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ABSTRACT 

This study compared the performance of machine learning models in classifying 

COVID-19 patients using exhaled breath signals and simulated datasets. Ground truth 

classification was determined by the gold standard Polymerase Chain Reaction (PCR) 

test results. A residual bootstrapped method generated the simulated datasets by fitting 

signal data to Autoregressive Moving Average (ARMA) models. Classification models 

included neural networks, k-nearest neighbors, naïve Bayes, random forest, and support 

vector machines. A Recursive Feature Elimination (RFE) study was performed to 

determine if reducing signal features would improve the classification models 

performance using Gini Importance scoring for the two classes. The top 25% of features 

determined by Gini Importance scores suggest that profiles from specific Volatile 

Organic Compounds (VOC) in patient breath may contribute to model performance. 
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Symbols 

𝑡  wavelength 

𝑥𝑡 signal intensity at wavelength 𝑡 

𝑥𝑡𝑚𝑖𝑛
 minimum signal intensity at wavelength 𝑡 

𝑥𝑡𝑚𝑎𝑥
 maximum signal intensity at wavelength 𝑡 

𝑥𝑡
′ Min-max normalized signal intensity at wavelength 𝑡 

𝑥̅𝑡 mean signal intensity at wavelength 𝑡 

𝑥𝑐𝑡
 mean centered intensity of breath signal at wavelength 𝑡 

𝑤ℎ𝑖 weight applied to neural network layer at node 𝑖 of hidden layer ℎ 

𝒘ℎ vector of weights for hidden layer ℎ applied to nodes 

𝑦ℎ𝑗 unit value at node 𝑗 in hidden layer ℎ 

𝒚ℎ vector of unit values for nodes in hidden layer ℎ 

𝑧ℎ𝑖 result of applying activation function neural network hidden layer 

𝒛ℎ neural network hidden layer 

𝜎 activation function used in neural network 

𝐾 number of classes 

𝑝 number of parameters within breath signal (high laser) 

𝐼 Gini impurity 

𝐼(𝜏) Gini impurity at node 𝜏 in decision tree 

𝑛𝑖 samples from class for 𝑖 = 1, . . 𝐾 

𝑁 number of samples 

𝜉𝑖 fraction of number of samples from class 𝑛𝑖 to number of samples 𝑁 

𝑆𝑖 denotes the subset of samples in Recursive Feature Elimination 

𝑞 number of lags used to regress against 𝑥𝑐𝑡
 in Autoregressive process 

𝜙𝑖 coefficient of the 𝑖𝑡ℎ lag of the series 

𝜃𝑖 coefficient corresponding to 𝜀𝑡−𝑖 

𝜀𝑡 represents the white noise error term at time 𝑡 

𝑄 denotes the Box-Pierce statistic 

𝑄∗ denotes the Ljung-Box statistic 

𝑘 lag being considered for Box-Pierce or Ljung-Box statistic computation 

𝑟𝑘 number of residuals used in the autocorrelation for lag 𝑘 

𝑙 maximum number of lags being considered Box-Pierce or Ljung-Box statistic 

𝑇 denotes the number of observations for 𝑟𝑘 residuals 

𝑃 number of model parameters used for Box-Pierce or Ljung-Box statistic 

𝑟 denotes the order of a Moving Average process or number of past error terms 

𝜇 mean of time series 

𝜇𝐶𝐾
 estimated mean using maximum likelihood estimation for probability distribution 

𝜎𝐶𝐾

2   estimated standard deviation using maximum likelihood estimation 

𝐴𝐼𝐶𝑐 Akaike Information Criterion corrected AICc 

𝑆𝑆𝐸 residual sum of squares error under the model 

𝐶𝐾 class 𝐾 used in Naïve Bayes model
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CHAPTER 1: INTRODUCTION 

 

In 2020, the SARS-CoV-2 outbreak, also known as COVID-19, has led to a 

pandemic causing hospitals to overflow with patients resulting in depleted resources— 

including testing materials and PPE—and more than 5.8 million deaths across the world 

as of February 2022 (1). Indirect impacts included cancellation of nonemergent and 

elective surgeries, which in turn negatively affected the quality of provided health care 

and resulted in loss of hospital revenue in an already stressed healthcare sector (2). Thus, 

rapid identification of infected individuals and isolating them is essential during this 

outbreak. Unfortunately, about 40-45% of those who tested positive for the virus are 

asymptomatic carriers, resulting in many individuals continuing to infect others without 

realizing they have the disease (3). Currently, nasopharyngeal swabbing to collect viral 

material for reverse transcriptase PCR (RT-PCR) analysis is the gold standard for 

COVID-19 testing. 

Although typically PCR has high accuracy and specificity, there are many caveats 

to this method of testing for COVID-19 (4). First, PCR requires adequate sampling to be 

able to amplify the genetic material of the virus. It is therefore essential to have trained, 

skilled workers collecting the samples, which can prove challenging for mass testing. The 

sensitivity of PCR tests can be limited to as low as 60-70% mainly due to incorrect 

sampling techniques (5). Additionally, one study found that between day 0 and day 10 

after infection, the chance of a positive test declined from 94.39% to 67.15% (6).  Also, 

RT-PCR analysis can also take 1-3 days to process and requires an appropriate well-

equipped laboratory with skilled technicians, all of which are not always quickly and 
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readily available remotely (7). Furthermore, nasopharyngeal swabbing is an 

uncomfortable process for many people and can lead to coughing and sneezing, thereby 

aerosolizing the virus which may lead to further spread (5). Finally, it has been shown 

that as the disease progresses, the virus multiplies in the lungs rather than the throat (8). 

Due to the many disadvantages of using nasopharyngeal swabs and PCR analysis, 

medical professionals have been looking for more rapid and accurate ways of detecting 

the virus. Additionally, with limited supplies scientists and engineers have explored novel 

ways to identify a positive case of COVID-19. One such method that has been studied 

involves using human exhaled breath as a simple, pain-free, and non-invasive method of 

screening patients. Here, the interaction between pathogenic viruses in the respiratory 

tract and the body's microenvironment can produce distinctive volatile organic 

compounds (VOCs) that the patient exhales in their breath (9, 10). Recently, evaluating 

the VOCs produced in patient exhaled breath has received an explosion of interest as the 

analysis of breath constituents as a way of monitoring inflammation and oxidative stress 

in the lungs (11).  

Several studies found that VOCs and their concentration in exhaled breath 

collected from healthy and diseased human studies, may act as biomarkers of selected 

diseases or pathophysiological conditions. Of the more than 3000 VOCs present in a 

patient exhaled breath, the identifiable and potential biologically plausible VOCs include 

acetone (12), ethanol (13) isoprene (14), methanol (15), methane (16) and aldehydes 

including acetaldehyde (17), butanal (18) heptanal (19), and propanal (20). Profiles of 

some of these exhaled breath VOCs reflect the multiple metabolic changes associated 
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with the SARS-CoV-2 viral infection and may be used to rapidly screen for COVID-19 

using point-of-care (POC) instruments (21). 

Although the gold standard for VOC detection in exhaled breath is gas 

chromatography, the recent developments in mid-infrared (MIR) laser spectroscopy have 

led to the promise of compact POC optical instruments enabling single breath diagnostics 

(22). In this study, one such novel advanced laser-based analytic approach is used as a 

screening technique: runtime Cavity Ringdown (rtCRD). rtCRD spectroscopy detects 

trace levels of chemicals in the air including the identification of unique VOCs in patient 

breath (23). Multiple VOC biomarkers can be observed qualitatively to distinguish the 

spectrum produced by rtCRD spectroscopy of patients with COVID-19 virus from 

healthy controls (24). However, current studies of breath analysis of COVID-19 lack 

sufficient analysis of the multidimensional VOCs data via advanced algorithms such as 

those in machine learning that may provide better classification performance than visual 

inspection (21). Therefore, there is a need to assess the efficacy that MIR laser 

spectroscopy such as rtCRD spectroscopy has in identifying a positive COVID-19 case 

rapidly and accurately using patient exhaled breath.  

In this study, multiple machine learning models were used to classify COVID-19 

positive patients versus healthy controls. Using PCR results as ground truth, patient 

exhaled breath signals generated from an rtCRD spectroscopy device were the only 

predictors of COVID-19 status. Due to limited sample size, a residual bootstrap procedure 

was performed from actual patient breath signals to generate simulated samples. The 

primary outcome of interest of the study was the exhaled breath signals as identifiers of 

COVID-19 infection in the pre-clinical setting. The objective of this study is to examine 
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the effectiveness of simulating breath signals has on the performance of machine learning 

classification models with respect to the number of simulated samples. The hypothesis was 

that as the number of simulated samples increased the average accuracy would increase 

and the variation of performance would decrease.  
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CHAPTER 2: SUBJECTS AND MATERIALS USED 

 

Subjects 

A preliminary study was conducted at the University of New Mexico Health 

Science Center in the Department of Emergency Medicine consisting of 18 patients (10 

positive; 8 negative cases) from January 1st 2021 through April 30th 2021 with participant 

information shown in Table 2.1. For classification purposes, a total of 195 patients from 

Atlanta, Georgia (65 positive; 130 negative cases) at multiple centralized testing locations 

were enrolled from May 19th, 2021 through June 3rd, 2021; participant information 

shown in Table 2.2. After giving the informed consent form approved by the respective 

Institutional Review Boards (IRB), all subjects were deidentified such that subject 

information cannot be linked to individual participants.  

All subjects were non-incarcerated adults, age > 18, and upon enrollment were 

given unique study IDs. To identify between positive and negative cases of COVID-19, 

PCR test results were used as the ground truth for binary classification. Each PCR test 

result was obtained less than 48 hours from the collection of the breath test from an acute 

care setting or centralized testing location. The patients with invalid or indeterminant 

PCR results were excluded from the study. 

Materials used 

To process patient breath samples, a novel advanced laser-based analytical 

approach was used known as rtCRDS which detects trace levels of chemicals whether in 

the gas or particle phase (23). The chemical detection by rtCRDS is in the Mid-IR region 
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(2,500 nm to 25,000 nm) and is commonly used in numerous research areas such as 

environmental science, exposure assessment and clinical diagnosis (25, 26). The device 

used is the AG-4000 Breath Test Assembly RingIR® Device shown in Figure 2.1.  

 
N=10 

COVID-19 Positive 

N=8 

COVID-19 Negative 

RT-qPCR SARS-COV-2 10 8 

% Males 55% 28% 

Age   

18-25 0 1 

26-40 1 1 

41-65 7 7 

> 65 2 1 

Time Since First Symptom   

Asymptomatic 1 0 

1 day 1 3 

2-3 days 2 0 

4-7 days 4 0 

> 1 week 2 0 

Comorbidities    

COPD 0 1 

Asthma 0 1 

Active Malignancy 1 2 

Type 2 Diabetes Mellitus 3 2 

Smoking 3 4 

Symptoms   

Fever 3 0 

Cough 5 0 

Shortness of Breath 2 2 

Recent Loss of Sense of Smell/Taste 2 0 

Chills 5 1 

Muscle ache 4 0 

Headache 5 0 

Sore Throat 4 0 

Fatigue 5 0 

Vomiting/Nausea 2 0 

Diarrhea 3 0 

Primary Language English 10 7 

Table 2.1. UNM Emergency Medicine Department Participant Information (N=18) 
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N=65 

COVID-19 Positive 

N=130 

COVID-19 Negative 

RT-qPCR SARS-COV-2 65 130 

Age   

18-25 15 34 

26-40 11 43 

41-65 26 44 

> 65 13 9 

Time Since First Symptom   

Asymptomatic 3 0 

1 day 10 14 

2-3 days 16 31 

4-7 days 10 13 

> 1 week 15 8 

Unknown 11 64 

Comorbidities    

Hypertension 25 35 

Type 2 Diabetes Mellitus 18 9 

Obesity 

(Excess weight gain) 
7 12 

Chronic Heart Disease 8 7 

Chronic Lung Disease 2 6 

Chronic Kidney Disease 2 3 

Chronic Liver Disease 1 1 

Hemoglobin Disease 2 0 

Cancer 4 4 

Immunosuppression 

(From transplant, chemotherapy, 

medications, or HIV) 

2 3 

Asthma 6 26 

Allergies 6 27 

Chronic Sinus Disease 2 3 

Other 9 13 

None 20 51 

Table 2.2. Emory University Testing Site Participant Information (N=195) 
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Figure 2.1: AG-4000 Breath Test Assembly RingIR Device with Collection Mechanism 

This breath test device contains dual lasers of different intensities that are positioned 

orthogonal to one another and produce the two segments of the spectrum. The 

wavelength ranges for the low wavelength and high wavelength length lasers are 6800nm 

to 8600nm and 8600nm to 11,000nm, respectively.  

As shown in the Diagram of the Data Collection process, Figure 2.2, the 

participant exhales into 5 bags of 200 mL in volume each prior to being processed by the 

device. 

 

Figure 2.2: Diagram of Data Collection Process 

 

The breath sample from the bag consists of multiple unknown VOC molecules that when 

excited by the Mid-IR laser within the device produce a fingerprint spectrum unique to 

the VOCs present. Both Mid-IR lasers emit light that travels through the breath sample 

multiple times while reflecting off 4 mirrors: an input mirror, mirror 1, mirror 2, and an 

output mirror. After the light is reflected from the final output mirror, a photodetector is 

AG-4000  

Spectrometer 

A breath bag  

attached to the  

sample inlet 

PALL HEPA  

filter attached  

to sample  

exhaust 
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used to collect the light subsequently generating the signal. Finally, a runtime digital 

signal processing step takes place to produce the signal and this breath signal is then 

recorded and tabulated with the patients PCR result. The resulting signal spectrum from 

both lasers spans 6800 nm to 11,000 nm in wavelengths containing at total of 12260 data 

points. The signal from the low wavelength laser ranges from 6800 nm to 8600 nm 

wavelengths with 6017 linearly spaced data points. Whereas the signal from the high 

wavelength laser contains wavelengths between 8600 nm to 11,000 nm data point with 

6247 linearly spaced data points. 
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CHAPTER 3: DATA PREPARATION AND MODELS  

 

Data Preparation 

In this study, the dataset is pre-processed to ensure the models are built to 

effectively classify the signals. An initial model performance comparison is performed to 

determine if the entire signal should be used for an extensive analysis or subsets 

containing the low or high wavelength laser data only. Before any model building took 

place, the dataset was normalized and augmented by reducing features, encoding the 

classification variable, and split into folds for cross-validation. To reduce signal noise, a 

background correction of the signals was considered as to further pre-process the signal 

data. This involves using the clean air samples obtained from the ambient or background 

air within the hospital/testing center to then normalize the breath samples. However, due 

to variation in the power of the low wavelength laser, background or ambient signals 

consisted of various number of data points ranging between 6010-6016 making 

background correction untenable. Thus, background correction of signals or the 

utilization of the background spectra for the classification of COVID-19 status was not 

implemented. For comparison purposes only, a linear interpolation of the background 

signals (6017 data points) was applied such that, for the high wavelength laser, both the 

breath and background signals contain 6247 data points.  

Min-Max Normalization 

Machine learning models trained on scaled data usually have significantly higher 

performance compared to models trained on unscaled data making rescaling data an 

essential step for preprocessing data (27). Before model building, a minimum-maximum 
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normalization was applied to the entire signal dataset. This normalization transforms the 

data linearly by setting the minimum value for each wavelength within the dataset to zero 

and the maximum value to one. This transformation is shown in the following formula: 

𝑥𝑡
′ =

𝑥𝑡 − 𝑥𝑡𝑚𝑖𝑛

𝑥𝑡𝑚𝑎𝑥
− 𝑥𝑡𝑚𝑖𝑛

 

where 𝑥𝑡𝑚𝑖𝑛
 and 𝑥𝑡𝑚𝑎𝑥

 denotes the minimum and maximum of a variable in the samples 

at wavelength 𝑡, respectively, and the value 𝑥𝑡 is mapped to the normalized value 𝑥𝑡
′. This 

normalization step tends to improve model performance of neural networks and is typical 

for machine learning models prior to training (28). The disadvantages of the min-max 

algorithm are that it is sensitive to outliers and if the unseen/testing samples fall outside 

the training data range of the variable, the scaled values will be outside the bounds of the 

interval [0, 1]. Note that 𝑥𝑡
′ is not used for signal simulation rather only for model 

building; 𝑥𝑐𝑡
 is transformed to 𝑥𝑡 before being min-max normalized to 𝑥′𝑡. 

One Hot Encoding and Softmax Activation Function 

For the classification of the labels, a one-hot encoding scheme was applied to both 

class labels where [0, 1] represents a positive case and [1, 0] represents a negative case. 

This step allows for a Softmax function at the final two nodes of neural network models 

to return probabilities of each class (29). This function normalizes the output of the 

neural network to a probability distribution over the predicted output classes. The 

Softmax function or normalized exponential function is a generalization of the logistic 

function (30) as follows:  

𝜎(𝒛ℎ)𝑖 =
𝑒𝑧ℎ𝑖

∑ 𝑒𝑧ℎ𝑖𝐾
𝑖=1  
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where 𝐾 is the total number of classes and 𝒛ℎ = (𝑧ℎ1, … , 𝑧ℎ𝑁) = 𝑤ℎ0𝑦ℎ0 + 𝑤ℎ1𝑦ℎ1 +

⋯ + 𝑤ℎ𝑁𝑦ℎ𝑁 = ∑ 𝑤ℎ𝑗𝑦ℎ𝑗
𝑁
𝑗=1 =  𝒘ℎ

𝑇𝒚ℎ ∈ ℝ𝑁 is the input vector from the last hidden 

layer ℎ of the neural network for nodes 𝑗 = 1, 2, … 𝑁 with 𝑤ℎ𝑗 being the weight that is 

multiplied by the feature 𝑦ℎ𝑗 at node 𝑗. In other words, the Softmax activation function 

obtains a class probability from the model by applying the exponential function to each 

element of 𝒛ℎ, then dividing by the sum of all the exponentials such that the sum of all 

𝜎(𝒛ℎ)𝑖’s is one for 𝑖 = 1, … , 𝐾. 

Gini Impurity and Gini Feature Importance 

During training of the Random Forest classifier, each node within the binary trees 

must obtain the optimal split through what is known as Gini impurity. Gini impurity 𝐼(𝜏) 

is calculated as follows: 

𝐼(𝜏) = 1 − ∑ 𝜉𝑖
2

𝐾

𝑖=1

 

Here, 𝜉𝑖 =
𝑛𝑖

𝑁
 is the fraction of 𝑛𝑖 samples from class 𝑖 = {0, 1} out of the total samples 𝑁 

at node 𝜏. Gini impurity approximates Shannon entropy which measures the quality of a 

potential split separating the samples of two classes at the node of interest (31). This 

provides insight into which features may be important for the model to classify data 

known as Gini Feature Importance. 

Gini Feature Importance is a feature selection based on the Random Forest 

classifier and provides multivariate feature importance scores. To compute the Gini 

Feature Importance for each feature, the accumulated sum of the Gini decrease across 

every tree of the forest is computed for each time a feature is chosen to split a node. This 
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accumulated sum is then divided by the number of trees in the forest to obtain an average. 

These averages are representing the Gini importance and are unitless relative values. The 

feature with the greatest importance being the most influential in classifying the data for 

the Random Forest model (32).  

For learning problems involving spectral data, the high dimensionality of the 

feature space denoted 𝑝 may be much greater than that of the number of 𝑁 samples 

available for training. Dimension reduction and feature selection of the spectral data help 

remove multi-collinearity to improve the interpretation of the parameters of the machine 

learning model. Also, it makes it easier to visualize the data when reduced to relatively 

low dimensions such as 2D or 3D, and aid in noise reduction (32). An iterative feature 

reduction was used to illustrate the effect that Gini Feature Importance has on model 

performance. This involved decreasing the number of features present for training and 

testing by 1% until only 3 features remained. 

Recursive Feature Elimination 

 Recursive Feature Elimination (RFE) is a backward selection process that aims to 

reduce the number of uninformative features or variables within a dataset to improve a 

model’s performance (33). The main goals of feature selection are to determine the 

important variables related to the outcome variable and obtain a minimal set of variables 

that give a good predictive model that is not overfitted and able to generalize to new 

datasets (34). As shown in Figure 3.1, RFE begins by fitting the model with all predictors 

and subsequently ranks the predictors according to the importance the predictor has for 

that model.  
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Let 𝑆 be the subset size of the candidate predictors to be retained by RFE such 

that (𝑆1 > 𝑆2 … > 𝑆𝑖) where 𝑖 denotes the current iteration. After the features have been 

ranked, RFE will retain the top 𝑆𝑖 ranked predictors to then refit the model and access the 

performance. The goal is to find the 𝑆𝑖 which achieves the best model performance. The 

algorithm may recompute the predictor rankings of the reduced predictor subset during 

each iteration as well as renormalize the subset 𝑆𝑖 before model re-evaluation. 

Figure 3.1: Recursive Feature Elimination Algorithm 1 (adapted from 33) 

 

It has been shown that for random forest models, there was a decrease in 

performance when rankings were recomputed (35). It is not clear if this is the case for 

other machine learning models. Overfitting may be an issue if the predictor sets focus on 

features in the training data not found in testing samples, e.g., uninformative predictors or 

predictors that randomly correlate with the outcome (36). Thus, the RFE algorithm may 

have a selection bias giving good rankings to variables with the prediction error being 

lowered yet a different validation set may determine that the predictor was uninformative 
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(37). In this case, the decrease in gain in Gini Index from the Random Forest model with 

3000 estimators was used for a stratified 10-fold average ranking of feature importance 

𝑘-fold Cross-Validation and Stratified 𝑘-fold Cross-Validation 

A 𝑘-fold cross-validation involves a resampling procedure applied to the entire 

dataset to cross-validate the testing of the machine learning models. This cross-validation 

involves a series of 𝑘 folds which split the data into training and testing sets for the 

machine learning model to be trained and evaluated, respectively. After the evaluation of 

each fold, the data is then randomized and split again for the next fold. This statistical 

method is used to estimate the skill of models by taking the average performance of the 

𝑘-folds as a final measure of the quality of the model. Figure 3.2 diagrams the procedure 

of the 𝑘-fold cross-validation below. 

 

Figure 3.2: Diagram of 𝑘-fold Cross-Validation Procedure (adapted from 38) 
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A caveat of 𝑘-fold cross-validation is that when changing the random state, the accuracy 

of the models can change noticeably. This may suggest that the variation in the 

distribution of classes selected for the training and testing sets can affect performance and 

may not be a representative sample.  

To address this issue, a stratified 10-fold cross-validation can be used where each 

fold is stratified such that they are representative of all strata in the data. This reduces 

variance among the estimates and the average error estimate is reliable (39). In other 

words, stratified 10-fold cross-validation prevents bias in a classification where each 

instance is weighted equally without the overrepresented classes being assigned more 

weight. This ensures that the data is randomly sampled with the distribution of classes 

remaining relatively constant. In this study, a 2:1 ratio of healthy controls to positive 

COVID-19 patients is used. The stratified 𝑘-fold cross-validation splits the dataset into 

training and testing datasets to maintain this ratio.  
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Models 

This study utilizes time series models to simulate signal data as well as multiple 

statistical and machine learning models to classify signals. For the purposes of 

simulation, signals were mean centered, i.e., intensities at each wavelength were 

subtracted by the mean intensity of the signals at that wavelength. To fit time series 

models, the wavelength of the signal was used as the time independent variable 𝑡 with the 

mean centered intensity as the dependent variable 𝑥𝑡 − 𝑥̅ = 𝑥𝑐𝑡
. The models used were 

limited to a particular case of Autoregressive Integrative Moving Average (ARIMA) 

models, also called Box-Jenkins models, which does not apply differencing to the data. 

Without differencing, the models are a combination of Autoregressive (AR) and Moving 

Average (MA) also known as ARMA models. After the simulated signals were 

generated, supervised and unsupervised machine learning models classify the signals as 

either a COVID-19 positive or COVID-19 negative case. 

Autoregressive, Moving Average, and Autoregressive Moving Average Models 

AR models are used in forecasting when there appears a to be correlation between 

current values and previous values in the same time series. AR processes can be 

considered a linear regression of the time series data against one or more of the previous 

values (40). In other words, the AR process is used to define the current value of a time 

series, 𝑥𝑐𝑡
, as a linear combination of the previous 𝑞 lags of the series as formalized by: 

𝐴𝑅(𝑞):   𝑥𝑐𝑡
= 𝑐 + ∑ 𝜙𝑖𝑥𝑐𝑡−𝑖

𝑞

𝑖=1

+ 𝜀𝑡 
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where 𝐴𝑅(𝑞) denotes the AR process with 𝑞-order, 𝑐 represents a constant, 𝑞 is the 

number of lags that regress against 𝑥𝑐𝑡
, 𝑥𝑐𝑡−𝑖

 is the 𝑖𝑡ℎ lag of the series, 𝜙𝑖 is the 

coefficient of the 𝑖𝑡ℎ lag of the series and 𝜀𝑡 represents the white noise error term at time 

𝑡. The error term 𝜀𝑡 is a white noise process by the assumption that the term is 

uncorrelated with the time series data with mean 0 and constant variance 𝜎2, i.e., 

𝜀𝑡~𝑊𝑁(0, 𝜎2).  

 The Box-Pierce or Ljung-Box statistic is used to test the assumption that the 

residuals do not have any outliers or patterns such as an increasing trend, i.e., resembling 

white noise. These statistics examine the null hypothesis that there is independence in a 

given time series and is sometimes known as ‘portmanteau’ tests since they test for a 

group of autocorrelations (40). The Box-Pierce test statistic is 𝑄 = 𝑇 ∑ 𝑟𝑘
2𝑙

𝑘=1 , where 𝑙 is 

the maximum lag being considered, 𝑟𝑘 is the autocorrelation for lag 𝑘, 𝑇 is the number of 

observations for 𝑟𝑘 residuals. Values of 𝑙 tend to be 𝑙 = 10 for non-seasonal data and 𝑙 =

2𝑚 for seasonal data with 𝑚 being the period of seasonality (40). The Ljung-Box test 

tends to be the more accurate test than the Box-Pierce with the test statistic 𝑄∗ =

𝑇(𝑇 + 2) ∑ (𝑇 − 𝑘)−1𝑟𝑘
2𝑙

𝑘=1  where values of 𝑄∗ come from a 𝜒2 distribution with (𝑙 − 𝑃) 

degrees of freedom with 𝑃 being the number of model parameters. Note that for our 

purposes 𝑃 = 0 since the test is calculated from raw data rather than residuals from the 

model (40).  

Another assumption of the AR model is that an AR process can be included in the 

model if and only if the time series is a stationary process (41). In the context of time 

series data, a stationary process describes a stochastic state of the series. This assumption 

is based on the Wold representation theorem, which states that a linear combination of 
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white noise can represent a stationary process. In this case, the mean and variance of the 

series do not change over time and the correlation structure of the series including its lags 

remains the same over time. 

 In an MA model, the values of the univariate time series, 𝑥𝑐𝑡
 depend linearly on 

the current and various past values of a stochastic term 𝜀𝑡 such that 𝜀𝑡 contains some 

information within the model residuals over time. In other words, by modeling the 

relationship between 𝑥𝑐𝑡
 with the error term 𝜀𝑡 and past 𝑟 error terms of the models, an 

MA process can capture time series patterns over time. An MA process with 𝑟-order is 

defined in the following: 

𝑀𝐴(𝑟):   𝑥𝑐𝑡
= 𝜇 + 𝜀𝑡 + ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑟

𝑖=1

 

with 𝑀𝐴(𝑟) denoting an MA process with 𝑟-order, 𝜇 represents the mean of the series, 

𝜀𝑡−𝑟 , … , 𝜀𝑡 are white noise error terms, 𝜃𝑖 the coefficient corresponding to 𝜀𝑡−𝑖, and 𝑟 is 

the number of past error terms that are used in the equation.  

There are two ways that AR models and MA models differ. First, in an 𝐴𝑅(𝑞) 

model, only the 𝜀𝑡 error term is present and not previous error terms to estimate 𝑥𝑐𝑡
. In 

contrast, an 𝑀𝐴(𝑟) model, the error term(s) 𝜀𝑡−𝑟 are factored into the current estimation 

of 𝑥𝑐𝑡
 (40). Additionally, the two models differ in that the AR model, a 𝑥𝑐𝑡

  value affects 

values infinitely far into the future since 𝜀𝑡 affects 𝑥𝑐𝑡
, which affects 𝑥𝑐𝑡+1

, which affects 

𝑥𝑐𝑡+2
, and so on.  In the MA model, the value 𝑥𝑐𝑡

 affects only the 𝑟 subsequent values in 

the series (41).  
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 An ARMA model, combines both AR and MA models to handle more complex 

time series data. For stationary time series, an 𝐴𝑅𝑀𝐴 (𝑞, 𝑟) model is used where 𝑞 

denotes the AR parameters and 𝑟 represents the MA parameters in the following formula: 

𝐴𝑅𝑀𝐴 (𝑞, 𝑟):    𝑥𝑐𝑡
= 𝑐 + ∑ 𝜙𝑖𝑥𝑐𝑡−𝑖

𝑞

𝑖=1

+ ∑ 𝜃𝑖𝜀𝑖−𝑖

𝑟

𝑖=1

+ 𝜀𝑡 

with 𝑥𝑐𝑡
 being the time series, 𝑐 is a constant or drift, 𝜙𝑖 is the coefficient of the 𝑖𝑡ℎ lag 

of the series, 𝑥𝑐𝑡−𝑖
 is the 𝑖𝑡ℎ lag of the series, 𝑞 defines the number of lags to regress 

against 𝑥𝑐𝑡
, 𝜃𝑖 corresponds to the coefficient of 𝜀𝑡−𝑖, 𝑟 is the number of past error terms 

in the model with white noise error terms 𝜀𝑡−𝑟 , … , 𝜀𝑡.  

To fit each 195 mean centered signals separately, appropriate 𝑞 and 𝑟 values for 

the ARMA model were obtained using R’s ‘auto.arima’ function in the ‘forecast’ 

package with the differencing ‘max.d’ set to 0 to allow for only ARMA models to be 

consider. Model selection criteria included selecting the model with the minimal Akaike 

Information Criterion corrected (AICc) given by: 

𝐴𝐼𝐶𝑐 = log(𝜎̂𝑝
2) +

𝑁 + 𝑝

𝑁 − 𝑝 − 2
 

where 𝜎̂𝑝
2 =

𝑆𝑆𝐸(𝑝)

𝑁
 with 𝑝 being the number of parameters in the model, 𝑁 is the sample 

size and 𝑆𝑆𝐸(𝑝) is the residual sum of squares error under the model. In other words, of 

the models used to fit for a single signal, the minimum AICc was the selection criteria 

used. Thus, giving 195 unique ARMA models for the signal dataset. The AICc is a 

modification of AIC for the small ratio of sample size to number of parameters in the 

model (
𝑁

𝑃
) to prevent overfitting (42).  
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Residual Bootstrapping 

The bootstrap of Efron is a powerful nonparametric tool for approximating the 

sampling distribution and variance of statistics based on independently identically 

distributed (iid) observations (43). In residual bootstrapping, a fitted value from a model 

estimate is obtained along with the model residuals. The residuals are then resampled 

with replacement before adding them to the fitted value to create a simulated sample (40). 

This assumes that the residuals are uncorrelated with constant variance meeting the 

bootstrap criteria that the distribution of residuals are 𝑊𝑁(0, 𝜎2). By repeating the 

residual bootstrapping process, we can replace each of the residuals by sampling from the 

collection of residuals to create the new simulated observation (40). 

In this case, we are treating the spectra as time series data, with the assumption 

that the subsequent signal intensity errors will be similar to previous intensities errors in 

the same spectra. It is important to note that each signal has unique fitted values and a 

unique distribution of residuals from the 𝐴𝑅𝑀𝐴 (𝑞, 𝑟) model to be resampled from, i.e., 

the residuals from one signal are not added to fitted values from another signal. These 

fitted values 𝑥̂𝑐𝑡
 from the model estimate with the residuals 𝜀𝑡̂ = 𝑥𝑐𝑡

− 𝑥̂𝑐𝑡
, for 𝑡 =

1, … , 𝑝 can then be used for a residual bootstrapping method generating a simulated 

breath signal. The random resampling with replacement from the distribution of residuals 

𝜀𝑡̂ for 𝑡 = 1, … , 𝑝 created the simulated signals denoted as 𝑥𝑐𝑡
∗ = 𝑥̂𝑐𝑡

+ 𝜀𝑡̂
∗ = 𝑐 +

∑ 𝜙𝑖𝑥𝑐𝑡−𝑖
𝑞
𝑖=1 + ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑟
𝑖=1 + 𝜀𝑡̂

∗ with 𝜀𝑡̂
∗ being the randomly resampled or residual 

bootstrapped sample. The simulated dataset retained the class ratio of the original dataset 

i.e., 2 negative cases for every 1 positive case.  Also, the simulated signals samples were 
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randomly sampled with replacement until multiples of the original dataset (i.e., 195, 380, 

585, 780, and 975 total samples) were obtained for model fitting. 

Neural Networks 

Recently, there has been a revival of the neural network model revolutionized the 

fields of speech recognition (44), computer vision (45), natural language processing (46). 

Neural networks - also referred to as artificial neural networks (ANN) or multilayer 

perceptrons (MLP) – are supervised machine learning models that can represent complex 

nonlinear relationships within input datasets optimizing for classification or regression 

models (47). 

In this case, the MLP model using Scikit-learn library learns a function 𝑓: ℝ𝑝 →

ℝ𝐾 by training on a dataset where 𝑝 is the number of dimensions for the input signal and 

𝐾 is number of classes. The input layer consists of a set of neurons 𝑥1, 𝑥2, … , 𝑥𝑝 which 

represents the input features. Neurons within each of the hidden layers will transform 

these values by a weighted linear sum of the form 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑝𝑥𝑝. After 

assigning these weights, a nonlinear ReLu activation function 𝜎𝑖: ℝ → ℝ, where 𝜎𝑖(𝑥) =

max (0, 𝑥) and 𝑖 is the number of hidden layers transforms these values to then be 

processed by another hidden layer or the terminal neurons. The hidden layer values and 

respective weights in the network are denoted as described above. To compute the 

probability of being in either class, the SoftMax function can be applied to the final 

output layer. This requires that a threshold probability be used to compute the network’s 

error by comparing probability predicted by the network and a specified threshold. The 

network error is then used for a process known as backpropagation to update the network 

weights before the next iteration of training. In this case, 66% is the specified threshold 



23 

 

since the network must perform better than random chance of selecting all samples as 

being a negative case in the 2:1 unbalanced dataset. 

MLP models are capable of learning non-linear models and models in real-time 

such as online learning. The disadvantages of the MLP are that it must have a non-convex 

loss function and if there exists more than one local minimum, then different random 

weight initialization can lead to different validation accuracies. To track the learning rate 

and prevent model overfitting, a modifiable neural network using the open-source 

software library Keras was used. Summarized in Table 3.1 are the hyperparameters of the 

neural network that when tuned can help improve model performance and prevent 

overfitting of the dataset. 
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Hyperparameter Description 

Number of Neurons and Number of 

Hidden Layers 

Adjusted to the solution complexity 

where more complex solutions may 

require more neurons/hidden layers 

Learning rate Adjusts the model in response to the 

estimated error or loss for each time the 

neural network model weights are 

updated 

Regularization Reduces overfitting of the training data 

by penalizing the coefficients contained 

within the weight matrices of the nodes 

Dropout (%) Randomly ignores a percentage of 

neurons during training to prevent 

overfitting (48) 

Callback  Perform actions at various stages of 

training such as penalizations if the 

learner does not improve after a 

specified number of epochs 

Activation Functions

 

Figure 3.3: Sigmoid and ReLU 

Activation Functions 

Helps to introduce nonlinearity if there 

is a nonlinear function such as 

hyperbolic tangent, arctangent, sigmoid, 

and exponential linear weighted. 

Softmax composed of exponential 

functions produces probabilities and 

ReLu functions are commonly used on 

neurons in hidden layers of neural 

networks 

 

Table 3.1: Summary of Neural Network Hyperparameters Tuned with Descriptions 
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Figure 3.4: Example of 2-Hidden Layer Neural Network with Two Output Neurons 

 

 

k-Nearest Neighbor 

 In the k-Nearest Neighbor (𝑘-NN) model, the goal is to predict the label of a class 

for a new point by using the 𝑘 number of neighbors around a certain point using number 

of training samples that are closest in distance to the new point (50). In other words, to 

classify a new or test case, 𝑘-NN computes a majority vote of the 𝑘 nearest neighbors of 

each point nearest to the test case. The test case is assigned the data class that has the 

most representatives of that class. Here, the distance can be any metric measure, but 

typically Euclidean distance is used.  

In contrast to the other models presented here, the neighbors-based classification 

is a type of instance-based learning. It does not attempt to construct a general internal 

model but rather it stores instances of the training data to make a classification of the 

testing data. Note that we cannot use 𝑘 =  1 because if an outlier exists the classification 

will erroneously classify the point as a class. 
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Figure 3.5: 𝑘-Nearest Neighbor Classification Plot of new data point (adapted from 51) 

 

Naïve Bayes 

The Naïve Bayes (NB) classifier is a probabilistic machine learning model which 

applies Bayes’ theorem to obtain the conditional probability that a sample belongs to a 

class given a set of predictors. It is mostly used in sentiment analysis, spam filtering, and 

recommendation systems. Advantages of NB algorithms are that they are fast and easy to 

implement. The disadvantage is that the classifier has the “naïve” assumption such that 

predictors are required to be independent given the class (52). In cases where the 

predictors are dependent, performance is hindered. 

To derive the NB model classification, we begin with Bayes’ theorem which is 

written as: 

Pr(𝐶𝐾|𝒙) =
Pr(𝐶𝐾) Pr(𝒙|𝐶𝐾)

Pr(𝒙)
 

where 𝒙 = (𝑥1,  … ,  𝑥𝑝) is the set of predictors, Pr(𝐶𝐾|𝒙) is the conditional probability 

that an instance is classified as class 𝐶𝐾 for 𝐾 classes given 𝒙, Pr (𝐶𝐾) is the prior 
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probability of observing class 𝐶𝐾, Pr (𝒙|𝐶𝐾) is the probability of having 𝒙 predictors 

given the data is from class 𝐶𝐾, and Pr (𝒙) is the probability of observing the data x with 

the 𝑝 predictors. Since NB assumes that the predictors 𝒙 are independent variables, we 

can substitute 𝒙 = (𝑥1,  … ,  𝑥𝑝) and expand Bayes Theorem to get: 

Pr(𝐶𝐾|𝑥1,  … ,  𝑥𝑝) =
Pr(𝐶𝐾) Pr(𝑥1|𝐶𝐾) Pr(𝑥2|𝐶𝐾) … Pr(𝑥𝑝|𝐶𝐾)

Pr(𝑥1) Pr(𝑥2) … Pr(𝑥𝑝)
 

Here, we notice that the denominator is the same for all entries in the dataset and thus we 

can obtain the following proportionality: 

Pr(𝐶𝐾|𝑥1,  … ,  𝑥𝑝) ∝ Pr(𝐶𝐾) ∏ Pr (𝑥𝑖|𝐶𝐾)

𝑛

𝑖=1

 

To obtain the NB model classification, we must find the class 𝐶𝐾 with the maximum 

probability: 

𝐶𝐾 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝐾
Pr(𝐶𝐾) ∏ Pr(𝑥𝑖|𝐶𝐾)

𝑝

𝑖=1

 

We assume that the distribution of Pr (𝑥𝑖|𝐶𝐾) is Gaussian and therefore implement the 

Gaussian NB algorithm for classification. This means that the likelihood of the features 𝑥 

given 𝐶𝐾 are:  

Pr(𝑥𝑖|𝐶𝐾) =
1

√2𝜋𝜎𝐶𝐾

2

exp [−
(𝑥𝑖 − 𝜇𝐶𝐾

)
2

2𝜎𝐶𝐾

2 ] 

where the parameters 𝜎𝐶𝐾

2  and 𝜇𝐶𝐾
 are estimated using the maximum likelihood 

estimation of the assumed probability distribution. As with NB, the prior probability of 

each class is required to represent the distribution in terms of its mean and standard 

deviation (53). 
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Random Forest 

 Random forest (RF) is a nonparametric supervised learning technique used for 

classification and regression. RF models are built from Decision Trees where the 

Decision Tree classifies the sample based upon the gain in information entropy or gain in 

Gini index. To train the RF model, the technique of bootstrap aggregating, or bagging, is 

applied to several Decision Trees. Here, the training set is bagged repeatedly by selecting 

a random sample with replacement of the training set before fitting the trees to the 

samples. The subset of the data that is not used for training is known as the out of bag 

(OOB) sample. The OOB is used for evaluation of the model’s performance by a cross-

validation method determining an unbiased generalization error (27). The predictions for 

the OOB samples are then made by either averaging the prediction for all the tree in the 

case of regression or taking the majority vote in the case of classification trees. This is a 

strength of the RF model since a single tree is sensitive to noise in the training set and the 

average of many trees is not sensitive to noise if the trees are not correlated (27). Thus, 

due to the bootstrapping procedure, the RF model performs better with decreased 

variance than the Decision Tree model to generate classification predictions. 

Support Vector Machines 

 A Support Vector Machine (SVM) finds a hyperplane which best separates the 

classes of interest by using what are known as support vectors as shown in Figure 3.5. 

These are the data points closest to the hyperplane from both classes and help to form a 

negative and positive hyperplane. A hyperplane is an (𝑛 − 1)-dimensional subset of an 𝑛-

dimensional Euclidean space dividing it into two disconnected parts. The distance from 

the support vectors is known as the margin which the SVM algorithm maximizes to 
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obtain the best decision boundary. This decision boundary is the maximum margin 

hyperplane that is parallel to both the negative and positive hyperplanes.  

 

Figure 3.6: Plot Illustrating a 2D SVM (adapted from 43) 

 

In terms of performance, SVMs achieve high accuracies on smaller cleaner 

datasets in a reasonable amount of time. SVMs can take longer to find the optimal 

hyperplane on larger noisier datasets with overlapping classes (50). Since non-linearly 

separable datasets are difficult to separate using a linear hyperplane, the SVM algorithm 

can utilize the kernel trick (54) to find the best non-linear hyperplane. In Figure 3.6, a 

SVM using a Gaussian radial basis function separates the data obtaining the maximum 

margin for the non-linear separation of two classes. 

 

Figure 3.7: Example of the SVM Kernel Trick applied to 2D dataset (adapted from 43) 
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CHAPTER 4: RESULTS 

In this study, the primary objective was to compare the accuracy from each model 

using the original dataset as well as the simulated dataset generated from the ARMA 

model residual bootstrap. First, we must check the assumption that COVID-19 breath 

signals have different spectra from healthy controls, i.e., patients who test positive for 

COVID-19 differ from those that test negative with respect to their breath signals. In 

Figure 4.1, we see the results from the preliminary investigation using the AG-4000 

device of background corrected exhaled breath signals of these two groups. 

 

 

 

 

 

 

  

  

 

Figure 4.1: Exhaled Breath Signals for SARS-CoV-2 Positive & Negative Subjects 

 

Both low and high wavelength lasers show spectra from SARS-CoV-2 positive patient 

breath samples that differ in intensity at various wavelengths as compared to the SARS-

CoV-2 negative breath sample. Note that these signals are not representative of their 

respective sample classes and are used only for comparison purposes.  
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In Figure 4.2, rtCRD and the National Institute of Standards and Technology 

(NIST) comparable VOC spectra for three VOCs are presented.  

 

Figure 4.2: rtCRD and NIST VOC Spectra of Acetone, Isoprene, and Methanol 

NIST Acetone 

   rtCRD Isoprene  

   rtCRD Methanol 

NIST Isoprene 

NIST Methanol 

rtCRD Acetone 
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Both sources produce peaks at similar wavelengths with overlapping waveforms across 

the mid-IR region. As shown in Figure 4.3, the overlayed plots of Acetone and Methanol 

VOCs and a SARS-CoV-2 positive breath sample show corresponding peaks at similar 

wavelengths suggesting the presence of VOCs. 

 

Figure 4.3: Acetone and Methanol VOC spectra with SARS-CoV-2 Positive Signal 

 

Comparison of Performance Between Lasers 

Using the original 195 samples, a 10-fold cross validation of the five models was 

implemented using the low wavelength laser only, the high wavelength laser only and 

both the high and low wavelength lasers (Table 4.1). Most models performed best when 

using the high wavelength laser only for binary classification. 
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Both High & Low Wavelength Lasers 

 

Low Wavelength Laser Only 

 

High Wavelength Laser Only 

 

 

 

 

 

 

 

Table 4.1: 10-Fold Model Accuracy and Standard Deviation by Laser 

 

For the high wavelength laser, neural network (89.47%) and random forest (90%) 

models achieved the highest performance for different folds of data. The greatest 10-fold 

average accuracy was observed with the neural network (72.82%) model being slightly 

greater than the random forest (72.24%) model. In the neural network model, the standard 

deviation in fold accuracy is the greatest among the models using the high wavelength 

laser only (0.1131%) twice that of dual or other single laser case (0.0635%). Overall, the 

naïve Bayes model performs poorly using both high & low wavelength lasers (47.22%), 

low wavelength laser only data (37.69%), and high wavelength laser only (66.58%). The 

10-fold average accuracy for 𝑘-nearest neighbors (71.74%) and support vector machine 
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models (67.16%) improve slightly when using high wavelength only laser data. Support 

vector machine and neural network models do not perform better than chance 66.67% for 

the datasets that were generated using the low wavelength laser. Note: the remainder of 

the study uses the high wavelength laser data only. 

ARMA Residual Bootstrap Dataset 

Using R’s ‘auto.arima’ with ‘max.d’ set to 0 preventing differencing, an ARMA 

model was fit for each of the 195 sample signals after mean centering the signal by the 

signal’s class mean giving 195 ARMA models.  

 

  

Figure 4.4: Plots of Positive and Negative Signals with Respective Class Means and 

Corresponding Mean Centered Bootstrapped Residuals 
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Figure 4.4 shows the plots of a positive and negative signal with the means from 

both respective classes. Also included in Figure 4.4 are the corresponding plots of the 

mean centered signals with a residual bootstrapped sample. Figure 4.5 shows the 

distribution of residuals for COVID-19 positive (𝑁 = 65 × 6247) and negative cases 

(𝑁 = 130 × 6247) obtained from the ARMA residual bootstrap. The residuals for both 

groups have mean near 0, −1.58 × 10−7 and −1.03 × 10−6 for positive and negative 

bootstrapped residuals, respectively. Ljung-Box tests suggest both residuals are 

consistent white noise with the minimum test statistic for the set positive case signals 

𝜒2 = 44204 (p-value < 2.2 × 10−16) and the set of negative case signals 𝜒2 = 31200 

(p-value < 2.2 × 10−16).  

  

Figure 4.5: Distributions of Positive and Negative Bootstrapped Residual Samples  

 

In Figure 4.6, Principal Component Analysis (PCA) plots show background 

spectra cluster separately from exhaled breath signals and the bootstrapped simulated 

signals. In both plots, points in the PC2 vs PC1 plane do not appear to be linearly 

separatable with multiple potential outliers.   
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Figure 4.6: PCA Plots of Original 195 and Simulated 1000 Samples with Backgrounds 

Figure 4.7 shows the plots of two original unscaled signals and the corresponding 

min-max normalized signals of the high wavelength laser. There are intermittent peaks 

present in the COVID-19 positive patients that appear to be absent in the healthy 

controls. The corresponding min-max normalized signals that are used for modeling 

appear to be noisier at wavelengths above 10,000 nm relative to lower wavelengths. 

   

Figure 4.7: Unscaled and Min-Max Normalized Signal Plots 

Comparison of Model Performance Using Simulated Dataset 

Using the residual bootstrapping method, 100 simulations were generated for the 

following sample sizes: 195, 380. 585, 780, and 975. For each of the 100 simulations, a 

10-fold average accuracy was evaluated for the 5 models as shown in Figure 4.8. The 
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95% confidence intervals are wider for the smaller simulated sample sizes. The simulated 

195 sample size had similar performance as compared to the original 195 samples.  

The random forest model improved the most when increasing the simulated 

sample size followed by k-nearest neighbors, neural network, support vector machine and 

naïve Bayes. For each of the 5 models, 975 simulated sample set achieved the highest 

accuracy. The random forest, k-nearest neighbors, and neural network models improved 

to average accuracy greater than 95% for the 380 simulated sample size and 100% for 

larger sample sizes. For the 380, 585, 780, and 975 sample sizes, the support vector 

machine model attaining accuracy of about 85%, 95%, 99%, and 100%, respectively. 

Naïve Bayes model achieve accuracies slightly below 70% for simulated samples. 

In Figure 4.9, the standard deviation of the 10-fold cross validation accuracy at 

each simulated sample size showed the original 195 samples had greater standard 

deviation than the simulated samples. As the number of simulated sample size increased, 

the random forest, k-nearest neighbors, and neural network models approached a 

minimum with the support sector machine model decreasing more slowly. The naïve 

Bayes model standard deviation decreased slightly with each increase of the simulated 

sample size and achieve a minimum standard deviation of about 0.03 at simulated sample 

size of 975. 
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Figure 4.8: 10-fold Average Accuracy of Original and Simulated Datasets by Model 

 

 

Figure 4.9: Standard Deviation of 10-Fold Accuracy for Original and Simulated 

Datasets by Model 
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Multi-Layer Perception and Neural Network Models Using Scikit-Learn and Keras 

Using the high wavelength data only, the optimal neural network model was 

obtained using the ‘MLPClassifier’ function from the Scikit-learn free software machine 

learning library. This Multi-Layer Perception (MLP) model optimizes the log-loss 

function using stochastic gradient descent. Tuned hyperparameters include a constant 

learning rate of 0.001, maximum iterations or epochs of 1000, and ReLu activation 

functions. This model does not make use of callbacks or dropout layers. The structure of 

the neural network consists of 7 hidden layers with nodes of (200, 200, 200, 200, 200, 

200, 100) for each respective layer. Figure 4.4 shows a caricature of the model.  

 

 

 

 

Figure 4.10: Diagram of MLP used for Binary Classification 

Figure 4.5 shows the use of callback and dropout hyperparameters tuned using the 

Keras library model with corresponding loss and learning curves for the original 195 

samples and 1000 simulated samples. These curves were obtained by a 70:10:20 split 

(training:validation:testing) with mean square error loss and accuracy of the training and 

validation sets at each epoch. The resulting model had an accuracy of 74.36% on the 

testing set for the 195 original dataset and 93.87% on the testing set for the 1000 

simulated dataset.  

Exhaled  

Breath 

Signal  

(6247) 

COVID-19 

Positive & 

Negative 

Probabilities  
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Original 195 Samples 

  
1000 Simulated Samples 

 

Figure 4.11: Diagram of Neural Network with Hyperparameters tuned using Keras; 

Plots of Mean Squared Error and Accuracy vs Epoch with Test Accuracy Original 195 

and 1000 Simulated Samples 

Model hyperparameters 

Batch size: 11 samples 

Learning rate: 0.0012 

L2 regularization: 0.00007 

Dropout: 10% 

Callback: Learning rate 0.9 

reduction after 10 patience 

monitoring loss 

Epochs: 1000/2000 

Hidden Layer 1: 2000 nodes 

Hidden Layer 2: 2000 nodes 

Exhaled  
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Receiver Operating Characteristic curves and 10-fold Average AUC 

 In Figures 4.11 and 4.12, Received Operating Characteristic (ROC) curves show 

the diagnostic ability of the 5 models. The 10-fold average Area Under the Curve (AUC) 

with standard deviation is given in the legend to the right of the ROC plots. The 195 

simulated samples have AUCs for the 5 models of about the same if not better than the 

original 195 samples. In the 380, 585, 780, and 975 simulated sample sizes the ROC-

AUC measure improve with similar to the model accuracies above where random forest 

model improved the most when increasing the simulated sample size followed by k-

nearest neighbors, neural network, support vector machine with naïve Bayes performing 

the worst. 

 

 

Figure 4.12: 10-Fold Average ROC plot with AUC of Original 195 Samples and 195 

Simulated Samples by Model 
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Figure 4.13: 10-Fold Average ROC plots with AUC of Simulated Samples by Model 
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Recursive Feature Elimination Effects on Model Performance 

 Reducing the number of features within the dataset improved 10-fold average 

accuracy as shown in Figure 4.14. In the RFE with re-ranking of the Gini Importance 

scores, there is an initial decrease in average accuracy for the naïve Bayes model before 

increasing with an upward trend. The k-nearest neighbor, random, forest, neural network, 

and support vector machine models tend to increase as the percentage of remaining 

features of the signal are reduced. The neural network performance seems to vary the 

most in terms of accuracy. The standard deviation of the 10-fold accuracy trends 

downwards for most of the models with intermittent peaks for RFE with re-ranking.  

In the RFE without re-ranking, the greatest average accuracy observed at about 

5% remaining features for the support vector machine and random forest models. The 

naïve Bayes model appears to increase steadily. With respect to average accuracy, the 

neural network model varies more in RFE without re-ranking than the RFE with re-

ranking. The standard deviation in accuracy appears to vary the least in the RFE without 

re-ranking.  

For RFE without re-normalization or re-ranking, the neural network performance 

varies substantially more than the other two cases as the features are reduced. The naïve 

Bayes, k-nearest neighbor, random forest, and support vector machine models appear to 

have changed slightly with respect to the RFE without Re-Ranking. The standard 

deviation plot for this RFE shows wide variation in the neural network model with the 

other 4 models behaving similar to what was observed in the RFE without re-ranking 

plots. 
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Figure 4.14: 10-fold Average Accuracy and Standard Deviation vs Percentage of 

Remaining Features by Model 
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Gini Importance Scoring by Wavelength  

The top 25% of the mean of 10-fold average Gini Importance scores were 

obtained after a 10 nm binning process of the wavelengths resulting in 240 features from 

the 195 original signals. In Figure 4.15, the Gini Importance frequency with respect to the 

10 nm wavelengths are shown in histograms (30 bins) with various VOC signals 

overlayed. The regions of the spectrum within the gray histogram suggest Gini 

Importance ranking for COVID-19 classification but do not imply that regions belong to 

a particular class.  

The major peaks of acetone and isoprene in the region of the spectrum occur 

within 9071 nm to 9219 nm and 10,036 nm to 10,185 nm, respectively. These regions are 

not found to be important for classification by Gini Importance. Peaks within 9442 nm to 

10,036 nm region may suggest an association of the VOC methanol and COVID-19 

classification. Ethanol spans regions within the high wavelength laser spectrum that are 

and are not identified as being important for classification. Heptanal and butanal have 

multiple peaks corresponding to the regions identified as being important for 

classification. Acetaldehyde and propanal peaks have some overlap with the regions of 

the spectrum identified by Gini Importance but relatively less than heptanal and butanal. 

The VOC Methane does not have significant absorption intensity in this region of the 

spectrum and is used for comparison purposes only. 

The overlay of the min-max normalized COVID-19 positive and negative signals 

appear to be a combination of some of the VOCs mentioned above with some additional 

noise relative to the NIST VOC signals but do not appear atypical. The selected COVID-
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19 positive signal tends to have greater absorbance intensity that the negative signal at 

most of the regions within the spectrum. 

    

   

  

Figure 4.15: Histogram of 10-fold Average Gini Importance Scores vs Wavelength 

with various VOC Candidates as well as COVID-19 Positive and Negative Signals  
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CHAPTER 5: DISSCUSSION 

 

In conclusion, using the original dataset of patient exhaled breath signals, 

machine learning models were able to classify patients as either a COVID-19 positive or 

negative case with limited accuracy. The neural network, random forest, and k-nearest 

neighbor models had greater 10-fold average accuracy than the naïve Bayes and support 

vector machine models. Improved performance was observed by training the models on 

simulated datasets generated by residual bootstrapping of the mean centered signals from 

the original dataset. ROC curves and AUC metrics showed that the random forest and k-

nearest neighbor models best classified signals as the size of simulated dataset increased. 

RFE results showed that by reducing the number of lower ranking Gini Importance 

features improved model performance of the original dataset. The top 25% of features 

determined by Gini Importance scoring of the exhaled breath signals suggest that regions 

of the spectrum associated with VOCs may contribute to model classification. 

Using PCR test results as the ground truth to distinguish between samples, we can 

clearly see that COVID-19 breath signals differ from the healthy controls. Additionally, 

we obtained comparable results using rtCRD and standard NIST for the spectra of pure 

VOCs suggesting that rtCRD may be a valid method of rapidly capturing the VOC 

signals within breath samples. The initial investigation suggested that the signals 

associated with the VOCs acetone and methanol may be similar to the signal of a SARS-

CoV-2 positive patient breath sample. 

Comparison of models using the original 195 samples showed that the 

performance using the high wavelength laser data for binary classification had greater 10-
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fold accuracy for most models. This may have caused a selection bias since features from 

the lower wavelength laser may have been important for classification but excluded from 

further analysis due to the overall low model performance of this region of the data. 

There is relatively lower standard deviation in the 10-fold accuracy when data from the 

lower wavelength laser is present which may indicate that this data may has more reliable 

performance than the high wavelength laser. Further studies may include both regions of 

the spectrum as there are prominent peaks present at the lower wavelength region such as 

the peak associated with acetone ranging from 8000 nm to 8400 nm and may contribute 

to performance reliability. 

The residual bootstrap results suggest that resampling the residuals from the 

ARMA model created signals that each of the machine learning models were able to learn 

from. The distribution of these resampled residuals for the positive class skew slightly to 

the right whereas the distribution of residuals from the negative class skew slightly to the 

left. This suggests that the ARMA models fitted to the two signals selected may tend to 

under predict the signals from the positive class and over predict signals from the 

negative class. The Ljung-Box tests suggest that residuals from both classes are 

consistent with white noise for each signal. Therefore, we do not assume that there are 

significant biases being introduced in our residual bootstrap method contributing to the 

improved model performance. 

Nonetheless, the residual bootstrap method using the resampled residuals from 

signal samples may not be the best method for generating simulated samples. Another 

time series method to consider might be the moving block bootstrap (MBB) method. The 

MBB resamples data inside overlapping blocks to imitate the autocorrelation in the data 
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(55). This method would retain neighboring observations within blocks of the signal such 

that the dependence structure of the random variables at short lag distances would be 

preserved (56). In this case, there may be fewer instances where the resampled residuals 

of the ARMA model fitted within a block would be added to a fitted value 

uncharacteristic of that region of the spectrum. Whereas with the residual bootstrap 

method, there is no mechanism in place to prevent residuals of distinct regions of the 

signal from being used to generate a signal that may not be observed in nature. 

After performing 100 simulations for each simulated sample size, 95% confidence 

intervals were obtained showing that the 10-fold average accuracy increased as the 

simulated sample size increased. However, the support vector machine lags the random 

forest, k-nearest neighbor, and neural network models with respect to performance. From 

the RFE, we see that reducing the features that are less important by the Gini Feature 

Importance scoring result in an improvement in accuracy. This suggests that there might 

be noise or uninformative features within the signal that contribute to the lower 

performance of the support vector machine model as this model is more sensitive to 

noise.  

Additionally, the naïve Bayes model performs only slightly better than random 

chance of selecting a negative case. Since naïve Bayes treats all absorbance intensities 

independently, it ignores the physical properties associated with the mid-IR wavelengths. 

In other words, regardless of where the signal intensity is on the spectrum the naïve 

Bayes classifier would classify this value of the intensity according to the distribution of 

intensities associated with each class. Thus, naïve Bayes model is a poor classifier since 

there is specificity associated with the peaks and troughs in the spectrum that help to 
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distinguish samples from positive and negative cases. The random chance performance of 

the naïve Bayes model may be a result of the COVID-19 positive signals containing a 

greater concentration of VOCs that contribute to the signals than the healthy controls. 

An RFE study was conducted to better understand which regions of the spectrum 

may be important for classification by the random forest model and to provide some 

model interpretability. In addition to RFE, another technique that could be used to help 

explain model classification is Permutation Feature Importance (PFI). PFI involves 

randomly shuffling the data one feature at a time for the entire dataset and calculating 

how much the performance metric of interest decreases with the greater the change 

suggesting the more important that feature is for that model (31). In future studies, RFE 

and PFI may aid in determining which VOCs contribute to various model classification 

with a larger dataset. 

Additional factors could be included in future studies to account for variability in 

the breath signals as well as improve model performance. The VOCs provided in this 

study is not an exhaustive list of possible compounds. There may be other VOCs that 

have activity within the mid-IR region that may help explain differences between the two 

groups. Also, testing VOC combinations at different concentrations with the rtCRD 

device may help provide insight to how much and which VOCs the patient is exhaling. 

Investigating the effect that time since symptom onset has on VOC production could also 

provide clinicians with useful information pertaining to disease progression. In intensive 

or critical care cases, continuous sampling of patient breath may be a useful indicator to 

signal when a patient’s condition is improving or deteriorating prompting clinicians to 

act. 
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As mentioned above, background correction can be used to reduce the noise 

within the signal samples by normalizing the signals by their background spectra. This 

may aid in better model performance since the noise contributing to the signal intensity 

may be dependent on the molecules present in the air at the time of sampling and are not 

necessarily the same each day in the hospital. Another contributor of noise in the sample 

may be oral hygiene as microorganisms such as bacteria may produce substances 

detected by the device. Undiagnosed or not disclosed conditions such as respiratory 

diseases, COPD, asthma, cancer, sleep apnea or other viral or bacterial infections can also 

affect VOC profiles (57). These conditions were not excluded and could be pursued 

further using a device similar to the one used in this study. 

In future studies, a larger sample size could be used to validate the use of the 

rtCRD device using InspectIR COVID-19 Breathalyzer for comparison. The InspectIR 

COVID-19 Breathalyzer was recently approved by the US Food and Drug Administration 

(FDA) in April 2022 and was validated using over 2400 symptomatic and asymptomatic 

patients. The InspectIR COVID-19 Breathalyzer uses a technique called gas 

chromatography gas mass-spectrometry (GC-MS) to separate and identify chemical 

mixtures and rapidly detect five Volatile Organic Compounds (VOCs) associated with 

SARS-CoV-2 infection in exhaled breath (58). In this case, the InspectIR COVID-19 

Breathalyzer detects VOC returning a presumptive (unconfirmed) positive test result for 

COVID-19 and is then confirmed with a molecular test. The use of this device and the 

rtCRD with clinical data could help provide further insight with respect to rtCRD 

sensitivity and specificity performance measures. 
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Lastly, machine learning models are often difficult to interpret and sometimes 

described as black boxes simply taking inputs and generating outputs (59). As the 

prevalence of machine learning tools rises, it is important for researchers and clinicians 

alike to better understand these models and know what factors contribute to the decision 

process. The intermediate steps in the modeling process may require careful design and 

consultation with subject matter experts such that the models are interpretable. Also, 

whenever possible incorporate a scientific basis for explainability of the machine learning 

model.  

In summary, using a novel method such as the non-invasive rtCRD exhaled breath 

samples spectroscopy device in combination with machine learning may be an effective 

means of quickly screening patients for SARS-CoV-2 viral infections. With the current 

level of understanding of the COVID-19 pathophysiology, the exhaled breath VOC 

pattern may be detectable. However, for the machine learning models to be used for 

classification, the simulation study suggests that there may need to be a larger sample 

size. As indicated by the top 25% of Gini Importance ranking of features, there are 

regions within the spectrum that are associated with numerous VOCs spectra some of 

which have biological plausibility. 
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