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ABSTRACT

Much research has gone into determining stress fields of dislocation, as the
understanding of dislocations is fundamental to understanding metal or crystal plasticity.
In this thesis, the stress field of a rectangular dislocation loop in an infinite isotropic solid
is developed for a Volterra-type dislocation with three non-zero Burgers vector
components. Also, the stress and strain fields of a rectangular dislocation loop in an
isotropic solid, which is a semi-infinite medium, are obtained here for a VVolterra-type
dislocation. Moreover, analytical and numerical verifications of the developed
stress/strain fields are performed. This is done by ensuring the satisfaction of the
equilibrium equations and the strain compatibility equations. The results of this paper add

to the knowledge base of elastic fields of dislocation loops and has its own application.
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Chapter 1 Introduction

Dislocations are line defects, around which the atoms of the crystal lattice are
misaligned. For a rectangular dislocation closed loop, there are four linear dislocation
segments composing the loop. The stress field of a rectangular dislocation loop in an infinite
isotropic solid is developed in Chapter 2 for a VVolterra-type dislocation with three non-zero
Burgers vector components. In addition, the stress/strain fields of a rectangular dislocation
loop in an isotropic solid, which is a semi-infinite medium, are obtained in Chapter 3 for a
Volterra-type dislocation. To be specific, the stress field of the dislocation loop in an infinite
isotropic material (Chapter 2) is obtained by integrating the Peach-Koehler equation over a
rectangular perimeter. On the other hand, the stress field of the dislocation loop parallel and
beneath to the free surface is developed by integrating the displacement equation of
infinitesimal dislocation loops over a finite rectangular dislocation loop, then utilizing the
tensorial small strain equation and Hooke’s law for isotropic material (Chapter 3). Chapter 4
integrates the strain equation instead of the displacement equation for infinitesimal
dislocation loops. Analytical and numerical verifications of the developed stress field are
performed herein, which is done by ensuring the satisfaction of the equilibrium equations and
the strain compatibility equations. Moreover, a comparison with the stress field of a Volterra-
type dislocation loop composed of four dislocation segments, using DeVincre’s formula, is
presented in Chapter 2. In addition, the effect of the free surface on stresses is displayed
versus depth from the surface in Chapter 4. Furthermore, a comparison with a new numerical

method for the problem of dislocations near a free surface is performed in Chapter 3.



Chapter 2 The Stress Field of a Rectangular Dislocation Loop in an Infinite
Medium: Analytical Solution with Verification

ABSTRACT

The stress field of a rectangular dislocation loop in an isotropic solid, which is in an
infinite medium, is obtained here for a VVolterra-type dislocation which has three non-zero
Burgers vector components. Explicitly, the stress field of the dislocation loop in an infinite
isotropic material is developed by integrating the Peach-Koehler equation over a finite
rectangular dislocation loop. In this work, analytical/numerical verification of the stress field
is demonstrated. To be specific, the verification is carried out to ensure that both the
Equilibrium Equations and the Strain Compatibility Equations are satisfied. Moreover, a
comparison with the stress field of a rectangular loop summed as four dislocation segments,
using the DeVincre formula, is performed. Due to analytical verification, no error was
detected in the presented solution. Also, comparing with the DeVincre formula presented
identical results, qualitatively and quantitatively.

Keywords: Rectangular dislocation loop; infinite isotropic material; stress field;
numerical/analytical verification.



INTRODUCTION

A rectangular dislocation loop is a closed loop formed by four linear dislocation
segments. Dislocation lines cannot end inside a material. They have to end on free surfaces,
grain boundaries, or form a close loop inside a material [1]. In this work, the development of
the stress field of a VVolterra-type rectangular dislocation loop is focused on.

The stress solution obtained in this paper facilitates in the development of three-
dimensional dislocation dynamics codes [2-3]. The 3D discrete dislocation dynamics (DDD)
simulation codes are able to capture the collective interaction of a whole population of curved
dislocation lines in a mass of crystalline material on a mesoscopic scale, and to predict
mechanical macroscopic behavior out of this interaction. In these codes, a contiguous and
curved dislocation line in 3D is discretized in one form or another. One approach is to replace
the dislocation line with straight finite-length segments of mixed character [3]. Another
approach, followed by [4] is to decompose every segment into two perpendicular segments
which are a screw segment and an edge segment. The stress field of the original dislocation
curve is then approximated by the additive sum (from the principle of linear superposition) of
the self-stresses of the segments composing the curve. Formulae for the self-stress of a straight
dislocation segment of mixed character has been given by [5], and by [6].

Different kinds of dislocation problems in terms of material type, geometry and size
have been investigated for decades. In the early years, research on infinite isotropic materials
was focused on by different researchers. Derivations for the displacement, strain and stress
fields of infinite screw and edge dislocations in an infinite medium, assuming material isotropy,
were provided [6-8]. Moreover, integral equations for finding the displacement field (the

Burgers equation) and the stress field (the Peach-Koehler equation) of a closed dislocation loop



(of any shape) in an infinite isotropic material have been provided by [6].

Several researchers have studied different kinds of the dislocation loop problems using
various techniques. Initially, [9-10] investigated the prismatic circular loop. The circular glide
loop was initially investigated by [11-12]. This solution was later corrected in [13-14]. In a
more recent study of the displacement and stress fields of glide and prismatic circular
dislocation loops, [15-16] corrected some earlier work. The displacement field, including the
solid angle term, of a rectangular dislocation loop of the Volterra type in an infinite medium
was developed by [17]. One utility for dislocation loops is its use in the “collocation point”
method used to solve traction-free surface problems simulated with the 3-D method via a
surface mesh of dislocation loops, see [18-21]. As for circular dislocation loops, they were used
for modeling pile-ups around rigid cylindrical particles [22] and for modeling Frank sessile
loops which result from irradiation damage in some metals [23, 24, 25].

If the Burgers vector is not constant in space, with respect to an inertial coordinate
system, but rather varies along the dislocation line, the dislocation is then of the Somigliana
type. Work on the ring Somigliana ring dislocation was performed by [26-27] for a radial
Burgers vector, and by [28] for a tangential Burgers vector (i.e. a torsional dislocation loop).

In this chapter, the stress field of rectangular dislocation loop in an infinite isotropic
material is developed by integrating the Peach-Koehler equation over a finite rectangular
dislocation loop. Also presented are analytical and numerical verifications of the analytical
solution obtained here. Furthermore, a comparison of the stress field developed here and the
stress field obtained using the DeVincre Formula [5] is performed. The analytical results here
add to the knowledge base of solutions for dislocations of different geometries. It has direction
applications in Eigenstrain theory/computations [29] and the collocation-point method for

capturing the effect of free surfaces on dislocation forces/motion [30].



INTEGRATION OF THE PEACH-KOEHLER (PK) EQUATION

The dislocation problem under consideration is shown in Fig. 1. The figure shows a
rectangular dislocation loop (also described as a “finite-sized dislocation loop”) in an infinite
isotropic medium. This Volterra-type dislocation loop has three Burgers vector components
by, b, and b,, and has a dimension 2a in the x-direction and a dimension 2b in the y-direction.
The line sense of the dislocation loop is shown by the arrow along the dislocation loop. The
goal in this problem is to obtain the stress components for an arbitrary material field point P.
Note that in this paper x; and x are used interchangeably, so are x, andy, and so are x; and
z. Analogously for x'; and x', and so on.

The PK Equation (1) is an integral equation for the stress field of any curved closed
dislocation loop [6]. It is composed of three terms. They are all line integrals and they sum the

contributions of infinitesimal line lengths (d!’) along the line sense of the loop:
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Where 0,4 is the aBft™ component of the stress tensor o, b, is the m™ component of the

displacement vector b=b= (bx, by, by), 6;; is the ij" component of the Kronecker delta, G

is the shear modulus, € is the permutation symbol, v is Poisson’s ratio, R =

J& =2+ (' — )%+ (z' — 2)? (seeFig. 1) and V'’R = 2/R.



For integration of the Peach-Koehler Equation, some steps need to be considered for
the rectangular loop in Figure 1 which is composed of four numbered segments/sides. First, the
elevation of the dislocation loop above the xy-plane is fixed in the xyz global coordinate
system, which means the value of z’ is constant in this case or dz’' = 0. Second, x’ is a
constant equal to +a along segment 1, which means dx' =0 along this segment.
Analogously, x' = —a and dx' =0 along segment 3, y'=+b and dy’' =0 along
segment 2, y' = —b and dy’' = 0 along segment 4.

For the sake of illustration, only the integration for a,, foranon-zero b, isshown as

an example of the integration of the PK Equation:

G 32, , .

O terml = _Q(ﬁc bzeizxwgdz = 0; (dz' = 0) (5)
G a2, ,

Oy term2 = ——§, bs€izz 575 4x" = 0 (€122 = 0) (6)

ptP s (x,vz b:

4

Fig. 1. The geometry of a rectangular dislocation loop in an infinite material. Here 7' = r' =
(x',y',z"). The primed quantities belong to a differential length dl’ on the dislocation loop
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Let’s focus on the integral: 6Pz f+bb[( O°R )dJ"]x'=+a- For the integrand

4m(1-v) '— 02x'9z’ It is

02x'az’ '

given by:

R 3(—x+x")2(-z+z") _ —z+z'
02x'9z" ~ ((~x+x")ZH(=y+y")2+(=2z+2")2)5/2  ((—x+x')2+(~y+y')2+(~z+2")2)3/2

. Gb, +b ( 0%R ' . . . .
Hence, the integral ) f_b [(azx'az') dy'l, =4+4 1S in actuality composed of two integrals:

Gb, +b 3(—x+x")2(~z+z") ,
4m(1-v) f—b [(((—x+x’)2+(—y+y’)2+(—z+z’)2)5/2) 4Y'ly'=+a
and

__Gb, +b —z+z' '
4m(1-v) f—b [(((—x+x’)2+(—y+y’)2+(—z+z’)2)3/2) 4y lv=+a
If one is interested in integrating by hand or manually, one can use the integral tables in

[31]. We only show how to integrate the second integral here, i.e.
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a=y?+(-x+x)+(-z+2)% b=-2y, c=1

According to equation (9),
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Moreover, one can also use the mathematical software Mathematica, which has a very strong

symbolic engine, to do the integration instead. This provides efficiency and time savings.



RESULTS AND DISCUSSION

The stress field terms for a rectangular dislocation loop in an infinite medium were
integrated from the PK Equation using the software Mathematica. The full list of results for the
stress components, based on the Burgers vector components, are supplied in the appendices. For
a loop with more than one, or all three, of the Burgers vector components not being zero, then
the stress component is simply the sum, from the principle of superposition, of the results for
these different Burgers vector components (as in the appendices). Note that in the appendices, we
have replaced the z’ in Fig. 1 with c.

If one is interested in the strain field terms or components instead, which are not listed here
for brevity, these could be obtained from the stresses in the appendices using the inverted Hooke’s
law for isotropic materials:
€ij = % (Uij - %Ukk) (11)

Ev E

Where gy is the first invariant of the stress tensor, A = ———, G = ——, and E is
(1+v)(1-2v) 2(1+v)

Young’s modulus.



Equilibrium Equations Verification

The partial differential equations of static equilibrium in a solid material can be written in

indicial notation as:

If the last equation is expanded on the repeated indices then the resulting three equations are:

00xx any 00x; __
o + 3y + py =0 (13)
00yx | 00yy | 00y;
o + 3y + py =0 (14)
aO'ZX ao_zy aO'ZZ_
5 T 3y +=, =0 (15)

This is keeping in mind the symmetry of the stress tensor, i.e. o;; = oj;. These equations

should be satisfied at every material point of a solid in equilibrium. To verify the developed stress

solution g, given by equation (1) and provide in the appendices, one can see if equations (13-

15) are identically satisfied either using analytical or numerical methods. For the analytical

method, the equations are all reduced to zero by utilizing Mathematica. Similarly if one considers

any line in space. For such line, the three equilibrium equations also equate analytically, or exactly,

to zero. Hence, analytical verification of the equilibrium equations is feasible.

10



Alternatively, numerical verifications can also be made by plotting equations (13-15) along
any plane in the material to see if the equations show a zero result. Figure (2.1, 2.2, 2.3) shows
such plotting for by # 0. The figure shows that the equilibrium equations are satisfied. Note that
given the combination of Burgers vector components and equilibrium equations a total of nine

plots are minimally generated. For this reason, only three plots for one of the Burgers vector

components are shown here for brevity.

Fig. 2.3. Plot of equation (15). For these plots, the following values were chosen: a = b = 100b,, ¢ =
10b,, by =b, =0, by =1, v=0.3, u =100, z=11b, —4a < x <4a, —4b <y <4b

11



Strain Compatibility Equations Verification

The equations of compatibility can be written in indicial notation as [32]:
€ijkl — €j1ik — €ik,ji + €ktij = 0 (16)
This equation can be expanded over the repeated indices and written explicitly as six

different/unique equations:

0%exy | 0%€yy 9%ey

=2 Y 17
dy? + dx2 0x0y ( )
0%€yy , 0%€y, 0%€y,

= 1
0z2 + dx2 0x0z ( 8)
9%¢ 0%¢ d%€

2 2 o gt (19)

ay?2 0z2 0z9y

aZExx azeyz _ aZExZ azexy
0ydz axz dxdy 0x0z

(20)

0%€yy  0%€yy, _ 0%exy n 0%y, (21)
0x0z dy? 0ydz dxdy

9%€,, aZExy _ 0%€xz azfyz
dxdy 8z2  9ydz 0xdz

(22)

These equations should be satisfied at every material point of a solid. To verify the
developed stress solution, € (the strain tensor) and its components are given by equation (11).
One can then investigate if equations (17-22) are identically zero using either analytical or
numerical methods. For the analytical method, the equations are so large that Mathematica is not
able to reduce them to exactly 0. However, for any given line in space along the x-, y- or z-

directions, Mathematica identically simplifies the compatibility equations to zero. Hence

12



analytical verification of the compatibility equations is possible.

Alternatively, numerical verifications can also be made by plotting equations (17-22) along
any plane in the material to see if the equations give a zero result. Figure (3.1, 3.2, 3.3) shows such
plotting for b, # 0. The figure shows that the compatibility equations are satisfied. Note that
given the combination of Burgers vector components and compatibility equations a total of
eighteen plots are minimally generated. However, only three plots for one of the Burgers vector

components are shown here for brevity.

Comparison with Devincre Formula

The DeVincre Formula [5] is an expression for the stress field of a straight or linear

dislocation segment of finite length:

s _ (Brt)
o 201-v)

! ! 1 I 4! I 2 L
0ij = #{[h Ye'ly — = [b't'Y] [6ij + ti't;" + 5 [piY) + oY + ;Yin]]} (23)
Where b’ is the Burgers vector, b’ = (by, by,b,), t' isthe line sense vector or the line

direction, t' = (ty, ty,t;), 0;j is ijt" component of the stress tensor, ¥ = R+ Rt',R =

(=), (' =), (2 =2), R=yJ(' =)+ (' —¥)? + (z' - 2)%, §; istheij"
component of the Kronecker delta, u is shear modulus, v is Poisson’s ratio, L' =R -t', p =
R-Lt,(b,Y,t')=(b'xY)- t',and [abc]j; = %((a X b);c; + (a x b) ;c;). Note that bold

lettering represents a vector(s) herein.

13



In this paper, the rectangular dislocation loop which is composed of four straight
dislocation segments (or sides) is focused on here. Hence, the stress field of a rectangular
dislocation can be obtained by adding up the contributions of four straight dislocation segments
each obtained from the DeVincre Formula.

To compare with the stress field obtained from the DeVincre Formula, the following
parameters are used for the plots in Figs. 4-9:
a=b=100, ¢c =0, v=0.3,bx=by=0; b,=1,y=0,z=20b,, —2a < x < 2a,

The figures show perfect match between the analytical solution in this paper and the solution
obtained from utilizing DeVincre Formula. This provides confidence in the presented analytical
stress solution since it is matching the solution of four connected segments. Note that given the
combination of Burgers vector components and stress components a total of eighteen plots are
minimally generated. However, only six plots for one of the Burgers vector components are shown

here for brevity.

14



Fig. 3.3. Plot of equation (19). For these plots, the following values were chosen: a = b = 100b,,,
¢ =10by, by =b, =0, by =1, v=03, u=6 =100, z=11b, —4a<x<4a, —4b<y <

4b
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Fig. 5

Fig. 4. Comparison of % analytical solutions in this paper (solid and black line) to the results of
DeVincre Formula (dashed line) along x-direction for non-zero b,

Fig. 5. Comparison of % analytical solutions in this paper (solid and black line) to the results of
DeVincre Formula (dashed line) along x-direction for non-zero b,

15



0,,/G 0lG
0.015; 0.015,
0.010} 0.010l
0.005} N 0005 ———~ R
[\ / AN A
av: VA
: : - — X = VA T — = X
-200 -100 100 200" -200—— -100 100 “~——200
-0.005} -0.005}
-0.010f -0.010}
~0.015! -0.015!
Fig. 6. Fig. 7.

Fig. 6. Comparison of % analytical solutions in this paper (solid and black line) to the results of
DeVincre Formula (dashed line) along x-direction for non-zero b,

Fig. 7. Comparison of % analytical solutions in this paper (solid and black line) to the results of
DeVincre Formula (dashed line) along x-direction for non-zero b,
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Fig. 8. Comparison of % analytical solutions in this paper (solid and black line) to the results of
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CONCLUSIONS

In conclusion, the stress field associated with a rectangular dislocation loop in an
infinite medium has been developed. It is obtained by integrating the PK equation over a
finite rectangular area. Also, the strain field can be developed by equation (11) if one is
interested in it. The stress field obtained herein not only contributes to calculating the total
stress fields of a rectangular dislocation loop in the isotropic half-medium, but also serves
as a benchmarking tool for 3D dislocation dynamic codes which deal with generally-curved
dislocations and need to properly quantify their elastic fields.

The developed field solutions were verified using both analytical equations and
numerical calculations. The verifications were to ensure satisfaction of the equilibrium
equations, satisfaction of the strain compatibility equations, and comparison against the

stress field developed by DeVincre Formula for straight dislocation segments.

LIMITATIONS

The main limitation of the current work is that it deals with isotropic and not

anisotropic materials. It also deals with infinite and not finite domains.
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APPENDIX

Considering the Burgers vector component by:
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Chapter 3 The Strain/Stress Fields of a Subsurface Rectangular Dislocation
Loop Parallel to the Surface of a Half Medium: Analytical Solution with
Verification

ABSTRACT

The strain and stress fields of a rectangular dislocation loop in an isotropic solid that
is a semi-infinite medium (half medium) are developed here for a Volterra-type dislocation.
Specifically, the loop is parallel to the free surface of the solid. The elastic fields of the
dislocation loop are developed by integrating the displacement equation of infinitesimals
dislocation loops over a finite rectangular loop area below the free surface. The strains and
stress then follow from the small strain tensor and Hooke’s law for isotropic materials,
respectively. In this paper, analytical verification and numerical verification for the elastic
fields are both demonstrated. Equilibrium equations and strain compatibility equations are
applied in the verification. Also, a comparison with a newly-developed numerical method for
dislocations near a free surface is performed as well. The developed solution is a function of
the loop depth beneath the surface and can be used as a fundamental solution to solve
elasticity, plasticity or dislocation problems.

Keywords: dislocation loops, free surfaces, Volterra, image-stresses, semi-infinite medium
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INTRODUCTION

The problem of finding analytical solutions for the elastic fields of dislocations in
different material types, material geometry and sizes has occupied researchers for tens of
years. Early on, researchers focused their research on infinite isotropic materials or mediums.
They also focused their work on infinitely-long dislocations (i.e. two-dimensional problems).
For example, [1-3], amongst other textbooks, provided older known derivations for the
displacement, strain and stress fields of screw and edge dislocations in an infinite medium
assuming material isotropy. However, [2] has also provided two integral equations for finding
the displacement field (the Burgers equation) and another the stress fields of a closed
dislocation loop (of any shape) in an infinite isotropic material.

Several researchers have studied different aspects of the dislocation loop problem
using a variety of techniques. Initially, [4] and [5] investigated the prismatic circular loop
(one whose Burgers vector is normal to its plane). The circular glide loop was initially
investigated in [6] and given in [7]. The solution by Keller and Kr&ner was later corrected in
[8] and [9]. In a more recent study of the displacement and stress fields of glide and prismatic
circular dislocation loops, [10-11] corrected some earlier work. The displacement field,
including the solid angle term, of a rectangular dislocation loop of the Volterra type in an
infinite medium was developed by [12].

A Somigliana ring dislocation was investigated by [13-14]. A torsional dislocation
loop of the Somigliana type was investigated by [15].

As for problems involving dislocations near a free surface, [16] derived the elastic
fields of a dislocation meeting a surface in an angle for an arbitrary choice of Burgers vector.

Bastecka [17] formulated the field stress due to a pure edge circular dislocation loop near a
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free surface with Burgers vector normal to that free surface. The effects of free surfaces on a
circular loop were also studied by [18] and [19]. [20-21] showed the field displacements due
to an infinitesimal dislocation loop of arbitrary orientation and Burgers vector in a semi-infinite
isotropic medium. The elastic field of a finite-sized closed dislocation loop can thus be obtained
by means of area integration using the results for the infinitesimal loop. Jing et al. [22] used
the last two references to find the displacement field of a rectangular dislocation loop parallel
to a free surface. Maurissen and Capella [23-24] derived the field stress correction terms of a
dislocation segment parallel and perpendicular to a free surface in a semi-infinite elastic
medium. Comninou and Dundurs [25] presented the formulations of the elastic field of an
angular dislocation segment in isotropic half-space. For an anisotropic medium, [26] derived
an integral form of field stress for the case of a dislocation terminating at the free surface of an
anisotropic half-space. Gosling and Willis [27] expressed the stresses due to an arbitrary
dislocation in a semi-infinite medium as a line integral along the dislocation.

In [1-2], to treat the unphysical stress traction brought on the free surface by a screw
dislocation line (parallel to the surface) whose fundamental solution is that of a screw
dislocation in an infinite medium, an image screw dislocation with opposite Burgers vector is
utilized. The image screw dislocation is a mathematical/un-crystal dislocation situated across
from the surface at a distance equal to the crystal screw dislocation. The image solution does
not satisfy the zero traction condition on the free surface when an edge dislocation parallel to
the free surface is considered. In the case of an edge dislocation, [1] showed that extra
term(s), called “surface correction terms” or stress surface correction terms, are needed to be
added to the edge dislocation solution in an infinite medium plus the image edge dislocation

solution (with opposite Burgers vector also treated as if it is in an infinite medium). With the
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addition of these three terms, the correct stress field is obtained as it ensures zero traction on
the free surface.

In recent years, several papers utilized the “collocation point” numerical method to
solve the problem of dislocation near a flat free surface. These collocation point methods
enforce zero traction on a select number of surface points and not infinite number of them as
in analytical methods. For example, [28] and [29] utilized an image dislocation plus a stress
correction term. The stress correction term(s) were obtained by meshing the large surface
with prismatic contiguous “mathematical” dislocation loops. Yan et al. [30] and [31] dropped
the use of the image dislocations in the collocation point method by instead utilizing a mesh
of generally-prismatic dislocation loops.

In this paper, the strain-stress field of the correction terms due to a rectangular
Volterra dislocation loop parallel to a free surface are developed by building on the corrective
displacement field solution (using [21] and [22]). Also, strain-stress fields of the infinite
medium term and the image term due to a rectangular dislocation loop are obtained by
deriving the displacement field solution presented by [12]. Furthermore, analytical
verification and numerical verification of the result will be presented.

Elastic field solutions for dislocation problems as presented herein, are beneficial for
several reasons: 1- They serve as fundamental solutions, similar to a Green’s function, for
other elasticity, plasticity or dislocation problems (e.g. for fracture problems, or general
eigenstrain problems [32-33]), and 2- They serve as verification problems for numerical

methods like the collocation-point method or different dislocation dynamic simulation codes.
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Elastic Fields of a Sub-Surface Rectangular Dislocation Loop

First off, the problem configuration under consideration is given in Figure 1. The
figure shows a free surface (labelled as such) of a half isotropic medium (i.e. semi-infinite
medium) that is below the surface (i.e. lies in the positive z or x5 direction). Beneath the free
surface is a rectangular dislocation loop (labelled as “Finite-sized crystal dislocation loop™)
that is parallel to free surface. This Volterra-type dislocation loop has a Burgers vector b,
which has three components by, by and b;, and has a dimension 2a in the x-direction and a
dimension 2b in the y-direction. The line sense of the loop is shown with the arrow going
around the loop. The loop is below the surface a distance c. The goal is to determine the
strain and stress tensors or components for an arbitrary field material point P. Note that in this
paper, x; and x are used interchangeably, so are x, andy, and so are x; and z. Similarly

for x'; and x', and so forth.

T / b //Free Surface

c 74
n(0.0}-1) =

& 0 :
<l

X7/// f b ® P(x,.x>.x3)
2 / /

Finite-sized crystal Infinitesimal dislocation loop
dislocation loop X% at (%, %5,%5)

Fig.1. A finite-sized dislocation loop with an arbitrary Burgers vector, b, below (by c) a free surface.
Also shown an image dislocation loop with opposite Burgers vector above the surface. Lastly, an
infinitesimal dislocation loop located at a point in the plane of the subsurface finite-sized loop is also
shown.
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To find the displacement, strain or stress fields (i, € or, o respectively) due to the

subsurface dislocation loop, such fields are the sum of three terms:

U= ﬁinf + .l—jimage +us (1)
€ = Einf + eimage + € (2)
g = O.inf + O.image + oS (3)

where the superscript “inf” refers to the field solution of a rectangular dislocation loop as if it
was in an infinite medium and not in a half medium as shown in Figure 1, the superscript
“image” refers to the field solution of an image rectangular dislocation loop which is also
shown as the top loop in Figure 1 (also as if this image loop lied in an infinite medium), and
finally the “s” superscript refers to surface correction terms needed to ensure a zero traction
condition on the free surface.

Let’s focus first on the infinite term in the above equations. The Burgers equation [2]
is an integral equation for the displacement field of a closed Volterra dislocation loop of any
shape or curvature and lying in an infinite medium. It is composed of three integrals: the first
of which is an area integral representing the solid angle of a rectangle, the second and third
are line integrals summing the contributions of infinitesimal line lengths (dl") composing the

loop along its line sense:

0%R ,

1 0 o2 1 12 . S —_—
U (1) = = [ bm 5~V RAA; = 2§ b €misc VRS, — 5o 6 b €ujp 55— d xi

(4)

, where u,,, is the m™ component of the displacement vector 1, b,, is the m" component of

the displacement vector b=b= (bx, by, by), € isthe permutation symbol, v is Poisson’s

ratio, R =/(x' —x)2+ (y' —y)? + (2' — z)? (see Figure 2) and V'’R = 2/R.
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The integration of the above equation for the displacement field of the rectangular
dislocation loop shown in Figure 2 was done in [12]. It is not re-produced here. This
displacement field represents the “inf” and “image” terms in equation (1). To find the strain
field associated with this rectangular dislocation loop in an infinite material, the tensorial

small strain definition is invoked here:

oxj = Ox
This provides the “inf” and “image” terms in equation (2). Finally, to find the stress field of
this loop, one invokes Hooke’s law for an isotropic material:
0ij = A€xiGij + 21€; (6)

Ev E

where 4 = a+v)(1-2v)’ K= 2(1+v)

Here, §;; isthe ij" component of the Kronecker delta, u is shear modulus, € is the
dilatation or the volumetric strain, and E is Young’s modulus. Finding the stresses using
equation (6), will provide the “inf” and “image” terms in equation (3). The strain and stress
fields have been obtained here using the mathematical software Mathematica which has a
very strong symbolic engine. However, they are not provided here for brevity for they will

take several pages to list.

Fig.2. The geometry of a rectangular dislocation loop in infinite material. Here #' = r' = (x',y’,z").
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As for the displacement surface correction term in equation (1), it can be obtained as

follows:

us = [ , au’ (7

, Where du® is the displacement vector at any field material point caused by an infinitesimal
dislocation loop shown in Figure 1. By integrating the displacements caused by infinitesimal
dislocation loops over a finite-sized area, one can obtain the displacement field associated
with the sub-surface rectangular dislocation loop.

Bacon and Groves [21] provided a formula for the surface correction displacement

term of a sub-surface infinitesimal dislocation loop, of area dS:

X3

duf =~k (1-263)[4a (), - (3), ) (8)

where, k = b; dS/4m(1—v), A;; = 2v +4(1 — V)8, dS = dxjdxy, R* = (x; —x1)? +
(x; — x3)% + (x3 + x3)%. The integration for the sub-surface rectangular dislocation loop
was done by [22] and won’t be re-produced here for brevity. Using such solution, the surface
correction term for the strain field in equation (2), can be obtained from equation (5). Once

this strain field is developed, the surface correction term for the stress field in equation (3)

can be obtained from equation (6).
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RESULTS AND DISCUSSION

The surface correction terms for the strain and stress fields were obtained using the
mathematical software Mathematica which has a very strong symbolic engine. Only the stress
results are listed in the appendices (Appendix A for the b, component, Appendix B for the
b, component, and Appendix C for the b, component). If one is interested in the surface
corrections terms for strain, which are not listed here brevity, these could be obtained from
the stresses in the appendices using:
€ij = i (Uij - %Gkk) (9)

, Where gy, is the first invariant of the stress tensor.

To verify the results, the authors embarked on several verifications: i- ensuring that
the stress traction on the free surface is zero, ii- ensuring that the equilibrium equations are
satisfied inside the half medium, iii- ensuring that the strain compatibility equations are

satisfied inside the half medium, and iv- comparing the analytical results with numerical

results from the collocation-point method described above.

Stress Traction on the Free Surface

The stress traction T at the free surface is defined as:
T = oit (10)
which should be 0 at the free surface. Here, & is given by equation (3). However, the unit

normal vector at the free surface is {0 0 -1}, see Figure 1. This means from equation

(10) that oy, o,, and o,, should all be zero at the surface points. To check that these three
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stress components are zero on the surface, one could do one of two things. First, use equation
(3) and specify z= 0 in it and see if it reduces to exactly 0 for each of the three stress
components. Unfortunately, since the final results of equation (3) are a few pages in length,
Mathematica was not able to simplify these stress components at z = 0 down to 0 value even
if one waited more than 24 hours for the simplification. Alternatively, one can consider
arbitrary lines along the x and y directions on the free surface and see if these reduce to zero.
They indeed all identically reduced to zero. In addition to this analytical verification, surface
or carpet plots of the three stress components on the free surface were created. This is a

numerical verification as all such stress values should be zero. The plots in Figure 3 show just

that.

Fig.3.1. Plot of a,, Fig.3.2. Plot of o,

ay;ftota I

1000 1000

Fig.3.3. Plot of o,,.
For these plots, the following values were chosen: a = b = 100b,, ¢ = 10b,, b, = b, =0, b,
1, v=03, £ =100,z=0, —10a < x < 10a, —10b <y < 10b
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Equations of Equilibrium

The partial differential equations of static equilibrium in a solid material are given in indicial

notation by:
60’,:'
Oiji = a_x; =0 (11)

If one expands the last equation on the repeated indices then the resulting three explicit

equations are:

00y

aaxy 00x;
o + 3y + py =0 (12)
00yx | 00yy | 00y;
" + 3y + py =0 (13)
00, , 00zy | 005,
o + 3y + e =0 (14)

These equations should be satisfied at every material point of a solid in equilibrium. To verify
the developed stress solution @ given by equation (3), one can see if equations (12-14) are
identically zero either using analytical or numerical methods. For the analytical method, the
equations are so humungous that Mathematica is not able to simplify them to 0. However, for
any given line in space along the x-, y- or z-directions, Mathematica identically simplifies the
equilibrium equations to zero. Hence analytical verification of the equilibrium equations is
possible. Alternatively, numerical verifications can also be made by plotting equations (12-
14) along any plane in the material to see if the equations give a zero result. Figure 4 shows
such plotting for by # 0 right below the sub-surface dislocation loop. The figure shows that
the equilibrium equations are satisfied. Note that given the combination of Burgers vector
components and equilibrium equations a total of nine plots are minimally generated.
However, only three plots for one of the Burgers vector components are shown here for

brevity.
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Fig. 4.1. Plot of equation (12) Fig. 4.2. Plot of equation (13)

Figure. 4.3. Plot of equation (14). For these plots, the following values were chosen: a = b = 100b,,,
¢=10by, by=b,=0, b, =1, v=03, p =100, z=11bh, —10a <x <10a, —10b <y <
10b

Strain Compatibility Equations

The equations of compatibility can be written in indicial notation as [34]:
€ij ki — €jLik — €ikji T €xrij =0 (15)
This equation can be expanded over the repeated indices and written explicitly as six

different/unique equations:

9%¢ d%e 0%€ 9%€ 9%€ 9%
XX + yy — Xy (16) XX ZZ — XZ (17)
dy? dx2 0xdy dz2 dx2 0x0z
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2 2
aZExx a Eyz _ aZExz a Exy

8%€,, n d%eyy . 0%ezy
0yodz ax2  9xdy 0x0z

ay? azz2  ~ 9zay

(18) (19)

0%€yy | 0%€y; _ 0%€xy | 0%€y,
0x0z dy?2 0yoz dxdy

62622 azexy _ 626xz 6253}2
0x0y az2  9ydz 0x0z

(20) (21)

These equations should be satisfied at every material point of a solid. To verify the developed
stress solution € given by equation (2), one can see if equations (16-21) are identically zero
either using analytical or numerical methods. For the analytical method again, the equations
are so large that Mathematica is not able to simplify them to 0. However, for any given line in
space along the x-, y- or z-directions, Mathematica identically simplifies the compatibility
equations to zero. Hence analytical verification of the compatibility equations is possible.
Alternatively, numerical verifications can also be made by plotting equations (16-21) along
any plane in the material to see if the equations give a zero result. Figure 5 shows such
plotting for bx # 0 right below the sub-surface dislocation loop. The figure shows that the
compatibility equations are satisfied. Note that given the combination of Burgers vector
components and compatibility equations a total of eighteen plots are minimally generated.
However, only three plots for one of the Burgers vector components are shown here for

brevity.

Fig. 5.1. Plot of equation (16) Fig. 5.2. Plot of equation (17)

36



Fig. 5.3. Plot of equation (18). For these plots, the following values were chosen: a =
b =100by, ¢ = 10by, b, =b, =0, by =1, v=03, p =G =100, z=11b,, —10a<x <
10a, —10b <y < 10b

Comparison with the numerical “collocation point” method

As mentioned above, the “collocation point” method is a numerical method that can
work in tandem with the infinite stress/strain terms to find the strain and stress fields in
equations (2) and (3). This numerical method works for any sub-surface dislocation geometry
or inclination and not just horizontal dislocations or loops. To compare with this method, the
following parameters were taken followed by stress components comparison between
analytical and numerical solutions in Figures 6-15:
a=b =100, c =400|b|, v=10.3, z=200|b|], —10a < x < 10a, —10b <y < 10b

The figures show perfect match between the analytical and numerical solutions.
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Fig.6. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along x-direction for non-zero by

Fig.7. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along x-direction for non-zero by
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Fig.8. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along y-direction for non-zero by

Fig.9. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical

“collocation point” method (symbols) along y-direction for non-zero by
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Fig.10. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along x-direction for non-zero by

Fig.11. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along x-direction for non-zero by
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Fig.12. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along y-direction for non-zero by

Fig.13. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along y-direction for non-zero by
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Fig.14. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along x-direction for non-zero b,
Fig.15. Comparison of analytical solutions (solid and dashed lines) to the results of the numerical
“collocation point” method (symbols) along x-direction for non-zero b,

CONCLUSIONS

In conclusion, the strain and stress fields associated with a sub-surface rectangular
dislocation loop that is parallel to the free surface of a semi-infinite solid have been
developed. These are obtained from three different contributions or terms: a term associated
with the loop being in an infinite medium, another term associated with an opposite Burgers
vector image loop, and the third from surface correction terms. The infinite terms and the
surface correction terms were developed here.

The developed field solutions were verified using analytical equations and numerical
comparisons. The verifications were to ensure satisfaction of the zero-traction boundary
condition on the free surface, the satisfaction of the equilibrium equations, the

satisfaction of the strain compatibility equations, and comparisons against numerical results

from the proven “collocation point” numerical method.
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APPENDICES

APPENDIX A
The surface correction terms for stress considering only by (the x-component of the Burgers

vector):

Gxx_ b c(KZ( Q3 2Q1°Q3 _ Q1°Q3 |, 2Q2%Q3 , Q22Q3 Q4 Q4 2Q12Q4  Q12Q4
u VAZB1 VA4B2 VAZB12 A23/2B1 ' VA4B22 ' A43/2B2  AIB1 ' vA3B2 ' VAIB12 ' A13/2B1
2Q22Q4 Q22Q4 ) 6pQ12Q3z  6pQ22Q3z  6pQ1%Q4z . 6pQ22Q4z  pQ4(3A1-Q42)z = 4pQ1%2Q4(3A1-Q43)z

VA3B22  A33/2B2 A23/2B12 A43/2B22  A13/2B12  A33/2B22 A13/2B12 A13/2B13

3pQ12Q4(3A1-Q4%)z . pQ4(3A3-Q43)z  4pQ22Q4(3A3-Q4%)z  3pQ22Q4(3A3-Q42)z . pQ3Siz 4pQ12Q3S1z
A15/2B12 A33/2B22 A33/2B23 A35/2B22 A23/2B12 A23/2B13

3pQ12Q3S1z pQ3S2z 4pQ22Q3S2z . 3pQ22Q3S2z K2Q3 K2Q3  2K4pQ3 K4pQ3

— ——2 b + — —

A25/2B12 A43/2B22 A43/2B23 A45/2322) v(= c(= VA2B1 = A4B2 VA2B12  A23/2B1
2K4pQ3 K4pQ3 K2Q4 K2Q4 . 2K4pQ4 K4pQ4 2K4pQ4 K4pQ4  p2?Q4(3A1-Q4?) p2Q4(3A3—Q42)+
VA4B22 ' A43/2B2  YA1B1 VA3B2 VA1B12 = A13/2B1  VA3B22  A33/2B2 A13/2B12 A33/2B22
p2Q3s1 p2Q3s2 6p3Q3z 6p3Q3z 6p3Q4z 6p3Q4az 2pQ4(3A1-Q42)z  4p3Q4(3A1-Q42)z
A23/2B12  A43/2B22 ' A23/2B12  A43/2B22  A13/2B12 ' A33/2B22 A13/2B12 A13/2B13
3p3Q4(3A1-Q4%)z . 2pQ4(3A3-Q4%)z  4p3Q4a(3A3-Q42)z  3p3Q4(3A3-Q4%)z = 2pQ3S1z  4p3Q3S1iz  3p3Q3Siz
A15/2B12 A33/2B22 A33/2B23 A35/2B22 A23/2B12  A23/2B13  A25/2B12
2pQ3s2z 4p3Q3522 3p3 QSSZZ) b c(K2( Q3 2Q1%2Q3  Q1%Q3 |, 2Q2%Q3 , Q2%Q3 Qe
A43/2B22 © A43/2B23 A4-5/2B22 \/_31 " VAaB2 VAZB12 A23/2B1 ' VAaB22 ' A43/2B2  VAIB1
Q4 2Q1%Q4 Q12Q4 2Q22Q4 Q22Q4) 6pQ12Q3z  6pQ22Q3z  6pQ1%2Q4z , 6pQ22Q4z  pQ4(3A1-Q4?)z
VA3B2 VA1B12 = A13/2B1  A3B22  A33/2B2 A23/2B12  A43/2B22  A13/2B12  A33/2B22 A13/2B12
4pQ12Q4(3A1-Q4?)z . 3pQ1%2Q4(3A1-Q4%)z = pQ4(3A3-Q4?)z  4pQ22Q4(3A3-Q4%)z  3pQ22Q4(3A3-Q4?)z pQ3Siz

A13/2B13 A15/2B12 A33/2B22 A33/2B23 A35/2B22 A23/2B12
4pQ12Q3S1z  3pQ1%Q3Siz pQ3S2z 4pQ22Q3S2z 3pQ22Q3SZZ) byc (K2( Q3 Q4 i )+
A23/2B13 A25/2B12 A43/2B22 A43/2B23 A45/2B22 —4nK A23/2 T A43/2 7 A13/2 T a33/2

3pQ3z 3pQ3z 3pQ4z 3pQ4z
A25/2 A45/2 A15/2 A35/2))

Uﬂ Q3 _ Q4 3pQ32_3pQ32_3pQ4z 3pQ4z _ 1 K2Q3
u (KZ( 23/2 A43/2 A13/2+A33/2) A25/2  A45/2 A15/2 35/2) 2 v(= b (= \/EB1+

K2Q3  2K4pQ3  K4pQ3  2K4pQ3 . K4pQ3 K2Q4 K2Q4  2K4pQ4 = K4pQ4  2K4pQ4  K4apQ4

VA4B2 YA2B12  A23/2B1  +A4B22 = A43/2B2 © VA1B1 VA3B2 VA1B12 = A13/2B1  VA3B22  A33/2B2
p2Q4(3A1-Q4%) | p2Q4(3A3-Q4?) p?Q3S1 p2Q3S2 6p3Q3z 6p3Q3z 6p3Qaz 6p3Q4z

A13/2B12 A33/2B22 A23/2B12  A43/2B22 ' A23/2B12  A43/2B22  A13/2B12  A33/2B22
2pQ4(3A1-Q4?)z | 4p3Q4a(3A1-Q4?)z | 3p3Q4(3A1-Q42)z | 2pQ4(3A3-Q4?)z  4p3Q4a(3A3-Q4?)z  3p3Q4(3A3-Q4?)z
A13/2B12 A13/2B13 A15/2B12 A33/2B22 A33/2B23 A35/2B22
2pQ3S1z  4p3Q3S1z  3p3Q3S1z  2pQ3S2z 4p3Q352z 3p3 Q3SZZ) b Lc(K 2( Q3 2Q1%2Q3
A23/2B12  A23/2B13  A25/2B12  A43/2B22 ' A43/2B23 A45/2322 VA2B1 VA4B2  JA2B12
Q12Q3 2Q22Q3 Q22Q3 Q4 " Q4 +2Q12Q4+ Q1%Q4 2Q22Q4 Q22Q4) 6pQ1%2Q3z  6pQ22Q3z
A23/2B1 = A4B22 ' A43/2B2 VA1B1 +VA3B2 VA1B12 A13/2B1  VA3B22 A33/2B2 A23/2B12  A43/2B22

6pQ12Q4z 6pQ22Q4z_pQ4(3A1—Q42)z 4pQ12Q4(3A1-Q4%)z . 3pQ1%2Q4(3A1-Q4?)z pQ4—(3A3—Q42)z_

A13/2B12 ' A33/2B22 A13/2B12 A13/2B13 A15/2B12 A33/2B22
4pQ22Q4(3A3-Q4%)z  3pQ22Q4(3A3-Q4?)z pQ3Siz 4pQ1%2Q3S1z  3pQ12Q3Siz pQ3S2z 4pQ22Q3szz+
A33/2B23 A35/2B22 A23/2B12 A23/2B13 A25/2B12 A43/2B22 A43/2B23
3pQ22Q3S2z byc Q3 Q3 Q4 n n 3pQ3z  3pQ3z 3pQ4-z 3pQ4z
T A45/2B22 4nK (A23/2 A43/2  A13/2 A33/2) A25/2  A45/2 A15/2 A35/2))
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+

3p%2Q1Q3S1z  Q2Q3S2z , 4p2Q2Q3S2z 3p2Q2Q352z)_
A25/2B12 A43/2B22 A43/2B23 A45/2B22

o bxc . p 4 14 P P P z z z
Oyz _ DxC _ _ _ _ _
T v e vl UG v v v e R v v ey
z 3p2z 3p2z n 3p2z 3p22) + b o~ G1 G1 G1Q32 n G1Q32 n
A43/2  A15/2 © A25/2 1 A35/2  A45/2 \/ 1B1 \/ 2B1 \/ 3B2 VA4B2  A23/2B1 ' A43/2B2
G1Q42 G1Q42 4p2Q32z 4p2Q32z 4p2Q42z 4p?Q4?z  p?(3A1-Q4?)z |, 3p?Q4?(3A1-Q4?)z
A13/2B1  A33/2B2 = A23/2B12  A43/2B22  A13/2B12  A33/2B22 A13/2B12 A15/2B12

p?(3A3-Q4?)z  3p?Q4?(3A3-Q4?)z p3Siz 3p2Q32S1z p2S2z 3p Q32 522)

A33/2B22 A35/2B22 AZ/ZBE  Az5/2BIZ  A43/7B2Z T A4s/7B2Z
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APPENDIX B
The surface correction terms for stress considering only by (the y-component of the Burgers

vector):
Oxx _ byc ( ( Q1 _ Q1 + Q2 _ ) 3pQlz _ 3pQiz 3pQ2z _ 3pQ22) _ _2 ( (K2Q1 _
u 2KT A13/2 A23/2 7 A33/2 pA43/2 A15/2  A25/2 7 A35/2  pA45/2 4Kn y VA2C1

K2Q1 , 2K4pQ1 K4pQ1 2K4pQ1 K4pQ1 H1p2Q1 H3p2Q1 K2Q2 K2Q2 2K4pQ2 K4pQ2

VAIC2 = VA2C12 ~ A23/2Cc1  VA1C22  A13/2C2  A23/2Cc12  A13/2C22 © JA4C1 VJA3C2  VA4C12  A43/2C1

2K4pQ2 K4pQ2 H2p2Q2 H4p2Q2 2H1pQ1z , 2H3pQiz 6p3Qlz 6p3Qiz 4H1p3Q1z | 3H1p3Qiz

VA3C2Z  A33/2C2  A43/2C12 ' A33/2C22  A23/2C12 | A13/2C22  A23/2C1Z | A13/2C22 | A23/2C13 | A25/2C12

4H3p3Q1z 3H3p3Qlz 2H2pQ2z . 2H4pQ2z 6p3Q2z 6p3Q2z 4H2p3Q2z . 3H2p3Q2z  4H4p3Q2z

A13/2¢23 A15/2C22  A43/2C12 © A33/2C22  A43/2C12  A33/2C22 1 A43/2C13 A45/2C12 A33/2C23

3H4p3 QZz)_ b c(KZ(— Q1 n Q1 Q2 Q2 +2Q1Q32 Q1Q32 2Q2Q32 Q2Q32 2Q1Q42

A35/2¢22 VA2Cc1  VAIC2 VA4C1 +A3C2 +A2C12  A23/2c1  VA4C12  A43/2c1 VA1C22

Q1Q4? 2Q2Q42 Q2Q42)_ H1pQ1z H3pQ1z H2pQ2z H4pQ2z  6pQ1Q32%z . 4H1pQ1Q32z

A13/2C2 JA3C22  A33/2C2

3H1pQ1Q32%z  6pQ2Q32%z . 4H2pQ2Q32%z = 3H2pQ2Q3%z . 6pQ1Q4%z  4H3pQ1Q4%z 3H3pQ1Q4%z ., 6pQ2Q42z

A23/2c12 | A13/2C22 aa3/2c12 | A33/2C22 A23/2C12 A23/2C13

A25/2¢12 A43/2C12 A43/2¢13 A45/2¢12 A13/2(22 A13/2¢23 A15/2(22 A33/2(22
4H4pQ2Q4%z  3H4pQ2Q4?z K2 Q1 n Q2 3pQlz  3pQlz , 3pQ2z  3pQ2z...
A33/2C23 A35/2¢22 )+ 4—7'[1(( (A13/2 A23/2 © A33/2 A43/2) A15/2  A25/2 © A35/2 A45/2))
oyy _ 1 b, c(K2( Q1 Q1 Q2 Q2 2Q1Q3? Q1Q3? 2Q2Q3? Q2Q32 2Q1Q42
w  2km Y VAzC1 ' VAIC2z VA4C1 ' VA3Cz ' VA2C1Z ' Az3/2C1 ' VAaC1Z ' A43/2c1 VAiC22

Q1Q4? 2Q2Q4? Q2Q4? ) 6pQ1Q3%2z  6pQ2Q3%z , 6pQ1Q4’z n 6pQ2Q42z pQ1S5z 4pQ1Q42S5z
A13/2C2  VA3C22  A33/2C2 A23/2C12 A43/2C12  A13/2C22  A33/2C22  A13/2C22 A13/2C23
3pQ1Q42S5z  pQlSéz 4pQ1Q32S6z . 3pQ1Q32S6z pQ2S7z 4pQ2Q4%S7z  3pQ2Q42S7z  pQ2S8z

A15/2c22  A23/2ci2 ' A23/2C13 azs/zciz ¥ asilacar | asilecas | assiecar | madlecz T

4pQ2Q32S8z | 3pQ2Q32S8z b (K2Q1 K2Q1 +2K4pQ1+ K4pQ1 2K4pQ1 K4pQ1 H1p2Q1

__2 — —
A43/2C13 A45/2C12) v(= 4KT VA2C1  VA1C2 = YA2C12 ' A23/2c1  VA1C22  A13/2Cc2  A23/2C12

H3p2Q1 K2Q2 K2Q2 . 2K4pQ2 K4pQ2 2K4pQ2 K4pQ2 H2p2Q2 H4p2Q2 2H1pQ1z . 2H3pQiz

A13/2c22 ' JAaC1 VA3C2  A4C12 = A43/2C1  VA3C22  A33/2C2  A43/2C12 © A33/2C22  A23/2C12  A13/2C22

6p3Qlz 6p3Qlz 4H1p3Q1z , 3H1p3Qlz 4H3p3Qlz 3H3p3Qiz 2H2pQ22+2H4pQ22 6p3Q2z n 6p3Q2z "
A23/2C12  A13/2C22  A23/2C13  A25/2C12 A13/2C23  A15/2C22  A43/2C12 T A33/2C22  A43/2C12  A33/2C22
4H2p3Q2z . 3H2p3Q2z  4H4p3Q2z 3H4p3Q22) 1 b, c(K2( Q1 n Q1 Q2 n Q2 +2Q1Q32+
A43/2C13 ' A45/2C12 A33/2C23  A35/2(22 4K Y VAzC1 +VA1C2 VAaC1 +VA3C2 +VA2C12

Q1Q32 2Q2Q3? Q2Q3? 2Q1Q42 Q1Q42 2Q2Q42 Q2Q42) H1pQ1lz H3pQ1z H2pQ2z H4pQ2z
A23/2c1  YA4C12 = A43/2c1  VJA1C22 A13/2c2  A3C22  A33/2C2 A23/2C12  A13/2C22  A43/2C12 ' A33/2C22

6pQ1Q3%z = 4H1pQ1Q32%z . 3H1pQ1Q32%z 6pQ2Q32%z = 4H2pQ2Q3%z = 3H2pQ2Q32%z , 6pQ1Q4%z  4H3pQ1Q4?z

A23/2C12 A23/2C13 A25/2C12 A43/2C12 A43/2C13 A45/2C12 A13/2C22 A13/2C23

Q1 Q2 3pQlz
—ank (K (A13/2 ~az3z T azar A43/2) toasz

3H3pQ1Q4%z . 6pQ2Q4%z  4H4pQ2Q42%z  3H4pQ2Q42 z)+
A15/2C22 A33/2¢22 A33/2C23 A35/2C22

3pQiz 3pQ2z 3pQ22))_

22572 T a35/z T massz
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Ozz _ (K2Q1 K2Q1 2G1pQ1 G1pQ1 2G1pQ1 G1pQ1 K2Q2 K2Q2 2G1pQ2 G1pQ2
L 2Km y VA2C1 VAIC2 = VA2C12 ' A23/2c1 +A1C22 A13/2Cc2  YAaC1 VA3C2  VA4C12  A43/2C1
2G1pQ2 G1pQ2 p2Q1S5 p2Q1S6 p2Q2s7 p2Q2ss 6p3Qiz 6p3Q1z 6p3Q2z 6p3Q2z

- + - + - - + - + +
VA3C22  A33/2C2  A13/2C22  A23/2C12  A33/2C22 A43/2C12  A23/2C12  A13/2C22  A43/2C12 1 A33/2(C22

2pQ1S5z  4p3Q1S5z  3p3Q1S5z  2pQ1S6z . 4p3Q1S6z . 3p3Q1S6z . 2pQ2S7z  4p3Q2S7z  3p3Q2S7z  2pQ2S8z

A13/2C22 A13/2C23  A15/2C22  A23/2C12 ' A23/2C13 | A25/2C12 | A33/2C22  A33/2C23  A35/2C22  A43/2C12

b (K2Q1 K2Q1 +2K4pQ1+ K4pQl  2K4pQl  K4pQl H1p2Q1
VA2C1 VAIC2 = VA2C12  A23/2c1  +A1C22 A13/2C2  A23/2C12

H3p2Q1 K2Q2 K2Q2 . 2K4pQ2 K4pQ2 2K4pQ2 K4pQ2 H2p2Q2 H4p2Q2 2H1pQ1z . 2H3pQiz

A13/2C22 ' VA4Cc1 VA3C2  VJA4C12  A43/2c1 VA3C22  A33/2C2  A43/2C12  A33/2C22  A23/2C12 1 A13/2C22

6p3Q1z 6p3Qiz 4H1p3Q1z = 3H1p3Qlz 4H3p3Qlz 3H3p3Qilz 2H2pQ22+2H4pQ22 6p3Q2z " 6p3Q2z i
A23/2C12 © A13/2C22  A23/2C13 A25/2C12 A13/2¢23 A15/2C22  A43/2C12  A33/2C22  A43/2C12  A33/2¢22

4p3Q2S8z . 3p3Q2S8z
A43/2C13  A45/2C12

) — = 2v(——

4K

4H2p3Q2z . 3H2p3Q2z  4H4p3Q2z 3H4p3Q22) b C(KZ( Q1 n Q1 Q2 " Q2 +2Q1Q32+
A43/2C13 A45/2C12 A33/2C23 A35/2C22 VvAzc1  VA1C2 +VAac1 = +JA3C2  +Az2C1?

Q1Q32 2Q2Q32 Q2Q32 2Q1Q4? Q1Q42 2Q2Q42 Q2Q42) H1pQlz H3pQ1z H2pQ2z H4pQ2z

A23/2C1 " VA&C1Z | A43/2C1 VAIC22  A13/2C2 JA3C22  A33/2C2
6pQ1Q32z = 4H1pQ1Q32%z . 3H1pQ1Q3%z 6pQ2Q3%z . 4H2pQ2Q3%z . 3H2pQ2Q32%z . 6pQ1Q4%z  4H3pQ1Q4%z
A23/2C12 A23/2C13 A25/2C12 A43/2C12 A43/2c13 A45/2C12 A13/2C22 A13/2C23
3H3pQ1Q4%z | 6pQ2Q4%z  4H4pQ2Q4?z  3H4pQ2Q4?z K2 Q1 " Q2 3pQiz
A15/2C22 A33/2C22 A33/2C23 A35/2(22 )+ 471:1(( (A13/2 A23/2  A33/2 A43/2) A15/2

3pQiz 3pQ2z 3pQ2z...
A25/2 1 A35/2 A45/2))

T A23/2c12 T A13/2C22  A43/2Cc12 | A33/2¢22

Oxy _ bLC Q3 Q3 Q4 3pQ3z _ 3pQ3z 3pQ4z 3pQ4z 1 _ Q3
w 4K11:( (A23/2 A43/2  pA13/2 + A33/2) + A25/2  A45/2  A15/2 A35/2) + b C(KZ(J_C1 VAaC1
Q12Q3 Q22Q3 4 Q4 Q1%2Q4 _ Q22Q4 ) 4pQ1%Q3z _ 4pQ22Q3z _ 4pQ1%2Q4z . 4pQ22Q4z _

A23/2c1  A43/2c1  JAIC2 VJA3C2 = A13/2c2  A33/2C2 A23/2C12 A43/2Cc12 A13/2C22  A33/2C22

pQ4S5z 3pQ12Q4S5z . pQ3S6z 3pQ12Q3S6z pQ4S7z 3pQ22Q4S7z  pQ3S8z 3pQ22Q3S8z, .
A13/2C22 A15/2C22 A23/2¢12 A25/2C12 A33/2C22 A35/2C22 A43/2C12 A45/2C12 )i

Oxz _bye, p _ » _ _p p P z _ _ z  z
W 4Km (A13/2 A23/2  A33/2 + A43/2 +K2(- A13/2 + A23/2 + A33/2 A43/2) A13/2  A23/2  A33/2 +
z 3p2z 3p2z n 3p?z 3p22) b ( G1 G1 G1 G1Q1? G1Q1? n
A43/2  A15/2 © A25/2 © A35/2 A45/2 4K by VAzC1 VA4C1  VALC2 v A3Cz  Az3/2c1 | A13/2C2
G1Q22 G1Q2? 4p2Q1%z  4p?Q1%z  4p?Q2%z | 4p?Q2?z p?S5z 3p2Q12S5z p?S6z 3p2Q1%s6z

A43/2C1 A33/2C2 ' A23/2C12 A13/2C22  A43/2C12 | A33/2C22 A13/2C22 | A15/2C22 | A23/2C12 A25/2C12

p2s7z 3p2Q22S7z p?S8z 3p Q22s8z
A33/2C22  A35/2C22  A43/2C12 A45/2C12)

Oyz _ 1 C(261Q1Q3 G1Q1Q3 , 2G1Q2Q3 G1Q2Q3_2G1Q1Q4—_G1Q1Q4_2G1Q2Q4_GlQ2Q4_6p2Q1Q3z
u  akm Y NVA2C12 0 A23/2Cc1 | JA4C12 | A43/2Cc1 YA1C22  A13/2C2 VA3C22  A33/2C2  A23/2C12

6p%Q2Q3z = 6p?Q1Q4z , 6p2Q2Q4z  4p?Q1Q4S5z 3p2Q1Q4S5z . 4p?Q1Q3S6z . 3p2Q1Q3S6z  4p2Q2Q4S7z

A43/2C12  A13/2C22 ' A33/2C22 A13/2C23 A15/2C22 A23/2C13 A25/2c12  A33/2(23

3p2Q2Q4S7z . 4p2Q2Q3S8z = 3p?Q2Q3S8z

)+ b, c(K2(PUQ | pUIQ3 | 2pQ2Q3 | pQ2Q3 _ 2pQ1Qt _
A35/2C22 A43/2C13 A45/2C12 VA2C12 A23/2c1 VAZC12  A43/2c1 +A1C22

pQ1Q4 2pQ2Q4 pQ2Q4) pQ1Q4S5  pQ1Q3S6 . pQ2Q4S7  pQ2Q3S8  6p2Q1Q3z  6p2Q2Q3z . 6p?Q1Q4z
A13/2c2  yA3C22  A33/2(C2 A13/2C22  A23/2C12 ' A33/2C22  A43/2C12 A23/2C12 A43/2C12 A13/2C22

6p%Q2Q4z = Q1Q4S5z  4p2%Q1Q4S5z  3p2?Q1Q4S5z  Q1Q3S6z . 4p2Q1Q3S6z . 3p2Q1Q3S6z . Q2Q4S7z  4p2Q2Q4S7z

A33/2C22 © A13/2C22 A13/2C23 A15/2C22 A23/2C12 A23/2C13 A25/2C12 A33/2C22 A33/2C23

+

3p2Q2Q4S7z  Q2Q3S8z = 4p2Q2Q3S8z 3p2Q2Q358z)_
A35/2C22 A43/2C12 A43/2C13 A45/2¢12
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APPENDIX C
The surface correction terms for stress considering only b, (the z-component of the Burgers

vector):

Oy b (G2(2Q1Q3 Q1Q3 2Q2Q3 Q2Q3 2Q1Q4 Q1Q4 2Q2Q4 Q2Q4 ) 6p2Q1Q3z+
u VA2B12 A23/2B1 VA4B22 = A43/2B2  VA1B12 A13/2B1  VA3B22  A33/2B2 A23/2B12
6p2Q2Q3z  6p2Q1Q4z  6p2Q2Q4z  4p2Q1Q3S1z  3p2Q1Q3S1z . 4p2Q2Q4S10z . 3p2Q2Q4S10z  4p2Q2Q3S2z
A43/2B22  A13/2B12 A33/2B22 A23/2B13 A25/2B12 A33/2B23 A35/2B22 A43/2B23
3p2Q2Q3S2z , 4p2Q1Q4S9z . 3p2Q1Q4S9z 2 M2pQ1Q3  M3pQ2Q3 +M4pQ1Q4+ M1pQ2Q4+
A45/2B22 A13/2B13 A15/2B12 )~ (41(71 2C(= A23/2 A43/2 A13/2 A33/2

K2(4—pQ1Q3 2H5pQ1Q3  2H5pQ1Q3 H5pQ1Q3 4pQ2Q3  2H6pQ2Q3  2H6pQ2Q3 H6pQ2Q3 2H7pQ1Q4
VA2B1C1  VA2B1C12 VA2B12C1  A23/2B1C1  +A4B2C1  VA4B2C12 VA4B22C1  A43/2B2C1 = A1B1S112

2H8pQ2Q4 _  4pQ1Q4 2H7pQ1Q4 H7pQ1Q4 4pQ2Q4 2H8pQ2Q4 H8pQ2Q4 M2Q1Q3z M6pQ1Q3z

+

VA3B2S112  VAIB1S11 & VA1B12S11 ' A13/2B1S11  VA3B2S11 ' VA3B22S11 A33/2B2511) T T a23/z T a3z
3M2p2Q1Q3z M3Q2Q3z M7pQ2Q3z . 3M3p2Q2Q3z . M4Q1Q4z " M8pQ1Q4z 3M4p2Q1Q4z , M1Q2Q4z . M5pQ2Q4z
A25/2 A4_3/2 A4—3/2 A45/2 A13/2 A13/2 A15/2 A33/2 A33/2
3M1p2Q2Q4z) n bc(— G2M10 n G2M12 n 2G2M9Q3  2G2M11Q4 , 6p%Q1Q3z , 6p?Q2Q3z  6p?Q1Q4z  6p2Q2Q4z

A35/2 4KT c2 c12 c22 A23/2C12  A43/2C12 A13/2C22  A33/2C22

4p2Q1Q4S5z  3p?Q1Q4S5z 4—p2Q1Q3562 3p2Q1Q3S6z . 4p?Q2Q4S7z |, 3p?Q2Q4S7z  4p2?Q2Q3S8z  3p2Q2Q3S8z
A13/2C23 A15/2C22 A23/2C13 A25/2C12 A33/2¢23 A35/2C22 A43/2C13 A45/2C12 )

b (G2(2Q1Q3 Q1Q3 2Q2Q3 Q2Q3  2Q1Q4 Q1Q4  2Q2Q4 Q2Q4) 6p2Q1Q3z

VA2B12 A23/2B1 VA4B22 ' A43/2B2  VAIB1Z A13/2B1  VA3B22  A33/2B2 A23/2B12

6p%Q2Q3z  6p?Q1Q4z  6p2Q2Q4z  4p?Q1Q3S1z  3p?Q1Q3S1lz . 4p2Q2Q4S10z = 3p?Q2Q4S10z  4p?Q2Q3S2z

+

A43/2B22  A13/2B12  A33/2B22 A23/2B13 A25/2B12 A33/2B23 A35/2B22 A43/2B23
3p2Q2Q3S2z . 4p2Q1Q4S9z 3p2Q1Q4592))

A45/2B22 A13/2B13 A15/2B12

Oyy _ 1 b,c( GZM10+G2M12+2G2M9Q3 2G2M11Q4 , 6p2Q1Q3z . 6p%Q2Q3z  6p?Q1Q4z 6p2Q2Q4z+

w  2Kkm % c1 c2 c12 c22 A23/2C12  A43/2C12 A13/2C22  A33/2C22
4p2Q1Q4S5z . 3p2Q1Q4S5z  4p2Q1Q3S6z  3p2Q1Q3S6z . 4p?Q2Q4S7z . 3p?Q2Q4S7z  4p%Q2Q3S8z 3p2Q2Q3SSZ)
A13/2(C23 A15/2(22 A23/2C13 A25/2C12 A33/2(23 A35/2(22 A43/2¢13 A45/2¢12
1 ( o M2pQ1Q3 M3pQ2Q3+M4pQ1Q4—+M1pQ2Q4 (4pQ1Q3 2H5pQ1Q3  2H5pQ1Q3  H5pQ1Q3
Kz “\akn b, A23/2 A43/2 A13/2 A33/2 VA2B1C1  VA2B1C12  VA2B12C1  A23/2B1C1

4pQ2Q3 2H6pQ2Q3  2H6pQ2Q3 H6pQ2Q3 2H7pQ1Q4 , 2H8pQ2Q4 4pQ1Q4 2H7pQ1Q4 H7pQ1Q4
VA4B2C1  VA4B2C12 VA4B22C1  A43/2B2Cc1  VA1B1S112  +A3B2S112 +A1B1S11 +VA1B12S11  A13/2B1S11

4pQ2Q4 2H8pQ2Q4 HBpQ2Q4) M2Q1Q3z M6pQ1Q3z . 3M2p2Q1Q3z M3Q2Q3z M7pQ2Q3z , 3M3p2Q2Q3z
VA3B2S11  VA3B22S11 = A33/2B2S11 A23/2 A23/2 A25/2 A43/2 A43/2 A45/2

M4Q1Q4z . M8pQ1Q4z 3M4p?Q1Q4z . M1Q2Q4z , M5pQ2Q4z 3M1p2Q2Q4z

+

G2M10 G2M12

A13/2 A13/2 | A15/2 A33/2 A33/2  A3S/2 )+ b c(= < T
2G2M9Q3  2G2M11Q4 . 6p?Q1Q3z . 6p2Q2Q3z 6p?Q1Q4z  6p?Q2Q4z 4p2Q1Q4SSZ 3p2Q1Q455z 4p2Q1Q3S6z
c12 C22 A23/2C12 A43/2C12 A13/2C22  A33/2C22 A13/2C23 A15/2C22 A23/2C13
3p2Q1Q3S6z . 4p2Q2Q4S7z . 3p?Q2Q4S7z  4p?Q2Q3S8z 3p2Q2Q3SSZ)+ b (G2(2Q1Q3 Q1Q3 2Q2Q3 n
A25/2C12 A33/2C23 A35/2C22 A43/2C13 A45/2C12 VA2B12 A23/2B1 VA4B22

Q2Q3 2Q1Q4 Q1Q4 2Q2Q4 Q2Q4) 6p2Q1Q3z . 6p?Q2Q3z 6p2Q1Q4z  6p2Q2Q4z 4p2Q1Q351z_

A43/2B2  A1B12 A13/2B1  VJA3B22 A33/2B2

3p2Q1Q3S1z = 4p2Q2Q4S10z . 3p?Q2Q4S10z  4p2Q2Q3S2z  3p2?Q2Q3S2z . 4p?Q1Q4S9z 3p2Q1Q4S9z))
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Chapter 4 Strain Field Development of a Rectangular Dislocation Loop in a
Semi-Infinite Medium with Verification

ABSTRACT

This paper considers a rectangular Volterra dislocation loop lying beneath and parallel
to a free surface in a semi-infinite material. The paper utilizes the displacement field of an
infinitesimal dislocation loop to obtain the strain field and then integrate over a finite
rectangular area. For the loop, it can have three non-zero Burgers vector components. The
stress field is also obtained from Hooke’s law for isotropic materials. Analytical and
numerical verifications of the strain and stress fields are performed. In addition, the effect of
the free surface on stresses is displayed versus depth from the surface. Verification includes
satisfaction of the zero-traction boundary condition, the stress equilibrium equations and the
strain compatibility equations.

Keywords: Rectangular  dislocation  loop; half medium; strain/stress field;
numerical/analytical verification.
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INTRODUCTION

Dislocation loops are defects in the material, associating the collapse of a large number
of point defects into lower energy defect structures. A rectangular dislocation loop is a closed
loop composed of four straight dislocation lines. Dislocation lines have to end on free surfaces,
grain boundaries, or form a closed loop inside a material. They cannot end inside the crystal
[1]. In this work, the development of the strain field of a VVolterra-type rectangular dislocation
loop parallel to the free surface of half medium, and having three non-zero Burgers vector
components, is focused on.

Several dislocation problems in terms of material type, geometry and size have been
developed for decades. In the early years, research on infinite isotropic materials was studied
by different researchers. Development of the elastic fields of infinite screw and edge
dislocations in an infinite isotropic medium were provided [2-4]. Furthermore, integral
equations for finding the displacement field (the Burgers equation) and the stress field (the
Peach-Koehler equation) of a closed dislocation loop (of any shape) in an infinite isotropic
material have been provided by Hirth JP et al. [2].

A couple of researchers have studied different kinds of dislocation loop problems
applying various techniques. Initially, [5-6] researched the prismatic circular loop. The circular
glide loop was initially investigated by Keller JM [7] Kr&ner E [8], which was later corrected
in [9-10]. Khraishi TA et al [11] Khraishi TA et al. [12] corrected some earlier work in a more
recent study of the displacement and stress fields of glide and prismatic circular dislocation
loops. The displacement field of a rectangular dislocation loop of the Volterra type in an infinite
medium was obtained by Khraishi TA et al. [13], which contains a solid angle term. The above

references in this paragraph all focused on an infinite material.
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One application for dislocation loops is its use in the “collocation point” method that is
used to resolve traction-free surface problems in a semi-infinite material simulated with the 3-
D DDD method via a surface mesh of rectangular/triangular dislocation loops [14-18].
Siddique AB et al [19] extended the collocation-point method to deal with curved free surfaces.
For circular dislocation loops, they were used for modeling pile-ups around rigid cylindrical
particles [20] and for modeling Frank sessile loops which are caused by irradiation damage in
some metals [21-23].

As for studies involving dislocations near a free surface, Yoffe EH et al [24] developed
the elastic fields of a dislocation terminating on a free surface (for any Burgers vector). Groves
PP et al. [25] studied the effects of free surfaces on a dislocation loop. Maurissen Y et al. [26]
Maurissen Y et al [27] obtained the correction terms of the stress field of a dislocation half-line
and segment parallel and perpendicular to a free surface in a semi-infinite elastic medium.
Comninou M et al. [28] presented the formulations for the elastic fields of an angular
dislocation in an isotropic half-space. Gosling TJ et al. [29] determined the stresses due to an
arbitrary dislocation in a semi-infinite medium as a line integral along the dislocation. Jing et
al. [30] found the displacement field of a rectangular dislocation loop parallel to a free surface.

In this paper, the strain components of a rectangular dislocation loop parallel to a free
surface are obtained. Also, analytical and numerical verifications for the strain field are
performed. The verification is to ensure that the Strain Compatibility Equations are satisfied.
Then, the stress field, obtained via Hooke’s law using the strain developed herein, is verified
using the Equilibrium Equations and the zero-traction condition on the free surface. Moreover,
plots reflecting the effect of the free surface correction term are presented at different depths

beneath the surface.
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METHODOLOGY

Development of the strains of the sub-surface rectangular dislocation loop

The dislocation problem under consideration is shown in Fig. 1. The figure shows a
rectangular dislocation loop (also described as a “finite-sized dislocation loop™) in a semi-
infinite isotropic medium and which is below the free surface. This Volterra-type dislocation
loop has three Burgers vector components b,, b, and b,. Also, it has a dimension 2a in
the x-direction and a dimension 2b in the y-direction. The line sense of the dislocation
loop is shown by the arrow around the dislocation loop. The goal of this problem is to obtain
the strain components at an arbitrary material field point P. Note that in this paper, x; and X
are used interchangeably, so are x, andy, and so are x; and z. Analogously for x'; and x’,

and so on.

1mage

/; /// Loop

C

Free
surface

X

infinitesimal

rectangular
dislocation
loop

p=(x, v,2) ' 7

Fig. 1. A rectangular dislocation loop with an arbitrary Burgers vector, below a free surface. Also, an
image dislocation loop with opposite Burgers vector is shown above the surface. An infinitesimal
dislocation loop used in the integration is also shown.
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To find the total strain field due to the subsurface rectangular dislocation loop, one can
sum up the three contributions of the total strain field as in the following:
€ =€ + €M 4 ¢ 1)
Where the superscript ‘inf’ refers to the strain solution of a rectangular dislocation loop in an
infinite medium, not in a half medium as shown in Fig. 1. The superscript ‘imag’ refers to the
strain solution of an image dislocation loop with an opposite Burgers vector laying above the
surface. And the ‘s’ superscript refers to surface correction term which ensures the zero-
traction condition on the free surface, i.e. the image loop by itself does not annul all the stress
traction components on the surface.

Let’s focus on the correction term in the above equation first. Bacon and Grove

provided an equation for the displacement surface correction term of a subsurface infinitesimal

dislocation loop with area dS [25]:

duf =~k (1-263)[4a (), - (3), ) 2)

where, k = b; dS/4m(1—v), A;; = 2v+4(1—v)6;;, dS = dxjdxj, R* = (x; —x1)* +
(x; — x3)% + (x3 + x3)2. 8 isthe ij*" component of the Kronecker delta.

Equation (2) can be written explicitly as follows:

When

i=1:

=1

aui ==l () - ()] ®
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s _ _x3byds EA NN £2)
dul - 4t (1-v) 2v (R)'lz (R)’123:| (4)
i=1:

j=3:

dui = % [21/ (%),13 B (%3),133] ©)

duz = = % [21/ (%),21 B (%3),213] ()
i=2:

j=2:

=S 6., 6. ”
i=2:

J=3:

duz = % [ZV (%),23 - (%),233] ®)

__x3by ds

iy | 2V A0 -Y) (%),31 - (%),313] ©)

S
duz =
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j=2:
_ _xbyas _ 1y _ (%
dus = 41(1-v) (2v+4(1-v)) (R),32 (R ),323] (10)
i=3:
j=3:
s _ x3 bz dS _ 1 _(*
duz = 4m(1-v) (2v+4(1-v)) (R),33 (R ),333] (1)

To find the strain field for the correction term of an infinitesimal loop, the tensorial small strain

definition is applied:

de. .S = l(aduf + %) (12)

Y 2 axj Ox;

As for the strain surface correction term in equation (1) for the finite rectangular loop,
it can be obtained with integration via:
€=, de (13)
Where A is the area of integration. For the infinite term in equation (1), the elastic fields of a
rectangular dislocation loop have been obtained in [31]. Hence, the development of the infinite
term in equation (1) is not repeated here for brevity. If one has the solution for the infinite term
in equation (1), one can easily obtain the image term which has an opposite Burgers vector and

opposite ‘z’ value to infinite term. If one has the expressions for the three terms contributing

to equation (1), then the total strain field can be easily determined from the sum of these terms.
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RESULTS AND DISCUSSION

Based on the above, the strain field of a rectangular dislocation loop has been obtained
with integrations and other manipulations all performed using the strong symbolic engine of
the mathematical software Mathematica. Results of the correction term are provided in the
Appendix. If one is interested in the stress field (which is not shown herein explicitly like the

strains for brevity sake), one can use Hooke’s law for isotropic materials:

O-ij = /1€kk6ij + 2[l€ij (14)
_ Ev _ E i iith
where 1 = Tz P 2am Here, §;; is the ij" component of the Kronecker delta, u

is shear modulus, € is the dilatation or the volumetric strain, and E is Young’s modulus.

Strain Compatibility Equations Verification

The equations of compatibility can be written in indicial notation as [32]:
€ij ki — €jLik — €ik,ji T €krij =0 (15)

This equation can be expanded over the repeated indices and written explicitly as six
different/unique equations:

== R Yo (16)
dy? dx2 0x0y
0%exy | 0%€y, =2 0%ex, (17)
0z2 0x2 0xdz
%€,  0%€yy 0%€5y
=2 18

ay?2 T 0z2 0zdy ( )
0%exx |, 0%€yz — 0%€x; , 0%€xy (19)
dydz dx2 dxdy 0xdz
Deyy | Oexy _ O’exy | %€y (20)
0x0z dy? dydz dxdy

2 92 2 92
Doz y O Cay _ 0 Cxr y O Sy (21)

dxdy 0z2 0ydz 0x0z
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These equations should be satisfied at every material point in the solid. To verify the
developed strain solution, one can see if equations (16-21) are identically zero using either
analytical or numerical methods. For the analytical method, the equations are so humongous
that Mathematica is not able to reduce them to 0. However, for any given line in space along
the x-, y- or z-directions, Mathematica identically converts the compatibility equations to zero.
Hence analytical verification of the compatibility equations is feasible.

Alternatively, numerical verifications can also be shown by plotting equations (16-21)
along any plane in the material to see if the equations give a zero result. Fig. 2 shows such
plotting for b, # 0. The figure shows that the compatibility equations are satisfied. Note that
given the combination of Burgers vector components and compatibility equations a total of
eighteen plots are minimally generated. Therefore, only three plots for one of the Burgers

vector components are shown here for brevity.

Fig. 2.1 Plot of equation (16) Fig. 2.2 Plot of equation (19)
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Fig. 2.3 Plot of equation (20)
For these plots, the following values were chosen: a = b = 100b,, z' = ¢ = 10b,, by, = b, =0,
b,=1,v=03, u=G6 =100, z=11b,, —4a<x<4a, —4b<y <4b

Equilibrium Equations Verification

To verify the strain field developed in this paper, one can use equation (14) to obtain
the stress field and see if the obtained stress field can satisfy the equilibrium equations. The

partial differential equations of static equilibrium in a solid material can be written in indicial

notation as:
d0;i

If the last equation is expanded on the repeated indices then the resulting three equations are:

0axx |, 00xy | 00y, _
o + 3y + P =0 (23)
0oyx . 00yy aayz_
" + 3y + py =0 (24)
00, , 00zy | 00,
o + 3y + p =0 (25)

This is keeping in mind the symmetry of the stress tensor, i.e. o;; = gj;. These
equations should be satisfied at every material point of a solid in equilibrium. To verify the

stress solution given by equation (14), one can see if equations (23-25) are identically satisfied
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either using analytical or numerical methods. For the analytical method, the equations are all
reduced to zero by utilizing Mathematica. Analogously, if one considers any line in space, the
three equilibrium equations also equate analytically to zero. Hence, analytical verification of
the equilibrium equations is feasible.

Alternatively, numerical verification can also be made by plotting equations (23-25)
along any plane in the material to see if the equations show a zero result. Fig. 3 shows such
plotting for by # 0. The figure shows that the equilibrium equations are satisfied. Note that
given the combination of Burgers vector components and equilibrium equations a total of nine
plots are minimally generated. Therefore, only three plots for one of the Burgers vector

components are shown here for brevity.

Fig. 3.1 Plot of equation (23) Fig. 3.2 Plot of equation (24)

400—400

Fig. 3.3 Plot of equation (25)
For these plots, the following values were chosen: a = b = 100b,, z'=c= 10by, by = b, =0,
b,=1,v=03, u=100, z=11b,, —4a <x < 4a, —4b <y <4b
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Free-Traction Condition on the Free Surface

Another way to verify the strain field developed herein is to plug the obtained strain

field solution into equation (14) to get the stress solution and check if the stress solution

satisfies the free-traction condition on the free surface. The stress traction T at the free surface

can be written as:

T =it (26)

Which should be 0 at the free surface. Here, o is given by equation (14). The unit normal

vector at the free surface is {0 0 -1}, see Fig. 1. In this case, oy, o,, and g,, components

should all be zero at the free surface. To make sure that these three stress components are zero
on the surface, one could use equation (14) and specify z = 0 in it and see if it reduces to 0 for
each of the three stress components. Unfortunately, since the final solutions of stress field
obtained by equation (14) are too long, Mathematica was not able to analytically simplify these
stress components at z = 0 down to 0 value even if one waited more than 24 hours for the
simplification result. Alternatively, if one considers arbitrary lines along the x and y directions
on the free surface, these stress components did reduce to zero identically. In addition to the
analytical verification, surface plots of the three stress field components on the free surface
were generated. This is a numerical verification as all such three stress values should be zero.

The plots in Fig. 4 are done for by # 0.

Normalized Plots for the Stress Field of a Subsurface Rectangular Dislocation Loop

Note that by taking the developed total strain solution (the three parts of it) and
substituting them into equation (14), one can then separate the stresses into three parts and

write an equation similar to equation (1):
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g = O.inf + o.imag +o° (27)
As equation (27) shows, total stress field for the subsurface rectangular dislocation loop

involves three terms which are the infinite term, the image term and the surface correction term.

_oxztotal

Uz;total

. S

Fig. 4.1 Plot of the equation for o, Fig. 4.2 Plot of the equation for g,

[ |

Fig. 4.3 Plot of the equation for o,
For these plots, the following values were chosen: a = b = 100b,, z' = ¢ = 10b,, b, =b, =0,
b,=1,v=03, u=100,z=0, —10a < x < 10a, —10b <y < 10b

To investigate the stress field of a rectangular dislocation loop in an isotropic half
medium at different z depths, one can plot separately the total stress and its parts

along the x and y directions. Fig. 5 shows the effect of depth on the different stresses
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(total stress, infinite term, image term and stress correction term). Fig. 6 shows the effect of
depth on the stress correction term. For the plots in Figs. 5 and 6, the following values were
chosen: a = b =100b,, z' = ¢ =400by, by =b, =0, b, =1, v=03, u=1,
—10a <x <10a, y=0.

For the plots in Fig. 7, the following values were chosen: a = b = 100b,, z' = ¢ =
400b,, by, =b, =0, b,=1, v=03, u=1, —10b <y < 10b, x = 0. Similar to Figs. 5

and 6, these figures also show the effect of depth on the stress correction term but for b, # 0.
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As the plots in Fig. 5 show, the correction term nearly dominates the total stress
value of a dislocation loop at the surface, while the effect of the infinite term is much lesser.
However, as the material point in question gets further away from the free surface, the
infinite term gradually dominates the total stress value while the effect of the surface
correction term on the total stress gets weaker. Indeed, at high depths closer to the
dislocation loop in the half medium, the total stress value is almost all due to the infinite
term. Fig. 6, which focuses on the stress correction term only, shows a similar trend for
this term as it is usually highest on the surface and diminishes close the dislocation loop.
Note that some stress components are not drawn here since they are identically equal to
zero along a line parallel to x with y=0 and by#0. Fig. 7 is similar to Figs. 5 and 6 but is
done along a line parallel to the y-axis with x=0 and b;#0. This figure also shows that the
stress correction term diminishes fast from the free surface. In Fig. 7, the stress correction
terms for o,, and o,, areidentically zero along a line parallel to the y-axis with x=0 and
b.#0 and hence are not plotted here. Moreover, the plots of stress components for by are not

shown here for brevity since the plots are similar to the ones of stress components for bx.
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CONCLUSIONS

In conclusion, the strain field of a subsurface rectangular dislocation loop parallel
to the free surface in a half medium has been obtained in this paper. The developed strain
field is verified using different fundamental equations of continuum mechanics. Firstly, the
strain solution is verified using the Strain Compatibility Equations, which are the equations
relating the different strain components’ spatial distribution. As the results show, the strain
solution developed herein satisfies the Compatibility Equations. Secondly, one
can also verify the strain field by plugging the strain solution into Hooke’s Law to obtain

the stress field. Then, one can check if this stress field satisfies the Equilibrium Equations
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and the zero-traction condition on the free surface. As the results show, the stress
field obtained in this manner does indeed satisfy the Equilibrium Equations and the
free-traction condition. The last conclusion from this work regards the decay rate
of the surface effects on the total stress. The surface effects diminish quickly away
from the surface as one gets closer and closer to the subsurface dislocation

loop.

APPENDIX

Considering the Burgers vector component by:

25/2B1  A45/2B2 15/2B1  A35/2B2

Q12 Q2?2 Q12 Q22
Exx = —4K1 b,c(—=3 pl (A — )Q32+3p1(A — )Q4z+
Q3(Q1*+p1(p1*p2-6Q1°z))  Q4(Q1*+p1(p1°p2-6Q1%°z))  Q3(Q2*—pi(- p12p2+6Q222))
VA2B13 VA1B13 VA4B23

Q4(Q2*-p1(-p1°p2+6Q2°z))  Q3(-c3z+cz(Q1*-32z%)-(Q1*-z)*~c?(Q1*+32?)) n
VA3B23 A23/2B12

Q4(—c3z+cz(Q12-32%)—(Q1%2-22)2—-c?(Q1%+322)) _ Q3(c3z—cz(Q22-32z2)+(Q2%2-22%)2+c?(Q2%2+3z22))
A13/2B12 A43/2B22

Q4-(C3Z—CZ(Q22—322)+(Q22—22)2+CZ(Q22+322))) b,cv ( Q3
A33/2B22 2Kim “B1 * A23/2 A13/2

(-p1%+Q1?) Q3
T oB12 (_ VAz

)+

Q3
B2 A43/2 A33/2

-+ o+ I (L),

€

byc K byc K
_ __bxc 2(_ Q3 Q3) xC 2(_ Q4+

+ 3b,c plz( Q3
Yy 4Kim A23/2  A43/2 4K1m A13/2

A33/2)_ 4K1m A25/2 A45/2)+

3b,cplz Q4 Q4 ..
4K1m ( A15/2+A35/2)’
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e = b,cK3 p12Q3 b,cK3p1?Q3  bycK3(-p12+Q1%)Q3 , b,cK3(-p12+Q22)Q3
ZZ 7 9A23/2B1K1im = 2A43/2B2K1m 2vVA2B1%2K1w 2vVA4B22K1m

bxc p1(p1%2p3+p4Q22)Q3  bycK3p12Q4 . bycK3p1?2Q4 . b,cK3(-p12+Q1%)Q4
4A43/2B22K1n 2A13/2B1K1m = 2A33/2B2Kinm 2VA1B12K1m

b,cK3(-p12+Q22)Q4 ., byc p1(p1?p3+p4Q22)Q4 , b,c p1Q3(p1%2p3+3Q1?(c+2z))
2vVA3B22K1m 4A33/2B22K1n 4A23/2B12K1m

b,c p1Q4(p1%2p3+3Q1?(c+2z)) n b,cQ3(—-3Q1*+p1(p1%p5+6Q1%z))
4A13/2B12K1m 4VA2B13K1n

bxcQ4(-3Q1*+p1(p1°p5+6Q1°z))  bxcQ3(-3Q2*+p1(p1°p5+6Q2°2)) n

4VA1B13K1m 4v/A4B23K1m
b,cQ4(—-3Q2%+p1(p1°p5+6Q222z))  3byc p13Q3Z( 1 n 1 )
4~+/A3B23K1m 4(m—1v) A25/2B1 = A45/2B2
3byc p13Q4z 1 1
” (- + )
4(n—-mv) A15/2B1 ~ A35/2B2
_ bye Q1 Q2 3p1Q1z , 3p1lQ2z b,c Q1 Q2 3p1Qiz
€xy = 4K17'L'( A13/2  A33/2 + A15/2 + A35/2) 4K1n'( A23/2 A43/2 + A25/2 +
3p1Q2z bycv , Q1 Q2 bxcv , Q1 Q2 ..
A45/2 ) 2K1m (A13/2 A33/2) 2K1m (A23/2 A43/2)’
__ bxcp1Q1Q3(3A2-Q3%) | bycp1Q2Q3(3A4-Q3%)  bycp1Q1Q4(3A1-Q4?)
xz — 2A23/2B12K17w 2A43/2B22K1mw 2A13/2B12K1m
b,c p1Q2Q4(3A3-Q43) . 3abycpl1?Q3z . 3ab,cp1?Q3z 3ab,cpl?Q4z 3abycp1?Q4z
2A33/2B22K1m 4A25/2B1K1m ~ 4A45/2B2K1m = 4A15/2B1K1m  4A35/2B2K1m
3b,c p12Q3xz | 3bycp1?Q3xz . 3bycp1?Q4xz  3b,c p1%2Q4xz
4A25/2B1K1m  4A45/2B2Kim  4A15/2B1Kim  4A35/2B2Ki1m
abyc Q3(3A2-Q3?%)(p6(c?+Q1%)-z3) n abyc Q4(3A1-Q4%)(p6(c?+Q1%)-z3) n
4A23/2B13K1m 4A13/2B13K1m
b,c Q3(3A2-Q3%)x(p6(c?+Q1%)—z3)  byc Q4(3A1-Q4?)x(p6(c?+Q1%)—2z3)
4A23/2B13K1n 4A13/2B13K1m
- 2 2 2\_,3 _ 2 2 2\_-3
a b,c Q3(3A4—-Q3“)(p6(c*+Q2%)—z )+ a byc Q4(3A3-Q4°)(p6(c“+Q2°)—z°)
4A43/2B23K1n 4A33/2B23K1m
b,c Q3(3A4—Q3%)x(p6(c?+Q22)—-z3) " b,c Q4(3A3—Q4%)x(p6(c?+Q22)-2z3).
4A43/2B23K1m 4A33/2B23K1m !
€. = 3bxcp1( 1 1 ) 3bxcp1( 1 1 ) b,c ( pé6 n
YZ 7 2Kim “3A33/2  3(A3—4ax)3/2 2K1m ‘“3A43/2  3(A4-4ax)3/2’ ' 4Kim “A13/2

3p1%z

—2c-3z 3p1?z )
A35/2 4K1m

A33/2  A15/2

bc ( p6 —2c-3z 3p1%z , 3p1?z

+ ‘A23/2 + A43/2  AD5/2 A45/2)’
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Considering the Burgers vector component by:

_3byc  K2Q1 K2Q2 . p1Qiz

p1Q2z 3byc . K2Q1 K2Q2 . plQlz
€xx _4K1n(3A13/2 3A33/2 ' A15/2 ) (

p1Q22)
A35/2 4K1m “3A23/2 ' 3A43/2 ° A25/2

+ A45/2

+

_ by, cQ1(Q3*—p1(-p1%p2+6Q32z)) _ by, cQ2(Q3*—p1(—-p1%p2+6Q32z)) N

€ =
Yy 4C13K1m,/C1+Q12 4VA4C13K17m
by, cQ1(Q4*+p1(p1°p2-6Q422)) bchZ(Q44+p1(p12p2—6Q4zz))_
4C23K1m+/C2+Q12 4+/A3C23K1m
by, cQ1(c3z-cz(Q3%-322)+(Q3%-2z2)%+c%(Q3%+322)) _
4C12K1m(C1+Q12)3/2

by cQ2(c3z-cz(Q32-322)+(Q3%-2%)%2+c2(Q3%+322)) _

4A43/2C12K1m
by, cQ1(—c3z+cz(Q4?-32%)—(Q4*—z%)%—c?(Q4*+322))
4C22K1m(C2+Q12)3/2
by cQ2(—c3z+cz(Q4%-32%)—(Q4%—z%)?—c?(Q4?+322)) byCV(Q1Q32 Q2Q32 Q1(p12-Q33)
4A33/2C22K1m 2K1m “A23/2C1 ~ A43/2C1 VA2C12
Q2(p1°-Q3%)  Q1Q4? Q2Q4* | Q1(p1*-Q4%) Q2(p12—Q42)) 3bpr1QZZ( Q3?
VA4C12 A13/2C2  A33/2(C2 VA1(C22 VA3(C22 a(m-mv) “A45/2C1
Q42 ) 3bycp1le( Q32 Q4?2 ):
A35/2(C2 4(m-mv) “C1(C1+Q12)5/2  (C2(C2+Q12)5/27!
_ by, cK3p1%Q1 by cK3p12Q1 by, cK3p12Q2 b, cK3p12Q2
€2z = 2C1K1m(C1+Q12)3/2 ' 2C2K1m(C2+Q12)3/2  2A43/2C1Kim = 2A33/2C2Kim
by cK3Q1(-p12+Q3%) = b, cK3Q2(-p1?+Q3?)  bycp1Q1(p1®p3+p4Q3%)  byc p1Q2(p1?p3+p4Q3?)
2C12K1m,/C1+Q12 2VA4C12K1m 4C12K1m(C1+Q12)3/2 4A43/2C12K1m
bycK3Q1(-p12+Q4?) by cK3Q2(-p1?+Q4?) = b,c p1Q1(p1%p3+3Q4?(c+22))
2C22K1m,/C2+Q12 2VA3C22K1m 4C22K1m(C2+Q12)3/2
byc p1Q2(p1°p3+3Q4%(c+22))  byc Q1(-3Q3*+p1(p12p5+6Q322))
4A33/2C22K1m 4C13K1m,/C1+Q12
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byc Q2(—3Q4*+p1(p1?p5+6Q4?z))  3bycp13Qlz ( 1 1 )
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by Q3(Q12+Q32-pi(-c+22)) + byc Q3(Q22+Q32-p1(—c+22)) n

E =
xy 4A25/2K1m 4A45/2K1m
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€yz 2C12K1m(C1+Q12)3/2 2A43/2C12K1m
b byc p1Q1(3p12+2Q1%2+3Q4?) = b bycp1Q2(3p1%+2Q22+3Q4?) b, cp1Q1(3p12+2Q1%+3Q332)y
2C22K1m(C2+Q12)3/2 2A33/2C22K1n 2C12K1m(C1+Q12)3/2
byc p1Q2(3p12+2Q22+3Q3%)y __byc p1Q1(3p1%2+2Q1%+3Q42)y _byc p1Q2(3p1%2+2Q22+3Q4?)y n
2A43/2C12K1n 2C22K1m(C2+Q12)3/2 2A33/2C22K1m
3b byc p1%Qlz 3b bycp1%Qlz 3bbycp12Q2z = 3bbycp1?Q2z

4C1K17m(C1+Q12)5/2 ~ 4C2K1m(C2+Q12)5/2 ~ 4A45/2C1K1m ~ 4A35/2C2Kim

3bycp12Qlyz 3byc p12Qlyz 3bycp12Q2yz  3bycp1?Q2yz _

4C1K1m(C1+Q12)5/2  4C2K1m(C2+Q12)5/2 ' 4A45/2C1Kim  4A35/2C2Kim

b byc Q1(3p12+2Q12+3Q3%)(p6(c?+Q3%)—2z3) b byc Q2(3p1%+2Q22+3Q32)(p6(c2+Q3%)-z3)

4C13K1m(C1+Q12)3/2 4A43/2C13K1n

by c Q1(3p12+2Q12+3Q32)y(p6(c?+Q3%)-z3%) _bye Q2(3p1%2+2Q22+3Q32)y(p6(c?+Q3%)—z3) _
4C13K1m(C1+Q12)3/2 4A43/2C13K1n

b byc Q1(3p12+2Q12+3Q4%)(p6(c?+Q4?)—-z%) b byc Q2(3p12+2Q2%2+3Q4?)(p6(c?+Q4?)—z3) n
4C23K1m(C2+Q12)3/2 4A33/2C23K1m

byc Q1(3p12+2Q12+3Q4?)y(p6(c2+Q4?)—z3) n byc Q2(3p12+2Q22+3Q4?)y(p6(c*+Q4*)—-2z3),
4C23K1m(C2+Q12)3/2 4A33/2C23K1m ’
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Considering the Burgers vector component b;:

3abyc p12Q3z  3ab,cp1%Q3z

3ab,c p1?Q4z

3ab,cp1?Q4z . 3b,cp12Q3xz

E =
xx 4A25/2B1K1m = 4A45/2B2K1im

3b,cp1?2Q3xz 3 b,cp1?Q4xz , 3b,cpl1?Q4xz

4A15/2B1K1m

4A35/2B2K1m  4A25/2B1Kim

abzc Q3(p8+2cQ12+3Q1%z)

4A45/2B2K1m = 4A15/2B1K1m  4A35/2B2K1m

ab,c Q3(p8+2cQ12+3Q1%z)  ab,c Q4(p8+2cQ1%+3Q1%z2)

2VA2B13K1m

ab,c Q4(p8+2cQ12+3Q12z)

4A23/2B12K1m 2VA1B13K1m

b,c Q3x(p8+2cQ12+3Q1%z)  b,c Q3x(p8+2cQ12+3Q1%z2)

4A13/2B12K1m

b,c Q4x(p8+2cQ12+3Q1%z)

2VA2B13K1m 4A23/2B12K1m

b,c Q4x(p8+2cQ12+3Q1%z) |, ab,c Q3(p8+2cQ22+3Q22z)

2VA1B13K1m

ab,c Q3(p8+2cQ22+3Q22z)

4A13/2B12K1m 2vVA4B23K1n

abzc Q4(p8+2cQ2*+3Q2°z)  abc Q4(p8+2cQ2°+3Q2°z)

4A43/2B22K1m

2vVA3B23K1m 4A33/2B22K1m

bzc Q3x(p8+2cQ2°+3Q2%z)  b,c Q4x(p8+2cQ2*+3Q2°z)

b,c Q3x(p8+2cQ22+3Q22z) n
2VA4B23K1m

b,c Q4x(p8+2cQ22+3Q222) _

4A43/2B22K1m 2vA3B23K1m

ab,ycp1Q3(3A2-Q3%2)v  ab,cp1Q3(3A4—Q3%)v

4A33/2B22K1m

abzc p1Q4(3A1-Q4%)v

2A23/2B12K1m 2A43/2B22K1m

abzc p1Q4(3A3—-Q42)v

2A13/2B12K1m

b,c p1Q3(3A2-Q3%)xv  b,c p1Q3(3A4-Q3%)xv  b,c p1Q4(3A1-Q4%)xv

2A33/2B22K1m 2A23/2B12K1m

b,c p1Q4(3A3—Q4%)xv,
2A33/2B22K1mr =’

3bb,c p1%2Qiz 3bb,c p12Qilz

2A43/2B22K1m

3bb,cp1?2Q2z  3bb,cp1?Q2z

€ = — —

yy 4C1K17m(C1+Q12)5/2  4C2K1m(C2+Q12)5/2  4A45/2C1Kim  4A35/2C2Kin
3b,cp1?Qlyz 3b,cp1?Qlyz 3b,cp1?Q2yz . 3b,cpl12Q2yz
4C1K17m(C1+Q12)5/2 * 4C2K1m(C2+Q12)5/2  4A45/2C1Kim ~ 4A35/2C2Kim
b b,c Q1(p8+2cQ32+3Q32%z) , bb,c Q1(p8+2cQ3%+3Q3%z) . bb,c Q2(p8+2cQ3%+3Q32%z)
2 2\3/2 3 +
4C12K1m(C14+Q12)3/ 2C13K1m/C1+Q12 2VA4C13K1m
bb,c Q2(p8+2cQ32+3Q32%z) ., b,c Q1y(p8+2cQ3%2+3Q32%z) . b,c Q1y(p8+2cQ32+3Q32z2)
4A43/2C12K1m 4C12K1m(C1+Q12)3/2 2C13K1m,/C1+Q12
b,c Q2y(p8+2cQ32+3Q32z) |, b,c Q2y(p8+2cQ32+3Q32z) , bb,c Q1(p8+2cQ4%+3Q42z)
2vA4C13K1m 4A43/2C12K1m 4C22K1m(C2+Q12)3/2

b b,c Q1(p8+2cQ4?+3Q4%z) | b b,c Q2(p8+2cQ4?+3Q42z)

b b,c Q2(p8+2cQ4?+3Q4?z)

2vVA3C23K1m

2C23K1m/C2+Q12

b,c Qly(p8+2cQ4%®+3Q4%z)  b,c Q1y(p8+2cQ4%+3Q4?z)

4A33/2C22K1m

b,c Q2y(p8+2cQ4?+3Q42z)

4C22K1m(C2+Q12)3/2

2C23K1m,/C2+Q12

b,c Q2y(p8+2cQ4®+3Q4%z) b b,c p1Q1(3p1%2+2Q12+3Q3%)v b b,c p1Q2(3p1%+2Q22+3Q32)v

2VA3C23K1m

4A33/2C22K1m 2C12K17(C1+Q12)3/2
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bb,cp1Q1(3p1°+2Q1°+3Q4°)v b b,c p1Q2(3p1°+2Q2°+3Q4°)v  b,cp1Q1(3p1°+2Q1°+3Q3%)yv
2C22K1m(C2+Q12)3/2 2A33/2C22K1m 2C12K1m(C1+Q12)3/2

b,c p1Q2(3p1%2+2Q22+3Q3%)yv
2A43/2C12K1m

b,c p1Q1(3p1%2+2Q1%2+3Q42)yv
2C22K17(C2+Q12)3/2

b,c p1Q2(3p12+2Q22+3Q4?)yv,
2A33/2C22K1n !

+ +

2014 4014
EZZ = ;bzc /C1+Q12Q3(_8p1CQ1Z+ 3p1*Q1*z

4mQ15(1-v) 13 (C1+Q12)3(p12+Q1?)

2p1p9Q1%2+20p13Q1°+3p0Q18+3p18z+12p14Q1%(c+22)
(C1+Q12)(p12+Q12)3

p12Q1%(p1*z+2Q1*(2¢+52)+p1?Q12%(4c+72)) n 2Q1%(2¢?2+5Q1%2+223+4¢(Q1°+2%))
(C1+Q12)2(p12+Q12)2 Cc12

3¢2z+5Q1%22z+432z3+2¢(2Q1%2+3z22) 1

) 8p1%2Q1tz
C1 47tQ15(1-v)

b,c Q4/p12 + Q12 + Q42(— OTYGE
3p1*Q1tz 2p15p9Q1%2+20p13Q1°+3p0Q18+3p18z+12p14Q1*(c+22) _

(p12+Q1%)(p1%+Q12+Q42)3 (p12+Q1%)3(p12+Q1%+Q4?)

p12Q1%(p1%z+2Q14(2¢+52)+p12Q1%(4c+72)) |, 2Q1%(2¢%z+5Q1%z+22z3+4c(Q1%+22)) _
(p12+Q12)?(p12+Q12+Q4%)? (p12+Q42)?

3¢2z+5Q1%2z+432z3+2¢(2Q1%2+3z22) — 8p12Q2*z
p12_+_Q4_2 ) A4‘bZC Q3( c13 +

1
47Q25(1-v

3p14Q24z
A43B2

)+

2p1p9Q22+20p13Q2°+3p0Q28+3p182z+12p14Q24(c+22)

A4B23
p12Q22(p1*z+2Q24(2¢c+52)+p12Q22(4c+72)) n 2Q22%(2¢%z+5Q2%z+22z3+4c(Q2%+22))
A42B22 c12
3c2z45Q2%22z432z342¢(2Q2%24322 1 3p1%Q24z 8p12Q24z
¢ )y — VA3b,cQ4(2 _5p
C1 47tQ25(1-v) A33B2 (p12+Q42)3

2p1p9Q22+20p13Q2°+3p0Q28+3p182z+12p1%Q24(c+22)
A3B23

p12Q22(p1*z+2Q24(2c+52)+p12Q22(4c+72)) n 2Q22(2¢?z+5Q2%z+22z3+4c(Q2%+2?))
A32B22 (p12+Q42)2

3c2z+5Q22z+3z3+2c(2Q22+322)) n 1 b.c (plx/C1+Q12Q3 (L_ 2Q1?
p124Q42 2m(1-v) % Q13 c1 C12

p12Q1? p1*+2p12Q1%+3Q1* )+ VA4p1Q3 ( 1 2Q2%2  p1?Q2?
(C1+Q12)2(p12+Q12)  (C1+Q12)(p12+Q12)Z2 Q23 C1 C12 A42B2
p14+2p12Q22+3Q24) _ VA3p1Q4 (p12Q22 _ p1*+2p12Q22+3Q2* _ 2Q22 1 ) —
A4B22 Q23 A32B2 A3B22 (p12+Q42)2 ~ p12+Q42
p1Q4,/p12+Q12+Q42 (— 2Q12 n 1 n p12Q1? _
Q13 (p12+Q42)? ~ p12+Q4? = (p12+Q12)(p1%+Q12+Q42)2
p1*+2p12Q1%+3Q1*

NI =v) +v);

(p12+Q12)2(p12+Q12+Q42)
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byc ,—2c-3z = 3p1%?z 3p1%?z 2c+3z byc ,—2c-3z = 3p1%?z 3p1%?z |, 2c+3z

€xy = 4K1n( A13/2 © A15/2 A35/2 + A33/2) - 4K1n( A23/2  A25/2  A45/2 + A43/2) +
bzcplv 1 1 b;cplv 1 1 .
2K1m (A13/2 A33/2) 2K1m (A23/2 A43/2)’
c b,c p12Q3 b,c p1?Q3 b,c p1?Q4 b,c p1?Q4 b,c Q3(Q12-p1?)
XZ 7 )A23/2B1K1m  2A43/2B2K1m = 2A13/2B1K1m = 2A33/2B2Kinm 2vA2B12K1m
b,c Q4(Q1%2-p1?) | b,yc Q3(Q22-p1?)  b,c Q4(Q2%-p1?) 3b,c p13Q3z 3b,c p13Q3z
2VA1B12K1mw 2vVA4B22K1n 2vA3B22K1m 4A25/2B1K1m  4A45/2B2Ki1m

3b,c p13Q4z 3b,cp13Q4z  b,c p1Q3(p1?p3+3a?(c+2z)—6ax(c+2z)+3x?%(c+22))
4A15/2B1K1m ~ 4A35/2B2Kim 4A23/2B12K1m

+

b,c p1Q4(p1?p3+3a?(c+2z)—6ax(c+2z)+3x2%(c+22))

4A13/2B12K1m

b,c Q3(—3a*+p13p5+12a3x—3x*+6p1x2z+12ax(x?—plz)+6a?(—3x%+p1z)) n

4VA2B13K1m
b,c Q4(—3a*+p13p5+12a3x—3x*+6pi1x2z+12ax(x?—plz)+6a?(—3x2+plz)) n

4VA1B13K1m
b,c Q3(—3a*+p13p5-12a3x—3x*+6p1x2z+6a?(—3x2+plz)+12ax(—x2+plz))

4VA4B23K1m
b,c Q4(—3a*+p13p5-12a3x—3x*+6pi1x2z+6a?(—3x%+plz)+12ax(—x2+plz)) n

4+A3B23K1m
b,c p1Q3(3c3+8c?z+6Q2%z+2z3+c(3Q2%+72z%))  b,cp1Q4(3c3+8c?z+6Q2%2z+223+c(3Q2%2+722)),

4A43/2B22K1nt 4A33/2B22K1m ’

e = b,c p1?Q1 " b,c p12Q1 b,c p12Q2 b,c p12Q2
YZ T 2C1K1m(C1+Q12)3/2 ' 2C2K1m(C2+Q12)3/2  2A43/2C1Kim = 2A33/2C2K1m

bscQ1(Q3%-p1?) | b,cQ2(Q3%-p1?)  bcQL(Q4*—p1?)  bsc Q2(Q4*-p1?)
2C12K17/C1+Q12 2VA4C12K1m 2C22K1my/C2+Q12 2vVA3C22K1m

3b,c p13Qiz 3b,c p13Qi1z 3b,c p13Q2z 3b,c p13Q2z

4C1K17m(C1+Q12)5/2 * 4C2K1m(C2+Q12)5/2  4A45/2C1K1im = 4A35/2C2Kim

b,c p1Q1(p1?p3+3b?(c+22)—6by(c+22)+3y?(c+22))
4C22K1m(C2+Q12)3/2

b,c p1Q2(p1%p3+3b?(c+22)—6by(c+22)+3y?(c+22))
4A33/2C22K1m

b,c Q1(—3b*+p13p5+12b3y—3y*+6p1y?z+12by(y%—pilz)+6b%(-3y%+plz))
4C23K1m,/C2+Q12

b,c Q2(-3b*+p13p5+12b3y—3y*+6p1y?z+12by(y?—plz)+6b?(-3y%+p1z)) n
4V/A3C23K1m

b,c Q1(—3b*+p13p5-12b3y—3y*+6p1y?z+6b?(—3y%+plz)+12by(-y?+plz)) n

4C13K1m,/C1+Q12
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b,c Q2(—3b*+p13p5-12b3y—3y*+6p1y2z+6b?(—3y%+plz)+12by(-y?+plz)) n
4VA4C13K1m

b,c p1Q1(3¢c3+8c2z+6Q3%2z+223+c(3Q3%+722))
4C12K1m(C1+Q12)3/2

b,c p1Q2(3c3+8c?z+6Q32z+223+¢(3Q32+722%)).
4A43/2C12K1m !

+

pl=zp+z=c+z
p2=z—-2zp=2z-—c,

p3 =2z + 3zp = 2z + 3c;

p4 = 6z + 3zp = 6z + 3c;

p5 =2z +3zp =z + 3¢;

p6 = 3z + 2zp = 3z + 2c;

p7 = =3z — 2zp = =3z — 2c;
p8 = —z3 + 3zzp? + 2zp3 = —z3 + 3zc? + 2¢3;
p9 =7z + 2zp =7z + 2c;

p0 =5z + 4zp = 5z + 4c;

Al =pl1%2+ (a—x)*>+ (b—-y)?
A2 =p1®+ (a—x)*+ (b + )%
A3 =pl1%2+ (a+x)*>+ (b-y)?
A4 =pl%+ (a+x)*+ (b +y)%
Bl = p1? + (a — x)?;

B2 = p1? + (a + %)%
Cl=pl?+ (b +y)%

C2 =pl%+ (b —y)?

K1 =-1+v;
K2 = -1+ 2v;
K3 =-2+4+v;
Ql =a—x;

7



Q2 =a+x;

Q3 =b+y;
Q4=-b+y;
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