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Abstract

Within recent decades, spectral methods have become an important technique in numerical

computing for solving partial differential equations. This is due to their superior accuracy

when compared to finite difference and finite element methods. For such spectral approxi-

mations, the convergence rate is solely dependent on the smoothness of the solution yielding

the potential to achieve spectral accuracy. We present an iterative approach for solving

the two-dimensional Helmholtz problem posed on a rectangular domain subject to Dirichlet

boundary conditions that is well-conditioned, low in memory, and of sub-quadratic com-

plexity. The proposed approach spectrally approximates the partial differential equation by

means of modal Chebyshev integration matrices. Implementation of the boundary conditions

is achieved through a technique known as “integration preconditioning,” although we refer to

the technique as integration sparsification. The spectral method presented represents certain

partial differential operators in terms of sparse, banded integration matrices. In this work,

there are N+1 Chebyshev modes associated with each coordinate direction. Therefore, there
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are n = (N + 1)2 modes in total. For the truncations considered, our method empirically

yields a linear set-up cost, followed by a sub-quadratic solve complexity of O(n1.6).
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Chapter 1

Introduction

Partial differential equations (PDEs) model natural occurring phenomena such as heat, elec-

trodynamics, sound, and quantum mechanics. This introduction follows [2] closely. Although

these mathematical equations are an essential component to studying many real world ap-

plications in scientific fields such as, physics and engineering, closed form analytic solutions

are often elusive. As a result, numerical methods are instead used to produce numerical so-

lutions of PDEs. Methods such as the finite element method (FEM), finite volume method

(FVM), finite difference method (FDM), and boundary integral method (BIM) are a few

numerical methods designed for PDEs. Any choice of numerical method should be stable,

consistent, and convergent.

As mentioned, there are different types of methods for numerically solving real-world prob-

lems. Particularly, finite element and finite difference methods are used to locally represent

a function through low-order polynomials. Contrary to FEM and FDM, spectral methods

globally represent a function by high-order polynomials or Fourier series. In other words,

since these methods are global methods, this means that the computation is not solely de-

pendent on a neighborhood of points, but rather on information obtained along the entire

domain.

1
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Chapter 1. Introduction

Within recent decades, spectral methods have become widely used for numerically solving

PDEs. These methods work best when the solution is smooth across the entire domain.

Compared with FEM, FVM, FDM methods, spectral methods yield a higher degree of ac-

curacy and are generally computationally less expensive. The idea assumes that a smooth

function can be approximated by a basis-function expansion with exponential convergence.

Furthermore, spectral methods are also used in fields of applied mathematics and computa-

tional sciences to numerically solve diverse problems such as mesh compression and surface

reconstruction [9].

Spectral methods are often categorized as either Galerkin, Tau, or collocation methods. The

latter method is often referred to as the pseudo-spectral method. The difference between

the aforementioned methods lie in working with (modal) expansion coefficients or (nodal)

physical point values. This work considers the application of Chebyshev polynomials in

spectral Tau-methods for the purpose of approximating the Helmholtz problem subject to

Dirichlet boundary conditions posed on a rectangular domain. The presented work involves

the adoption of a modal Chebyshev approach based on “integration preconditioning,” a term

coined by Coutsias et al. [3]. From the standpoint of this work this term is a misnomer,

but their procedure does yield sparse linear systems. Therefore, we refer to this approach as

integration sparsification, with the understanding that further (genuine) preconditioning is

needed. These Chebyshev integration matrices are sparse and banded, and responsible for

transforming linear partial differential operators with polynomial coefficients into Kronecker

products of banded, integration operators. This work focuses on an iterative approach for

solving the two-dimensional Helmholtz problem contrived through integration sparsification.

The new aspect of this work is the construction of an additional (genuine) preconditioner on

top of the “integration preconditioning.”

The main results of this thesis concern the specification and study of a new modal-based

preconditioner for the Helmholtz equation approximated by spectral-tau Chebyshev meth-

ods. Typically, preconditioning in spectral methods is carried out in the context of nodal

2



Chapter 1. Introduction

(pseudo-spectral) methods. For example, with nodal methods an approximate inversion of-

ten stems from inversion of lower order finite-difference or finite-element representations of

a particular spectral representation of an operator. Modal-based preconditioning is not as

well studied.

The outline of this work is as follows. Chapter 2 describes an overview of Chebyshev poly-

nomials and the modal approximation of the two-dimensional Helmholtz equation; similar

approximation of the Helmholtz problem can be achieved for higher spatial dimensions. Al-

gorithmic details for the solution approach and preconditioning methods can be found in

Chapter 3. Section 3.2 describes our modal-based preconditioner. Chapter 4 presents nu-

merical results, in particular demonstrating that an iterative solution approach empirically

yields a linear set-up cost followed by sub-quadratic solve complexity for the preconditioned

system. Lastly, Chapter 5 summarizes the efforts of the presented work, as well as possible

extensions of this work.
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Chapter 2

Background

2.1 Overview of Chebyshev Polynomials

Chebyshev polynomials are essential in approximation theory and are widely used in the field

of numerical analysis for numerical solutions of ordinary and partial differential equations

through spectral or pseudo-spectral methods. Chebyshev polynomials of the first kind Tn(x)

are closely related to the cosine function.

2.1.1 Basic Properties of Chebyshev Polynomials

1. Tn(x) has n distinct roots located on the closed interval x ∈ [−1, 1] such that Tn(tk) = 0

for tk = cos
(

(2k−1)π
2n

)
for k = 1, 2, ..., n.

2. The leading coefficient of Tn(x) is 2n−1.

3. The maximal value of Tn(x) occurs with alternating sign (n + 1) times such that

|Tn(xk)|= 1, Tn(xk) = (−1)k, xk = cos
(
πk
n

)
, k = 0, 1, 2, ..., n.

4



Chapter 2. Background

Let us first consider the Chebyshev polynomial of the first kind of order n defined by,

Tn(x) = cos(n cos−1(x)), (2.1)

where x is on the interval [−1, 1] for n = 0, 1, 2, .... The sequence of polynomials Tn(x) for

n ≥ 2 are obtained recursively by the three-term recurrence relation:

Tn+1(x) = 2xTn(x)− Tn−1(x) for n = 1, 2, ... . (2.2)

The first two terms of the recurrence relation are given by T0(x) = 1 and T1(x) = x.

From the above, we are able to deduce that T0(x) = T ′1(x) and T1(x) = 1
4
T ′2(x). Let us also

note the following relations:

T ′n−1(x) = (n− 1) sin
(
(n− 1) cos−1(x)

)
ω(x), and

T ′n+1(x) = (n+ 1) sin
(
(n+ 1) cos−1(x)

)
ω(x),

(2.3)

where ω(x) = 1√
x2−1

represents a weight function defined on the interval x ∈ [−1, 1]. Using

what we know from (2.3), let us employ the sum-angle formula for sine to sin((n±1) cos−1(x))

such that:

=⇒ sin
(
(n± 1) cos−1(x)

)
= sin(n cos−1(x)± cos−1(x))

= sin(n cos−1(x)) cos(cos−1(x))± cos(n cos−1(x)) sin(cos−1(x))

= sin(n cos−1(x)) cos(cos−1(x))± Tn(x)
√

1− x2.

(2.4)

Now, with what we have discovered in (2.3) and (2.4), we are able to re-express the derivative

of the Chebyshev polynomial of order n± 1 as the following:

T ′n−1(x)

n− 1
=

sin(n cos−1(x)) cos(cos−1(x))− Tn(x)
√

1− x2

√
1− x2

, and

T ′n+1(x)

n+ 1
=

sin(n cos−1(x)) cos(cos−1(x)) + Tn(x)
√

1− x2

√
1− x2

,

(2.5)

where Tn(x) is the nth Chebyshev polynomial defined by (2.1). From the above relations,

stems the key identity for n ≥ 2:

Tn(x) =
T ′n+1(x)

2(n+ 1)
−
T ′n−1(x)

2(n− 1)
=

1

2

[
T ′n+1(x)

n+ 1
−
T ′n−1(x)

n− 1

]
. (2.6)
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Chapter 2. Background

2.1.2 Differentiation of Chebyshev Polynomials

As a result of the previous relations, we are able to conclude the following derivative prop-

erties for Chebyshev polynomials:

T0(x) = T ′1(x),

T1(x) =
1

4
T ′2(x),

Tn(x) =
1

2

[
T ′n+1(x)

n+ 1
−
T ′n−1(x)

n− 1

]
, n ≥ 2.

(2.7)

Theorem 2.1.1. We have the identity

dTn(x)

dx
= 2n

n−1∑
p=0

p+n odd

Tp(x)

cp
, (2.8)

for n ≥ 1, where c0 = 2 and cp = 1 for p ≥ 1. We interpret the formula as dT0(x)
dx

= 0 for

n = 0.

Proof. Let us prove Theorem 2.1.1 by induction. Base case: For n = 0,

dT0(x)

dx
X
= 0. (2.9)

For n = 1,

dT1(x)

dx
= 2

0∑
p=0

p+1 odd

Tp(x)

cp
= 2

T0(x)

c0

X
= T0(x). (2.10)

Thus, the base case has been established. Now, let us perform the inductive step.

Inductive step: For n = n+ 1, using the last equation of (2.7),

dTn+2(x)

dx
= 2(n+ 2)Tn+1(x) +

(n+ 2)

n

dTn(x)

dx

= 2(n+ 2)Tn+1(x) +
(n+ 2)

n
2n

n−1∑
p=0

p+n odd

Tp(x)

cp

X
= 2(n+ 2)

n+1∑
p=0

p+n odd

Tp(x)

cp

(2.11)

6



Chapter 2. Background

Thus, the result (2.9) for level n implies the result for level n + 2. This proves the theorem

since the formula for odd n is decoupled from the formula for even n (note that the derivative

for an even Tn(x) is odd, and the derivative of an odd Tn(x) is even).

Conclusion: By the principle of induction, (2.8) is true for all integers n ≥ 0.

By Theorem 2.1.1, the following holds true:

d

dx
[T0(x), T1(x), ..., TN(x)] = [T0(x), T1(x), ..., TN(x)]D, (2.12)

where D is a dense, upper-triangular matrix known as the modal Chebyshev differentiation

matrix. This relation implies that

d

dx
[T0(x), T1(x), ..., TN(x)] = [T0(x), T1(x), ..., TN(x)]D

= [T0(x), T1(x), ..., TN(x)]



0 1 0 · · · · · · · · · N

0 0 4 · · · · · · · · · 0

0 0 0 · · · · · · · · · 2N
...

...
...

. . .
...

...
...

...
. . . 2N

0 0 0 · · · · · · · · · 0


(2.13)

for N -odd, where only nonzero entries are found above the main diagonal. The matrix

structure in (2.13) has all zeros on and below the main diagonal. Above the main diagonal

the matrix is full except for a staggered pattern of zeros. A similar formula is used for

N -even. Here, each column of the differentiation matrix D represents the derivative of the

Chebyshev polynomial of order n. As a result, the above relation illustrates that for a finite

7



Chapter 2. Background

expansion u(x) and du(x)
dx

become:

u(x) =
N∑
k=0

ukTk(x)

= [T0(x), T1(x), ..., TN(x)]


u0

u1

...

uN

 ,
(2.14)

and

du(x)

dx
=

N∑
k=0

u′kTk(x)

= [T0(x), T1(x), ..., TN(x)]


u′0

u′1
...

u′N

 ,
(2.15)

where u′k =
N∑
l=0

Dklul represents the expansion coefficients for the derivative.

2.1.3 Integration of Chebyshev Polynomials

To establish an integration method, recall the previously defined relation for the nth order

Chebyshev polynomial with respect to its n± 1 derivatives for n ≥ 2:

Tn(x) =
T ′n+1(x)

2(n+ 1)
−
T ′n−1(x)

2(n− 1)
=

1

2

[
T ′n+1(x)

n+ 1
−
T ′n−1(x)

n− 1

]
. (2.16)

8



Chapter 2. Background

The method of integration for Chebyshev polynomials is similar to differentiation. The

Chebyshev integration operator is expressible as

B[1] =



0 0 0 0 · · · 0

1 0 −1
2

0 · · · 0

0 1
4

0 −1
4
· · · 0

0 0
. . . . . . . . .

...
...

...
. . . 1

2(N−1)
0 − 1

2(N−1)

0 0 0 0 1
2N

0


, (2.17)

where B[1] is a (N + 1)× (N + 1). The notation [1] indicates that the first row has all zeros

as entries. This matrix form is established from (2.7) such that the Chebyshev polynomials

are represented by the following:

[T0(x), T1(x), ..., TN(x)] = [T ′0(x), T ′1(x), ..., T ′N(x)]B[1] +
T ′N+1(x)

2(N + 1)
eTN

= [T ′0(x), T ′1(x), ..., T ′N(x)]



0 0 0 0 · · · 0

1 0 −1
2

0 · · · 0

0 1
4

0 −1
4
· · · 0

0 0
. . . . . . . . .

...
...

...
. . . 1

2(N−1)
0 − 1

2(N−1)

0 0 0 0 1
2N

0


+
T ′N+1(x)

2(N + 1)
eTN .

(2.18)

As a result, the integration of u(x) yields the following relation provided uN = 0:

∫
u(x)dx = C +

N∑
k=0

ωkTk(x), (2.19)

9



Chapter 2. Background

where ωk =
N∑
l=0

(
B[1]

)
kl
ul. Now, if uN 6= 0 then the following expression is true:

∫
u(x)dx =

∫
[T0(x), T1(x), ..., TN(x)]dx


u0

u1

...

uN



= C + [T0(x), T1(x), ..., TN(x)]B[1]


u0

u1

...

uN

+
uN

2(N + 1)
TN+1(x).

= C + [T0(x), T1(x), ..., TN(x)]


ω0

ω1

...

ωN

+
uN

2(N + 1)
TN+1(x),

(2.20)

where ωk =
N∑
l=0

(
B[1]

)
kl
ul. The above results show that B[1]D = I[1], where I[1] is the identity

with the diagonal entry in the first row set to zero.

We showed that

T0(x) = T ′1(x)

T1(x) =
1

4
T ′2(x)

Tn(x) =
T ′n+1(x)

2(n+ 1)
−
T ′n−1(x)

2(n− 1)
for n ≥ 2.

(2.21)

10



Chapter 2. Background

Although, we will not provide a proof, it can analogously be shown that

T0(x) =
1

4
T ′′2 (x)

T1(x) =
1

24
T ′′3 (x)

T2(x) =
1

48
T ′′4 (x)− 1

6
T ′′2 (x)

Tn(x) =
T ′′n+2(x)

4(n+ 1)(n+ 2)
− T ′′n (x)

2(n2 − 1)
+

T ′′n−2(x)

4(n− 1)(n− 2)
for n ≥ 3.

(2.22)

From the identities expressed in (2.22) or by squaring the expression for B[1] (as a matrix

with infinite rows and columns) we have the following expression of the double Chebyshev

integration matrix in the modal basis:

B2
[2] =



0 0 0

0 0 0 0

1
4

0 − 1
6

0 1
24

1
24

0 − 1
16

0 1
48

1
48

0 − 1
30

0 1
80

. . .
. . .

. . .
. . .

. . .

1
4(N−2)(N−3)

0 − 1
2((N−2)2−1)

0 1
4(N−2)(N−1)

1
4(N−1)(N−2)

0 − 1
2((N−2)2−1)

0

1
4N(N−1)

0 − 1
2(N2−1)


.

(2.23)

The integration matrices B[1] and B2
[2] have been given for the standard interval [−1, 1]. For

a general interval [xmin, xmax] the corresponding matrices are obtained by

B[1] →
1

2
(xmax − xmin)B[1]

B2
[2] →

1

4
(xmax − xmin)2B2

[2].
(2.24)

11



Chapter 2. Background

2.1.4 Modified Double Integration Matrix

We also have to consider the matrix B2
[2] presented in (2.23) with its first two columns set to

zero:

B̃2
[2] =



0 0 0

0 0 0 0

0 0 − 1
6

0 1
24

0 0 − 1
16

0 1
48

1
48

0 − 1
30

0 1
80

. . .
. . .

. . .
. . .

. . .

1
4(N−2)(N−3)

0 − 1
2((N−2)2−1)

0 1
4(N−2)(N−1)

1
4(N−1)(N−2)

0 − 1
2((N−2)2−1)

0

1
4N(N−1)

0 − 1
2(N2−1)


.

(2.25)

Clearly, the difference between the above matrices is that the first two columns of (2.25)

are set to zero, whereas the first two columns of (2.23) are not. As argued below, B̃2
[2]

is symmetrizable which means B̃2
[2] = P̃Λ[2]P̃

−1 is diagonalizable by a simpler similarity

transformation P̃ than the one which diagonalizes B2
[2]. This will be exploited later in our

construction of a new modal-based preconditioner. Clearly, the canonical basis vectors e0

and e1 are eigenvectors of B̃2
[2], which belong to the multiple eigenvalue λ0 = λ1 = 0. As a

result, we may choose

Λ[2] = diag(0, 0, λ2, ..., λN), P̃ = P̃ (0:N, 0:N) =


1

1

P̃ (2:N, 2:N)

 , (2.26)

where the subscript [2] for Λ[2] indicates that the first two entries on the diagonal are zero.

Here, P̃ (2:N, 2:N) diagonalizes B̃2
[2](2:N, 2:N). From these formulas, it follows that

P̃ I[2]P̃
−1 = I[2], (2.27)

where I[2] is the identity matrix with its first two diagonal entries set to zero. The following

argument explains why B̃2
[2] is diagonalizable.

12



Chapter 2. Background

Let us consider the matrix

C̃ = S−1B̃2
[2]S, (2.28)

where S−1 = diag(1, 1,
√

2,
√

3, ...,
√
N). The matrix described in (2.28) is symmetric, thus

diagonalized by a similarity transformation with an orthogonal matrix: C̃ = QΛ[2]Q
T . As a

result, we have that

B̃2
[2] = (SQ)Λ[2](SQ)−1, (2.29)

where P̃ = SQ and P̃−1 = (SQ)−1. Thus,

B̃2
[2] = P̃Λ[2]P̃

−1. (2.30)

Here,

P̃ = SQ = S[e0, e1,q2, ...,qN ] = [e0, e1, Sq2, ..., SqN ]. (2.31)

Since Q = [e0, e1,q2, ...,qN ] is orthogonal, eT0 qk = 0 = eT1 qk for k = 2, ..., N. Thus, another

calculation showing (2.27) is

P̃ I[2]P̃
−1 = S

(
QI[2]Q

T
)
S−1 = S

 N∑
k=2

qkq
T
k

S−1 = SI[2]S
−1 = I[2]. (2.32)

Here, (2.32) exploits the fact that I[2] = QQT − e0e
T
0 + e1e

T
1 =

∑N
k=2 qkq

T
k . For a general

interval B̃2
[2] →

1
4

(xmax − xmin)2 B̃2
[2].

2.2 Helmholtz Equation

For this work, let us consider the second-order Helmholtz problem posed on a rectangle

subject to Dirichlet boundary conditions,

(∆± κ2)u(x, y) = f(x, y) and u|∂Ω= h, (2.33)

13



Chapter 2. Background

where (x, y) ∈ Ω ≡ (xmin, xmax) × (ymin, ymax). In the above equation, the solution and

source for the Helmholtz equation are represented by u(x, y) and f(x, y), respectively. More

precisely, the Dirichlet boundary conditions, u|∂Ω= h, are characterized by the following:

u(xmin, y) = h−x (y), u(xmax, y) = h+
x (y)

u(x, ymin) = h−y (x), u(x, ymax) = h+
y (x),

(2.34)

with prescribed functions h±x (y) and h±y (x). We mention the possibility of “non-reflecting

Sommerfeld boundary conditions” in the conclusion. The Laplacian is defined as ∆u(x, y) ≡

∂2
xu(x, y) + ∂2

yu(x, y). Let us assume that u(x, y) is evaluated by a Chebyshev series such

that the solution is approximated as the following:

u(x, y) ≈
Nx∑
i=0

Ny∑
j=0

uijTi(ξ(x))Tj(η(y)), (2.35)

where uij are the modal coefficients and, Ti(ξ(x)) and Tj(η(y)) are Chebyshev basis func-

tions. Moreover, ξ(x) describes the linear mapping from [xmin, xmax] to [−1, 1]. Likewise, for

η(y) and [ymin, ymax], where Nx and Ny are the truncations corresponding to the respective

directions. The bulk part of the Helmholtz equation presented in (2.33) can be approximated

as

(D2
x ⊗ Iy + Ix ⊗D2

y ± κ2Ix ⊗ Iy)u = f , (2.36)

where Dx and Dy describe the modal differentiation matrices in the respective directions.

Here, u is a finite collection of modal coefficients and is represented by a column vector of

unknowns. The unknowns are indexed as

u(α) = uij, α = i(Ny + 1) + j, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny. (2.37)

Moreover, the right-hand side of (2.36) represents the vector f of Chebyshev coefficients for

a source function f. Thus, to further approximate (2.33), we must overwrite certain rows

of (2.36) with tau-conditions, which correspond to the prescribed boundary conditions in

(2.34). We achieve implementation of the boundary conditions through a technique known

as integration sparsification[3].

14
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2.2.1 Integration Sparsification

Let us adopt an alternative approach to approximating (2.35). More specifically, an integra-

tion sparsification method for spectral methods subject to tau-conditions. The proceeding

work considers two matrices: Dk and Bm
[n]. Here, the matrix Dk is the modal-differentiation

matrix, where k represents the order of differentiation. Additionally, the matrix Bm
[n] is the

modal integration matrix for Chebyshev polynomials, where m describes the mth-order of

integration in the Chebyshev basis. The subscript [n] indicates that the first n rows of the

matrix are empty. A list of properties for the aforementioned matrices is specified below:

1. The kth-order modal differentiation matrix is a dense upper triangular matrix,

2. The mth-order Chebyshev integration matrix is sparse and banded with upper and

lower bandwidth, m,

3. Bm
[n]D

k = Bm−k
[n] for n ≥ m ≥ k.

For the integration matrix, if m = 0 then B0
[n] ≡ I[n], where I[n] is the identity matrix, with

its first n entries on the diagonal set to zero.

While the matrix on the left-hand side of (2.36) has some sparsity due to its particular

direct product structure, it involves factors which are dense and upper triangular. However,

to achieve a fully sparse system of equations, we employ statement 3 from above and apply

a Kronecker-product of Chebyshev integration matrices to Equation (2.36), thus

Bu =
(
B2
x[2] ⊗B2

y[2]

)
f . (2.38)

Moreover, let us observe that I[2] = B2
[2]D

2. Thus, after integration sparsification the bulk

operator simplifies to

B = Ix[2] ⊗B2
y[2] +B2

x[2] ⊗ Iy[2] ± κ2B2
x[2] ⊗B2

y[2]. (2.39)
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The matrix B is a n×n matrix of rank n−m, where n = (Nx+1)(Ny+1) and m = 2(Nx+Ny).

Therefore, the matrix B is of rank (Nx − 1)(Ny − 1), which corresponds to the number

of nonzero rows. The described process of applying B2
x[2] ⊗ B2

y[2] has been described as

“integration preconditioning.” However, our focus is on the sparsifying aspect of this process.

In any case, the issue of conditioning is more subtle. As a result of this process, note that

the matrix B can be applied to a vector with O(n) cost.

To implement the spectral tau-method, the zero rows in B are overwritten by tau-conditions

which are responsible for enforcing the boundary conditions of the PDE along the edges of the

rectangular domain. This process yields a nonsingular, linear system. Note that potential

repetition of boundary data may arise, so some caution is needed. Figure 2.1 illustrates

the Dirichlet boundary conditions imposed on the xy−faces of a rectangle to solve the 2D

Helmholtz Equation.

As previously mentioned, Chebyshev polynomials of the first kind are chosen as basis func-

tions to approximate the Helmholtz Equation, Ti(ξ(x)) and Tj(η(y)). Here,

ξ: [xmin, xmax] 7→ [−1, 1] and η: [ymin, ymax] 7→ [−1, 1]. (2.40)

Figure 2.1: Dirichlet boundary conditions imposed along a rectangle to solve the 2D
Helmholtz Equation.
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The Dirichlet boundary conditions along the rectangular domain are approximated as

Ny∑
j=0

uijδ
±
j = h±yi, i = 0, . . . , Nx,

Nx∑
i=0

uijδ
±
i = h±xj, j = 0, . . . , Ny − 2

(2.41)

where all empty rows of (2.38) are replaced by these tau-conditions. Notice that it is the

Chebyshev coefficients for expansions of h±y (x) and h±x (y) that appear on the right-side

of (2.41). Moreover, the Dirichlet vectors are represented by δ+ = [1, 1, ..., 1, 1] and δ− =

[1,−1, ...,−1, 1]. Furthermore, from the equations in (2.41), if Nx ∼ N ∼ Ny then filling each

tau-row with a Dirichlet vector amounts to O(N) nonzero entries. Since there are O(N) tau-

rows, overall enforcement of the Dirichlet boundary conditions contributes O(N2) = O(n)

nonzero entries to the coefficient matrix.

For example, if

u(x, y) ≈
Nx∑
i=0

Ny∑
i=0

uijTi(ξ(x))Tj(η(y)) (2.42)

then

u(xmin, y) =

Ny∑
j=0


Nx∑
i=0

uijδ
−
i

Tj(η(y))

=

Ny∑
j=0

h−xjTj(η(y))

= h−x (y).

(2.43)

The full set of tau-conditions is the following (four more equations than in (2.41)):

Ny∑
j=0

uijδ
±
j = h±yi, i = 0, . . . , Nx,

Nx∑
i=0

uijδ
±
i = h±xj, j = 0, . . . , Ny.

(2.44)
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Therefore, the number of possible equations 2(Nx + Ny + 2). However, this number is

four more than the number of rows with zero entries in B. However, there are 4 linear

dependencies amongst the set of equations, which correspond to the fact that the edges

share common corner values. The four corner relations can be expressed by the following:

h+
x (ymax) = h+

y (xmax), h+
x (ymin) = h−y (xmax)

h−x (ymin) = h−y (xmin), h−x (ymax) = h+
y (xmin).

(2.45)

The tau-conditions in (2.44) are a linearly independent set of equations.

2.2.2 Coefficient Matrix

The coefficient matrix for the approximation of (2.33) is expressed as

M = B + UVT , (2.46)

where the rank-augmenting perturbation matrix enforces Dirichlet boundary conditions. The

matrix U has as its columns canonical basis vectors which insert the corresponding rows of

VT into the tau-rows of M. The rows of VT stem from the Dirichlet vectors. The rank-

augmenting matrix, UVT , is of rank:

rank(U) = m = 2(Nx +Ny) = rank(V).

To describe the coefficient matrix we will adopt the clumped index notation such that

M(α, β) =M(αij, βpq) =M(i(Ny + 1) + j, p(Ny + 1) + q), (2.47)

where α = i(Ny + 1) + j and β = p(Ny + 1) + q. Let us recall the tau-conditions expressed

in (2.41). The index structure presented in Section 2.2.1, prevents the adoption of redun-

dant boundary conditions. Thus, the tau-conditions used to enforce the Dirichlet boundary

conditions are expressed in (2.44).
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Based on the row-filling method of tau-conditions, our approximation of (2.33) is

M(αij, : )u = B2
x[2](i, : )⊗B2

y[2](j, : )f + δj0h
−
yi + δj1h

+
yi

+ δi0(1− δj0)(1− δj1)h−x,j−2 + δi1(1− δj0)(1− δj1)h+
x,j−2,

(2.48)

where Chebyshev projections of the boundary data are present on the right-hand side. More-

over, let us account for the Kronecker-products involving Dirichlet vectors of the form for

j = 0 and j = 1:

M(αi0, βpq) = δipδ
−
q

M(αi1, βpq) = δipδ
+
q .

(2.49)

Thus, if j = 0 then

M(αi0, : )u =
Nx∑
p=0

Ny∑
q=0

M(αi0, βpq)u
(
p(Ny + 1) + q

)
=

Nx∑
p=0

Ny∑
q=0

M(αi0, βpq)upq

=

Ny∑
q=0

δ−q uiq.

(2.50)

The above relation yields the left-hand-side of the first equation in (2.41). A similar argument

can be shown for j = 1. Now, take i = 0 and i = 1 for j = 2, ..., Ny such that

M(α0j, βpq) = δj−2,qδ
−
p

M(α1j, βpq) = δj−2,qδ
+
p

.

(2.51)

Now, if i = 0 then

M(α0j, : )u =
Nx∑
p=0

Ny∑
q=0

M(α0j, βpq)u
(
p(Ny + 1) + q

)
=

Nx∑
p=0

Ny∑
q=0

M(α0j, βpq)upq

=
Nx∑
p=0

δ−p up,j−2.

(2.52)
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The above relation yields the right-hand-side of the first equation in (2.44). Alternatively, if

j = 0, ..., Ny − 2 then

M(α0j+2, βpq) = δjqδ
−
q

M(α1j+2, βpq) = δjqδ
+
q .

(2.53)

To summarize our modal spectral approximation of (2.33) and (2.34) is

Mu = g, (2.54)

where M is described above and g is the right-hand side of (2.48), that is the right-hand

side of (2.38) supplemented with the boundary values.
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The Generalized Minimal Residual

Method: Solution Approach

Suppose Ax = b, where A is an n × n invertible matrix and b is an n × 1 vector. Instead

of solving the system directly, let us employ an iterative method known as the generalized

minimal residual method (GMRES). This method is used to find the best approximate

solution, which minimizes the residual over the k-th order Krylov subspace. Let us denote

the k-th order Krylov subspace by Kk = Kk(A, r0), where r0 represents the zeroth residual.

Here, the residual is denoted by

rk = b− Axk. (3.1)

The idea is to use GMRES to approximate the exact solution of x = A−1b by the k-th

iterate xk ∈ x0 +Kk such that the Euclidean norm of the residual is minimized. Ideally, an

exact solution to the linear system is returned when k � n. Though routinely, the algorithm

returns an approximate solution once the residual is sufficiently small.

The k-th Krylov subspace is defined by

Kk(A, r0) = span{r0, Ar0, A
2r0, ..., A

k−1r0}, (3.2)
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where the initial error is represented by r0 = b − Ax0 for k = 0. For the following compu-

tations, let us assume that the initial guess is equal to zero. Clearly, if x0 = 0 then r0 = b.

Fast matrix-vector products are needed to efficiently generate the Krylov sequence. The k-th

GMRES iterate xk is the minimizer of the problem

xk = arg min
x∈Kk

‖b− Ax‖2 . (3.3)

From the nested property Kk(A,b) ⊆ Kk+1(A,b), the best solution approximate to the

linear system tends to become more accurate with each iteration. However, the basis vectors

encompassing Kk(A,b) may become nearly colinear as k increases making the problem ill-

conditioned. To remedy this situation, the algorithm is instead implemented with the Arnoldi

process to construct an orthonormal basis for Kk(A,b) as the iterations progress.

Let the orthonormal basis vectors of Kk(A,b) be stored as column vectors in the matrix

Qk ∈ Rn×k. Thus, xk = Qkyk and the minimization problem becomes

yk = arg min
y∈Rk

‖b− AQky‖2 . (3.4)

From the Arnoldi method, the matrix A is reduced to AQk = Qk+1Hk by a partial Hessenberg

reduction, where Hk ∈ R(k+1×k). Therefore,

arg min
y∈Rk

‖b− AQky‖2 = arg min
y∈Rk

‖b−Qk+1Hky‖2 = arg min
y∈Rk

∥∥∥QT
k+1b−Hky

∥∥∥
2
. (3.5)

Since the first orthonormal basis vector of Qk is q1 = b∥∥∥b∥∥∥
2

, we have that QT
k+1b =‖b‖2 e1 ∈

Rk+1. As a result, (3.5) becomes

yk = arg min
y∈Rk

‖βe1 −Hky‖2 . (3.6)

Here, β =‖b‖ and the vector e1 = (1, 0, 0, ..., 0)T is of length k + 1. Thus, the minimizer of

Equation (3.6) is yk and the k-th GMRES iterate is expressed as xk = Qkyk for x0 = 0. An

outline of the algorithm can be found in Section 3.1.
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3.1 The GMRES Algorithm

The GMRES algorithm operates on a vector b of length n and A, where A is typically a large

sparse, nonsingular n×n matrix. The algorithm typically iterates over a Krylov subspace for

k steps or until the residual is less than the tolerance. Thereupon, an approximate solution

to Ax = b is returned along with the relative residual.

Algorithm 1 The GMRES Algorithm.

1: Input:A,b,M−1,x0, k, TOL

2: Output: xk, ρ

3: Q← zeros(size(b), k)

4: H ← zeros(k + 1, k)

5: r0 ← b−Ax0

6: Q(: , 0) = r0/‖r0‖2
7: β =‖r0‖

8: ρ = β

9: i = 0

10: while i < k

11: i = i+ 1

12: qi+1 = Aqi (if preconditioner applied, also qi+1 ←M−1qi+1)

13: for j = 1 . . . i

14: hji = qT
i+1qj

15: qi+1 ← qi+1 − hjiqj

16: end

17: hi+1,i = ||qi+1||2
18: qi+1 ← qi+1/hi+1,i, Q(: , i+ 1) = qi+1

19: e1 = (1, 0, 0, ..., 0)T ∈ Ri+1

20: yi = arg min
y∈Ri

‖βe1 −Hiy‖

21: ρ =
∥∥βe1 −Hiyi

∥∥
22: end

23: xk = x0 +Q(: , 1: k)yk

As demonstrated above, a main expense of the algorithm originates from the matrix-vector

product of Aqi or M−1Aqi with a left preconditioner, which is computed once per iteration.

Generically, the cost of k-iterations is O(kn2). However, if A is sparse then the cost is O(kn),

assuming either a sparse preconditioner or no preconditioner. For our problem, we have a
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sparse matrix A and a preconditioner M−1, which costs O(n3/2) to apply. Thus, we expect

a total cost of O(kn3/2) for k matrix-vector multiplies.

The cost for k-iterations of the Arnoldi iteration process is O(k2n), as shown by the following

argument. The cost for a single iteration of the for loop between lines 13 and 16 is O(in).

Thus, the cumulative cost for k-iterations is O(k2n).

Lastly, we consider the cost of the least squares solves, as described in line 20. Here, this

cost cannot be inferred from the given algorithm provided. However, Kelley [4] shows that if

information from the previous least squares solve is used for the current least squares solve,

then the cost is O(i) for a single iteration. Thus, the cumulative cost is O(k2). If performed

efficiently, the cost of performing the least squares solves is subdominant compared to the

Gram-Schmidt/ Arnoldi process.

In Section 3.2, a preconditioner with a cost of O(n3/2) is considered. The cumulative cost of
the unpreconditioned and preconditioned system for k-iterations of GMRES breaks down to
the following:

Matrix-vector Arnoldi Iteration Least Squares

Unpreconditioned: O(kn) O(k2n) O(k2)

Preconditioned: O(kn3/2) O(k2n) O(k2)

Table 3.1: Cumulative cost for k iterations of GMRES

As demonstrated above, the efficiency of the algorithm is dependent on the number of iter-

ations it takes to solve the linear system.

3.2 Preconditioning

3.2.1 GMRES Preconditioning

Fundamentally, GMRES computes the best approximate solution xk ∈ Kk to Ax = b over

a Krylov subspace for x0 = 0. The algorithm is said to be monotonically convergent since
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‖rk+1‖ ≤ ‖rk‖. For large linear systems, a preconditioner is often used to increase the rate

convergence and ensure the accuracy of the best approximate solution in terms of the forward

error. For our problem, the coefficient matrix is represented by

M = B + UVT (3.7)

where, the bulk operator is defined by

B = Ix[2] ⊗B2
y[2] +B2

x[2] ⊗ Iy[2] ± κ2B2
x[2] ⊗B2

y[2]. (3.8)

The rank-augmenting perturbation UVT is responsible for enforcing the Dirichlet boundary

conditions. Here, U and V are both sparse matrices with UVT having O(n) nonzero entries.

The preconditioner M̃−1 involves inversion of an approximation

M̃ = B̃ + UVT (3.9)

of the coefficient matrix M. Here, the bulk operator of the approximation is defined by

B̃ = Ix[2] ⊗ B̃2
y[2] + B̃2

x[2] ⊗ Iy[2] ± κ2B̃2
x[2] ⊗ B̃2

y[2], (3.10)

where the B̃2
[2] matrices stem from (2.25) appropriately scaled by the interval length. Thus,

an efficient way to apply the inverse of (3.9) to a vector is needed. Before inverting (3.9),

let us diagonalize B̃. Let us use the similarity transformation defined by P̃ = P̃x ⊗ P̃y. As

discussed in Section 2.1.6, B̃2
x[2] and B̃2

y[2] are diagonalizable by

B̃2
x[2] = P̃xΛx[2]P̃

−1
x and B̃2

y[2] = P̃yΛy[2]P̃
−1
y . (3.11)

As a result,

B̃ =
(
B̃2
x[2] ⊗ Iy[2]

)
+
(
Ix[2] ⊗ B̃2

y[2]

)
±
(
κ2B̃2

x[2] ⊗ B̃2
y[2]

)
=
(
P̃xΛx[2]P̃

−1
x ⊗ Iy[2]

)
+
(
Ix[2] ⊗ P̃yΛy[2]P̃

−1
y

)
±
(
κ2P̃xΛx[2]P̃

−1
x ⊗ P̃yΛy[2]P̃

−1
y

)
= P̃x ⊗ P̃y

(
Λx[2] ⊗ Iy[2] + Ix[2] ⊗ Λy[2] ± κ2Λx[2] ⊗ Λy[2]

)
P̃−1
x ⊗ P̃−1

y

= P̃ΛP̃−1,

(3.12)
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is true. The calculations in (3.12) rely on (2.27). Similarly, the pseudoinverse of the bulk

operator can be expressed as: B̃† = P̃Λ†P̃−1. Here, the pseudoinverse of Λ† is found by

taking the reciprocal of the nonzero elements of Λ on the diagonal.

Theorem 3.2.1. The inverse of M̃ is

M̃−1 = [B̃† − U(VTU)−1VT B̃† + U(VTU)−1UT ]. (3.13)

This is the generalized version of the Woodbury matrix identity. This theorem and its proof

is from [6].

Proof. First, let us observe the following relation between the bulk operator and the pseu-

doinverse of the bulk operator,

B̃†B̃ = P̃Λ†ΛP̃−1

=
(
P̃x ⊗ P̃y

) (
Ix[2] ⊗ Iy[2]

) (
P̃−1
x ⊗ P̃−1

y

)
= Ix[2] ⊗ Iy[2].

(3.14)

The last equality stems from the fact that P̃xIx[2]P̃
−1
x = Ix[2] as seen in (2.27). This shows

that the orthogonal projector onto the column space of B̃ is given by

B̃†B̃ = B̃B̃† = I − UUT , (3.15)

which represents an orthogonal splitting of two complementary subspaces. Moreover, since

UUT represents the orthogonal projector onto col(B̃)⊥ we have that

M̃M̃−1 = [B̃ + UVT ][B̃† − U(VTU)−1VT B̃† + U(VTU)−1UT ]

= B̃B̃† − B̃U(VTU)−1VT B̃† + B̃U(VTU)−1UT + UVT B̃†

− UVTU(VTU)−1VT B̃† + UVTU(VTU)−1UT

= B̃B̃† − B̃U(VTU)−1VT B̃† + B̃U(VTU)−1UT + UVT B̃†

− UVT B̃† + UUT

= B̃B̃† + UUT .

(3.16)

The above relation makes use of the fact that the product of B̃U is an n ×m matrix filled

entirely of zeros. Moreover, the m×m matrix VTU is a nonsingular, as shown later.
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3.2.2 Fast Application of Kronecker Products

Suppose T = Tx⊗Ty. The application of T or P̃ in the analysis above to a vector x involves

a computation of the form

z = Tx ⊗ Tyx, (3.17)

such that

z(i(Ny + 1) + j) =
Nx∑
p=0

Ny∑
q=0

Tx(i, p)Ty(j, q)x(p(Ny + 1) + q). (3.18)

Provided Nx ≈ Ny, the matrix-vector products T x and T −1x are computable at O(N4) =

O(n2) complexity.

Theorem 3.2.2. The product (3.17) can be alternatively computed at O(n3/2) complexity.

Proof. Instead of computing the product (3.17) as a matrix-vector product of two sums, let

us split the computation into two sub-components such that

y(i(Ny + 1) + j) =

Ny∑
q=0

Ty(j, q)x(i(Ny + 1) + q), (3.19)

z(i(Ny + 1) + j) =
Nx∑
p=0

Tx(i, p)y(p(Ny + 1) + j). (3.20)

Consequently, each matrix-vector product is computable at O(N3) = O(n3/2) complexity.

3.2.3 Inversion of VTU at O(n1/2) Cost

Let us recall the inverse of the matrix (VTU)−1 appearing in Theorem (3.2.1). Let us consider

the linear system,

VTUy = z. (3.21)

27



Chapter 3. The Generalized Minimal Residual Method: Solution Approach

Let us apply U to both sides of equation (3.21) such that:

VTUy = z ⇐⇒ UVTu = f , (3.22)

where u = Uy and f = Uz are both in the column space of U . Here, the matrix UVT is

responsible for enforcing the tau-conditions. Moreover, the vectors u and f have all zero

entries except for those entries corresponding to the tau-conditions. This indicates that

u(α) = u(i(Ny + 1) + j) = uij = 0 for all entries except when either of i, j is 0 or 1, or both

are. The boundary conditions for the linear system described in (3.22) are expressible as

Ny∑
j=0

uijδ
−
j = fi0,

Ny∑
j=0

uijδ
+
j = fi1, i = 0, . . . , Nx, (3.23)

Nx∑
i=0

uijδ
−
i = f0,j+2,

Nx∑
i=0

uijδ
+
i = f1,j+2, j = 0, . . . , Ny − 2. (3.24)

To efficiently solve the linear system, the equations above correspond to a particular row-
filling pattern illustrated in Figure 3.1. First, the coefficients in region A are recovered then
region B and region C, and lastly region D.
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Figure 3.1: Recovery of Modal Coefficients.

To begin we will consider the coefficients in region A. Assuming 2 ≤ i ≤ Nx from (3.23), the

j sums must range over only 0 and 1 (other terms in the sum are zero). These unknowns

are then recoverable from (3.23) expressed as

ui0δ
−
0 + ui1δ

−
1 = fi0, ui0δ

+
0 + ui1δ

+
1 = fi1. (3.25)

This 2× 2 system is solved immediately for all coefficients corresponding to region A. Next,

we will consider the coefficients in region B. Assuming 2 ≤ j ≤ Ny − 2 from (3.24), the i

sums must range over only 0 and 1 (other terms in the sum are zero). These unknowns are

then recoverable from (3.24) expressed as

u0jδ
−
0 + u1jδ

−
1 = f0,j+2, u0jδ

+
0 + u1jδ

+
1 = f1,j+2. (3.26)
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Now, let us consider the coefficients in region C. Assuming i = 0, 1 and j = 0, 1 from (3.24)

when i = 0, 1, the unknown coefficients are recoverable from (3.24) expressed as:

u0jδ
−
0 + u1jδ

−
1 = f0,j+1 −

Nx∑
i=2

uijδ
−
i , (3.27)

u0jδ
+
0 + u1jδ

+
1 = f1,j+1 −

Nx∑
i=2

uijδ
+
i . (3.28)

Notice that the source terms on the right-hand side involve coefficients already recovered

in region A. Lastly, let us consider the coefficients in region D. Assuming i = 0, 1 and

j = Ny − 1, Ny from (3.23), the unknown coefficients are recoverable from (3.23) expressed

as:

ui,Ny−1δ
−
Ny−1 + ui,Nyδ

−
Ny

= fi0 −
Ny−2∑
j=0

uijδ
−
j , (3.29)

ui,Ny−1δ
+
Ny−1 + ui,Nyδ

+
Ny

= fi1 −
Ny−2∑
j=0

uijδ
+
j . (3.30)

Again, the source terms on the right-hand side involve already recovered coefficients. Recov-

ery of the coefficients of each region costs at most O(n1/2). Thus, the system VTUy = z is

solvable at O(n1/2) complexity. As a result, the matrix-vector multiply of M̃−1x has a cost

of O(n3/2).
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Numerical Experiments

This chapter presents a numerical experiment for solving the Helmholtz equation using a

matrix laboratory, specifically MATLAB R2020a. In order to minimize the resource storage

and poor operation counts, an iterative method coupled with a preconditioner is used to

numerically solve the modal spectral approximation of the Helmholtz equation described in

early chapters. A preconditioner is used to increase the rate of convergence and enhance the

accuracy of the numerical solution. The following sections present a numerical investigation

of the preconditioned Helmholtz problem.

For this section alone, all indexing is from 1 instead of 0 for the convenience of reporting the

numerical results. The reader should note that the change of indexing does not affect the

analysis of algorithmic complexities. The goal of this analysis is to empirically determine the

complexity of our iterative scheme for numerically solving our Chebyshev approximations of

the Helmholtz equation.
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4.1 Analysis of the Helmholtz Equation

The presented modal Chebyshev spectral approximation of (2.33) and (2.34) is based on

integration sparsification. The approximation of the Helmholtz equation is solved iteratively

by way of a preconditioned GMRES, with full details given in Section 3.9. The source

code gmres.m solves the linear system using the Generalized Minimal Residual method with

restarts. The syntax employed is

x = gmres(A, b, restart, tol, maxit, M),

which specifies a preconditioner M , and computes x, the modal Chebyshev expansion co-

efficients, by effectively solving the preconditioned system. To determine how the number

iter of GMRES iterations scales with resolution, a tolerance of 1e-13 was chosen as the

tolerance for all GMRES solves. In order to numerically solve the Helmholtz equation, the

solution and source employed are defined by the following equations:

u(x, y) = cos (mx)e(ly) and f(x, y) = (−m2 + l2 + κ2)u(x, y), (4.1)

where m and l describe the parameters for the manufactured solution and +κ2 (the plus

choice) is the parameter in the Helmholtz equation.

4.1.1 Accuracy Test

In previous chapters, the modal Chebyshev expansion coefficients corresponding to a numer-

ical solution have been represented by (2.37). Since we are changing the index convention,

these modal coefficients would now be represented as

u(α) = uij, α = (i− 1)Ny + j, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. (4.2)

Regardless, our convention has been to use u and uij to represent the modal expansion

coefficients. Therefore, we have to be careful with the notation for representing the nodal

values of a Chebyshev numerical solution.
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Let uc(x, y) represent the right-hand side of (2.35) and uref (x, y) denote an exact reference

solution. Now, let

(xJ , yJ) for 1 ≤ J ≤ Jmax (4.3)

be a uniform reference grid. Although a single index, J enumerates a two-dimensional array

of points. Then,

uc(xJ , yJ) for 1 ≤ J ≤ Jmax (4.4)

is a collection of nodal values stemming from the numerical solution. Likewise,

uref (xJ , yJ) for 1 ≤ J ≤ Jmax (4.5)

is a collection of exact reference nodal values. The relative errors are computed by evaluating

the following:

εRL2 =

√√√√∑Jmax

J=1

∣∣uc(xJ , yJ)− uref (xJ , yJ)
∣∣2∑Jmax

J=1

∣∣uref (xJ , yJ)
∣∣2 , (4.6)

where εRL2 represents the relative L2-norm. The Jmax is typically determined with 51 points

in each direction.

The relative error is evaluated for a given GMRES tolerance of 1e-13 . We define thirteen

truncation values incremented by two from 12 to 36 with parameter values defined asm = 2.3,

l = 1.5, and κ2 = 0.777. This is an initial test scenario which allows us to confirm accuracy

and complexity, but further tests, especially, with varied κ2, are needed. The evidence

shows that the number of iterations needed to achieve a fixed tolerance of 1e-13 increases

minimally with resolution. Moreover, Table 4.1 describes the accuracy comparisons of three

different strategies for solving the Helmholtz equation: unpreconditioned, preconditioned,

and Gaussian Elimination. Figure 4.1 shows the error convergence for the middle column

(preconditioned system) of Table 4.1.
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truncation Unpreconditioneed Preconditioned Gaussian Elimination

Nx Ny εRL2 εRL2 εRL2

12 13 2.1927e-03 2.1927e-03 2.1927e-03
14 15 1.2133e-04 1.2133e-04 1.2133e-04
16 17 4.9628e-06 4.9628e-06 4.9628e-06
18 19 1.5668e-07 1.5668e-07 1.5668e-07
20 21 3.9289e-09 3.9290e-09 3.9290e-09
22 23 8.0396e-11 7.9655e-11 7.9656e-11
24 25 2.3024e-11 1.3348e-12 1.3319e-12
26 27 3.3216e-11 8.6240e-14 2.0533e-14
28 29 3.1769e-11 1.3032e-13 4.7119e-15
30 31 3.5794e-11 5.3718e-14 4.8168e-15
32 33 3.3285e-11 5.3525e-14 2.1181e-15
34 35 3.5484e-11 6.6973e-14 2.3330e-15
36 37 2.8854e-11 7.3607e-14 2.1975e-15

Table 4.1: Accuracy comparison of strategies for numerically solving the Helmholtz equation

for thirteen prescribed truncations, along with a set tolerance of 1e-13.
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Figure 4.1: The plot above is plotted in MATLAB R2020a using the semilogy feature for
thirteen prescribed truncations, along with a set tolerance of 1e-13. The convergence error
for the preconditioned system indicates exponential convergence with resolution.
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4.1.2 Complexity Verification

As previously mentioned, a given tolerance of 1e-13 is investigated to observe the relation

between the truncations and the number iter of GMRES iterations. Since the details of

this relationship is unknown, let us assume a power-law dependency of the form

p = αnβ, (4.7)

where n represents the product of the unknowns in each Cartesian direction (this α is a

power law constant and not an index). Let us linearize the above equation by taking the log

(base-ten) of both sides,

log(p) = log(α) + β log(n). (4.8)

Define y ≡ log(p) and x ≡ log(n). Substituting these into (4.8) and rearranging, we get

y = βx+ log(α), (4.9)

which is indeed a linear relationship. The slope of this straight line is the unknown exponent

β and the value of the intercept is log(α). Given that we are evaluating the relationship

between the product of the truncations corresponding to the two coordinate directions and

the number of iterations, let us find a linear polynomial that best fits the data using MATLAB’s

built-in polyfit routine. For a fixed tolerance of 1e-13 and truncation values incremented

by two from 60 to 100, the first degree polynomial returned that best approximates the data

is defined by:

y = 0.2069x+ 0.9483. (4.10)

Now, if we take the base-10 exponentiate of (4.10) then the relation of the power law is

defined by:

p = 100.9483n0.2069. (4.11)
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Thus, the value that best fits the data is 0.2069.

The number of required iterations empirically scales nearly as O(n1/5). Assuming this is

true, the cumulative cost for k-iterations of GMRES breaks down to the following:

1. Arnoldi iteration: O(n7/5) = O(n1.4).

2. Matrix-vector Multiply (with preconditioner): O(n(1/5+3/2)) = O(n17/10) = O(n1.7).

3. Least Squares: O(n2/5) = O(n0.4).

As a result, the cumulative cost scales like O(n1.7). The linear behavior observed in Figure
4.2, illustrates that the number of required iterations scales like a power-law with respect
to the number of truncations. Overall, the method appears to have a sub-quadratic solve
complexity.
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Figure 4.2: The plot above is plotted in MATLAB R2020a using the Loglog feature for twenty-
one prescribed truncation values, along with a set tolerance of 1e-13. The linear behavior
illustrates a power law relationship between the truncations and required iterations when a
GMRES preconditioner is used.
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Similarly, the power-law that empirically describes the relationship between the truncations

and total time is the following:

p = 10−6.3337n1.5962. (4.12)

The value that best fits the data is 1.5962. Moreover, since the total time scales like O(n1.6),
the cumulative cost for k-iterations of GMRES, also scales like O(n1.6). This observed scaling
is a bit better than the O(n1.7) prediction made on the last page. Again, the linear behavior
observed in Figure 4.2 illustrates that the total time scales like a power law with respect to
the number of truncations. For the sake of simplicity, only comparison plots for the number
of required iterations and total time for the preconditioned system were generated for the
prescribed truncation values.
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Figure 4.3: The plot above is plotted in MATLAB R2020a using the Loglog feature for twenty-
one prescribed truncation values, along with a set tolerance of 1e-13. The linear behavior
illustrates a power law relationship between the truncations and total time required to arrive
at a solution when a GMRES preconditioner is used.
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truncation Unpreconditioned Preconditioned Gaussian Elimination

Nx Ny εRL2 timing εRL2 timing εRL2 timing

60 61 1.3798e-10 3.6532e+00 1.4450e-13 3.2672e-01 3.5373e-15 3.4429e-01
70 71 1.0212e-10 7.9053e+00 1.1181e-13 4.5317e-01 4.7278e-15 8.6248e-01
80 81 1.8784e-10 1.1400e+01 9.3577e-14 6.6254e-01 3.2036e-15 1.8067e+00
90 91 1.3202e-10 1.5416e+01 1.4966e-13 1.0009e+00 2.8595e-15 3.1349e+00

100 101 3.0402e-10 2.0849e+01 1.5725e-13 1.3864e+00 2.1859e-15 5.8221e+00
110 111 2.6503e-10 2.6033e+01 1.4899e-13 1.8604e+00 4.1492e-15 1.0380e+01
120 121 3.3494e-10 3.2508e+01 1.7620e-13 2.4987e+00 2.6592e-15 1.6859e+01
130 131 3.1014e-10 4.2055e+01 1.0784e-13 3.1951e+00 4.0950e-15 2.9219e+01
140 141 3.8236e-10 4.8768e+01 1.4475e-13 4.0162e+00 2.3107e-15 4.2288e+01
150 151 3.3007e-10 5.9189e+01 1.1417e-13 5.0592e+00 4.7963e-15 9.1595e+01

Table 4.2: Testing results for solving (2.33). Each timing in this table corresponds to an

average over 10 runs.

Table 4.2 lists three testing result comparisons of solving the Helmholtz equation via unpre-

conditioned GMRES, preconditioned GMRES, and Gaussian elimination for ten prescribed

truncation values, along with a set tolerance of 1e-13. The table indicates the effectiveness

of implementing a preconditioner for the spectral solution of this PDE. For small truncation

values, Gaussian elimination outperforms both the unpreconditioned and preconditioned

methods. However, as seen in Table 4.2, a preconditioner is useful for effectively solving

the Helmholtz equation. Additionally, to investigate the solve complexity of each method, a

set tolerance of 1e-13 was used for all GMRES solves. For the truncations considered, the

preconditioned method empirically yields a linear set-up cost followed by a sub-quadratic

solve complexity of O(n1.6). Moreover, the number of iterations needed to achieve a fixed

tolerance of 1e-13 scales dependently with resolution nearly as O(n1/5).

38



Chapter 5

Conclusion

For this work, we presented a method for solving the two-dimensional Helmholtz problem

posed on a rectangular domain subject to Dirichlet boundary conditions based on integration

sparsification with further additional (genuine) preconditioning. Our approach entailed using

a spectral approximation of the Helmholtz problem involving a modal integration matrix for

Chebyshev polynomials. The total number of variables for the spectral approximation of

the preconditioned system is n = (N + 1)2, where N + 1 is the number of Chebyshev

modes associated with both Cartesian direction. Implementation of a preconditioner to

solve the spectral solution of the aforementioned problem empirically demonstrated a linear

set-up cost followed by a sub-quadratic solve complexity of O(n1.6). For the truncations

considered, our approach demonstrated spectral accuracy and is empirically well-conditioned.

For small truncation values, we found that Gaussian elimination outperformed both the

unpreconditioned and preconditioned systems. However, as truncation values increased, we

found that implementation of a preconditioner was advantageous for effectively solving the

Helmholtz problem. Thus, the described method is indeed effective for the presented modal

Chebyshev approximation of the Helmholtz equation.

Potential future avenues of research include extension to harder problems with Neumann
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or mixed Dirichlet-Neumann, more complicated domains, as well as extension to higher

spatial dimensions and other PDEs. Firstly, the change of boundary conditions entails the

replacement of Dirichlet vectors with either Neumann vectors or Dirichlet-Neumann vectors.

For example, for Neumann boundary conditions this would involve replacing Dirichlet vectors

δ± = [T0(±1), T1(±1), T2(±1), T3(±1), T4(±1), ...] = [1,±1,±1,±1, ...]

with Neumann vectors

ν± = [T ′0(±1), T ′1(±1), T ′2(±1), T ′3(±1), T ′4(±1), ...] = [0, 1,±4, 9,±16, ...].

In this case, the problem with pure Neumann boundary conditions is indeed singular.

Sommerfeld conditions are mixed Dirichlet-Neumann conditions. In the context here they are

(iκu + ∂u/∂n)|∂Ω= h, where ∂/∂n denotes differentiation normal to the boundary. Clearly,

such conditions will be approximated by Dirichlet and Neumann vectors. But these boundary

conditions also lead to a complex solution, with the boundary conditions coupling the real

and imaginary parts. These issues are beyond the scope of this thesis, but one might try to

extend our work to this setting. Sommerfeld conditions (radiation conditions) are often used

when studying the wave equation, or its time-harmonic version, the Helmholtz equation.

A possibility for treating more complicated domains is shown in Figure 5.1 which depicts

an irregular domain with a curved boundary embedded inside a rectangle. The PDE can be

solved on the full rectangle, but with boundary conditions enforced on the curved boundary.

The tau methods described in this thesis allow for such a formulation. The figure below also

suggests a straightforward way of partitioning the boundary which could be used with the

tau approach. With further work, some aspects of this thesis may generalize to this more

complicated scenario.

As a different line of research, a plausible method for direct inversion of the coefficient matrix

stems from a direct method for solving the coefficient matrix through a Woodbury identity

matrix. Thus, viewing

M = M̃+ Ũ ṼT ,
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Figure 5.1: Irregular domain (shaded) with a curved boundary embedded inside a rectangle.

where M is the coefficient matrix and M̃ is the preconditioner. The perturbation Ũ ṼT =

B − B̃ in terms of (2.39) and (3.10). Here we can use the Woodbury formula to invert M

(inversion of M̃ is studied in this thesis). The formula here uses the Ũ and ṼT from above.

By the Woodbury matrix identity

M−1 = M̃−1 − M̃−1ŨC−1ṼTM̃−1, (5.1)

where the capacitance matrix is

C = I + ṼTM̃−1Ũ . (5.2)

Here, the capacitance matrix is m × m, where m is given after (2.39). Finally, for higher

dimensions, the ideas presented in this thesis can almost certainly be carried out for any

n. However, for n > 2 the complexity for the strategy (preconditioned GMRES) presented

is likely quadratic or worse. Lastly, other linear PDEs, for example those with Laplacian

principal part and first derivative terms should be considered.
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