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Abstract

This dissertation includes two main topics. The first uses measurement error model-

ing to improve upon an existing method of inferring species trees from gene trees that

were estimated with error. The second involves extending the parametric bootstrap

(PB) approach, which was previously shown to work well for one-and two-way anal-

ysis of variance models with unequal variance and unbalanced data (heteANOVA),

to multi-factor heteANOVA models. An overall framework using PB is presented.
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For each topic, the underlying theory is shown, and simulations and applications

to empirical data are presented, demonstrating improvement over earlier methods.

The proposed species tree inference method shows that species tree inference can be

improved in the presence of gene tree estimation error, and the new method may be

useful for inferring starting trees for other possibly slower methods. The PB methods

developed here provide a viable alternative to transforming data to meet the equal

variance assumption.

vi



Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Measurement Error Modeling Applied to

Phylogenetic Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 PB Approach to ANOVA Models

with Unequal Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Species Tree Inference Using Measurement Error Modeling 8

2.1 Introduction and Literature Review . . . . . . . . . . . . . . . . . . . 8

2.1.1 STEM and Measurement Error Modeling . . . . . . . . . . . . 11

2.1.2 Measurement Error . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Clustering in General Measurement Error Models . . . . . . . 15

2.2 GenX and Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . 16

vii



Contents

2.2.1 Statistical Consistency . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Simulation Procedures . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Application to Empirical Datasets . . . . . . . . . . . . . . . . 48

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 PB Approach to Multi-factor heteANOVA Models 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 General PB Method for ANOVA Models . . . . . . . . . . . . . . . . 60

3.3 Illustration Of PB for Three-Factor ANOVA . . . . . . . . . . . . . . 64

3.3.1 Testing Three-Way Interaction . . . . . . . . . . . . . . . . . . 72

3.3.2 Testing Two-Way Interaction Terms . . . . . . . . . . . . . . 74

3.3.3 Testing Main Effects, No Significant Interaction Terms . . . . 76

3.3.4 Testing One Main Effect in Presence of One Significant Two-

Way Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.5 Simulations for Testing Interaction and Main Effects Terms . . 79

3.4 Multiple Comparison Procedures . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Multiple Comparisons for Main Effects Only . . . . . . . . . . 85

3.4.2 Multiple Comparisons for Two-Way Interaction Term . . . . . 87

viii



Contents

3.4.3 MCP Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Data Analysis Example . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 PB Analogy to Dunnett’s Test 98

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Proposed PB Test and Algorithm . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Proposed PB Test . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.2 PB Algorithm for Comparing Multiple Treatment

Groups with Control . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Evaluation of Type I Error . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Evaluation of Power . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1 Iron Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.2 Elephant Ivory Data . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . 115

5 Conclusions and Future Work 117

5.1 Phylogenetic Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 PB Methods for heteANOVA Data . . . . . . . . . . . . . . . . . . . 118

ix



Contents

A R Code for genX 121

B R Code for PB Algorithms 1 – 6 123

C R Code for Dunnett’s Test PB Algorithm 133

x



List of Figures

2.1 Example Gene Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Example Species Tree Returned by STEM. . . . . . . . . . . . . . . 14

2.3 Scaled RF distances assuming rooted trees from true species trees for

8-taxon trees, 500 nt. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Scaled RF distances assuming rooted trees from true species trees for

8-taxon trees, 1000 nt. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Percent of inferred rooted topology matching true species trees for

8-taxon trees, 500 nt or 1000 nt. . . . . . . . . . . . . . . . . . . . . 34

2.6 Scaled RF distances for species trees inferred by STEM or genX,

assuming rooted trees, from true species trees for 16-taxon trees, 500

nt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Scaled RF distances for species trees inferred by STEM or genX,

assuming rooted trees, from true species trees for 16-taxon trees,

1000 nt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Percent of inferred rooted topologies for STEM or genX matching

true species trees for 16-taxon trees, 500 nt or 1000 nt. . . . . . . . . 37

xi



List of Figures

2.9 Scaled RF distances assuming rooted trees from true species trees for

20-taxon trees, 500 nt. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Scaled RF distances assuming rooted trees from true species trees for

20-taxon trees, 1000 nt. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 Percent of inferred rooted topologies matching true species trees for

20-taxon trees, 500 nt or 1000 nt. . . . . . . . . . . . . . . . . . . . 40

2.12 Percent of inferred rooted topologies for STEM or genX matching

true species trees for 32-taxon trees, 500 nt. . . . . . . . . . . . . . . 41

2.13 Scaled RF distances for species trees inferred by STEM or genX,

assuming rooted trees from true species trees for 32-taxon trees, 500

nt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.14 Frequency of species trees inferred by genX and ASTRAL from 5-

taxon gibbon data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.15 Frequency of species trees inferred by STEM 2.0 from 5-taxon gibbon

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.16 Frequency of species trees inferred by genX and ASTRAL from 8-

taxon gibbon data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.17 Frequency of species trees inferred by STEM 2.0 from 8-taxon gibbon

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Overall Process: Three-Way ANOVA Using Parametric Bootstrap. . 65

3.2 Fitted-Residual Plots, Potato Data. . . . . . . . . . . . . . . . . . . 93

4.1 Verification of Assumptions, Iron Data. . . . . . . . . . . . . . . . . 107

xii



List of Figures

4.2 Fitted-Residual Plots after Transformations, Iron Data. . . . . . . . 108

4.3 δ15N by Region, Elephant Tusk Data. . . . . . . . . . . . . . . . . . 111

4.4 Fitted-Residual Plots Before/After Transformation, Elephant Data. 112

4.5 PB Distribution, Elephant Tusk Data. . . . . . . . . . . . . . . . . . 114

xiii



List of Tables

2.1 Pairwise distances with branch lengths divided by θ. . . . . . . . . . 12

2.2 Pairwise distances with branch lengths divided by θ/2. . . . . . . . . 12

2.3 Summary of Convergence Diagnostics of Bayesian Methods on Sim-

ulated Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Results for GenX vs STEM, 100 trees with eight species: scaled RF

distances from true ST assuming rooted trees; % correct topology. . 43

2.5 Results for Bayes X and Bayes τ , 50 trees with eight species: scaled

RF distances from true ST assuming rooted trees; % correct topology. 44

2.6 Results for GenX vs STEM, 100 trees with 16 species: scaled RF

distances from true ST assuming rooted trees; % correct topology. . 45

2.7 Results for GenX vs STEM, 100 trees with 20 species: scaled RF

distances from true ST assuming rooted trees; % correct topology. . 46

2.8 Results for GenX vs STEM, 100 trees with 32 species: scaled RF

distances from true ST assuming rooted trees; % correct topology. . 47

2.9 Results of Bayesian Methods on 5-Taxon Gibbon Data. . . . . . . . 51

2.10 Results of Bayesian Methods on 8-Taxon Gibbon Data. . . . . . . . 54

xiv



List of Tables

3.1 Simulation Results for Testing ABC Interaction. . . . . . . . . . . . 81

3.2 Simulation Results for Testing BC + ABC Interaction. . . . . . . . . 82

3.3 Simulation Results for Testing Main Effect C and Interactions. . . . 83

3.4 Simulation Results for Testing Main Effect C When AB Interaction

Present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Results of Simulations For Testing Multiple Comparisons for Factor A. 90

3.6 Results of Simulations For Testing Multiple Comparisons for Levels

of AB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Summary Statistics, Potato Data. . . . . . . . . . . . . . . . . . . . 92

4.1 Simulation Results: MCP of Treatment Group Means vs. Control –

Type I Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Simulation Results: MCP of Treatment Group Means vs. Control –

Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Summary Statistics for Iron Data. . . . . . . . . . . . . . . . . . . . 107

4.4 Results from Dunnett’s Test, Iron Data. . . . . . . . . . . . . . . . . 109

4.5 Results from Dunnett’s Test, Box-Cox Iron Data. . . . . . . . . . . . 109

4.6 Results from PB Test, Iron Data. . . . . . . . . . . . . . . . . . . . 109

4.7 Summary Statistics, δ15N, Elephant Tusk Data. . . . . . . . . . . . . 110

4.8 Results from Dunnett’s Test, Elephant Data. . . . . . . . . . . . . . 113

4.9 Results from Dunnett’s Test, Log Elephant Data. . . . . . . . . . . . 113

4.10 Results from PB Test, Elephant Data. . . . . . . . . . . . . . . . . . 113

xv



Chapter 1

Introduction

The topics covered in this work are organized into three main chapters, with the

second chapter pertaining to improvement of a phylogenetic inference method, and

the third and fourth chapters pertaining to a parametric bootstrap (PB) approach to

analysis of variance (ANOVA) models with unequal variances and unbalanced data.

1.1 Measurement Error Modeling Applied to

Phylogenetic Inference

Chapter 2 deals with issues in inferring phylogenetic trees, which depict evolutionary

relationships between species. Species trees show the divergence of species over time

from a common ancestor to several extant species. These can be inferred through

gene trees, which show the coalescence of genes between species moving backward in

time. As described by Maddison (1997), gene trees represent copies of a gene at a

locus that are passed on to more than one offspring; since the gene copy (in general)

has a single ancestral copy, the resulting history is a branching tree. If a gene copy is
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Chapter 1. Introduction

sampled from several species, the gene tree relates these gene copies. A species tree

depicts the pattern of branching of species lineages from reproductive communities

split by speciation and can contain many gene trees. The contained gene trees may

differ from each other and from the species tree, even if the gene trees are known

without error.

Gene trees can be estimated through analysis of DNA sequences; methods for

doing so are discussed, for example by Felsenstein (2004), and implemented in pro-

grams such as dnamlk in the software package PHYLIP (Felsenstein, 2009). However,

there is some error in the estimation of these gene trees (in addition to discordance

between gene trees and species trees due to the coalescent process). There are many

methods which in turn use gene trees to infer species trees.

The focus of this work is improvement upon a method called Global LAteSt

Split (GLASS)/Maximum Tree (MT) (two equivalent methods that were developed

by separate authors (Mossel and Roch, 2010; Liu et al., 2010b)), which uses single-

linkage clustering of minimum pairwise coalescence times between species. The use

of minimum coalescence times is justified because pairwise coalescence times of two

genes from different populations tend to overestimate species divergence times (Mos-

sel and Roch, 2010). Also, the tree returned by these methods contains the maximum

species divergence times that are possible with the assumption that gene split times

predate speciation times. This assumption and related constraints on speciation

times are satisfied by choosing the minimum pairwise coalescent times over loci and

using single linkage clustering (Liu et al., 2010b).

The method is implemented in software such as STEM (Species Tree Estimation

using Maximum likelihood (Kubatko et al., 2009)). This method of species tree

inference performs well and is statistically consistent when inferring a species tree

from known gene trees. Additionally, STEM estimates the maximum likelihood (ML)

species tree from a sample of gene trees, assuming that discord between the observed

2



Chapter 1. Introduction

gene trees and the species tree arises solely from the coalescent process (Kubatko

et al., 2009), and that the population scaled mutation rate θ is the same for each

population (Kubatko et al., 2009; Liu et al., 2010b). Unfortunately, STEM has been

shown to perform relatively poorly when the input is gene trees estimated from

DNA sequences, and sufficient conditions for statistical consistency in this case can

be unrealistic (DeGiorgio and Degnan, 2014). One possible reason for the relatively

poor performance is that branch lengths of zero can occur in ML estimated gene trees

when DNA sequences from two species are identical at a locus. In that case, STEM

2.0 chooses the minimum non-zero distance over loci, thus possibly overestimating

the true species divergence time. This issue, along with differences in the way zeros

are handled by STEM 1.1 and STEM 2.0, are discussed in detail by DeGiorgio and

Degnan (2014). A modification to STEM is proposed here which aims to improve

the method in the presence of gene tree estimation error (GTEE).

Several methods have been developed that attempt to address the various sources

of error in species tree inference, such as gene tree heterogeneity and incomplete

lineage sorting, but a challenge has also been to account for the error in estimating

gene trees from DNA sequences. In this work, we develop a method of species

tree inference that attempts to address this challenge through measurement error

modeling. This method uses an estimated distribution for true gene trees, in which

that distribution is either simulated after estimating its parameters from estimated

gene tree data using method of moments, or obtained through Bayesian inference,

and then realizations of that estimated distribution are used to infer a species tree.

A goal of this measurement error method is to improve species tree inference when

the input is gene trees that are estimated, possibly with error, from DNA sequences.

The method developed here is an application of the method of clustering in gen-

eral measurement error models described by Su et al. (2018). The proposed method

replaces the estimated pairwise coalescence times used by STEM with randomly gen-

3



Chapter 1. Introduction

erated realizations from the estimated distribution of the true pairwise coalescence

times. This distribution is estimated through additive measurement error modeling

or through Bayesian inference. As with STEM, the minimum of these realizations,

or their Bayesian posterior iterates, is taken over all loci for each pairwise distance.

These minimums then form a distance matrix, and single linkage clustering is per-

formed to infer the species tree.

Our simulation studies find that the new methods outperform STEM in terms of

Robinson-Foulds (RF) distance (Robinson and Foulds, 1981) from the true species

tree. The RF distance provides a numerical way to describe the similarity between

the topology of two phylogenetic trees by counting the number of clades that occur

on one tree and not the other, thus two trees with matching topology would have an

RF distance of 0, and higher numbers indicate less similar topologies. The treedist

program in the PHYLIP package was used to calculate RF distances in this study

(Felsenstein, 2009).

When applied to real data, the methods developed here do outperform STEM,

but do not always outperform ASTRAL, another popular method of species tree

inference (Zhang et al., 2018) (ASTRAL does not employ a distance matrix like

STEM does). The Bayesian version of the method developed here requires more

computation time and is prone to convergence issues, but is more accurate than the

additive measurement error model version in some cases. A potential use for the

new method could be to obtain starting trees for other possibly slower methods that

search over tree space for optimal trees.

4



Chapter 1. Introduction

1.2 PB Approach to ANOVA Models

with Unequal Variance

Chapter 3 addresses the issue of unequal variance in analysis of variance models

with unbalanced data (heteANOVA) using a parametric bootstrap (PB) approach.

This involves simulating a null distribution for a test statistic for which a standard

distribution is not known. The issue of the unmet equal variance assumption in

multi-factor ANOVA has been addressed in the literature with several methods,

and parametric bootstrap (PB) has been found in the one-way and two-way cases to

outperform other methods. Krishnamoorthy and Lu (2007) studied the PB procedure

for the one-way heteANOVA model and compared the results to James’ test (James,

1951), Welch’s test (Welch, 1951), and the generalized F-test (Weerahandi, 1995),

and found the PB procedure to be one of the best for controlling the Type I error

rate, particularly for larger numbers of factor levels. Yigit and Gökpınar (2010)

also compared several methods for dealing with one-way heteANOVA models and

found the PB test to work well. Xu et al. (2013) extended the PB test to the

two-way heteANOVA model and compared it with the generalized F-test for two-

way ANOVA models (Ananda and Weerahandi, 1997), and found that the PB test

outperformed the generalized F-test in terms of Type I error when the number of

factorial combinations or treatments increases.

We extend the PB procedures of Krishnamoorthy, Xu and Zhang (Xu et al., 2013;

Krishnamoorthy and Lu, 2007; Zhang, 2015a,b) to models with at least three factors

and illustrate with a three-way ANOVA model with unequal group variances and

unbalanced data. Additionally, an overall framework is given for testing model pa-

rameters using this PB approach, including the PB approach to multiple comparison

procedures (MCP). Pairwise MCP with unequal group sizes and/or variances was

previously developed by Games and Howell (1976) but they note that the procedure

5
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is limited with smaller sample sizes. Tukey’s test was extended to unequal group sizes

by Kramer (1956); this method was later proven by Hayter (1984) to be conservative.

MCP was also previously addressed for one-way and two-way heteANOVA models

by Zhang (2015a,b) using PB methods; here the PB approach to MCP is extended to

at least three factors, incorporating multiple comparison procedures into the overall

framework of testing the models. While caution is warranted in interpreting hypoth-

esis testing conclusions when treatment group variances are unequal, this issue still

comes up in practice, so methods to address it without the need for transformation

of the observations are desirable. Transformation of the data can make interpreta-

tion of the results more complicated, so avoiding this can simplify the process of

analyzing ANOVA data. The PB methods here are analogous to usual multi-factor

ANOVA procedures, with F-tests and Tukey’s MCP (Kutner et al., 2005; Kramer,

1956; Hayter, 1984), replaced by PB procedures. Using simulation, we compare these

methods to F-tests for each step in model selection, as well as to Tukey’s test for

MCP. The results of the simulations indicate that the PB methods outperform F-

tests and Tukey’s test in terms of Type I error when group variances are unequal

and data are unbalanced. An example dataset is analyzed, using both traditional

methods (F-tests and Tukey’s test) and the PB methods, to demonstrate use of the

PB methods and compare them to traditional methods.

Chapter 4 applies the PB approach to a special case of the multiple comparison

procedures. In one-way ANOVA models, it is sometimes of interest to perform simul-

taneous multiple comparisons of treatment groups with a control group, rather than

performing all pairwise comparisons of the groups. Dunnett’s test is used for such

comparisons (Dunnett, 1955). The assumptions of ANOVA and of Dunnett’s test

require that the variance of the outcome of interest is the same for each group. How-

ever, this assumption is not always met in practice even after transformation, and as

noted earlier, transforming the data can make interpreting results more complicated.

In this research, we developed a PB method for comparing multiple treatment group

6
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means against the control group when the constant variance assumption is violated

and data are unbalanced, i.e., a parametric bootstrap analog of Dunnett’s test. The

simulation studies performed here under various settings show that the proposed

method outperforms Dunnett’s test in controlling the Type I error and does not

suffer from loss of power when the treatment group variances are unequal and par-

ticularly with unbalanced data. An example using real data is presented to illustrate

usage of the proposed method.

Each of Chapters 2 – 4 contains a more detailed introduction specific to those

topics. The final chapter summarizes the conclusions made from studying these

methods and discusses potential future areas of study.

7



Chapter 2

Species Tree Inference Using

Measurement Error Modeling

2.1 Introduction and Literature Review

The GLASS/MT (Mossel and Roch, 2010; Liu et al., 2010b) method is one way to

infer species trees from gene trees, and performs well when the input are true gene

trees. As discussed in Mossel and Roch (2010) and Liu et al. (2010b), these methods

estimate species trees from multiple genes and are statistically consistent under the

multispecies coalescent model (MSC) when the input contains correct estimates of

coalescence times. They are also computationally efficient compared to some other

methods. When the gene trees are estimated with sufficient accuracy, GLASS/MT

remains a statistically consistent estimator of the species tree. However, this theoret-

ical advantage is lost when gene trees are estimated with error (Roch and Warnow,

2015). A sufficient condition for the accuracy of estimated gene trees needed to re-

tain statistical consistency of the method is given in Mossel and Roch (2010): that

the absolute differences between the true and estimated coalescence times for all loci

8
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are less than half the shortest branch length in the species tree. Unfortunately, as

shown by DeGiorgio and Degnan (2014), this condition fails to be satisfied with in-

creasing numbers of loci and bounded sequence lengths for gene trees estimated from

DNA sequences using maximum likelihood. It was also shown through simulations

that this method as implemented in STEM (Kubatko et al., 2009) performed rela-

tively poorly compared to other methods (DeGiorgio and Degnan, 2014; Leaché and

Rannala, 2011; Wu, 2012). A review of several challenges to species tree inference,

including gene tree estimation error (GTEE) is given in Mirarab et al. (2021).

Previous efforts have been made to quantify and correct for GTEE in summary

methods (i.e. those that combine information from multiple loci to infer species trees)

other than STEM; to our knowledge similar correction attempts have not been made

for STEM/GLASS though a study of the potential sources of error is described below.

A correction to the bias in the GLASS tree (iGLASS) was derived by Jewett and

Rosenberg (2012), but this addresses the systematic overestimation of the species

divergence time due to interspecific gene coalescences occurring more anciently than

the divergence time under the MSC, rather than attempting to correct for GTEE.

Some examples of these error quantification and error correction studies follow.

One such study by Huang et al. (2010) examines sources of error in species tree

inference: they quantify error from coalesence vs. mutation by inferring species trees

using STEM and minimizing deep coalescence (MDC), with both true and estimated

gene trees as input, and then comparing the differences in Robinson-Foulds distance

from true species trees. In this manner, they could attribute error from true gene

trees to the coalescent process, error from estimated gene trees to both coalescence

and mutation, and the difference to mutation. They found that the error due to

mutation increased with sampling both more individuals and more loci, particularly

with STEM. They note that errors attributed to the coalescent decrease with in-

creased sampling, but discord from mutation persists, possible further illustration of

9
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statistical consistency with correct gene trees but not in the presence of GTEE.

Additionally, Mirarab et al. (2014) looked at statistical binning, a procedure

which groups gene trees that are not highly conflicting into “bins”, concatenates

sequences from each bin into a “supertree” and then applies a summary method of

choice to these supertrees. They noted that it improved another method, Maximum

Pseudolikelihood Estimation of Species Trees (MP-EST) (Liu et al., 2010a) in some

cases, but did not look at this procedure with STEM. MP-EST (not binned) was

found in simulation studies to outperform STEM by DeGiorgio and Degnan (2014).

Malloy and Warnow (2018) consider gene filtering to possibly improve the data

quality of estimated gene trees; that is, removing genes from a dataset based on

criteria such as low bootstrap support. They discuss low phylogenetic signal, which

may result from shorter sequence lengths or low rates of evolution, as possible con-

tributors to low bootstrap support and high GTEE. They did find improvement in

accuracy of several methods by gene filtering for some levels of incomplete lineage

sorting (ILS) and GTEE, but not if the number of remaining genes became too small,

noting that balance is needed between quantity and quality of input gene trees. Mi-

rarab et al. (2014), point out that “restricting loci is problematic for statistically

consistent coalescent-based summary methods, because the conditions under which

they are guaranteed to be accurate (with high probability) require a large enough

random sample of true gene trees; removing loci can violate this condition and po-

tentially bias the analysis.” The idea of shorter sequence lengths contributing to

GTEE is also discussed in Roch et al. (2019).

The aim of the current study is to address the effects of GTEE on the STEM/

GLASS tree through measurement error modeling, to improve its accuracy in practi-

cal application while also providing theoretical support through maintaining statis-

tical consistency. Some of the findings of the above previous studies, such as shorter

sequence length and lower rates of evolution (at least through lower per-site muta-
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tion rates) contributing to GTEE and thus less accurate species tree estimates, are

echoed in our findings.

2.1.1 STEM and Measurement Error Modeling

The GLASS/Maximum tree estimates species trees from multiple loci using the

minimum pairwise species coalescence time among loci, as coalescence times from

gene trees overestimate species divergence times (Mossel and Roch, 2010; Liu et al.,

2010b), and then uses single linkage clustering of those minimums to infer the species

tree. The use of minimum coalescence times is justified as described in Chapter 1

and by the multispecies coalescent (MSC) model, in which times to coalescence from

two genes sampled in different species have a shifted exponential distribution, where

the shift parameter is the unknown species divergence time (Rannala and Yang,

2003). This method is implemented in software such as STEM 2.0 and STEM 1.1

(Kubatko et al., 2009). The simulations performed in this study compare results to

those obtained from STEM 2.0.

As an example of the GLASS/STEM procedure, consider the following two gene

trees, shown in Figure 2.1.

Gene tree 1: ((1 : 0.003, 3 : 0.003) : 0.02, (2 : 0.02, 4 : 0.02) : 0.003)

Gene tree 2: ((4 : 0.004, 1 : 0.004) : 0.01, (3 : 0.009, 2 : 0.009) : 0.005)

For GLASS as implemented in STEM 2.0, these branch lengths are divided by

the population scaled mutation rate θ. For this example, suppose θ = 0.01. Then the

distances are taken to be those shown in Table 2.1. Dividing the branch lengths by

θ/2 converts these lengths from mutation units (the expected number of mutations

per site per generation) to coalescent units (the number of generations per effective

population size Ne), shown in Table 2.2.
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Figure 2.1: Example Gene Trees.

Pair (j, j′) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
Locus 1 2.300 0.300 2.300 2.300 2.000 2.300
Locus 2 1.400 1.400 0.400 0.900 1.400 1.400

Table 2.1: Pairwise distances with branch lengths divided by θ.

Pair (j, j′) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
Locus 1 4.600 0.600 4.600 4.600 4.000 4.600
Locus 2 2.800 2.800 0.800 1.800 2.800 2.800

Table 2.2: Pairwise distances with branch lengths divided by θ/2.
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These can also be shown in distance matrix form, D
(i)
jj′ for locus i and species j:

D
(1)
jj′ =


0.000 4.600 0.600 4.600

0.000 4.600 4.000

0.000 4.600

0.000

 D
(2)
jj′ =


0.000 2.800 2.800 0.800

0.000 1.800 2.800

0.000 2.800

0.000


For GLASS/STEM, the minimum over loci (minimum non-zero distance for

STEM 2.0, see (DeGiorgio and Degnan, 2014) for more discussion of this vs. STEM

1.1) is then taken for each pairwise distance to form a distance matrix of the mini-

mum pairwise distances scaled by θ:

D
(min)
jj′ =


0.00 1.40 0.30 0.40

0.00 0.90 1.40
0.00 1.40

0.00



Single linkage clustering is then applied. In this case, species 1 and 3 have the

shortest distance between them, forming the clade (1:0.3, 3:0.3). The next species

that is closest to either 1 or 3 is species 4. So 4 is then grouped with the (1, 3) clade,

giving ((1:0.3, 3:0.3):0.1, 4:0.4). Then the smallest distance from any of 1, 3 or 4

to 2 is 0.9. So the GLASS tree/MT is (((1:0.3, 3:0.3):0.1, 4:0.4):0.5, 2:0.9), which is

returned by STEM and shown in Figure 2.2.

In order to clarify the steps for implementing and programming the proposed

method, which will be shown in the next section, we present this procedure in a

slightly different way. Note that the pairwise distances (hereafter referred to as W )

divided by θ/2 as above give the distance matrix:
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D
(min)
jj′ =


0.00 2.80 0.60 0.80

0.00 1.80 2.80
0.00 2.80

0.00



Applying single linkage clustering as implemented in the hclust function in R,

consider that Species 1 and 3 are a distance of 0.6 apart, again forming the clade

(1:0.3, 3:0.3). Taking the next smallest distance from this first clade with 1 and 3,

note that Species 4 is a distance of 0.8 from Species 1, so its total distance is 0.8

from the first clade (1,3). This produces (4:0.4, (1:0.3, 3:0.3):0.1). Similarly, Species

2 is a total distance of 1.8 from all three other species. Thus, the tree (2:0.9, (4:0.4,

(1:0.3, 3:0.3):0.1):0.5), shown in Figure 2.2, is obtained as before.

Figure 2.2: Example Species Tree Returned by STEM.

2.1.2 Measurement Error

The classical additive measurement error model is discussed in Carroll et al. (2006).

In this model, X is an unobserved variable, W is an observed surrogate for X, and
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U represents the error, so that W = X +U with X and U independent. This model

assumes that the expected value of U is 0. The application described here can also

employ a multiplicative error model where W = XU , E(U) = 1 and X and U are

independent. A particular distribution for the errors is not necessarily assumed.

2.1.3 Clustering in General Measurement Error Models

The methods proposed in this paper were inspired by the algorithm discussed by Su

et al. (2018), in which values of the unobserved variable X are simulated from an

estimated distribution for them and then clustered. The estimated distribution for

X is based on measurement error analysis. This algorithm was formed to address the

goal of performing the clustering so that in large samples, it reproduces the clusters

that would have been formed had the latent variable actually been observed (Su

et al., 2018) . As noted previously, we consider the classical additive measurement

error model setup as well as the multiplicative error model and Bayesian approaches

discussed in (Carroll et al., 2006) (in particular, see Chapter 2, Chapter 9 and Section

12.1.6.2 ).

The rest of this chapter is organized as follows. In Section 2, the GLASS tree as

implemented by STEM is modified through applying Su, Reedy and Carroll’s method

and a related Bayesian approach. Section 3 describes simulations performed to test

these new methods, with comparison to STEM 2.0, results of those simulations, and

application of the methods to a real dataset. Section 4 includes discussion of the

results, limitations and areas for further research.
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2.2 GenX and Bayesian Methods

In this section, the method of Su et al. (2018) is applied to the problem of clustering

pairwise distances obtained from gene trees estimated with error, when the true gene

trees are not observed. As with the classical additive measurement error model, let

W = X + U , where W are estimated pairwise distances between species (coalescent

times estimated from observed DNA sequences), X are the true pairwise distances

(unobserved coalescence times from true gene trees) and U is error. Assume E(U) = 0

and that X and U are independent, so E(W ) = E(X) and Var(W ) = Var(X) +

Var(U). We also consider, particularly for the Bayesian approach, a multiplicative

error model where W = XU with X and U independent, and E(U) = 1, so again

E(W ) = E(X). For the classical additive measurement error model, one feature is

that Var(W ) > Var(X). This seemed to be true in the simulated data withW÷(θ/2).

Following the MSC model, X is shifted exponential with unknown location parameter

τ , where X and τ are in coalescent units (Rannala and Yang, 2003; DeGiorgio and

Degnan, 2014; Wakeley, 2009). No specific distribution is assumed for U or W ,

except in the Bayesian approach where a sampling distribution is assumed for W .

When E(W ) = E(X) as above, since the rate parameter for X is 1, the sample

mean of the estimated pairwise distances, W , can be used to obtain a Method of

Moments estimator of τ and simulate the true pairwise distances X:

E(W ) = E(W ) = E(X) = τ + 1 =⇒ τ̂ = W − 1; fX(x) = e−(x−τ), x > τ

Because z = (x− τ) ∼ Exp(1), generating random z + τ̂ simulates values of the

true pairwise distances X; hereafter this method will be called genX. A limitation

is that in the simulated data, the assumption of E(U) = 0 for the additive model

or E(U) = 1 for the multiplicative model only appeared to be true for higher values

of θ and longer DNA sequence lengths. However, the genX method seems to per-

form well even when these sample error means are not near 0 (additive model) or 1
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(multiplicative model).

Implementation Procedure

• Calculate all the pairwise distances W ÷ θ/2 = 2W/θ in a set of estimated

gene trees. The estimated branch lengths W are now contained in an n×
(
ns
2

)
matrix, where n is number of loci and ns is number of species.

• Take the mean W − 1 for each set of pairwise distances — in this implemen-

tation, this is the mean of each column of W − 1, giving a τ̂ for each pairwise

distance.

• Create X̃, a matrix the same size as W . Each entry of X̃ is a randomly

generated exponential random variable with rate 1, plus the τ̂ corresponding

to its column.

• Take the minimum of each column of X̃ to form a distance matrix and perform

single linkage clustering (as with STEM) to estimate the species tree.

Returning to the previous example, and taking 2W/θ, τ̂ = W −1 for each column

of the W matrix, which has the same dimensions and entries as Table 2. In this

case, the W matrix is:

Wik =

4.600 0.600 4.600 4.600 4.000 4.600

2.800 2.800 0.800 1.800 2.800 2.800



We then generate a matrix Z of Exp(1) random variables and add the value τ̂ from

the appropriate column to the Z matrix to obtain the matrix X̃. Then X̃ is replacing
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Pair (j, j′) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
Matrix column k 1 2 3 4 5 6

τ̂ 2.7 0.7 1.7 2.2 2.4 2.7

τ̂ = W − 1

the estimated, observed surrogateW with randomly generated observations from the

distribution of the latent variable X.

Zik =

0.755 0.146 0.436 1.230 0.957 1.391

1.182 0.140 2.895 0.540 0.147 0.762



X̃ik =

3.455 0.846 2.136 3.430 3.357 4.091

3.882 0.840 4.595 2.740 2.547 3.462



As with the GLASS/STEM method, a distance matrix is formed from the mini-

mums for each pair in the X̃ matrix.

D
(min)
jj′ =


0.000 3.455 0.840 2.136

0.000 2.740 2.547

0.000 3.462

0.000


Here Species 1 and 3 are closest, with a distance of 0.84 apart, giving the clade

(1:0.42, 3:0.42), followed by Species 4 being 2.136 away from the first clade (1,3), giv-

ing (4:1.068, (1:0.42, 3:0.42): 0.648), and then the final smallest distance for Species 2

is 2.547. Thus, (2:1.274, (4:1.068, (1:0.42, 3:0.42):0.648):0.206) is the inferred species
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tree. In this case the genX tree happens to have the same topology as the STEM

tree.

Code for the procedure in R (R Core Team, 2021) using the packages ape (Paradis

and Schliep, 2019) and gdata (Warnes et al., 2017) is shown in Appendix A.

2.2.1 Statistical Consistency

As discussed in Liu et al. (2010b), the GLASS/Maximum Tree, with input of esti-

mated gene trees, is a consistent estimator of the species tree when the estimates of

the gene trees are consistent. The following argument demonstrates that the genX

procedure also consistently estimates the species tree when E(W) = E(X).

To illustrate this, we will show that min
i
X̃i

P→ min
i
Xi, where i is the index for

loci, i.e. that lim
n→∞

P (|X̃(1)−X(1)| ≥ ε) = 0, where n is the number of loci. Note that

X̃ has the same distribution as Z̃ + τ̂ where Z̃ ∼ Exp(1) and τ̂ = W − 1. For this

proof, Z̃ indicates randomly generated values from an Exp(1) distribution as in the

implementation procedure described above, and Z represents the Exp(1) portion of

X = Z + τ from the true gene trees. By the Glivenko-Cantelli theorem as discussed

in Su et al. (2018), the empirical distribution function converges uniformly almost

surely to the true distribution function (Ferguson, 1996), so Z̃(1)
P→ Z(1), and

lim
n→∞

P (|X̃(1) −X(1)| ≥ ε) = lim
n→∞

P (|Z̃(1) + τ̂ −X(1)| ≥ ε)

= lim
n→∞

P (|Z̃(1) + τ̂ − (Z(1) + τ)| ≥ ε)

= lim
n→∞

P (|τ̂ − τ | ≥ ε)

= lim
n→∞

P (|W − 1− τ | ≥ ε).

The last statement applies to both the additive and multiplicative model as both

assume E(W ) = E(X). The remaining argument differs slightly for the two mod-
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els, so the error U is denoted as Ua under the additive model and Um under the

multiplicative model.

For the additive model,

lim
n→∞

P (|W − 1− τ | ≥ ε) = lim
n→∞

P (|X + Ua − 1− τ | ≥ ε)

= lim
n→∞

P (|Z + τ + Ua − 1− τ | ≥ ε).

By the Weak Law of Large Numbers as shown in e.g. (Casella and Berger, 2002),

U
P→ 0 under the additive model, and Z

P→ 1. By Theorem 2.1.3 in Lehman (1999),

Z + U converges in probability to 1 under the additive model.

For the multiplicative model,

lim
n→∞

P (|W − 1− τ | ≥ ε) = lim
n→∞

P (|X Um − 1− τ | ≥ ε)

= lim
n→∞

P (|(Z + τ)Um − 1− τ | ≥ ε).

By the Weak Law of Large Numbers as shown in e.g. (Casella and Berger, 2002),

U
P→ 1 for the multiplicative model, and Z

P→ 1. By Theorem 2.1.3 in Lehman (1999),

Z U and τU converge in probability to 1 and τ respectively under the multiplicative

model. Thus,

lim
n→∞

P (|Z + τ + Ua − 1− τ | ≥ ε) = lim
n→∞

P (|(Z + τ)Um − 1− τ | ≥ ε) = 0,

and min
i
X̃i

P→ min
i
Xi. So genX is a consistent estimator of the species tree when

E(Um) = 1 or E(Ua) = 0.

In simulated data, this assumption of E(Um) = 1 or E(Ua) = 0 only appeared to

be approximately true for large θ and longer sequence lengths. However, the simula-

tion results discussed in Section 3.2 show that the genX method still outperformed

STEM even for smaller θ and shorter sequence lengths.

20



Chapter 2. Species Tree Inference Using Measurement Error Modeling

2.2.2 Bayesian Approach

Recall that the multiplicative measurement error model assumes W = XU and

E(U) = 1, with X and U independent. If we again assume that (X − τ) ∼ Exp(1),

and assume that W |X follows a gamma distribution with mean X, the Bayesian

model is a natural approach (Carroll et al., 2006). In this case, rather than ran-

domly generating realizations of X̃ from an estimated distribution, the estimated

distribution for X is the set of Bayesian posterior iterates of X. Consider the hier-

archical model:

W |X ∼ Gamma(α, β)

α = Xβ, so that E[W |X] = X

X = Z + τ

Z ∼ Exp(1)

Using the Bayesian hierarchical model above, one can infer a species tree from a set

of estimated gene trees by fitting the model for each pairwise distance, and then

taking either the mean of the posterior distribution for τ or the minimum of the

posterior distribution for X over all loci. As with STEM and genX, these values

form a distance matrix consisting of pairwise distances, and single-linkage clustering

is applied to infer a species tree. Here this method is implemented using JAGS/rjags

software (Plummer, 2003, 2021).

To elicit a prior for τ in the above model, a total of 100 species trees were

simulated using the sim.bd.taxa function from the R package TreeSim (Stadler,

2019; R Core Team, 2021), with the speciation rate λ = 1 and five different tree

sizes: 4, 8, 16, 22 or 32 species, 20 trees each. The extinction rate was kept at 0.

A simulated distribution for τ was then obtained by calculating pairwise distances

between all species in each tree. Then, similarly to methods of eliciting a normal

prior used in Christensen et al. (2011), we used the mean of this distribution as the
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mean of a normal prior, and then took the 95th percentile of the distribution to

solve for a standard deviation, i.e. set (τ.95 − τ)/σ = 1.645. This procedure yielded

a Normal(2, 1) prior for τ , which was truncated at 0.

To elicit a prior for β in the above model, a distribution for W |X was generated

by simulating true and estimated gene trees from true species trees simulated with

TreeSim as above. These were rooted with an outgroup and made ultrametric. True

gene trees were simulated from the species trees using Hybrid-Lambda (Zhu et al.,

2015), and sequences were simulated with Seq-Gen (Rambut and Grassly, 1997)

under the F84 substitution model with transition transversion (TS/TV) ratio of 4.6

and base frequencies of 0.3, 0.2, 0.2 and 0.3 for A, C, G and T respectively. Then gene

trees were estimated from the sequence data using the dnamlk program in PHYLIP

(Felsenstein, 2009), with the TS/TV ratio and set of frequencies above specified in

the dnamlk settings. Note that dnamlk was used so that the estimated gene trees

satisfy the molecular clock, as this is an assumption for STEM. The substitution

model settings were chosen to be similar to those in DeGiorgio and Degnan (2014).

We then removed the outgroup from the estimated gene trees and obtained pairwise

distances between species (as before, pairwise distances are denoted by X from true

gene trees and by W from estimated gene trees).

For this purpose, 20-taxon trees were simulated with θ = 0.001, sequence length

of 500 nucleotides, and 500, 1000, 1500 or 2000 loci. We also included values for θ of

0.005 and 0.01 for 500 loci, but included more data with the lower value of θ to elicit

this prior because the error Um tended to be larger for smaller values of θ. Separate

data were purposefully used to elicit the priors and then to infer trees and check the

accuracy of the Bayesian approach.

Values of X were taken corresponding to the percentiles 0.05, 0.25, 0.5, 0.75, 0.95

of its distribution and to its mean, and then the distribution of W found for those

fixed values ofX (X within 0.001 of each of these percentiles). Note that Var[W |X] =
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X/β in the Gamma(Xβ, β) model, so an estimate of β can be calculated from the

sample variance of W for a given X. In this manner, a simulated distribution for β

was obtained and the above method again used to elicit a normal prior, obtaining

β ∼ Normal(1.9, 3.82) and truncating at 0.

To help develop and initially test the Bayesian version, previously simulated data

from 100 species trees with eight taxa were used; these had been simulated using

TreeSim with λ = 1 and extinction rate 0 as above. From those, there were 50

true and estimated gene trees for each species tree, which were simulated using

Hybrid-Lambda, Seq-Gen and the PHYLIP program dnamlk, with values of 0.003,

0.004, 0.006, 0.007 and 0.008 for the population-scaled mutation rate θ, and sequence

lengths of 200, 500, and 1000 nucleotides. The smaller number of loci (50) made

these data more convenient for testing the Bayesian method since it requires more

computation time. The gene trees and DNA sequences were simulated with the

same substitution model settings described above, and the values for θ and sequence

lengths were chosen arbitrarily to represent a range between 0.001 and 0.01 for θ and

a range between 200 and 1000 nt for the sequence length.

Convergence was assessed by examining trace plots and considering the con-

vergence diagnostic R̂ as calculated by the gelman.diag function in the rjags R

package (Plummer, 2021, 2003). According to the JAGS documentation, R̂ < 1.1

is one indicator of convergence. Since this Bayesian approach can involve fitting a

large number of models (
(
ns
2

)
for each species tree inferred, where ns is the number of

taxa), an automated method for checking convergence was desirable, but as noted,

we also examined trace plots for the parameters, particularly for those with R̂ ≥ 1.1.

Some convergence issues were noted for τ in terms of R̂, especially with larger θ

and longer sequence length, but trace plots for τ were usually acceptable, in that no

appreciable difference was seen between these plots and those corresponding to R̂

values below 1.1, for slightly high values (up to 1.19) of R̂. The set with θ = 0.007
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and sequence length of 1000 nt had the most convergence issues for τ (8/2800 models

had R̂ ≥ 1.1), so for this set, the models were re-run with 40000 iterations and then

no values of R̂ were 1.1 or greater.

Neither X nor β showed convergence issues in these models for any values of θ

or sequence length, even with only 10000 iterations.

Sensitivity Analysis for Prior on τ

Because a wide range of species divergence times can be observed in real data, a

sensitivity analysis was performed to determine whether the posterior estimates of

τ and X would be strongly influenced by the prior for τ . We elicited an additional

prior for τ by simulating a total of 300 species trees, again using the sim.bd.taxa

function. In an attempt to capture the possible wide range of τ , three different

settings were used for the speciation rate λ: 0.1, 0.5 and 1, with five different tree

sizes: 4, 8, 16, 22 or 32 species, and 20 trees were simulated for each combination

of these settings. The extinction rate was again kept at 0. Following the same

procedure as above, a Normal(9, 142) prior for τ was obtained and truncated at 0.

The 100 species trees were then inferred from 50 loci each for two sets with lower and

higher settings of θ and sequence length (0.003 and 200 nt for one set, and 0.007 and

1000 nt for the other set). These two sets were chosen from those described above

to represent the least and most potential convergence issues, to help determine if

the larger variance would adversely affect convergence. These models were used to

calculate the difference between the means of the posterior distributions of τ from

each prior. Inferring 100 species trees with eight taxa gave 2800 models from which

to compare means of posterior iterates. In the same manner, the minimums of the

posterior distributions of X were compared for each model.

For these datasets, the posterior distribution of X was not sensitive to the choice
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of prior for τ , in that the average difference in minimums (smaller prior - larger

prior) was −0.01 for the smaller θ and sequence length set and 0.001 for the larger

θ and sequence length set. Only about 0.5% had a difference greater in magnitude

than 0.5 and none with magnitude greater than 1 for the smaller θ/sequence length

set, and the largest absolute difference for the set with larger θ/sequence length was

0.407. For the posterior distribution of τ , some sensitivity was noted for smaller

values of θ and shorter sequence lengths, in that about 25.6% of the models had a

difference greater in magnitude than 1, though the average difference was −0.675.

For the larger θ and sequence length set, the average difference was 0.047, with only

2.9% having a difference greater than 0.5 in magnitude and 0.6% having a difference

greater than 1 in magnitude. As expected, the prior on τ with larger variance did

result in more convergence issues. For the dataset with smaller θ and sequence

length, using the wider prior resulted in 33/2800 models with convergence issues for

τ , and 36/2800 with convergence issues for X, with R̂ up to 1.357 for τ and 1.359 for

X. Trace plots for these showed a small part of one chain diverging from the other

and then coming back to converge with the other chain. For the dataset with larger

θ and sequence length, no convergence issues for X or β were noted with the wider

prior, but 26/2800 were noted for τ , with R̂ up to 1.246. For this model, the trace

plot was not noticeably worse than for those with R̂ closer to or below 1.1. Another

run with 40000 iterations and the wider prior on the set with θ = 0.007 and sequence

length of 1000 showed no convergence issues, with R̂ less than 1.1 for all models.

For both of these datasets, the mean Robinson-Foulds (RF) distance between

the 100 trees inferred and their true species trees, calculated using the treedist

program in PHYLIP and scaled by max RF of 2ns − 4 where ns is the number of

species, was very close to that obtained with the narrower prior despite the increase

in potential convergence issues. With 10000 iterations and the narrower prior, the

mean scaled RF distances for the set with smaller θ and sequence length were 0.352

and 0.335, for clustering min(X) and mean(τ) respectively, compared to 0.343 for
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both min(X) and mean(τ) for 10000 iterations with the wider prior. For the set with

larger θ and sequence length, these values were 0.175 and 0.25 (wider prior) vs 0.178

and 0.247 (narrow prior).

As the sensitivity to the prior was not severe, particularly for X, we elected to

continue with the Normal(9, 142) prior on τ for comparison to STEM and genX,

since it may more closely reflect the values seen in practice. Because more potential

convergence issues were noted with the wider prior, the higher number of iterations

(40000) were used for subsequent comparisons.

2.3 Simulations and Results

2.3.1 Simulation Procedures

One hundred species trees with 8, 16, 20 or 32 taxa were randomly generated us-

ing the sim.bd.taxa function from the R package TreeSim (Stadler, 2019; R Core

Team, 2021) with speciation rate λ = 1. From each of these species trees, using

Hybrid-Lambda, Seq-Gen and dnamlk with substitution model settings as described

in Section 2.2, we generated 250, 500 or 1000 estimated gene trees for each com-

bination of settings with θ of 0.001, 0.005, or 0.01 and sequence lengths of 500 or

1000 nucleotides. Due to computation time for simulating gene trees, only sequence

lengths of 500 nucleotides were simulated for the 32-taxon trees.

Each set of estimated gene trees was then used to infer the species trees using the

measurement error modified version of STEM (genX) and STEM 2.0 for comparison.

For the Bayesian methods, the species trees were inferred for fewer tree sizes and

simulation settings as described below due to increased computation time. The

inferred trees were compared using the treedist program in PHYLIP, in terms of

the scaled RF distance from the true species tree and percent of topologies matching
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those of the true species trees.

Since the Bayesian methods developed here require considerably more computa-

tion time than GenX or STEM, only the first 50 out of 100 species trees were inferred,

using the same simulated gene trees as for genX and STEM 2.0, and only for trees

with eight or 20 taxa. Additionally, we only used the settings of 250 or 1000 loci and

θ of 0.001 or 0.01 for the eight-taxon trees but used both sequence length settings of

500 and 1000 nt. For the 20-taxon trees, only settings of 250 loci, sequence length

of 500 nt, and the two θ values of 0.001 or 0.01 were used. The simulation settings

used for the Bayesian methods are listed in Table 2.3. Convergence was first checked

using the Gelman diagnostic criteria R̂, and trace plots were checked for trees and

models with R̂ ≥ 1.1. For the 8-taxon trees, with cases where less than 20 models

with R̂ ≥ 1.1 were noted, trace plots were checked for all such models; otherwise

trace plots were checked for the models with the three greatest values of R̂. This was

done for the simulations due to the number of models fit for the simulation; e.g. for

inferring a tree with eight species, the Bayesian method here fits
(

8
2

)
= 28 models for

each tree inferred, so checking plots for all 1400 models fit for a simulation setting

would be impractical. The 20-taxon trees were inferred in batches of 10 trees for the

Bayesian methods, so in this case the trace plots for the highest three R̂ values from

each batch (1900 models, i.e. 10 ×
(

20
2

)
) were checked against a randomly chosen

model from the same batch with R̂ < 1.1.

In practice, at least for smaller trees, it may be preferable to first check con-

vergence using more than one chain, determine the sufficient number of iterations

needed to achieve convergence, and then re-running with one chain to avoid discard-

ing data, thus obtaining a more precise estimate. As discussed earlier, when initially

testing and developing the Bayesian method, some convergence issues were noted

for τ when only 10000 iterations were performed, but not when the iterations were

increased to 40000. Thus, all results for the Bayesian methods in the next section
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used 40000 iterations and a burn-in of 4000 iterations unless otherwise noted.

2.3.2 Results

The results of the simulations are shown in Figures 2.3 – 2.13 and Tables 2.3 –

2.8. For Bayesian methods on 8-taxon trees, results shown in tables and figures are

out of 50 species trees; for genX and STEM, results are out of 100 species trees.

For the Bayesian methods on 20-taxon trees, results are briefly described in Section

3.2.2 since only limited settings were simulated for those trees. “Bayes X” refers to

inferring a tree based on clustering the minimums of the posterior distributions of

X, while “Bayes τ” refers to inferring a tree based on clustering the means of the

posterior distributions of τ . The simulation settings that were used for the Bayesian

methods are listed in Table 2.3 along with a summary of convergence assessment for

the Bayesian models for those settings.

28



Chapter 2. Species Tree Inference Using Measurement Error Modeling

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

250 Loci, θ = 0.001

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

Bayes τ Bayes X genX STEM genX STEM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 Loci, θ = 0.001

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1000 Loci, θ = 0.001

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

Bayes τ Bayes X genX STEM

genX STEM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

250 Loci, θ = 0.005

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

genX STEM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 Loci, θ = 0.005

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

genX STEM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1000 Loci, θ = 0.005

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

250 Loci, θ = 0.01

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

Bayes τ Bayes X genX STEM genX STEM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 Loci, θ = 0.01

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1000 Loci, θ = 0.01

Method

S
ca

le
d 

R
F

 D
is

ta
nc

e

Bayes τ Bayes X genX STEM

Figure 2.3: Scaled RF distances assuming rooted trees from true species trees for
8-taxon trees, 500 nt.
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Figure 2.4: Scaled RF distances assuming rooted trees from true species trees for
8-taxon trees, 1000 nt.
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Convergence of Bayesian Methods, 8-Taxon Trees

For 250 loci, no convergence issues were noted with θ = 0.001 and 500 nt. For

θ = 0.01 and 500 nt, two models had R̂ of 1.11 and 1.15 for τ , but trace plots were

examined for these models and found to be acceptable. For θ = 0.01 and 1000 nt,

one model had R̂ of 1.11, but again the trace plot was examined and found to be

acceptable.

Similarly, for 1000 loci, with θ = 0.001 and 500 nt, 13/1400 models were noted

to have R̂ ≥ 1.1 with range 1.1 to 1.21 for τ , and no convergence issues with X or β.

Trace plots were checked for these and found to be acceptable, with no appreciable

difference from an arbitrarily chosen trace plot with R̂ of 1.01 from this set of models.

For 1000 loci with θ = 0.001 and 1000 nt, 11/1400 models had R̂ ≥ 1.1 with range 1.1

to 1.24; again the related trace plots appeared to be acceptable and not noticeably

different from one with R̂ of 1.04.

For 1000 loci with θ = 0.01 and 500 nt, 113/1400 models were noted to have

R̂ ≥ 1.1, with range 1.1 to 1.51 for τ and no convergence issues with X or β. Trace

plots were checked for the three models with the highest R̂ values (1.35, 1.41 and

1.51) and compared to that of an arbitrarily chosen model with R̂ of 1.01. The plot

corresponding to the highest R̂ in this case was not noticeably worse, but the two

trace plots corresponding to R̂ = 1.35 and R̂ = 1.41 did show some separation of the

two chains.

For 1000 loci with θ = 0.01 and 1000 nt, 133/1400 models were noted to R̂ ≥ 1.1,

with range 1.1 to 1.54 for τ and no convergence issues with X or β. Trace plots were

checked for the three models with the highest R̂ values (1.39, 1.41 and 1.54) and

compared to that of a randomly chosen model with R̂ of 1.07. These did appear to

show more separation of the two chains compared to the model with lower R̂, but not

severely. These results are summarized in Table 2.3 along with those for 20-taxon

trees.

31



Chapter 2. Species Tree Inference Using Measurement Error Modeling

Results and Convergence of Bayesian Methods, 20-Taxon Trees

For 250 loci, no convergence issues were noted with θ = 0.001 and 500 nt. For 250

loci with θ = 0.01 and 500 nt, there were 326/9500 models (
(

20
2

)
= 190 models for

each of 50 trees inferred) which had values of R̂ ranging from 1.1 to 1.402. The

trace plots visualized for the highest values of R̂ were again compared to those for

randomly chosen models with R̂ < 1.1 and did not appear noticeably worse in terms

of separation of the two chains. These results are summarized in Table 2.3 along

with those for 8-taxon trees.

For θ = 0.001, Bayes X had a scaled RF range of 0 to 0.5 with mean of 0.191 and

2% correct topology, where Bayes τ had range of (0, 0.444), mean of 0.172 and 4%

correct topology. This is an improvement over STEM but not as good as genX for

this setting.

For θ = 0.01, Bayes X and Bayes τ both had a scaled RF range of 0 to 0.333

with mean of 0.074 and 0.107, respectively, and 34% and 22% correct topology,

respectively. This is again an improvement over STEM, and comparable to or better

than genX, which had range of (0, 0.278), mean of 0.089, and 22% correct topology

for this setting.
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n Loci θ Seq. Length Max R̂ Models w/R̂ ≥ 1.1
8 250 0.001 500 < 1.1 0/1400
8 250 0.01 500 1.15 2/1400
8 250 0.001 1000 < 1.1 0/1400
8 250 0.01 1000 1.11 1/1400
8 1000 0.001 500 1.21 13/1400
8 1000 0.01 500 1.51 113/1400
8 1000 0.001 1000 1.24 11/1400
8 1000 0.01 1000 1.54 133/1400
20 250 0.001 500 < 1.1 0/9500
20 250 0.01 500 1.40 326/9500

Table 2.3: Summary of Convergence Diagnostics of Bayesian Methods on Simulated
Trees.

In these simulations, most trace plots for models with R̂ ≥ 1.1 for the parameter τ were

not appreciably different in appearance from those with R̂ < 1.1. The value n in the table

refers to the number of taxa. Simulation settings for the Bayesian methods were limited

to those above due to longer computation time.
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Figure 2.5: Percent of inferred rooted topology matching true species trees for 8-
taxon trees, 500 nt or 1000 nt.
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Figure 2.6: Scaled RF distances for species trees inferred by STEM or genX, assuming
rooted trees, from true species trees for 16-taxon trees, 500 nt.
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Figure 2.7: Scaled RF distances for species trees inferred by STEM or genX, assuming
rooted trees, from true species trees for 16-taxon trees, 1000 nt.
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Figure 2.8: Percent of inferred rooted topologies for STEM or genX matching true
species trees for 16-taxon trees, 500 nt or 1000 nt.
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Figure 2.9: Scaled RF distances assuming rooted trees from true species trees for
20-taxon trees, 500 nt.
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Figure 2.10: Scaled RF distances assuming rooted trees from true species trees for
20-taxon trees, 1000 nt.
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Figure 2.11: Percent of inferred rooted topologies matching true species trees for
20-taxon trees, 500 nt or 1000 nt.
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Figure 2.12: Percent of inferred rooted topologies for STEM or genX matching true
species trees for 32-taxon trees, 500 nt.
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Figure 2.13: Scaled RF distances for species trees inferred by STEM or genX, as-
suming rooted trees from true species trees for 32-taxon trees, 500 nt.
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Eight Taxa - GenX and STEM 2.0

Method nLoci θ seqL Min. RF Max. RF Mean RF %Correct
GenX 250 0.001 500 0.000 0.500 0.192 19
STEM 250 0.001 500 0.167 1.000 0.875 0
GenX 500 0.001 500 0.000 0.500 0.132 41
STEM 500 0.001 500 0.333 1.000 0.880 0
GenX 1000 0.001 500 0.000 0.333 0.098 42
STEM 1000 0.001 500 0.333 1.000 0.855 0

GenX 250 0.005 500 0.000 0.500 0.123 41
STEM 250 0.005 500 0.000 1.000 0.575 1
GenX 500 0.005 500 0.000 0.333 0.088 51
STEM 500 0.005 500 0.000 1.000 0.560 1
GenX 1000 0.005 500 0.000 0.333 0.055 69
STEM 1000 0.005 500 0.000 1.000 0.572 1

GenX 250 0.010 500 0.000 0.333 0.137 35
STEM 250 0.010 500 0.000 1.000 0.405 6
GenX 500 0.010 500 0.000 0.333 0.093 50
STEM 500 0.010 500 0.000 0.833 0.393 3
GenX 1000 0.010 500 0.000 0.333 0.067 62
STEM 1000 0.010 500 0.000 0.833 0.375 6

GenX 250 0.001 1000 0.000 0.500 0.152 32
STEM 250 0.001 1000 0.167 1.000 0.778 0
GenX 500 0.001 1000 0.000 0.333 0.103 48
STEM 500 0.001 1000 0.333 1.000 0.765 0
GenX 1000 0.001 1000 0.000 0.333 0.090 53
STEM 1000 0.001 1000 0.167 1.000 0.772 0

GenX 250 0.005 1000 0.000 0.333 0.127 39
STEM 250 0.005 1000 0.000 1.000 0.378 9
GenX 500 0.005 1000 0.000 0.333 0.108 44
STEM 500 0.005 1000 0.000 1.000 0.392 3
GenX 1000 0.005 1000 0.000 0.333 0.075 56
STEM 1000 0.005 1000 0.000 1.000 0.375 5

GenX 250 0.010 1000 0.000 0.500 0.122 44
STEM 250 0.010 1000 0.000 0.667 0.268 12
GenX 500 0.010 1000 0.000 0.333 0.098 49
STEM 500 0.010 1000 0.000 0.833 0.222 21
GenX 1000 0.010 1000 0.000 0.333 0.060 65
STEM 1000 0.010 1000 0.000 0.667 0.205 23

Table 2.4: Results for GenX vs STEM, 100 trees with eight species: scaled RF
distances from true ST assuming rooted trees; % correct topology.

43



Chapter 2. Species Tree Inference Using Measurement Error Modeling

Eight Taxa - Bayes X and Bayes τ

Method nLoci θ seqL Min. RF Max. RF Mean RF %Correct
Bayes X 250 0.001 500 0.000 0.500 0.227 16
Bayes τ 250 0.001 500 0.000 0.667 0.213 14
Bayes X 1000 0.001 500 0.000 0.333 0.097 44
Bayes τ 1000 0.001 500 0.000 0.333 0.107 42

Bayes X 250 0.010 500 0.000 0.333 0.123 44
Bayes τ 250 0.010 500 0.000 0.333 0.150 34
Bayes X 1000 0.010 500 0.000 0.167 0.050 70
Bayes τ 1000 0.010 500 0.000 0.333 0.083 60

Bayes X 250 0.001 1000 0.000 0.500 0.153 38
Bayes τ 250 0.001 1000 0.000 0.500 0.167 26
Bayes X 1000 0.001 1000 0.000 0.333 0.100 48
Bayes τ 1000 0.001 1000 0.000 0.333 0.097 46

Bayes X 250 0.010 1000 0.000 0.333 0.087 58
Bayes τ 250 0.010 1000 0.000 0.333 0.120 46
Bayes X 1000 0.010 1000 0.000 0.167 0.053 68
Bayes τ 1000 0.010 1000 0.000 0.333 0.080 56

Table 2.5: Results for Bayes X and Bayes τ , 50 trees with eight species: scaled RF
distances from true ST assuming rooted trees; % correct topology.
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Sixteen Taxa - GenX and STEM 2.0

Method nLoci θ seqL Min. RF Max. RF Mean RF %Correct
GenX 250 0.001 500 0.000 0.571 0.171 11
STEM 250 0.001 500 0.357 1.000 0.724 0
GenX 500 0.001 500 0.000 0.357 0.124 12
STEM 500 0.001 500 0.143 1.000 0.703 0
GenX 1000 0.001 500 0.000 0.286 0.076 35
STEM 1000 0.001 500 0.286 1.000 0.706 0

GenX 250 0.005 500 0.000 0.357 0.110 21
STEM 250 0.005 500 0.071 0.786 0.374 0
GenX 500 0.005 500 0.000 0.357 0.092 25
STEM 500 0.005 500 0.071 0.714 0.368 0
GenX 1000 0.005 500 0.000 0.214 0.049 47
STEM 1000 0.005 500 0.071 0.714 0.360 0

GenX 250 0.010 500 0.000 0.357 0.116 25
STEM 250 0.010 500 0.000 0.643 0.273 2
GenX 500 0.010 500 0.000 0.286 0.080 30
STEM 500 0.010 500 0.000 0.643 0.286 2
GenX 1000 0.010 500 0.000 0.214 0.054 45
STEM 1000 0.010 500 0.000 0.714 0.280 1

GenX 250 0.001 1000 0.000 0.357 0.126 20
STEM 250 0.001 1000 0.214 1.000 0.574 0
GenX 500 0.001 1000 0.000 0.286 0.106 24
STEM 500 0.001 1000 0.071 1.000 0.551 0
GenX 1000 0.001 1000 0.000 0.286 0.071 35
STEM 1000 0.001 1000 0.143 0.929 0.529 0

GenX 250 0.005 1000 0.000 0.429 0.117 19
STEM 250 0.005 1000 0.000 0.571 0.275 2
GenX 500 0.005 1000 0.000 0.214 0.076 32
STEM 500 0.005 1000 0.000 0.571 0.274 1
GenX 1000 0.005 1000 0.000 0.286 0.054 49
STEM 1000 0.005 1000 0.000 0.571 0.264 6

GenX 250 0.010 1000 0.000 0.286 0.105 19
STEM 250 0.010 1000 0.000 0.429 0.204 6
GenX 500 0.010 1000 0.000 0.286 0.075 36
STEM 500 0.010 1000 0.000 0.429 0.201 9
GenX 1000 0.010 1000 0.000 0.286 0.054 48
STEM 1000 0.010 1000 0.000 0.571 0.198 8

Table 2.6: Results for GenX vs STEM, 100 trees with 16 species: scaled RF distances
from true ST assuming rooted trees; % correct topology.
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Twenty Taxa - GenX and STEM 2.0

Method nLoci θ seqL Min. RF Max. RF Mean RF %Correct
GenX 250 0.001 500 0.000 0.444 0.156 10
STEM 250 0.001 500 0.333 1.000 0.688 0
GenX 500 0.001 500 0.000 0.333 0.111 10
STEM 500 0.001 500 0.278 1.000 0.693 0
GenX 1000 0.001 500 0.000 0.333 0.071 28
STEM 1000 0.001 500 0.278 1.000 0.638 0

GenX 250 0.005 500 0.000 0.333 0.098 22
STEM 250 0.005 500 0.056 0.611 0.358 0
GenX 500 0.005 500 0.000 0.222 0.067 38
STEM 500 0.005 500 0.056 0.611 0.342 0
GenX 1000 0.005 500 0.000 0.222 0.043 50
STEM 1000 0.005 500 0.000 0.833 0.326 1

GenX 250 0.010 500 0.000 0.278 0.089 22
STEM 250 0.010 500 0.056 0.556 0.285 0
GenX 500 0.010 500 0.000 0.278 0.067 35
STEM 500 0.010 500 0.000 0.556 0.269 1
GenX 1000 0.010 500 0.000 0.167 0.043 51
STEM 1000 0.010 500 0.000 0.611 0.261 1

GenX 250 0.001 1000 0.000 0.333 0.113 16
STEM 250 0.001 1000 0.167 0.833 0.542 0
GenX 500 0.001 1000 0.000 0.278 0.079 23
STEM 500 0.001 1000 0.111 0.889 0.497 0
GenX 1000 0.001 1000 0.000 0.333 0.055 39
STEM 1000 0.001 1000 0.111 0.889 0.496 0

GenX 250 0.005 1000 0.000 0.333 0.091 19
STEM 250 0.005 1000 0.056 0.556 0.266 0
GenX 500 0.005 1000 0.000 0.222 0.069 28
STEM 500 0.005 1000 0.056 0.611 0.241 0
GenX 1000 0.005 1000 0.000 0.222 0.047 42
STEM 1000 0.005 1000 0.056 0.500 0.251 0

GenX 250 0.010 1000 0.000 0.333 0.093 17
STEM 250 0.010 1000 0.000 0.500 0.189 4
GenX 500 0.010 1000 0.000 0.278 0.059 36
STEM 500 0.010 1000 0.000 0.444 0.186 3
GenX 1000 0.010 1000 0.000 0.222 0.042 50
STEM 1000 0.010 1000 0.000 0.556 0.171 6

Table 2.7: Results for GenX vs STEM, 100 trees with 20 species: scaled RF distances
from true ST assuming rooted trees; % correct topology.
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Thirty-Two Taxa - GenX and STEM 2.0

Method nLoci θ seqL Min. RF Max. RF Mean RF %Correct
GenX 250 0.001 500 0.033 0.467 0.168 0
STEM 250 0.001 500 0.433 0.967 0.675 0
GenX 500 0.001 500 0.000 0.300 0.118 3
STEM 500 0.001 500 0.333 0.900 0.657 0
GenX 1000 0.001 500 0.000 0.300 0.084 10
STEM 1000 0.001 500 0.400 0.900 0.662 0

GenX 250 0.005 500 0.000 0.300 0.110 2
STEM 250 0.005 500 0.100 0.767 0.384 0
GenX 500 0.005 500 0.000 0.200 0.077 10
STEM 500 0.005 500 0.133 0.633 0.380 0
GenX 1000 0.005 500 0.000 0.233 0.048 23
STEM 1000 0.005 500 0.067 0.667 0.372 0

GenX 250 0.010 500 0.000 0.333 0.105 6
STEM 250 0.010 500 0.033 0.567 0.307 0
GenX 500 0.010 500 0.000 0.200 0.066 16
STEM 500 0.010 500 0.100 0.667 0.296 0
GenX 1000 0.010 500 0.000 0.167 0.049 23
STEM 1000 0.010 500 0.067 0.633 0.282 0

Table 2.8: Results for GenX vs STEM, 100 trees with 32 species: scaled RF distances
from true ST assuming rooted trees; % correct topology.
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2.3.3 Application to Empirical Datasets

Application to Empirical Dataset with 10706 5-Taxon Gene Trees

A set of 10706 gene trees with five taxa Hylobates moloch (HMO), Hylobates pileatus

(HPL), Nomascus leucogenys (NLE), Hoolock leuconedys (HLE) and Symphalangus

syndactylus (SSY) that passed the molecular clock was used to infer a species tree

using STEM 2.0, genX, ASTRAL (Zhang et al., 2018) and the Bayesian methods

described earlier. This set that passed the molecular clock included 10706 out of

12413 total trees (Kim and Degnan, 2020). The species HMO and HPL represent

the genus Hylobates (H), while NLE, HLE, and SSY represent the genera Nomascus

(N), Hoolock (B) and Symphalangus (S), respectively. The gene trees were estimated

from the gibbon non-coding sequence data from Shi and Yang (2018) and Carbone

et al. (2014) as described in Kim and Degnan (2020) Section 3.

The parameter θ was estimated for the full data and a subset of each size shown

below using the pegas package version 1.0-1 in R, and all estimates were approx-

imately 0.009. We compared the trees inferred by ASTRAL (Zhang et al., 2018),

STEM, and genX for the full data and the subsets of it as well as trees inferred by

Shi and Yang (2018) (they infer the phylogeny of these four genera to be (H, (N,

(B, S))), called Tree 1 in their paper). Shi and Yang (2018) include in their Table

1 a list of 15 species trees ordered according to the frequency which with they were

inferred in earlier work by Carbone et al. (2014). Hereafter these are referred to as

“Tree 1”, “Tree 2”, etc., with the topology given.

Using all 10706 of the gene trees, and the estimated value of 0.009 for θ, genX

inferred the topology (((S, B), H), N), which corresponds to Tree 2 in Shi and Yang

(2018), while ASTRAL inferred Tree 1, (((S, B), N), H). Additionally, we randomly

chose subsets from these 10706 gene trees, of size 100, 500, 1000, 2000 and 8000

gene trees, and replicated these subsets 100 times each. GenX inferred Tree 1 and
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Tree 2 each approximately 50% of the time for the smaller datasets, down to size

500. For size 100, genX inferred more of trees other than 1 or 2. ASTRAL most

commonly inferred these two trees as well, but with increasing proportion of Tree 1

as the sample size increased (Figure 2.14).

Figure 2.14: Frequency of species trees inferred by genX and ASTRAL from 5-taxon
gibbon data.

STEM 2.0 inferred the tree (((H, B), N), S) - Tree 8 in the Shi and Yang paper

- for the full dataset, with Tree 8 or Tree 6 (((H, B), S), N) the most commonly

inferred tree for smaller datasets, except for datasets of size 100. For these, STEM

most commonly inferred Trees 1 and 3, which was (((N, B), S), H). These were

inferred 12 times each out of 100 while Trees 8 and 6 were inferred six and nine

times respectively. These results are summarized in Figure 2.15.

Additionally, a consensus tree was obtained for both ASTRAL and genX via

the bootstrap. We resampled the 10706 gene trees with replacement to obtain the

same size dataset (10706 gene trees) 100 times, inferred a species tree with each

method from each of the 100 bootstrap datasets, and then obtained a consensus tree

with the consense program in PHYLIP (Felsenstein, 2009). For both methods, the
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Figure 2.15: Frequency of species trees inferred by STEM 2.0 from 5-taxon gibbon
data.

clades (HLE, SSY) and (HMO, HPL) were obtained for all 100 bootstrap datasets.

For ASTRAL, the clade (NLE, (HLE, SSY)) was obtained 99 times and the clade

((HLE, SSY), (HMO, HPL)) obtained once. For genX, the clade (NLE, (HLE, SSY))

was obtained 39 times, and the clade ((HLE, SSY), (HMO, HPL)) obtained 61 times.

Tree 1 was the consensus tree for ASTRAL, with strong bootstrap support for the

involved clades, and Tree 2 was the consensus tree for genX, but without strong

bootstrap support for the involved clades.

The Bayesian methods used on this dataset showed convergence issues for the

parameter τ more severely than in the simulated data. Neither X nor β showed

convergence issues. Convergence was again assessed by examining trace plots and

considering R̂. Unlike the results from the simulated data, many models for the

empirical dataset had R̂ well above 1.1, with many of the trace plots for the non-

converging models showing obvious separation of the two chains. We attempted to

improve the convergence of the models by increasing the number of iterations and

trying both of the priors for τ discussed previously. The results of these attempts are
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shown in Table 2.9. Note that to infer a tree from these methods, a distance matrix is

constructed from the minimums of the posterior iterates of X or the means of those of

τ , so a non-converging model would create a missing entry in the distance matrix, as

no valid inference can be made when a Bayesian model does not converge. However,

with only some of the entries missing (non-converging model for a particular pair

of species), a set of possible trees could be inferred, with the set narrowed down

when more of the models have converged. Table 2.9 includes the trees obtained

by clustering the minimums of the posterior distribution of X or the means for τ ,

but these are not reliable estimates with the majority of the models not converging.

Some improvement in convergence was noted with these attempts, in that more of the

models converged when more iterations were performed (recall that a separate model

is fit for each pairwise distance for this Bayesian method). Thus, it is possible that

increasing the number of iterations even further would eventually obtain convergence

for all ten models.

Prior for τ Iterations NC Models NC R̂ Range Bayes X Bayes τ
N(9, 142) 40000 7/10 1.29–7.36 Tree 1 Tree 9
N(2, 1) 40000 7/10 1.11–3.94 Tree 1 Tree 14
N(9, 142) 100000 6/10 1.14–2.63 Tree 1 Tree 11

Table 2.9: Results of Bayesian Methods on 5-Taxon Gibbon Data.
NC indicates non-converging. Since many of the models still did not converge even with

the larger number of iterations attempted, the trees listed are stated for methodological

purposes and do not necessarily reflect valid inference from the posterior distributions.

Application to Empirical Dataset with 10631 8-Taxon Gene Trees

A similar analysis was performed with an additional subset of the gibbons data using

10631 gene trees that passed the molecular clock. This dataset contained eight taxa

plus an outgroup. The outgroup was removed after inference using ASTRAL and
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before inference using the genX methods and STEM to aid in comparison of the

resulting trees. The eight taxa consisted of one individual from each species HMO

and HPL (genera H), and two from each species SSY (genera S), HLE (genera B)

and NLE (genera N). With this dataset, an estimate for θ of 0.006 was obtained

using the pegas package in R.

In this case, genX inferred Tree 1 with the full data, while ASTRAL inferred

Tree 2. For the larger data subsets, genX most commonly inferred Tree 1, with Tree

2 the second most common, with increasing proportion of Tree 1 as the sample size

increased. For the smallest subset, size 100, Tree 2 was inferred 33 times and Tree

1 was inferred 24 times using genX. For ASTRAL, Tree 2 was the most commonly

inferred in all subsets, and Tree 1 the second most common in the subsets down to

size 1000, with increasing proportion of Tree 2 as the sample size increased. For size

500 and 100, Tree 9 was the second most commonly inferred by ASTRAL rather

than Tree 2. These results are summarized in Figure 2.16.

STEM 2.0 inferred Tree 10 (((N, S), H), B) for the full dataset. For the data

subsets of size 8000, 5000 and 500, Tree 10 was the most common for STEM, with

Tree 7 ((H, N), (S, B)) or Tree 4 (((N, S), B), H) also commonly inferred. For the

subsets of size 1000 and 2000, Trees 1 and 2 were the most commonly inferred for

STEM, while Trees 2 and 3 were the most commonly inferred for the subsets of

size 100. These results are summarized in Figure 2.17. Note that STEM has the

option to specify when multiple individuals per species are represented in the data.

That option was not used in this analysis, but STEM still correctly grouped such

individuals together in all trees inferred from this dataset.

As with the first subset of the gibbon data, a consensus tree was obtained for both

ASTRAL and genX via the bootstrap using the 10631 gene trees. We resampled the

10631 gene trees with replacement to obtain the same size dataset (10631 gene trees)

100 times, inferred a species tree with each method from each of the 100 bootstrap
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Figure 2.16: Frequency of species trees inferred by genX and ASTRAL from 8-taxon
gibbon data.

Figure 2.17: Frequency of species trees inferred by STEM 2.0 from 8-taxon gibbon
data

datasets, and then obtained a consensus tree with the consense program in PHYLIP

(Felsenstein, 2009).

For both methods, the H, B, S and N clades were obtained for all 100 bootstrap
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datasets, i.e. the two species or two individuals from each of these genera were always

grouped together. For genX, the (B, S) clade was inferred 100 times, the ((B, S), N)

clade was inferred 91 times, and the ((B, S), H) clade 9 times. For ASTRAL, the

clade (B, S) was obtained 99 times, and the clade containing B, S and H 99 times.

The ((B, S), N) clade was inferred once, and the clade (H, S) was inferred once. With

this dataset, Tree 1 was the consensus tree for genX, and Tree 2 was the consensus

tree for ASTRAL.

As with the 5-taxon empirical dataset, the Bayesian methods used on this dataset

showed convergence issues for the parameter τ more severely than in the simulated

data. Neither X nor β showed convergence issues. Again, many models for this

empirical dataset had R̂ well above 1.1, with several trace plots for the non-converging

models showing obvious separation of the two chains. The results of attempts to

improve convergence are shown in Table 2.10. The table includes the trees obtained

by clustering the minimums of the posterior distribution of X or the means for

τ , but as with the 5-taxon empirical dataset, these are not reliable estimates with

the majority of the models not converging. Some improvement in convergence was

noted with these attempts, similarly to the previously mentioned dataset. Thus, it

is possible that increasing the number of iterations even further would eventually

obtain convergence for all 28 models.

Prior for τ Iterations NC Models NC R̂ Range Bayes X Bayes τ
N(9, 142) 40000 23/28 1.11–9.11 Tree 1 Tree 2
N(2, 1) 40000 18/28 1.12–4.06 Tree 1 Tree 12
N(9, 142) 100000 21/28 1.11–4.91 Tree 1 Tree 2

Table 2.10: Results of Bayesian Methods on 8-Taxon Gibbon Data.
NC indicates non-converging. Since many of the models still did not converge even with

the larger number of iterations attempted, the trees listed are stated for methodological

purposes and do not necessarily reflect valid inference from the posterior distributions.
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2.4 Discussion

The genX method and the Bayesian methods outlined here show improvement over

the GLASS/MT as implemented in STEM 2.0 with accuracy of species tree inference,

in terms of RF distance and frequency of matching the topology of the true species

tree, as shown in Figures 2.3 – 2.13. As expected, the percent of inferred trees with

topology matching the true species trees goes down with the number of taxa for

STEM and genX, but the mean scaled RF distance remains similar or even smaller

with larger trees for some settings. The Bayesian methods are more accurate than

genX in some cases, e.g. as shown in Figure 2.5. Additionally, in the simulated

data with eight taxa, Bayes X appeared to be more accurate than genX for 250 loci

with the higher value of either θ or sequence length. In general, Bayes τ performed

comparably to or worse than genX, but still showed improvement over STEM 2.0.

The Bayesian methods do require substantially more computation time and can be

prone to convergence issues as demonstrated here with the gibbon datasets.

GenX is statistically consistent when the additive errors (difference between pair-

wise distances in the estimated and true gene trees) have mean 0 or multiplicative

errors (ratio of pairwise distances from estimated and true gene trees) have a mean of

1. This assumption only appeared to be approximately true for the largest value of θ

(0.01) in our simulations, and in practice the additive or multiplicative errors would

be unknown and therefore the assumption not verifiable. However, the method still

showed improved accuracy over STEM even when this assumption was violated. As

shown in the figures depicting RF distances, such as Figures 2.3 and 2.4, the mean

scaled RF distance appears to decrease with increasing loci for genX, but to stay

fairly constant for STEM, particularly with larger trees.

One reason for the improved performance of these methods over STEM may be

that the simulated distributions for X — the pairwise distances calculated from true
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gene trees — are less likely to contain zeros than a set of W , the pairwise distances

calculated from maximum likelihood gene trees estimated from DNA sequence data.

In the Bayesian approach, the posterior distribution of X does not contain zeros.

The issue of the estimated pairwise distances containing zeros was explored in detail

in DeGiorgio and Degnan (2014). In summary, this issue can either result in the true

minimum distance being ignored in the case of STEM 2.0, as it takes the minimum

non-zero pairwise distance as the entry for the distance matrix, or unresolved trees

in the case of STEM 1.1, which adds 10−6 to any observed distance of zero.

Some limitations of the methods developed here include that they return only an

estimated tree, where STEM performs several other functions, such as computing

the likelihood and returning a set of the highest likelihood trees. Since the new

methods here include a random component, they will not always return the same

tree (but usually return the same topology) if run multiple times. The genX method

is relatively fast but becomes a bit slower than STEM with increasing loci and

number of species. Also, it was noted to be less accurate than ASTRAL for the

5-taxon gibbons dataset, and did not converge to one tree in that case (as shown

in Figure 2.14). With the full 5-taxon data, its consensus tree was incorrect, but

without strong bootstrap support for the clades in that consensus tree. For the

8-taxon gibbon data, genX did perform better, which may indicate sensitivity to

taxon sampling as described, for example, in Nabhan and Sarkar (2012). While the

methods here showed improvement over STEM, they still are less accurate for lower

values of θ and shorter sequence lengths. Thus, the new methods may still be subject

to some GTEE despite the improvement noted. This issue may be expected, since

as discussed above and in section 2.1, the assumption about the mean of the errors

in the measurement error model is not always correct.

Areas for future research could include testing the method on a wider variety

of trees; e.g. the simulated species trees were only simulated with the speciation
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rate λ = 1, and the simulated sequences only under the one substitution model

discussed above. Thus, it is unknown how the methods here would perform under

different settings, other than as illustrated with the gibbon datasets. It may also be

worthwhile to try additional priors for the τ parameter in the Bayesian models to

try to improve the convergence issue, to try clustering the median of the posterior

iterates of τ rather than the mean, and to try other hierarchical clustering approaches

with the posterior estimate of τ . Additionally, it is unknown whether a measurement

error modeling approach could also improve other distance matrix based species tree

inference methods.

In summary, despite the above limitations, the genX method and the Bayesian

methods developed here for modeling the measurement error between estimated and

true gene trees improve the performance of the GLASS/MT/STEM tree when the

input gene trees are estimated from DNA sequences. Since the genX method is

relatively fast, it could be used to obtain starting trees for other methods that may be

slower but more accurate. The Bayesian method developed here using the minimum

values of X appears more accurate in many cases, but was tested in an even more

limited number of scenarios due to longer computation times.
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PB Approach to Multi-factor

heteANOVA Models

3.1 Introduction

Consider the multi-factor ANOVA problem of abcd . . . normal populations with un-

equal population variances σ2
ijkm..., i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, m = 1, ..., d,

... and let Yijkm...1, Yijkm...2, ..., Yijkm...nijkm... be the observations from each group. The

full ANOVA model, hereafter called heteANOVA model, is

Yijkm... = G+Ai +Bj +Ck +Dm + ...+ABij +ACik +ADim +BCjk +BDjm +

CDkm+ ...+ABCijk +ABDijm+ACDikm+BCDjkm+ ...+ABCDijkm+ ...+eijkm...

where eijkm... ∼ N(0, σ2
ijkm...). The usual F-tests for main and interaction effects

in these models assume equal group variances, and can be smaller or larger in size

than the nominal level when this assumption is violated (Weerahandi, 1995; Bao and

Ananda, 2001; Scheffe, 1959). Weerahandi (1995) showed examples of this: when

there was no particular relationship between sample size and group variance, the p-
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value for the conventional F-test was too large (Type II error); however, they provide

an additional example where sample sizes were negatively correlated with the group

variances, and the p-value of the conventional F-test was shown to be too small in

this case. Transformed data, such as the log or square root of observed values, may

in some cases meet the equal variance assumption. However, this method does not

always work and can make the results more difficult to interpret. Other approaches

such as the generalized F-test have been proposed (Weerahandi, 1995; Ananda and

Weerahandi, 1997) for one-way and two-way models, but may not perform well with

larger numbers of treatment levels (Xu et al., 2013).

As described in Christensen (2016) section 4.3, caution is needed when making

practical decisions based on differences in means between groups with unequal vari-

ances. For example, if a lower value of a response is desired, such as blood pressure,

a treatment group with a smaller mean and smaller variance may have a smaller

probability of achieving the desired outcome than a treatment group with a larger

mean and also larger variance. Thus, additional consideration of implications for

the practical issue being studied is warranted. Nevertheless, the problem of unequal

variance does arise in practice, so methods of dealing with the problem are desirable.

The parametric bootstrap (PB) approach has been shown to work well for one-

way and two-way heteANOVA models, including cases with unbalanced data (Xu

et al., 2013; Krishnamoorthy and Lu, 2007; Zhang, 2015a,b). Rather than resam-

pling from the data with replacement, as in the perhaps more traditional bootstrap

procedures, parametric bootstrap involves simulating data from distributions with

estimated parameters (Efron and Tibshirani, 1993); this procedure will be discussed

in detail in upcoming sections. We would expect the test statistics developed here

to generalize to higher-way heteANOVA models. In practice, interpretation of more

than three factors with interactions can become quite complicated. Therefore, we il-

lustrate this generalization with a three-factor model and use simulations to compare
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the performance of the PB method with the usual F-tests.

Another problem in ANOVA models is multiple comparison procedures (MCP’s):

simultaneous comparisons of multiple factor levels. The PB approach has been shown

to work well for MCPs in one-way and two-way heteANOVA cases (Zhang, 2015a,b).

We again generalize this to the three-factor case, and use simulations to compare the

performance of the PB methods to Tukey’s test.

This chapter is organized as follows. In Section 2 we describe the overall PB

method and show relationships between PB methods and conventional F-tests, as

well as develop an overall procedure for analyzing data under these models, analogous

to conventional methods. In Section 3 the procedure is illustrated for a three-way

ANOVA model and performance of the PB tests compared through simulations with

that of the usual F-tests for each term in the model. Section 4 describes MCP using

PB, and again, simulation results are presented to compare the PB method for MCP

with Tukey’s test. Section 5 gives an illustration of the PB method with a real

example and compares results to those from traditional tests. Section 6 includes

discussion of our results, limitations and areas for further research.

3.2 General PB Method for ANOVA Models

The overall process for analyzing multi-factor data using PB methods is similar to

the usual ANOVA approach, such as in Christensen (2016) and Kutner et al. (2005),

and is shown in Figure 3.1. For the PB method, a PB test rather than an F-test

is used at each step of testing to determine the terms to be included in the final

model, and PB tests rather than traditional MCP’s are used to examine factor level

means. In usual ANOVA models where the equal variance assumption is met, for

testing H0 : Par = 0, where the parameter of interest (Par) is a main effects term or

an interaction term, the usual F-test statistic, or general linear test (Kutner et al.,
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2005), takes the form

(SSE(R)− SSE(F ))/(dfE(R)− dfE(F ))

MSE(F )
,

where SSE(R) indicates the sum of square for error (SSE) from the reduced

model, SSE(F ) indicates SSE from the full model, dfE indicates the degrees of

freedom for error for the respective models, and MSE(F ) indicates the mean squared

error (MSE) from the full model.

In the following sections, we develop PB algorithms for use at each level of testing

that are analogous to the F-test (general linear test for a three-way ANOVA model).

Algorithm 1 will be used for testing the three-way interaction term, Algorithm 2

for the two-way interaction terms, and Algorithm 3 for testing main effects when

no interaction terms have significant effects. Algorithm 4 is used when only one

two-way interaction term is significant and we want to test the remaining main

effect term that is not involved in the significant interaction. Algorithms 5 and 6

will pertain to MCP’s. Algorithms 1-4 are the same at each step other than the

design matrix specific to the reduced model being tested. For each of algorithms

1-4, the test statistic is based on the standardized sum of squares for the term under

investigation, that is, a function of the numerator of the F-test shown above. As

discussed in Christensen (2018), the test statistic SI can be written in matrix form

as:

SI = Y ′(A− A0)′Σ−1
∗ (A− A0)Y = SSE(R)− SSE(F ),

where Σ∗ = diag(σ2
111, ..., σ

2
111, σ

2
112, ..., σ

2
abc), (i.e. each σ2

ijk is repeated nijk times

along the diagonal) and Y is the response vector. Under the equal variance assump-

tion, Σ∗ reduces to σ2I where I is an n× n identity matrix. In SI above,

A = X(X ′Σ−1
∗ X)−X ′Σ−1

∗ and A0 = X0(X ′0Σ−1
∗ X0)−X ′0Σ−1

∗ are the projection opera-

tors onto the column spaces of the design matrices X and X0 for the full and reduced
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models respectively, where X ′ indicates the transpose of a matrix X. If variances are

known, SI ∼ χ2(r(X)−r(X0)), as shown in Christensen (2018). We discuss this idea

more specifically to each parameter of interest in the following sections. In general,

variances are unknown, so the true distribution of this test statistic is also unknown.

When group variances are equal (but unknown), the usual F-test statistic follows an

F distribution since it is equivalent to:

Y ′(A−A0)Y

σ2
/[r(X)−r(X0)]

[N−r(X)]MSE(F )

σ2
/[N−r(X)]

=
χ2
r(X)−r(X0)

/[r(X)−r(X0)]

χ2
N−r(X)

/[N−r(X)]
∼ F[r(X)−r(X0),N−r(X)],

where r(X) refers to the rank of the X matrix and N is the total number of

observations for all groups. When variances are equal so that Σ∗ = σ2I, A and

A0 reduce to X(X ′X)−X ′ and X0(X ′0X0)−X ′0, respectively, so in this case, Y ′(A −

A0)′Σ−1
∗ (A−A0)Y = 1

σ2Y
′(A−A0)′(A−A0)Y = Y ′(A−A0)Y

σ2 , since (A−A0), reduced as

above with Σ∗ = σ2I, is a perpendicular projection operator as shown in Christensen

(2018) Theorem B.47, and is thus idempotent and symmetric. In the above F-

statistic equation, the σ2 cancel since they are equal, so unknown σ2 is not a problem.

However, as shown in our simulation results, the pooled variance estimate used for

the MSE will not be accurate for all groups and can lead to test statistics being too

large or too small, and thus decisions to reject or not reject hypotheses can be too

liberal or too conservative, similar to the results of Weerahandi (1995).

The X and X0 matrices above are the design matrices corresponding to a Y

vector with all responses. We will be working with design matrices correspond-

ing to the vector of group means, e.g for a three-way ANOVA model with a=3,

b=2 and c=2, Ȳ = (ȳ111, ȳ112, ȳ121, ..., ȳ322), where ȳijk =
∑nijk

m=1 yijk/nijk. It can be

shown that SI = Y ′(A − A0)′Σ−1
∗ (A − A0)Y = SSE(R) − SSE(F ) = Ȳ ′Σ−1Ȳ −

Ȳ ′Σ−1X∗(X
′
∗Σ
−1X∗)

−X ′∗Σ
−1Ȳ , where Σ = diag(σ2

111/n111, σ
2
112/n112, ...σ

2
abc/nabc) and

X∗ is a matrix of indicators corresponding to each group mean, discussed further for

each parameter in the upcoming sections.
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For a three factor ANOVA model, if σ2
ijk’s are known, Σ = diag(σ2

111/n111,

σ2
112/n112, ...σ

2
abc/nabc), and the null hypothesis H0 : Par = 0 is true (under the null

hypothesis, the χ2 non-centrality parameter is 0), then a natural test statistic for test-

ing H0 is SI , the standardized sum of squares for the term being tested, which as dis-

cussed above, follows a χ2 distribution with r(X)−r(X0) degrees of freedom. In gen-

eral, variances are unknown, so we replace SI with the test statistic S̃I = Ȳ ′S−1Ȳ −

Ȳ ′S−1X∗(X
′
∗S
−1X∗)

−X ′∗S
−1Ȳ , where S = diag(s2

111/n111, s
2
112/n112, ...s

2
abc/nabc), and

s2
ijk = 1

nijk−1

∑nijk
m=1(yijkm − ȳijk)2.

In this case, since the variances are unequal and unknown, the test statistic no

longer follows a known distribution. The overall idea of a PB approach to this

problem is to simulate a distribution for S̃I under the null hypothesis.

Each of Algorithms 1 – 4 follows the same procedure for testing each null hypoth-

esis H0 : Par = 0, with Par the applicable parameter. This procedure involves (1)

calculate the test statistic S̃I above, (2) simulate a distribution for S̃I under H0, and

(3) calculate a Monte Carlo estimate of a p-value: the proportion of the simulated

null distribution that is at least as extreme as the test statistic. This p-value can be

used in the typical manner to reject or not reject the null hypothesis pertaining to

the model term (parameter) we are investigating. In each algorithm 1 – 4, the X∗

matrix in S̃I changes to reflect each reduced model; otherwise these algorithms are

the same at each step.

For multiple comparisons of levels of a factor, Algorithms 5 and 6 are analogous

to Tukey’s test, but Tukey’s test is intended for cases where the equal variance

assumption is met and group sizes are equal. The Tukey-Kramer procedure does

allow for different sample sizes (Kutner et al., 2005; Kramer, 1956; Hayter, 1984),

and the documentation for the ‘TukeyHSD’ procedure in R (R Core Team, 2021)

states that the results are valid for mildly unbalanced data (use of this R function

for the data given in Kutner et al. (2005), Example 2 of Section 17.5, gives very

63



Chapter 3. PB Approach to Multi-factor heteANOVA Models

similar results to those shown for the Tukey-Kramer procedure used for the same

data). When the equal variance assumption is met, Tukey’s test statistic can be

compared to the studentized range distribution, but if not, we no longer have a

standard distribution for comparison of the test statistic, so the PB method is used

to simulate a null distribution. Figure 3.1 depicts the overall procedure for a three-

factor heteANOVA problem using these PB algorithms. R code for Algorithms 1 –

6 is shown in the Appendices.

3.3 Illustration Of PB for Three-Factor ANOVA

Consider the three factor ANOVA full model, with all interactions and main effects:

yijkm = G+Ai +Bj +Ck + [AB]ij + [AC]ik + [BC]jk + [ABC]ijk + eijkm, (3.1)

where G indicates the grand mean, A, B, and C indicate main effects, [AB], [AC],

and [BC] indicate two-way interaction terms, and [ABC] indicates the three-way in-

teraction term. Also, we assume eijkm
ind∼ N(0, σ2

ijk), and for identifiability, we assume

the constraints
∑

iwiAi = 0,
∑

j vjBj = 0,
∑

k ukCk = 0, ...,
∑

iwi[ABC]ijk = 0,∑
j vj[ABC]ijk = 0,

∑
k uk[ABC]ijk = 0, where the w’s, v’s, and u’s are non-negative

weights; for example, as discussed in Section 4.5 of Scheffe (1959) or Chapter 7 of

Arnold (1981).

Define the vector of means, Ȳ = (ȳ111, ȳ112, ..., ȳ121, ȳ122, ..., ȳabc)
′, indicating the

sample means of the observations from each factor level and combination of factor

levels. Define the vector of sample variances for each combination of factor levels to

be s2
ijk = (s2

111, s
2
112, ...s

2
abc)
′, and the matrix

Sabc×abc = diag(s2
111/n111, s

2
112/n112, ...s

2
abc/nabc).

Following the procedure in Figure 3.1, we test each term in model 3.1, from
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Biggest Model: EY = A+B+C+AB+AC+BC+ABC

Test ABC Term (Alg. 1)

Reject H0?

Test Two-Way Terms (Alg. 2)

One-Way
ANOVA,

abc Levels

MCP (Zhang 2015-1)

No. of
Signif.
Terms?

Test Main Effects (Alg. 3)

One-Way
ANOVA,

abc Levels

MCP (Zhang 2015-1)
0

≥ 2

Test Main
Effect Not
Involved
w/Inter.
(Alg. 4)

1

Drop if
Not Signif

MCP (Alg. 6)

MCP (Alg. 5)

no

yes

Figure 3.1: Overall Process: Three-Way ANOVA Using Parametric Bootstrap.
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highest order to lowest order. Reduced models for each stage of testing are shown

in corresponding subsections. For each term in the model, if σ2
ijk’s are known, Σ =

diag(σ2
111/n111, σ

2
112/n112, ...σ

2
abc/nabc), and the null hypothesis is true (under the null

hypothesis, the χ2 non-centrality parameter is 0), then a natural test statistic for

testing H0 is the standardized sum of squares for the term being tested (and higher

order terms):

Ȳ ′Σ−1Ȳ − Ȳ ′Σ−1X∗(X
′
∗Σ
−1X∗)

−X ′∗Σ
−1Ȳ ∼ χ2

abc−r(X∗), where X∗ refers to e.g.,

XABC for the three-way interaction term, XBC for the BC interaction term, and XC

for the main effects for factor C as described below.

The matrix X∗ consists of a column of 1’s for the grand mean and (0, 1) indicators

for membership in each factor level and combination of factor levels. Note that

this matrix is indicating the levels for the group means, not each observation, so it

should not be confused with the design matrix for the full data, which would include

replications for each group. X∗ can be expressed using Kronecker products. Let Jn

indicate a column vector of n 1’s, and In indicate an n × n identity matrix. Then,

for example, XABC = ([Jabc, Ia ⊗ Jbc, Ja ⊗ (Ib ⊗ Jc), Ja ⊗ (Jb ⊗ Ic)], [Iab ⊗ Jc], [Ia ⊗

(Jb ⊗ Ic)], [Ja ⊗ Ibc]).

For example, suppose there are a = 4 levels for factor A, b = 3 levels for factor

B and c = 2 levels for factor C, so i = 1, 2, 3, 4, j = 1, 2, 3, and k = 1, 2. The

index m corresponds to the observations within each group, so m = 1, ..., nijk, with

nijk observations in each factor level combination. Then the vector of means, Ȳ , has

abc = 24 entries:

Ȳ = (ȳ111, ȳ112, ȳ121, ȳ122, ȳ131, ȳ132, ȳ211, ȳ212, ȳ221, ȳ222, ȳ231, ȳ232, ȳ311, ȳ312, ȳ321,

ȳ322, ȳ331, ȳ332, ȳ411, ȳ412, ȳ421, ȳ422, ȳ431, ȳ432)′,

indicating the sample means of the observations from all factor level combinations.
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As before, the sample variance of each combination of factor levels is denoted

s2
ijk = (s2

111, s
2
112, ...s

2
432)′, and the matrix S24×24 has diagonal entries

(s2
111/n111, s

2
112/n112, ...s

2
432/n432), zeros elsewhere.

Structure of XABC

As noted before, XABC can be expressed using Kronecker products. XABC has a

relatively large number of columns for this example: the dimensions of XABC would

be abc× (1 +a+ b+ c+ab+ac+ bc) = 24×36, so we will break it into parts starting

with main effects and followed by each two-way interaction.
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The columns of XABC corresponding to the grand mean and the main effects terms,

the first 1 + a+ b+ c columns, can be written as

[Jabc, Ia⊗Jbc, Ja⊗(Ib⊗Jc), Ja⊗(Jb⊗Ic)]. For this example with a = 4, b = 3, c = 2,

this part of the matrix would be:

ijk G A1 A2 A3 A4 B1 B2 B3 C1 C2

111 1 1 0 0 0 1 0 0 1 0
112 1 1 0 0 0 1 0 0 0 1
121 1 1 0 0 0 0 1 0 1 0
122 1 1 0 0 0 0 1 0 0 1
131 1 1 0 0 0 0 0 1 1 0
132 1 1 0 0 0 0 0 1 0 1
211 1 0 1 0 0 1 0 0 1 0
212 1 0 1 0 0 1 0 0 0 1
221 1 0 1 0 0 0 1 0 1 0
222 1 0 1 0 0 0 1 0 0 1
231 1 0 1 0 0 0 0 1 1 0
232 1 0 1 0 0 0 0 1 0 1
311 1 0 0 1 0 1 0 0 1 0
312 1 0 0 1 0 1 0 0 0 1
321 1 0 0 1 0 0 1 0 1 0
322 1 0 0 1 0 0 1 0 0 1
331 1 0 0 1 0 0 0 1 1 0
332 1 0 0 1 0 0 0 1 0 1
411 1 0 0 0 1 1 0 0 1 0
412 1 0 0 0 1 1 0 0 0 1
421 1 0 0 0 1 0 1 0 1 0
422 1 0 0 0 1 0 1 0 0 1
431 1 0 0 0 1 0 0 1 1 0
432 1 0 0 0 1 0 0 1 0 1
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Similarly, the columns of XABC corresponding to the AB interaction effects, columns

1 + a+ b+ c+ 1, ..., 1 + a+ b+ c+ ab, can be written as Iab ⊗ Jc. For this example

with a = 4, b = 3, c = 2, this part of the matrix would be:

ijk AB11 AB12 AB13 AB21 AB22 AB23 AB31 AB32 AB33 AB41 AB42 AB43

111 1 0 0 0 0 0 0 0 0 0 0 0
112 1 0 0 0 0 0 0 0 0 0 0 0
121 0 1 0 0 0 0 0 0 0 0 0 0
122 0 1 0 0 0 0 0 0 0 0 0 0
131 0 0 1 0 0 0 0 0 0 0 0 0
132 0 0 1 0 0 0 0 0 0 0 0 0
211 0 0 0 1 0 0 0 0 0 0 0 0
212 0 0 0 1 0 0 0 0 0 0 0 0
221 0 0 0 0 1 0 0 0 0 0 0 0
222 0 0 0 0 1 0 0 0 0 0 0 0
231 0 0 0 0 0 1 0 0 0 0 0 0
232 0 0 0 0 0 1 0 0 0 0 0 0
311 0 0 0 0 0 0 1 0 0 0 0 0
312 0 0 0 0 0 0 1 0 0 0 0 0
321 0 0 0 0 0 0 0 1 0 0 0 0
322 0 0 0 0 0 0 0 1 0 0 0 0
331 0 0 0 0 0 0 0 0 1 0 0 0
332 0 0 0 0 0 0 0 0 1 0 0 0
411 0 0 0 0 0 0 0 0 0 1 0 0
412 0 0 0 0 0 0 0 0 0 1 0 0
421 0 0 0 0 0 0 0 0 0 0 1 0
422 0 0 0 0 0 0 0 0 0 0 1 0
431 0 0 0 0 0 0 0 0 0 0 0 1
432 0 0 0 0 0 0 0 0 0 0 0 1
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The columns of XABC corresponding to the AC interaction effects, columns 1 + a+

b + c + ab + 1, ..., 1 + a + b + c + ab + ac, can be written as Ia ⊗ (Jb ⊗ Ic). For this

example with a = 4, b = 3, c = 2, this part of the matrix would be:

ijk AC11 AC12 AC21 AC22 AC31 AC32 AC41 AC42

111 1 0 0 0 0 0 0 0
112 0 1 0 0 0 0 0 0
121 1 0 0 0 0 0 0 0
122 0 1 0 0 0 0 0 0
131 1 0 0 0 0 0 0 0
132 0 1 0 0 0 0 0 0
211 0 0 1 0 0 0 0 0
212 0 0 0 1 0 0 0 0
221 0 0 1 0 0 0 0 0
222 0 0 0 1 0 0 0 0
231 0 0 1 0 0 0 0 0
232 0 0 0 1 0 0 0 0
311 0 0 0 0 1 0 0 0
312 0 0 0 0 0 1 0 0
321 0 0 0 0 1 0 0 0
322 0 0 0 0 0 1 0 0
331 0 0 0 0 1 0 0 0
332 0 0 0 0 0 1 0 0
411 0 0 0 0 0 0 1 0
412 0 0 0 0 0 0 0 1
421 0 0 0 0 0 0 1 0
422 0 0 0 0 0 0 0 1
431 0 0 0 0 0 0 1 0
432 0 0 0 0 0 0 0 1
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The columns of XABC corresponding to the BC interaction effects, columns 1 +

a+ b+ c+ ab+ ac+ 1, ..., 1 + a+ b+ c+ ab+ ac+ bc, can be written as Ja⊗ Ibc. For

this example with a = 4, b = 3, c = 2, this part of the matrix would be:

ijk BC11 BC12 BC21 BC22 BC31 BC32

111 1 0 0 0 0 0
112 0 1 0 0 0 0
121 0 0 1 0 0 0
122 0 0 0 1 0 0
131 0 0 0 0 1 0
132 0 0 0 0 0 1
211 1 0 0 0 0 0
212 0 1 0 0 0 0
221 0 0 1 0 0 0
222 0 0 0 1 0 0
231 0 0 0 0 1 0
232 0 0 0 0 0 1
311 1 0 0 0 0 0
312 0 1 0 0 0 0
321 0 0 1 0 0 0
322 0 0 0 1 0 0
331 0 0 0 0 1 0
332 0 0 0 0 0 1
411 1 0 0 0 0 0
412 0 1 0 0 0 0
421 0 0 1 0 0 0
422 0 0 0 1 0 0
431 0 0 0 0 1 0
432 0 0 0 0 0 1

Putting all of the above sub-matrices together,

XABC = ([Jabc, Ia⊗Jbc, Ja⊗(Ib⊗Jc), Ja⊗(Jb⊗Ic)], [Iab⊗Jc], [Ia⊗(Jb⊗Ic)], [Ja⊗Ibc]).

Returning to discussion of the test statistic Ȳ ′Σ−1Ȳ −Ȳ ′Σ−1X∗(X
′
∗Σ
−1X∗)

−X ′∗Σ
−1Ȳ ,

note that in general, variances are unknown, so we replace Σ with S to form the test

statistic introduced earlier: S̃I = Ȳ ′S−1Ȳ −Ȳ ′S−1X∗(X
′
∗S
−1X∗)

−X ′∗S
−1Ȳ . This idea

will be shown more specifically for each parameter tested in later sections.
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The test statistic S̃I is location invariant (Xu et al., 2013), so without loss of

generality, take E(Y ) = 0. The PB variable can then be developed as follows.

For a given (ȳ111, ȳ112, ..., ȳabc; s
2
111, s

2
112, ..., s

2
abc)), ȳBijk ∼ N(0, s2

ijk/nijk), and s2
Bijk ∼( s2ijk

nijk−1

)
χ2
nijk−1, i = 1, ...a, j = 1, ..., b, k = 1, ...c.

Let ȲB = (ȳB111, ȳB112, ..., ȳBabc)
′ and SB = diag(s2

B111/n111, s
2
B112/n112, ...s

2
Babc/nabc).

Then we can construct the PB pivot variable based on the test statistic S̃I ,

replacing Ȳ with ȲB and S with SB:

S̃IB = Ȳ ′BS
−1
B ȲB − Ȳ ′BS−1

B X∗(X
′
∗S
−1
B X∗)

−X ′∗S
−1
B ȲB. For a given level α, there is

evidence that the main effects or interaction effects exist when P (S̃IB > s̃I) < α,

where s̃I is an observed value of S̃I . This probability can be estimated by Algorithms

1 – 4 depending on the term being tested.

3.3.1 Testing Three-Way Interaction

For the three-way interaction term, consider model 3.1 and:

H0ABC : [ABC]ijk = 0 for i = 1, ...a, j = 1, ..., b, k = 1, ...c vs

HαABC : [ABC]ijk 6= 0 for some i, j, k.

If σ2
ijk’s are known, as discussed previously, a natural test statistic for testing

H0 is the standardized sum of squares for the three way interaction, a function of

(Ȳ − Ĝ− Â− B̂− Ĉ− ÂB− ÂC− B̂C), where the terms Ĝ, ..., B̂C are the parameter

estimates from fitting all terms from model 3.1 other than the ABC term:

Ȳ ′Σ−1Ȳ − Ȳ ′Σ−1XABC(X ′ABCΣ−1XABC)−X ′ABCΣ−1Ȳ ∼ χ2
abc−r(Xabc). (3.2)

In general, variances are unknown, so we replace 3.2 with the following test
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statistic:

S̃I = Ȳ ′S−1Ȳ − Ȳ ′S−1XABC(X ′ABCS
−1XABC)−X ′ABCS

−1Ȳ . (3.3)

This test statistic is location invariant (Xu et al., 2013), so without loss of gen-

erality, take E(Y ) = 0. We construct the PB pivot variable based on test statistic

3.3 , replacing Ȳ with ȲB and S with SB:

S̃IB = Ȳ ′BS
−1
B ȲB − Ȳ ′BS−1

B XABC(X ′ABCS
−1
B XABC)−X ′ABCS

−1
B ȲB (3.4)

For a given level α, the test rejects H0ABC when P (S̃IB > s̃I) < α, where s̃I is

an observed value of S̃I in 3.3. This probability can be estimated by Algorithm 1.

Algorithm 1:

For a given (n111, n112, ..., nabc), (ȳ111, ȳ112, ..., ȳabc), and (s2
111, s

2
112, ...s

2
abc), compute

S̃I = Ȳ ′S−1Ȳ − Ȳ ′S−1XABC(X ′ABCS
−1XABC)−X ′ABCS

−1Ȳ and call it s̃I .

For l = 1, ..., L:

Generate ȳBijk ∼ N(0, s2
ijk/nijk), and

s2
Bijk ∼

( s2ijk
nijk−1

)
χ2
nijk−1, i = 1, ...a, j = 1, ..., b, k = 1, ...c,

Compute S̃IB = Ȳ ′BS
−1
B ȲB − Ȳ ′BS−1

B XABC(X ′ABCS
−1
B XABC)−X ′ABCS

−1
B ȲB,

If S̃IB > s̃I , set Ql = 1,

(end loop)

1
L

∑L
l=1Ql is a Monte Carlo estimate of the p-value P (S̃IB > s̃I).

Hence, reject H0ABC if 1
L

∑L
l=1 Ql < α.
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3.3.2 Testing Two-Way Interaction Terms

For the two-way interaction terms, if we do not reject H0 for the ABC interaction

term, we may drop this term and consider the model:

yijkm = G+ Ai +Bj + Ck + [AB]ij + [AC]ik + [BC]jk + eijkm (3.5)

Note that if the three-way interaction term [ABC]ijk is equal to zero for all i, j, k,

this model 3.5 is equivalent to the full model 3.1. Additionally, if we do not reject

H0 for the ABC interaction term, it would not be significantly different from zero,

but weak/non-significant effects could be present. As discussed by Xu et al. (2013),

when the three-way interaction is present, each two-way effect alone, for example the

BC interaction, cannot reflect the effects of B and C because it depends on the level

of the ABC interaction. So rather than testing H0BC : [BC]jk = 0, we are actually

testing H0BC : [BC]jk + [ABC]ijk = 0 as discussed below. When the interaction

effects are zero, the tests for main effects do not depend on chosen weights; see

Arnold (1981) for a discussion of this issue. In testing the two-way interaction term

[BC], the sum of squares for the BC and ABC interaction will be a function of

(Ȳ − Ĝ − Â − B̂ − Ĉ − ÂB − ÂC), where the terms Ĝ, ..., ÂC are the parameter

estimates from fitting all terms from model 3.5 other than the BC term, i.e. from

fitting the reduced model:

yijkm = G+ Ai +Bj + Ck + [AB]ij + [AC]ik + eijkm (3.6)

Similarly to the three-way interaction case, a natural test statistic for testing

H0BC : [BC]jk + [ABC]ijk = 0 for i = 1, ..., a, j = 1, ..., b, k = 1, ...c vs.

HαBC : [BC]jk + [ABC]ijk 6= 0 for some i, j, k

is the standardized sum of squares for the BC and ABC interaction term:
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Ȳ ′Σ−1Ȳ − Ȳ ′Σ−1XBC(X ′BCΣ−1XBC)−X ′BCΣ−1Ȳ ∼ χ2
abc−r(XBC), where

XBC = ([Jabc, Ia ⊗ Jbc, Ja ⊗ (Ib ⊗ Jc), Ja ⊗ (Jb ⊗ Ic)], [Iab ⊗ Jc], [Ia ⊗ (Jb ⊗ Ic)])

For unknown Σ, the test statistic will be:

S̃I = Ȳ ′S−1Ȳ − Ȳ ′S−1XBC(X ′BCS
−1XBC)−X ′BCS

−1Ȳ (3.7)

The test statistic 3.7 is analogous to the general linear test of the reduced model 3.6

above, vs. the biggest model 3.1. The PB pivot variable for H0BC is constructed

based on test statistic 3.7, replacing Ȳ with ȲB and S with SB:

S̃IB = Ȳ ′BS
−1
B ȲB − Ȳ ′BS−1

B XBC(X ′BCS
−1
B XBC)−X ′BCS

−1
B ȲB (3.8)

For a given level α, the test rejects H0BC when P (S̃IB > s̃I) < α, where s̃I is

an observed value of S̃I in 3.7. This probability can be estimated by Algorithm 2.

Algorithm 2 should be used three times to test each two-way interaction term and

is similar for each term. The X-matrix in 3.7 and 3.8 should be replaced to reflect

the term under testing as follows:

XAC = [Jabc, Ia ⊗ Jbc, Ja ⊗ (Ib ⊗ Jc), Ja ⊗ (Jb ⊗ Ic), Iab ⊗ Jc, Ja ⊗ Ibc].

XAB = [Jabc, Ia ⊗ Jbc, Ja ⊗ (Ib ⊗ Jc), Ja ⊗ (Jb ⊗ Ic), Ia ⊗ (Jb ⊗ Ic), Ja ⊗ Ibc].

Algorithm 2 is identical to Algorithm 1 except that XBC , XAC or XAB replaces

XABC in the calculation of S̃I and S̃IB. Note that it is also possible to spec-

ify the X matrix to perform sequential testing of the two-way interaction terms;

e.g. the model with terms G, A, B, C, AB, BC vs. the model with just the terms

G, A, B, C, AB; however, we did not perform simulations for this procedure.
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3.3.3 Testing Main Effects, No Significant Interaction Terms

If we do not reject H0 for any of the interaction terms, we drop these terms and

consider the model

yijkm = G+ Ai +Bj + Ck + eijkm (3.9)

In testing the main effect term C, the sum of squares for C and the interactions

will be a function of (Ȳ −Ĝ−Â−B̂), where the terms Ĝ, Â and B̂ are the parameter

estimates from fitting all terms from model 3.9 other than the C term, i.e. from fitting

the reduced model:

yijm = G+ Ai +Bj + eijm (3.10)

A natural test statistic for testing

H0C : Ck + [AB]ij + [AC]ik + [BC]jk + [ABC]ijk = 0

for i = 1, ..., a, j = 1, ..., b, k = 1, ...c vs

HαC : Ck + [AB]ij + [AC]ik + [BC]jk + [ABC]ijk 6= 0 for some i, j, k

is the standardized sum of squares for C and the interaction terms:

Ȳ ′Σ−1Ȳ − Ȳ ′Σ−1XC(X ′CΣ−1XC)−X ′CΣ−1Ȳ ∼ χ2
abc−r(XC)

For unknown Σ, the test statistic will be:

S̃I = Ȳ ′S−1Ȳ − Ȳ ′S−1XC(X ′CS
−1XC)−X ′CS

−1Ȳ , (3.11)

where XC = [Jabc, Ia ⊗ Jbc, Ja ⊗ (Ib ⊗ Jc)].

The PB pivot variable for H0C is constructed based on the test statistic 3.11,

replacing Ȳ with ȲB and S with SB:

S̃IB = Ȳ ′BS
−1
B ȲB − Ȳ ′BS−1

B XC(X ′CS
−1
B XC)−X ′CS

−1
B ȲB (3.12)
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For a given level α, the test rejects H0BC when P (S̃IB > s̃I) < α, where s̃I is

an observed value of S̃I in 3.11. This probability can be estimated by Algorithm 3.

Algorithm 3 should be used three times to test each main effect term and is similar

for each term. The X-matrix in 3.11 and 3.12 should be replaced to reflect the term

under testing as follows:

XA = Jabc, Ja ⊗ (Ib ⊗ Jc), Ja ⊗ (Jb ⊗ Ic)

XB = Jabc, Ia ⊗ Jbc, Ja ⊗ (Jb ⊗ Ic)

Algorithm 3 is identical to Algorithm 1 except that we use XA, XB or XC in

place of XABC in the calculation of S̃I and S̃IB.

3.3.4 Testing One Main Effect in Presence of One Significant

Two-Way Interaction

If we do not reject H0 for two of the interaction terms, but do reject for one of them,

say AB, we drop the non-significant terms and consider the model

yijkm = G+ Ai +Bj + Ck + [AB]ij + eijkm, (3.13)

which would be equivalent to model 3.1 if all interaction terms other than AB are

zero. In testing the main effect term C when the AB interaction term is significantly

different from 0, the sum of squares for C and the remaining interactions will be

a function of (Ȳ − Ĝ − Â − B̂ − ÂB), where the terms Ĝ, Â, B̂ and ÂB are the

parameter estimates from fitting all terms from model 3.13 other than the C term,

i.e. from fitting the reduced model:

yijkm = G+ Ai +Bj + [AB]ij + eijkm. (3.14)

Similarly to the previous cases, a natural test statistic for testing
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H0C∗ : Ck + [AC]ik + [BC]jk + [ABC]ijk = 0

for i = 1, ..., a, j = 1, ..., b, k = 1, ...c vs

HαC∗ : Ck + [AC]ik + [BC]jk + [ABC]ijk 6= 0 for some i, j, k

is the standardized sum of squares for C and the interaction terms other than AB:

Ȳ ′Σ−1Ȳ − Ȳ ′Σ−1XC∗(X
′
C∗Σ

−1XC∗)
−X ′C∗Σ

−1Ȳ ∼ χ2
abc−r(XC∗), where

XC∗ = [Jabc, Ia ⊗ Jbc, Ja ⊗ (Ib ⊗ Jc), Iab ⊗ Jc]

For unknown Σ, the test statistic will be:

S̃I = Ȳ ′S−1Ȳ − Ȳ ′S−1XC∗(X
′
C∗S

−1XC∗)
−X ′C∗S

−1Ȳ (3.15)

Similarly to the previous terms, for H0C∗,we can construct the PB pivot variable

based on test statistic 3.15, replacing Ȳ with ȲB and S with SB:

S̃IB = Ȳ T
B S

−1
B ȲB − Ȳ T

B S
−1
B XC∗(X

T
C∗S

−1
B XC∗)

−XT
C∗S

−1
B ȲB (3.16)

For a given level α, the test rejects H0C∗ when P (S̃IB > s̃I) < α, where s̃I is

an observed value of S̃I in 3.15. This probability can be estimated by Algorithm 4.

Algorithm 4 could be used to test any main effect term that is not involved in an

interaction. To do so, the X-matrix in 3.15 and 3.16 should be replaced to reflect

the term being tested, as follows:

XA∗ = [Jabc, Ja ⊗ (Ib ⊗ Jc), Ja ⊗ (Jb ⊗ Ic), Ja ⊗ Ibc], where the reduced model is

yijkm = G+Bj + Ck + [BC]jk + eijkm;

XB∗ = [Jabc, Ia ⊗ Jbc, Ja ⊗ (Jb ⊗ Ic), Ia ⊗ (Jb ⊗ Ic)], where the reduced model is

yijkm = G+ Ai + Ck + [AC]ik + eijkm.

Algorithm 4 is identical to Algorithm 1 except that we use XA∗, XB∗ or XC∗ in

place of XABC in the calculation of S̃I and S̃IB.
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3.3.5 Simulations for Testing Interaction and Main Effects

Terms

For each term being tested, we consider model 3.1 and reduced models shown in

the previous corresponding sections. For each simulation, datasets were generated

under the reduced model with eijkm ∼ N(0, σ2
ijk), i = 1, ..., a, j = 1, ..., b, k =

1, ..., c, G = 0, and to meet the constraints
∑a

i=1Ai = 0,
∑b

j=1 Bj = 0,
∑c

k=1Ck = 0,∑b
j=1 ABij = 0,

∑c
k=1 ACik = 0, and

∑c
k=1 BCjk = 0. The sample mean and sample

variance vectors (ȳ111, ȳ112, ..., ȳabc), and (s2
111, s

2
112, ...s

2
abc) were calculated from each

simulated dataset. The simulation was performed with:

(1) a = b = c = 2 to form 8 combinations;

(2) population standard deviation σi = (σ111, σ112, ..., σ222):

σ2
1 = (1, 1, 1, 1, 1, 1, 1, 1), σ2

2 = (0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5), σ2
3 =

(1,1,1,1,0.5, 0.5, 0.5, 0.5), σ2
4 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1), σ2

5 = (0.1, 0.3,

0.9, 0.4, 0.7, 0.5, 0.6, 1), σ2
6 = (0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1);

(3) significance level α = 0.05 and α = 0.1;

(4) group sizes ni = (n111, n112, ..., n222) : n1 = (5,5,5,5,5,5,5,5), n2 = (10, 10,

10, 10, 10, 10, 10, 10), n3 = (3,3,4,5,4,5,6,6), n4 = (4, 6, 8,12, 14, 16, 18, 20).

For a given sample size and population variance configuration, we generated 2500

datasets, calculated the observed vectors (ȳ111, ȳ112, ..., ȳabc), and (s2
111, s

2
112, ...s

2
abc)

from the datasets, and used 5000 PB runs to estimate the p-value using Algorithms

1-4 as indicated. The p-value for the F-test (general linear test discussed in Section

3.2) for each term was also calculated for each simulated dataset using the ‘lm’

function in R (R Core Team, 2021). The tests were considered to reject if the p-

value was less than α, and the proportions rejected out of the 2500 datasets were
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calculated for both the algorithm and the F-test, and shown in Tables 3.1 – 3.4.

For simulations for the three-way interaction, datasets were generated under the

reduced model 3.5. Algorithm 1 was used to calculate the simulated p-value for the

PB test, and the F-test comparing the reduced model with model 3.1 was calculated

as described above; results shown in Table 3.1. Similarly: for the BC interaction

term, model 3.6 was the reduced model and Algorithm 2 was used - results shown in

Table 3.2; for the main effect C, model 3.10 was the reduced model and Algorithm

3 was used - results shown in Table 3.3; and for simulations of testing one main

effect when one two-way term is significant, model 3.14 was the reduced model and

Algorithm 4 was used - results shown in Table 3.4. We see from these tables that

the F-test does not work well for some cases, but the PB test is robust; simulation

results are discussed further in Section 3.6.
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Table 3.1: Simulation Results for Testing ABC Interaction.

Numbers in the table are simulated p-values, with four different sizes and six different vari-
ance vectors: n1 = (5, 5, 5, 5, 5, 5, 5, 5);n2 = (10, 10, 10, 10, 10, 10, 10, 10);n3 = (3, 3, 4, 5, 4, 5, 6, 6);
n4 = (4, 6, 8, 12, 14, 16, 18, 20);σ2

1 = (1, 1, 1, 1, 1, 1, 1, 1);σ2
2 = (0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5);

σ2
3 = (1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5);σ2

4 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1);
σ2
5 = (0.1, 0.3, 0.9, 0.4, 0.7, 0.5, 0.6, 1); σ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1), and the two different
α levels shown.

α = 0.05 α = 0.1

σ2
1 F-test Algorithm F-test Algorithm
n1 0.0576 0.0528 0.1104 0.1080
n2 0.0504 0.0492 0.1096 0.1092
n3 0.0556 0.0536 0.1068 0.0988
n4 0.0528 0.0476 0.1056 0.1020

σ2
2 F-test Algorithm F-test Algorithm
n1 0.0412 0.0348 0.1088 0.1012
n2 0.0568 0.0556 0.0936 0.0944
n3 0.0248 0.0412 0.0572 0.0848
n4 0.0088 0.0528 0.0256 0.0972

σ2
3 F-test Algorithm F-test Algorithm
n1 0.0492 0.0468 0.1060 0.1008
n2 0.0504 0.0500 0.0992 0.0984
n3 0.0688 0.0456 0.1252 0.0960
n4 0.1060 0.0544 0.1400 0.0940

σ2
4 F-test Algorithm F-test Algorithm
n1 0.0556 0.0500 0.1028 0.0968
n2 0.0504 0.0496 0.1044 0.1032
n3 0.0232 0.0416 0.0580 0.0928
n4 0.0100 0.0636 0.0252 0.1000

σ2
5 F-test Algorithm F-test Algorithm
n1 0.0552 0.0504 0.0900 0.0832
n2 0.0560 0.0548 0.0960 0.0940
n3 0.0340 0.0460 0.0816 0.1032
n4 0.0176 0.0484 0.0464 0.1056

σ2
6 F-test Algorithm F-test Algorithm
n1 0.0696 0.0576 0.1180 0.1036
n2 0.0564 0.0500 0.1192 0.1124
n3 0.0244 0.0452 0.0472 0.0904
n4 0.0060 0.0404 0.0160 0.1048
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Table 3.2: Simulation Results for Testing BC + ABC Interaction.

Numbers in the table are simulated p-values, with four different sizes and six different vari-
ance vectors: n1 = (5, 5, 5, 5, 5, 5, 5, 5);n2 = (10, 10, 10, 10, 10, 10, 10, 10);n3 = (3, 3, 4, 5, 4, 5, 6, 6);
n4 = (4, 6, 8, 12, 14, 16, 18, 20);σ2

1 = (1, 1, 1, 1, 1, 1, 1, 1);σ2
2 = (0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5);

σ2
3 = (1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5);σ2

4 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1);
σ2
5 = (0.1, 0.3, 0.9, 0.4, 0.7, 0.5, 0.6, 1); σ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1), and the two different
α levels shown.

α = 0.05 α = 0.1

σ2
1 F-test Algorithm F-test Algorithm
n1 0.0504 0.0440 0.1040 0.0864
n2 0.0528 0.0496 0.1044 0.1052
n3 0.0500 0.0452 0.1040 0.0920
n4 0.0528 0.0512 0.1008 0.0920

σ2
2 F-test Algorithm F-test Algorithm
n1 0.0784 0.0464 0.1112 0.0936
n2 0.0688 0.0456 0.1152 0.0948
n3 0.0496 0.0452 0.0864 0.0832
n4 0.0344 0.0492 0.0644 0.0900

σ2
3 F-test Algorithm F-test Algorithm
n1 0.0568 0.0416 0.0980 0.0908
n2 0.0544 0.0536 0.1020 0.0956
n3 0.0652 0.0424 0.1288 0.0932
n4 0.0812 0.0468 0.1392 0.0996

σ2
4 F-test Algorithm F-test Algorithm
n1 0.0624 0.0480 0.1168 0.0960
n2 0.0640 0.0424 0.0980 0.0908
n3 0.0388 0.0468 0.0720 0.0852
n4 0.0320 0.0420 0.0612 0.0948

σ2
5 F-test Algorithm F-test Algorithm
n1 0.0536 0.0392 0.0984 0.0844
n2 0.0456 0.0420 0.1048 0.1040
n3 0.0432 0.0460 0.0852 0.0972
n4 0.0280 0.0464 0.0604 0.0976

σ2
6 F-test Algorithm F-test Algorithm
n1 0.0816 0.0500 0.1340 0.1008
n2 0.0784 0.0496 0.1160 0.0996
n3 0.0336 0.0448 0.0720 0.0932
n4 0.0188 0.0512 0.0360 0.0972
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Table 3.3: Simulation Results for Testing Main Effect C and Interactions.

Numbers in the table are simulated p-values, with four different sizes and six different vari-
ance vectors: n1 = (5, 5, 5, 5, 5, 5, 5, 5);n2 = (10, 10, 10, 10, 10, 10, 10, 10);n3 = (3, 3, 4, 5, 4, 5, 6, 6);
n4 = (4, 6, 8, 12, 14, 16, 18, 20);σ2

1 = (1, 1, 1, 1, 1, 1, 1, 1);σ2
2 = (0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5);

σ2
3 = (1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5);σ2

4 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1);
σ2
5 = (0.1, 0.3, 0.9, 0.4, 0.7, 0.5, 0.6, 1); σ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1), and the two different
α levels shown.

α = 0.05 α = 0.1

σ2
1 F-test Algorithm F-test Algorithm
n1 0.0484 0.0404 0.0996 0.0920
n2 0.0468 0.0460 0.1056 0.1016
n3 0.0400 0.0376 0.1040 0.0900
n4 0.0520 0.0524 0.1048 0.1084

σ2
2 F-test Algorithm F-test Algorithm
n1 0.0672 0.0420 0.1232 0.0984
n2 0.0652 0.0480 0.1092 0.0872
n3 0.0496 0.0400 0.0780 0.0876
n4 0.0264 0.0508 0.0524 0.0956

σ2
3 F-test Algorithm F-test Algorithm
n1 0.0560 0.0424 0.1084 0.0936
n2 0.0644 0.0540 0.1160 0.0972
n3 0.0836 0.0400 0.1252 0.0872
n4 0.0988 0.0460 0.1704 0.1008

σ2
4 F-test Algorithm F-test Algorithm
n1 0.0660 0.0432 0.1144 0.0820
n2 0.0708 0.0480 0.1312 0.1084
n3 0.0424 0.0440 0.0620 0.0792
n4 0.0260 0.0532 0.0492 0.0988

σ2
5 F-test Algorithm F-test Algorithm
n1 0.0656 0.0388 0.1100 0.0880
n2 0.0580 0.0460 0.1188 0.0964
n3 0.0440 0.0460 0.1008 0.0920
n4 0.0352 0.0460 0.0688 0.1036

σ2
6 F-test Algorithm F-test Algorithm
n1 0.1152 0.0524 0.1612 0.0968
n2 0.1096 0.0504 0.1540 0.0988
n3 0.0584 0.0488 0.0984 0.0968
n4 0.0316 0.0460 0.0572 0.0896
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Table 3.4: Simulation Results for Testing Main Effect C When AB Interaction
Present.

Numbers in the table are simulated p-values, with four different sizes and six different vari-
ance vectors: n1 = (5, 5, 5, 5, 5, 5, 5, 5);n2 = (10, 10, 10, 10, 10, 10, 10, 10);n3 = (3, 3, 4, 5, 4, 5, 6, 6);
n4 = (4, 6, 8, 12, 14, 16, 18, 20);σ2

1 = (1, 1, 1, 1, 1, 1, 1, 1);σ2
2 = (0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5);

σ2
3 = (1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5);σ2

4 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1);
σ2
5 = (0.1, 0.3, 0.9, 0.4, 0.7, 0.5, 0.6, 1); σ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1), and the two different
α levels shown.

α = 0.05 α = 0.1

σ2
1 F-test Algorithm F-test Algorithm
n1 0.0480 0.0404 0.1096 0.0888
n2 0.0472 0.0468 0.0952 0.0972
n3 0.0512 0.0412 0.0908 0.0812
n4 0.0428 0.0404 0.1036 0.0940

σ2
2 F-test Algorithm F-test Algorithm
n1 0.0704 0.0396 0.1164 0.0832
n2 0.0668 0.0504 0.1204 0.0956
n3 0.0576 0.0344 0.0940 0.0756
n4 0.0384 0.0568 0.0680 0.0948

σ2
3 F-test Algorithm F-test Algorithm
n1 0.0540 0.0472 0.1100 0.0908
n2 0.0592 0.0528 0.1076 0.1032
n3 0.0824 0.0376 0.1292 0.0768
n4 0.0888 0.0472 0.1484 0.0904

σ2
4 F-test Algorithm F-test Algorithm
n1 0.0600 0.0400 0.1168 0.0908
n2 0.0668 0.0424 0.1160 0.0972
n3 0.0420 0.0428 0.0732 0.0840
n4 0.0284 0.0472 0.0580 0.0956

σ2
5 F-test Algorithm F-test Algorithm
n1 0.0612 0.0408 0.1068 0.0916
n2 0.0620 0.0520 0.1196 0.1080
n3 0.0504 0.0392 0.0944 0.0888
n4 0.0376 0.0436 0.0736 0.1016

σ2
6 F-test Algorithm F-test Algorithm
n1 0.1108 0.0452 0.1496 0.0988
n2 0.0916 0.0572 0.1524 0.1064
n3 0.0696 0.0500 0.1052 0.0948
n4 0.0336 0.0444 0.0512 0.0984

84



Chapter 3. PB Approach to Multi-factor heteANOVA Models

3.4 Multiple Comparison Procedures

For the three-way ANOVA illustration in the previous sections, if the highest order

term (i.e. the three-factor interaction term) is found to have a significant effect, or

if two or more of the two-factor interaction terms are found to be significant, one

can approach the problem as a one-way ANOVA problem with abc levels, and then

perform multiple comparisons of factor level means. Approaching this problem using

PB methods is described in detail by Zhang (2015b), which performs all pairwise

comparisons of factor level means analogously to Tukey’s test, but uses PB methods

to allow for unequal variances. If there are no significant interaction terms but some

main effects are found to be significant, all pairwise comparisons of the factor level

means of the significant main effects may be of interest.

3.4.1 Multiple Comparisons for Main Effects Only

Consider simultaneous comparisons of the factor A level means when no interactions

are present, i.e. in model 3.9. An estimator of the factor A level means, similar to

the estimator described in Zhang (2015b) is a weighted average of the corresponding

cell means:

Ȳi... =

∑
j

∑
k vjkȲijk∑

j

∑
k vjk

, where vjk =
∑
i nijk
N

, (3.17)

with N the total number of observations.

The variance of these estimators is found to be V (Ȳi...) = 1
(
∑
j,k vjk)2

∑
j

∑
k v

2
jk

σ2
ijk

nijk

with the estimated variance

V̂ (Ȳi...) =
1

(
∑

j,k vjk)
2

∑
j

∑
k

v2
jk

s2
ijk

nijk
. (3.18)

Similarly to Tukey’s test, a test statistic for testing H0 : Ai = Ai′ is
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qAii′ =
|Ȳi...−Ȳi′...|√

V̂ (Ȳi...)+V̂ (Ȳi′...)

Since we have unequal variances and possibly also unbalanced data, the studen-

tized range distribution typically used for Tukey’s test is inappropriate. Thus, we use

the PB method to simulate a distribution for the test statistic and for the confidence

interval ȳi...− ȳi′...± qAα
√

(V̂ (Ȳi...) + V̂ (Ȳi′...)), where qAα is the 1− α percentile of the

simulated distribution of q. The PB pivot variable for this procedure is based on the

test statistic qAii′ , and can be developed as follows.

For a given (ȳ111, ȳ112, ..., ȳabc, s
2
111, s

2
112, ..., s

2
abc), ȲBijk ∼ N(0, s2

ijk/nijk), and

s2
Bijk ∼

s2ijk
nijk−1

χ2
(nijk−1). In Algorithm 5 below, these variables are simulated. Then,

ȲBi... and ȲBi′... can be calculated from ȲBijk using 3.17, and the variances V (ȲBi...)

and V (ȲBi′...) are as in 3.18 with s2
Bijk taking the place of s2

ijk. Thus, the PB pivot

variable is:

qABii′ =
|ȲBi... − ȲBi′...|√

V̂ (ȲBi...) + V̂ (ȲBi′...)
(3.19)

Algorithm 5

For a given (ȳ111, ȳ112, ..., ȳabc), (s2
111, s

2
112, ..., s

2
abc), and (n111, n112, ..., nabc):

For l = 1, ..., L

Generate ȲBijk ∼ N(0, s2
ijk/nijk) and s2

Bijk ∼
s2ijk

nijk−1
χ2
nijk−1

Compute qABii′ using 3.19 for i = 1, ..., a− 1, i′ = i+ 1, ...a

Find ql = max(qABii′)

(end loop)

qAα is the 1− α percentile of the simulated distribution of q.

The procedure for simultaneous comparisons of the factor B or C level means,
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when no interactions are present, is analogous to Algorithm 5.

3.4.2 Multiple Comparisons for Two-Way Interaction Term

Consider simultaneous comparisons of the levels of the AB interaction term in model

3.13. An estimator of the AB level means is a weighted average of the corresponding

cell means, similar to the weights described in Zhang (2015b):

Ȳij.. =
∑
k

vkȲijk, where vk =
∑
i,j nijk

N
, (3.20)

with N the total number of observations.

The variance of these estimators is found to be V (Ȳij..) =
∑

k v
2
k

σ2
ijk

nijk
with the

estimated variance V̂ (Ȳij..) =
∑

k v
2
k

s2ijk
nijk

. Similarly to Tukey’s test, a test statistic for

testing H0 : ABij = ABi′j′ is

qABiji′j′ =
|Ȳij.. − Ȳi′j′..|√

V̂ (Ȳij..) + V̂ (Ȳi′j′..)
(3.21)

Since we have unequal variances and possibly also unbalanced data, the studen-

tized range distribution typically used for Tukey’s test is inappropriate. Thus, the PB

method is used to simulate a distribution for the test statistic and for the confidence

interval ȳij.. − ȳi′j′.. ± qABα
√

(V̂ (Ȳij..) + V̂ (Ȳi′j′..)), where qABα is the 1 − α percentile

of the simulated distribution of q. The PB pivot variable for this procedure is based

on the test statistic qABiji′j′ , and can be developed as follows.

For a given (ȳ111, ȳ112, ..., ȳabc, s
2
111, s

2
112, ..., s

2
abc), ȲBijk ∼ N(0, s2

ijk/nijk), and

s2
Bijk ∼

s2ijk
nijk−1

χ2
(nijk−1). In Algorithm 6 below, these variables are simulated. Then,

ȲBij.. and ȲBi′j′.. can be calculated from ȲBijk using 3.22 below, and the variances

V (ȲBij..) and V (ȲBi′j′..) are as above with s2
Bijk taking the place of s2

ijk. Thus, the

PB pivot variable is:
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qABBiji′j′ =
|ȲBij.. − ȲBi′j′..|√

V̂ (ȲBij..) + V̂ (ȲBi′j′..)
(3.22)

Algorithm 6

For a given (ȳ111, ȳ112, ..., ȳabc), (s2
111, s

2
112, ..., s

2
abc), and (n111, n112, ..., nabc):

For l = 1, ..., L

Generate ȲBijk ∼ N(0, s2
ijk/nijk) and s2

Bijk ∼
s2ijk

nijk−1
χ2
nijk−1

Compute qABBiji′j′ using 3.22 for all pairs (ij, i′j′) where ij 6= i′j′.

Take ql to be the max of the qABBiji′j′ for the lth run.

(end loop)

qABα is the 1−α percentile of the simulated distribution of q. Reject H0 : ABij =

ABi′j′ if the test statistic 3.21 is greater than qABα .

3.4.3 MCP Simulations

Datasets were generated under model 3.9 for simulating MCP for levels of Factor

A and under model 3.13 for MCP for levels of the AB interaction term, assuming

E(Y ) = 0 for all factor levels (such that H0 : Ai = Ai′ is true or H0 : ABij = ABi′j′

is true, respectively). For both simulations, the sample mean and sample variance

vectors (ȳ111, ȳ112, ..., ȳabc), and (s2
111, s

2
112, ...s

2
abc) were calculated from each simulated

dataset. The simulations were performed with a = 3, b = 2, c = 4 to form 24

combinations, and the population variances and sample size scenarios as:

σ2
1 = (1, 1, ..., 1), σ2

2 = (0.1, 0.1, ..., 0.1, 0.5, 0.5, ..., 0.5),
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σ2
3 = (1, 1, ..., 1, 0.5, 0.5, ..., 0.5), σ2

4 = (0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4,

0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7, 1, 1, 1), σ2
5 = (0.1, 0.1, 0.1, 0.3, 0.3,

0.3, 0.9, 0.9, 0.9, 0.4, 0.4, 0.4, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 1, 1, 1), σ2
6 =

(0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 1, 1, 1), and n1 = (5, 5, ..., 5), n2 = (10, 10, ..., 10), n3 = (3, 3, 3, 3, 3,

3, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6), n4 = (4, 4, 4, 6, 6, 6, 8, 8, 8, 12,

12, 12, 14, 14, 14, 16, 16, 16, 18, 18, 18, 20, 20, 20).

Each scenario was simulated for α = 0.05 and α = 0.1. For the factor A MCP

simulation, Tukey’s test was also performed on factor A for each dataset using the

‘TukeyHSD’ function in R, and on factor AB for the simulation for the AB term

MCP. The smallest p-value for Tukey’s test was checked and the test was considered

to reject if this p-value was less than α. For the algorithms, the 1 − α percentile

was taken from the simulated PB distribution, and the test was considered to reject

if the test statistic for the simulated dataset was greater than this percentile. The

proportions rejected out of the 2500 datasets were calculated for both the algorithm

and Tukey’s test, and shown in Table 3.5 for the factor A MCP simulation and Table

3.6 for the AB simulation. We see from these tables that Tukey’s test does not work

well for some cases, but the PB test is robust; simulation results are discussed further

in Section 3.6.
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Table 3.5: Results of Simulations For Testing Multiple Comparisons for Factor A.

Numbers in the table are simulated p-values. We consider four different sizes and six different

variance vectors as shown in Section 3.4.3, with the two different α levels shown.

α = 0.05 α = 0.1

σ2
1 Tukey Algorithm Tukey Algorithm
n1 0.0564 0.0544 0.0968 0.0972
n2 0.0448 0.0432 0.0972 0.1012
n3 0.0584 0.0512 0.0892 0.0864
n4 0.0488 0.0524 0.1016 0.1040

σ2
2 Tukey Algorithm Tukey Algorithm
n1 0.0564 0.0444 0.1028 0.0900
n2 0.0564 0.0508 0.1008 0.0948
n3 0.0332 0.0496 0.0616 0.0936
n4 0.0240 0.0584 0.0428 0.0860

σ2
3 Tukey Algorithm Tukey Algorithm
n1 0.0476 0.0412 0.0944 0.0880
n2 0.0544 0.0476 0.0996 0.0972
n3 0.0680 0.0484 0.1220 0.0916
n4 0.0792 0.0472 0.1512 0.1088

σ2
4 Tukey Algorithm Tukey Algorithm
n1 0.0580 0.0480 0.1008 0.0952
n2 0.0564 0.0476 0.1008 0.0984
n3 0.0340 0.0536 0.0732 0.0976
n4 0.0224 0.0472 0.0520 0.1004

σ2
5 Tukey Algorithm Tukey Algorithm
n1 0.0524 0.0496 0.1004 0.0980
n2 0.0496 0.0536 0.0980 0.0968
n3 0.0448 0.0520 0.0800 0.0940
n4 0.0292 0.0444 0.0656 0.0956

σ2
6 Tukey Algorithm Tukey Algorithm
n1 0.0736 0.0544 0.1100 0.0912
n2 0.0612 0.0508 0.1084 0.0956
n3 0.0276 0.0480 0.0616 0.0968
n4 0.0180 0.0508 0.0368 0.1000
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Table 3.6: Results of Simulations For Testing Multiple Comparisons for Levels of
AB.

Numbers in the table are simulated p-values. We consider four different sizes and six different

variance vectors as shown in Section 3.4.3, with the two different α levels shown.

α = 0.05 α = 0.1

σ2
1 Tukey Algorithm Tukey Algorithm
n1 0.0476 0.0368 0.0972 0.0888
n2 0.0524 0.0452 0.0940 0.0932
n3 0.0456 0.0432 0.1008 0.0784
n4 0.0452 0.0444 0.1092 0.1044

σ2
2 Tukey Algorithm Tukey Algorithm
n1 0.0768 0.0420 0.1376 0.0920
n2 0.0892 0.0500 0.1472 0.1020
n3 0.0552 0.0408 0.0988 0.0888
n4 0.0416 0.0508 0.0732 0.0944

σ2
3 Tukey Algorithm Tukey Algorithm
n1 0.0456 0.0372 0.1012 0.0900
n2 0.0592 0.0504 0.1004 0.0920
n3 0.0696 0.0376 0.1308 0.0804
n4 0.1028 0.0420 0.1624 0.0900

σ2
4 Tukey Algorithm Tukey Algorithm
n1 0.0792 0.0460 0.1192 0.0936
n2 0.0724 0.0456 0.1228 0.0820
n3 0.0484 0.0388 0.0852 0.0896
n4 0.0236 0.0488 0.0540 0.0936

σ2
5 Tukey Algorithm Tukey Algorithm
n1 0.0660 0.0468 0.1232 0.0980
n2 0.0736 0.0560 0.1052 0.0952
n3 0.0516 0.0456 0.0844 0.0796
n4 0.0368 0.0500 0.0752 0.0976

σ2
6 Tukey Algorithm Tukey Algorithm
n1 0.1148 0.0400 0.1500 0.0856
n2 0.0936 0.0464 0.1680 0.0996
n3 0.0572 0.0384 0.0852 0.1012
n4 0.0368 0.0448 0.0564 0.0920
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3.5 Data Analysis Example

An example dataset is shown that considers the effect on potato plants of three

factors with two levels each: variety of potato (1 or 2); cold acclimatization regimes

(0 for room temperature or 1 for cold room); exposure to cold temperatures (-4

degrees C coded as 1; -8 degrees C coded as 2). The response of interest is ion

leakage (a measure of damage to the plant). The data are unbalanced, as may be

encountered if some plants were lost during an experiment to measure effects of this

nature.

The data were analyzed using the lm function in R and PB Algorithms 1, 2, 4

and 6. Fitted-residual plots were examined for the biggest model, which includes all

main effects, two-way interaction terms, and the three-way interaction term. The

data were found to violate the equal variance assumption (see Figure 3.2). We also

note that the data are unbalanced; see Table 3.7. A quantile-quantile plot was also

examined for the residuals, and the normality assumption appeared to be violated. A

square root transformation was used after adding a constant to the response variable

to ensure positive values and the biggest model fit again. After transformation, the

data no longer appeared to violate the equal variance or normality assumption. The

fitted-residual plots before and after transformation are shown in Figure 3.2.

Variety Regime Temp N Leak (ȳijk) Std. Dev.
1 0 1 5 3.87 1.61
1 0 2 5 5.93 6.01
1 1 1 12 2.34 2.73
1 1 2 13 10.98 7.74
2 0 1 13 22.38 12.82
2 0 2 13 32.32 12.97
2 1 1 7 2.42 1.66
2 1 2 7 9.81 3.82

Table 3.7: Summary Statistics, Potato Data.
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Figure 3.2: Fitted-Residual Plots, Potato Data.

The p-value for the three-way interaction term on the transformed data was 0.383,

indicating no significant effect. Algorithm 1 was applied to the untransformed data

and obtained a p-value of 0.163 for the three-way interaction term, also indicating

no significant effect. The model was re-fit using the lm function in R, and the only

two-way interaction term found to have significant effect was the variety:regime term

with p-value near 0. Algorithm 2 was applied to the untransformed data three times

(once for each two-way interaction term). Similarly, the only significant two-way

term was variety:regime with p-value of 0. Finally, the model was fit again with

only the main effects and the variety:regime interaction term; using the lm function

found the main effect temp to be significant with p-value near 0. Algorithm 4 was

applied to the untransformed data to test the main effect (temp) not involved with

the interaction term and obtained the p-value 0.002, also indicating that the temp

term should remain in the model.

MCP were applied to the model with Tukey’s test and Algorithm 6; both found

a significant difference, with p-values near 0, between the same levels of the vari-

ety:regime interaction (ȳ10. and ȳ20.; ȳ20. and ȳ11.; ȳ20. and ȳ21., recalling that levels
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for variety were 1 and 2 and levels of regime were 0 and 1).

This analysis shows that the PB method applied to the untransformed data ob-

tains the same conclusions as performing F-tests and Tukey’s test on transformed

data. Thus, the PB method avoids the need for transformation and simplifies inter-

pretation of the results, as point estimates and standard errors for the differences

between levels are on the original scale. Additionally, with sufficient sample size, the

group means are approximately normal regardless of the distribution of the original

observations by the Central Limit Theorem (Casella and Berger, 2002). In this ex-

ample, despite smaller group sample sizes, the PB method appears to be robust to

violation of the normality assumption.

3.6 Discussion

As shown in Table 3.1, under equal variances and equal sample sizes, the F-test and

the algorithm perform similarly, with overall p-values near the nominal level. In

particular, with equal variances for all groups (σ2
1), both tests are near the nominal

level for all simulated sample sizes. However, for the other simulated (unequal)

variances, the F-test begins to over-reject or under-reject the null hypothesis for

those sample sizes with unbalanced data (n3 and n4).

For σ2
2, σ2

4, σ2
5, and σ2

6, the F-test rejects the null hypothesis less often than

would be expected when we have unbalanced data, indicating the F-statistic is ar-

tificially small due to the pooled variance estimate being artificially large. This is

particularly true for n4, where the largest group size has the largest variance (re-

call that calculating an estimate of pooled variance involves weighting each sample

variance by the sample sizes of the respective groups). On the other hand, for σ2
3,

the F-test rejects the null hypothesis more often than expected when we also have

(pronounced) unbalanced data. In this case, the F-statistic is artificially large due to
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the pooled variance estimate being artificially small. This is true for n4, where the

largest group size has a smaller variance. This is not as pronounced for n3; although

this group has unequal sample sizes, they are closer together than for n4. These

trends appear to be true both for α = 0.05 and α = 0.1. In these cases where the

F-test is either too conservative or too liberal, the algorithm still appears to give

satisfactory results, rejecting the null hypothesis approximately at the nominal level

α.

The simulation results for testing the BC (and ABC) interaction were similar

to those for testing the ABC interaction. Again, under equal variances and equal

sample sizes, the F-test and the algorithm perform similarly, with overall p-values

near the nominal level. However, for the other simulated (unequal) variances, the

F-test begins to over-reject or under-reject the null hypothesis for those sample sizes

with unbalanced data (n3 and n4). For σ2
2, σ2

4, σ2
5, and σ2

6, the F-test rejects the

null hypothesis less often than would be expected when we have unbalanced data.

Also similar to the results for testing the three-way interaction, for σ2
3, the F-test

rejects the null hypothesis more often than expected when we also have (pronounced)

unbalanced data, both for α = 0.05 and α = 0.1. Again, in all simulated cases, the

proportion rejected using the algorithm was fairly close to the nominal level. The

results shown in Table 3.3 and Table 3.4, with the F-test rejecting more or less often

than the nominal level in cases with both unequal variances and unbalanced data,

while the algorithm performs satisfactorily in each case, are similar to results of the

simulations shown in Tables 3.1 and 3.2 . While we illustrated this method with a

three-way ANOVA model, the test statistic S̃I for each term in the model takes on

the same form. Thus, models with additional factors should follow the same pattern,

though interpretation becomes more complicated with additional factors.

Table 3.5 shows the results for comparing our MCP PB method (Algorithm 5 –

pairwise comparisons of the levels of factor A) to Tukey’s test. As with the other
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simulations, the simulated p-values are near the specified α level for both methods

when we have homoscedasticity and balanced data (σ2
1 and n1 or n2). However, in

cases with both unequal variances and unbalanced data, the simulated p-values for

the algorithm are generally near the specified α level, whereas those for Tukey’s test

tend to be too conservative. An exception to this is with σ2
3 and n4, where Tukey’s

test rejected H0 more often than the nominal level. Similarly to our comparisons

between Algorithms 1–4 and the F-test, for σ2
3 and n4, smaller variances correspond

to larger sample sizes, so the pooled variance estimate used for Tukey’s test becomes

artificially small, and thus the test statistic artificially large. Table 3.6 shows the

results for comparing our MCP PB method (Algorithm 6 – pairwise comparisons of

the levels of the AB interaction term) to the analogous version of Tukey’s test. These

results are very similar to the results shown in Table 3.5, multiple comparisons of

the levels of A.

In this research, we looked at the multi-factor heteANOVA problem with unbal-

anced data, including MCP’s analogous to Tukey’s test from a parametric bootstrap

view and proposed applicable PB tests. Simulation results show that traditional

tests and the PB tests give acceptable results under the equal variance assumption.

Additionally, when data are balanced, the classical F-tests and MCP’s perform sat-

isfactorily in most heteroscedastic cases. However, for heteANOVA problems when

the equal variance assumption is violated and data are unbalanced, the traditional

tests no longer provide reasonable nominal levels, while the proposed PB methods

work well and are easy to implement.

A potential limitation of the proposed PB method is that it may still require the

normality assumption when sample sizes are small, so if a particular dataset violates

both the normality and homoscedasticity assumptions, a transformation may still

be needed. However, according to the Central Limit Theorem (Casella and Berger,

2002), with large sample sizes, the groups means are approximately normal regardless
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of the original distribution. In the potato data example, sample sizes were fairly

small and the PB test appeared robust to violation of the normality assumption.

Additionally, as discussed in the introduction and in Christensen (2016), we may

need to exercise caution when making practical decisions based on differences in

means between groups with unequal variances, carefully considering implications for

the practical issue being studied. In this study, we only examined two levels for each

factor in our simulations for Algorithms 1–4, for simplicity, so further simulations

with additional levels may be warranted. Despite these limitations, the proposed

PB tests provide viable methods for dealing with multi-factor heteANOVA problems

and MCP. Further areas for research may include extending the procedures to more

complicated models, such as additional factors/levels, models that include random

effects, or more complex designed experiments.
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PB Analogy to Dunnett’s Test

4.1 Introduction

Consider a one-way analysis of variance (ANOVA) problem with a treatment groups,

where the first group is a control group. Let Yij be the value of the response variable

in the jth trial for the ith factor level, µ + αi the mean for the ith factor level,

i = 1, 2, · · · , a, j = 1, 2, · · · , ni . The one-way ANOVA model is as follows:

Yij = µ+ αi + εij, (4.1)

where εij
iid∼ N(0, σ2

i ), and
∑

i αi = 0.

One may wish to perform multiple comparisons of the treatment groups with

the control group, rather than performing all pairwise comparisons. In this case,

procedures such as Tukey’s test, which examines all pairwise comparisons among the

treatment groups, can result in confidence intervals that are wider than necessary

(Dunnett, 1955). Under the equal variance assumption, Dunnett’s test (Dunnett,

1955; Kutner et al., 2005), which is similar to Tukey’s test, can be used for com-

paring treatment groups only against the control, and is frequently used in clinical
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or pharmacological studies (Tallarida and Murray, 1987; Strojek et al., 2011; Kutuk

et al., 2019; Cheng et al., 1990). Dunnett’s test compares a − 1 pairs (each group

with the control group), instead of the
(
a
2

)
pairs involved in all pairwise comparisons.

Dunnett’s test uses the statistic

|Ȳ1 − Ȳi|√
σ̂2(1/n1 + 1/ni)

(4.2)

where Ȳi is the sample mean for group i, i 6= 1, with α1 the parameter associated

with the control group, and σ̂2 is the pooled variance estimate
∑a
i=1

∑ni
n=1(Yij−Ȳi)2∑a
i=1 ni−a

.

When variances are equal, so the pooled variance estimate is appropriate for all

treatment groups, and data are balanced, the test statistic follows a special case

of a multivariate analog of the t-distribution (Miller, 1981), the density of which

was derived by Dunnett and Sobel (1954, 1955). Tables of critical values for this

distribution in various practical scenarios were developed by Dunnett (1955) and are

also available in software, e.g. the DunnettTest function in the R package DescTools

(Signorell et mult al, 2020).

When the assumption of equal variance is violated, we can modify the test statis-

tic to include the separate variance estimates as shown in the next section. However,

the modified test statistic no longer follows a known distribution. When the vari-

ances are unequal and the data are also unbalanced (hereafter called HeteANOVA

problem), the results of Dunnett’s test are questionable. Many alternative methods

were developed for the classical F-test and multiple comparisons for HeteANOVA

problems (Krishnamoorthy and Lu, 2007; Zhang, 2015a; Xu et al., 2013). Among

them, the parametric bootstrap (Krishnamoorthy and Lu, 2007) test is shown to be

one of the best for testing equality of factor level means. Recently, Zhang (2015a,b)

proposed PB multiple comparison tests for one-way and two-way ANOVA, which are

shown to be competitive.

Inspired by Dunnett’s test and PB tests, we develop a PB test that is similar to
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the PB multiple comparison procedures described in Zhang (2015a,b). This modified

PB test is analogous to Dunnett’s test, which performs simultaneous multiple com-

parisons of the treatment groups with the control for the heteANOVA problem. This

chapter is organized as follows: Section 4.2 proposes the methodology and presents

the algorithm; Section 4.3 performs a simulation study; Section 4.4 gives two real

examples; and Section 4.5 gives conclusions and discussion of the research.

4.2 Proposed PB Test and Algorithm

In this section, we develop a PB method for multiple comparisons of treatment

groups with the control group for a heteANOVA problem, and present an algorithm

to implement the test.

4.2.1 Proposed PB Test

Following the procedure from previous papers (Krishnamoorthy and Lu, 2007; Zhang,

2015a), consider the test statistic in equation 4.2. We modify this to include the

different group variances:

Ti =
|Ȳ1 − Ȳi|√

(s2
1/n1 + s2

i /ni)
(4.3)

As noted previously, this test statistic no longer follows a known distribution for

comparison; the aim of the PB method is to simulate this distribution. The test

is location invariant, so we assume without loss of generality that the mean of Ȳi

is zero for all i. Then Ȳi ∼ N(0, σ2
i /ni) and the sample variance S2

i ∼
σ2
i

n−1
χ2

(ni−1)

(Casella and Berger, 2002). These can be approximately simulated by pivot variables

ȲBi ∼ N(0, s2
i /ni), or equivalently, ȲBi ∼ N(0, 1)

√
s2
i /ni, and S2

Bi ∼
s2i
n−1

χ2
(ni−1).
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We can replace Ȳi and s2
i in equation 4.3 with ȲBi and S2

Bi to obtain a PB pivot

variable:

TPBi =
|ȲB1 − ȲBi|√

(S2
B1/n1 + S2

Bi/ni)
(4.4)

As described in Christensen (1996), Dunnett’s test is based on knowing the dis-

tribution of the maximum over i of the test statistic in equation 4.2 when the null

hypothesis of equality of all means is true; i.e. if H0 is not rejected for the maximum

difference, it would not be rejected for any of the differences. For the PB method,

we simulate a distribution for the test statistic 4.3, using 4.4. With this simulated

distribution, we can estimate the p-value or obtain a critical value which can be used

to construct confidence intervals. The procedure is shown in the following algorithm,

and example code for this algorithm is shown in Appendix C.

4.2.2 PB Algorithm for Comparing Multiple Treatment

Groups with Control

Algorithm 7

For a given (n1, n2, ..., na), (ȳ1, ȳ2, ..., ȳa), and (s2
1, s

2
2, ..., s

2
a), compute the test

statistic Ti in equation 4.3 for each group paired with the control group.

For l = 1, ..., L:

Generate ȲBi ∼ N(0, 1)
√
s2
i /ni, and S2

Bi ∼
s2i
n−1

χ2
(ni−1), i = 1, ..., a.

For each i 6= 1, compute the PB pivot variable TPBi as in equation 4.4.

Dl = maximum over i of the results from the previous step.

(end loop).
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D = (D1, ..., DL) is then a simulated distribution for the test statistic. One can

use the 1 − α quantile of D, Dcrit, as a critical value for a decision rule (i.e. reject

H0 : α1 = αi in favor of HA : α1 6= αi for some i, if the test statistic 4.3 is larger

than Dcrit) or construct a confidence interval using this critical value:

Ȳi − Ȳ1 ±Dcrit

√
(s2
i /ni + s2

1/n1).

As usual, if a p-value is desired, one can compute the proportion of values of D

that are greater than the test statistic in 4.3.

The code shown in Appendix C is one way to program the PB test (Algorithm

7) to simulate a distribution for the PB test statistic. The output here is the test

statistic and the p-value, but could be modified to return other values, for example,

Dcrit or confidence intervals. Processing time was checked for L=100000 for select

scenarios (n1 and n2 with σ2
1 and n4 with σ2

1 and σ2
5 from the simulation studies).

For one simulated dataset with these scenarios, the maximum processing time was

2.559 seconds. With L=5000, the maximum processing time for one of these datasets

was 0.164 seconds.

4.3 Simulations

4.3.1 Evaluation of Type I Error

To evaluate the performance of the algorithm in terms of Type I error, we simu-

lated 2500 datasets with µ = 0 and αi = 0 for all i, such that H0 is true, and

compared the rejection rate for both Dunnett’s Test, using the DunnettTest func-

tion in the R package DescTools Signorell et mult al (2020) and the PB method

(Algorithm 7) with L = 5000 bootstrap sample mean and variance vectors. We

used a = 6 treatment groups including the control, with σ2
1 = (1, 1, 1, 1, 1, 1), σ2

2 =
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(0.1, 0.1, 0.1, 0.5, 0.5, 0.5), σ2
3 = (1, 1, 1, 0.5, 0.5, 0.5), σ2

4 = (0.1, 0.2, 0.3, 0.4, 0.5, 1),

σ2
5 = (0.3, 0.9, 0.4, 0.7, 0.5, 1), and σ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 1). The sample size

vectors used in the simulations were n1 = (5, 5, 5, 5, 5, 5), n2 = (10, 10, 10, 10, 10, 10),

n3 = (3, 3, 4, 5, 6, 6), and n4 = (4, 6, 8, 12, 16, 20). The simulation settings follow from

Zhang (2015b). All calculations, simulations and data analysis were performed using

R (R Core Team, 2021).

Results are shown in Table 4.1. With the equal variance assumption, both Dun-

nett’s test and the PB test give acceptable results. Additionally, when data are

balanced, Dunnett’s test performs satisfactorily in most heteroscedastic cases. The

exception to this is for σ2
6 . In this case, the simulated p-value for Dunnett’s test is

higher than the nominal level even with balanced data. This variance vector includes

0.01 which is small, likely leading to an artificially small pooled variance estimate

and thus an artificially large test statistic, so the test rejects more often than the

nominal level.

The PB test outperforms Dunnett’s test, with simulated p-values close to the

nominal level for all simulation settings including unequal variance and unbalanced

data. In all heteroscedastic cases except σ2
3 , the proportion rejected for Dunnett’s

test is too conservative (less than the nominal level) when the data are unbalanced.

In these cases, the smaller variances in the simulations are for groups with smaller

sample sizes, and larger variances for groups with larger sample sizes. For these

settings, the pooled variance is artificially large, leading to a test statistic that is

artificially small. The opposite is true for σ2
3 , which assigns smaller variances to

larger group sizes, so the pooled variance estimate is too small and the test statistic

too large.
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Table 4.1: Simulation Results: MCP of Treatment Group Means vs. Control – Type
I Error.

Numbers in the table are simulated p-values. We consider four different sample sizes
and six different variance vectors as shown in Section 4.3.1, with the two different α
levels shown.

α = 0.05 α = 0.1

σ2
1 Dunnett PB Dunnett PB
n1 0.0516 0.0420 0.1044 0.0824
n2 0.0464 0.0360 0.1080 0.0980
n3 0.0448 0.0384 0.1052 0.0876
n4 0.0584 0.0592 0.0996 0.1052

σ2
2 Dunnett PB Dunnett PB
n1 0.0464 0.0444 0.0940 0.0872
n2 0.0420 0.0460 0.0868 0.1056
n3 0.0100 0.0364 0.0328 0.0836
n4 0.0016 0.0540 0.0080 0.0996

σ2
3 Dunnett PB Dunnett PB
n1 0.0704 0.0404 0.1272 0.0788
n2 0.0752 0.0364 0.1368 0.0976
n3 0.1000 0.0412 0.1836 0.0956
n4 0.1408 0.0592 0.2064 0.1068

σ2
4 Dunnett PB Dunnett PB
n1 0.0456 0.0472 0.0780 0.0928
n2 0.0424 0.0424 0.0744 0.1092
n3 0.0104 0.0376 0.0336 0.0844
n4 0.0004 0.0496 0.0020 0.0944

σ2
5 Dunnett PB Dunnett PB
n1 0.0348 0.0436 0.0768 0.0892
n2 0.0320 0.0412 0.0692 0.1056
n3 0.0184 0.0372 0.0604 0.0872
n4 0.0096 0.0556 0.0308 0.1016

σ2
6 Dunnett PB Dunnett PB
n1 0.0996 0.0540 0.1392 0.1060
n2 0.1000 0.0416 0.1440 0.1044
n3 0.0308 0.0412 0.0628 0.1056
n4 0.0016 0.0460 0.0036 0.0884
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4.3.2 Evaluation of Power

To evaluate the performance of the algorithm in terms of power, we simulated 2500

datasets for each combination of settings with µ = 0 and

α1 = (0, 0,−0.2, 0.2, 0.4, 0.8) or α2 = (0, 0,−0.3, 0.3, 0.6, 1.2), such that H0 is not

true, and compared the rejection rate for both Dunnett’s Test, using the

DunnettTest function in the R package DescTools (Signorell et mult al, 2020)

and the PB method (Algorithm 7) with L = 5000 bootstrap sample mean and

variance vectors. We used a = 6 treatment groups including the control, with

σ2
1 = (1, 1, 1, 1, 1, 1), σ2

2 = (0.1, 0.2, 0.3, 0.4, 0.5, 1), σ2
3 = (0.3, 0.9, 0.4, 0.7, 0.5, 0.1).

The sample size vectors used in the simulations were n1 = (15, 15, 15, 15, 15, 15),

n2 = (15, 15, 20, 20, 25, 25), n3 = (15, 18, 21, 24, 27, 30). The simulation settings

follow from Xu et al. (2013). All calculations, simulations and data analysis were

performed using R (R Core Team, 2021).

Results are shown in Table 4.2. With equal variance and balanced data (σ2
1

and n1), power was similar between the two methods or somewhat lower for the

PB version. However, with unequal variance and unbalanced data, power is similar

between the two methods or somewhat higher for the PB version. As expected, the

power for both tests is generally higher with the mean vector α2 as this has a larger

difference between groups, and with the sample size vectors n2 and n3, as these are

larger sample sizes for most groups. Note that with σ2
2 and both n2 and n3, the

largest group has the largest variance. Thus, we would expect the pooled variance

estimate to be too large, making Dunnett’s test statistic too small, and the test thus

being too conservative. We do see somewhat lower power for Dunnett’s test in Table

4.2 with these settings, though it is still acceptable. The opposite would be expected

for σ2
3 , where the largest group size has the smallest variance, and some increase in

power for Dunnett’s test with σ2
3 over σ2

2 is noted in Table 4.2.
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Table 4.2: Simulation Results: MCP of Treatment Group Means vs.
Control – Power.

Numbers in the table are simulated power, with three different sample sizes, three
different variance vectors, and two different mean vectors as shown in Section 4.3.2.

α1 α2

σ2
1 Dunnett PB Dunnett PB
n1 0.4136 0.3668 0.8056 0.7560
n2 0.5164 0.4532 0.9104 0.8740
n3 0.5456 0.4960 0.9332 0.9016

σ2
2 Dunnett PB Dunnett PB
n1 0.8036 0.7008 0.9916 0.9736
n2 0.8760 0.8928 0.9992 1.0000
n3 0.9072 0.9468 0.9996 0.9996

σ2
3 Dunnett PB Dunnett PB
n1 0.8356 0.9872 0.9988 0.9996
n2 0.9504 0.9904 1.0000 1.0000
n3 0.9656 0.9948 1.0000 1.0000

4.4 Applications

4.4.1 Iron Data

An example of the method is shown by applying it to the data discussed by Sananman

and Lear (1961) (data downloaded from website by Winner, University of Florida

Winner (2020)). The data concerns iron content, in milligrams per liter, found in

various depths of seawater. For this example, we considered surface water, where

Depth=0, to be the control group. Summary statistics are shown in Table 4.3. We

use five digits for the display as some of the sample variances are quite small. As

shown in the table, the variance for 40 feet is somewhat larger than the others, and

the variances at the shallower levels are somewhat smaller than those for the deeper
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levels.

Table 4.3: Summary Statistics for Iron Data.

Depth ȳi s2
i si ni

0 0.04267 0.00001 0.00252 3
10 0.03967 0.00006 0.00757 3
30 0.04533 0.00001 0.00231 3
40 0.10867 0.00169 0.04105 3
50 0.10333 0.00020 0.01401 3
100 0.20520 0.00052 0.02282 5

We fit the one-way ANOVA model and then checked assumptions of normality and

constant variance. By the Shapiro-Wilk test for normality using the shapiro.test

function in R (W = 0.9394, p-value = 0.2334), and examination of a normal plot of

the standardized residuals (residual plots shown below), the normality assumption

was satisfied. For checking the constant variance assumption, we examined a plot of

the standardized residuals against the fitted values from the ANOVA model (Figure

4.1, right panel). We also performed the Breusch-Pagan test using the function

bptest from the R package lmtest (Zeileis and Hothorn, 2002). The p-value from

the Breusch-Pagan test was 0.0596, between the commonly used alpha levels of 0.05

and 0.1, and the residual-fitted plot did appear to indicate non-constant variances.

Figure 4.1: Verification of Assumptions, Iron Data.
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Figure 4.2: Fitted-Residual Plots after Transformations, Iron Data.

Several transformations were attempted to satisfy the non-constant variance as-

sumption: log transformation; Box-Cox transformation using λ = −0.2; and since

the units of measurement mg/L could be considered a proportion, the sin−1√yij
transformation. The λ value for the Box-Cox transformation was found using the

boxcox function from the R package MASS (Venables and Ripley, 2002). While the

log transformation and the Box-Cox transformation improved the appearance of the

fitted-residual plots (shown in Figure 4.2), none of these improved the p-value from

the Breusch-Pagan test.

We performed Dunnett’s test, using the previously mentioned function in R,

on both the untransformed data and the Box-Cox transformed data. Of note, the

normality assumption was still satisfied after the Box-Cox transformation, with W

= 0.9554 and p-value = 0.4556 according to the Shapiro-Wilk test. The Dunnett’s

tests found a significant difference between the iron content of water from the surface

(treated as control) and all depths of 40 feet or greater. We then performed the

analogous PB test. This test only found a significant difference between the surface

and depths of 50 feet or greater. The differences between means, confidence intervals

and p-values are shown in Tables 4.4 and 4.5 for Dunnett’s test and Table 4.6 for

the PB test.
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Table 4.4: Results from Dunnett’s Test, Iron Data.

Diff Lower CI Upper CI p-value
10-0 -0.0030 -0.0508 0.0448 0.9998
30-0 0.0027 -0.0451 0.0504 0.9999
40-0 0.0660 0.0182 0.1138 0.0065
50-0 0.0607 0.0129 0.1084 0.0118

100-0 0.1625 0.1198 0.2053 0.0000

Table 4.5: Results from Dunnett’s Test, Box-Cox Iron Data.

Diff Lower CI Upper CI p-value
10-0 -0.1659 -0.8462 0.5143 0.9275
30-0 0.1140 -0.5663 0.7943 0.9835
40-0 1.5183 0.8380 2.1985 0.0001
50-0 1.5144 0.8341 2.1946 0.0004

100-0 2.5269 1.9185 3.1354 0.0000

Table 4.6: Results from PB Test, Iron Data.

Diff Lower CI Upper CI p-value
10-0 -0.0030 -0.0315 0.0255 0.9852
30-0 0.0027 -0.0095 0.0149 0.8072
40-0 0.0660 -0.0810 0.2130 0.3210
50-0 0.0607 0.0098 0.1115 0.0290

100-0 0.1625 0.0987 0.2263 0.0024

Recall from Table 4.3 that the measurements taken at 40 feet have a larger

variance than the other depths. Thus, the pooled variance estimate could be too small

for this group and lead to an artificially large test statistic in the traditional Dunnett’s

test. In fact, the mean squared error from the ANOVA model for the untransformed

data is 0.0004 and the sample variance of the 40-foot depth measurements is 0.0017.

A possible practical issue with these results is that if the goal was to get the most

iron-rich water from as shallow depth as possible, knowing that the surface was not

rich enough, obtaining the water from 40 feet deep could still yield samples that are

not as high in iron as desired.
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4.4.2 Elephant Ivory Data

An additional example of the method is shown by applying it to the data found in

the supplementary material of Ziegler et al. (2016). The data concerns isotope levels

in elephant tusks from different geographical areas. Summary statistics are shown

in Table 4.7. We considered Asia to be the “control” group as the other regions

were in Africa. While Ziegler et al. (2016) examined all pairwise comparisons of the

different regions using the Games-Howell post-hoc test (Games and Howell, 1976),

another possible question of interest could be whether any of the African regions

differ from Asia (rather than additionally comparing all of the African regions with

each other). The data are very unbalanced, and we can see from Table 4.7 and

Figure 4.3 that the variances appear unequal for the δ15N isotope ratio (nitrogen

stable isotope ratios expressed in δ units). Ziegler et al. (2016) looked at several

other isotopes and performed additional classification procedures, but we limited the

analysis in this study to one isotope simply to illustrate the method.

Region ni Ȳi s2
i

Asia 8 8.49 1.62
Central Africa 120 9.37 3.71
East Africa 37 9.78 6.15
Southern Africa 261 8.93 2.78
West Africa 69 5.85 1.40

Table 4.7: Summary Statistics, δ15N, Elephant Tusk Data.

We fit the one-way ANOVA model and then checked assumptions of normality and

constant variance. By the Shapiro-Wilk test for normality using the shapiro.test

function in R (W = 0.985, p-value near 0), and examination of a normal plot of the

residuals, the normality assumption was violated. The fitted-residual plot from the

ANOVA model indicated violation of the equal variance assumption. We also per-

formed the Breusch-Pagan (BP) test using the function bptest from the R package

lmtest (Zeileis and Hothorn, 2002) and Levene’s test using the leveneTest function
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Figure 4.3: δ15N by Region, Elephant Tusk Data.

from the R package car (Fox and Weisberg, 2019). The p-value from both formal

tests for equal variance were near 0 and the fitted-residual plot indicated unequal

group variances.

A log transformation was attempted to satisfy assumptions. The normality as-

sumption was then satisfied by appearance of the normal plot and formally by the

Shapiro-Wilk test, with W = 0.996 and p-value = 0.333. The fitted-residual plot

was somewhat improved after transformation but still appeared to violate the equal

variance assumption. The p-values for the BP test and Levene’s test were 0.031 and

0.013, respectively, for the transformed data. The fitted-residual plots before and

after transformation are shown in Figure 4.4.

We performed Dunnett’s test, using the previously mentioned function in R, on

the untransformed and the log transformed data; both found a significant difference

in δ15N isotope levels (nitrogen stable isotope ratios expressed in δ units) between
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Figure 4.4: Fitted-Residual Plots Before/After Transformation, Elephant Data.

Asia and West Africa, but not the other African regions studied. We then performed

the analogous PB test, which came to the same conclusion. The differences between

means, confidence intervals and p-values are shown in Table 4.8 and 4.9 for Dunnett’s

test and Table 4.10 for the PB test. An illustration of the method is depicted in

Figure 4.5, as a histogram of the PB simulated null distribution with its critical value

and the test statistic for comparing Asia to West Africa shown. We note that Ziegler

et al. (2016) also found a significant difference between Asia and East and Central

Africa for this isotope (see Table A4 in their supplementary material). The data they

report in their results (see Table 1 of Ziegler et al. (2016)) contained 507 observations

including 20 from Asia, while the data we used from their supplementary material

contained 495 observations, with only 8 observations from Asia. Additionally, in the

supplementary material data, Rwanda appears to be classified as part of Central

Africa, but in their Table 1, it is classified as East Africa. So, it is possible that

the difference between our findings and those of Ziegler et al. (2016) could be due

to these differences in sample sizes, with the missing observations coming from Asia.
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Finally, Ziegler et al. (2016) state that, with some exceptions, single isotope markers

alone are of little usefulness for forensic purposes, so we emphasize that findings from

this study for one particular isotope would be best combined with other results for

practical application. They also state several biological and environmental factors

to consider when interpreting findings. However, in the interest of brevity, we chose

to illustrate the proposed method with only one of the isotope ratios.

Diff Lower CI Upper CI p-value
Central Africa-Asia 0.89 -0.53 2.31 0.27

East Africa-Asia 1.29 -0.23 2.80 0.11
Southern Africa-Asia 0.44 -0.96 1.83 0.69

West Africa-Asia -2.64 -4.09 -1.19 0.00

Table 4.8: Results from Dunnett’s Test, Elephant Data.

Diff Lower CI Upper CI p-value
Central Africa-Asia 0.09 -0.07 0.25 0.35

East Africa-Asia 0.12 -0.05 0.29 0.21
Southern Africa-Asia 0.04 -0.12 0.20 0.77

West Africa-Asia -0.38 -0.54 -0.22 0.00

Table 4.9: Results from Dunnett’s Test, Log Elephant Data.

Diff Lower CI Upper CI p-value
Central Africa-Asia 0.89 -0.42 2.19 0.19

East Africa-Asia 1.29 -0.35 2.93 0.12
Southern Africa-Asia 0.44 -0.81 1.69 0.61

West Africa-Asia -2.64 -3.91 -1.36 0.00

Table 4.10: Results from PB Test, Elephant Data.

In this case, while the log transformation corrected the violation of the normal-

ity assumption, it could not completely correct the violation of the equal variance

assumption though the fitted-residual plot was somewhat improved. Although both
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PB Null Distribution, Elephant Data 
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Figure 4.5: PB Distribution, Elephant Tusk Data.

methods came to the same conclusion, a researcher could have more confidence in

the result from the PB method since it does not require the equal variance assump-

tion, and avoids the need for transformation. Additionally, for the difference between

Asia and West Africa, the PB method produced narrower confidence intervals. In

this case, the mean squared error from the ANOVA model, which would be used as a

pooled variance estimate in the traditional Dunnett’s test, was 3.046, which is much

larger than the variance for Asia and West Africa in particular, so would produce

a test statistic that is smaller than necessary (and thus less likely to reject the null

hypothesis of no difference between these two groups). This is somewhat similar to

the simulation setting (for evaluating Type I error) of n4 with σ2
5, although in that
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simulation setting the largest group had the largest variance; in the elephant dataset,

the largest group size had the third largest variance. Still, in that simulation setting,

Dunnett’s test was too conservative due to the pooled variance estimate being too

large for some groups, which is similar to the findings here of confidence intervals for

Dunnett’s test being wider than those of the PB test for the Asia and West Africa

comparison.

While the PB method uses the normality assumption, it uses group means in its

calculations, which should be approximately normal regardless of the distribution of

the individual observations, at least for large samples, by the Central Limit Theorem

(Casella and Berger, 2002), so it is plausible that the PB test could also be robust

to violations of the normality assumption.

4.5 Conclusions and Discussion

In this research, we looked at Dunnett’s test from a parametric bootstrap view and

proposed a PB test for comparing treatment groups with the control. Simulation

results show that both Dunnett’s test and the PB test give acceptable results under

the equal variance assumption. Additionally, when data are balanced, Dunnett’s

test performs satisfactorily in most heteroscedastic cases. However, for heteANOVA

problems, where the equal variance assumption is violated and data are unbalanced,

Dunnett’s test no longer provides reasonable nominal levels, while the proposed PB

method works well. The two real examples illustrate that the classical way of trans-

formation to deal with unequal variance is not guaranteed and interpretation of the

results after transformation could be difficult. The proposed PB test is robust to

violation of equal variance even when data are unbalanced, and it is easy to imple-

ment.

While Dunnett’s test performed satisfactorily with most balanced data cases in
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simulations, the rejection rate can be much higher or lower than the nominal level

for the heteANOVA problem. One reason for this is that if one group’s variance is

much smaller than the others, the pooled variance estimate will be too large, leading

to an artificially small test statistic. On the other hand, if one group’s variance is

much larger than the others, the pooled variance estimate will be too small, leading

to an artificially large test statistic.

Some limitations of the proposed PB method are that it may require the nor-

mality assumption for small sample sizes, so if a particular dataset violates both

assumptions, a transformation may still be needed. Additionally, as described in

Christensen (2016) section 4.3, caution should be exercised when making practical

decisions based on differences in means between groups with unequal variances. For

example, if a lower value of a response is desired, such as blood pressure, a treatment

group with a smaller mean and smaller variance may have a smaller probability of

achieving the desired outcome than a treatment group with a larger mean but also

larger variance. Thus, additional consideration of implications for the practical is-

sue being studied is warranted. This issue is illustrated in the iron data example.

Despite these limitations, the proposed PB test is a viable method for performing

multiple comparisons of treatment vs control for the heteANOVA problem.
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Conclusions and Future Work

5.1 Phylogenetic Inference

The methods developed in Chapter 2 show that robustness of the GLASS/STEM

tree to gene tree estimation error (GTEE) can be improved through measurement

error modeling. Limitations to these new methods include, as discussed in Chapter 2,

that they perform fewer functions than the STEM software, which allows for multiple

individuals of the same species, returns the likelihood, and handles missing data,

while genX and the Bayesian method simply return an inferred species tree. While

it was not designed to take the place of other methods such as ASTRAL (Zhang et al.,

2018), it could provide starting trees for other possibly slower methods. Additionally,

while the genX method is statistically consistent when the expected value of the errors

between true and estimated gene trees is zero, this assumption does not appear to

be true in most simulated cases. The Bayesian approach discussed in Chapter 2

can be more accurate than the genX method for some settings, but can be prone

to convergence issues and requires more computation time. A possible area for

future development of the Bayesian method could explore use of other priors elicited
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from a wider variety of simulated trees or perhaps additional empirical datasets.

Since the new methods still show lower accuracy with lower values of the population

scaled mutation rate θ and shorter DNA sequence lengths, they do not appear to be

completely correcting for GTEE. This could be explored further by inferring species

trees from known gene trees using STEM, inferring species trees from estimated

gene trees (estimated from DNA sequences simulated from the known ones) using

genX, and then comparing the RF distances of both to the true species tree. The

improvement noted is limited to the scenarios simulated in this study; it is unknown

how the new methods would perform outside of these. However, the genX method

did perform fairly well on one of the empirical datasets shown here, and the Bayes

X method inferred the correct tree from both empirical datasets. Areas for future

research in this area could include studying the method on a wider variety of trees,

which may allow for further correction for GTEE, exploring whether other distance

matrix methods of species tree inference could also be improved with measurement

error modeling, and extending the method to perform additional functions.

5.2 PB Methods for heteANOVA Data

The methods shown in Chapters 3 and 4 extend previously developed methods for

handling violation of the equal variance assumption in one- and two-way ANOVA

models to the three-way ANOVA model, and we expect that they could be further

extended to higher-way models, though interpretation could be complicated (as with

standard higher-way models). A major benefit of these methods is that they help

avoid the need for transforming data to meet assumptions, which can also make

interpretation more complicated. A potential limitation of these methods is that they

may still require the normality assumption for small sample sizes, so transformation

could still be needed in this case. However, with large sample sizes, the group means
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used in these methods are approximately normal regardless of the distribution of

the individual observations according to the Central Limit Theorem. In the potato

dataset example used in Chapter 3, where the normality assumption was violated

and sample sizes fairly small, the method appeared robust to this violation. One area

for future research would be to try these methods on additional real datasets. The

computer code shown in the appendix only returns p-values and/or critical values,

but is easily modified for the MCP to return additional output such as confidence

intervals (as shown with the PB version of Dunnett’s test applied to the iron data).

While the PB methods of testing main and interaction effects in a heteANOVA model

do not depend on the identifiability constraints chosen, these constraints would need

to be specified to obtain parameter estimates, and the code as written does not

calculate parameter estimates. This function would be desirable if the algorithms

here were compiled into a software package. Additionally, future research could

involve extending the methods to more complicated models. Finally, as discussed

in earlier chapters, caution is needed with practical application of results when the

treatment groups considered have unequal variance, as a group with a mean closer to

a desired level could have a lower probability of reaching that level than a group with

a mean slightly further from the desired level, but with larger variance. Nevertheless,

since the unequal variance issue does arise in practice, and data may be unbalanced

for reasons out of an experimenter’s control, methods for dealing with the issue

are useful, and the methods here provide a viable option that avoids the need for

transformation of the data.
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Appendix A

R Code for genX

library(ape)

library(gdata)

pwd1 <- function(tree){

nt <- length(tree$tip.label) #count number of taxa

dm <- matrix(0, nt, nt) #set up matrix to store pwdist for one tree

taxa <- as.character(1:nt) #taxa need to be named 1:4 etc. in order.

for (k in 1:(nt-1)){

for (i in 1:(nt-k)){

dm[i,i+k] <- max(drop.tip(tree, taxa[taxa!=taxa[i] & taxa!=taxa[i+k]])$edge.length)

#pwdist bw taxa (i, i+k)

} #end i loop

} #end k loop

pwd1 <- t(dm)[lower.tri(t(dm))] #transpose to get the values in the "right" order

return(pwd1)

}

#get a matrix of pairwise distances from multiple trees

pwdists <- function(in.file){ #start function

trees <- read.tree(in.file) #read in trees

est_gt <- data.frame(matrix(unlist(lapply(trees, pwd1)), byrow=TRUE, nrow=length(trees)))

return(est_gt)

}

dist.mat <- function(pwdist.obj, nt, theta){

dm <- matrix(0, nt, nt)

mins<- apply(pwdist.obj,2, function(x) min(x[x>0]))/theta
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upperTriangle(dm, byrow=TRUE) <- mins #needs library(gdata)

return(dm)

}

genX <- function(W, nloci, nspecies, theta) { #W is output from pwdists function

W <- W/(theta/2)

est.tau <- apply(W, 2, function(x) mean(x)-1)

expos <- matrix(replicate(nloci*choose(nspecies,2), rexp(1) ), nrow=nloci, ncol=choose(nspecies,2))

#just take one of the exponentials for each entry, not the mean of 30 of them

X.tilde <- matrix(NA, nloci, choose(nspecies,2))

for (j in 1:choose(nspecies,2)){

X.tilde[,j] <- expos[,j] + est.tau[j]

}

dm <- dist.mat(X.tilde, nt=nspecies, theta=1) #already accounted for theta

hc <- hclust(as.dist(t(dm)), method="single")

estST <- as.phylo(hc)

return(estST)

}

##load the above functions, assign W <- pwdists("genetrees.txt")

##where "genetrees.txt" is file of trees in Newick format

##then run genX function with the indicated arguments
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R Code for PB Algorithms 1 – 6

####Algorithm 1

alg.ABC <- function(ns, ybars, s2, a, b, c, L){

S <- diag(s2/ns) ##make S matrix

##make terms for X matrix

J.abc <- rep(1, a*b*c)

I.a <- diag(a)

I.b <- diag(b)

I.c <- diag(c)

J.bc <- rep(1, b*c)

J.a <- rep(1, a)

J.b <- rep(1,b)

J.c <- rep(1,c)

I.ab <- diag(a*b)

I.bc <- diag(b*c)

X <- as.matrix(cbind(

J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.b, J.c)),

kronecker(J.a, kronecker(J.b, I.c)), kronecker(I.ab, J.c), kronecker(I.a, kronecker(J.b, I.c)),

kronecker(J.a, I.bc)))

#test statistic

library(MASS)

SI <- t(ybars)%*%solve(S)%*%ybars -

t(ybars)%*%solve(S)%*%X%*%ginv(t(X)%*%solve(S)%*%X)%*%t(X)%*%solve(S)%*%ybars
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##Q, counts how many times test stat is less than PB pivot variable

Q <- NULL

for(j in 1:L) {

ybar.B <- NULL

S2B <-NULL

for (i in 1:length(ybars)) {

ybar.B[i] <- rnorm(1, mean=0, sd=sqrt(s2/ns)[i]) ##create bootstrap mean vector

S2B[i] <- rchisq(1, df=(ns[i]-1)) * s2[i]/(ns[i]-1) ##create bootstrap variances vector

}

SB <- diag(S2B/ns)

##PB variable:

SIB <- t(ybar.B)%*%solve(SB)%*%ybar.B -

t(ybar.B)%*%solve(SB)%*%X%*%ginv(t(X)%*%solve(SB)%*%X)%*%t(X)%*%solve(SB)%*%ybar.B

Q[j] <- ifelse(SIB>SI, 1, 0)

}

return(sum(Q)/length(Q)) ##p-value

}

#Algorithm 2

alg.BC <- function(ns, ybars, s2, a, b, c, L){

S <- diag(s2/ns) ##make S matrix

##make terms for X matrix

J.abc <- rep(1, a*b*c)

I.a <- diag(a)

I.b <- diag(b)

I.c <- diag(c)

J.bc <- rep(1, b*c)

J.a <- rep(1, a)

J.b <- rep(1,b)

J.c <- rep(1,c)

I.ab <- diag(a*b)

I.bc <- diag(b*c)

X <- as.matrix(cbind(

J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.b, J.c)),

kronecker(J.a, kronecker(J.b, I.c)), kronecker(I.ab, J.c), kronecker(I.a, kronecker(J.b, I.c))))

#test statistic
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library(MASS)

SI <- t(ybars)%*%solve(S)%*%ybars -

t(ybars)%*%solve(S)%*%X%*%ginv(t(X)%*%solve(S)%*%X)%*%t(X)%*%solve(S)%*%ybars

##Q, counts how many times test stat is less than PB pivot variable

Q <- NULL

for(j in 1:L) {

ybar.B <- NULL

S2B <-NULL

for (i in 1:length(ybars)) {

ybar.B[i] <- rnorm(1, mean=0, sd=sqrt(s2/ns)[i]) ##create bootstrap mean vector

S2B[i] <- rchisq(1, df=(ns[i]-1)) * s2[i]/(ns[i]-1) ##create bootstrap variances vector

}

SB <- diag(S2B/ns)

##PB variable:

SIB <- t(ybar.B)%*%solve(SB)%*%ybar.B -

t(ybar.B)%*%solve(SB)%*%X%*%ginv(t(X)%*%solve(SB)%*%X)%*%t(X)%*%solve(SB)%*%ybar.B

Q[j] <- ifelse(SIB>SI, 1, 0)

}

return(sum(Q)/length(Q)) ##p-value

}

############################

#Algorithm 3

alg.C <- function(ns, ybars, s2, a, b, c, L){

S <- diag(s2/ns) ##make S matrix

##make terms for X matrix

J.abc <- rep(1, a*b*c)

I.a <- diag(a)

I.b <- diag(b)

I.c <- diag(c)

J.bc <- rep(1, b*c)

J.a <- rep(1, a)

J.b <- rep(1,b)

J.c <- rep(1,c)

I.ab <- diag(a*b)

I.bc <- diag(b*c)
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X <- as.matrix(cbind( J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.b, J.c))))

#test statistic

library(MASS)

SI <- t(ybars)%*%solve(S)%*%ybars -

t(ybars)%*%solve(S)%*%X%*%ginv(t(X)%*%solve(S)%*%X)%*%t(X)%*%solve(S)%*%ybars

##Q, counts how many times test stat is less than PB pivot variable

Q <- NULL

for(j in 1:L) {

ybar.B <- NULL

S2B <-NULL

for (i in 1:length(ybars)) {

ybar.B[i] <- rnorm(1, mean=0, sd=sqrt(s2/ns)[i]) ##create bootstrap mean vector

S2B[i] <- rchisq(1, df=(ns[i]-1)) * s2[i]/(ns[i]-1) ##create bootstrap variances vector

}

SB <- diag(S2B/ns)

##PB variable:

SIB <- t(ybar.B)%*%solve(SB)%*%ybar.B -

t(ybar.B)%*%solve(SB)%*%X%*%ginv(t(X)%*%solve(SB)%*%X)%*%t(X)%*%solve(SB)%*%ybar.B

Q[j] <- ifelse(SIB>SI, 1, 0)

}

return(sum(Q)/length(Q)) ##p-value

}

#Algorithm 4

alg.C.AB <- function(ns, ybars, s2, a, b, c, L){

S <- diag(s2/ns) ##make S matrix

##make terms for X matrix

J.abc <- rep(1, a*b*c)

I.a <- diag(a)

I.b <- diag(b)

I.c <- diag(c)

J.bc <- rep(1, b*c)

J.a <- rep(1, a)

J.b <- rep(1,b)
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J.c <- rep(1,c)

I.ab <- diag(a*b)

I.bc <- diag(b*c)

X <- as.matrix(cbind(J.abc, kronecker(I.a, J.bc), kronecker(J.a, kronecker(I.b, J.c)),

kronecker(I.ab, J.c)))

#test statistic

library(MASS)

SI <- t(ybars)%*%solve(S)%*%ybars -

t(ybars)%*%solve(S)%*%X%*%ginv(t(X)%*%solve(S)%*%X)%*%t(X)%*%solve(S)%*%ybars

##Q, counts how many times test stat is less than PB pivot variable

Q <- NULL

for(j in 1:L) {

ybar.B <- NULL

S2B <-NULL

for (i in 1:length(ybars)) {

ybar.B[i] <- rnorm(1, mean=0, sd=sqrt(s2/ns)[i]) ##create bootstrap mean vector

S2B[i] <- rchisq(1, df=(ns[i]-1)) * s2[i]/(ns[i]-1) ##create bootstrap variances vector

}

SB <- diag(S2B/ns)

##PB variable:

SIB <- t(ybar.B)%*%solve(SB)%*%ybar.B -

t(ybar.B)%*%solve(SB)%*%X%*%ginv(t(X)%*%solve(SB)%*%X)%*%t(X)%*%solve(SB)%*%ybar.B

Q[j] <- ifelse(SIB>SI, 1, 0)

}

return(sum(Q)/length(Q)) ##p-value

}

##Algorithm 5

#######ALGORITHM for PB mult comparisons of the levels of factor A

#make a PB "Q" distrib for the multiple comparisons and calculate a test stat

Q.test.dist <- function(L=5000, ns, means, s2, alpha=0.05, a, b, c){

##Calculate weights for actual test stat and the PB pivot variable

library(plyr)
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ns.ind <- arrange(expand.grid(A=1:a, B=1:b, C=1:c), A,B)

n.grp <- array(0, c(a,b,c)) ##array does not fill entries in the desired order.

for(i in 1:a){

for(j in 1:b){

for(k in 1:c)

n.grp[i,j,k] = ns[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

}

}

v.weight <- matrix(0, b, c)

for(j in 1:b){

for(k in 1:c){

v.weight[j,k] <- sum(n.grp[,j,k])

}

}

vjk <- as.vector(t(v.weight/sum(ns))) ##the weights in order of the j,k index

#calculate factor level estimated means (using the weights) for the test statistic

ybari <- rep(0,a)

ni <- rep(0,a)

var.YA <- rep(0, a)

ni[1] <- sum(ns[1:(b*c)])

ybari[1] <- sum(vjk*means[1:(b*c)])

var.YA[1] <- sum(vjk^2 * (s2/ns)[1:(b*c)])

for(i in 2:a){

ybari[i] <- sum(vjk*means[(b*c*(i-1)+1):(i*b*c)])

ni[i] <- sum(ns[(b*c*(i-1)+1):(i*b*c)])

var.YA[i] <- sum(vjk^2 * (s2/ns)[(b*c*(i-1)+1):(i*b*c)])

}

Qtest.mat <- matrix(0,a,a)

#we just fill in upper triangular part

for (r in 1: (a -1))

for (s in (r+1):(a)){

Qtest.mat[r,s]<- abs(ybari[r] - ybari[s])/sqrt(var.YA[r] + var.YA[s])

}

Q.test <- max(Qtest.mat)

##calculate the parts of the PB pivot variable

Q <- rep(0, L)

for(i in 1:L){ ##calculate the bootstrap means and sample variances

y.B <- rep(0, length(means))

s2.B <- rep(0, length(s2))
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for (j in 1:length(means)){

y.B[j]<- rnorm(1, 0, sqrt(s2[j]/ns[j]))

s2.B[j] <- rchisq(1, df=(ns[j]-1))*s2[j]/(ns[j]-1)

}#end the j loop

#now Q will be the PB analogy of the Q.test above. we use the same ni’s

yB.bari <- rep(0,a)

var.YBA <- rep(0, a)

yB.bari[1] <- sum(vjk*y.B[1:(b*c)])

var.YBA[1] <- sum(vjk^2 * (s2.B/ns)[1:(b*c)])

for(m in 2:a){

yB.bari[m] <- sum(vjk*y.B[(b*c*(m-1)+1):(m*b*c)])

var.YBA[m] <- sum(vjk^2 * (s2.B/ns)[(b*c*(m-1)+1):(m*b*c)])

} #end m loop

Qmat <- matrix(0,a,a)

#we just fill in upper triangular part

for (r in 1: (a -1))

for (s in (r+1):a){

Qmat[r,s]<- abs(yB.bari[r] - yB.bari[s])/sqrt(var.YBA[r] + var.YBA[s])

}

Q[i] <-max(Qmat)

} #end i loop that has L reps

Q.crit <-quantile(Q, 1-alpha)

list(Q.crit = Q.crit, Q.test = Q.test)

}

##Algorithm 6

#######ALGORITHM for PB mult comparisons of the levels of AB int. term

#make a PB "Q" distrib for the multiple comparisons and calculate a test stat

Q.ABmc <- function(L=5000, ns, means, s2, alpha=0.05, a, b, c){

##get the ns, means and s2 in an array so we can identify the indices

library(plyr)

ns.ind <- arrange(expand.grid(A=1:a, B=1:b, C=1:c), A,B)

n.grp <- array(0, c(a,b,c)) ##array does not fill entries in the desired order.
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s2.grp <- array(0, c(a,b,c))

means.grp <- array(0, c(a,b,c))

for(i in 1:a){

for(j in 1:b){

for(k in 1:c){

n.grp[i,j,k] = ns[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

s2.grp[i,j,k] = s2[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

means.grp[i,j,k] = means[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

}

}

}

##Calculate weights vk for actual test stat and the PB pivot variable

vk <- rep(0, c)

for(k in 1:c){

vk[k] <- sum(n.grp[,,k])

}

v.wt.k <- vk/sum(ns) ##the weights in order of the k index

#calculate estimated means (using the weights) for each level of AB for the test statistic

ybarij <- matrix(0, a, b)

var.YAB <- matrix(0, a, b)

for(i in 1:a){

for(j in 1:b){

ybarij[i,j] <- sum(v.wt.k*means.grp[i,j,])

var.YAB[i,j] <- sum(v.wt.k^2 * s2.grp[i,j,]/n.grp[i,j,])

}

}

ybarijVect <- as.vector(ybarij)

var.YABvect <- as.vector(var.YAB)

Qtest.mat <- matrix(0,a*b,a*b)

#we just fill in upper triangular part

for (r in 1: ((a*b) -1))

for (s in (r+1):(a*b)){

Qtest.mat[r,s]<- abs(ybarijVect[r] - ybarijVect[s])/sqrt(var.YABvect[r] + var.YABvect[s])

}

Q.test <- max(Qtest.mat)

##calculate the parts of the PB pivot variable
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Q <- rep(0, L)

for(l in 1:L){ ##calculate the bootstrap means and sample variances

y.B <- rep(0, length(means))

s2.B <- rep(0, length(s2))

for (j in 1:length(means)){

y.B[j]<- rnorm(1, 0, sqrt(s2[j]/ns[j]))

s2.B[j] <- rchisq(1, df=(ns[j]-1))*s2[j]/(ns[j]-1)

}#end the j loop

#put the bootstrap means and s2’s in indexed arrays

s2B.grp <- array(0, c(a,b,c))

meansB.grp <- array(0, c(a,b,c))

for(i in 1:a){

for(j in 1:b){

for(k in 1:c){

s2B.grp[i,j,k] = s2.B[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

meansB.grp[i,j,k] = y.B[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

n.grp[i,j,k] = ns[which(ns.ind$A==i & ns.ind$B==j & ns.ind$C==k)]

}

}

}

#now Q will be the PB analogy of the Q.test above, use same weights

yB.barij <- matrix(0, a, b)

varB.YAB <- matrix(0, a, b)

for(i in 1:a){

for(j in 1:b){

yB.barij[i,j] <- sum(v.wt.k*meansB.grp[i,j,])

varB.YAB[i,j] <- sum(v.wt.k^2 * s2B.grp[i,j,]/n.grp[i,j,])

}

}

yB.barijVect <- as.vector(yB.barij)

varB.YABvect <- as.vector(varB.YAB)

Qmat <- matrix(0,a*b,a*b)

#we just fill in upper triangular part

for (r in 1: ((a*b) -1))

for (s in (r+1):(a*b)){

Qmat[r,s]<- abs(yB.barijVect[r] - yB.barijVect[s])/sqrt(varB.YABvect[r] + varB.YABvect[s])

}
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Q[l] <- max(Qmat)

} #end l loop that has L reps

Q.crit <-quantile(Q, 1-alpha)

# list(Q=Q, Q.crit = Q.crit, Q.test = Q.test) #this return list for testing function

list(Q.crit = Q.crit, Q.test = Q.test)

}
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R Code for Dunnett’s Test PB

Algorithm

#ns, means, s2: vectors of group sample sizes, means and variances; alpha: desired alpha level

dunnett.PB <- function(L, ns, means, s2, alpha){ #L is #bootstrap runs

D <- rep(0, L)

r <- length(ns) #number of groups

pairs.data <- rep(0, r)

diffs <- rep(0, r)

for(j in 1:r){

diffs[j] <- means[1]-means[j]

pairs.data[j] <- abs(means[1]-means[j])/sqrt( (s2[1]/ns[1]) + (s2[j]/ns[j]))

#the first ’pairs’ will be 0

}

test.stat <- max(pairs.data)

pairs <- rep(0, r)

##storage vector for the differences between group means for bootstrap data

for(i in 1:L){

y.B <- rep(0, r)

s2.B <- rep(0, r)

for (j in 1:r){

y.B[j]<- rnorm(1)*sqrt(s2[j]/ns[j])

s2.B[j] <- rchisq(1, df=(ns[j]-1))*s2[j]/(ns[j]-1)

pairs[j] <- abs(y.B[1]-y.B[j])/sqrt( (s2.B[1]/ns[1]) + (s2.B[j]/ns[j]))

#the first one will be 0

}
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Appendix C. R Code for Dunnett’s Test PB Algorithm

D[i]<- max(pairs)

}

pvals <- rep(0, r)

for(j in 1:r){

pvals[j] <- length(which(D>pairs.data[j]))/L

}

D.crit <- quantile(D, 1-alpha)

list(result = data.frame(diffs=diffs, test.stats=pairs.data, pvals=pvals), D.crit = D.crit)

}
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