
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Mathematics & Statistics ETDs Electronic Theses and Dissertations 

Spring 2022 

Estimation of Radium-226 Concentrations in Produced Water Estimation of Radium-226 Concentrations in Produced Water 

from Shale Gas, Tight Gas and Conventional Hydrocarbon Wells from Shale Gas, Tight Gas and Conventional Hydrocarbon Wells 

Richard Frank Haaker 

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds 

 Part of the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
Haaker, Richard Frank. "Estimation of Radium-226 Concentrations in Produced Water from Shale Gas, 
Tight Gas and Conventional Hydrocarbon Wells." (2022). https://digitalrepository.unm.edu/math_etds/165 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital 
Repository. It has been accepted for inclusion in Mathematics & Statistics ETDs by an authorized administrator of 
UNM Digital Repository. For more information, please contact disc@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_etds
https://digitalrepository.unm.edu/etds
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/165?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


i 

 

Richard Haaker 
Candidate 
 

Mathematics and Statistics 
Department 
 

This thesis is approved, and it is acceptable in quality and form for publication:  
 
 
 
Approved by the Thesis Committee: 
 
Prof James Degnan, PhD, Chairperson 

 
Prof Yan Lu, PhD, Committee Member 

 
Prof Laura Crossey, PhD, Committee Member 

 
 

 
 

 
 

 
 

 

  



ii 

Estimation of Radium-226 Concentrations in Produced 

Water from Shale Gas, Tight Gas and Conventional 

Hydrocarbon Wells 
 

 

BY 

Richard Haaker 
 

B.S. Biochemistry, Texas A&M University, 1975 

M.S. Chemistry, Texas A&M University, 1978 

 

Thesis 
 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

 

Master of Science  

Statistics 

 

The University of New Mexico 

Albuquerque, New Mexico 

May, 2022 

  



iii 

 

 

 

 

 

 

 

© Richard Haaker, 2022  



iv 

 

Acknowledgement 

I would like to thank my wife, Cheryl, for her patience and support of me returning to 

graduate school after many years. Also, thanks to my committee chair, Professor James 

Degnan for his patience and input to this study. His support and willingness to answer 

questions was greatly appreciated. The efforts of committee member Professor Yan Lu are 

greatly appreciated. Her multiple imputation course introduced me to the problem of 

missing data. From her I learned that dealing with missing data is often a statistics problem 

hidden within a statistics problem. Committee member Professor Laura Crossey’s efforts 

are appreciated in reviewing this document and for teaching the Geochemistry of Natural 

Waters class that I attended. Unfortunately, there was so much missing data that I was 

unable to provide more elegant models. Finally, I want to thank my classmates and the 

Math and Statistics Department faculty with whom I greatly enjoyed interacting these last 

several years.  

  



v 
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Abstract 

This study examined data from the United States Geological Survey Produced Water 

database, version 2.3 (USGS DB) and built models to estimate the concentration of radium-

226 in produced water given the values of other predictor variables. The dataset had only 

about 254 observations that were useable. Although the USGS DB had up to 190 possible 

attributes, it also had extreme rates of missingness, and many of the candidate variables 

were highly correlated. Multiple imputation techniques were employed using the Mice, 

Hmisc, and RMS packages for the R language to deal with the missing data. A multiple linear 

regression and two logistic regression main effects models were fitted to the data. The 

bootstrap was used as a means of internal validation of models. The models concluded that 

log10(total dissolved solids) and log10(barium) appear to be significant predictors of 

log10(radium-226) and radium exceedance probabilities.  
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Chapter 1: Introduction 

The present study assesses the potential of produced water (PW) from specific oil and gas 

wells to be contaminated with elevated concentrations of naturally occurring radium-226, 

given information in their respective produced water (PW) chemistry reports and the 

United States Geological Survey PW database (USGS DB). The study design should lead to a 

set of figures or simple screening calculations that an environmental scientist or 

environmental attorney can use to estimate the potential of PW to have elevated radium-

226 concentrations, based on data in Reports and general knowledge concerning the source 

geologic formation. This document uses many abbreviations, acronyms and symbols, and 

these are listed in Table 1.  

Introduction to Radium 

Radium is a radioactive element that was discovered by Marie Curie, PhD in 1898 (Curie et 

al., 1898). Radium-226 has a half-life of 1,600 years and an average life of 2,308 years. It is 

an indirect radioactive decay product of uranium-238, a long-lived naturally occurring 

radioactive isotope. Radium-226 atoms spontaneously transform to another radioactive 

isotope, radon-222, which is regarded as the leading cause of lung cancer among non-

smokers (US EPA, 2014). Each radon-222 atom undergoes several more radioactive 

transformations, the final one being the radioactive decay of polonium-210 to stable lead-

206. After its discovery, radium-226 was marketed as something wonderful. Eventually it 

was incorporated into a wide variety of commercial and industrial products, including 

luminescent dials, prescription medicines, bread, chocolate, jewelry, health products, 
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cutlery, shampoo, fishing gear and condoms (Eriksson & O’Hagan, 2021). Radium-226 and 

its radioactive progeny were known to be a human health hazard since the 1920s.  

Table 1. Acronyms and symbols used. 

Term Symbol 

activity coefficient for species X ϒX 

activity of substance X aX 

American Petroleum Institute API 

bootstrap BS 

coal bed methane CBM 

Code of Federal Regulations CFR 

coefficient Coef. 

Conventional hydrocarbon CHC 

database DB 

discharge limit DL 

false positive FP 

False negative FN 

ionic strength IS 

L liter 

log10(Barium, mg/L) LBa 

log10(Bicarbonate, mg/L) LHCO 

log10(Carbonate, mg/L) LCO 

log10(Calcium, mg/L) LCa 

log10(Chloride, mg/L) LCl 

log10(Total Iron, mg/L) LFeT 

-log10(Hydrogen ion activity, 
moles/L) pH 

log10(Potassium, mg/L) LK 

log10(Magnesium, mg/L) LMg 

log10(Sodium, mg/L) LNa 

log10(Sulfate, mg/L) LSO 

log10(Hydrogen sulfide, mg/L) LH2S 

log10(Bisulfide, mg/L) LHS 

log10(Radium-226, pCi/L) LRa 

log10(Total dissolved solids, 
mg/L) LTDS 

milligram mg 

missing at random MAR 

missing not at random MNAR 

multiple imputation MI 

naturally occurring radioactive 
material NORM 

Term Symbol 

not available NA 

pico-Curie pCi 

predictive mean matching PMM 

Preliminary Remediation Goal PRG 

probability Pr 

produced water PW 

quality control QC 

radium Ra 

radium-226 Ra-226 

shale gas SG 

Simple random sample SRS 

tight gas TG 

total dissolved solids TDS 

true negative TN 

true positive TP 

United States Energy 
Information Administration USEIA 

United States Environmental 
Protection Agency USEPA 

United States Geological 
Survey USGS 

United States Nuclear 
Regulatory Commission NRC 

versus vs. 

well type W.Type 

within wi 

without wo 

  

  



3 
 

Radium-226 is regulated in the United States in a piecemeal fashion. The United States 

Nuclear Regulatory Commission (USNRC) and certain states only regulate radium that 

qualifies as “discrete sources” or “by-product material.” The USNRC’s and states’ ability to 

regulate some radium  flows down from the Atomic Energy Act of 1954, as amended. This 

authority includes radium that was (1) produced by the processing of ores for their uranium 

or thorium “source material” content and (2) large discrete sources that could be attractive 

to terrorists. The NRC regulations (10 CFR 20 Appendix B Table 2) restrict the concentrations 

of radium-226 that may be released to the environment in liquid effluent, such as runoff, to 

60pCi/L from licensed operations, unless the effluent is discharged to a sanitary sewer. It 

also allows licensees to discharge an average of 600pCi/L of radium-226 to a sanitary sewer. 

The United States Environmental Protection Agency (USEPA) also regulates the 

concentrations of radium-226 + radium-228 in drinking water to 5pCi/L pursuant to the Safe 

Drinking Water Act (Radionuclides Rule: A Quick Reference Guide, EPA 816-F-01-003, 2001). 

The agency has an online Preliminary Remediation Goal (PRG) Calculator that provides risk 

guidelines for radionuclides. The calculator estimates that there is an excess 10-4  lifetime 

incidence cancer risk associated with a 26 year duration of exposure to tap water containing 

only 2.84pCi/L radium-226, assuming no progeny are present. PRGs are not directly 

enforceable, but sometimes feed into decisions about remediation levels in cleanups that 

occur pursuant to the Comprehensive Environmental Response, Compensation and Liability 

Act.  
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Several states, such as Louisiana, Texas, and New Mexico regulate naturally occurring 

radioactive material (NORM) or technologically enhanced NORM in solid form, such as 

mineral scale in pipes and equipment, but not dissolved radium in produced water (PW) 

from oil and gas operations (Blackwell et al., 2021).  

During the 1930s, naturally occurring radioactivity came to the attention of the American 

Petroleum Institute (API) and they were aware of an association of radioactivity and 

petroleum in sedimentary rocks (Bell et al., 1940). In 1940, the API funded its “Project 43c” 

to study the possible role that natural radioactivity played in the formation of petroleum in 

sedimentary rocks from biological residue (Breger & Whitehead, 1951).  

In 1951, the United States Geological Survey published observations of radioactive scale 

precipitating from PW at oil and gas fields in Kansas (Gott & Hill, 1951). They concluded that 

the radioactive scale was intimately associated with sulfate minerals. The focus of that 

study was on the potential for PW or PW solids to contain recoverable amounts of uranium, 

although the authors recognized it was radium (not uranium) that was being precipitated 

during scale formation. In 1984 the United Kingdom’s National Radiation Protection Board 

issued a report on radiation protection problems caused by radium in PW and PW solids 

during development of offshore North Sea oil and gas fields (Escott, 1984). 

Several papers have been published concerning the radium content of PW. Kraemer and 

Reid studied the relationship between total dissolved solids (TDS) and radium-226 

concentrations in PW from geothermal and oil & gas wells situated along the gulf coast of 

the United States (Kraemer & Reid, 1984) and found a generally monotonically increasing 
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relationship between Log(TDS) and Log(radium-226 concentrations). A few years later the 

USGS published data on the radium and TDS content of PW from oil and gas fields off the 

coast of Mississippi (T. F. Kraemer, 1987). Taylor published a study of PW discharges in 

Texas coastal water (Taylor, 1993). The International Atomic Energy Agency published a 

number of monographs on the behavior of radium in the environment, including 

groundwater (IAEA, 1990a, 1990b, 2016).  

In 1986, an oil and gas pipe descaling service operated by the Street family in Laurel, 

Mississippi was ordered to cease operations by the Mississippi State Department of Health 

Division of Radiological Health because of high radiation levels arising from radium-226 

contamination on the property and in the dirty pipe inventory. Litigation against major oil 

companies ensued with the Street et al. v. Chevron et al. case, which was concerned with 

personal injury and property damage resulting from negligence (i.e. issues such as failure to 

inspect and warn the Streets, of the hazards of de-scaling oil and gas casing and pipe that 

were contaminated with radium) (Smith, 2015). In 1992, the Street case settled during trial 

(Smith, 2015) and subsequently a large number of law suits were filed against oil companies 

alleging personal injury and/or property damage from oil field NORM. 

In December 1990 the New York Times published two articles that alerted the public about 

the association of oil and gas operations with naturally occurring radioactivity and the 

potential radiation hazard (Keith Schneider, 1990a, 1990b).  

Recently, the U.S. Geological Survey published the National Produced Waters Geochemical 

Database, version 2.3 (USGS DB). It is a large database of publicly available information on 
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PW characteristics It is the data source for this study, and is described in the section of this 

document entitled “USGS Produced Water Dataset.” 

Oil and gas field operators are naturally concerned with the characteristics of the PW their 

wells are producing. Pertinent water quality information for oil and gas wells is summarized 

in water chemistry reports (Reports), and an example Report is provided in Appendix A. Oil 

and gas producers use the information in Reports to develop control strategies to manage 

corrosion and scale accumulation problems. Historically, such Reports did not include 

information on radium-226 concentrations.  

Geochemistry Background 

This section provides background on chemical concepts that are important in understanding 

radium behavior in PW.  

Total Dissolved Solids (TDS) and Ionic Strength (IS) 

TDS is a bulk property of a solution that is simply the mass concentration of dissolved solids, 

usually in milligrams (mg) in one liter (L) of solution. It may be measured by evaporating a 

known volume of solution to dryness and weighing the resulting solids. Detailed analyses 

are not needed to measure TDS. IS may be thought of as a measure of the effective quantity 

of electric charge contained in a known volume of solution. It is calculated from the known 

concentrations of all the ionic species in solution and their electric charges. Calculation of IS 

requires considerably more information than does calculation of TDS.  



7 
 

Specifically, IS a function of the concentrations of the ions in solution. Calculating IS with a 

reasonable of precision often requires knowledge of the following ion concentrations as 

well as the other charged species that the elements form: hydrogen (H+), sodium (Na+), 

potassium (K+), calcium (Ca+2), magnesium (Mg+2), hydroxide (OH-), bicarbonate (HCO3
-), 

carbonate (CO3
-2), sulfate (SO4

-2), chloride (Cl-). The calculation is iterative and tedious to do 

by hand. Software such as Geochemist’s Workbench or PHREEQC is normally used to do the 

calculation (GWB, 2021; Unknown, 2021).  

As IS increases, the solubility of ionic compounds also tends to increase in a smooth but 

non-linear fashion. For natural waters, TDS and IS are positively correlated variables. TDS 

being the more easily obtained value, is sometimes used as an explanatory variable when IS 

would be more appropriately used.  

Concentration, Activity and Activity Coefficients 

At infinite dilution in pure water, the activity of an ion of interest and its concentration 

would be equal. As the IS of a solution increases, while holding the concentration in solution 

of the ion of interest constant, the corresponding activity of the ion is decreased. The 

activity coefficient is a function of IS and provides a means of correction for the non-ideal 

behavior of real solutions that have non-zero IS. PW tends to have high TDS and IS, which 

makes them very non-ideal.  
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Acidity, Basicity and pH 

pH is an expression of hydrogen ion activity in water. It is defined as the negative of the 

base 10 log of the H+ activity. As the amount of H+ in solution increases, the acidity of the 

solution increases and the pH decreases. A basic solution is one where the concentration of 

OH- exceeds the concentration of hydrogen ions. At a given temperature and IS, the product 

of the activities of H+ and OH- is constant, known as the dissociation constant of water, KW. 

In pure water the concentrations of H+ and OH- are equal and the pH is neither acidic nor 

basic.  

Carbon Dioxide, Bicarbonate, and Carbonate Equilibria 

Carbon dioxide (CO2) is an acid gas that is ubiquitous in the atmosphere and in gases 

associated with PW from oil and gas production. It readily dissolves in water to produce 

carbonic acid (H2CO3). Pure water that is in equilibrium with the atmosphere is slightly 

acidic; at 25C such water has a pH of about 5.6. Carbonic acid undergoes dissociation in a 

pH dependent fashion to produce bicarbonate and carbonate. The proportions of carbonic 

acid, bicarbonate and carbonate in solution are a function of pH and temperature. At 25C 

and a pH of 6.35, the activities of carbonic acid and bicarbonate are equal, while the 

activities of bicarbonate and carbonate are equal at a pH of about 10.33 (Drever, 1997). The 

concentrations and relative proportions of these species in PW can limit the concentrations 

of magnesium and calcium in solution and determine whether PW is saturated with respect 

to carbonate minerals. 
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Radium Chemistry 

Radium-226  is a decay product in the uranium-238 decay chain. It is an alkaline earth 

element, which behaves very much like barium and strontium. Atoms of both barium and 

strontium are millions of times more abundant than those of radium-226 in the 

environment and in PW. Natural waters do not contain enough radium to be saturated with 

respect to a radium mineral, such as RaSO4 (which would be the radium analogue to barite). 

Instead, it tends to co-precipitate in minerals where it occasionally takes the place of 

barium or strontium atoms (Langmuir & Riese, 1985). The most common barium mineral 

that precipitates from PW is barite (Ba, Sr, Ra)SO4, which is insoluble over a wide range of 

pH values. The solubility of barite decreases with decreasing temperature (GWB, 2021). As 

PW travels up a well it cools and barite can precipitate as scale on the tubular surfaces, 

which decreases the concentration of Ra in PW that exits the well. Under strongly reducing 

conditions sulfate may no longer be the predominant form of sulfur in solution, and this can 

result in enhanced solubility of radium, barium, and strontium.  

At higher pH values, mineral surfaces tend to be negatively charged and thus are capable of 

attracting and adsorbing positively charged ions, such as Ra2+, while at lower pH values 

mineral surfaces tend to be positively charged (Drever, 1997). At higher pH values, radium is 

increasingly adsorbed onto fine grained clays, metal hydroxide particles, organic matter and 

mineral surfaces (IAEA, 2016).  

Landis et al. (2018) studied the behavior of radium in the Marcellus Shale. They concluded 

that the presence of radium-226 in PW is largely attributable to desorption from organic 
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shale constituents (Landis, Sharma, & Renock, 2018; Landis, Sharma, Renock, et al., 2018). 

Landis, Sharma, & Renock, (2018) also reported that high TDS and high calcium 

concentrations were correlated with increased concentrations of radium-226 in PW .  

Overall, radium-226 concentrations in PW are expected to be related to many factors, 

including the mineral phases present in the formation and their respective radium-226 

concentrations, IS, temperature, pH, the amounts of SO4
-2, inorganic carbon (carbonic acid + 

bicarbonate + carbonate) in the formation, the presence of complexing agents, and the 

ability of solids in the formation with high surface areas to adsorb radium-226 from 

solution. One expects that (1) high concentrations of dissolved solids favor higher 

concentrations of radium-226 and that (2) those conditions that favor high dissolved barium 

concentrations will also favor higher radium-226 concentrations. 

Overview of Major Oil and Gas Well Types  

Oil and gas wells may be broadly categorized as conventional or unconventional. Each 

category is described in this section. Figure 1 is a depiction of major types of oil and gas 

wells. 

Conventional Hydrocarbon 

Conventional hydrocarbon resources are those that are trapped in permeable and porous 

rock formations, where they are confined in dome-like structures or folds. Conventional 

hydrocarbon wells are an older technology and most that have been in production did not 

require extensive hydraulic fracturing or horizonal drilling techniques (BC, undated).  
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Nonconventional Hydrocarbon Wells 

Tight gas and shale gas are the nonconventional well types considered in this analysis. Coal 

bed methane wells are a third type of non-conventional well that are included in the USGS 

DB. Modern wells drilled into tight formations and shale gas formations typically employ 

hydraulic fracturing and or horizontal drilling techniques to increase production rates of 

hydrocarbons. 

 

Figure 1. Major types of gas wells (USEIA, 2020). 
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Tight Gas Formations 

Tight natural gas formations are a legal category of natural gas resource created by the 

Natural Gas Policy Act of 1978. They are typically low-permeability sandstones and 

carbonate formations (USEIA, 2021). Low permeability sandstones often have intergranular 

pores that are largely occluded by cements, such as silica or carbonate minerals. Usually 

most of the hydrocarbons in formations described as “tight” are not believed to have 

formed in situ. The gas in tight gas formations is mostly in pore space and fractures.  

Shale Gas Formations 

Technically a shale gas formation is a type of tight gas formation and shale gas is natural gas 

that comes from shale formations. Shale is a fine-grained sedimentary rock that is largely 

composed of silt and clays, often with a significant proportion of organic material. The 

hydrocarbons in shale gas formations are generally considered to have formed in situ and 

are sorbed into some of the shale’s constituents. Shale formations often require hydraulic 

fracturing and horizontal drilling techniques to stimulate production of natural gas in 

practical quantities (USEIA, 2021).  

USGS Produced Water Dataset 

The USGS DB, data dictionary and metadata are available on the USGS Produced Water 

website (Engle et al., 2019). It provides an extensive compilation of publicly available data 

on PW. The data dictionary is included in Appendix B, Table B.1. The dataset was 

downloaded in “.Rdata” file format for this investigation. It includes 114,943 observations 

and 190 variables. Of these, there are only 720 observations that have analytical results for 
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radium-226. This study is largely concerned with evaluating the radium-226 data in this 

dataset.   
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Chapter 2: Statistical Analysis Techniques and Concepts 

Regression Bootstrapping 

Non-parametric bootstrapping is a statistical inference technique where an existing sample 

of size n is treated as a population and from it a set of simple random samples (resamples), 

also of size n, are drawn with replacement (Efron, 1979). Since the resampling occurs with 

replacement, some observations will be drawn more than once, while others may not be 

drawn at all in a particular sample. Each of the resulting resamples is analyzed 

independently to obtain an approximately normally distributed set of estimates of the 

statistics of interest. In this study the statistics of primary interest are expected value of the 

response variable given the values of the predictor variable, its confidence interval and 

prediction interval.  

In this study a series of linear models are fitted to bootstrapped resamples to obtain 

information of the distribution of the response variables:  E(LRa|predictors), E(log(odds(Ra-

226 > 60|predictors))) and E(log(odds(Ra-226 > 600|predictors))). Bootstrapping was 

implemented in various ways. These include: 

1. The validate() function in RMS performs a bootstrap, given a linear model, and 

provides estimates of the measures of fit and optimism (see “Optimism and 

Overfitting”), but does not provide a table of regression coefficients for each 

resample. The function validate() can accept a simple linear model object that was 

produced directly by the functions ols() or lrm(). Or validate() can accept an MI linear 

model object produced by fit.mult.impute() after Rubin’s rules have been applied; 
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Those rules are described in the section entitled “Rubin’s Rules”. The function 

validate() in the RMS package has attractive features: It will produce a linear model 

object that can be used by the function predict() to produce graphs of confidence 

intervals and prediction intervals. It also will execute a fast backward elimination for 

each of the n bootstrap resamples linear models. This allows the tally of how often 

the various coefficients in a preliminary model were judged significant (Harrell Jr., 

2021b).  

2. For a complete case analysis, the bootstrap can be performed within a loop by a 

series of R commands that repeatedly:  

a. create a simple random resample of size n with replacement, 

b. fit the linear models with ols() or lrm() without MI,  

c. extract and save both the regression coefficients and the performance 

measures for later analysis. 

Upon exiting the loop, regression coefficients and performance measures are 

averaged, and standard deviations calculated.  

3. The bootstrap was also used in a slightly more complicated manner. It was 

sometimes performed within a loop by a series of R commands that repeatedly:  

a. created a simple random resample with replacement, 

b. executed mice(), a function in the MICE package to perform multiple 

imputation for each bootstrap resample, 
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c.  fit the linear models with ols() or lrm() arguments inside of the function 

fit.mult.impute(), which also applied Rubin’s rules (Harrell Jr., 2021a, 2021b),  

d. extracted and saved both the resulting regression coefficients and the 

performance measures for later analysis. 

e. Upon exiting the loop, regression coefficients and performance measures 

were averaged, and standard deviations calculated.  

Optimism and Overfitting 

Ordinarily a regression model is fitted to a set of data, and typically the model will fit that 

dataset better than it will fit new data. For example, assume that a regression model is 

fitted to a dataset of size n. Then the dataset is treated as a population, and several more 

SRS of size n (i.e. resamples) are drawn from it, each with replacement. If the original model 

coefficients are used with the resamples to calculate apparent R2 values (𝑅𝑎𝑝𝑝
2 ), they should 

be lower than the R2value of the original fit (𝑅𝑜𝑟𝑖𝑔
2 ). The optimism in the 𝑅𝑜𝑟𝑖𝑔

2  measure of fit 

is the difference between 𝑅𝑎𝑝𝑝
2  and the average value of 𝑅𝑎𝑝𝑝

2 . The same concept may be 

applied to assess the optimism other measures of fit such as the concordance (C) or Somers’ 

D. Thoya et al. provides a detailed summary of methods for assessing optimism (Thoya et 

al., 2018).  

Having correlated predictor variables in a regression model can cause overfitting. It may 

result in a model having a marginal improvement in measures of fit, such as the coefficient 

of determination, R2, but it also causes the variances of the coefficients of the correlated 

predictors to increase substantially. The variance inflation factor (vif) is a convenient 
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measure of the severity of the collinearity of predictor variables; a value near 1 is an 

indication that severe correlation is absent. However, there is no general agreement of 

what values of vif indicate a serious collinearity issue exists, and values such as 2.5, 5, and 

10  (O’Brien, 2007).  

Missingness Pattern 

Missing data can be of three general types. Missing completely at random (MCAR), missing 

at random (MAR), and missing not at random (MNAR) and each of these is defined by a 

missing data mechanism. MCAR means that each datum has the same probability of being 

missing. Data that is MCAR is benign in the respect that it should not introduce bias into an 

analysis if only complete cases are considered. Other missingness patterns are not benign 

and analyzing only complete cases may introduce bias into an analysis (van Buuren, 2018). 

One type of MNAR data is data that is missing in a manner that depends on its value; there 

is one datum in our dataset that clearly is MNAR, it is a negative concentration of radium-

226, and of course concentrations are constrained to be positive numbers. Since the 

concentrations will be log transformed, it was changed to “NA” and treated with caution as 

MAR.  

The assumption in this study has been made that the overall missingness pattern is MAR 

and verifying this assumption in depth is not part of the scope of this investigation.  
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Predictive Mean Matching (PMM) Algorithm 

Multiple imputation is based on the idea that variables that are not missing contain 

information about those that are. PMM is a variation on an older method of imputation 

known as hot deck imputation. Hot deck imputation methods assign to each missing value 

the value of an observed response from a similar unit (Andridge & Little, 2010). PMM is a 

nonparametric technique for MI, and the mice() function by default uses Type 1 PMM (van 

Buuren, 2018). PMM is an iterative technique that assumes that the set of all possible 

values for a variable are contained in its set not-missing observations(van Buuren, 2018). 

PMM calculations that were performed in this study all used a “reverse monotone” 

imputation order, except for one sensitivity case where the imputation order was 

“monotone.” In reverse monotone order, imputation proceeds from the variables with the 

highest missingness to the lowest missingness. In the main part of this study, PMM imputed 

values in the order: LFeT (47.2% missing), LBa (35.8%), LTDS (30.3%), and then LRa (0.3%); 

each of these variable names are defined in Table 1. W.Type was included in the imputation 

process as a dichotomous variable but was never missing.  

Those wishing to know exactly how mice() does Type 1 PMM are referred to the mice() 

source code (van Buuren & et al., 2022). A concise but dense description is also found the 

Algorithm 3.1 and Algorithm 3.3 boxes in van Buuren’s book (van Buuren, 2018).  

Generally, mice() begins its first iteration by noting the values of LFeT in the complete cases 

and the values of other predictor variables. For each unit with missing LFeT, it makes a short 

list of the values of LFeT in the complete cases that have the most similar set of values of 
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the other predictor variables. For each unit with missing LFeT, it draws a random value of 

LFeT from its list of similar units. Then it proceeds to do the same for LBa, LTDS and LRa.  

At the beginning of the second iteration mice() begins by taking each unit that originally had 

a missing value of LFeT; generally, each of these now has estimates for all other variables. 

For each of these units, it makes a short list of all units that are most similar in their values 

of LBa, LTDS and LRa, and randomly draws a new value for LFeT for each. Then it proceeds 

to LBa. For each unit that originally had missing LBa, it constructs a list of the units that are 

most similar, taking in the account the newly assigned values of LFeT, and the previously 

obtained values of LTDS and LR and W.Type. Then for each, it draws a random value of LBa 

from their respective short lists. Next it updates its picks for LTDS and then LRa in a similar 

fashion. This procedure continues until the prescribed number of iterations is performed. 

The values for the last iteration are retained and these constitute one multiply imputed 

dataset. For this study, the maximum number of iterations was set to 10.  

This process is then repeated for the number of multiply imputed data sets that were 

desired, in this study 20 were always created. 

Rubin’s Rules 

The set of 20 multiply imputed datasets created by mice() each have linear models fitted to 

them by running lrm() or ols() within fit.mult.impute(). That function applies Rubin’s rules 

(Rubin, 1986) to obtain a single linear model from the 20 linear model fits. Obtaining point 

estimates of the linear coefficients is straight forward, since the point estimate of the value 

of a coefficient is just the average of the 20 estimates. Estimating the variances is more 

complicated because they must take into account the variation within and between each of 



20 
 

the 20 estimates. Rubin’s rule (van Buuren, 2018) for calculating the total variance for each 

of the coefficients is 

 (Eq 1.)  𝑇 = 𝑈𝑏𝑎𝑟 + (𝐵 +
𝐵

𝑚
), 

Where:  

• T is the total variance,  

• Ubar is the average of the individual complete data variances,  

• B is the standard unbiased estimates of the variance between the coefficient and 

estimates for the m=20 estimates. It represents the variance introduced by having 

missing values in the sample. 
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Chapter 3: Characteristics of the USGS Dataset, Inclusion and Exclusion Criteria 

Of the four well types considered in the USGS DB, CBM wells are the most problematic. PW 

from CBM wells tends to have the low radium-226 concentrations, low TDS, and high pH. 

While interesting, the CBM data has very high rates of left-censored (MNAR) radium-226 

observations that would interfere with MI of predictor and response variables using 

standard and well-known MI software packages available in R. For this reason, CBM wells 

were deemed infeasible to include in the analysis.  

Table B-2 provides the overall missingness rates for the 254 observations that had radium-

226 measurements on the CHC, TG and SG well types addressed in this study. 

Table 2 provides a summary of the frequency of well type by geographic area. The totals 

take into account that two CBM wells had been misclassified as some other well type and 

the USGS QC flagged one observation due to a suspect (extreme) pH value.  

Table 2. Frequency of well type by basin in the dataset. 

 Basin 
Conventional 
Hydrocarbon 
(N=142) 

Shale Gas 
(N=106) 

Tight Gas 
(N=6) 

Overall 
(N=254) 

  Appalachian 91 (64.1%) 101 (95.3%) 0 (0%) 192 (75.6%) 
  Arkoma 0 (0%) 5 (4.7%) 0 (0%) 5 (2.0%) 
  Big Horn 5 (3.5%) 0 (0%) 0 (0%) 5 (2.0%) 
  Green River 15 (10.6%) 0 (0%) 1 (16.7%) 16 (6.3%) 
  Gulf Coast 17 (12.0%) 0 (0%) 0 (0%) 17 (6.7%) 
  Hanna 0 (0%) 0 (0%) 4 (66.7%) 4 (1.6%) 
  Powder River 13 (9.2%) 0 (0%) 0 (0%) 13 (5.1%) 
  Wind River 1 (0.7%) 0 (0%) 1 (16.7%) 2 (0.8%) 

A further breakdown of the frequency of observations by formation is provided for the 

Appalachian Basin in Table B-3.  
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Table 3 provides summary statistics of candidate predictor variables that possibly could be 

useful in developing linear models describing Ra-226 levels in PW. To actually be useful, a 

candidate variable must: (1) have some association or role in explaining the behavior of 

radium-226, (2) have a sufficiently low rate of missingness that it can reasonably be 

included in multiple imputation of missing data procedures and (3) not have strong 

correlations with other variables that have lower rates of missingness.  

Several potentially important predictor variables were excluded from initial consideration 

based having extremely high missingness rates (66.9% to 100% missing). These included the 

attributes: temperature, pressure, sulfide, bisulfide, iron(II), iron(III), carbonate, bicarbonate 

and sulfate. pH was not immediately excluded from consideration despite having a 

missingness rate of 69.6% based on my professional judgement as a chemist.  

There is not consistent guidance on how much missing data is too much. Madley-Dowd, et 

al. advise against using the proportion of missing data as a criteria for excluding variables 

(Madley-Dowd et al., 2019). They provide evidence that in the case of MAR and MCAR data, 

the fraction of missing information is more important that the proportion of missing data. 

Their result is based on the premise that there is sufficient auxiliary information, however. 

Van Buuren is more cautious and notes in section 6.2 of his book that the risk of introducing 

more bias into regression coefficients increases as the missingness rates increase if the 
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Table 3. Summary statistics for potentially useful variables. 

 Analyte 
Conventional Hydrocarbon 
(N=142) 

Shale Gas 
(N=106) 

Tight Gas 
(N=6) 

Overall 
(N=254) 

     
LRa     
  Mean (SD) 2.12 (1.11) 2.78 (0.966) 0.358 (0.584) 2.36 (1.12) 
  Median [Min, Max] 2.49 [-1.30, 3.72] 3.10 [-0.788, 4.23] 0.322 [-0.215, 1.13] 2.63 [-1.30, 4.23] 
  Missing 0 (0%) 0 (0%) 1 (16.7%) 1 (0.4%) 

LTDS     
  Mean (SD) 4.65 (0.875) 4.97 (0.408) 3.59 (0.423) 4.77 (0.719) 
  Median [Min, Max] 5.12 [2.98, 5.60] 5.09 [3.93, 5.52] 3.54 [3.02, 4.13] 5.09 [2.98, 5.60] 
  Missing 54 (38.0%) 13 (12.3%) 0 (0%) 67 (26.4%) 

pH     
  Mean (SD) 7.03 (1.37) 6.67 (0.583) 8.20 (0.383) 7.04 (1.25) 
  Median [Min, Max] 6.80 [4.73, 10.4] 6.80 [5.50, 7.59] 8.23 [7.68, 8.72] 6.93 [4.73, 10.4] 
  Missing 87 (61.3%) 90 (84.9%) 0 (0%) 177 (69.7%) 

LBa     
  Mean (SD) 1.20 (1.23) 2.88 (1.05) 0.541 (1.35) 2.04 (1.43) 
  Median [Min, Max] 1.48 [-1.15, 3.64] 3.20 [-0.155, 4.18] 0.312 [-0.670, 2.72] 2.25 [-1.15, 4.18] 
  Missing 67 (47.2%) 23 (21.7%) 1 (16.7%) 91 (35.8%) 

LCa     
  Mean (SD) 3.16 (1.47) 3.81 (0.547) 0.844 (0.607) 3.39 (1.24) 
  Median [Min, Max] 3.92 [0, 4.69] 4.06 [2.45, 4.64] 0.854 [0, 1.45] 3.93 [0, 4.69] 
  Missing 57 (40.1%) 23 (21.7%) 0 (0%) 80 (31.5%) 

LNa     
  Mean (SD) 3.85 (0.884) 4.35 (0.368) 3.20 (0.388) 4.11 (0.683) 
  Median [Min, Max] 3.78 [2.49, 4.90] 4.49 [3.44, 4.91] 3.17 [2.68, 3.74] 4.37 [2.49, 4.91] 
  Missing 89 (62.7%) 24 (22.6%) 0 (0%) 113 (44.5%) 
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Table 3. (continued). 

 Analyte 
Conventional Hydrocarbon 
(N=142) 

Shale Gas 
(N=106) 

Tight Gas 
(N=6) 

Overall 
(N=254) 

LCl     
  Mean (SD) 4.20 (1.25) 4.71 (0.407) 2.88 (0.806) 4.41 (0.986) 
  Median [Min, Max] 4.85 [0.934, 5.30] 4.85 [3.69, 5.28] 3.20 [2.02, 3.82] 4.84 [0.934, 5.30] 
  Missing 56 (39.4%) 18 (17.0%) 1 (16.7%) 75 (29.5%) 

LFeT     
  Mean (SD) 0.971 (1.23) 1.76 (0.520) -0.249 (0.469) 1.45 (0.938) 
  Median [Min, Max] 0.778 [-1.30, 2.67] 1.88 [0, 2.64] -0.500 [-0.538, 0.292] 1.82 [-1.30, 2.67] 
  Missing 97 (68.3%) 20 (18.9%) 3 (50.0%) 120 (47.2%) 
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missingness pattern is partly MNAR (van Buuren, 2018). It seems clear that one can contrive 

ideal datasets and then introduce a MAR missingness pattern with a high proportion of 

missing values and still obtain relatively unbiased models. However, in the case of the USGS 

DB, we don’t have a way to know whether missingness is truly MAR or partly MNAR.  

Table 4 provides an updated summary of potentially useful variables that excludes some 

attributes based on extreme missingness after merging the CHC and TG well types into one 

group, CHC/TG. The decision process for pooling CHC and TG wells is described in sections 

entitled “Dichotomizing the W.Type variable.” Observation ID 26278 had a negative 

reported radium-226 concentration, and it was reset to NA.  

Table 4. Summary of observations after pooling CHC and TG well types. 

 Analyte 
CHC/TG 
(N=148) 

SG 
(N=106) 

Overall 
(N=254) 

LRa    
  Mean (SD) 2.06 (1.14) 2.78 (0.966) 2.36 (1.12) 
  Median [Min, Max] 2.46 [-1.30, 3.72] 3.10 [-0.788, 4.23] 2.63 [-1.30, 4.23] 
  Missing 1 (0.7%) 0 (0%) 1 (0.4%) 

LTDS    
  Mean (SD) 4.58 (0.891) 4.97 (0.408) 4.77 (0.719) 
  Median [Min, Max] 5.07 [2.98, 5.60] 5.09 [3.93, 5.52] 5.09 [2.98, 5.60] 
  Missing 54 (36.5%) 13 (12.3%) 67 (26.4%) 

pH    
  Mean (SD) 7.14 (1.35) 6.67 (0.583) 7.04 (1.25) 
  Median [Min, Max] 7.31 [4.73, 10.4] 6.80 [5.50, 7.59] 6.93 [4.73, 10.4] 
  Missing 87 (58.8%) 90 (84.9%) 177 (69.7%) 

LBa    
  Mean (SD) 1.16 (1.24) 2.88 (1.05) 2.04 (1.43) 
  Median [Min, Max] 1.41 [-1.15, 3.64] 3.20 [-0.155, 4.18] 2.25 [-1.15, 4.18] 
  Missing 68 (45.9%) 23 (21.7%) 91 (35.8%) 

LCa    
  Mean (SD) 3.01 (1.54) 3.81 (0.547) 3.39 (1.24) 
  Median [Min, Max] 3.85 [0, 4.69] 4.06 [2.45, 4.64] 3.93 [0, 4.69] 
  Missing 57 (38.5%) 23 (21.7%) 80 (31.5%) 
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Table 4. (Continued) 

 Analyte 
CHC/TG 
(N=148) 

SG 
(N=106) 

Overall 
(N=254) 

LNa    
  Mean (SD) 3.79 (0.867) 4.35 (0.368) 4.11 (0.683) 
  Median [Min, Max] 3.63 [2.49, 4.90] 4.49 [3.44, 4.91] 4.37 [2.49, 4.91] 
  Missing 89 (60.1%) 24 (22.6%) 113 (44.5%) 

LCl    
  Mean (SD) 4.12 (1.26) 4.71 (0.407) 4.41 (0.986) 
  Median [Min, Max] 4.78 [0.934, 5.30] 4.85 [3.69, 5.28] 4.84 [0.934, 5.30] 
  Missing 57 (38.5%) 18 (17.0%) 75 (29.5%) 

LFeT    
  Mean (SD) 0.895 (1.23) 1.76 (0.520) 1.45 (0.938) 
  Median [Min, Max] 0.563 [-1.30, 2.67] 1.88 [0, 2.64] 1.82 [-1.30, 2.67] 
  Missing 100 (67.6%) 20 (18.9%) 120 (47.2%) 

 

Figure 2 provides a scatterplot matrix of selected analytes. Figures 3, 4 and 5 provide 

unstacked histograms of analyte concentrations by well type.  

 .
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Figure 2. Scatterplot matrix of analytes initially of interest. 
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Figure 3. Histograms of LRa, pH, LTDS and LBa by Well Type. 
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Figure 4. Histograms of LCa, LCl and LFeT by well type. 
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Figure 5. Histograms of LNa and LSO4 by well type. 
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Chapter 4: Method of Analysis Overview 

This section describes the major steps in analyzing the dataset. The overall workflow is 

depicted in Figure 6. It includes: (1) treating the single left-censored (MNAR) radium-226 

concentration and reducing the three-factor variable W.Type to a dichotomous one, (2) 

performing MI on the original dataset and on the bootstrap resampled datasets to address 

the missingness of predictor and response variables using the predictive mean matching 

technique, (3) performing regressions (multiple linear regression and logistic) on the MI 

within BS datasets with backward elimination after applying Rubin’s rules to identify the 

“form of the full model,” (4) fitting the full model form to the MI within BS datasets and to 

the original MI datasets and (5) comparing and assessing results. 

 

 

Figure 6. Workflow of the study. 
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Data Cleanup 

The 254 observations summarized in Tables 2 and 3 were all available observations that, at 

a minimum, had values for radium-226 concentration, basin and well type. It excludes two 

observations (ID # 26259 and 26330) because they were actually of CBM wells that were 

erroneously mis-classified as CHC or TG (WOGCC, 2021). The set of 254 observations also 

excludes observation ID # 1643 because it had been QC-flagged by USGS for an implausible 

pH (greater than 10). 

Left-censored radium-226 observation and dichotomizing W.Type 

Of the 254 observations, only ID # 26278 was reported as having a negative radium-226 

concentration. In reality, concentrations of radium-226 will never be truly zero or negative 

as there should always be at least a few atoms of it present in any medium. When a 

negative concentration is reported for an analysis, it can be interpreted as having a signal 

that consisted of fewer counts in a time period than was expected from a “blank” that was 

prepared using the same ingredients as the unit, but with pure water substituted for the 

medium of interest (i.e., produced water). A concentration that is reported as zero or less 

than zero is clearly a non-detect and can be interpreted as a left censored value. It also 

presents a problem because negative numbers cannot be log transformed. The options 

considered for this observation were to: (1) delete it, (2) formally treat it as MNAR, or (3) 

set to NA and allow the value to be chosen during multiple imputation treating the missing 

value to be MAR. Alternative (3) was chosen as the preferred option. In all cases, the 

function mice(), in the R package Mice was allowed to assign values during MI by PMM.  



33 
 

The minimum detectable concentration of Ra-226 in PW by standard analytical methods is 

of interest. For reference: (1) the standard method for radium-226 determination in water 

is EPA Method 903.1, and it provides a lower bound for minimal detectable concentration 

(MDC) of 0.1pCi/L (USEPA, EMSL, 1980); and (2) a real dataset of 41 radium-226 MDC 

observations from a brine-contaminated unconfined aquifer in the Erath gas field (Vermilion 

Parish, Louisiana) had a maximum MDC of 1.4pCi/L (Haaker, 2021). If treating the missing 

radium-226 value for observation 26278 as MAR yields imputed concentration estimates 

near the range of 0.1 to 1.4pCi/L for the original MI dataset, then the MAR assumption will 

be considered satisfactory.  

Dichotomizing the W.Type variable 

There are only 6 observations for the category W.Type = TG, which is an insufficient number 

to include it as its own category. The options for this attribute include (1) deletion of the TG 

observations altogether or (2) reset the W.Type to NA for these observations and then allow 

the R function mice() to multiply impute W.Type as either CHC or SG by logistic regression 

imputation during the preliminary MI step. The latter option was chosen since it does not 

waste data. The final decision rule will be: “All TG wells will be assigned one W.Type or 

other based on which W.Type receives the highest proportion of the 6 TG observations 

during the preliminary MI step using the original dataset.”  
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Multiple Imputation 

Multiple imputation of missing data will be accomplished using R Studio with the mice() 

function from Mice package (van Buuren, 2018; van Buuren & Groothuis-Oudshoorn, 2021). 

This will be accomplished in several steps as described below: 

1. Identify redundant variables using the redun() function from the Hmisc R package 

(Harrell Jr., 2021a) and eliminate them so that MI does not rely on highly correlated 

predictor variables. This is a necessary step because PMM does not work, or does 

not work well, if strong correlations among predictor variables exist. Based on the 

appearance of the scatterplots in Figure 2, it can be reasonably anticipated that 

several potential predictor variables will be dropped due to collinearity issues. In 

practice, predictor variables that can be predicted from other variables with a linear 

correlation coefficient greater than 0.9 will be dropped. When a group of highly 

correlated predictor variables is detected, the preference will be to retain only the 

variable with the lowest missingness. Using principal component analysis was 

considered as a way to pool the information from several highly correlated variables 

but was rejected for reasons that will be discussed later. 

2. Use the quickpred() and mice() functions from the Mice package. This will create an 

initial prediction matrix considering only main effects that defines the dependencies 

among variables and provides an initial list of the imputation methods to be used for 

each variable. A single prediction matrix and list of imputation methods for the 

variables will be defined based on the original dataset and these will also be used 
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with the MI within BS part of the study. The matrix and list will be reviewed and 

edited as necessary. It is anticipated that two dichotomous response variables, GT60 

and GT600, will be created from the continuous variable LRa by passive imputation. 

In practice, this means that the GT60 and GT600 variables will be calculated based 

on a deterministic formula. These are indicators of whether the radium-226 

concentrations exceed NRC effluent discharge limits. A value of 1 will be assigned in 

instances where the respective discharge limit is exceeded and 0 in instances where 

it is not. These two dichotomous variables will not be used to impute other 

variables.  

3. After the prediction matrix and methods list have been edited, run the mice() 

function to generate the MI datasets based on the original dataset. Then graphs of 

the object created by mice() will be produced to view the behavior of means and of 

standard deviations of variables as imputations proceed, Figure B-1. It will be 

impractical to produce similar graphs for the resampled datasets within the 

bootstrap.  

4. Perform bootstrap resampling of the original dataset and then use mice() to create 

the series of MI datasets for each of the bootstrap resamples. 

Multiple Linear and Logistic Regression 

Informal preliminary modelling efforts to identify important interactions did not identify any 

significant ones. It was judged not worthwhile to attempt to include interaction terms in an 

empirical model where there was good reason to believe that significant main effects terms 

were missing due to extreme rates of missingness for some analytes. 
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The entire set of predictor variables that redun() identifies as not highly correlated and have 

relatively lower rates of missingness will be used for the preliminary multiple regression and 

logistic regression modeling. The MI within BS datasets will be fitted to the preliminary 

models, and Rubin’s rules applied to obtain one regression result for each model for each 

bootstrap resample. Backward elimination will be conducted on each of these models and a 

tally kept of the frequency of each coefficient being significant. It is anticipated that the 

forms of the final main effects models will include those coefficients that are significant in 

approximately 70% or more of the MI within BS models. Once the final form is determined, 

the regressions will be rerun using that form, and for each of the three models (MLR, GT60 

logistic, and GT600 logistic) the coefficients will be tabulated and averaged to obtain the 

three final models.   
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Chapter 5: Results 

Left-censored radium-226 observation 

Observation ID 26278 had the left censored MNAR value that was set to NA. The function 

mice() was allowed to impute values for it using the PMM technique and the original 

dataset. MI provided 20 estimates for radium-226 concentrations as depicted in Figure 7. 

The set of 20 imputed values ranged from 0.16 to 1.70pCi/L, with a median of 0.666 and 

mean of 0.616pCi/L. Consequently, ID 26278 was retained in the dataset since the range of 

imputed values of Ra-226 are similar to those observed in the Erath Field, Vermilion Parish, 

Louisiana dataset. 

 

Figure 7. Histogram of Imputed Ra-226 values for MNAR observation ID 26278. 
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Dichotomizing the W.Type variable 

There were an insufficient number of TG wells (6) for it to remain as a third category of the 

factor variable W.Type. The objective of dichotomizing was to eliminate the TG category. 

This involved using the mice() function to assign well types to the 6 TG wells by logistic 

regression imputation. The function mice() assigned all 6 of these as CHC and 0 as SG in 

every imputation set that was constructed directly from the original dataset. Consequently, 

a new category of W.Type, “CHC/TG,” replaced the well types “CHC” and “TG”, and W.Type 

became a dichotomous categorical variable with values “CHC/TG” and “SG.” 

Multiple Imputation 

Of the candidate variables for multiple imputation (LRa, LBa, LFeT, W.Type, LNa, LCa, LCl, 

LTDS and pH), the function redun() identified the following as highly correlated (R2 > 0.9): 

LNa, LCa, LCl and LTDS . The set of independent predictors recommended by redun() was 

LRa, pH, LBa, LFeT, and W.Type. I rejected pH as a variable because it had 69% missingness 

and retained LTDS instead (26 % missingness). The function redun() was executed again with 

redundant variables eliminated; Table 5 provides the missingness rates and adjusted 

coefficients of linear determination, R2, for the chosen set of variables. Figure 8 illustrates 

the missingness pattern present in the dataset. In Figure 8, blue squares represent values 

that are not missing while red ones represent missing values. The numbers on the left 

margin represent the number of observations that fit each pattern while the numbers of 

missing values for each variable are given on the bottom margin. The numbers along the 

right margin are the number of variables that are missing values. For example there are: (1) 



39 
 

120 units with zero variables missing, (2) 42 units that have only LFeT missing, and (3) 91 

units where LBa is missing. The scatterplot matrix of the variables that were still considered 

viable after MI is provided as Figure 9.  

Table 5. Missingness and coefficients of linear determination. 

Attribute 
Number of NA out of 
254 observations 

Adjusted R2 for 
prediction 

LRa 1 0.802 

LTDS 67 0.825 

LBa 91 0.688 

LFeT 120 0.576 

W.Type 0 0.713 

 

 

Figure 8. Missingness pattern in the dataset (red=missing, blue = not missing). 

The imputation order should be unimportant provided that the MICE algorithm has 

converged. However, the imputation order can affect the speed of convergence (van 

Buuren, 2018). By default, mice() employs a “left to right” imputation order. The base case 

imputation order in this study was “reverse monotone,” which causes the variables with the 
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most missingness to be imputed first. A sensitivity case used the opposite imputation order, 

“monotone,” to explore the effect of imputation order on the resulting model.  

 

Figure 9. Scatterplot matrices for variables used in MI. 

 

Multiple Linear and Logistic Regressions 

Regression Modeling Using MI within BS Resampled Datasets 

The models initially considered were: 

(Eq 2.)  𝐿𝑅𝑎 ~ 𝐿𝑇𝐷𝑆 + 𝐿𝐵𝑎 + 𝐿𝐹𝑒𝑇 + 𝑊. 𝑇𝑦𝑝𝑒 , 

(Eq 3.)  𝐿𝑜𝑔(𝑂𝑑𝑑𝑠 (𝐺𝑇60 = 1))~ 𝐿𝑇𝐷𝑆 + 𝐿𝐵𝑎 + 𝐿𝐹𝑒𝑇 + 𝑊. 𝑇𝑦𝑝𝑒, and 

(Eq 4.)  𝐿𝑜𝑔(𝑂𝑑𝑑𝑠 (𝐺𝑇600 = 1))~ 𝐿𝑇𝐷𝑆 + 𝐿𝐵𝑎 + 𝐿𝐹𝑒𝑇 + 𝑊. 𝑇𝑦𝑝𝑒. 

The regression models were fitted to each of the 200 bootstrap resampled datasets. For 

each bootstrap resample, mice() produced a set of 20 multiply imputed datasets. The 
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fit.mult.impute(), and ols() and lrm() functions from the R packages Hmisc and rms were 

used to do the fits and apply Rubin’s rules (Harrell Jr., 2021a, 2021b). The fastbw() function 

was used to identify the significant coefficients. The preliminary models and their 

performance measures are provided in Table 6. The first rows of each column of Table 6 

provide the proportion of resamples that the various coefficients were judged significant 

when the fastbw() function in the RMS package was used. Fastbw() used a stopping rule 

based on minimization of the Akaike information criterion (AIC). Table 7 provides the 

resulting “final model” fits from the MI within BS regressions and their performance 

measures.  

Based on the MI within BS regressions, the general forms of the final models are: 

(Eq 5.)  𝐿𝑅𝑎 ~ 𝐿𝑇𝐷𝑆 + 𝐿𝐵𝑎, 

(Eq 6.)  𝐿𝑜𝑔(𝑂𝑑𝑑𝑠 (𝐺𝑇60 = 1))~ 𝐿𝑇𝐷𝑆 + 𝐿𝐵𝑎,  and 

(Eq 7.)  𝐿𝑜𝑔(𝑂𝑑𝑑𝑠 (𝐺𝑇600 = 1))~ 𝐿𝑇𝐷𝑆 + 𝐿𝐵𝑎 + 𝑊. 𝑇𝑦𝑝𝑒 

Complete Case Modeling Using BS Resampled Datasets 

Based on the original dataset, bootstrap resampling was employed to create n=200 

resampled datasets. Table 8 provides regression model results for bootstrapped datasets. 

All fits were performed by the ols() or lrm() functions from the RMS package. The values 

provided in Table 8 are averages of the sets of coefficients and performance measures 

obtained from fitting the resampled datasets. There were 120 complete cases in each 

resampled dataset for the GT600 logistic regression involving the quartet GT600 – LFeT –  
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Table 6. Preliminary models from MI within BS (n=200) and their performance measures. 

 
MLR Model 
Factor Significance Rate 
 LBa  LTDS  LFeT  W.Type 
   1    1     0       0 
Coefficients and Measures 
              Mean       SD 
Intercept   -3.7111  0.3886 
LTDS         1.1392  0.0864 
LBa          0.1366  0.0650 
LFeT         0.0864  0.0666 
W.Type=SG    0.2962  0.0913 
n          254.0000  0.0000 
Model L.R. 359.5401 35.8100 
d.f.         4.0000  0.0000 
R2           0.7546  0.0339 
g            1.0451  0.0625 
Sigma        0.5636  0.0345 
 
 
 
 
 
 
 
 
 

GT60 Logistic Model 
Factor Significance Rate 
 LBa   LFeT   LTDS  W.Type  
 0.70   0.05   1.00   0.05  
Coefficients and Measures 
              Mean     SD 
Intercept  -13.9933  2.8301 
LTDS         3.0435  0.6169 
LBa          0.6436  0.3036 
LFeT         0.0089  0.3762 
W.Type=SG    0.0576  0.5173 
Obs        254.0000  0.0000 
Max Deriv    0.0000  0.0000 
Model L.R. 156.3816 19.8632 
d.f.         4.0000  0.0000 
P            0.0000  0.0000 
C            0.9420  0.0207 
Dxy          0.8839  0.0413 
Gamma        0.8841  0.0413 
Tau-a        0.3160  0.0245 
R2           0.6931  0.0617 
Brier        0.0695  0.0135 
g            2.8778  0.4753 
gr          20.9028 16.7177 
gp           0.3159  0.0233 
 

GT600 Logistic Model 
Factor Significance Rate 
 LBa   LFeT   LTDS  W.Type  
 0.55  0.81   1.00    0.97  
Coefficients and Measures 
               Mean      SD 
Intercept  -17.3152  2.7827 
LTDS         2.7234  0.5508 
LBa          0.3921  0.1930 
LFeT         0.9531  0.3024 
W.Type=SG    1.3670  0.3689 
Obs        254.0000  0.0000 
Max Deriv    0.0000  0.0000 
Model L.R. 135.9382 14.7123 
d.f.         4.0000  0.0000 
P            0.0000  0.0000 
C            0.8805  0.0190 
Dxy          0.7610  0.0379 
Gamma        0.7611  0.0379 
Tau-a        0.3695  0.0203 
R2           0.5570  0.0446 
Brier        0.1343  0.0109 
g            3.3338  0.4302 
gr          32.4536 15.7145 
gp           0.3730  0.0193 
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Table 7. Final Models from MI within BS (n=200) and Their Performance Measures. 

MLR model  

Factor significance proportion 

LBa LTDS  

1 1  

Coefficients and Measures 

              Mean       SD 

Intercept   -3.6696  0.3777 

LTDS         1.1479  0.0830 

LBa          0.2158  0.0436 

n          254.0000  0.0000 

Model L.R. 339.8978 34.6513 

d.f.         2.0000  0.0000 

R2           0.7350  0.0356 

g            1.0312  0.0648 

Sigma        0.5833  0.0335 

 

 

 

 

 

 

 

 

 

 

 

 

 

GT60 Logistic Model 

Factor Significance Proportions 

LBa LTDS  

0.96 1  

Coefficients and Measures 

              Mean       SD 

Intercept  -13.4774  2.5227 

LTDS         2.9256  0.5427 

LBa          0.6607  0.2255 

Obs        254.0000  0.0000 

Max Deriv    0.0000  0.0000 

Model L.R. 153.7376 20.0332 

d.f.         2.0000  0.0000 

P            0.0000  0.0000 

C            0.9397  0.0222 

Dxy          0.8794  0.0443 

Gamma        0.8795  0.0443 

Tau-a        0.3144  0.0251 

R2           0.6845  0.0629 

Brier        0.0715  0.0134 

g            2.7702  0.4502 

gr          18.3016 13.7656 

gp           0.3136  0.0237 

 

 

 

 

 

GT600 Logistic Model 

Factor significance proportion 

  LBa     LTDS  W.Type  

 0.970   1.000  0.985  

Coefficients and Measures 

               Mean      SD 

Intercept  -17.9376  2.9747 

LTDS         3.0818  0.5715 

LBa          0.5969  0.1861 

W.Type=SG    1.3491  0.3513 

Obs        254.0000  0.0000 

Max Deriv    0.0000  0.0000 

Model L.R. 125.6480 18.3182 

d.f.         3.0000  0.0000 

P            0.0000  0.0000 

C            0.8663  0.0244 

Dxy          0.7327  0.0488 

Gamma        0.7328  0.0488 

Tau-a        0.3562  0.0266 

R2           0.5234  0.0574 

Brier        0.1427  0.0130 

g            3.0960  0.4893 

gr          26.3955 17.7877 

gp           0.3599  0.0253 
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Table 8. Final Models from BS (n=200) of Complete Cases and Their Performance Measures.  

 

MLR Model  

                    Mean       SD  SD 

Intercept -4.046 0.375 

LTDS 1.22 0.088 

LBa 0.213 0.048 

n 162 0 

Model L.R. 242.927 27.521 

d.f. 2 0 

R2 0.774 0.038 

g 1.088 0.091 

Sigma 0.556 0.038 

 

 

 

 

 

 

 

 

 

 

 

GT60 Logistic Model 

  Mean SD 

Intercept -14.218 2.642 

LTDS 3.05 0.58 

LBa 0.622 0.325 

Obs 162 0 

Max Deriv 0 0 

Model L.R. 103.927 16.515 

d.f. 2 0 

P 0 0 

C 0.942 0.027 

Dxy 0.884 0.054 

Gamma 0.884 0.054 

Tau-a 0.339 0.039 

R2 0.694 0.07 

Brier 0.075 0.015 

g 2.86 0.548 

gr 20.79 15.525 

gp 0.335 0.036 

 

 

 

GT600 Logistic Model 

 Mean SD 

Intercept -18.745 4.738 

LTDS 3.198 0.89 

LBa 0.803 0.304 

W.Type=SG 0.944 0.678 

Obs 162 0 

Max Deriv 0 0 

Model L.R. 87.929 14.554 

d.f. 3 0 

P 0 0 

C 0.876 0.03 

Dxy 0.752 0.06 

Gamma 0.752 0.06 

Tau-a 0.371 0.029 

R2 0.559 0.069 

Brier 0.134 0.017 

g 3.416 0.781 

gr 45.026 60.897 

gp 0.376 0.028 
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LTDS – W.Type, and 162 complete cases in each resampled dataset for the regressions 

involving the quartet LRa (or GT60 or GT600) – LTDS – LBa – W.Type. The result for the 

GT600 – LFeT – LTDS – W.Type logistic model are provided as Table B-6.  

For comparison, the results of the complete case MLR (executed with ols() and validate()) 

are provided in Table 9 based on the final form model given in Eq 5. Figure 10 provides 

diagnostic plots and Figure 11 provides a histogram of standardized residuals for the fit. The 

Shapiro-Wilk test statistic for normality of the standardized residuals, W, was 0.988 (p-value 

= 0.1654). They exhibited a Kurtosis of 3.52. 

Regression Modeling Using the MI – Validate() Procedure 

The MLR models presented in Tables 10 and 11 were produced using the “reverse 

monotone” (base case) and “monotone” (sensitivity case) imputation orders respectively, to 

gauge its impact on model coefficients and measures of fit. The impact of “monotone” vs. 

“reverse monotone” imputation order for the MLR model is commented on in the 

conclusions section but was not explored further with additional modeling. Both of these 

MLR fits are based on the final form of the MLR model provided in Eq 5. The results were 

obtained by running ols() within fit.mult.impute(), and then executing the validate() 

function, which provides bootstrap estimates of model performance measures. Figure 12 

provides diagnostic plots for the MLR model while Figure 13 provides confidence and 

prediction intervals for the MLR model.   
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Table 9. Results and Performance Measures Complete Case MLR Model. 

MLR Model Complete Cases 
  
Model:  LRa ~ LTDS + LBa 
 
Frequencies of Missing Values Due to Each Variable 
 LRa LTDS  LBa  
   1   67   91  
  
                 Model Likelihood    Discrimination     
                       Ratio Test           Indexes     
 Obs     162    LR chi2    240.30    R2       0.773     
 sigma0.5634    d.f.            2    R2 adj   0.770     
 d.f.    159    Pr(> chi2) 0.0000    g        1.095     
  
           Coef    S.E.   t      Pr(>|t|) 
 Intercept -4.0971 0.3398 -12.06 <0.0001  
 LTDS       1.2316 0.0769  16.01 <0.0001  
 LBa        0.2086 0.0371   5.62 <0.0001  
  
                Analysis of Variance          Response: LRa  
 
 Factor     d.f. Partial SS MS         F      P      
 LTDS         1   81.31640  81.3164027 256.18 <.0001 
 LBa          1   10.03498  10.0349770  31.61 <.0001 
 REGRESSION   2  171.97352  85.9867613 270.90 <.0001 
 ERROR      159   50.46902   0.3174152               
             Effects              Response : NA  
 
          index.orig training   test optimism index.corrected   n 
R-square      0.7731   0.7735 0.7679   0.0056          0.7676 250 
MSE           0.3115   0.3046 0.3187  -0.0141          0.3256 250 
g             1.0950   1.0874 1.0951  -0.0077          1.1027 250 
Intercept     0.0000   0.0000 0.0062  -0.0062          0.0062 250 
Slope         1.0000   1.0000 0.9968   0.0032          0.9968 250 
 
Variance Inflation Factors 
 LTDS and LBa:  1.41 
 
Kurtosis: 3.52 
 
Shapiro-Wilk normality test: W = 0.98767, p-value = 0.1654 
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Figure 10. Diagnostic Plots for the Complete Case MLR Model (LRa ~ LTDS + LBa). 
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Figure 11. Standardized Residuals Histogram for the Complete Case MLR Model. 
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Table 10. Results and performance measures for the MLR regression (MI – validate()). 

Final Model:  LRa ~ LTDS + LBa     
Imputation Order: reverse monotone 
                 Model Likelihood     Discrimination  
                       Ratio Test     Indices 
 Obs     254    LR chi2    333.92     R2      0.731 
 sigma0.5906    d.f.            2     R2 adj  0.729 
 d.f.    251    Pr(> chi2) 0.0000     g       1.029 
  
           Coef    S.E.   t      Pr(>|t|) 
 Intercept -3.6822 0.3086 -11.93 <0.0001  
 LTDS       1.1522 0.0709  16.25 <0.0001  
 LBa        0.2075 0.0389   5.33 <0.0001  
  
                Analysis of Variance      Response: LRa  
 
 Factor     d.f. Partial SS     MS       F        P   
 LTDS         1   92.104915  92.1049145 264.09 <.0001 
 LBa          1    9.913769   9.9137691  28.43 <.0001 
 REGRESSION   2  200.834496 100.4172481 287.93 <.0001 
 ERROR      251   87.538433   0.3487587               
 
          index.orig training    test optimism index.corrected   n 
R-square      0.7254   0.7241  0.7217   0.0024          0.7230 200 
MSE           0.3551   0.3515  0.3600  -0.0085          0.3636 200 
g             1.0357   1.0315  1.0357  -0.0042          1.0400 200 
Intercept     0.0000   0.0000 -0.0210   0.0210         -0.0210 200 
Slope         1.0000   1.0000  1.0087  -0.0087          1.0087 200 
 
Variance Inflation Factors: 
 
 LTDS   LBa 
     1.47   1.47 
 
Shapiro-Wilk normality test of regression residuals: 
 
 W = 0.99346, p-value = 0.3336 
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Figure 12. Diagnostic Plots for MLR regression (MI – validate()). 
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Table 11. Results and performance measures for the MLR regression (MI – validate()), 

Monotone Imputation Order. 

 
Final Model: LRa ~ LTDS + LBa  
Imputation Order: monotone 
  
                 Model Likelihood    Discrimination     
                       Ratio Test           Indexes     
 Obs     254    LR chi2    342.11    R2       0.740     
 sigma0.5817    d.f.            2    R2 adj   0.738     
 d.f.    251    Pr(> chi2) 0.0000    g        1.036     
  
           Coef    S.E.   t      Pr(>|t|) 
 Intercept -3.7439 0.3022 -12.39 <0.0001  
 LTDS       1.1630 0.0684  17.02 <0.0001  
 LBa        0.2125 0.0334   6.36 <0.0001  
  
                Analysis of Variance          Response: LRa  
 
 Factor     d.f. Partial SS MS         F      P      
 LTDS         1   97.95041   97.950408 289.52 <.0001 
 LBa          1   13.67524   13.675240  40.42 <.0001 
 REGRESSION   2  206.61383  103.306916 305.35 <.0001 
 ERROR      251   84.91807    0.338319               
 
          index.orig training    test optimism index.corrected   n 
R-square      0.7334   0.7349  0.7299   0.0051          0.7283 200 
MSE           0.3443   0.3373  0.3489  -0.0116          0.3559 200 
g             1.0345   1.0327  1.0347  -0.0020          1.0365 200 
Intercept     0.0000   0.0000 -0.0093   0.0093         -0.0093 200 
Slope         1.0000   1.0000  1.0046  -0.0046          1.0046 200 
 
Variance Inflation Factors  
 LTDS  LBa 
 1.38  1.38 
 
Shapiro-Wilk normality test of regression residuals 
 W = 0.99437, p-value = 0.4681 
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Figure 13. Regression Curves for MLR Model (MI – validate()). 
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Table 12 and Table 13 provide coefficients and measures of model fit for the GT60 and 

GT600 logistic models, respectively. The final model forms that these fits are based on are 

as given in Eq 6 and 7, respectively. An alternative GT600 model is provided in Table B-5. 

Figure 14 provides plots of log(Odds(Ra-226 > 60pCi/L)) vs LBa and probability(Ra-226 > 

60pCi/L)) vs LBa for the GT60 logistic regression. The receiver operating characteristic curve 

(ROC) for the resulting GT60 model is provided in Figure 15. The sensitivity and specificity 

for the GT60 logistic regression was 0.73 and 0.92 respectively as are the positive and 

negative predictive values. Figure 16 provides plots of log odds versus the continuous 

predictor variables for the GT60 logistic model. Figure 17 provides plots of log(Odds(Ra-226 

> 600pCi/L)) vs LBa and probability(Ra-226 > 600pCi/L)) vs LBa for the GT600 logistic model. 

Figure 18 is the ROC plot for the GT600 logistic model. A plot of log(odds(Ra-226 > 600)) vs. 

continuous predictors is not provided because it looks very similar to Figure 16.  

 

Figure 14. Log(Odds) and Probability Plots for GT60 Logistic Model (MI -validate()). 
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Table 12. Regression results for the GT60 Logistic Model (MI – validate()). 

Final Model: GT60 ~ LTDS + LBa 
 
   Intercept    LTDS      LBa  
VIF (Imputation)     1.18       1.16     1.45  
VIF       1.06   1.06  
Missing Information   0.15       0.14     0.31  
df Coefficients 821.77     957.32   196.58  
  
                        Model Likelihood    Discrimination          
                              Ratio Test           Indexes          
 Obs           254    LR chi2     153.93    R2       0.687    C       0.941     
  0             59    d.f.             2    g        2.676    Dxy     0.881     
  1            195    Pr(> chi2) <0.0001    gr      14.675    gamma   0.881     
 max |deriv| 5e-06                          gp       0.315    tau-a   0.316     
                                            Brier    0.071                      
  
           Coef     S.E.   Wald Z Pr(>|Z|) 
 Intercept -13.0484 2.1437 -6.09  <0.0001  
 LTDS        2.8458 0.4733  6.01  <0.0001  
 LBa         0.6215 0.2315  2.68  0.0073   
  
                Wald Statistics          Response: GT60  
 
 Factor     Chi-Square d.f. P      
 LTDS       36.15      1    <.0001 
 LBa         7.21      1    0.0073 
 TOTAL      53.57      2    <.0001 
 
          index.orig training   test optimism index.corrected   n 
Dxy           0.8524   0.8538 0.8498   0.0040          0.8484 200 
R2            0.6392   0.6432 0.6311   0.0121          0.6271 200 
Intercept     0.0000   0.0000 0.0354  -0.0354          0.0354 200 
Slope         1.0000   1.0000 0.9687   0.0313          0.9687 200 
Emax          0.0000   0.0000 0.0133   0.0133          0.0133 200 
D             0.5460   0.5526 0.5368   0.0158          0.5302 200 
U            -0.0079  -0.0079 0.0002  -0.0080          0.0002 200 
Q             0.5539   0.5604 0.5366   0.0238          0.5300 200 
B             0.0809   0.0791 0.0827  -0.0035          0.0844 200 
g             2.3778   2.4688 2.3633   0.1055          2.2723 200 
gp            0.3047   0.3050 0.3028   0.0022          0.3025 200 



55 
 

Table 13. Regression results for the GT600 Logistic Model (MI - validate()). 

 

Model: GT600 ~ LTDS + LBa + W.Type 
 
   Intercept  LTDS       LBa W.Type=SG  
 VIF (Imputation)    1.35      1.36      1.35      1.09  
 VIF                     1.29      1.12      1.42 
 Missing Information 0.26      0.26      0.26      0.08  
 d.f. Coefficients 285.68    274.71    288.07   2926.51  
 
                        Model Likelihood         Discrimination          
                              Ratio Test                Indexes          
 Obs           254    LR chi2     121.69    R2       0.512    C       0.862     
  0            149    d.f.             3    g        3.013    Dxy     0.725     
  1            105    Pr(> chi2) <0.0001    gr      21.008    gamma   0.725     
 max |deriv| 1e-06                          gp       0.356    tau-a   0.353     
                                            Brier    0.146                      
  
           Coef     S.E.   Wald Z Pr(>|Z|) 
 Intercept -17.6586 3.7192 -4.75  <0.0001  
 LTDS        3.0471 0.7064  4.31  <0.0001  
 LBa         0.5335 0.1902  2.81  0.0050   
 W.Type=SG   1.3775 0.4063  3.39  0.0007   
  
           Wald Statistics     Response: GT600  
 
 Factor     Chi-Square d.f. P      
 LTDS       18.60      1    <.0001 
 LBa         7.87      1    5e-03  
 W.Type     11.49      1    7e-04  
 TOTAL      36.52      3    <.0001 
 
          index.orig training    test optimism index.corrected   n 
Dxy           0.7455   0.7463  0.7346   0.0117          0.7338 250 
R2            0.5251   0.5346  0.5169   0.0177          0.5075 250 
Intercept     0.0000   0.0000 -0.0165   0.0165         -0.0165 250 
Slope         1.0000   1.0000  0.9563   0.0437          0.9563 250 
Emax          0.0000   0.0000  0.0126   0.0126          0.0126 250 
D             0.4901   0.5039  0.4802   0.0236          0.4665 250 
U            -0.0079  -0.0079  0.0033  -0.0112          0.0033 250 
Q             0.4980   0.5118  0.4769   0.0348          0.4631 250 
B             0.1417   0.1390  0.1451  -0.0061          0.1478 250 
g             3.1216   3.2271  3.0240   0.2031          2.9185 250 
gp            0.3612   0.3636  0.3578   0.0058          0.3554 250 
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Figure 15. ROC Curve for the GT60 Logistic Model (MI -validate()). 

  

Figure 16. Log Odds Versus Predictors for GT60 Logistic Model (MI -validate()). 
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Figure 17. Log(Odds) and Probability Plots for GT600 Logistic Model (MI – validate()).
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Figure 18.  ROC plot for GT600 Logistic Model (MI validate()). 
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Chapter 6: Discussion and conclusions 

This section provides a discussion of results and conclusions.  

Discussion of Results 

The datasets analyzed by MLR, and logistic regression(GT60 and GT600) differed only in that 

MLR required a continuous variable, LRa, while logistic regression required a dichotomous 

response variable (either GT60 or GT600). The dichotomous response variables were 

constructed by passive imputation from LRa using a deterministic formula, and these were 

not allowed to be used in any subsequent MI step.  

General Model Form Results 

The general form of the MLR, GT60 and GT600 models was determined by the MI within BS 

procedure, which involved using a loop that would: 

1. do a bootstrap resample with replacement,  

2. execute mice() to obtain a set of multiply imputed datasets, 

3. use fit.mult.impute() to execute the standard linear model fitter ols() or logistic 

model fitter lrm() and apply Rubin’s rules, based on the preliminary model forms 

given in Eq 2, 3, and 4, 

4. Then fastbw() function from the RMS package was executed to identify significant 

coefficients for main effects models. All three models, MLR, GT60 and GT600, were 

fit in each resample and the vectors of their resulting model coefficients and 
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performance measures were appended as records in their respective tables for 

future reference,  

5. The loop was repeated for each of 200 resamples. 

6. After exiting the loop, the proportion of bootstrap resamples was obtained from the 

tables generated in step 4, in which each model parameter in the preliminary model 

was significant. This resulted in selection of the final MLR models form of the type 

given in Eq 5, the final form of the GT60 logistic model given in Eq 6. The GT600 

logistic model suggested by this procedure would have had the predictors W.Type, 

LTDS and LFeT, and is provided in Table B-4. I rejected it in favor of a logistic model, 

Eq 7 with predictors W.Type, LTDS, and LBa that provided nearly the same 

performance measures and had significantly lower rates of missingness of predictor 

variables.  

This entire process was repeated using the final model forms given in Eq 5, 6, and 7, to 

produce the final models provided in Table 7. The question of final model forms was 

not revisited in subsequent analyses.  

MLR Result from MI – Validate() Procedure 

The MLR model  as presented in Table 10 is based on the general model form in Eq 5. 

The process involved MI, model fits, applying Rubin’s rules, then bootstrap evaluation 

of model performance optimism using the RMS package function validate(). 

Unfortunately, this procedure does not yield a table of bootstrap coefficients, but it 

produces a data object that facilitates producing graphics.  
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The QQ-plot for this model is slightly skewed (Figure 12, and the standardized residuals 

exhibit a kurtosis of 3.37, which is slightly broader than is expected if they were 

normally distributed. A Shapiro-Wilk test of normality of the standardized residuals 

gave a test statistic of W=0.993 and p-value of 0.334; thus, there was strong evidence 

that they are approximately normally distributed. For the Table 10 model, the variance 

inflation factors for LTDS and LBa were 1.47, which suggests that there is not strong 

collinearity between the predictors.   

The optimism in the R2 value for the MLR fit was 0.0024 as estimated by the validate() 

function, which is quite small compared to R2value for the model fit, 0.731 

Figure 13 provides the MI-validate() MLR regression lines, confidence intervals and 

prediction intervals for selected LTDS and LBa values. The figures take into account that 

the barium never exceeds approximately 5% of the TDS concentration. LTDS is a much 

stronger predictor of LRa than LBa. Figure 13 suggests that a new observation from the 

data distribution with an LTDS of:  

• 3.3 (approximately 7% the TDS of seawater) is unlikely to have an LRa value 

greater than about 1.8 (63pCi/L), and 

• 5.3 (approximately 6 times the TDS of seawater) is unlikely to have an LRa value 

of less than 1.3 at low barium concentrations and 2 at high barium 

concentrations. 
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Tables 10 and 11 are MLR models produced by the MI – validate() procedure, and were run 

under identical conditions, but with different imputation order. The differences in the 

performance measures and coefficients for the two models were slight. The coefficients of 

linear determination, after adjustment for optimism, were 0.7283 and 0.7230 for the 

monotone and reverse monotone cases respectively. The monotone imputation order 

yielded a model with slightly smaller standard errors of coefficients but the regression 

coefficients for each model agreed to within a fraction of their standard errors. Overall the 

imputation order had a small effect on model effect. The effect of imputation order on the 

rate of convergence of the predictive mean matching algorithm was not explored further.  

Comparison of MI within BS and MI-validate() MLR models 

The MLR models in Table 7, column 1 and Table 10 may be compared. The regression 

coefficients are very similar. The standard errors of coefficients obtained with the MI-

validate() model are approximately 10 to 20% smaller than those for the model produced 

by MI within BS technique and provided in Table 7 column one. The R2 values are nearly 

identical, 0.731 vs. 0.735, with the MI within BS procedure having the higher score.  

Plots, like those provided in Figure 13, but based on the MI within BS modeling are expected 

to have slightly broader prediction intervals. For making predictions, Figure 13 is useful for 

crude estimates, but it would be preferable to produce estimates of E(LRanew obs|LTDS, LBa) 

and its and confidence and prediction intervals based on the table of bootstrap coefficients 

that was produced during step 4 of the section entitled “General Form Results.”  
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Complete Case MLR Model  

The complete case dataset (n=162) is addressed by Table 8, column 1, (as a result of 

modeling with a bootstrap loop) and in Table 9, based on running the model fitter ols() and 

validate() functions. In both cases, the model fitted was based on the final model form given 

by Eq 5. The average of the standard deviations of regression coefficients obtained from the 

explicit bootstrap calculation were 10 to 30% larger than those obtained from running ols() 

and validate(). The reported R2 values were virtually identical, 0.773 vs. 0.774. The 

diagnostic plots for the ols() – validate() model appear to indicate an approximately normal 

distribution of standardized residuals. The Shapiro-Wilk statistic for the ols() - validate() 

model was W=0.987 (p-value = 0.165), which indicates that there was strong evidence that 

the distribution of standardized residuals was approximately normal. Generally, the 

intercept and all of the coefficients of the ols() – validate() MLR model in Table 9 were 

further from zero that were those from the MI – validate() MLR model in Table 10.  

The ols() – validate() MLR model considers only complete cases, and the missing data 

pattern is clearly not MCAR. Consequently, it may be more biased than the models that 

addressed missing data and employed MI.  

GT60 and GT 600 Logistic Model Results 

The procedure for developing the GT60 and GT600 models is as described in the section 

entitled “General Form Results.” Generally, it involved performing multiple imputation, 

model fitting, applying Rubin’s rules and then accumulating coefficients and model fit 

measures on a series of bootstrap resamples within a loop, with final model results 
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provided in Table 7. This process yields a table of coefficients that can be used to provide 

bootstrap estimated confidence intervals for new observations.  

The GT60 and GT600 final model forms, Eq 6 and 7,  were also fitted using the procedure 

described in the section entitled “MLR Result from MI – Validate() Model” with two 

exceptions. They were fitted as generalized linear models using the RMS function, lrm() and 

the response variable LRa was replaced by corresponding dichotomous response variables, 

GT60 or GT600. The RMS package function validate() was then used to bootstrap estimates 

of model fit and optimism, but not regression coefficients. This procedure also facilitated 

the preparation of graphics, which would be more difficult to produce using data from the 

MI within BS procedure.  

The variance inflation factors for the GT60 model in Table 12 (LTDS, LBa =1.06) suggests that 

collinearity of predictor variables is minimal. The area under the receiver operating 

characteristic curve, C = 0.941 is rather close to the ideal limiting value of 1, Figure 15. The 

estimated optimism of 0.002 in this statistic is slight, suggesting that overfitting is not a 

serious problem. It also is nearly identical to the average C value reported in Table 7, 

column 2, 0.940.  

The GT60 logistic model produced by the MI – validate() procedure (Table 12) had 

coefficients that were a bit closer to zero than the model fitted by the MI within BS 

procedure (Table 7 column 2). 
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The Shapiro-Wilk test statistic for normality of standardized residuals for the model was not 

determined because residuals from logistic regression are not required to be normally 

distributed or to exhibit homoskedasticity. There is an approximately linear relationship 

between log(odds(GT60)) and the individual predictor variables as Figure 16 demonstrates.  

Overall, the GT60 logistic model should have good power at discriminating between PW 

with concentrations above 60pCi/L and below, provided that new observations are drawn 

from a distribution that is identically distributed to the data that was used to fit the model. 

The practical interpretation of the results for the GT60 logistic model is that it has a 

sensitivity of 0.729 and a specificity of 0.918. That is to say:  

• of those units that truly have a Ra-226 concentration greater than 60pCi/L, about 

73% should have a positive test; and  

• of those units that truly have a Ra-226 concentration less than 60pCi/L, about 92% 

should have a negative test.  

The practical interpretation of Figure 14 (right panel) is: 

• At low concentrations of TDS in PW, the concentration of radium-226 is unlikely 

to exceed 60pCi/L,  

• At concentrations of TDS in PW that are about 60% of that in seawater (i.e., LTDS 

~ 4.3), the probability of radium-226 exceeding 60pCi/L strongly depends on the 

barium concentration, and 
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• At concentrations of TDS in PW that are about 6 times that found in seawater 

(i.e., LTDS = 5.3) , the probability of radium-226 exceeding 60pCi/L is high, 

regardless of the barium concentration.  

The variance inflation factors for the GT600 model in Table 13 (LTDS = 1.29, LBa =1.12, 

W.Type=1.42) suggest that collinearity of predictor variables is minimal. The area under the 

receiver operating characteristic curve, C = 0.862 is reasonably close to the ideal limiting 

value of 1, Figure 18. The estimated optimism of 0.006 in this statistic is slight, suggesting 

that overfitting is not a serious problem. It also is nearly identical to the average C value 

reported in Table 7, column 3, 0.866.  

The GT600 logistic model produced by the MI – validate() procedure (Table 12) had 

coefficients for the intercept and continuous variables that were a bit closer to zero than 

the model fitted by the MI within BS procedure (Table 7 column 2). There is an 

approximately linear relationship between log(odds(GT600)) and the individual predictor 

variables, but the graphic was not provided because it looks very similar to Figure 16. 

Overall, the GT600 logistic model has a reasonable amount of power at discriminating 

between PW with concentrations above 600pCi/L and below, provided that new 

observations are drawn from a distribution that is identically distributed to the data that 

was used to fit the model. 

The practical interpretation of the results for the GT600 logistic model is that it has a 

sensitivity of 0.879 and a specificity of 0.714. That is to say:  
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• of those units that truly have a Ra-226 concentration greater than 600pCi/L, about 

88% should have a positive test; and  

• of those units that truly have a Ra-226 concentration less than 60pCi/L, about 71% 

should have a negative test.  

The practical interpretation of Figure 17 is dependent on well type. For SG wells: 

• At low concentrations of TDS (~2000mg/L), the concentration of radium-226 is 

unlikely to exceed 600pCi/L,  

• At concentrations of TDS in PW that are about 60% of that in seawater 

(~20,000ppm), the probability of radium-226 exceeding 600pCi/L are well below 

50%, and 

• At concentrations of TDS in PW that are about ~200,000mg/L or 6 times that 

found in seawater, the probability of radium-226 exceeding 600pCi/L is 

significantly dependent on the barium concentration.  

For CHC/TG wells: 

• At low or intermediate concentrations of TDS (~2000mg/L and ~20,000mg/L 

respectively), the concentration of radium-226 is unlikely to exceed 600pCi/L,  

• At concentrations of TDS in PW that are about ~200,000mg/L the probability of 

radium-226 exceeding 600pCi/L is markedly dependent on the barium 

concentration.  



68 
 

Practical Utility of Results: MLR Examples  

The example well chemistry report in Appendix A identifies the well as #7 on the Adelaide 

lease in the Erath Field, operated by Phillips Oil Company, and the sampling date is given as 

September 25, 1986. No radium-226 concentration is provided, but the TDS and barium 

were reported as 132,173mg/L and 235mg/L respectively. No well serial number or API 

number is provided for the well; either of these would have been powerful identifiers. 

The Louisiana Department of Natural Resources’ SONRIS web database Operator History by 

Well page (LA DNR, 2022) has an entry for a well 7 in the Erath Field on the Adelaide Lease, 

operated by Phillips Petroleum Company. Drilling began on December 26, 1958, and the 

well was plugged and abandoned on November 19, 1987. This is almost certainly the well in 

question. No information is provided in SONRIS about the well type possibly because it was 

drilled 66 years ago and nearly all hydrocarbon wells being drilled at that time were 

conventional hydrocarbon.  

The coefficient table from the MLR modeling using the MI within BS procedure has 200 sets 

of coefficients for intercept, LTDS, and LBa, these coefficients were used to calculate 200 

estimates of LRa. The resulting vector of 200 LRa realizations is expected to be 

asymptotically normally distributed. A Shapiro-Wilk normality test of the vector yields a test 

statistic, W, of 0.9931 (p-value =0.5019), which is strong evidence that the calculated LRa 

values are indeed normally distributed. The mean value of LRa is 2.7218 with variance 

0.04088, which corresponds to 527pCi/L. The standard deviation for prediction, SP,  is 

calculated per Eq 8. 
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(Eq 8.)   𝑆𝑃 =  ((𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)  +  199 ∗ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)1/2 

The 90% prediction bounds are calculated per Eq 9. 

 (Eq 9.)  10𝑚𝑒𝑎𝑛 𝐿𝑅𝑎 ±1.645∗𝑆𝑃, 

which corresponds to the interval (59 to 4,709pCi/L). 

The 90% and 80% lower prediction limits are calculated per Eq 10.  

 (Eq 10.) 10𝑚𝑒𝑎𝑛 𝐿𝑅𝑎−𝑍∗𝑆𝑃, 

Where Z is 1.282 and 0.8422 respectively. These correspond to 96 and 172pCi/L radium-226 

respectively. Consequently, one can conclude that to a reasonable degree of scientific 

certainty, more probably than not, the concentration of radium-226 in the sample is well 

above the drinking water standard of 5pCi/L total radium. This conclusion is subject to the 

caveat that the water sample is from a population that is identically distributed as the PW 

data that was used to develop the MLR model.  

Similar confidence interval and confidence bound calculations can be performed using the 

GT60 and GT600 models to calculate the point estimate and confidence intervals on the 

probability of an observation from an identically distributed populating exceeding 60 or 

600pCi/L   

Conclusions 

The following concerns and conclusions from this study are offered below: 
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1. Most of the data (76%) used in the analysis comes from the Appalachian Basin, 

Table 2. Table B-3 provides a further breakdown of the Appalachian Basin data by 

geologic unit, and it indicates that 98 of those Appalachian Basin observations (51%) 

come from a single formation, the famous Marcellus Shale. Overall, 39% of the 254 

observations in the study come from the Marcellus Shale. Consequently, the 

Appalachian Basin in general and the Marcellus Shale in particular may be 

overrepresented in the data, and the dataset might not be a simple random sample 

of all hydrocarbon wells in the United States.  

2. There were only 6 TG wells in the dataset of 254 observations but this type of well 

has become increasingly important in the last 40 years, so this type of well is almost 

certainly underrepresented.  

3. The dataset suffered from extreme missingness rates for variables that could be 

important, Table 4. These include attributes such as temperature, pressure, 

hydrogen sulfide, bisulfide, bicarbonate and carbonate. There were also high 

missingness rates for species such as pH, chloride, calcium, magnesium, strontium, 

sodium and potassium. The high missingness rates prevented calculation of ionic 

strengths, activity coefficients and generally a more elegant analysis.  

4. Many of the continuous variables such as TDS, pH, sodium, chloride, and calcium 

proved to be highly correlated, as Figure 2 shows. Most of these variables also had 

unacceptable rates of missingness. Using principal components analysis to reduce 

the dimensionality of these variables was considered and rejected since the 

intended audience, attorneys and other non-statisticians, would find it too 
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confusing. It also would have required preparation of a much more complicated 

prediction matrix.  

5. There were only four predictor variables in the prediction matrix: LBa, LTDS, LFeT 

and W.Type plus the continuous response variable, LRa. Out of 254 observations, 67 

(26%) had no information for LBa, LTDS, and LFeT. This led to a dilemma: to discard 

or to keep. The 67 observations were ultimately retained. 

6. A considerable amount of data is missing and the missingness clearly is not MCAR. I 

do not know for certain why values are missing for key analytes such as FeTot (total 

iron), barium, and total dissolved solids (TDS). Some operators may have had 

reasons for collecting or failing to collect certain types of data. For example, 

operators may have known that barite or celestine scaling was not a practical 

concern for PW from some formations; that knowledge might have caused some 

barium and strontium data to be MNAR. PW is regulated state by state, and in some 

instances, PW could have been analyzed in a certain way to demonstrate 

compliance with state regulations or to satisfy facility waste acceptance criteria; this 

could lead to a MAR pattern. Finally older data was generated when PW was less 

regulated and older data would also be more likely to be from CHC wells, as is 

evident from Tables 3 and 4. 

7. The method of dichotomizing the W.Type variable, logistic regression, worked in a 

satisfactory manner, and it consistently categorized TG wells as CHC wells. This is 

consistent with how one would have re-categorized TG wells given that the 
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category had to be eliminated and they had only looked at the group average 

concentrations given in Table 3.  

8. The left-censored radium-226 value that was MNAR was treated as if it were MAR, 

and MI yielded satisfactory estimates that were in line with detection limits that 

have been observed for a high TDS dataset.  

9. Reasonably feasible internal validation measures have been performed by standard 

methods that include bootstrap resampling of observations and the use of the RMS 

function validate(). Validate() appears to resample residuals instead of 

observations. Unfortunately, the USGS DB already includes all or almost all of the 

data that is reasonably available. External validation would be beneficial, but it does 

not appear feasible unless the European Union or some other entity publishes a 

similar database.  

10. Log transformation of the original data resulted in MLR models where the 

standardized residuals were approximately normally distributed.  

11. The prediction intervals for the MLR models are very broad once the log10(Ra) 

values are transformed to conventional units, but still appear to be potentially 

useful.  

12. The logistic models appear to satisfy the assumption that there be an approximately 

linear relationship between log odds of the response variables and individual 

predictors.  

13. The conclusion that there is an approximately linear relationship between log(Ra-

226) and log(TDS) has been reported previously by Kraemer (Kraemer & Reid, 1984).  
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14. The conclusion that there log(barium) is a predictor of log(radium-226) partly makes 

sense and partly is baffling. Using it as a predictor is an acknowledgement that 

available radium and available barium in a formation will behave very much like one 

another. However, the amount of radium-226 in a formation is usually a function of 

its uranium-238 concentration, not its barium concentration due to the serial 

radioactive decay of uranium-238 to radium-226 through a series of intermediates. 

This may partly explain the large amount of noise in the scatterplot of LRa vs LBa in 

Figure 9.  

References 

Andridge, R. R., & Little, R. J. A. (2010). A Review of Hot Deck Imputation for Survey Non-

response. International Statistical Review = Revue Internationale De Statistique, 

78(1), 40–64. https://doi.org/10.1111/j.1751-5823.2010.00103.x 

BC. (undated). Conventional versus Unconventional Oil and Gas. British Columbia Ministry of 

Natural Gas Development and Minister Responsible for Housing. 

https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-

industry/natural-gas-oil/petroleum-

geoscience/conventional_versus_unconventional_oil_and_gas.pdf 

Bell, K. G., Goodman, C., & Whitehead, W. L. (1940). Radioactivity of Sedimentary Rocks and 

Associated Petroleum. Bull. Am. Assoc. of Petroleum Geologists, 24(9), 1529–1547. 



74 
 

Blackwell, R. S., Burgard, K., Clark, R., & Cuadra, J. D. (2021). Implementation Manual for 

Management  of Naturally Occurring Radioactive  Material (NORM) , Final Draft. 

Louisiana Department of Environmental Quality, Emergency and Radiation Services 

Division. 

Breger, I. A., & Whitehead, W. L. (1951). Radioactivity and the Origin of Petroleum in 

Proceedings Third World Petroleum Congress-Section I. 421–427. 

Curie, P., Curie, M., & Gustave, B. (1898). Sur une nouvelle substance fortement radio-

active, contenue dans la pechblende (On a new, strongly radioactive substance 

contained in pitchblende). Comptes Rendus, 127, 1215–1217. 

Drever, J. L. (1997). The Geochemistry of Natural Waters: Surface and Groundwater 

Environments (3rd ed.). Prentice Hall. 

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 

7(1), 1–26. https://doi.org/10.1214/aos/1176344552 

Engle, M. A., Saraswathula, V., Thordsen, J. J., Morrissey, E. A., Gans, K. D., Blondes, M. S., 

Kharaka, Y. K., Rowan, E. L., & Reidy, M. E. (2019). U.S. Geological Survey National 

Produced Waters Geochemical Database v2.3 [Data set]. U.S. Geological Survey. 

https://doi.org/10.5066/F7J964W8 

Eriksson, G., & O’Hagan, L. A. (2021). Selling “Healthy” Radium Products With Science: A 

Multimodal Analysis of Marketing in Sweden, 1910–1940. Science Communication, 

43(6), 740–767. https://doi.org/10.1177/10755470211044111 



75 
 

Escott, P. (1984). NRPB Report for the Department of Energy London: The Occurrence of 

Radioactive Contamination on Offshore Installations. 

Gott, G. B., & Hill, J. W. (1951). Radioactivity of Some Oil Fields of Southeastern Kansas. 

Trace Elements Investigations Report 121. United States Geological Survey. 

GWB. (2021). The Geochemist’s Workbench®. Aqueous Solutions LLC. 

https://www.gwb.com/ 

Haaker, R. F. (2021). Personal Communication concerning data from Kern Broussard et al. V 

HilCorp Energy Company, et al. 

Harrell Jr., F. E. (2021a). Package Hmisc: Harrell Miscellaneous. https://cran.r-

project.org/web/packages/Hmisc/Hmisc.pdf 

Harrell Jr., F. E. (2021b). Package rms: Regression Modeling Strategies, Version 6.2.0. 

https://hbiostat.org/R/rms/, https://github.com/harrelfe/rms 

IAEA. (1990a). The Environmental Behavior of Radium, Vol. 1. Technical Reports Series No. 

310. International Atomic Energy Agency, Vienna. 

IAEA. (1990b). The Environmental Behavior of Radium, Vol. 2, Technical Reports Series No. 

310. 

https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/052/21052628.pdf 

IAEA. (2016, September 5). The Environmental Behaviour of Radium: Revised Edition, 

Technical Report Series 476 [Text]. IAEA. 



76 
 

https://www.iaea.org/publications/10478/the-environmental-behaviour-of-radium-

revised-edition 

Keith Schneider. (1990a, December 3). Radiation Danger Found in Oilfields Across the 

Nation. https://go-gale-

com.libproxy.unm.edu/ps/retrieve.do?tabID=News&resultListType=RESULT_LIST&se

archResultsType=MultiTab&hitCount=1&searchType=AdvancedSearchForm&current

Position=1&docId=GALE%7CA175610611&docType=Article&sort=Relevance&conten

tSegment=ZXAY-

MOD1&prodId=OVIC&pageNum=1&contentSet=GALE%7CA175610611&searchId=R1

&userGroupName=albu78484&inPS=true 

Keith Schneider. (1990b, December 24). 2 Suits on Radium Cleanup Test Oil Industry’s 

Liability—Document—Gale In Context: Opposing Viewpoints. https://go-gale-

com.libproxy.unm.edu/ps/retrieve.do?tabID=News&resultListType=RESULT_LIST&se

archResultsType=MultiTab&hitCount=1&searchType=AdvancedSearchForm&current

Position=1&docId=GALE%7CA175605356&docType=Article&sort=Relevance&conten

tSegment=ZXAY-

MOD1&prodId=OVIC&pageNum=1&contentSet=GALE%7CA175605356&searchId=R1

&userGroupName=albu78484&inPS=true 

Kraemer, T. F., & Reid, D. F. (1984). The occurrence and behavior of radium in saline 

formation water of the U.S. Gulf Coast region. Chemical Geology, 46(2), 153–174. 

https://doi.org/10.1016/0009-2541(84)90186-4 



77 
 

LA DNR. (2022, January 21). Louisiana Department of Natural Resources SONRIS Data Portal: 

Operator History by Well. 

https://sonlite.dnr.state.la.us/pls/apex/f?p=108:9035:8487722954200::::: 

Landis, J. D., Sharma, M., & Renock, D. (2018). Rapid desorption of radium isotopes from 

black shale during hydraulic fracturing. 2. A model reconciling radium extraction 

with Marcellus wastewater production. Chemical Geology, 500, 194–206. 

https://doi.org/10.1016/j.chemgeo.2018.08.001 

Landis, J. D., Sharma, M., Renock, D., & Niu, D. (2018). Rapid desorption of radium isotopes 

from black shale during hydraulic fracturing. 1. Source phases that control the 

release of Ra from Marcellus Shale. Chemical Geology, 496, 1–13. 

https://doi.org/10.1016/j.chemgeo.2018.06.013 

Langmuir, D., & Riese, A. C. (1985). The thermodynamic properties of radium. Geochrmlca Y 

Cosmorhrmrca Acfa, 49, 1593–1601. 

Madley-Dowd, P., Hughes, R., Tilling, K., & Heron, J. (2019). The proportion of missing data 

should not be used to guide decisions on multiple imputation. Journal of Clinical 

Epidemiology, 110, 63–73. https://doi.org/10.1016/j.jclinepi.2019.02.016 

O’Brien, R. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. 

Quality & Quantity, 41, 673–690. https://doi.org/10.1007/s11135-006-9018-6 

Radionuclides Rule: A Quick Reference Guide, EPA 816-F-01-003. (2001). USEPA, Office of 

Water. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=30006644.txt 



78 
 

Rubin, D. B. (1986). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons. 

Smith, S. H. (2015). Crude Justice: How I Fought Big Oil and Won, and What You Should 

Know About the New Environmental Attack on America. BenBella Books. 

T. F. Kraemer. (1987). Radium Content of Central Mississippi Salt Basin Brines. Open File 

Report 87-694. 

Taylor, W. (1993). NORM In Produced Water Discharges in the Coastal Waters of Texas. 

SPE\EPA Exploration &. Production Environmentlll Conference in San Antonio. Teoc_. 

March 7-10. 1993., 9. 

Thoya, D., Waititu, A., Magheto, T., & Ngunyi, A. (2018). Evaluating Methods of Assessing 

“Optimism” in Regression Models. American Journal of Applied Mathematics and 

Statistics, 6(4), 126–134. https://doi.org/10.12691/ajams-6-4-2 

Unknown. (2021). PHREEQC Version 3: PHREEQC--A Computer Program for Speciation, 

Reaction-Path, Advective Transport, and Inverse Geochemical Calculations. United 

States Geological Survey. 

https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc.v1/index.html 

US EPA, O. (2014). Health Risk of Radon [Overviews and Factsheets]. 

https://www.epa.gov/radon/health-risk-radon 

USEIA. (2020). Natural gas explained—U.S. Energy Information Administration (EIA). 

https://www.eia.gov/energyexplained/natural-gas/ 



79 
 

USEIA. (2021, October 8). Where our natural gas comes from—U.S. Energy Information 

Administration (EIA). U. S. Energy Information Administration Independent Statistics 

& Analysis. https://www.eia.gov/energyexplained/natural-gas/where-our-natural-

gas-comes-from.php 

USEPA, EMSL. (1980). “Method 903.1: Radium-226 in Drinking Water Radon Emanation 

Technique.” Prescribed Procedures for Measurement of Radioactivity in Drinking 

Water, EPA/600/4/80/032. USEPA. 

van Buuren, S. (2018). Flexible Imputation of Missing Data, 2nd Edition. CRC Press Taylor & 

Francis Group. 

van Buuren, S. & et al. (2022). mice source: R/mice.R. 

https://rdrr.io/cran/mice/src/R/mice.R 

van Buuren, S., & Groothuis-Oudshoorn. (2021). Package “mice” Multivariate Imputation by 

Chained Equations, version 3.14.0. https://github.com/amices/mice, 

https://amices.org/mice/ 

WOGCC. (2021). WOGCC Data Explorer concerning API # 49-007-23320. 

https://dataexplorer.wogcc.wyo.gov/ 

 

  



80 
 

List of Appendices 

Appendix A: Example Water Chemistry Report 

Appendix B: Supplementary Tables and Figures 

  



81 
 

 

Appendix A: Example Water Chemistry Report 

 



82 
 

 



83 
 

 



84 
 

Appendix B: Supplementary Tables and Figures 

 

The USGS data dictionary is provided as Table B.1. Table B.2 provides missing records 

information for the 254 observations used in this analysis.  

Table B.1. Data Dictionary and Percent of n=114,943 Records Missing (Engle et al., 2019). 
Variable 
Name 

Description 
Percent 
Missing 

IDUSGS Unique ID in this database 0% 

IDORIG ID in original database or publication 0% 

IDDB ID (name) of input database 0% 

SOURCE Source of data 34% 

REFERENCE Publication 94% 

LATITUDE Latitude 10% 

LONGITUDE Longitude 9% 

LATLONGAPX Description if LATITUDE or LONGITUDE are approximate 80% 

API API well number, 14 digits 36% 

USGSREGION USGS Region 0% 

BASIN Basin 0% 

BASINCODE Basin Code 39% 

STATE State 0% 

STATECODE State Code 0% 

COUNTY County 27% 

COUNTYCODE County Code 29% 

FIELD Field 16% 

FIELDCODE Field Code 51% 

WELLNAME Well name 13% 

WELLCODE Well Code 86% 

WELLTYPE Well type 0% 

TOWNRANGE Township, Range, Section, Quarter 80% 

REGDIST Regional District 83% 

LOC Location 96% 

QUAD Quad 100% 

TIMESERIES Order of time-series data 100% 

DAY Sample day of time-series data 98% 

DATECOMP Date of well completion 94% 

DATESAMPLE Date of sample collection 26% 

DATEANALYS Date of analysis 91% 

METHOD Sample Method 41% 
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Variable 
Name 

Description 
Percent 
Missing 

OPERATOR Well operator 73% 

PERMIT Well permit holder 93% 

DFORM Geologic formation name of greatest depth 79% 

GROUP Geologic group name 100% 

FORMATION Geologic formation name 0% 

MEMBER Geologic member name 98% 

AGECODE Geologic Age code 52% 

ERA Geologic Era name 0% 

PERIOD Geologic Period name 0% 

EPOCH Geologic Epoch name 80% 

DEPTHUPPER Upper perforation depth, ft. Depth added here if non-specific. 29% 

DEPTHLOWER Lower perforation depth, ft 41% 

DEPTHWELL Reported Total depth of well, ft 63% 

ELEVATION Elevation of well, ft 82% 

LAB Laboratory that analyzed the results 89% 

REMARKS Remarks or comments 93% 

LITHOLOGY Lithology 75% 

POROSITY Porosity, % reported 100% 

TEMP Temperature, deg F reported 97% 

PRESSURE Pressure, psi reported 99% 

SG Specific Gravity, reported or calculated (see text) 31% 

SPGRAV Specific Gravity, reported 46% 

SPGRAVT Temperature of Specific Gravity measurement, deg F 73% 

RESIS Resistivity, Ohm m 43% 

RESIST Temperature of Resistivity measurement, deg F 50% 

PH pH 25% 

PHT Temperature of pH measurement, deg F 99% 

EHORP Eh / Oxidation Reduction Potential, mV 100% 

COND Conductivity, μS/cm 99% 

CONDT Temperature of Conductivity measurement, deg F 100% 

TURBIDITY Turbidity 100% 

HEM Oil and Grease 100% 

MBAS Surfactants and Detergents 100% 

UNITS mg/L or ppm, applies to all chemistry unless specified 0% 

TDSUSGS Total Dissolved Solids, calculated (see text) 4% 

TDS Total Dissolved Solids, measured 15% 

TDSCALC Total Dissolved Solids, calculated, as reported in reference 98% 

TSS Total Suspended Solids 99% 

CHARGEBAL Charge balance of major ions, %, reported 97% 

chargebalance Charge balance of major ions, %, calculated 5% 

Ag Silver 100% 

Al Aluminum 99% 
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Variable 
Name 

Description 
Percent 
Missing 

As Arsenic 100% 

Au Gold 100% 

B Boron 96% 

BO3 Borate 100% 

Ba Barium 89% 

Be Beryllium 100% 

Bi Bismuth 100% 

Br Bromide 94% 

CO3 Carbonate 91% 

HCO3 Bicarbonate 14% 

Ca Calcium 6% 

Cd Cadmium 100% 

Cl Chloride 5% 

Co Cobalt 100% 

Cr Chromium 98% 

Cs Cesium 100% 

Cu Copper 99% 

F Fluoride 99% 

FeTot Iron, total 76% 

FeIII Iron, 3+ 100% 

FeII Iron, 2+ 99% 

FeS Iron sulfide 100% 

FeAl Iron plus Aluminum, reported as elements 100% 

FeAl2O3 Iron plus Aluminum, reported as oxides 100% 

Hg Mercury 100% 

I Iodine 97% 

K Potassium 73% 

KNa Potassium plus Sodium 93% 

Li Lithium 95% 

Mg Magnesium 10% 

Mn Mangansese 97% 

Mo Molybdenum 100% 

N Nitrogen, total 100% 

NO2 Nitrite 100% 

NO3 Nitrate 97% 

NO3NO2 Nitrate plus Nitrite 100% 

NH4 Ammonium 99% 

TKN Kjeldahl Nitrogen 100% 

Na Sodium 16% 

Ni Nickel 100% 

OH Hydroxide 100% 

P Phosphorus 100% 
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Variable 
Name 

Description 
Percent 
Missing 

PO4 Phosphate 100% 

Pb Lead 100% 

Rh Rhodium 100% 

Rb Rubidium 99% 

S Sulfide 100% 

SO3 Sulfite 100% 

SO4 Sulfate 19% 

HS Bisulfide 100% 

Sb Antimony 100% 

Sc Scandium 100% 

Se Selenium 100% 

Si Silica 97% 

Sn Tin 100% 

Sr Strontium 93% 

Ti Titanium 100% 

Tl Thallium 100% 

U Uranium 100% 

V Vanadium 100% 

W Tungsten 100% 

Zn Zinc 99% 

ALKHCO3 Alkalinity as HCO3 99% 

ACIDITY Acidity as CaCO3 100% 

DIC Dissolved Inorganic Carbon 100% 

DOC Dissolved Organic Carbon 100% 

TOC Total Organic Carbon 100% 

CN Cyanide 100% 

BOD Biochemical Oxygen Demand 100% 

COD Chemical Oxygen Demand 100% 

BENZENE Benzene 99% 

TOLUENE Toluene 99% 

ETHYLBENZ Ethybenzene 100% 

XYLENE Xylene 100% 

ACETATE Acetate 99% 

BUTYRATE Butyrate 100% 

FORMATE Formate 100% 

LACTATE Lactate 100% 

PHENOLS Phenols 100% 

PERC Tetrachloroethylene 100% 

PROPIONATE Propionate 100% 

PYRUVATE Pyruvate 100% 

VALERATE Valerate 100% 

ORGACIDS Total Organic Acids 100% 
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Variable 
Name 

Description 
Percent 
Missing 

Ar Argon gas 100% 

CH4 Methane gas 100% 

C2H6 Ethane gas 100% 

CO2 Carbon Dioxide gas 99% 

H2 Hydrogen gas 100% 

H2S Hydrogen Sulfide gas 97% 

He Helium gas 100% 

N2 Nitrogen gas 100% 

NH3 Ammonia gas 100% 

O2 Oxygen gas 100% 

ALPHA Alpha particles, pCi/L 100% 

BETA Beta particles, pCi/L 100% 

dD δH, per mil 99% 

H3 Tritium, 3H, tritium units 100% 

d7Li δ7Li, per mil 100% 

d11B δ11B, per mil 100% 

d13C δ13C, per mil 100% 

C14 14C, pCi/L 100% 

d18O δ18O, per mil 99% 

d34S δ34S, per mil 100% 

d37Cl δ37Cl, per mil 100% 

K40 40K, pCi/L 100% 

d81Br δ81Br 100% 

Sr87Sr86 87Sr/86Sr 99% 

I129 129I/I, parts per quadrillion 100% 

Rn222 222Rn, pCi/L 100% 

Ra226 226Ra, pCi/L 99% 

Ra228 228Ra, pCi/L 100% 

cull_PH “X” if pH < 4.5 or pH > 10.5 98% 

cull_MgCa “X” if Mg > Ca 96% 

cull_KCl “X” if K > Cl 100% 

cull_K5Na “X” if K > 5xNa 100% 

cull_chargeb “X” if charge balance > 15% 79% 
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Table B.2 Data Dictionary and Percent Missingness, n=254 (after Engle et al, 2019). 

Variable Name Description % Missing 

IDUSGS Unique ID in this database 0 
IDORIG ID in original database or publication 0 
IDDB ID (name) of input database 0 
SOURCE Source of data 1.2 
REFERENCE Publication 15.7 
LATITUDE Latitude 3.1 
LONGITUDE Longitude 3.1 
LATLONGAPX Description if LATITUDE or LONGITUD 98 
API API well number, 14 digits 53.1 
USGSREGION USGS Region 0 
BASIN Basin 0 
BASINCODE Basin Code 100 
STATE State 0 
STATECODE State Code 0 
COUNTY County 44.9 
COUNTYCODE County Code 100 
FIELD Field 77.6 
FIELDCODE Field Code 100 
WELLNAME Well name 30.3 
WELLCODE Well Code 100 
WELLTYPE Well type 0 
TOWNRANGE Township, Range, Section, Quarter 77.6 
REGDIST Regional District 44.5 
LOC Location 100 
QUAD Quad 98 
TIMESERIES Order of time-series data 100 
DAY Sample day of time-series data 100 
DATECOMP Date of well completion 100 
DATESAMPLE Date of sample collection 77.6 
DATEANALYS Date of analysis 84.3 
METHOD Sample Method 34.6 
OPERATOR Well operator 77.6 
PERMIT Well permit holder 99.6 
DFORM Geologic formation name of greatest 100 
GROUP Geologic group name 100 
FORMATION Geologic formation name 0 
MEMBER Geologic member name 100 
AGECODE Geologic Age code 100 
ERA Geologic Era name 0 
PERIOD Geologic Period name 0 
EPOCH Geologic Epoch name 100 
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Variable Name Description % Missing 
DEPTHUPPER Upper perforation depth, ft. Depth  79.1 
DEPTHLOWER Lower perforation depth, ft 79.1 
DEPTHWELL Reported Total depth of well, ft 100 
ELEVATION Elevation of well, ft 100 
LAB Laboratory that analyzed the result 84.3 
REMARKS Remarks or comments 69.3 
LITHOLOGY Lithology 71.7 
POROSITY Porosity, % reported 100 
TEMP Temperature, deg F reported 90.6 
PRESSURE Pressure, psi reported 100 
SG Specific Gravity, reported or calculated 91.3 
SPGRAV Specific Gravity, reported 91.3 
SPGRAVT Temperature of Specific Gravity meas. 100 
RESIS Resistivity, Ohm m 97.6 
RESIST Temperature of Resistivity measurement 100 
PH pH 69.7 
PHT Temperature of pH measurement, deg  98 
EHORP Eh / Oxidation Reduction Potential, 98 
COND Conductivity, Î¼S/cm 67.3 
CONDT Temperature of Conductivity measure 73.6 
TURBIDITY Turbidity 100 
HEM Oil and Grease 85.4 
MBAS Surfactants and Detergents 85 
UNITS mg/L or ppm, applies to all chemist 0 
TDSUSGS Total Dissolved Solids, calculated  26.4 
TDS Total Dissolved Solids, measured 30.3 
TDSCALC Total Dissolved Solids, calculated, 95.7 
TSS Total Suspended Solids 94.1 
CHARGEBAL Charge balance of major ions, %, re 100 
chargebalance Charge balance of major ions, %, ca 31.5 
Ag Silver 100 
Al Aluminum 81.5 
As Arsenic 93.7 
Au Gold 100 
B Boron 93.7 
BO3 Borate 100 
Ba Barium 35.8 
Be Beryllium 100 
Bi Bismuth 100 
Br Bromide 57.5 
CO3 Carbonate 96.9 
HCO3 Bicarbonate 89.4 
Ca Calcium 31.5 
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Variable Name Description % Missing 
Cd Cadmium 92.9 
Cl Chloride 29.5 
Co Cobalt 98.8 
Cr Chromium 89 
Cs Cesium 93.3 
Cu Copper 92.1 
F Fluoride 92.9 
FeTot Iron, total 47.2 
FeIII Iron, 3+ 100 
FeII Iron, 2+ 100 
FeS Iron sulfide 100 
FeAl Iron plus Aluminum, reported as elemental 100 
FeAl2O3 Iron plus Aluminum, reported as oxides 100 
Hg Mercury 97.2 
I Iodine 91.3 
K Potassium 74.4 
KNa Potassium plus Sodium 100 
Li Lithium 60.2 
Mg Magnesium 46.1 
Mn Manganese 61 
Mo Molybdenum 96.1 
N Nitrogen, total 100 
NO2 Nitrite 100 
NO3 Nitrate 99.6 
NO3NO2 Nitrate plus Nitrite 97.2 
NH4 Ammonium 93.7 
TKN Kjeldahl Nitrogen 94.1 
Na Sodium 44.5 
Ni Nickel 92.1 
OH Hydroxide 100 
P Phosphorus 100 
PO4 Phosphate 99.6 
Pb Lead 87 
Rh Rhodium 100 
Rb Rubidium 93.3 
S Sulfide 98 
SO3 Sulfite 99.6 
SO4 Sulfate 66.9 
HS Bisulfide 100 
Sb Antimony 100 
Sc Scandium 100 
Se Selenium 98 
Si Silica 98.4 
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Variable Name Description % Missing 
Sn Tin 99.6 
Sr Strontium 53.5 
Ti Titanium 100 
Tl Thallium 99.6 
U Uranium 100 
V Vanadium 100 
W Tungsten 100 
Zn Zinc 74.4 
ALKHCO3 Alkalinity as HCO3 86.2 
ACIDITY Acidity as CaCO3 96.9 
DIC Dissolved Inorganic Carbon 98 
DOC Dissolved Organic Carbon 93.3 
TOC Total Organic Carbon 99.6 
CN Cyanide 100 
BOD Biochemical Oxygen Demand 94.5 
COD Chemical Oxygen Demand 94.1 
BENZENE Benzene 100 
TOLUENE Toluene 100 
ETHYLBENZ Ethybenzene 100 
XYLENE Xylene 99.6 
ACETATE Acetate 93.7 
BUTYRATE Butyrate 100 
FORMATE Formate 100 
LACTATE Lactate 100 
PHENOLS Phenols 98.8 
PERC Tetrachloroethylene 100 
PROPIONATE Propionate 100 
PYRUVATE Pyruvate 100 
VALERATE Valerate 100 
ORGACIDS Total Organic Acids 100 
Ar Argon gas 100 
CH4 Methane gas 100 
C2H6 Ethane gas 100 
CO2 Carbon Dioxide gas 100 
H2 Hydrogen gas 100 
H2S Hydrogen Sulfide gas 98 
He Helium gas 100 
N2 Nitrogen gas 100 
NH3 Ammonia gas 93.3 
O2 Oxygen gas 98.4 
ALPHA Alpha particles, pCi/L 63 
BETA Beta particles, pCi/L 64.2 
dD H, per mil 90.9 
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Variable Name Description % Missing 
H3 Tritium, 3H, tritium units 100 
d7Li 7Li, per mil 100 
d11B 11B, per mil 98 
d13C 13C, per mil 98 
C14 14C, pCi/L 100 
d18O 18O, per mil 90.9 
d34S 34S, per mil 99.6 
d37Cl 37Cl, per mil 100 
K40 40K, pCi/L 81.1 
d81Br 81Br 100 
Sr87Sr86 87Sr/86Sr 98.4 
I129 129I/I, parts per quadrillion 100 
Rn222 222Rn, pCi/L 100 
Ra226 226Ra, pCi/L 0 
Ra228 228Ra, pCi/L 28.3 
cull_PH X if pH < 4.5 or pH > 10.5 100 
cull_MgCa X if Mg > Ca 100 
cull_KCl X if K > Cl 100 
cull_K5Na X if K > 5xNa 100 
cull_chargeb X if charge balance > 15% 50 

 

Table B-3. Frequency of observations by formation for the Appalachian Basin. 

 Formation 
Appalachian 
(N=192) 

  Bass Islands Dolomite 5 (2.6%) 
  Bradford Gp 1 (0.5%) 
  Catskill & Lock Haven Groups 4 (2.1%) 
  Fifty Foot Sand 1 (0.5%) 
  Helderberg Ls 2 (1.0%) 
  Huntersville Chert 3 (1.6%) 
  Kane Sand 1 (0.5%) 
  Lock Haven Fm 3 (1.6%) 
  Marcellus Shale 98 (51.0%) 
  Medina Gp 36 (18.8%) 
  Onondaga Ls 1 (0.5%) 
  Oriskany Ss 7 (3.6%) 
  Queenston Shale 5 (2.6%) 
  Red Valley Sand 1 (0.5%) 
  Theresa Fm 3 (1.6%) 
  Tuscarora Fm 1 (0.5%) 
  Unknown 10 (5.2%) 
  Upper Devonian 5 (2.6%) 
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 Formation 
Appalachian 
(N=192) 

  Venango Gp 4 (2.1%) 
  Warren Sand 1 (0.5%) 

Figure B-1. Variable Behavior during Multiple Imputation. 
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Table B-4. Alternative GT600 Logistic Model, BS(n=200)/MI. 

GT600 Logistic Model 

Factor significance proportion 

LFeT LTDS W.Type 

0.99 1 1 

Coefficients and Measures 

               Mean      SD 

Intercept  -17.0559  2.5636 

LTDS         2.7367  0.5281 

LFeT         1.2384  0.3014 

W.Type=SG    1.6536  0.3777 

Obs        254.0000  0.0000 

Max Deriv    0.0000  0.0000 

Model L.R. 129.7270 13.5978 

d.f.         3.0000  0.0000 

P            0.0000  0.0000 

C            0.8723  0.0185 

Dxy          0.7447  0.0369 

Gamma        0.7448  0.0369 

Tau-a        0.3616  0.0198 

R2           0.5376  0.0422 

Brier        0.1395  0.0100 

g            3.1851  0.3797 

gr          27.1594 11.3453 

gp           0.3652  0.0186 

 

 

 

Table B-5. Alternative GT600 Logistic Model, MI without Prior Bootstrap.   

 
Logistic Regression Model, MI without bootstrap. 
  
 fit.mult.impute(formula = GT600 ~ LTDS + LFeT + W.Type. 
  
                        Model Likelihood         Discrimination         
                              Ratio Test                Indexes         
 Obs           254    LR chi2     127.54    R2       0.531    C       0.870     
  0            149    d.f.             3    g        3.129    Dxy     0.740     
  1            105    Pr(> chi2) <0.0001    gr      23.810    gamma   0.740     
 max |deriv| 1e-06                          gp       0.364    tau-a   0.360     
                                            Brier    0.142                      
  
           Coef     S.E.   Wald Z Pr(>|Z|) 
 Intercept -16.9564 3.6125 -4.69  <0.0001  
 LTDS        2.7442 0.7104  3.86  0.0001   
 LFeT        1.1682 0.4918  2.38  0.0175   
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 W.Type=SG   1.6382 0.3976  4.12  <0.0001  
  
Variance inflation factors:  1.38, 1.10, 1.27 

 

Table B-6. Alternative GT600 Logistic Model, Bootstrap (n=200) without MI.   

GT600 Logistic Model 

 Mean  SD 

Intercept -15.036 4.506 

LTDS 1.61 0.886 

LFeT 2.951 0.795 

W.Type=SG 2.217 0.967 

Obs 120 0 

Max Deriv 0 0 

Model L.R. 77.899 12.407 

d.f. 3 0 

P 0 0 

C 0.895 0.032 

Dxy 0.79 0.064 

Gamma 0.791 0.064 

Tau-a 0.394 0.033 

R2 0.635 0.071 

Brier 0.117 0.02 

g 4.254 0.922 

gr 129.11 344.401 

gp 0.405 0.027 

 

 

Table B-7. Results and Performance Measures for the MLR Regression (MI – validate()); 

Observations with LTDS= NA excluded. 
Model: LRa ~ LTDS + LBa 
Imputation Order: reverse monotone 
                 Model Likelihood    Discrimination     
                       Ratio Test           Indexes     
 Obs     187    LR chi2    270.63    R2       0.765     
 sigma0.5810    d.f.            2    R2 adj   0.762     
 d.f.    184    Pr(> chi2) 0.0000    g        1.131      
  
           Coef    S.E.   t      Pr(>|t|) 
 Intercept -3.8072 0.3129 -12.17 <0.0001  
 LTDS       1.1718 0.0720  16.27 <0.0001  
 LBa        0.2153 0.0370   5.82 <0.0001  
  
                Analysis of Variance          Response: LRa  
 
 Factor     d.f. Partial SS MS         F      P      
 LTDS         1   89.30030  89.3003007 264.58 <.0001 
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 LBa          1   11.43527  11.4352703  33.88 <.0001 
 REGRESSION   2  194.93946  97.4697298 288.79 <.0001 
 ERROR      184   62.10241   0.3375131 
  
           index.orig training    test optimism index.corrected   n 
 R-square      0.7674   0.7698  0.7631   0.0067          0.7607 250 
 MSE           0.3285   0.3217  0.3346  -0.0129          0.3414 250 
 g             1.1327   1.1329  1.1320   0.0009          1.1317 250 
 Intercept     0.0000   0.0000 -0.0037   0.0037         -0.0037 250 
 Slope         1.0000   1.0000  1.0007  -0.0007          1.0007 250 
 
  
Variance Inflation Factors: 
 LTDS LBa 
 1.47 1.47 
 
Shapiro-Wilk normality test of regression residuals: 
 W = 0.98845, p-value = 0.1326  
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