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Editorial on the Research Topic

Structure, Isotypes, Targets, and Post-translational Modifications of Immunoglobulins and

Their Role in Infection, Inflammation and Autoimmunity

Infection, autoimmunity, and cancer are accompanied by inflammation, which may alter the
structure and function of immunoglobulins (Ig) and consequently, their pathogenicity (1–3). In
addition, the isotype also influences the pathogenicity of Igs (4). During Dengue virus infection, the
removal of core fucose residues selectively enhances the affinity of IgG for Fragment crystallizable
(Fc)γIIIa receptors, leading to increased antibody-dependent cell mediated cytotoxicity (ADCC)
and decreased complement dependent cytotoxicity (CDC) (5). In patients infected by the human
immunodeficiency virus (HIV), anti-gp120 antibodies are less galactosylated and sialylated in
asymptomatic, long-term non-progressors, compared to symptomatic patients (6). The Fc domain
of IgGs can trigger pro- or anti-inflammatory responses and there is abundant evidence that
carbohydrates attached to the IgG Fc domain are essential for IgG function (7–9). The pro- or
anti-inflammatory function of IgGs is mediated by different affinities for activating FcγRs (FcγRI,
RIIa, RIIIa, and RIIIb) and inhibiting FcγRIIb expressed by immune cells (10–12). A high level
of sialylation of the IgG Fc fragment decreases ADCC potential through low affinity for activating
receptors and conversely, bisecting N-acetylglucosamines on the Fc fragment are pro-inflammatory
and enhance ADCC (13–16). In autoimmune diseases, such as rheumatoid arthritis, patients
show low levels of IgG Fc sialylation, while increased IgG sialylation is associated with remission
(17, 18). Thus, the glycosylation level of IgGs may explains their “protective” action. Similarly, Ig
glycosylation plays an important role in IgA nephropathy, where IgA1s are deficient in galactose
and not correctly cleared by anti-IgA1 antibodies (19).

The targets of Igs are also of increasing interest in human pathology, and important
antigenic drivers are being discovered in monoclonal gammopathies of undetermined significance
(MGUS) and myeloma, a blood cancer (20–26). The immunogenic glucolipid glucosylsphingosine
(GlcSph)—also called lysoglucosylceramide (LGL1)—and infectious pathogens including Epstein-
Barr virus (EBV) and hepatitis C virus (HCV), were recently shown to be the targets of monoclonal
IgGs in MGUS and myeloma (20–26). Monoclonal IgGs bear very low levels of sialylated
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glycans, which suggests a pro-inflammatory state and reinforces
the notion that chronic antigenic stimulation and an abnormal
immune response contribute to the pathogenesis of MGUS
and myeloma (27). Importantly, therapies aiming at reducing
the target of the monoclonal Ig can be proposed to patients.
Recent reports described the beneficial effect for patients who
presented a GlcSph (LGL-1)-reactive monoclonal Ig and who
received treatments that reduced the level of immunogenic
glucolipid; a clear reduction in monoclonal Ig was obtained for
two patients (28). Similarly, antiviral treatment benefited both
MGUS patients and myeloma patients with a monoclonal Ig that
targeted HCV (29, 30).

This collection constituted of 13 original articles, 1 case
report and 2 reviews from 112 authors, is divided into three
sections. The first section presents recent knowledge on the
variability in structure and isotype of Igs in clinical contexts. The
second section is devoted to the targets and post-translational
modifications of Igs in specific pathological contexts. The final
section describes the consequences of Ig variability and targets in
terms of pathogenicity and interest for the diagnosis, prognosis,
monitoring, and treatment of patients.

STRUCTURE AND ISOTYPES OF

IMMUNOGLOBULINS

The structure of Igs influences their function and also their fate
(half-life, for instance) and subsequently, their efficacy. In this
regard, the studies of Deveuve et al. highlight the importance of
the hinge region of Igs, particularly for the development of new
therapeutic monoclonal antibodies (TmAbs) (Deveuve et al.).
They analyzed the proteolytic cleavage of the hinge region of
IgG, which may occur by proteases of the microenvironment,
including matrix metalloproteinase 12 (MMP12) or bacterial
(Streptococcus piogenes) Ig-degrading enzymes (IdeS) and
represents an escape mechanism to treatment by TmAbs. The
authors compared the cleavage of 8 TmAbs of different isotypes
and found the IgG2 TmAb more protease resistant than IgG1
and IgG4 TmAbs, and variable IdeS-sensitivity among IgG4 and
IgG1 TmAbs. They propose that the variability in the cleavage
sensitivity/resistance balance among IgG1 and IgG4 TmAbs
results in part from characteristics of the Fab region (Deveuve
et al.). They also show that a single cleavage of IgG1 TmAbs
greatly decreases their affinity for FcγRIIIa and ability to induce
FcγRIIIa-dependent functional responses from NK cells.

Allergy is dependent on the IgE isotype. Koning et al. studied
IgE VDJ sequences from allergic patients, and compared them
to the IgE repertoire from healthy, non-atopic individuals.
They report that IgE repertoires were highly oligoclonal with
preferential usage of certain IGHV genes. IgE sequences had no
clonal relationship with the other isotypes, carried more somatic
mutations than IgM but fewer than IgG and IgA. Thus, in
healthy individuals, the mutational burden of IgE suggests an
origin through direct class-switching from the IgM repertoire,
and presumably low affinity for antigens.

The risk of transplant rejection is also affected by the
isotype of antibodies developed by patients against human

leukocyte antigens (HLA). Navas et al. describe the results
of the analysis of 1,285 anti-HLA antibodies identified in
serum samples from 20 highly HLA-sensitized patients, and
report that 36.8% of anti-HLA antibodies were C1q-binding.
They found a strong association between C1q-binding ability
and IgG1 strength, whereas weak or non-C1q-binding IgG2
and IgG4 subclasses were common. They conclude that the
IgG1 subclass best correlates with the C1q-binding ability of
anti-HLA antibodies.

TARGETS AND POST-TRANSLATIONAL

MODIFICATIONS OF

IMMUNO-GLOBULINS IN SPECIFIC

PATHOLOGICAL CONTEXTS

Targets of Immunoglobulins
The antigenic targets of pathological Igs are relatively well-
known in the context of allergy and auto-immune diseases.
In the context of B-cell malignancies, the main objective is
to eliminate the malignant clone and most studies aim to
characterize tumoral cells and uncover the mechanisms of their
resistance to treatments. Consequently, the antigenic targets of
the Igs produced by malignant B-cell clones are rarely studied.
Yet there is mounting evidence that chronic antigen stimulation
as an important pathogenic mechanism in the development
of B-cell malignancies. For instance, patients with somatically–
mutated (antigen-driven) chronic lymphocytic leukemia (CLL)
have a more favorable clinical course than other CLL patients
(31, 32). Evidence in favor of chronic antigen stimulation has
also been reported in MGUS and in myeloma (20–26). CLL-
associated antigens appear to be mostly autoantigens, notably
cytoskeleton components, or autoantigens found in apoptotic
cells and bacteria (33–35). Cases of virus (HCV), HIV-driven
CLL, MGUS or myeloma appear to be relatively rare (36). In
MGUS and myeloma, the targets of monoclonal IgG reported
include viruses (>25% cases, predominantly EBV and more
rarely, herpes virus simplex (HSV) and HCV) and glucolipids,
particularly GlcSph (LGL1) (∼15% cases) or associated enzymes
(22–26). Using a new assay based on the protein micro-array
technology, Bosseboeuf et al. report that the purified monoclonal
Ig from 42% of IgA MGUS and myeloma patients recognize
EBV EBNA-1, HCV or LGL1. Altogether, a pathogenic model
of antigen-driven disease may be valid for about half of CLL,
MGUS, and myeloma cases. This model offers new therapeutic
approaches: in addition to current therapeutic protocols aimed
at eliminating the malignant clone, one can envision therapies
designed to reduce or suppress the antigen responsible for disease
initiation, i.e., the target of the patient’s monoclonal Ig, whenever
the target can be identified (28–30).

Unfortunately, the identification of the targets of pathogenic
human IgG and IgA for diagnosis and therapeutic purposes is still
not possible outside research laboratories. Similarly, the targets of
IgMs from healthy individuals are rarely investigated and remain
poorly known. To facilitate the study of human IgM antibodies,
which are characterized by polyspecificity and autoreactivity,
Pashov et al. propose a new peptide array consisting of 594
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mimotopes that reflect the common IgM repertoire of 10,000
healthy donors.

Post-translational Modifications and

Function of Immunoglobulins
To interpret the results of IgG functional studies, the conditions
of preparation and purification of Igs are of great importance.
Lopez et al. report that low pH exposure during IgG purification
may result in aggregates that abnormally and avidly bind Fcγ
receptors. These authors compared Protein G purification of IgG
(at low pH) with an immunoaffinity method which elutes IgG
at physiological pH, and investigated several factors known to
impact Fc functionality and influence FcγR binding, including
IgG subclass, N-glycosylation, aggregation, and conformational
changes. They show that low pH elution of IgG enhances their
recognition of FcγRs, and increases IgG aggregation. Thus,
differences in IgG purification methods may explain the poor
reproducibility of studies of Fc-mediated antibody functions.

The important role played in immunity by the N-linked
glycosylation of the Fc region of Igs is well-established but the
function of N-linked glycosylation of the variable domains of
Igs is less well-known. In their review, Vletter et al. report
that N-linked glycans are present on autoantibodies, notably
in rheumatoid arthritis, and in patients with B-cell follicular
lymphoma (FL). N-linked glycosylation of the variable domain
of Igs may confer a selective advantage, through interaction
with lectins and/or microbiota. They analyzed the characteristics
of autoantibodies and those of Igs from FL patients and
healthy donors and found differences in variable domain glycan
distribution, frequency and glycan composition, which led them
to propose a classification of diseases according to the specific Ig
variable domain glycosylation patterns observed in patients.

Sialylation may also modify therapeutic IgGs. Shaffert et al.
analyzed changes in human intravenous IgG (IVIg) sialylation
upon injection in mice deficient in B cells or lacking the
sialyltransferase 1, which catalyzes the addition of α2,6 linked
sialic acid residues and conclude that the glycosylation of
therapeutic IgGs is stable in vivo Schaffert et al.. Only a very small
fraction of IgGs acquired sialic acid structures, mostly in the Fab
portion, not in the Fc portion.

CONSEQUENCES IN TERMS OF

DIAGNOSIS, PROGNOSIS, MONITORING

OF PATIENTS, AND THERAPY

The detection of monoclonal or/and polyclonal Igs with
identified targets is becoming of increasing importance in
different clinical contexts, including severe infection, chronic
inflammation, and certain blood cancers. It is also necessary
to better understand the effects of therapeutic monoclonal
antibodies used in the clinic, alone or associated with
other treatments.

Infection
The interest of understanding the Ig response of patients
in context of acute infection is illustrated by the report by

Bloomfield et al., who describe the case of an infant who
presented with a normal C-reactive protein (CRP) level despite
severe septic shock following Staphylococcus aureus infection,
with clear biological evidence of systemic inflammation.
Bloomfield et al. suspected a defect in the interleukin-6 (IL-
6)/CRP axis, which was confirmed by the presence of neutralizing
anti-IL-6 autoantibodies in the child’s serum. These findings
are of importance since clinical interference of IL-6 signaling,
for instance with IL-6 receptor-targeting therapeutic antibodies
such as tocilizumab or sarilumab, may alter IL-6-mediated innate
immune responses and compromise host resistance to infections.

The complex role played by Igs in chronic infection is
illustrated in the review by McLean et al. on the mechanisms
of tuberculosis reactivation in individuals with comorbidities.
They describe the Ig responses to Mycobacterium tuberculosis
of patients with chronic conditions, such as co-infection with
HIV, diabetes or kidney diseases, where inflammation may
facilitate tuberculosis re-activation. McLean et al. propose that
inflammatory IgG profiles may be important biomarkers for
the detection of progressive tuberculosis. More studies are
needed to distinguish inflammatory antibody profiles that are the
consequences of co-morbidities from those that contribute to the
reactivation of tuberculosis.

Regarding severe viral infections, neutralizing antibodies hold
great promise both for antibody-based therapeutic intervention
and for vaccine design. This is illustrated by the paper by
Gao et al., who applied next-generation sequencing (NGS)
to probe the development of ZK2B, a potent E DIII-specific
antibody protective against Zika virus (ZIKV), isolated from
a convalescent individual. The NGS-derived, germline-like
ZK2B10 somatic variants neutralized ZIKV and protected mice
from ZIKV challenge, without cross-reactivity with Dengue
virus. Site-directed mutagenesis identified residues essential
to the functional maturation of ZK2B10. The repertoire and
lineage features unveiled in this study should help elucidate
the developmental process and protective potential of anti-
ZIKV antibodies.

Auto-Immunity
Gray et al. report on a rapidly progressive glomerulonephritis
reproducing the auto-immune Goodpasture’s disease (GP),
caused by anti-glomerular basement membrane (GBM)
antibodies developed after allogenic haematopoietic stem cell
transplantation (HSCT). In GP, autoantibodies bind neoepitopes
formed upon disruption of the structure of α345 NC1 hexamer,
a critical domain of α345 collagen IV scaffolds. Upon hexamer
disruption, α3 and α5 NC1 subunits become immunogens.
Gray et al.’s is the first report of allo-incompatability and
antigenic specificity in anti-GBM disease after allogenic HSCT.
Both the patient and donor presented with the Goodpasture’s
susceptibility HLA-alleleDRB1∗1501, and the patient’s anti-GBM
antibodies recognized the EA epitope of the α3 NC1 monomer of
collagen IV. Auto-antibody binding to native α345 NC1 hexamer
was minimal, and there were no polymorphic differences
between the donor’s and recipient’s collagen IV genes. The
authors conclude that their patient’s was a case of classical GP
disease, the anti-GBM antibodies emerging post transplantation
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from the donor immune system. This hypothesis is supported by
the finding that native a345 NC1 hexamer was not pathogenic
in an animal model of GP disease, whereas immunization
with dissociated hexamers induced glomerulonephritis
(Gray et al.).

Another example is provided by systemic lupus erythematosus
(SLE), where Zhang et al. investigated the role of IgG in
spleen inflammation. They report that lupus IgGs are important
pathological factors involved in the initiation of inflammation
and further germinal center (GC) and plasma cell formation.
Macrophages of the splenic marginal zone were dispensable
for the GC response induced by lupus IgG, while red pulp
macrophages were important for GC responses. Furthermore,
lupus IgGs promoted inflammation and GC formation through
the macrophage-mediated secretion of TNF-α. Interestingly, Syk

inhibitor treatment suppressed the changes in the histopathology
of the spleen induced by lupus IgGs.

CONCLUSION

Accumulating new knowledge of the structure, targets, and
glycosylation of pathogenic Igs should rapidly translate into
improved diagnosis and treatments for patients suffering from
acute or chronic infection, chronic inflammation, autoimmunity,
or B-cell malignancies.
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