training data from tasks which belong to the cluster for task i,
and merge this data together;
if necessary, perform 5-fold cross-validation to find optimal
parameters of the model;
train the model on training data for this cluster with the optimal
parameters;
use this model to predict test set data for task i;
save the predicted response values;

combine the predicted response values for all tasks;
measure and record the explained variance by comparing the predicted
response values with the actual test set response values;
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In the Algorithm 2, after the first two for-loops, we obtain explained variance

matrix. Each element (i, j) contains explained variance achieved when training a

model on task i and using it to predict on task j. This is illustrated in Figure 4.1 for

linear SVR and random forest models. Note that there is a slight diagonal line, where

tasks are trained and predicted on themselves. The universal pattern is that some

tasks are good at predicting other tasks, while other tasks have quite low predictive

power. This matrix is then used to cluster the tasks, based on the cut-off parameter

τ . Its optimal value can be found using a grid search.

τ Linear SVR expl.var. RF expl.var.
10 37.55 33.60
15 38.78 33.75
20 37.58 33.60

Table 4.4: Final test set explained variance per level τ for the best performance
subsets aproach.

The performance of the experiment for a range of values of τ is illustrated in Table

4.4. Note that in the case of SVR diagnostics, 10 out of 139 tasks have maximum

explained variance by a model trained on a different task than its own, while when

using random forest, there are no such tasks.

These results are the strongest performance that is achieved among all customiza-

tions of the two-step multi-task procedure in this chapter. The performance of this

procedure can be potentially even stronger when considering other models than sup-

port vector regression. However, one downside is that this procedure is computa-

tionally expensive, and depends a lot on the size of the data. A grid search for

parameter τ necessitates redoing the whole procedure over again for each value of τ .

An efficient way to work with the best performance subsets combinations approach

is to use parallel computing, as was done for evaluating Table 4.4. The Algorithm

2 is suitable for parallelization for each value of τ in the grid search, and for each

train-test split.
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Figure 4.1: Explained variance matrix for SVR and random forest. Columns are
tasks used for training, and rows are tasks used for prediction on. Cells are blacked
out when explained variance is negative.
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Chapter 5

Additive multi-task model

5.1 Overview

In this section, I introduce the extension of the generalized additive modeling ap-

proach to the multi-task learning framework. In the context of machine learning,

and specifically for multi-task learning, it can be of great benefit to explicitly sep-

arate the linear and nonlinear effects in the model. We might know or reasonably

believe that some part of the model can be better expressed as a parametric model,

while the other part is better expressed nonparametrically. This setup can make the

model more flexible and capable, and in this chapter I introduce a new approach to

multi-task learning modeling that addresses these concerns.

The main inspiration for this model is the well-established framework of additive

models. For a brief review of the theory of additive models (Hastie, Tibshirani, and

Friedman (2001) [38]), consider a regression problem as:

yi = α +

p∑
j=1

fj(xi,j) + ϵ (5.1)
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with intercept α,
∑n

i=1 fj(xi,j) = 0,∀j, and ϵ being an error term with mean 0.

The functions f1, f2, ..., fp are additive in their effect on the response variable y, and

they can be either parametric for linear relationships or nonparametric for nonlinear

relationships. The functions fj can be fitted with nonparametric methods such as

additive cubic smoothing splines, local linear estimators, and polynomial estimators.

These functions can be found using the backfitting algorithm, which is an iterative

procedure that estimates each of the functions sequentially until their convergence.

In this chapter, I introduce an extension of additive models which applies to

multi-task learning. I define such models as additive multi-task learning models. The

primary benefit is the possibility to combine parametric and nonparametric effects

in an additive way. Therefore, it is a semiparametric model. As a special case, if the

parametric part of the model is linear, it becomes a partially linear model.

An additive multi-task model can be customized to fit a particular problem,

which makes this approach incredibly useful in the multi-task learning framework.

Casting the multi-task model in an additive way allows great flexibility in a range

of statistical models that can be applied to a particular problem, and allows the

researcher to explicitly specify the parts of the model. From a multi-task learning

perspective, it allows clear separation of various task effects and can lead to a great

increase in performance with a suitable design.

In the following, I start by generalizing explained variance to cover new important

cases and adapting combined estimation to a multi-task framework, additionally

proving its upper bound of performance improvement. then, I introduce multi-task

combined estimation and investigate its properties. I proceed to introduce and define

the additive multi-task model and continue with a further generalization of the fitting

algorithm. This is followed by an application of the additive multi-task model to

the real data. The chapter is concluded with an illustrative comparison of model

components.
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5.2 Generalization of explained variance

Recall the definition of explained variance by Bakker et al (2003) [9] in Section 2.4

of this dissertation, which is given by the Equation 2.8:

EV (Ytest, Ŷtest) =
Var(Ytest)−MSE(Ytest, Ŷtest)

Var(Ytest)
× 100%

In this conventional definition, the statistical model is trained on the training set,

and its performance is measured on the test set. The universal interpretation and

application of this definition ensure that the results of various models are measured

in a consistent manner in the machine learning field.

In practice, there arise situations where it is advantageous to measure explained

variance in different ways from the traditional definition. For example, it can be

useful in applications where explained variance is used for cross-validation on the

training set, or when there is no splitting between train and test sets. The conven-

tional definition of explained variance can’t be used in these situations as it would

cause inconsistencies in the interpretation of results.

5.2.1 Extensions of the definition

In the following, I extend the explained variance definition to cover the two cases

mentioned in the previous section.

Definition 1. The fraction of variation in the training set that is explained by a

model trained on this training set is measured by the general explained variance as:

GEV (Ytrain, Ŷtrain) =
Var(Ytrain)−MSE(Ytrain, Ŷtrain)

Var(Ytrain)
× 100% (5.2)
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In the existence of train-test splits, general explained variance GEV measures

the variability explained in the training set only. This is helpful in model selec-

tion procedures, or in preliminary data analysis for early investigations of model

performance.

Definition 2. The fraction of total variation in the dataset that is explained by a

model trained on this dataset is measured by the total explained variance as:

TEV (Y, Ŷ) =
Var(Y)−MSE(Y, Ŷ)

Var(Y)
× 100% (5.3)

The purpose of the total explained variance TEV metric is to cover those cases

where no train-test splitting is done. Thus, the model is trained and predicted on

the same data, and there are no other sets to consider. This metric is designed to

be used in statistical procedures, where there are often no train-test splits, and the

whole data is used for analysis.

The differences in the definitions of EV , GEV , and TEV are about which data is

used for the model training and which variation is measured. Along with explained

variance, both general explained variance and total explained variance will be used

to augment the research in this dissertation.

GEV and TEV are measured when the model is trained and predicted on the

same data, while EV is measured when the model is trained on the training data,

and used for prediction on the test set. Therefore, GEV and TEV are measures of

goodness of fit, while EV is a measure of prediction quality.

To understand the total explained variance deeper, consider the definition of the

coefficient of multiple determination R2, given in Kutner, Nachtsheim, Neter and

Li (2005) [51]. Let SSTO =
∑n

i=1(yi − ȳ)2, SSE =
∑n

i=1(yi − ŷi)
2 and SSR =∑n

i=1(ŷi − ȳ)2. Then:
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R2 =
SSR

SSTO
= 1− SSE

SSTO
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

=

= 1−
∑n

i=1(yi − ŷi)
2

n

n∑n
i=1(yi − ȳ)2

= 1− MSE(Y, Ŷ)

Var(Y)
= TEV (Y, Ŷ)

Thus it becomes evident that reformulating explained variance EV for the whole

dataset to become total explained variance TEV makes it equivalent to the coef-

ficient of multiple determination R2, which also has its maximum value at 100%,

denotes equal predictive power of the model and response mean at 0% and indicates

performance worse than response mean when it is negative.

The statistical meaning of R2 is that it measures the fraction of variation in the

response variable that is explained by its relationship with the predictor variables. R2

is often used in applications with linear models. In its nonlinear applications, SSTO

doesn’t necessarily decompose to a sum of SSR and SSE, and there is a debate

as to whether R2 can be used for nonlinear relationships (for example, see Spiess

and Neumeyer (2010) [71]). R2 also assumes that the error terms ϵ have Normal

distribution. The implication is that all statistical properties and interpretation of

R2 transfer directly to TEV in cases of a linear relationship. When the model is

nonlinear, we cannot say for certain whether the statistical properties transfer from

R2 to TEV , even though the equality holds regardless.

5.2.2 Decomposition of total explained variance

In this section, I show the decomposition of total explained variance into its indi-

vidual components. Recall that n = ntrain + ntest. Moreover, recall from the defini-

tion of explained variance in Section 2.4, that in the formula of EV , Var(Ytest) =∑ntest

i=1 (yi − ȳ)2

ntest

, which implies that for TEV , Var(Y) =

∑n
i=1(yi − ȳ)2

n
.
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Theorem 5.2.1. Total explained variance TEV (Y, Ŷ) depends only on the mean,

standard deviation, and MSE measured on training and test sets.

Proof. First, consider the mean-squared error MSE. It follows from its definition

that

MSE(Y, Ŷ) =

n∑
i=1

(yi − ŷi)
2

n
=

ntrain∑
i=1

(yi − ŷi)
2 +

n∑
i=ntrain+1

(yi − ŷi)
2

n
=

=
ntrainMSE(Ytrain, Ŷtrain) + ntestMSE(Ytest, Ŷtest)

n
(5.4)

Thus, MSE of the whole data can be expressed as a weighted average of two

groups’ individual MSE. The weights sum up to 1, since ntrain + ntest = n.

If two separate datasets are combined into one dataset, then, based on the law of

total variance, the variance of the combined dataset can be decomposed into compo-

nents that depend only on the two original datasets (Higgins et al (2020) [40]).This

well-known property allows for decomposition of Var(Y), since Y = Ytrain ∪Ytest.

Moreover, the overall mean of Y depends only on the means of training and test

sets. We have that

Ȳ =
ntrainȲtrain + ntestȲtest

n
(5.5)

Var(Y) =
ntrain(Var(Ytrain) + Ȳ2

train) + ntest(Var(Ytest) + Ȳ2
test)− nȲ2

n
(5.6)

The derivation of Equation 5.6 is presented in Appendix B.

It is clear from the Equations 5.4, 5.5 and 5.6 that Var(Y) and MSE(Y, Ŷ)

depend only on sample sizes, and mean, variance andMSE measured on the training
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and test sets. As the TEV (Y, Ŷ) depends only on Var(Y) and MSE(Y, Ŷ), it

becomes evident that total explained explained variance depends only on sample

sizes, and mean, variance and MSE measured on the training and test sets.

5.3 Multi-task combined estimation

In statistical modeling, and specifically in multi-task learning, there often arise sit-

uations where we may find it advantageous to unite the predictive power of two or

more models together, yielding a better final model. In order to achieve it, com-

bined estimation is often applied. We seek to extend this notion to application in

multi-task learning. The benefits of combined estimation in multi-task learning can

be significantly higher than in its conventional application, because we can combine

the models differently for different tasks.

Let ŷ
[1]
l be a fitted value for an observation from task l for the model one, and

let ŷ
[2]
l to be a fitted value for the same observation from task l for the model two.

Let θl ∈ [0, 1] be a parameter that controls trade-off of these fitted values for task l.

Then, the multi-task combined estimate is defined as:

ŷcomb
l = θlŷ

[1]
l + (1− θl)ŷ

[2]
l (5.7)

for task l. The parameter θl controls the trade-off between model one and two on

the final model output ŷcomb
l for task l. Choosing any value between 0 and 1 leads

to a fitted value that contains partial information from both models for that task.

As a special case, choosing θl = 0 for task l makes the fitted value to be ŷ
[2]
l for that

task, and vice versa, choosing θl = 1 forces the fitted value to be ŷ
[1]
l . Moreover,
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another important special case is setting a global trade-off parameter for all tasks,

such that θl := θ for all l ∈ {1, ...,m}. Thus, we may either have different trade-off

parameters in every task, which are estimated locally within each task, or have one

global trade-off parameter which is estimated in the whole data.

The optimal θl values can be found using cross-validation on the training set for

task l. Assume that we have trained two separate models on the training set, and

have obtained Ŷ
[1]
test and Ŷ

[2]
test from their prediction on the test set. These vectors

contain predictions for all tasks. Then, for each task l, we can find the optimal θl.

Algorithm 3: per-task combined estimate search

foreach task l ∈ {1, 2, ...,m} do
foreach θl ∈ {0, 0.01, 0.02, ..., 1} do

Compute ŷcomb
l = θlŷ

[1]
l + (1− θl)ŷ

[2]
l ;

Measure and record EV (yl, ŷ
comb
l ) and θl;

Select and record θl that has yielded the highest EV (yl, ŷ
comb
l );

Algorithm 3 searches for the optimal value of θl for each task l in the interval

between 0 and 1, including the bounds, however, the granularity of this interval

is customizable. {0, 0.01, 0.02, ..., 1} is a reasonable starting choice, as used in the

Algorithm.

The notion that the trade-off parameter can vary between the tasks allows each

task to benefit from the best combination of two models. In the multi-task kernel

framework, it can be beneficial for the two models to be trained on the same dataset.

For example, training different models such as a combination of support vector re-

gression and random forest models. Moreover, in the context of the multi-task kernel,

there arise opportunities to combine two models of the same algorithm. For exam-

ple, one support vector regression model may be trained on single-task learning data,

while another support vector regression is trained on a dataset that is transformed

with a mean-regularized multi-task kernel with a positive task coupling parameter
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λ.

A generalization of combined estimation is possible, where combined estimates

are further weighted together to form a new combined estimate. Thus, ŷcomb
l can

become a combination of three or more models, without a limit. The output would

be controlled by multiple θ parameters. If the number of models is Q, then the

number of θ parameters is Q− 1. As Q grows, a full grid of parameter combinations

increases, thus it may not be computationally feasible to do a deterministic search,

and a searching algorithm might have to be used.

The analysis of combined estimation benefits from a theoretical property that

puts an upper bound on its performance improvement, compared to using the best

model alone.

Theorem 5.3.1. Let ĝ1 and ĝ2 be estimators of g, such that ĝ = θĝ1+(1−θ)ĝ2, with

θ ∈ [0, 1], is a combined estimator of g. Then, the maximum reduction of MSE from

using ĝ as the estimate of g is at most 50% compared to estimating g with either ĝ1

or ĝ2 alone.

Proof. To show this, consider

MSE(ĝ) = θ2MSE(ĝ1) + (1− θ)2MSE(ĝ2) + 2θ(1− θ)E[(ĝ1 − g)(ĝ2 − g)] (5.8)

By minimizing the equation (5.8) with respect to θ, we get the optimal weight θ0

as

θ0 =
MSE(ĝ2)− E[(ĝ1 − g)(ĝ2 − g)]

MSE(ĝ1) +MSE(ĝ2)− 2E[(ĝ1 − g)(ĝ2 − g)]

≈ MSE(ĝ2)

MSE(ĝ1) +MSE(ĝ2)
,

(5.9)
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under the assumption that the covariance term is small compared to mean squared

error.

Let K =
MSE(ĝ1)

MSE(ĝ2)
. Then, θ0 =

1

1 +K
. It follows that the optimal θ depends

only on the ratio of the MSE. Furthermore, the MSE(ĝ) reduces to

MSE(ĝ)|θ=θ0 = θ0MSE(ĝ1) = (1− θ0)MSE(ĝ2) (5.10)

Without loss of generality, assume that MSE(ĝ1) < MSE(ĝ2). Then, θ0 > 0.5,

since K < 1.

The percentage of reduction in MSE by combined estimate is

MSE(ĝ1)−MSE(ĝ)

MSE(ĝ1)
= 1− θ0MSE(ĝ1)

MSE(ĝ1)
= 1− θ0 < 0.5 (5.11)

Thus, the maximum reduction of MSE will be smaller than 50%.

The main implication of Theorem 5.3.1 is that there is a rather high upper bound

of potential performance improvement when using combined estimation.

It can be seen from the definition of explained variance in Equation 2.8 that

regardless of the value of Var(Ytest), MSE and explained variance are connected

in a one-to-one relationship. Therefore, the implications of Theorem 5.3.1 transfer

directly to applications with explained variance metric, which is used extensively in

this dissertation.
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5.4 Additive multi-task model

Recall that yi,j is an observation j in task i, where i = 1, 2, ...,m and j = 1, 2, ..., ni.

Let y = [y1,1, y1,2, ..., y1,n1 , y2,1, ..., ym,nm ]
′, ϵ = [ϵ1,1, ϵ1,2, ..., ϵ1,n1 , ϵ2,1, ..., ϵm,nm ]

′, f =

[f1(z), f2(z), ..., fm(z)]
′; let Im be an m×m identity matrix, 1ni

be the vector of ni

1s, Z = Im
⊗

[1′
n1
,1′

n2
, ...,1′

nm
]′ where

⊗
is Kronecker product.

I define the additive multi-task model as

y = Xβ + Zf+ ϵ, (5.12)

where X is a certain design matrix related to the linear term structure, and error

terms ϵ are uncorrelated with mean zero, and each task has distinct variance, i.e.

Var(ϵi,j) = σ2
i for all i. The structure of matrix Z is inspired by the model matrix

in ANOVA with a block design. This matrix is fixed, and is designed to separate

the multi-task models. The matrix X is a design matrix for the linear term, and

vectors z denote datapoints. These two matrices can be either the same, or different,

depending on the model design. The Xβ part is parametric, while the individual

functions fi(z) are nonparametric in the term Zf.

Using a backfitting procedure (Hastie et al (2001) [38]) as a motivation, I propose

Algorithm 4 to estimate yi,j:

Algorithm 4: fitting the additive multi-task model

Initialize β̂ = (X′WX)−1X′Wy based on a reduced model: y = Xβ + ϵ;
repeat

Consider the residual model y−Xβ̂ = Zf+ ϵ, where f̂ can be solved by
regularization criterion such as (2.10) using SVR;

Update β̂ = (X′WX)−1X′W(y− Zf̂) ;

until β̂ converges ;

where β are fitted with weighted least squares in order to adjust for different vari-

ances in different tasks, and the weights in weight matrix W of the WLS model are
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estimated as reciprocals of task sample variances, inspired by the approach for con-

stant values of response variables described in Montgomery, Peck, and Vining (2012)

[26].

The flexibility of this definition will be shown in the experiment in Section 5.6,

where the matrix X is designed to capture multi-task effects through a one-way

ANOVA model, while vectors z are defined as the original predictor variables. In

connection to this example, note that the parametric part can be any model, so any

experimental design can be applied here, including three-way ANOVA, however one-

way ANOVA was performed in that example due to its simplicity and effectiveness

for ILEA schools data.

The iterative algorithm of fitting the model is inspired by the backfitting algo-

rithm, but it also differs in a major way. The original backfitting algorithm has p

components (usually the number of predictors), while the proposed algorithm has

only 2 components: the linear and nonlinear parts, as Xβ and Zf are additive to each

other. The first iteration fits the linear estimator to the design matrix X. The initial

fitted linear part gets deducted from the response variable in the second step, and the

nonparametric model is applied. Then, the parametric coefficients get updated with

the response adjusted for the nonlinear part, and the algorithm runs until the linear

coefficients converge, which is also the point where the nonlinear part converges.

As an extension, an alternative stopping criterion can be defined, for example, the

maximization of explained variance or minimization of a loss function.

Alternatively, a fit of β can be performed by using the ordinary least squares

algorithm, which is a special case of weighted least squares where all observation

weights are the same. However, OLS fit would not accommodate the assumption

of distinct error variances in each task. A further generalization of the additive

multi-task model is needed and will be performed in Section 5.7.
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Note that the form of the additive multi-task model in Equation 5.12 is highly

reminiscent of a partially linear model. There are, however, a few notable differences.

In the additive multi-task model, there is a different nonparametric function for

every task, and the error variances are different in every task. Note that the latter

assumption is not strictly necessary, and it will be relaxed in Section 5.7.

Algorithm 4 can be seen as a form of continuous bias correction. At first, some

variability in predictions is removed by the linear part of the model, then the remain-

ing variability is captured by the nonlinear part. This, in turn, allows the linear part

to reduce the variability further, and the process continues until the convergence cri-

teria are satisfied. Thus, linear and nonlinear models are continually correcting each

other’s biases. However, because of the bias-variance trade-off, correcting the bias

can increase variance. This can lead to overfitting, making the model’s prediction

less generalizable to new, unseen data. Therefore, particular care should be taken

when choosing the stopping criterion.

5.5 Algorithmic model selection

In the following, I seek to extend the principle of Algorithm 4. Note that there are

two distinct steps in the model fitting procedure. First, the parametric component

β is fitted, and in the second step, the nonparametric component f is fitted on a

residual model from the first step. This is designed to be one loop of the algorithm.

After every loop, the stopping criterion is checked to see whether the performance

has improved or worsened. If the performance keeps improving, it is reasonable to

run further loops; otherwise, the algorithm should be stopped.

In Algorithm 4, no consideration is taken for the intermediate model, inside the

loop. However, there may arise circumstances where the intermediate model performs

better than the model of one full loop. Thus, in order to improve this procedure, I
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generalize this algorithm to cover these intermediate cases.

In Algorithm 5, stopping criterion and metric are flexible. Denote this metric as

M . Then,

Algorithm 5: algorithmic model selection for additive multi-task model

Initialize β̂ = (X′WX)−1X′Wy based on a reduced model: y = Xβ + ϵ;
Measure M and denote as M0;
repeat

Solve for f̂ in the residual model y−Xβ̂ = Zf+ ϵ;
Measure M and denote as M1;
if M0 is better than M1 then

Keep the previous model and break the loop

else
Set M1 → M0

Update β̂ = (X′WX)−1X′W(y− Zf̂) ;
Measure M and denote as M1;
if M0 is better than M1 then

Keep the previous model and break the loop

else
Set M1 → M0

until loop breaks ;

Algorithm 5 is designed to run the model fitting procedure on the additive multi-

task model until the performance metric is not improving anymore.

Let K + 1 be the total number of loops until the stopping criterion is triggered.

At the loop K + 1 it would be decided that the new model is not as good as the

previous one, thus the new model is discarded and the previous model from K loops

is chosen as the final model.

It is assumed that the performance metric values can be ranked against each other

quantitatively, such that it is possible to select one with the highest performance.

Thus, M0 is better than M1 implies that M0 and M1 can be ranked, and depending

on the numerical scale, one is higher/lower than or equal to the other. For exam-

ple, if general explained variance GEV is the metric for the stopping criterion, the
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algorithm stops when GEV starts to decrease. Other examples of performance met-

rics include mean-squared error MSE, Akaike information criterion AIC, Bayesian

information criterion BIC, and deviance information criterion DIC.

It can be seen that the Algorithm 4 is a special case of a more general Algorithm

5. The decision of stopping the loop is done at even multiples of K. Thus the first

K value where the loop can stop is at K = 2, then after the second loop it can stop

at K = 4, and so on.

5.6 Model construction and application

5.6.1 Motivation

In the following, I demonstrate the effectiveness of the additive multi-task learning

model by applying it to the real-world dataset, ILEA schools data. The motivation

for this model construction comes from an observation of different distributions of

the response variables in each task.

In Figure 5.1 it becomes apparent that the means and standard deviations for

each task have quite strong deviations from their estimates for all tasks together.

These can dramatically affect the model performance, and the framework of additive

multi-task models can be customized to address this specifically.

Moreover, in Figure 5.2 we note that high task response variable means tend

to occur with high variances, and vice versa. Thus there is a positive correlation

between the tasks’ response variable means with their standard deviations, and the

correlation coefficient is 0.56. Bringing various task distributions to a standardized

scale has the potential to improve the model performance. Moving forward, I make

use of the high customizability of the additive multi-task model to address and solve
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Figure 5.1: Tasks are ranked separately according to their deviation from the overall
mean score and standard deviation, which are marked by horizontal lines.

this concern.

5.6.2 Customizing the additive multi-task model

Overview

I apply the additive multi-task model (5.12) in the following way. The matrix X is

defined to be a design matrix of one-way ANOVA to estimate each task’s training

set mean. This captures each task’s group effect, and after decentering, the residual

model with the response variable y−Xβ allows the distributions of tasks to be closer

to each other. This can be seen as a variation of a block design where each task is

a block. By applying a simple one-way ANOVA, the block effect is estimated and

is removed from the analysis by calculating the residual for the further estimation

with the residual model in the next step. Moreover, I adjust for different variances in

each task by fitting β by weighted least squares with the reciprocals of task sample

variances as weights in the weight matrix W. In combination with centering, it has
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Figure 5.2: Scatterplot of the task means against task standard deviations

the effect of standardization of all observations in each task by using estimates of

each task’s mean and standard deviation.

As mentioned above, the purpose of the one-way ANOVA is to decenter the

tasks separately. We can regard each task as a separate level of factor so that the

ANOVA design matrix can be created to find the group (task) means after fitting

the parametric part of the model. Defined in Neter et al (2005) [51] and Christensen

(2016) [22], the design matrix X for one-way ANOVA is n ×m matrix, where n is

the total number of observations and m is the number of tasks (factor levels). The

column j indices observations for task j with integers 1 in rows that belong to task

j, and 0 in all other rows. The parameters β are encoded in a m× 1 column vector

of unknown task (group) means:

β = [µ1, µ2, ..., µm]
T (5.13)
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where µj is the unknown mean of task j.

Decentering the tasks in this way addresses the implicit assumption that every

task has its own unknown mean of the response variable. Moreover, fitting the

parameters with weighted least squares addresses the assumption in 5.4 that every

task j has its own variance, different from other tasks.

In the next step, I solve for f̂ in Zf by applying SVR with Gaussian kernel on a

dataset which is transformed with a mean-regularized multi-task kernel described in

Section 2.5.

After the above two steps, we may consider that the model training is finished,

completing one full loop of Algorithm 4. Note that this is equivalent to running

K = 2 repetitions in the Algorithm 5.

As the dataset has the highest performance with low lambdas, for demonstration

purposes I choose two low values of lambdas and unite their fitted values using the

multi-task combined estimate as described in Section 5.3, such that the best value

of θl is chosen for each task using cross-validation on the test set. The combinations

of λ values to be considered are 0 together with 0.01 and 0.1.

Definitions

Let’s first consider how this configuration can be stated in a form of a statistical

model. Recall the definition of multi-task additive model in Equation 5.12: y =

Xβ + Zf + ϵ. As already mentioned, I define the matrix X to be a n × m one-

way ANOVA matrix, with weighted least squares fit on β = [µ1, µ2, ..., µm]
T that

together facilitates standardization of response variable in each task. Recall that

f = [f1(z), f2(z), ..., fm(z)]
′, where z are inputs to the functions, and that matrix Z

facilitates functions fj(z) to link with their respective tasks.
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Define f[q] = [f1(z)
[q], f2(z)

[q], ..., fm(z)
[q]]′, X[q] and β[q] to be nonparametric func-

tions, parametric design matrix, and parametric component vector, respectively, for

model q. Then, the output of model q is:

y[q] = X[q]β[q] + Zf[q] + ϵ (5.14)

where the matrix Z is constant between the models since its function is unaffected

by a model choice.

The combined estimation, covered in Section 5.3, was limited to two model out-

puts. In the following, assume that we operate with Q model outputs, and combine

them together in a general form of combined estimate. For task l, we have that:

ŷcomb
l =

Q∑
q=1

θl,qŷ
[q]
l (5.15)

where θl,q is a weight parameter for task l trained from model q.

For all the trade-off parameters, we have conditions that
∑Q

q=1 θl,q = 1, and

0 ≤ θl,q ≤ 1 ∀q ∈ {1, ..., Q}. Therefore, as θl,Q = 1 −
∑Q−1

q=1 θl,q, it is only necessary

to search among the other Q−1 trade-off parameters for every task l. It follows that

for task l:

ŷcomb
l =

Q−1∑
q=1

θl,qŷ
[q]
l + (1−

Q−1∑
q=1

θl,q)ŷ
[Q]
l (5.16)

Let Θ be a m× (Q− 1) matrix of all parameters, where (l, q)-th element is θl,q.

This matrix omits a column for the Q-th model since its weight is constrained by all

other Q− 1 weights.
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Let ⊙ be a Hadamard product, i.e. element-wise product of two vectors or ma-

trices of the same dimensions. Let nl be the number of observations in task l, such

that
∑m

l=1 nl = n is the total number of observations in the whole data (without loss

of generality). Let Θq be a n × 1 column vector where elements 1 to n1 are θ1,q for

l = 1, and (
∑l

i=1 ni) to (
∑l+1

i=1 ni − 1) are θl,q for l ∈ {2, ...,m}. Then the general

version of combined estimate is:

y[comb] =

Q−1∑
q=1

Θq ⊙ y[q] + (1n −
Q−1∑
q=1

Θq)⊙ y[Q] (5.17)

In this section’s demonstration on ILEA schools data, I apply a case of Q = 2,

which is the standard version of the combined estimate in Section 5.3.

In the following, I describe the algorithm for this example to combine the model

outputs, combining two models that use a mean-regularized multi-task kernel with

λ1 and λ2. Notationwise, Ŷ
[j]

test denotes prediction of model j on the test set.

Algorithm 6: combined estimation model training for the mean-regularized
kernel with λ1 and λ2

Select Ytrain and Xtrain;
Train the models 1 and 2 with mean-regularization parameters λ1 and λ2,
respectively;

Predict on Xtest with models 1 and 2, obtaining Ŷ
[1]

test and Ŷ
[2]

test;
foreach task l ∈ {1, 2, ...,m} do

Select observations of task l in Xtest, Ytest, Ŷ
[1]

test and Ŷ
[2]

test;
foreach θ ∈ {0, 0.01, 0.02, ..., 1} do

For all task observations, compute combined estimate

ŷcomb
l = θŷ

[1]
l + (1− θ)ŷ

[2]
l , obtaining Ŷ

[comb]

l,test ;

Compute and record EV (Yl,test, Ŷ
[comb]

l,test ) that is associated with θ;

Choose θl = argmaxθ EV (Yl,test, Ŷ
[comb]

l,test );
The final predictions for the task l are to be computed as

ŷcomb
l = θlŷ

[1]
l + (1− θl)ŷ

[2]
l ;
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To summarize, the additive MTL models in this experiment implement the setup

of ANOVA and SVR, together with the combined estimation of models trained on

datasets transformed with mean-regularized MTL kernel with λ = 0 and another

small value of λ. For each task i, the optimal θi is found in the test set of that

task. The optimal C and γ parameters of SVR with Gaussian kernel are found using

cross-validation for each λ.

5.6.3 Experimental results

Method mean EV ± s.d.
Regularized MTL (Evgeniou et al (2004) [31]) 34.8 ± 0.5
MTL-FEAT (Gaussian kernel) (Argyriou (2008) [6]) 37.6 ± 1.0
Multi-boost—unweighted (Chapelle (2011) [19]) 37.7 ± 1.2
Additive MTL - combined estimate of λ ∈ {0, 0.01} 38.86 ± 1.07
Additive MTL - combined estimate of λ ∈ {0, 0.1} 39.07 ± 1.06

Table 5.1: Results of the mean and standard deviation of explained variance on the
test set for the ILEA schools data. The results for regularized MTL, MTL-FEAT,
and multi-boost are as in Chapelle (2011) [19] and averaged over 10 train-test splits.
Additive multi-task learning model results are averaged over 100 train-test splits.

The results of the experiments are stated in Table 5.1, along with the results

of state-of-the-art methods in the literature. The additive multi-task model out-

performs the best performance by Chapelle (2011) [19] by about 1.3%, indicating a

significant improvement over the existing methods. The model with λ = 0.1 allows

a wider trade-off between single-task learning and mean-regularization and achieves

better performance than the model with λ = 0.01, where this trade-off is not so wide.

A deeper examination of other values of λ, running further loops in the Algorithm

4, and customizing the linear and nonlinear components for this particular dataset

are the directions that are some possible ways to further improve the performance,

and are left for further research.
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5.7 Full and reduced model generalization

In this section I consider a further generalization of the additive multi-task model

and propose model testing procedures. Recall the Equation 5.12 in Section 5.4, which

defines the additive multi-task model:

y = Xβ + Zf+ ϵ,

The model makes assumptions of uncorrelated error terms, and different variances

in each task, and in the Algorithm 4 the model fit of the parametric part β is

performed using a weighted least-squares algorithm to implement that assumption.

Relaxing these assumptions, consider the model of Equation 5.12 to have inde-

pendent and identically distributed error terms ϵ with mean 0, and assume that the

parametric part β can be estimated by any regression approach. It can be seen that

these conditions make the model more general, as the purpose of this generalization

is to open for further customizability. Note that with these assumptions, the only

difference between the additive multi-task model and partially linear model is the

separation of nonparametric components into tasks and the fitting algorithm which

can go in multiple loops, compared to only one loop for the partially linear model

(see for example Engle, Granger, Rice and Weiss (1986) [28]).

Under these assumptions, the model is very general, and it now includes most

of the other previously covered models as special cases. In particular, the additive

multi-task model of Section 5.4 is a special case with error terms having different

variances within each task, and parametric fit with WLS. However, this is a full

model, as both parametric and nonparametric components are present in the model.

Usually, we can’t be sure of the correctness of any model until we test all the

assumptions. Therefore, the important class of special cases is reduced models. Both

93



Chapter 5. Additive multi-task model

the parametric part and the nonparametric part can be evaluated for their suitability

to be included in the model.

To test the appropriateness of the parametric part, the decision is to be made on

the null hypothesis:

H0 : β = 0 (5.18)

and to test the nonparametric part, a decision is to be made on

H0 : f = 0 (5.19)

The decisions on these hypotheses can be done with model selection and diag-

nostics tools. It can be seen that the set of techniques that can be used to test these

hypotheses can potentially include a large part of the statistical inference field. For

example, both tests in Equations 5.18 and 5.19 can be separately tested using model

complexity penalty measures such as Akaike Information Criterion, Bayesian Infor-

mation Criterion, or minimum description length. Test for the parametric part β

of Equation 5.18 can be performed using general linear test (F-test). Some notable

nonparametric model selection procedures include those proposed by Yang (1999)

[81] and Wegkamp (2003) [77].

In particular, the parametric part of the model in Equation 5.18 can be tested

by applying model testing procedures on y − Zf̂. In the Algorithms 4 and 5, the

model fitting happens on the parametric part first, and then the residual model is

trained nonparametrically. In order to facilitate testing on y − Zf̂, the algorithms

would need to fit the models in a reverse order: first nonparametrically, and then the

residual model can be tested with H0 : β = 0. For example, a decision on this H0

can be done with a general linear test. Also, note that since the parametric part has

individual components, these can be tested as separately as H0 : βj = 0 for element j

in β. Variable selection procedures can be well-suited, for example, to test of model

coefficients in OLS regression.
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For partially linear models, Eubank (1999) [29] states the conditions for the test

of the parametric part of the model in a special case when nonparametric smoothing

is used for estimating the nonparametric part f. The estimator of β becomes:

β̂ = (XT (I− S)T (I− S)X)−1XT (I− S)T (I− S)Y (5.20)

where S is a smoother matrix of a kernel type estimator for the nonparametric fit of

f. It can be shown that β̂ achieves asymptotic Normal distribution, and the decision

on H0 : β = 0 can be done on the basis of the t-statistic:

t =
β̂

ŝ
√

XT (I− S)T (I− S)X
(5.21)

where ŝ =

√∑
(yi − Ȳ)2

n− 1
is a sample standard deviation of Y.

For the two-sided alternative HA : β ̸= 0, we reject H0 at α confidence level if

|t| > tα/2, where tα/2,(n−1) is α/2-th percentile of the t-distribution with n−1 degrees

of freedom.

Reduced versions of the additive multi-task model include conventional para-

metric and nonparametric models as special cases. As the model fit is done with

Algorithm 4, or its general version in Algorithm 5, the model performance can be

further strengthened even in cases of reduced models. Note that the initial defini-

tion of the additive multi-task model in Equation 5.12 is also a special case of this

generalization, although it is not reduced in the parameter space. In the subsequent

real dataset example, an analysis of the full version and two restricted versions of

the model is performed.
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5.8 Additive multi-task model components com-

parison

As an additional evaluation of model performance for the additive multi-task model, I

perform a comparison of the performance of the full additive multi-task model under

general assumptions in Section 5.7 and its reduced versions with β = 0 and f = 0.

The purpose of this demonstration is to illustrate the performance benefits of the full

model compared to its reduced models, which consist of two separate components of

the full model.

For this experiment, the ILEA schools data is transformed with a mean-

regularized multi-task kernel with λ = 0.1. For the full model, the parametric

component β in the additive multi-task model is fitted with an ordinary least squares

linear model, and the matrix X is defined to contain all predictor variables. The

residual component is then fitted on f with support vector regression with Gaussian

kernel, and it has its parameters cross-validated on the residuals y −Xβ̂.

The two reduced models consist of the two components of the full model. The

first model has f = 0, which means that only the parametric component is included.

The second model has β = 0, thus it is the nonparametric-only model.

The whole ILEA schools data is used and only one fitting loop is performed.

Therefore, the performance will be measured by using the total explained variance

TEV , as defined in Definition 2.

The results are summarized in Table 5.8. Note that for the full model, TEV

values are generally higher than the previously measured EV ; this is due to the fact

that all the data was used for training and testing, compared to using train-test splits

in the previous experiments.

Support vector regression reduced model achieved higher explained variance than
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Method TEV / R2

Reduced: OLS only 46.5%
Reduced: SVR Gaussian 52.6%
Full: Additive MTL with OLS + SVR Gaussian 53.5%

Table 5.2: Overall explained variance on ILEA schools data with mean-regularized
multi-task kernel and λ = 0.1

the parametric ordinary least squares model alone. However, the additive multi-task

model achieves an even higher performance when both of these models are combined.

Especially, there is a significant benefit in applying a nonlinear model to the residuals

of the linear model fit. This result demonstrates that linear and nonlinear models

can increase the mean-regularization effects of the multi-task kernel when they are

applied together in the framework of the additive multi-task model. The combination

of the two components provides an important boost in performance when maximum

performance is required. Applying multiple fitting loops and tuning the values of λ

in the multi-task kernel can potentially provide additional performance benefits.
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Statistical task diagnostics

6.1 Overview

In this chapter, I develop and research new statistical task diagnostic algorithms.

In multi-task learning, it is assumed that all tasks are somehow related to each

other, and it is the objective of the multi-task learning model to learn these task

relationships. Tasks can be similarly or differently distributed or have clusters of

similarly distributed tasks. There may also arise situations where most tasks are

similar to each other, while some few tasks differ in their distribution. We denote the

latter as outlier tasks. The vast distributional differences may affect the predictive

power of the model fit, such that the model may predict poorly on the majority class

tasks and on outlier tasks. It is therefore desirable to identify such tasks and to

address them specifically to improve the model performance.
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6.2 Response means diagnostics

The purpose of this section is to demonstrate preliminary task diagnostic procedures

applied to ILEA schools data. In the real world applications, when the data are

sufficiently large, and we know that training and test sets have similar distributions,

then it is reasonable to assume that:

Ȳtrain ≈ Ȳtest (6.1)

The implication of Equation 6.1 is that the training set and test set means are

approximately equal, thus being approximately equal to the whole data mean. This

has significance, as if the condition in Equation 6.1 is satisfied, then tasks are distri-

butionally closer to each other among the splits, improving the model’s generalization

ability from from training to test set. Thus, in the following I investigate whether

this assumption can be satisfied.

In the ILEA schools data, the exam scores yi ∈ [1, 70]. Across 10 splits of ILEA

schools data, I find that the average difference Ȳtest − Ȳtrain equals −0.017 with

standard deviation of 0.228. This indicates that, on average, we expect that the

difference between the test and train set to be close to zero somewhat precisely.

The difference between train and test set average responses can vary a lot for

different tasks. Figure 6.1 illustrates the density of deviation of test and train set

task means ȳi, averaged over 10 train-test splits. Even though the spread of values is

attributable to the sampling variation only, nonetheless some tasks are more variable

than others. Note that Figure 5.2 demonstrates that there is a positive correlation

between tasks’ response variable mean and standard deviation, showing that tasks

vary a lot in their characteristics.

Figure 6.2 illustrates estimated densities of differences between test and train set
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Figure 6.1: Estimated density of difference of test and train set ȳi for each task,
averaged over 10 train-test splits.

response variable means of 9 tasks over 10 train-test splits. The tasks are chosen

purely for illustration purposes; these are tasks 1, 2, ..., 9. If the density is peaked

near zero, the response variable tends to the same center in the training and test

sets. When the density is flat, it signifies that the difference varies significantly

between the splits for that task, meaning that the spread of values is high. Thus,

the figure shows that the variability of the difference can vary dramatically between

the splits and tasks. It signifies that tasks vary significantly in their distribution of

the response variable.

In Figure 6.3 we can observe the residual plots for multiple linear regression

models for tasks 1, 2, ..., 9 in ILEA data. Recall that the assumptions of the MLR

model are constant error variance, Normally distributed error terms, linearity, and

independence of observations. From the residual plots, we can clearly see that error

term variance is not constant in tasks 1, 5 and 9, while for some tasks the assumption

is satisfied.
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Figure 6.2: For tasks 1, 2, ..., 9 (from right to left, line by line), the estimated
densities of difference of test and train set response variable means from 10 train-
test splits.

The influence of task data on the satisfaction of model assumption is an impor-

tant distinction between the tasks, for example as illustrated in Figure 6.3. The

methodology of task diagnostics with regard to model assumptions will be further

developed in Section 6.6.

As already shown, residuals’ conditions differ from task to task. We may use this

knowledge to identify outlier observations. Assume that each task has its own OLS

fit. To make the maximum absolute residuals in each task to be comparable between

the tasks, it is necessary to standardize them. One way is to divide each task’s

maximum absolute residual by the square root of MSE achieved in that task, which

would correct the maximum residual’s influence on the overall error rate in a task.

Note that the square root of task MSE is the same as task residuals’ standard error

SE, i.e. estimate of the standard deviation of their sampling distribution. Since the
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Figure 6.3: For tasks 1, 2, ..., 9 (from right to left, line by line), residual plots of
multiple linear regression fits.

mean of residuals is 0 in multiple regression fit, we are now looking at standardized

residuals.

Task Max absolute residual /
√
MSE Max absolute residual MSE

37 4.135095 44.80827 117.42088
118 4.075685 33.34340 66.92968
59 4.016647 36.20701 81.25651
82 3.950368 35.47398 80.63892
106 3.825195 26.65971 48.57398

Table 6.1: Extreme observations identification for the top 5 tasks with the highest
ratio of maximum absolute residual and square root of MSE.

The results of this experiment are stated in Figure 6.4 and Table 6.1. Note that

for most of the tasks, the maximum adjusted absolute residuals are on the low side.

There are some tasks where they are high, which is a probable cause to consider

these observations as outliers in general. Standardized absolute residuals correlate
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Figure 6.4: Estimated density of tasks’ maximum absolute residuals divided by the
square root of task MSE.

well with maximum absolute residuals, but there exist tasks with extraordinarily

high MSE, which lowers the ratio despite having a high residual. For example,

task 102 has a quite high maximum absolute residual of 43.14963, but its MSE is

extraordinarily high at 153.53695, which makes the ratio be 3.482336.

In the following, I limit my view to the identification of task outliers. It is an open

research question to extend the multi-task learning procedures to the identification

of observation outliers in the fashion considered above.

6.3 Task influence test

In this section, I propose an approach to identify outlier tasks inspired by Cook’s

distance procedure in regression analysis in Cook (1997) [24] and Cook (1979) [25].

For each observation in a regression model, Cook’s distance measures the influence

of deleting that observation on the predictive performance of that model. The ob-

servations with large Cook’s distance values are potential outliers and/or highly
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influential, and merit closer examination.

For multi-task learning, we seek to find outlier tasks instead, as it may not be

suitable to consider each observation individually as in Cook’s distance procedure.

Thus, we can consider the influence of a task by deleting this task from the training

data, refitting the model, and checking its influence on the predictive power of the

training set. We also seek to keep the deleted task observations in the training set

for the purposes of measuring the performance of a model with that task deleted for

training. That way, all the models with the deleted tasks can have their performance

measured on the same dataset, which allows the easier identification of the outlier

tasks.

Using this procedure we obtain deleted explained variance (DEV ) for each task.

For task i, DEVi is defined as

DEVi(Ytrain, Ŷ
(i)
train) =

Var(Ytrain)−MSE(Ytrain, Ŷ
(i)
train)

Var(Ytrain)
(6.2)

where Ŷ
(i)
train are fitted values of all tasks’ training set, based on a model which is

trained with task i deleted from the training set.

If the DEV of a task is higher than the general explained variance GEV , which is

also measured on the training set, then deleting this task has improved the model fit,

and this task can be considered to be deleted. If the DEV is lower than the overall

explained variance, then deleting this task worsens the overall model fit, therefore

such a task should be kept in the model. Thus we seek to remove tasks with high

DEV . A more intuitive way of doing that is to compute the difference of the general

explained variance GEV , when all tasks are present in the model, with the DEV for

every task. This defines the deleted explained variance test statistic for task i as Di:
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Di = GEV (Ytrain, Ŷtrain)−DEVi(Ytrain, Ŷ
(i)
train) (6.3)

where GEV is the general explained variance with all tasks’ training sets used both

for training and testing. Note that in the presence of train and test splits, the general

explained variance GEV should be used in the formula of Di. When no such splitting

is performed, GEV is replaced by total explained variance TEV , which is the proper

metric due to the absence of splits.

When Di is high, then the DEV is low, and vice versa. Using GEV in this

way gives us a natural threshold level to identify outlier tasks. Even though only

tasks with negative Di are candidates for being outlier tasks, it may not be the best

strategy to delete all tasks with negative Di. A good strategy is to start with the

investigation by deleting the task with the lowestDi and move forward in a sequential

procedure, removing tasks one-by-one until we find a task combination that results

in the highest explained variance in the final model (or the lowest error rate).

Algorithm 7: task influence testing procedure

train the model on Ytrain and Xtrain;

use the model to predict on Xtrain, attain Ŷtrain;

measure the general explained variance GEV (Ytrain, Ŷtrain);
for each task i do

select the subset of Ytrain and Xtrain where the task i is excluded;
train the model;

use the model to predict on Xtrain, thus attain Ŷ
(i)
train;

measure DEVi(Ytrain, Ŷ
(i)
train);

compute Di;

sort Di from lowest to largest;
remove the tasks with Di lower than some threshold value τ ;
use the data of the remaining tasks to train the final model;

The task influence testing procedure is summarized in Algorithm 7. For illustra-

tion, this example uses threshold value τ , such that tasks with lower Di than τ are

regarded as outlier tasks. The value of τ can be chosen using cross-validation for the
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best performance.

6.4 t-distribution cut-off values for task outliers

Figure 6.5: Tasks are ranked according to their Di values. Most differences are
positive, meaning that deleting these tasks worsens the model performance. The
task furthest to the right has a particularly positive DEV difference, indicating its
high importance.

In this section, I establish an empirical approach to choosing the outlier tasks.

Figure 6.5 displays each task’s deleted explained variance test statistic Di and ranks

them from lowest to highest. Note that this plot has characteristics of a QQ plot

and that Di values look similar to a sample from a normal distribution, although

with rather fat tails. This means that the cut-off values can be devised in a manner

of a hypothesis test.

Recall that Di is defined as Di = GEV (Ytrain, Ŷtrain) − DEVi(Ytrain, Ŷ
(i)
train),

and that the total number of tasks is m. A high value of Di implies that the task is

important to keep in the model, while its low value means that the task is possibly

an outlier. As the Di have approximately normal distribution, we assume that the

standardized values of Di are drawn from a t-distribution with m − 1 degrees of
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freedom.

In this setup, it is natural to consider a cut-off value that separates the t-

distribution to acceptance and rejection regions. The acceptance region is defined

as an area in the t-distribution with m − 1 degrees of freedom where tasks are not

considered outliers. The rejection region is an area where tasks are considered to

be outliers and are deleted from the training set. Since tasks with very low Di are

considered outlier tasks, their standardized values of Di are far in the left tail of

the t-distribution with m − 1 degrees of freedom. It means that we should seek

to define the rejection region to be an area of certain probability in the left tail of

t-distribution.

In other words, let α be a chosen confidence level. Let t(α,m−1) be a α-quantile

of t-distribution with m− 1 degrees of freedom. Define the acceptance region as

Θ0 = {t(α,m− 1),+∞} (6.4)

and the rejection region as

Θ1 = {−∞, t(α,m− 1)} (6.5)

Let D̄ = 1
L

∑m
i=1Di be a sample average and SD(D) be a standard deviation of

Di for all m tasks. The implication of acceptance region is that P

(
Di − D̄

SD(D)
∈ Θ0

)
=

1 − α, such that we can conclude with 1 − α confidence that if standardized Di for

task i is in the acceptance region, then the task is drawn from the same distribution

as other tasks. Otherwise, if the standardized Di of task i is in the rejection region,

such that
Di − D̄

SD(D)
∈ Θ1, then it is an outlier task, and it is deleted from the training

set.

This task outlier testing procedure is inspired by traditional statistical hypothesis

testing methods. Usually, such inferential testing is done to make a conclusion about
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a particular statistic that has a sampling distribution and its properties often depend

on the sample and its size. However, the task outlier procedure is quite different.

Every task has its individual Di value, and every Di can be considered a statistic as

it is based on a sample for task i. And these can have either the same or different

distributions across the tasks in the data. The initial assumption in the cut-off

values approach is that all Di have the same distribution, thus they come from the

same population. Then, for each Di a test is performed, to measure whether this

task is consistent with the overall distribution of all tasks’ Di values. Then if the

task deviates substantially from the overall tasks distribution, it means that it is

potentially an outlier task. However, it should only be considered for deletion if

it influences the overall model performance in a negative way, i.e. if Di is lower

than for other tasks. If a task has unusually high Di compared to other tasks, then

it influences the model performance in a positive way, so it should not be deleted,

despite it being highly influential.

In order to evaluate the procedure, I choose to use the whole dataset, without

splitting it into training and test sets, just as is often done in statistical practice. I

will use a conventional value of α = 0.05. m = 139 in ILEA schools data. Therefore,

the cut-off value in t-distribution is t(0.05, 138) = −1.656. It implies the acceptance

region of Θ0 = {−1.656,+∞} and the rejection region of Θ1 = {−∞,−1.656}. All

tasks with a standardized Di in the rejection region are to be considered outlier tasks

and deleted from training the final model, and all tasks in the acceptance region are

to be kept for training the final model.

I model the data with mean-regularized multi-task kernel support vector regres-

sion with Gaussian kernel. The optimal parameters γ and C were found using cross-

validation on the whole dataset. The task coupling parameter λ = 0.1. Under

these parameters for ILEA schools data, TEV (Y, Ŷ) = 52.605%, D̄ = 0.38 and

SD(D) = 0.24. Plot of estimated density for the standardized Di is illustrated in
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Figure 6.6.

Figure 6.6: Estimated density of standardized Di

Note that this estimated density curve shows that the distribution of Di has two

peaks, the right tail is rather far out, while there is no left tail. Thus, ILEA schools

data has an obvious violation of the assumption that Di have a normal distribution.

In order to address this, I will extend this procedure to cover the cases where the

distribution is not normal in the following sections.

There are some tasks with unusually high Di which perform exceptionally well

compared to other tasks, thus making the distribution right-skewed. As discussed

previously, deleting these tasks would diminish the overall model performance.

The lowest standardized Di for this dataset is −1.45, which does not fall into the

rejection region of Θ1 = {−∞,−1.656}. Therefore, with at least 95% confidence,

we conclude that there are no outlier tasks, and all tasks need to be included for

training the final model.
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ILEA data seems to be strongly affected by a few tasks with extraordinarily great

performance. For example, the highest standardized Di is 3.77. It is a known fact

that right-skewed distributions have their mean skewed to higher values.

Nonetheless, even though not applicable to the ILEA schools data, the possible

benefits of using the t-distribution cut-off values have potential of great use. An

open research question is whether the positive task outliers can also be considered

to be outside of the overall task distribution, and deleted from the standardization

procedure for the purposes of this test only. In this way, the standardized Di values

of other tasks can become more stable, which can potentially ease the identification

of the detrimental task outliers with cut-off values from t-distribution.

6.5 Kernel density estimation of Di

It was made obvious in Section 6.4 and Figure 6.6 that Normal distribution doesn’t

describe the distribution of standardized Di values very well. The empirical density

shows that the standardized Di have two peaks, a long right tail, and is quite asym-

metric. As a result, the proposed t-distribution test hasn’t yielded benefits for task

diagnostics.

In order to address this challenge, I propose to apply kernel density estimation

for Di and to use low percentile values from this density as cut-off criteria for the

task rejection regions. The theory of kernel density estimation is covered in detail

by Scott (1992) [68] and Eubank (1999) [29]. To implement it, I use R’s built-in

package “stats” [63] and its function “density”.

For the purposes of this procedure, assume that deleted explained variance statis-

tics (D1, D2, ..., Dm) are independent and identically distributed from a univariate

distribution given by probability density function s at any given point D. We are
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interested in estimating this probability density function with the kernel density

estimation method, given by:

ŝ(D) =
1

mh

m∑
i=1

K
(D −Di

h

)
, (6.6)

where h > 0 is smoothing bandwidth, K is a non-negative kernel function and m is

the number of tasks in the data.

The function “density” has an option for 7 different kernels, which will all be

attempted for the experiment on the ILEA schools data: Gaussian, Epanechnikov,

rectangular, triangular, biweight, cosine, and optcosine. For the smoothing band-

width rule, which decides how the parameter h is estimated, I choose to use Silver-

man’s “rule of thumb” approach (Silverman (1986) [69]), which is built-in to function

“density” as parameter “nrd0” for smoothing bandwidth.

Negative values of Di indicate that deleting the task i from the training data has

increased the explained variance. Thus, the cut-off value is defined in terms of low

percentiles of estimated density. Let ŝα denote its α× 100%-th percentile. Thus the

rejection region is Θ1 = {−∞, ŝα} and the acceptance region is Θ0 = {ŝα,+∞}. The

tasks in the rejection region are to be deleted from the final model’s training data,

while tasks in the acceptance region are kept for the model to be trained on.

The results of task identification are stated in Table 6.2. Increasing the signif-

icance level includes more tasks that are identified as outlier groups. Notably, the

choice of the kernel doesn’t change the tasks that are identified as outliers at every

significance level.

Figure 6.7 displays estimated kernel density ŝ. Note the difference from Figure 6.6

where Di were standardized, while in the current procedure they aren’t. The analysis

shows that in ILEA schools data, no task has Di < 0, and the reason the estimated
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Kernel / Significance Level 5% 10%
Gaussian 1 7
Epanechnikov 1 7
Rectangular 1 7
Triangular 1 7
Biweight 1 7
Cosine 1 7
Optcosine 1 7

Table 6.2: The number of tasks identified as outliers per different combinations of
kernel and significance level α. The identified tasks are the same for all kernels at
each significance level.

density in Figure 6.7 extends to negative values is the estimation algorithm. As no

tasks have negative Di, all tasks that are identified to be deleted in Table 6.2 have

Di > 0.

Recall that in Section 6.4, it was measured that when all tasks are included in the

model, TEV (Y, Ŷ) = 52.605%. At α = 5%, task 99 is identified as outlier. Deleting

this task from training data, training the model, and predicting on all tasks’ training

data is equivalent to its deleted explained variance, with DEV99 = 52.024%. At

α = 10%, tasks 14, 78, 83, 99, 109, 119 and 138 are identified as outliers. Deleting

these tasks from the training set ultimately leads to TEV (Y, Ŷ(i)) = 50.428%. We

find that TEV (Y, Ŷ) is larger than performance both at α = 5% and α = 10%.

Therefore the procedure to use kernel density estimation for task outlier detection

hasn’t yielded improvement of performance on the ILEA schools data. Nonetheless,

the usefulness of the procedure can potentially be high in other multi-task learning

applications.
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Figure 6.7: Kernel density estimation for ŝ with Gaussian kernel. The blue line is
mean, and the shaded red area is the rejection region Θ1 = {−∞, ŝ0.10}

6.6 Task importance for model assumptions

Statistical models often come with assumptions about the data that they are applied

on. When training the model, the assumptions need to be checked to ensure that the

theoretical requirements of the model are satisfied. For example, a multiple regression

model has assumptions about independence of observations, constant variance and

normal distribution of error terms, and linear relationships between response and

predictor variables. Usually, assumptions can be examined in either graphical ways,

e.g. residual or QQ plots, or with the help of statistical tests.

In this section, I propose a procedure to identify the outlier tasks with regard
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to their influence on the satisfaction of model assumptions. The procedure is quan-

titative, thus I propose to use statistical test statistics instead of visual graph ex-

amination, which would have to be done manually. For every task, delete this task

from the training data, train the model, and measure the model’s conformity with a

particular assumption with a statistical test. The obtained test statistic tells about

the task’s influence on the model assumptions. If a task statistic has moved to a

value that shows that the model is in better compliance with an assumption, then

deleting the task can be beneficial. Vice versa, if deleting a task made the model less

able to satisfy a certain assumption, then this task needs to be kept in the model.

Assume that a model has assumption A, and it can be checked with a statistical

test T with H0 : A is true. The test T is evaluated by producing a test statistic t

and comparing it to a distribution of the statistic under the H0. If such a statistic

t is obtained from a model where task i is deleted from the training set, denote

this statistic value as ti and its associated p-value as pi. Without loss of generality,

assume that higher values of ti are further away from its distribution under H0. This

procedure is encapsulated in Algorithm 8.

Algorithm 8: task importance for a model assumption

for each task i do
select the subset of Ytrain and Xtrain where the task i is excluded;
train the model;

use the model to predict on Xtrain, thus attain Ŷ
(i)
train;

compute ti, the test statistic of T for H0 : A is true;
obtain the pi, the p-value associated with ti;

sort ti and pi from lowest to largest;

The outcome of the Algorithm 8 is a ranked table of test statistics ti and their

associated p-values pi for every task i ∈ 1, ...,m. It allows us to measure the influence

of every task on the model assumption A. A low value of ti indicates that deleting the

task i has a positive effect on the satisfaction of the model assumption, while a high

value of ti indicates that deleting this task has a detrimental effect on compliance
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with this assumption.

The course of action depends on the size of the test statistics ti, and on the range

of the spread between the highest and lowest ti values. Either all, none, or a part of

them can be in the rejection region of the test T . If it is obvious that only a few of the

ti’s are in the rejection region, then the corresponding tasks are prime candidates for

being deleted in the final training dataset. If no ti values are in the rejection region,

it can mean that all tasks are consistent with the model. On the other hand, if all ti

are in the rejection region, it can mean that this model is generally a bad fit to the

data, and the task diagnostic methods cannot easily improve the situation.

6.6.1 Application to a real dataset

In this section, I will apply the procedures of Section 6.6 to the ILEA schools data.

This process can be applied in a multi-task setting to any statistical model where

assumptions need to be checked. For demonstration purposes, I use a multiple linear

regression model. The model itself may or may not be a good fit for the data, but

it is well-suited for demonstration purposes as it has multiple assumptions which

can be checked with numerous statistical tests in a straightforward way. Thus, the

Algorithm 8 will be applied to the assumptions of multiple linear regression. Note

that this model is a special case of the additive multi-task model in Section 5.7. It

is a reduced model with:

• f = 0

• β̂ = (X′X)−1X′y

• K = 1 in Algorithm 5

Multiple regression models are operating under a set of assumptions:
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• Linear relationship between response variable y and predictor variables X

• ϵ
iid∼ N(0, σ2), i.e. independent and identically Normally distributed with con-

stant variance.

The latter point in the above list consists of three separate assumptions: inde-

pendence, Normality, and constant variance.

The independence assumption cannot be tested directly but can be partially

verified with the Durbin-Watson test for autocorrelated errors (Fox (2008) [35]).

The null hypothesis is that the errors are not autocorrelated with each other at lag

1, i.e. are serially uncorrelated. High values of its test statistic indicate that the

residuals are autocorrelated. The results of this test are illustrated in Figure 6.8 as

an empirical density curve of test statistics for each of 139 tasks deleted. All of the

p-values are very close to 0, indicating the rejection of H0 for each task, and that the

residuals are autocorrelated regardless of which task is deleted from the data. The

test statistics density is close to the Normal distribution. However, there is some

variability with a heavy left tail, which includes the tasks that improve the fit when

they are deleted from training.

The constant variance assumption is conventionally tested with the Breusch-

Pagan test for heteroskedasticity (Neter (2005) [51]). The null hypothesis is that

variances of error terms are constant and equal, and high values of test statistic are

evidence against H0. The results of the test are given in Figure 6.9. All the test

statistics are very high, and all p-values are close to zero, indicating that the error

term variance is not constant, regardless of which task is deleted from the model.

However, note that deleting some tasks results in about 5− 10% improvement in the

test statistic.

I test the error term Normality assumption with by Anderson-Darling test for

Normality and a one-sample Kolmogorov-Smirnov test. In both of these tests, H0 :
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Figure 6.8: Durbin-Watson test statistics density for 139 tasks

ϵ is Normally distributed. For both of these tests, high values of the test statistic

are evidence against the null hypothesis. The results for the Anderson-Darling test

are illustrated in Figure 6.10, and for the Kolmogorov-Smirnov test in Figure 6.11.

The p-values for all tasks are close to zero in both tests, indicating the rejection of

null hypotheses that the error term is Normally distributed. In both tests, regardless

of which tasks are deleted, the test statistics are closely grouped together in a single

peak except for some minor outlier tasks.

The conclusion of the procedure is that deleting any task would not significantly

improve the assumptions applicability of the multiple regression model on ILEA

schools data. In this case, it indicates that the model is a generally poor fit to the

data, and other data or model modifications should be attempted to remedy the

assumptions instead.

It can be seen that the usefulness of the procedure is highest when most of the
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Figure 6.9: Breusch-Pagan test statistics density for 139 tasks. There is a slight
variability of statistics between the models with deleted tasks, but all indicate that
the constant variance assumption is violated.

statistics ti are close to the critical value of the rejection region. In that case, the

tasks with ti inside the rejection region are candidates for deletion, which would

make it easier to satisfy the model assumptions. This is not the case for the multiple

regression model applied to the ILEA schools data, as it can be seen that this model

has a generally bad fit to this data. Nonetheless, the usefulness of the proposed

procedure can be substantially high in modeling other multi-task datasets.
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Figure 6.10: Anderson-Darling normality test statistics density for 139 tasks.

Figure 6.11: One-sample Kolmogorov-Smirnov test statistics density for 139 tasks.
Regardless of the deleted task, all models violate the Normality assumption, with all
p-values being close to zero.
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Conclusion and open problems

7.1 Conclusion and overview of completed work

Multi-task learning is a very large subfield of machine learning. It is in constant

development due to the advancements in modeling and increases in the size and

velocity of the data. It is also a field that is inherently connected to statistical

modeling, and it is at this intersection of these fields that this dissertation has its

main contributions.

First, I contribute to the existing works in multi-task kernel methods by ex-

amining the mean-regularization framework both theoretically and experimentally

in Chapter 3. I establish the equivalency of two versions of the mean-regularized

multi-task kernel as a general case, and for ridge regression in a simplified manner.

I examine the influence of the Gaussian kernel on model performance and examine

the edge cases of single-task and independent task learning.

Second, I introduce and study the two-step multi-task modeling approach in

Chapter 4, which is a new framework that is deeply based on task clustering. I
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explain the procedure in detail and customize it to present several examples of its

application. I also measure their performance, and find that the best performance

subsets procedure in Section 4.3.4 is the most powerful of these. More work is needed

to find even more beneficial two-step multi-task models.

In the third major contribution, I propose an additive multi-task model in Chap-

ter 5, which is deeply rooted in statistical theory. I further extend this model

to general cases of its formulation and fitting algorithm. The model allows intu-

itive combinations of parametric and nonparametric models for multi-task modeling.

Real-world data experiments have shown that this approach achieves a significant

performance boost compared to the existing published results of similar multi-task

learning models.

Lastly, I propose task diagnostics methods to identify task outliers by their in-

fluence on model output in a leave-task-out fashion in Chapter 6. This framework is

inspired by statistical testing procedures. I examine cases of task influence on model

assumptions and performance metrics, which show strong potential to be useful in

real-world data applications. Tracking the sampling distributions of the proposed

task statistics is an open question.

To summarize the results achieved by the models in this dissertation, note that

two-step multi-task model’s best performance subsets algorithm and my customiza-

tion of additive multi-task model achieve results that are just a few percent explained

variance higher than in the literature. Nonetheless, the other published works dif-

fer similarly in their achieved performance. The main reason is that Inner London

Education Authority data is a rather challenging dataset to improve performance

on.

It is a multi-task dataset, where the tasks are schools, and the number of students

per school is substantial. Some schools much larger than others, but nonetheless none
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of the schools have too few students. From the multi-task learning perspective, it may

imply that we have enough data from each task, and thus the dataset is modeled

best as being close to single-task learning data, which we have observed. It also

implies that the multi-task learning procedures are more beneficial in cases where

tasks have a stronger need to borrow strength from other tasks. For example, in

small area estimation (Rao and Molina (2005) [64]), emphasis is done in particular

to model the small areas or domains, thus benefitting the performance of the overall

model and the small areas themselves.

7.2 Open problems and future work

In the following, I give an overview of the open questions after the research of this

dissertation. This list is not exhaustive. In future work, I intend to use these points

to extend and improve my research in multi-task learning.

• Can λ and c versions of mean-regularized multi-task kernel be made equivalent

for support vector machines without transforming the datasets, similar to the

case of ridge regression as shown in Lemma 3.3.2?

• Can mean-regularized multi-task kernel be learned from the data directly, with-

out setting it a priori?

• The two-step model configuration of best performance subsets (Section 4.3.4)

was shown to be the best among all the example customizations. However, it

is rather computationally complex. Can its Algorithm 2 be optimized to make

it more efficient?

• Further exploration of experimental designs and their model fits for the para-

metric component in additive multi-task models of Chapter 5.
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• Is the (hypothetical) sampling distribution of Di connected to the model as-

sumptions used for fitted values estimation?

• Which other task statistics can be measured in a leave-task-out fashion for task

diagnostics, similar to the methods introduced in Chapter 6?
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Data information

The school effectiveness data by Inner London Education Authority has become a

popular benchmark in the multi-task learning literature. Some of the analyses of

this dataset were performed in Evgeniou et al (2004) [31], Evgeniou et al (2005) [30],

Liao and Carin (2005) [53], Argyriou, Evgeniou and Pontil (2008) [6], Zacharia (2009)

[82], Agarwal, Daume, and Gerber (2010) [1], Romera-Paredes and Pontil (2013) [66],

Fang and Tao (2015) [33] and Kim and Mowakeaa (2019) [48]. The metric that is

often considered in the literature when analyzing this dataset is explained variance,

which is defined in Bakker and Heskes (2003) [9] as the percentage of test set variance

minus the sum of squared errors of the model on the test set, taken as a percentage

over the test set variance. Explained variance metric is covered in deeper detail in

the Section 2.4 of this dissertation.

The dataset contains records of 15362 students’ information in 139 schools. The

primary response variable is exam score, and predictors are years, percent of students

eligible for free school meals in the school, gender, VR band of the student, percent

of students in VR band in the school, student ethnicity, school gender, and school

denomination. The school number plays a role of a predictor variable, but is not
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considered a separate column in the data matrix; rather it is a task indicator that

informs the multi-task learning model.

Some data cleaning procedures were performed to improve the quality of the

dataset. There are 15 observations with a VR band equal to 0, which is a level that

is not mentioned in the dataset description, so I make an assumption that these

students belong to the VR band 1. Therefore, after one-hot encoding, there are a

total of 26 predictor variables. Moreover, there is one female student in an all-male

school 44, which I assume is a typo and edit the gender variable to male.

I follow the procedure of Evgeniou et al (2005) [30] and split the data with

a 75%-25% train-test split ratio within each task. The literature on this dataset

often considers only 10 train-test splits. The results are then averaged out across

the train-test splits and are finally reported as a mean value of explained variance.

Results of most experiments are generally stable across different 10 train-test splits,

but there are some experiments where more splits are needed. Through trial and

error I’ve found that, depending on the experiment, the results can be unstable

between different sets of 10 train-test splits. Thus, in order to give the results more

robustness and stability, I have created 100 train-test splits and fixed those for all

the experiments performed in this dissertation. For most of the experiments, only

the first 10 splits of these 100 splits are used, while there are some experiments where

all the 100 splits are used. And for every experiment, I have stated whether the 10

or the 100 splits are used.
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Combined variance derivation

This section presents the derivation of Equation 5.6 for a combined variance of two

disjoint datasets.

Let the two disjoint datasets be Ytrain and Ytest. Their sizes are ntrain and ntest,

respectively. Let the combined dataset beY = Ytrain∪Ytest, and let n = ntrain+ntest.

Let Ȳ =

∑n
i=1 yi
n

be a sample mean. Variance is defined in Section 2.4 as

Var(Y) =

∑n
i=1(yi − Ȳ)2

n
, which is conventially called a population variance def-

inition. We have that:

Var(Y) =

∑n
i=1(yi − Ȳ)2

n
=

∑n
i=1(y

2
i + Ȳ2 − 2yiȲ)

n
=

=

∑n
i=1 y

2
i

n
+

∑n
i=1 Ȳ

2

n
−
∑n

i=1 2yiȲ

n
=

∑n
i=1 y

2
i

n
+ Ȳ2 − 2Ȳ

∑n
i=1 yi

n
=

=

∑n
i=1 y

2
i

n
+ Ȳ2 − 2Ȳ2 =

∑n
i=1 y

2
i

n
− Ȳ2
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and:

nVar(Y) =
n∑

i=1

y2i − nȲ2

nȲ =
n∑

i=1

yi

Then,

n(Var(Y) + Ȳ2) =
n∑

i=1

y2i =

ntrain∑
i=1

y2i +
n∑

j=ntrain+1

y2j =

= ntrain(Var(Ytrain) + Ȳ2
train) + ntest(Var(Ytest) + Ȳ2

test)

Solving for the variance of the combined dataset Y:

Var(Y) =
ntrain(Var(Ytrain) + Ȳ2

train) + ntest(Var(Ytest) + Ȳ2
test)− nȲ2

n

which completes the derivation of Equation 5.6.
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